Vazão

AquaTrans[™] AT600

Manual do Usuário

910-312-PB Rev. A Março de 2015

AquaTrans[™] AT600

Medidor de vazão ultrassônico para líquidos

Manual do Usuário (Tradução de instruções originais)

910-312-PB Rev. A Março de 2015

www.gemeasurement.com

©2015 General Electric Company. Todos os direitos reservados. Especificações sujeitas à alteração sem aviso. [esta página foi deixada em branco propositadamente]

1.1	Visão Geral1
1.2	Teoria da operação2
	1.2.1 Medição de Vazão Transit-Time
Cap	ítulo 2. Instalação
2.1	Introdução
2.2	Desembalar o sistema AT600
2.3	Instalação do gabinete eletrônico5
2.4	Instalar o sistema do transdutor e grampos de fixação não intrusivos
	2.4.1 Localização dos grampos de fixação não intrusivos e do transdutor7
	2.4.2 Montagem de grampos de fixação não intrusivos na tubulação (Transdutores AT6)8
2.5	Instalação do Sistema de Transdutor e Grampo de Fixação C-RS
	2.5.1 Guia de Instalação do Transdutor C-RS15
	2.5.2 Instale o Adaptador do Cabo para o transdutor C-RS e o cabo AT6
2.6	Criação de conexões elétricas
	2.6.1 Conectar a alimentação da linha17
	2.6.2 Fiação dos transdutores
	2.6.3 Aterramento do sistema de fiação19
	2.6.4 Saída analógica da fiação/Comunicação HART20
	2.6.5 Comunicação Modbus da fiação21
	2.6.6 Frequência da fiação/Totalizador/Saída de alarme21
	2.6.7 Entrada de porta da fiação
Cap	ítulo 3. Configuração inicial e programação
3.1	Introdução
3.2	Operação do teclado do AT60024
3.3	Programação do visor
	3.3.1 Alterar valor para telas de uma ou duas variáveis
	3.3.2 Alterar o tipo de medição para telas de uma ou duas variáveis
	3.3.3 Alterar o tipo de medição ou o valor para telas de totalizador
	3.3.4 Iniciar ou parar Medição do totalizador
	3.3.5 Redefinir o totalizador
3.4	Entrar no menu principal (botão de cadeado)
	3.4.1 Formato de exibição
	3.4.2 Bloqueio do teclado
	3.4.3 Idioma
	3.4.4 Programa/Revisão do programa
	3.4.5 Revisão do programa
	3.4.6 Programa

3.5	Preferências de usuário	
	3.5.1 Ajuste	
	3.5.2 Definir unidades	
	3.5.3 Densidade	
	3.5.4 Senha	
	3.5.5 Exibição	
3.6	Entradas/saídas	
	3.6.1 Programar o menu Analog Output (Saída Analógica)40	
	3.6.2 Programar o menu Digital Output (Saída Digital)	
	3.6.3 Programar Modbus/porta de serviço	
	3.6.4 Programar comunicação digital	
3.7	Configuração do sensor	
	3.7.1 Programar a configuração do medidor	
	3.7.2 Programar a tubulação	
	3.7.3 Programar o transdutor	
	3.7.4 Programar as transversais	
	3.7.5 Programar o tipo de fluído	
	3.7.6 Programar a temperatura do fluído	
	3.7.7 Programar o espaçamento do transdutor	
Сар	ítulo 4. Códigos de erro e solução de problemas	
4.1	Exibição de erros na interface de usuário	
	4.1.1 Título do erro	
	4.1.2 Sequência do erro de vazão	
4.2	Diagnóstico	
	4.2.1 Introdução	
	4.2.2 Problemas de célula de vazão	
Cap	ítulo 5. Comunicação	
51	MODBLIS 79	
0.1	5 1 1 Introdução 79	
	5.1.2 Mapa do MODBUS	
5.2	HART	
	5.2.1 Identificação de dispositivos	
	5.2.2 Comandos	
5.3	Status do dispositivo adicional	
5.4	Variáveis de dispositivo	
5.5	Unidades de engenharia de HART	
Apêndice A. Especificações		
A.1	Operação e desempenho	
	A.1.1 Tipos de fluido	
	A.1.2 Medicão de vazão	

A.2	Corpo do medidor/Transdutor	. 156
	A.2.1 Material do corpo do medidor	. 156
	A.2.2 Sistema Transdutor AT6 e materiais	. 156
	A.2.3 Sistema Transdutor C-RS e materiais.	. 156
	A.2.4 Faixas de temperatura do medidor	. 156
	A.2.5 Faixas de temperatura do transdutor AT6	. 156
	A.2.6 Faixas de temperatura do transdutor C-RS	. 156
	A.2.7 Faixa de umidade	. 156
	A.2.8 Variação de altitude	. 156
	A.2.9 Cabos de transdutor CAT	. 156
	A.2.10 Especificação e requisitos de cabeamento	. 157
	A.2.11 Requisito para fixação do cabo e torque do prensa-cabo	. 157
A.3	Componentes eletrônicos	. 158
	A.3.1 Compartimentos	. 158
	A.3.2 Impermeável	. 158
	A.3.3 Classificações eletrônicas (Pendente)	. 158
	A.3.4 Idiomas de exibição	. 158
	A.3.5 Teclado	. 158
	A.3.6 Entradas/saídas	. 158
۸ - ÷	ndias D. Danisturas de dadas	

Apêndice B. Registros de dados

B.1	Registro de serviço	159
B.2	Entrada de dados	159
B.3	Ajustes iniciais.	160
B.4	Parâmetros de diagnóstico	161

Apêndice C. Mapas de menus

C.1	Menu Display Measurement (Medição de exibição)	163
C.2	Main Menu (Menu Principal)	164
C.3	Main Menu (Menu Principal) > Menu User Preferences (Preferências de Usuário)	165
C.4	Main Menu (Menu Principal) > Menu Inputs/Outputs (Entradas/Saídas)	166
C.5	Main Menu (Menu Principal) > Menu Sensor Setup (Configuração do Sensor)	167
C.6	Main Menu (Menu Principal) > Menu Calibration (Calibração)	168
C.7	Main Menu (Menu Principal) > Menu Advanced (Avançado)	169
C.8	Main Menu (Menu Principal) >Menu Factory (Fábrica)	170

[esta página foi deixada em branco propositadamente]

Parágrafos de informações

Observação: Os parágrafos fornecem informações que proporcionam um entendimento mais profundo da situação, mas não são essenciais para a execução apropriada das instruções.

IMPORTANTE: Esses parágrafos fornecem informações que enfatizam instruções essenciais para a devida configuração do equipamento. Se você não seguir as instruções atentamente, isso poderá provocar um desempenho não confiável.

ATENÇÃO! Esse símbolo indica um risco de ferimento sem gravidade e/ou danos graves ao equipamento, a menos que essas instruções sejam seguidas com cuidado.

ADVERTÊNCIA Esse símbolo indica um risco de ferimento pessoal grave, a menos que essas instruções sejam seguidas com cuidado.

Problemas de segurança

ADVERTÊNCIA É responsabilidade do usuário certificar-se de que todas as leis, regulamentações, regras e legislações municipais, estaduais e nacionais relacionadas à segurança e às condições de operação segura sejam atendidas em cada instalação. A segurança de qualquer sistema que incorpore o equipamento é responsabilidade do montador do sistema.

Equipamento auxiliar

Padrões locais de segurança

O usuário deverá operar todos os equipamentos auxiliares de acordo com códigos, padrões, regulamentações ou leis locais aplicáveis à segurança.

Área de operação

ADVERTÊNCIA O equipamento auxiliar pode ter modos manual e automático de operação. Como o equipamento pode se mover repentinamente e sem aviso, não entre na célula de trabalho deste equipamento durante a operação automática, e não entre no envelope de trabalho deste equipamento durante a operação manual. Se fizer isso, você corre o risco de sofrer um ferimento grave.

ADVERTÊNCIA Certifique-se de que o equipamento auxiliar esteja DESLIGADO e travado antes de executar procedimentos de manutenção no equipamento.

ADVERTÊNCIA É responsabilidade do usuário certificar-se de que o cabo PWR, Hart, Modbus e E/S possa atender à especificação de cabos, que é descrita no Apêndice A.

Qualificação do pessoal

Certifique-se de que todo o pessoal passe por um treinamento aprovado pelo fabricante para o equipamento auxiliar.

Equipamento de segurança pessoal

Certifique-se de que os operadores e o pessoal de manutenção possuam todos os equipamentos de segurança aplicáveis ao equipamento auxiliar. Os exemplos incluem óculos de proteção, capacetes protetores, sapatos de proteção, etc.

Operação não autorizada

Garanta que pessoas não autorizadas não possam obter acesso à operação do equipamento.

Conformidade ambiental

Diretiva Waste Electrical and Electronic Equipment (WEEE)

A GE Measurement & Control Solutions é um participante ativo da iniciativa de reaproveitamento *Waste Electrical and Electronic Equipment* (WEEE), diretiva 2012/19/UE.

