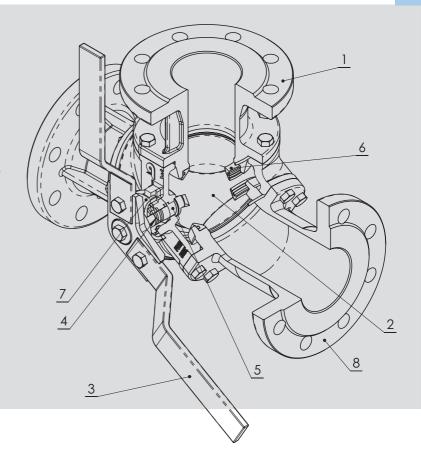

Serie 04.1

Valvola a sfera flangiata a tre vie

Le valvole serie 04.1 sono valvole deviatrici a tre vie a sfera realizzate in ghisa e con sfera flottante, realizzate in accordo alle normative di prodotto rilevanti ed al sistema di gestione della qualità EN ISO 9001, e disponibili nelle versioni:


T4 > con flangiatura a "T" (a 90°) Y4 > con flangiatura a "Y" a 120°

La valvola a tre vie assicura in ogni posizione il collegamento con l'atmosfera o con un tubo di sicurezza, e la ripartizione del flusso è di tipo progressivo (TRANSFLOW), per cui quando una via è chiusa le altre due sono completamente aperte ed è impossibile che un errore di manovra determini una parzializzazione della luce di passaggio di una via senza un corrispondente incremento dell'altra. Sono adatte per riscaldamento e condizionamento (HVAC), teleriscaldamento, trattamento e distribuzione dell'acqua, applicazioni industriali, agricole, per aria compressa, oli e idrocarburi. (Fatta salva la scelta corretta dell'articolo in base all'applicazione)

Sono idonee: per impieghi in linea e a fine linea, e per servizio che richieda frequenti azionamenti; possibilità di montare servocomandi pneumatici ed elettrici.

Non sono idonee: per vapore, per la parzializzazione e regolazione della portata.

- Verniciatura interna ed esterna con smalto epossidico, resistente alle alte temperature.
 Vernice a base acqua, a basso impatto ecologico.
- Sfera in ottone cromato o acciaio inox con passaggio pieno; le vie a 120° con ampio raccordo garantiscono ridotte turbolenze e perdite di carico.
- 3. Doppia leva a 120°, indica la direzione del flusso.
- 4. Il doppio O-Ring sullo stelo e la bussola metallica garantiscono la tenuta dinamica anche nelle condizioni più gravose.
- 5. Stelo con design antiespulsione.
- Sede sfera in PTFE caricato, al variare della temperatura la coppia di manovra rimane costante.
- 7. Il dispositivo RO-STOP permette la scelta delle vie di passaggio anche a valvola già installata.
- 8. Scartamento non normalizzato

Accessori

- → Leva con prolunga per isolamento termico
- → Flangia ISO 5211 per montaggio servocomandi

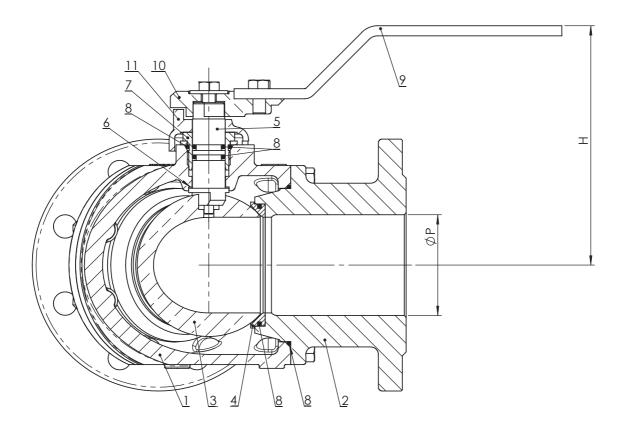
Vedi specifiche a pag. 40

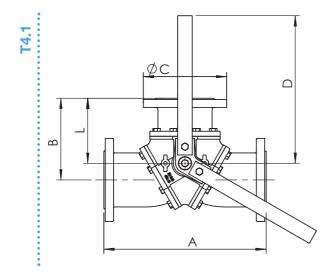
Comandi

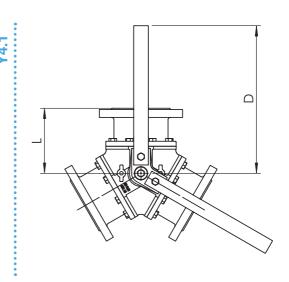
- Attuatori pneumatici a doppio e semplice effetto
- Attuatori elettrici

Conformi alla direttiva 97/23/CE PED

Norme costruttive e di collaudo (equivalenti):


Flange: EN 1092


www.brandoni.it


Design: EN 1983, EN13445

Collaudo: testate al 100% EN 12266 cat. A (ISO 5208 cat. A)