O equipamento que você comprou exigiu a extração e o uso de recursos naturais para a sua produção. Ele contém substâncias perigosas que poderiam afetar a saúde e o meio ambiente.

Para evitar a disseminação dessas substâncias no nosso ambiente e diminuir o consumo de recursos naturais, incentivamos você a usar sistemas apropriados de reaproveitamento. Esses sistemas reutilizarão ou reciclarão a maioria dos materiais do seu equipamento em fim de vida útil de forma responsável.

O símbolo de lata de lixo com rodas riscado convida você a usar esses sistemas.

Se precisar de mais informações sobre os sistemas de coleta, reutilização e reciclagem, entre em contato com a administração de resíduos local ou regional.

Visite <u>www.gemeasurement.com/environmental-health-safety-ehs</u> para instruções de reaproveitamento e mais informações sobre esta iniciativa.

Capítulo 1. Introdução

1.1 Visão Geral

Obrigado por adquirir o medidor de vazão ultrassônico AT600. O AT600 é um medidor de vazão ultrassônico não intrusivo para medição de produtos em fase líquida. Ele é projetado para o mercado industrial, incluindo água, efluentes, aço, energia de campus e outros mercados. O AT600 utiliza uma nova plataforma eletrônica e um design industrial para torná-lo extremamente simples de instalar e usar no campo.

• Tão fácil de usar, ele praticamente se instala.

O AT600 possui novos componentes eletrônicos AT600, compartimento de metal e sistema de transdutores AT aprovados em campo, incluindo o grampo de fixação não intrusivo.

Figura 1: Sistema AT600 (montagem na tubulação)

1.2 Teoria da operação

1.2.1 Medição de Vazão Transit-Time

Nesse método, dois transdutores atuam como geradores e receptores de sinais ultrassônicos. Eles comunicam-se acusticamente, ou seja, o segundo transdutor pode receber os sinais ultrassônicos transmitidos pelo primeiro e vice-versa.

Na operação, os dois transdutores funcionam como transmissores, gerando um determinado número de pulsos acústicos e, em seguida, como receptores de um número de pulsos idêntico. O intervalo de tempo entre a transmissão e a recepção dos sinais ultrassônicos é medido nas duas direções. Quando o líquido não flui pela tubulação, o tempo de trânsito à jusante é igual ao tempo de trânsito à montante. Caso contrário, o tempo de trânsito à jusante é inferior ao tempo de trânsito à montante.

A diferença entre os tempos de trânsito à jusante e à montante é proporcional à velocidade de vazão do líquido e o seu sinal indica a direção da vazão.

Figura 2: Trajetórias da vazão e dos transdutores (transversal duplo)

Figura 3: Trajetórias da vazão e dos transdutores (transversal único)

Capítulo 2. Instalação

2.1 Introdução

Para assegurar a operação segura e confiável do AT600, o sistema deve ser instalado de acordo com as diretrizes estabelecidas. Essas diretrizes, explicadas em detalhes neste capítulo, incluem os seguintes tópicos:

- Desembalar o sistema AT600
- Instalar o gabinete eletrônico
- Instalar o sistema de transdutor e grampos de fixação não intrusivos
- Conectar os fios do gabinete eletrônico

ADVERTÊNCIA O transmissor de vazão AT 600 pode medir a taxa de vazão de diversos fluidos, incluindo fluidos potencialmente perigosos. É sempre bom enfatizar a importância da adoção de práticas de segurança apropriadas.

Não se esqueça de seguir todos os códigos e regulamentos de segurança locais aplicáveis para a instalação de equipamentos elétricos e a operação com gases perigosos ou condições de vazão. Consulte profissionais de segurança da empresa ou autoridades de segurança locais para verificar a segurança de qualquer procedimento ou prática.

ATENÇÃO CLIENTES EUROPEUS! Para cumprir os requisitos das marcas CE e UL, todos os cabos devem ser instalados conforme descrito no *"Especificação e requisitos de cabeamento" na página 157.*

2.2 Desembalar o sistema AT600

Antes de remover o sistema AT600 da caixa, inspecione o medidor de vazão com atenção. Todos os instrumentos fabricados pela GE Measurement & Control possuem uma garantia que cobre defeitos de material e fabricação. Antes de descartar o material de embalagem, verifique todos os componentes e a documentação relacionados no recibo de entrega. É muito comum o descarte de um item importante com o material de embalagem. Se algo estiver faltando ou danificado, entre em contato imediatamente com o Atendimento ao Cliente da GE para assistência.

Observe que o sistema AT600 pode ter diversas configurações diferentes de acordo com as suas opções, portanto a lista do pacote pode apresentar algumas diferenças; Veja a seguir a lista típica do pacote:

- **10.** Um componente eletrônico do AT600
- 20. Dois grampos de fixação não intrusivos
- 30. Dois transdutores (instalados em um dos dois grampos de fixação não intrusivos)
- **40.** Um cabo do transdutor (instalado no grampo de fixação com transdutores)
- 50. Quatro cintas de montagem de grampo de fixação não intrusivas
- 60. Dois parafusos em "U" para montagem em tubo do AT600
- 70. Uma unidade Flash USB com manual e instruções para calibração
- 80. Uma chave sextavada interna
- 90. Três prensa-cabos M16 (instalados no AT600)
- 100. Duas partes do acoplador sólido
- 110. Guia de instalação rápida
- 120. Instruções de calibração
- 130. Ferramentas para cabeamento

Figura 4: Lista do pacote padrão

2.3 Instalação do gabinete eletrônico

Os componentes eletrônicos do AT600 são armazenados em um compartimento tipo NEMA 4X/IP67 revestido em pó de alumínio para uso interno ou externo. Consulte a Figura 5 abaixo para dimensões de montagem e peso dos componentes eletrônicos do AT600.

2.3 Instalar o gabinete eletrônico (cont.)

A base de instalação dos componentes eletrônicos do AT600 também pode ser girada a 90 graus para manter uma visão horizontal da interface do usuário em uma condição de montagem horizontal ou vertical. Consulte Figura 6 abaixo para a montagem da base de instalação do AT600.

Figura 6: Montagem da Base de Instalação do AT600

2.4 Instalar o sistema do transdutor e grampos de fixação não intrusivos

2.4.1 Localização dos grampos de fixação não intrusivos e do transdutor

Para um determinado fluido e tubulação, a precisão do AT600 depende principalmente da localização e do alinhamento dos transdutores. Além da acessibilidade, ao planejar a localização do transdutor, siga as seguintes diretrizes:

Localize o sistema do transdutor e grampos de fixação não intrusivos para que existam, no mínimo, 10 diâmetros
de tubos retos fixos à montante e 5 diâmetros de tubos retos fixos à jusante a partir do ponto de medição. A vazão
sem interrupção significa evitar fontes de turbulência no fluído como válvulas, flanges, expansões e cotovelos,
evitando redemoinhos e cavitação.

Figura 7: Localização do transdutor do AT600

 Localize os transdutores em um plano axial comum ao longo da tubulação. Posicione os transdutores na lateral da tubulação, e não na parte superior ou inferior, visto que o topo da tubulação tende a acumular gás e a base tende a acumular sedimentos. A condição provocará maior atenuação do sinal ultrassônico. Não há restrição semelhante em tubulações verticais se a vazão dos fluídos for à montante para evitar a queda livre do fluído de uma tubulação que não esteja totalmente cheia.

Figura 8: Localizações boas e ruins para o transdutor

2.4.2 Montagem de grampos de fixação não intrusivos na tubulação (Transdutores AT6)

O sistema do transdutor AT600 contém um grampo de fixação não intrusivo, dois transdutores incorporados dentro do grampo de fixação e um cabo do transdutor. O cabo do transdutor já vem conectado aos transdutores e montado com o grampo de fixação antes de ser fornecido com a configuração padrão para facilitar a instalação pela cliente.

O sistema do grampo de fixação não intrusivo e do transdutor AT600 aceita a tubulação em tamanhos que variam de 2 a 24 polegadas. O cliente pode escolher a instalação transversal dupla ou a instalação transversal única para a montagem do transdutor na tubulação.

Como a medida máxima de um grampo de fixação não intrusivo é de 250 mm, existem tipos diferentes de configuração de instalação conforme a variação do espaçamento do transdutor e o método de instalação duplo ou único. Consulte Tabela 1 quanto a estimativas aproximadas.

		a ,	,
Espaçamento	Transversal	Fixação	Tamanhos típicos da tubulação
0-250	4	1	2 pol. a 4 pol.
0-250	2	1	4 pol. a 10 pol.
0-250	1	2	10 pol. a 20 pol.
250-750	2	2	10 pol. a 30 pol.
250-750	1	2	20 pol. a 30 pol.

Tabela 1: Estimativas para as configurações da tubulação

Veja a seção 3.7 (Configuração do Sensor) para determinar o espaçamento do transdutor. Uma instalação transversal dupla é recomendável para a maioria das aplicações.

2.4.2a A instalação transversal dupla na variação de espaçamento do transdutor de 0 a 250mm

Quando a variação do espaçamento do transdutor for de 0 a 250 mm, apenas um grampo de fixação não intrusivo é necessário para a instalação transversal dupla. Consulte Figura 11 na próxima página o guia da instalação transversa dupla na variação de espaçamento do transdutor 0 a 250 mm.

- 1. Instale o grampo de fixação do AT600 com transdutores na tubulação usando as duas cintas de montagem.
 - **a.** Escolha uma localização com um tubo reto longo o bastante; consulte a Figura 7 na página 7.
 - b. Instale duas cintas na tubulação com uma distância de cerca de 30 cm/1 pé.

Figura 9: Instalação de cintas

- 2.4.2a A instalação transversal dupla na variação de espaçamento do transdutor de 0 a 250 mm (cont.)
 - **c.** Coloque o grampo de fixação não intrusivo na tubulação e mova as cintas para as laterais do grampo de fixação. Em seguida, aperte o parafuso e confirme que as cintas estejam dentro das laterais do grampo de fixação.

Figura 10: Instalação de grampos de fixação não intrusivos

- 2. Conecte os cabos de força e do transdutor ao AT600; consulte a Figura 22 na página 16.
- **3.** Ligue e programe o medidor de vazão para determinar o espaçamento do transdutor. (Consulte *Programação do AT600* no Capítulo 3.)
- 4. Defina o espaçamento entre os dois transdutores e aperte-os novamente na tubulação.
 - a. Solte os corrimãos e gire o grampo de fixação até que os transdutores fiquem visíveis.

Figura 11: Visão do transdutor

b. Defina o espaçamento entre os transdutores, remova a peça laminar no acoplamento, aplique o acoplamento ao transdutor e gire novamente em direção ao trilho.

2.4.2a A instalação transversal dupla na variação de espaçamento do transdutor de 0 a 250 mm (cont.)

Figura 12: Ajuste de espaçamento do transdutor

- **Observação:** A configuração padrão é transversal dupla (ou dois transdutores no mesmo grampo de fixação). Consulte o outro método de configuração abaixo quanto ao procedimento de montagem do grampo de fixação.
- **Observação:** Se houver um revestimento ou camada de proteção na tubulação, remova a camada de revestimento da tubulação primeiro raspando até expor o material da tubulação, onde ele estiver em contato com o transdutor e o acoplamento.

2.4.2b A instalação transversal dupla na variação de espaçamento do transdutor de 250 a 750 mm

Quando a variação de espaçamento do transdutor for de 250 a 750 mm, é necessário outro grampo de fixação para um maior espaçamento do transdutor; consulte a Figura 13 abaixo para orientação da instalação transversal dupla na cinta de espaçamento do transdutor de 250 a 750 mm.

- 1. Instale quatro cintas na tubulação com uma distância de cerca de 30 cm/1 pé entre elas.
- 2. Coloque o grampo de fixação não intrusivo com dois transdutores e um cabo na tubulação e mova as cintas para as laterais do grampo de fixação. Em seguida, aperte o parafuso e a cinta de validação permanece dentro das laterais do grampo de fixação.
- 3. Coloque o segundo grampo de fixação não intrusivo vazio na tubulação e conecte os dois grampos de fixação através da barra à esquerda do segundo grampo de fixação. Em seguida, repita a etapa 2 para mover as cintas e aperte o segundo grampo de fixação.
- **Observação:** *Certifique-se de que a barra do lado esquerdo do segundo grampo de fixação esteja em contato com a barra no primeiro grampo de fixação.*

Figura 13: Instalação transversal dupla com espaçamento do transdutor entre 250 e 750 mm

- 2.4.2b A instalação transversa dupla na variação de espaçamento do transdutor de 250 a 750 mm (cont.)
 - 4. Defina o espaçamento entre os dois transdutores e aperte-os novamente na tubulação.
 - a. Solte os corrimãos e gire o grampo de fixação até que os transdutores fiquem visíveis.
 - **b.** Retire o transdutor à jusante do primeiro grampo de fixação, desmonte a conexão do transdutor e passe o cabo pelo segundo grampo do transdutor. Em seguida, conecte e posicione o transdutor à jusante no segundo grampo de fixação.

Figura 14: A instalação transversal dupla na variação de espaçamento do transdutor de 250 a 750 mm

Observação: Veja o espaçamento detalhado definido abaixo da instalação transversal dupla:

1. Variação de espaçamento de 0 a 250 mm; é necessário apenas um grampo de fixação. Coloque o transdutor à montante na posição "zero" e, em seguida, coloque o transdutor à jusante na posição necessária no mesmo grampo de fixação.

Figura 15: Espaçamento do transdutor entre os dois grampos de fixação

- 2.4.2b A instalação transversal dupla na variação de espaçamento do transdutor de 250 a 750 mm (cont.)
 - 2. Espaçamento varia de 250 a 750 mm; são necessários dois grampos de fixação para pressionar:
 - a. Espaçamento de 250 a 500 mm Coloque o transdutor à montante na posição "250mm" do primeiro grampo de fixação e, em seguida, coloque o transdutor à jusante na posição necessária no segundo grampo de fixação, como mostrado abaixo.
- **Observação:** Deve haver contato direto entre os dois grampos de fixação através das duas barras para fazer um espaçamento preciso.

Figura 16: Cinta de espaçamento de 250 a 500 mm

b. Espaçamento de 500 a 750mm

Coloque o transdutor à montante na posição "zero" do primeiro grampo de fixação e, em seguida, coloque o transdutor à jusante na posição necessária no segundo grampo de fixação, como mostrado abaixo.

Figura 17: Cinta de espaçamento de 500 a 750 mm

2.4.2c A instalação transversal única na variação de espaçamento do transdutor de 0 a 250 mm

Quando a cinta de espaçamento do transdutor for de 0 a 250 mm em uma instalação transversal única, são necessários dois grampos de fixação não intrusiva para esta instalação. Veja as etapas abaixo do guia de instalação transversal único.

- 1. Marque uma linha reta com a direção da tubulação na superfície, use a fita de banda para medir a circunferência da tubulação e marque outras duas linhas na posição de +1/4 e -1/4 da circunferência. Isso cria duas linhas para o alinhamento de dois grampos de fixação.
- 2. Instale duas cintas na tubulação com uma distância de cerca de 30 cm/1 pé entre elas.
- 3. Coloque um grampo de fixação não intrusivo embutido com dois transdutores e um cabo na tubulação e mova as duas cintas nos dois lados do grampo de fixação não intrusivo para detectar o suporte no grampo de fixação. Em seguida, coloque outro grampo de fixação vazio no lado oposto do primeiro grampo e prenda-o pelas duas cintas. Alinhe o meio dos dois grampos de fixação com a linha reta vermelha marcada na superfície da tubulação na etapa 1.

Figura 18: A instalação transversal única na variação de espaçamento do transdutor de 0 a 250 mm

- 4. Defina o espaçamento entre os dois transdutores e aperte-os novamente na tubulação.
 - a. Solte os corrimãos e gire o grampo de fixação até que os transdutores fiquem visíveis.
 - **b.** Retire o transdutor à montante do primeiro grampo de fixação, desmonte a conexão do transdutor e passe o cabo pelo segundo grampo do transdutor. Em seguida, conecte e reposicione o transdutor à montante no segundo grampo de fixação.
- **Observação:** Coloque o transdutor à montante na posição "zero" do segundo grampo de fixação e, em seguida, mova o transdutor à jusante na posição necessária do primeiro grampo de fixação. O cabo separado do transdutor à montante precisa ser retirado de um lado do trilho no primeiro grampo de fixação e colocado na lateral do trilho no segundo grampo de fixação; consulte o cabeamento na fixação realizada pela fábrica.

Figura 19: A instalação transversal única na variação de espaçamento do transdutor de 0 a 250 mm

2.4.2d A instalação transversal única na variação de espaçamento do transdutor de 250 a 750 mm

Quando a cinta de espaçamento do transdutor for de 250 a 750mm em uma única instalação transversal única, dois grampos de fixação não intrusivos são necessários.