35

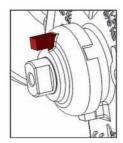
Materiali

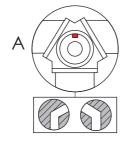
	Componente	Materiale
1	Corpo	EN GJS 400-15
2	Flangia	EN GJL 250
3	Sfera	Ottone CuZn40Pb2 / AISI304
4	Sede sfera	PTFE + Carbone
5	Asta	Ottone CuZn40Pb2 / AISI304
6	Anello antifrizione	PTFE
7	Ghiera	Ottone CuZn40Pb2 / AISI316
8	O Ring	NBR / FKM (Viton®)
9	Leva	Acciaio al carbonio, verniciato epossidico
10	Mozzo leva	Ottone CuZn40Pb2, zincato
11	Fermo leva RO-STOP	Ottone CuZn40Pb2, zincato
12	Bulloneria	Acciaio al carbonio zincato

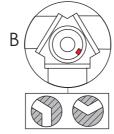
Dimensioni (mm)

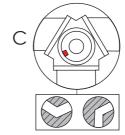
DN		50	65	80	100	125	150
Р		50	63	76	95	120	145
Α	non unificato	320	350	390	430	490	570
В		160	175	195	215	245	285
С	EN 1092/2 PN16	195	185	200	220	250	285
D		260	350	350	350	475	475
L		130	140	155	165	185	212
Н		167	173	187	198	242	261

Peso (kg)


kg (T)	20	26	34,5	44	70	104
kg (Y)	19	24,5	32,5	40	66	98


Coppia di manovra (Nm)


	• •						
Nm		20	40	70	100	180	250


N.B. al fine di ottimizzare la scelta del servocomando si consiglia di moltiplicare il momento torcente per il coefficiente di sicurezza K=1,5

RO-STOP

Il dispositivo RO-STOP è di particolare interesse perchè consente la massima praticità.

Nel disegno il quadratino rosso indica la posizione del fermo leva del dispositivo RO-STOP.

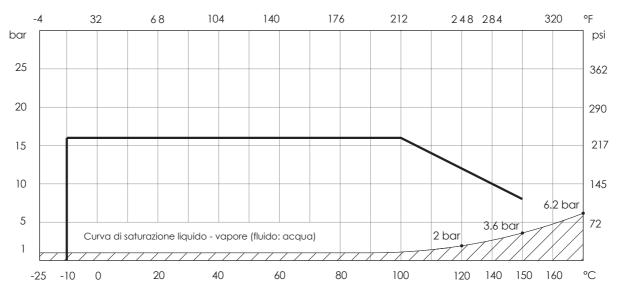
Esso definisce i collegamenti tra le tre vie consentiti in quella configurazione, come illuntrato nelle figure A, B, C.

N.B. Al momento dell'ordine specificare il collegamento fra le vie. (Posizione A, B o C)

www.brandoni.it 37

Pressione massima

Tipo fluido *	Montaggio			
	TRA FLANGE	FINE LINEA		
Gas pericolosi G1	NO	NO		
Liquidi pericolosi L1	16 bar	10 bar		
Tutti gli altri fluidi G2, L2	16 bar	10 bar		


^{*:} gas, liquidi pericolosi (esplosivi, infiammabili, tossici) secondo 97/23/CE PED e 67/548/EEC

Temperature

Temperatura	min °C	max°C				
		continuo		pic	co	
		L1 G2,L2		L1	G2,L2	
NBR	-10	100	100	-	110	
FKM (Viton®)	-10	100	150	-	170	

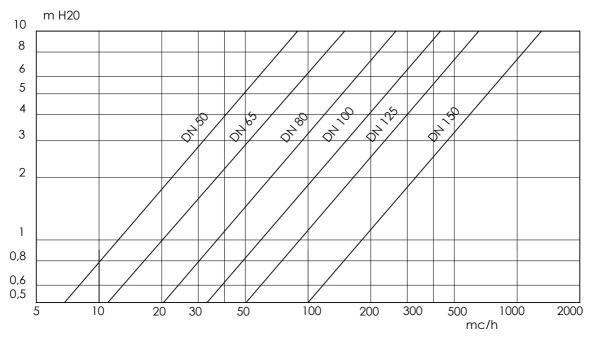

Attenzione: la pressione massima di utilizzo diminuisce con la temperatura, vedi diagramma "Pressione/Temperatura" G1, L1, G2, L2: vedi tabella a lato

Diagramma Pressione/Temperatura

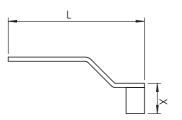
NON ADATTA PER VAPORE. NON utilizzare in condizioni di temperature e pressione al di sotto della curva di saturazione liquido-vapore (area tratteggiata)