- Marque uma linha reta com a direção da tubulação na sua superfície, use a fita da banda para medir a circunferência da tubulação e marque outras duas linhas na posição de +1/4 e -1/4 da circunferência; essas duas linhas são feitas para o alinhamento de dois grampos de fixação. Em seguida, marque as posições de dois transdutores nas duas linhas retas separadamente usando a fita de bandas. Consulte a Figura 20 quanto ao método de marcação de linha.
- 2. Instale quatro cintas na tubulação com uma distância de cerca de 30 cm/1 pé entre elas.
- **3.** Coloque o grampo de fixação não intrusivo com dois transdutores e um cabo na tubulação e mova as cintas para as laterais do grampo de fixação. Em seguida, aperte o parafuso e verifique se a cinta permanece dentro das laterais do grampo de fixação.
- 4. Coloque o segundo grampo de fixação não intrusivo vazio no outro lado da tubulação. Em seguida, repita a etapa 3 para mover as cintas e aperte o segundo grampo de fixação. Consulte Figura 20 para a posição do grampo de fixação.
- 5. Defina o espaçamento entre os dois transdutores e aperte-os novamente na tubulação.
 - a. Solte os corrimãos e gire o grampo de fixação até que os transdutores fiquem visíveis.
 - **b.** Retire o transdutor à montante do primeiro grampo de fixação, desmonte a conexão do transdutor e passe o cabo pelo segundo grampo do transdutor. Em seguida, conecte e reposicione o transdutor à montante no segundo grampo de fixação.
 - **c.** Alinhe o lado do transdutor com as duas marcas realizadas na etapa 1 no primeiro e no segundo grampo de fixação.

Figura 20: A instalação transversal única na variação de espaçamento do transdutor de 250 a 750 mm

2.5 Instalação do Sistema de Transdutor e Grampo de Fixação C-RS

2.5.1 Guia de Instalação do Transdutor C-RS

Consulte a documentação da GE 916-077, o *Guia de Instalação do C-RS*, para instalação do transdutor C-RS na tubulação (Seção 6, *Instalação do Grampo de Fixação Geral*).

2.5.2 Instale o Adaptador do Cabo para o transdutor C-RS e o cabo AT6

Para corresponder ao conector tipo BNC no transdutor C-RS com o conector tipo SMA no cabo AT6, é necessário um adaptador BNC para SMA para o cabeamento do transdutor C-RS. Consulte a *Figura 21* abaixo para instalação do adaptador.

Figura 21: Instale o adaptador do cabo para o transdutor C-RS

2.6 Criação de conexões elétricas

ATENÇÃO CLIENTES EUROPEUS! Para cumprir os requisitos das marcas CE, todos os cabos devem ser instalados conforme descrito em *"Especificação e requisitos de cabeamento" na página 157.*

Esta seção contém instruções para a criação de todas as conexões elétricas necessárias ao medidor de vazão AT600. Consulte Figura 22 abaixo para concluir o diagrama de fiação da unidade.

IMPORTANTE: Exceto pelo conector de transdutor, todos os conectores elétricos são armazenados em seus blocos terminais durante a remessa e podem ser removidos do compartimento para um cabeamento mais conveniente. Simplesmente, passe os cabos através dos orifícios do prensa-cabo na base do compartimento, conecte os fios aos conectores apropriados e insira os conectores de novo em seus blocos de terminais.

Quando todos os cabos do AT600 estiverem conectados, vá para o Capítulo 3, *Configuração Inicial*, para configurar a unidade para operação.

Figura 22: Diagramas de fiação

Observação: A comunicação HART ou MODBUS requer seleções opcionais de componentes eletrônicos do AT600 e deve ser escolhida no momento do pedido.

Para conectar os cabos no compartimento, as linhas de alimentação, a linha do transdutor e as linhas de E/S são distribuídas para diferentes orifícios de prensa-cabos. Consulte o Apêndice A, seção A.2.10, para critérios de conexão de cabos. Conforme mostrado a seguir, assegure que cada cabo seja inserido no gabinete apenas através do orifício para prensa-cabos apropriado.

2.6 Criar conexões elétricas (cont.)

Consulte a Figura 23 abaixo da definição de uso do prensa-cabo. Se nenhum cabo passar pelos orifícios de prensa-cabos, ele deve estar bloqueado com o insersor de prensa-cabos fornecido com o medidor.

Figura 23: Definição de uso de prensa-cabos

2.6.1 Conectar a alimentação da linha

ATENÇÃO CLIENTES EUROPEUS! Para cumprir os requisitos da marca CE, todos os cabos devem ser instalados conforme descrito em *"Especificação e requisitos de cabeamento" na página 157.*

O AT600 pode ser encomendado para operação com entradas de potência de 85-264 V CA ou 12-28 V CC. A etiqueta no revestimento interno do compartimento eletrônico indica a voltagem de linha necessária. Conecte o medidor apenas à tensão de linha especificada.

2.6.1 Conexão dos fios alimentação da linha (cont.)

Consulte a Figura 24 abaixo para entradas de potência do medidor.

Observação: Para conformidade com a Diretiva de baixa voltagem da União Europeia, essa unidade requer um dispositivo de desconexão de alimentação externa, como um comutador ou um disjuntor. O dispositivo de desconexão deve ser marcado como tal, deve estar claramente visível, ser acessível diretamente e estar localizado a 1,8 m (6 pés) da unidade.

Consulte Figura 22 na página 16 para localizar o bloco terminal e conectar a alimentação da linha da seguinte forma:

ADVERTÊNCIA A conexão incorreta dos cabos de alimentação da linha ou a conexão de um medidor à tensão de linha incorreta podem danificar a unidade. Isso também pode resultar em tensões perigosas na célula do fluxo e na tubulação associada, bem como dentro do console eletrônico.

Figura 24: Exemplo de etiqueta de n/s do medidor (versão CA e CC):

- 1. Desencape 1/4 de pol. do isolamento na ponta dos cabos de alimentação e neutro ou dos fios de linha (ou fios de alimentação CC positivo e negativo) e 1/2 pol. da ponta do fio terra.
- 2. Conecte o fio terra à conexão terra interna (TERRA 1) localizada no painel inferior do compartimento (Consulte Figura 22).

IMPORTANTE: *O fio terra de entrada deve ser conectado à conexão terra interna.*

3. Conecte o fio neutro ou de linha (ou o negativo - fio de alimentação CC) ao L2/N(-) e o fio de alimentação de linha (ou o cabo de força +CC) ao L1(+) como mostrado em Figura 22 na página 16.

IMPORTANTE: *Não remova o fio terra da placa de PC existente ou cubra o fio terra.*

2.6.2 Fiação dos transdutores

ATENÇÃO CLIENTES EUROPEUS! Para cumprir os requisitos da marca CE, todos os cabos devem ser instalados conforme descrito em *"Especificação e requisitos de cabeamento" na página 157.*

Conectar um sistema de medidor de vazão líquido ultrassônico AT600 típico requer interconexão dos seguintes componentes:

- Um par de transdutores instalados dentro do grampo de fixação;
- O console de componentes eletrônicos.

Para conectar os transdutores, execute as seguintes etapas:

ADVERTÊNCIA Antes de conectar os transdutores, leve-os para uma área segura e descarregue qualquer acúmulo de estática fazendo um curto do condutor central dos cabos do transdutor para a blindagem de metal no conector do cabo.

- 1. Localize os cabos do transdutor e conecte-os aos dois transdutores.
- 2. Conecte o conector do cabo com camisa "DN" amarela no cabo ao DN e conecte o conector do cabo com camisa "UP" branca no cabo ao UP como mostrado na Figura 22 na página 16. Em seguida, fixe o prensa-cabo.
- 3. Insira o cabo do conector na sua entrada verticalmente, para evitar danificar o conector.

2.6.3 Aterramento do sistema de fiação

O aterramento adequado do sistema deve se conectado a um medidor AT600. Consulte Figura 25 para localizar o parafuso terra do sistema. Este parafuso terra deve ser conectado a um terra seguro no campo.

Figura 25: Parafuso de aterramento do sistema

2.6.4 Saída analógica da fiação/Comunicação HART

A configuração padrão do medidor de vazão do modelo AT600 inclui uma saída analógica 0/4-20 mA isolada. Conexões a esta saída podem ser efetuadas com a fiação de par trançado padrão. A impedância de loop atual para este circuito não deve exceder 600 ohms.

Figura 26: Saída analógica/Comunicação HART

Para conectar a saída analógica, execute as seguintes etapas:

- 1. Desconecte a alimentação principal da unidade e abra o compartimento.
- 2. Instale o prensa-cabo necessário no orifício do conduíte escolhido na base do compartimento.
- **3.** Consulte a Figura 22 na página 16 para a localização de E/S do bloco terminal e conecte o fio do bloco terminal conforme mostrado. Fixe o prensa-cabo.

A porta padrão é apenas a saída analógica 0/4-20 mA, mas a comunicação HART é opcional sob solicitação.

- **Observação:** A saída analógica é o modo ativo. Não forneça alimentação de 24V a este circuito. O circuito é alimentado pelo medidor de vazão.
- **Observação:** Antes de usar, a saída analógica deve ser configurada e calibrada. Vá para a próxima seção para continuar o cabeamento inicial da unidade.
- **Observação:** *Quando estiver na configuração do medidor, a saída analógica será de 3,6 mA. Depois de sair do modo de configuração, o medidor sairá de 3,6 mA.*

2.6.5 Comunicação Modbus da fiação

O AT600 possui uma porta de comunicação Modbus opcional. A porta tem dois fios, interface half-duplex RS485. O padrão AT600 desativa a comunicação Modbus. Continue até a configuração apropriada das instruções do menu para ativar a comunicação Modbus.

Para conectar a porta serial RS485 Modbus, consulte a Figura 22 na página 16 e execute as seguintes etapas:

- 1. Desconecte a alimentação elétrica da unidade.
- 2. Instale o grampo do cabo necessário no orifício do prensa-cabo escolhido na lateral do compartimento eletrônico.
- **3.** Passe uma ponta do cabo através do orifício do prensa-cabo, conecte-a ao bloco terminal e prenda o prensa-cabo como mostrado na Figura 22 na página 16.

2.6.6 Frequência da fiação/Totalizador/Saída de alarme

O AT600 pode acomodar até 2 canais do totalizador/frequência/saídas de alarme. Cada totalizador/frequência/alarme podem ser configurado como totalizador, frequência ou saída de alarme por definição de software. Consulta a seção 3.6.4 para a definição de saída.

Cada totalizador/frequência/saída de alarme requer dois fios. Conecte o bloco terminal de acordo com as atribuições de número de pinos mostradas na Figura 27 abaixo. A Figura 22 mostra diagramas de fiação de exemplo do totalizador/ frequência/circuito de saída do alarme.

Figura 27: Fiação de totalizador/Frequência/Saída de alarme

2.6.7 Entrada de porta da fiação

O AT600 fornece uma porta de entrada de contato do gate. Esta porta foi projetada para iniciar/parar o totalizador. Durante o modo de medição normal, um operador pode iniciar a funcionalidade do totalizador clicando na chave. E se o operador quiser parar o totalizador, outra ação ligar/desligar para o totalizador.

Consulte Figura 28 abaixo da fiação da porta de entrada do gate.

Figura 28: Fiação de entrada da porta

Capítulo 3. Configuração inicial e programação

3.1 Introdução

Este capítulo fornece instruções para programar o medidor de vazão AT600 e colocá-lo em operação. Antes que o AT600 possa começar a fazer medições, as preferências de usuário, entradas/saídas e configurações do sensor devem ser inseridas e testadas.

Figura 29: Mapa de menus detalhados

3.2 Operação do teclado do AT600

Existem seis teclas e dois LEDs no teclado AT600. A luz verde é um indicador de integridade do sistema e permanece acesa sempre que o medidor estiver operacional e não apresentar erros. A luz vermelha é um indicador de status do sistema e permanece acesa sempre que o medidor apresentar erros. As duas luzes desligadas indicam que o sistema está no modo de configuração ou está desligado.

Figura 30: Teclado do AT600

Seis teclas no teclado magnético permitem que os usuários programem o AT600:

- $[\sqrt{}]$ confirma a escolha de uma opção específica e a entrada de dados na opção.
- [×] permite que os usuários saiam de uma opção específica sem inserir dados não confirmados.
- [△] e [▽] permitem que os usuários destaquem uma janela específica na opção do display ou rolem pela lista de opções (parâmetros, letras e números 0-9 bem como sinal de menos ou ponto decimal) em um menu.
- [<]] e [▷] permitem que os usuários sigam para uma opção específica, percorram os itens de uma opção ou escolham um caractere em uma entrada de texto.

Quando o AT600 for ligado, a tela inicial é exibida, seguida pela exibição de parâmetros de medição.

Como um guia nas seguintes instruções de programação neste capítulo, as partes relevantes do mapa de menus do AT600 foram reproduzidas na página 98.

IMPORTANTE: Se o teclado não for pressionado por cinco minutos, o AT600 sai do Programa de Teclado e volta a exibir as medições. O medidor descarta todas as alterações de configuração. As alterações só podem ser mantidas após serem confirmadas pelo usuário.

3.3 Programação do visor

O teclado do AT600 tem seis teclas de dois LEDs.

A luz verde é um indicador de integridade do sistema e permanece acesa sempre que o medidor estiver operacional e não apresentar erros. A luz vermelha é um indicador de status do sistema e permanece acesa sempre que o medidor apresentar erros. As duas luzes desligadas indicam que o sistema está no modo de configuração ou está desligado.

3.3.1 Alterar valor para telas de uma ou duas variáveis

Uma descrição de uma tela típica de uma ou duas variáveis aparece abaixo.

Para alterar o número de casas decimais no valor exibido:

Velocity 0.0 m/s Na tela do visor, pressione os botões [\triangleleft] ou [\triangleright] até o valor ser destacado.

Quando o valor estiver destacado, pressione $[\sqrt{\ }]$ para abrir a opção Visor/Decimal.

3.3.1 Alterar valor para telas de uma ou duas variáveis (cont.)

Use os botões $[\triangle]$ e $[\bigtriangledown]$ para ir para o valor apropriado. As opções disponíveis são 0, 1, 2, 3, 4 e Sci (notação científica). Pressione $[\checkmark]$ para selecionar o valor e, em seguida, $[\checkmark]$ novamente para confirmar a seleção ou $[\varkappa]$ para cancelá-la.

3.3.2 Alterar o tipo de medição para telas de uma ou duas variáveis

Para alterar o tipo de medição:

Na tela do visor, pressione os botões [\triangleleft] ou [\triangleright] até o tipo de medição ser destacado.

Quando o valor estiver destacado, pressione [v] para abrir a opção Measurement Type (Tipo de medição).

A tela muda para Disploy/Medsurement Type (Visor/tipo de medição). Pressione os botões [\triangle] e [\bigtriangledown] para ir para o parâmetro desejado. Os parâmetros disponíveis são: Velocity (Velocidade), Act Volumetric (At. volumétrica), Std volumetric (Padrão volumétrico), Mass (Massa), Batch Totals (Totais por lote), Inventory Totals (Totais do inventário), Soundspeed (Velocidade do som), Reynolds, KFactor (Fator K) e Diagnostics (Diagnóstico). Depois de selecionar o tipo de medição, pressione [\checkmark] para selecionar o valor e [\checkmark] novamente para confirmar a seleção ou [\varkappa] para cancelá-la.

Observação: Para selecionar uma unidade de medição específica, vá para "Definir unidades" na página 28.
3.3.3 Alterar o tipo de medição ou o valor para telas de totalizador

A tela de totalizador será semelhante à Figura 31 abaixo.

Figura 31: A tela do totalizador

Para alterar o número de casas decimais no valor exibido em uma tela do totalizador, continue da seguinte forma:

TOTAL m^3	
Forward	0.000e+00
Reverse	0.000e+00

Na tela do visor, pressione os botões $[\triangleleft]$ ou $[\triangleright]$ até o valor ser destacado.

Total m ³	C 🔒		
Forward	0.000e+00		
Reverse	0.000e+00		

Quando o valor estiver destacado, pressione [$\sqrt{}$] para abrir a opção Visor/Decimal.

Use os botões $[\triangle] \in [\nabla]$ para ir para o valor apropriado. As opções disponíveis são 0, 1, 2, 3, 4 e Sci (notação científica). Pressione $[\sqrt{}]$ para selecionar o valor e, em seguida, $[\sqrt{}]$ novamente para confirmar a seleção ou $[\times]$ para cancelá-la.

3.3.3 Alterar o tipo de medição ou o valor para telas do totalizador (cont.)

Para alterar o tipo de medição do totalizador:

TOTAL m ³	1 C 🔒
Forward	0.000e+00
Reverse	0.000e+00

Na tela do visor, pressione os botões $[\triangleleft]$ ou $[\triangleright]$ até o tipo de medição ser destacado.

Total m [^] 3	1 C 🔒
Forward	0.000e+00
Reverse	0.000e+00

Quando o tipo estiver destacado, pressione $[\sqrt{1}]$ para abrir a opção Visor/Decimol.

A tela muda para Totolizer Type (Tipo de totalizador). Pressione os botões $[\Delta]$ e $[\nabla]$ para ir para o parâmetro apropriado. Os parâmetros disponíveis são: Forward Totals (Avançar totais), Reverse Totals (Reverter totais), Net Totals (Totais líquidos) e Time (Tempo). Depois de selecionar o tipo, pressione $[\Lambda]$ para selecionar o valor e $[\Lambda]$ novamente para confirmar a seleção ou $[\times]$ para cancelá-la.

Se o primeiro valor selecionado for Time (Tempo), a unidade exibirá uma unidade de tempo. Se o primeiro valor for selecionado para os parâmetros Forward Totals, Reverse Totals, Net Totals, a unidade será a mesma unidade selecionada em "Units Setting" (Definir unidades). As unidades de medição de tempo disponíveis são segundos, minutos, horas e dias. Para escolher a unidade apropriada, no tipo de medição destacado, pressione os botões [\triangleleft] ou [\triangleright] até a unidade de medição ser destacada.

TOTAL Seco	onds 🛛 C 🔒
Time	0.0000
Reverse	0.000e+00

Quando a unidade estiver destacada, pressione [$\sqrt{}$] para abrir a opção Display/Unit (Visor/Unidade).