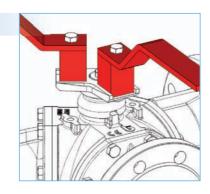
Perdite di carico Fluido: acqua (1m H2O = 0,098bar)

Tabella Kv - DN

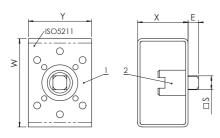
DN		50	65	80	100	125	150
Κv	mc/h	90	150	282	420	720	1320

Versioni

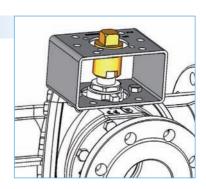



www.brandoni.it

Accessori


Leva con prolunga per isolamento termico

DN	50	65-80-100	125-150
Χ	50	50	50
L	260	350	475



Kit flangia ISO 5211 per montaggio servocomandi

DN	50 - 65	80-100	125-150
ISO 5211	F07/F10	F07/F10	F12
SxE	17x16	22 x 21	27x26
W	120	140	160
Χ	60	80	80
Υ	95	100	120

1) Flangia
2) Giunto
N.B. Al momento dell'ordine specificare il collegamento fra le vie (Posizione A, B o C", vedi pag. 37)

Istruzioni e Avvertenze

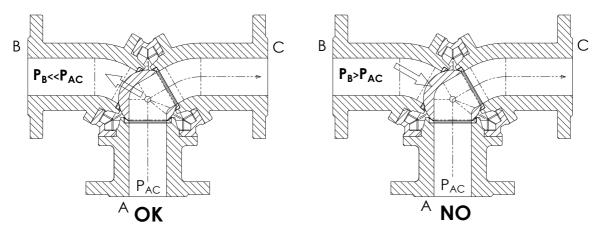
Le informazioni qui riportate sono allegate ad ogni prodotto nel "Manuale d'uso e manutenzione" e possono essere scaricate dal nostro sito www.brandoni.it (sez. download)

STOCCAGGIO

- Conservare in ambiente chiuso e asciutto.
- Durante l'immagazzinamento la valvola deve essere mantenuta completamente aperta per evitare il danneggiamento delle sedi di tenuta

MANUTENZIONE

- Per una maggiore sicurezza di tenuta si consiglia di sostituire gli O-ring in gomma almeno ogni 24 mesi e le sedi in PTFE almeno ogni 48 mesi. La periodicità di manutenzione varia dal tipo di utilizzo.
- Pulire periodicamente la superficie della valvola evitando per quanto possibile accumuli di polvere.


AVVERTENZE

Prima di procedere a qualunque intervento di manutenzione o smontaggio: attendere il raffreddamento di tubazioni, valvola e fluido, scaricare la pressione e drenare linea e tubazioni in presenza di fluidi tossici, corrosivi, infiammabili o caustici. Temperature oltre i 50°C e sotto gli 0°C possono a causare danni alle persone.

NOTE SUL FUNZIONAMENTO

Sfera forata a "L" a ripartizione progressiva Trans-Flow: cioè durante la manovra le vie sono temporaneamente tutte e tre aperte e quindi la commutazione del flusso da una via all'altra avviene in modo progressivo. Questa costruzione impone che, per il corretto funzionamento, la pressione agisca CONTRO la sede della via chiusa e NON DALLA PARTE della via chiusa (vedi fig.1). In questo caso si possono verificare perdite e danneggiamento delle sedi. (per maggiori dettagli verificare il manuale d'uso)

FIG. 1

INSTALLAZIONE

- Maneggiare con cura.
- La valvola deve essere installata in posizione aperta o chiusa.
- Posizionare la valvola tra le flange della tubazione e inserire le guarnizioni di tenuta tra le flange della valvola e le flange della tubazione. Verificare che le guarnizioni siano posizionata correttamente.

Non utilizzare i bulloni delle controflange per avvicinare la tubazione. I bulloni devono essere stretti in croce.

- Le flange non devono essere saldate alle tubazioni dopo che la valvola è stata installata.
- I colpi d'ariete possano causare danni e rotture. Inclinazioni, torsioni e disallineamenti delle tubazioni possono causare sollecitazioni improprie sulla valvola una volta installata. Raccomandiamo di evitarli per quanto possibile o adottare giunti elastici che possano attenuarne gli effetti.
- Durante il riscaldamento da temperatura ambiente ad una temperatura di servizio elevata, il fluido contenuto tra corpo e sfera (valvola aperta) o nel passaggio della sfera (valvola chiusa) si espande e può danneggiare la sfera e le sedi, raccomandiamo di effettuare manovra di apertura e chiusura intermedia durante il riscaldamento (esempio a 40°C/60°C/...). A temperature inferiori allo zero, il fluido contenuto tra corpo e sfera può congelare e causare danni irreparabili. Se la valvola è esposta a tali condizioni raccomandiamo di isolare la valvola.
- Si raccomanda di manovrare periodicamente le valvole a sfera per evitare il deposito di materiali sulla sfera e sulle sedi.