Pressione os botões $[\Delta]$ e $[\nabla]$ para ir para a unidade apropriada e pressione $[\sqrt{}]$ para selecioná-la e, em seguida, $[\sqrt{}]$ novamente para cancelar a seleção ou $[\times]$ para cancelá-la.

Observação: Se você selecionou "Time" (Tempo), as unidades disponíveis são segundos, minutos, horas e dias.

3.3.4 Iniciar ou parar Medição do totalizador

Para iniciar ou parar as medições do totalizador:

TOTAL m ³	C 🖬
Forward	0.000e+00
Reverse	0.000e+00

No visor, pressione os botões $[\triangleleft]$ ou $[\triangleright]$ até o ícone lniciar/Parar (um ícone de seta para Iniciar ou um ícone de duas barras para Parar) ser destacado.

TOTAL m ³	∏ C ∂
Forward	0.000e+00
Reverse	0.000e+00

Quando o valor for destacado, pressione $[\sqrt{}]$ para iniciar ou parar a totalização.

TOTAL m ³	► C 🔒
Forward	0.000e+00
Reverse	0.000e+00

O ícone é alterado para indicar o novo status (iniciar ou parar).

3.3.5 Redefinir o totalizador

Para redefinir o totalizador, faça o seguinte:

TOTAL m ³	
Forward	0.000e+00
Reverse	0.000e+00

I

Na tela do visor, pressione os botões $[\triangleleft]$ ou $[\triangleright]$ até o ícone Reset (Redefinir) (um círculo parcial com uma seta) ser destacado.

TOTAL m^3	
Forward	0.000e+00
Reverse	0.000e+00

Quando o ícone Redefinir estiver destacado, pressione [$\sqrt{}$] para zerar o totalizador.

3.4 Entrar no menu principal (botão de cadeado)

Figura 32: Mapa do menu principal

3.4.1 Formato de exibição

Para começar a programar seu medidor, você deve selecionar as unidades do sistema conforme discutido abaixo. Lembre-se de registrar todos os dados programados no Apêndice B, *Registros de dados*.

O submenu Display Format (Formato de exibição) é usado para configurar o tipo de formato a ser usado para representar as informações.

Velocity		C
0.0		
	m/s	

Na tela inicial, use as teclas de seta para destacar o símbolo de cadeado e pressione [$\sqrt{$].

A tela a seguir é exibida.

3.4.1 Formato de exibição (cont.)

Use os botões [\triangleleft] ou [\triangleright] para destacar Display Format (Formato de Exibição) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Use as teclas de seta $[\triangle]$ e $[\bigtriangledown]$ para destacar a configuração de formato desejado e pressione $[\checkmark]$. A janela retorna à tela anterior.

Para bloquear ou desbloquear o teclado por segurança, no menu Disploy (Exibição), selecione Keypad Lockout (Bloqueio do teclado) e pressione [$\sqrt{$]. Uma tela semelhante à seguinte é exibida.

Para bloquear a exibição, pressione $[\Delta]$ e $[\nabla]$ para destacar **Yes** (Sim) e pressione $[\sqrt{]}$. A tela anterior é exibida.

Para desbloquear a exibição, pressione $[\triangle] e [\nabla]$ para destacar **No** (Não) e pressione $[\sqrt{]}$. A tela anterior é exibida.

Observação: Quando o teclado estiver bloqueado, pressione $[\times], [\sqrt], [\times]$ para desbloquear a tela.

3.4.3 Idioma

Français

Para alterar o idioma de exibição, no menu Display (Exibição), selecione Language (Idioma) e pressione [$\sqrt{$]. Uma tela semelhante à seguinte é exibida.

Use as teclas de seta $[\triangle] \in [\nabla]$ para destacar o idioma desejado e pressione $[\sqrt{}]$. A janela retorna à tela anterior e o idioma exibido será alterado online.

3.4.4 Programa/Revisão do programa

Os menus Program (Programa) e Program Review (Revisão do programa) permitem a configuração ou exibição de várias categorias de informações. Conforme discutido anteriormente, para editar parâmetros, é preciso inserir a senha correta. A próxima seção definirá explicitamente que acesso é necessário para editar parâmetros. Para ver todos os parâmetros sem editar, selecione Program Review (Revisão do programa).

Figura 33: Mapa de menus do programa/revisão do programa

3.4.5 Revisão do programa

O menu Program Review (Revisão do programa) não requer o uso de senhas. No entanto, ele fornece acesso de visualização apenas às telas. Para alterar qualquer definição ou parâmetro, você deve inserir o menu Program (Programa) e fornecer a senha correta.

3.4.6 Programa

IMPORTANTE: A medição será interrompida e a saída passará para o nível de erro quando você entrar no modo *Programa (configuração).*

Display Display Format Program Program Review Keypad Lockout

Enter the password 999<u>9</u> [X]UNDO [√]SAVE [◀▶]MOVE [▲▼]MODF Para entrar no menu Programming (Programação), no menu Display (Visor), use as teclas de seta para destacar Program (Programa) e pressione $[\sqrt{}]$. A tela a seguir é exibida.

Para inserir a senha, use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar cada dígito a ser alterado e as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar o valor do número selecionado. Quando o número de senha estiver correto, pressione $[\checkmark]$ e a tela User Preference (Preferência de usuário) é exibida. A senha é **1111**.

3.5 Preferências de usuário

3.5.1 Ajuste

Para verificar ou alterar os ajustes desejados, em User Preference (Preferência de usuário), selecione Settings (Ajustes) e pressione [$\sqrt{$]. A tela a seguir é exibida.

Setting Meter Tag Label System Date

Set System Time
Date: 11 / 12 / 2013
Time: 08 : 09 : 10
[x]UNDO [√]SAVE
[◀▶]MOVE [▲▼]MODF

Para selecionar Meter Tag (Rótulo do medidor) e/ou Label (Etiqueta), destaque a sua opção no menu Setting (Ajuste) e pressione $[\sqrt{}]$. Pressione $[\times]$ para retornar à tela anterior.

Observação: Você pode alterar os dados do Rótulo do Medidor e da Etiqueta usando o software Vitality.

Para verificar ou alterar a data/hora, destaque System Dote (Data do sistema) e pressione [$\sqrt{$]. A tela a seguir é exibida.

Use as teclas de seta $[\triangle]$ ou $[\nabla]$ para selecionar a hora correta e pressione $[\sqrt{}]$. A tela anterior é exibida.

3.5.2 Definir unidades

Para verificar ou alterar as unidades de vazão de velocidade, em User Preference (Preferências de usuário), use a tecla de seta $[\Delta]$ ou $[\nabla]$ para selecionar Units Setting (Definição de unidade) e pressione $[\sqrt{]}$. A tela a seguir é exibida.

No menu Units Setting (Definição de unidades), use a tecla de seta $[\Delta]$ ou $[\nabla]$ para selecionar a unidade que deseja alterar e pressione $[\sqrt{}]$ para ir para a tela do nível seguinte.

Observação: Selecione "Velocity" (Velocidade) como exemplo.

Se você não quiser trocar a unidade, selecione No (Não) e pressione [$\sqrt{}$]. Se quiser exibir a unidade, selecione Yes (Sim), pressione[$\sqrt{}$] duas vezes e a seguinte tela é exibida.

Se nenhuma alteração for desejada, pressione [×] duas vezes e a tela retorna ao menu Units Setting (Definição de unidades). Para alterar o tipo de medição, selecione a opção desejada, pressione $[\sqrt{}]$ duas vezes e uma tela semelhante à seguinte aparece.

Confirme as unidades selecionadas, pressione $[\times]$ três vezes e retorne ao menu Units Setting (Definição de unidades).

3.5.3 Densidade

3.5.4 Senha

[◀▶]MOVE [▲▼]MODF

Para configurar a senha, em User Preference (Preferências de usuário), use a tecla de seta $[\Delta]$ ou $[\nabla]$ para selecionar Password (Senha) e pressione $[\sqrt{}]$. A tela a seguir é exibida.

Use as teclas de seta $[\triangle]$ ou $[\nabla]$ para alterar o valor do dígito e pressione $[\sqrt{}]$. Pressione $[\times]$ para retornar à tela Password (Senha).

3.5.5a Luz do painel

Para desligar ou ligar a luz de fundo, em User Preference (Preferência do Usuário), use a tecla de seta $[\Delta]$ ou $[\nabla]$ para selecionar Display (Visor) e pressione $[\sqrt{]}$. A tela a seguir é exibida.

Display/Backlight ● OFF ON Selecione Backlight (Luz de fundo) e pressione $[\sqrt{}]$, e uma tela semelhante à seguinte é exibida.

Selecione OFF ou ON, pressione [$\sqrt{}$] duas vezes, e a tela retorna à tela anterior.

3.5.5b Tempo limite

Para fornecer um tempo limite, em Display (Visor), selecione Timeout (Tempo limite) e pressione $[\sqrt{}]$. Uma tela semelhante à seguinte é exibida.

Observação: *O valor padrão para o tempo limite é 0; portanto, os usuários devem definir um tempo limite se quiserem.*

Pressione $[\sqrt{}]$ novamente e uma tela semelhante à seguinte é exibida.

Timeout UNIT: S 1 <u>9</u>	
[X]UNDO [√]SAVE [◀▶]MOVE [▲▼]MODF	

Use as teclas de seta $[\Delta]$ ou $[\nabla]$ para alterar o valor do dígito e pressione $[\sqrt]$. Pressione $[\times]$ três vezes para retornar à tela User Preference (Preferência de usuário).

3.6 Entradas/saídas

3.6.1 Programar o menu Analog Output (Saída Analógica)

3.6.1a Definir medições analógicas

3.6.1b Definir valor base e valor completo

O valor de base é a taxa de vazão representada por 4 mA, e o valor completo é a taxa de vazão representada por 20 mA. No menu Analog Output (Saída Analógica), selecione Base Value (Valor de base) ou Full Value (Valor completo) e pressione [$\sqrt{$]. Uma tela semelhante à seguinte é exibida.

Pressione $[\sqrt{}]$ novamente e uma tela semelhante à seguinte é exibida.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar o valor de base ou o valor completo e pressione $[\checkmark]$.

Repita essas etapas para definir o valor completo. Pressione [×] para retornar ao menu Analog Output A (Saída Analógica A).

3.6.1c Calibrar a saída

Analog Output A

Base Value

Full Value

Calibrate Error Handling

Calibrate

Low

High Hold Other

Para especificar o status do tratamento de erro no menu Analog Output A (Saída Analógica A), selecione Error Handling (Tratamento de erro) e pressione $[\sqrt{}]$. A tela a seguir é exibida.

Selecionar Low (Baixo) forçará a Saída Analógica para 3,6 mA ou menos, enquanto High (Alto) a força para 21,6 mA ou mais. Selecione o status apropriado e pressione [$\sqrt{$].

3.6.2 Programar o menu Digital Output (Saída Digital)

3.6.2a Desativar a Saída Digital

3.6.2b Definir saída de pulso

Definir tipo de medição

Measurement

Forward Batch Total

Reverse Batch Total Net Batch Total Para especificar o status de tratamento de erro no menu Digital Output A (Saída Digital A), selecione Off (Desligar) e pressione $[\sqrt{}]$ duas vezes.

A saída de pulso gera um pulso em onda quadrado para cada unidade de vazão que passa pela tubulação. Selecione Pulse(Pulso) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Selecione Measurement (Medição) e pressione [$\sqrt{}$]. Uma tela semelhante à seguinte é exibida.

No menu Measurement (Medição), selecione o tipo de saída analógica a ser usado e pressione [$\sqrt{}$]. A tela anterior é exibida.

Definir valor de pulso

Use as teclas de seta $[\Delta]$ ou $[\nabla]$ para selecionar Pulse Value (Valor de pulso) e pressione $[\sqrt{]}$. Uma tela semelhante à seguinte é exibida.

O Valor do Pulso, a quantidade de fluxo representado por um pulso, é exibida. (Por exemplo, 1 pulso = 10 m^3.) Para alterar o número existente, pressione $[\sqrt{}]$ e uma tela semelhante à seguinte aparece.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Para alterar o Valor do Pulso, use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para fornecer um novo número e pressione $[\sqrt{}]$ para salvar. Pressione $[\sqrt{}]$ para retornar ao menu Pulse (Pulso).

Use as teclas de seta $[\Delta]$ ou $[\nabla]$ para selecionar Pulse Time (Tempo de pulso) e pressione $[\sqrt{}]$. Uma tela semelhante à seguinte é exibida.

O tempo do pulso, a largura do pulso, é exibido. Para alterar o número existente, pressione $[\sqrt{}]$ e uma tela semelhante à seguinte aparece.

Para alterar o Tempo do Pulso, use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para fornecer um novo número e pressione $[\sqrt{]}$ para salvar. Pressione $[\sqrt{]}$ para retornar ao menu Pulse (Pulso).

Definir tratamento de erro do pulso

Para alterar o status Error Handling (Tratamento de erro), selecione-o na tela e pressione $[\sqrt{}]$. A tela a seguir é exibida.

Selecione Hold (Em espera) ou Stop (Parar). Hold direciona o medidor, em caso de um erro de medição da vazão, para manter o envio dos pulso enviados na última leitura sem erros. Stop direciona o medidor, em caso de erro de medição, para parar de pulsar.

Pressione $[\sqrt{}]$, e a tela retorna à exibição anterior. Pressione $[\times]$ para retornar ao menu Digital Output (Saída digital).

Para testar a saída de pulso, selecione Test Pulse (Pulso de teste) e pressione $[\sqrt{}]$. A tela a seguir é exibida.

Pressione $[\sqrt{}]$. Uma tela semelhante à seguinte é exibida.

Pressione $[\sqrt{}]$, e a tela retorna à exibição anterior. Pressione $[\times]$ para retornar ao menu Digital Output (Saída digital).

Insira um número de pulsos e o instrumento enviará muitos. Observe no seu sistema de medição se o número certo de pulsos foi recebido.

Depois do teste, pressione [X] para retornar ao menu Digital Output (Saída digital).

3.6.2c Definir a frequência

Frequency Measurement Base Value Full Value Full Frequency ▼

Selecione Measurement (Medição) e pressione [$\sqrt{}$]. Uma tela semelhante à seguinte é exibida.

No menu Measurement (Medição), selecione o tipo de saída analógica a ser usado e pressione [$\sqrt{}$]. A tela anterior é exibida.

Definir valor base/valor completo/frequência

Mass

O valor de base é o valor de medição representado por 0 Hz. O valor total é o valor da medição representado pela frequência total A frequência total é o Hz máximo, que representa o valor total da medição.

Use as teclas de seta $[\Delta]$ ou $[\nabla]$ para selecionar a opção apropriada e pressione $[\sqrt{}]$. Uma tela semelhante à seguinte é exibida.

Observação: As etapas de operação de valor de base, valor completo e frequência total são iguais.

Para alterar o número existente, pressione [v] e uma tela semelhante à seguinte aparece.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Definir valor base/valor completo/frequência (cont.)

Base Value UNIT: m/s	
	0.00 <u>0</u>
[X]UNDO [∢ ▶]MOVE	[√]SAVE [▲▼]MODF

Para alterar o Valor de Base, use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para fornecer um novo número e pressione $[\sqrt{}]$ para salvar. Pressione $[\sqrt{}]$ para retornar ao menu Frequency (Frequência).

Definir tratamento de erro de frequência

High

Hold

Other

Para alterar o status Error Handling (Tratamento de erro), selecione-o na tela e pressione $[\sqrt{]}$. A tela a seguir é exibida.

Para alterar o status Error Handling (Tratamento de erro) atual, selecione-o na opção desejada e pressione [$\sqrt{}$]. A tela anterior é exibida.

Você tem quatro opções para tratamento de erro em caso de erro de medição:

- Hold (Manter) mantém o último valor correto.
- Low (Baixo) mostra 0 Hz.
- High (Alto) mostra a frequência total.

Observação: *Se Other (Outro) for selecionado, uma tela semelhante à seguinte é exibida:*

Insira o valor Hz que você quer exibir no erro. (Por exemplo, se total = 1 kHz, você pode definir 2 kHz como erro.) Pressione $[\sqrt{}]$ novamente e uma tela semelhante à seguinte é exibida.

Use as teclas de seta $[\Delta]$ ou $[\nabla]$ para alterar outro valor e pressione $[\sqrt{}]$ para salvar o número. Pressione $[\times]$ para retornar à tela anterior.

Frequência de teste

3.6.2d Definir o alarme

O alarme pode ser um circuito aberto ou fechado, dependendo da condição de erro. Para verificar o alarme e/ou alterar a sua definição, no menu Digital Output (Saída digital), selecione Alarm (Alarme) e pressione $[\sqrt{}]$. A tela a seguir é exibida.

Definir tipo de medição

Definir estado de alarme

Selecione Measurement (Medição) e pressione [$\sqrt{}$]. Uma tela semelhante à seguinte é exibida.

No menu Measurement (Medição), selecione o tipo de saída analógica a ser usado e pressione [$\sqrt{}$]. A tela anterior é exibida.

Use as teclas de seta $[\triangle]$ ou $[\nabla]$ para selecionar Alarm State (Estado de alarme) e pressione $[\sqrt{}]$. Uma tela semelhante à seguinte é exibida.

Dois estados de alarme estão disponíveis:

- Normal Abre em condição normal, fecha em alarme
- Fail Safe (Seguro) Fecha

Para alterar o estado do alarme, selecione o status desejado e pressione $[v]_{,.}$ A tela anterior é exibida.

Definir Tipo de alarme

Definir valor de alarme

O valor de alarme é o limite que dispara o alarme. (Este parâmetro não se aplica aos alarmes de falha.) Para verificar e/ou alterar o valor de alarme, selecione Alarm Value (Valor de alarme) e pressione [$\sqrt{$]. Uma tela semelhante à seguinte é exibida.

Pressione $[\sqrt{}]$ novamente e uma tela semelhante à seguinte é exibida.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Para alterar o Valor do Alarme, use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para fornecer um novo número e pressione $[\sqrt{]}$ para salvar. Pressione $[\sqrt{]}$ para retornar ao menu Alarm (Alarme).

Use as teclas de seta $[\triangle]$ ou $[\nabla]$ para selecionar Alarm Type (Tipo de alarme) e pressione $[\sqrt{]}$. Uma tela semelhante à seguinte é exibida.

Você pode escolher entre três tipos de alarme:

- Low (Baixo) Nenhum alarme se a medição for superior ao limite, alarme se a medição for menor ou igual ao limite
- High (Alto) Nenhum alarme se a medição for inferior ao limite, alarme se a medição for maior ou igual ao limite
- Fault (Falha) Nenhum alarme se estiver sem erro, alarme se houver erro.

Para alterar o tipo do alarme, selecione o tipo desejado e pressione [$\sqrt{}$], A tela anterior é exibida.

Testar alarmes

Para testar a saída de alarmes, selecione Test Alarms (Testar alarmes) e pressione [$\sqrt{$]. A tela a seguir é exibida.

Selectione OFF para desligar o alarme ou ON para ligá-lo. Para iniciar o teste, selectione ON e pressione [$\sqrt{}$]. Para interromper o teste, pressione [\times].

3.6.3 Programar Modbus/porta de serviço

A configuração do MODBUS de serviço é fixa. A taxa baud é "115200", Bits/ Paridade é "8/Nenhum", Bits de Parada é "1". O endereço é "1".

Para ver a Porta Modbus/Serviço, selecione-a na tela Input/Output (Entrada/Saída) e pressione [$\sqrt{$]. A tela a seguir é exibida.

3.6.4 Programar comunicação digital

O medidor de vazão AT600 é compatível com os tipos de comunicação digital abaixo:

- MODBUS
- HART

Eles são ativados pela senho. Entre em contato com a GE para obter detalhes.

3.6.4a MODBUS

Para configurar o Modbus, selecione Digital Comm (Comunicação digital) na tela Input/Output (Entrada/Saída) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Digital Comm

Pressione [v] novamente e uma tela semelhante à seguinte é exibida.

Selecionar a taxa baud

MODBUS Baud Rate Address Bits/Parity Stop Bits

Baud Rate	
19200	
38400	
57600	
115200	

Para definir a taxa baud, no menu Modbus/Service (Modbus/Serviço), selecione Baud Rate (Taxa baud) e pressione $[\sqrt{}]$. Uma tela semelhante à seguinte é exibida.

A taxa baud padrão é 115200. Selecione a taxa baud apropriada e pressione [$\sqrt{}$]. A tela anterior é exibida.

Selecionar o endereço Modbus

Selecione o número apropriado e pressione [v]. A tela anterior é exibida.

Bits/Parity 8/None 8/Odd • 8/Even

Selecionar Bits de parada

Definir o endereço HART

3.7 Configuração do sensor

3.7.1 Programar a configuração do medidor

3.7.1a Definir corte zero

Próximo de uma taxa de vazão zero, as leituras do AT600 podem flutuar devido a pequenos desvios provocados por oscilação térmica ou fatores semelhantes. Para forçar uma leitura do visor zero, quando houver uma vazão mínima, insira um valor de corte zero como descrito abaixo.

Selecione Meter Setup (Configuração do medidor) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Meter Setup Zero Cutoff

Meter Setup/Zero Cutoff Zero Cutoff 0.05 m/s

Selecione Zero Cutoff (Corte zero) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Pressione [v] novamente e uma tela semelhante à seguinte é exibida.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Para alterar o Corte Zero, use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para fornecer um novo número e pressione $[\checkmark]$ para salvar. Pressione $[\varkappa]$ para retornar à tela anterior.

3.7.2 Programar a tubulação

3.7.2a Definir diâmetro externo, diâmetro interno e espessura da parede da tubulação

Observação: Alterar o DI (diâmetro interno) da tubulação automaticamente altera a espessura da parede. Alterar o valor de espessura da parede automaticamente altera a ID da tubulação.

3.7.2b Definir material da tubulação

No menu Pipe (Tubulação), selecione Pipe Material (Material de tubulação) e pressione [$\sqrt{$]. A tela a seguir é exibida.

Tabela 2 abaixo lista os materiais de tubulação pré-programados.

Nome	Material da tubulação
AÇO CARBONO	Aço carbono
AÇO INOXIDÁVEL	Aço inoxidável
FERRO DÚCTIL	Ferro dúctil
FERRO FUNDIDO	Ferro fundido
Cu	Cobre
Al	Alumínio
BRONZE	Bronze
30%Ni	30% liga de cobre níquel
10%Ni	10% liga de cobre níquel
VIDRO PYREX	Vidro Pyrex
VIDRO SÍLEX	Vidro sílex
VIDRO CROWN	Vidro crown
PLÁST. NÁILON	Plástico náilon
PLÁST. POLIET.	Polietileno
PLÁST. POLIP.	Polipropileno
PLÁST. PVC	Policloreto de vinil
PLÁST. ACR.	Plástico acrílico

Tabela 2: Materiais de tubulação pré-programados

Pipe Material CuNi Glass

Plastic

Other

Selecione a opção apropriada e pressione [X] para retornar à tela anterior.

Se o material não estiver na lista, selecione Other (Outro) e pressione $[\sqrt{}]$ duas vezes. Uma tela semelhante à seguinte é exibida.

3.7.2b Definir material da tubulação (cont.)

Pressione [X] duas vezes para retornar ao menu Pipe (Tubulação).

3.7.2c Definir o revestimento

[◀▶]MOVE [▲▼]MODF

No menu Pipe (Tubulação), selecione Lining (Revestimento) e pressione [$\sqrt{1}$]. A tela a seguir é exibida.

Lining Lining Thickness Lining Material

Se não houver revestimento, selecione No (Não) e pressione $\lceil \gamma \rceil$ para retornar à tela anterior.

Se o material não estiver na lista, selecione Yes (Sim) e pressione [$\sqrt{$] duas vezes. Uma tela semelhante à seguinte é exibida.

Para definir a espessura do revestimento, selecione-o e pressione [$\sqrt{}$]. Uma tela semelhante à seguinte é exibida.

3.7.2c Definir o revestimento (cont.)

Linir	ng Thicknes 0.000	s mm
Lining	Thickness	
UNIT:	mm	
	0.00 <u>0</u>	
[x]L [∢ ▶]N	JNDO [√ MOVE [▲▼]SAVE]MODF

Lining Thickness

Lining Material

MORTR RUBBR REFLN

Other

Pressione [v] novamente e uma tela semelhante à seguinte é exibida.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar o valor da espessura do revestimento e pressione $[\checkmark]$. Em seguida, pressione $[\times]$ para retornar à tela Lining (Revestimento).

Selecione a opção apropriada e pressione $[\times]$ para retornar à tela anterior.

Se o material não estiver na lista, selecione Other (Outro) e pressione [$\sqrt{$] duas vezes. Uma tela semelhante à seguinte é exibida.

Nome	Material de revestimento
Piche/Epóxi	Piche/Epóxi
Vidro Pyrex	Vidro Pyrex
Cimento-amianto	Cimento-amianto
Cimento	Cimento
Borracha	Borracha
Teflon	Teflon (PFTE)

Tabela 3: Materiais de revestimento pré-programados
3.7.2c Definir o revestimento (cont.)

Pressione [v] novamente e uma tela semelhante à seguinte é exibida.

Observação: As unidades exibidas serão as unidades selecionadas no Ajuste de Unidades na página 28.

Use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar o valor SOS do revestimento e pressione $[\checkmark]$. Pressione $[\varkappa]$ para retornar à tela anterior.

3.7.3 Programar o transdutor

[X]UNDO [√]SAVE [◀▶]MOVE [▲▼]MODF

3.7.3a Definir o transdutor padrão

Selecione Transducer (Transdutor) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Selecione STD (padrão) e pressione [$\sqrt{}$]. Uma tela semelhante à seguinte é exibida.

3.7.3a Definir o transdutor padrão (cont.)

Pressione $[\sqrt{}]$ novamente e uma tela semelhante à seguinte é exibida.

STD
0
[x]UNDO [🗸]SAVE
[◀▶]MOVE [▲▼]MODF

Use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar a definição do transdutor e pressione $[\checkmark]$ para retornar à tela anterior. Em seguida, pressione $[\times]$ para retornar à tela Transducer (Transdutor).

Observação: Os tipos de transdutor disponíveis para o AT600 estão listados em Tabela 4 abaixo.

Nome do transdutor	Tipo do transdutor
10	CPT-0.5CPT-0.5
11	CPT-2.0
12	CPT-0.5-MT C-PB-05-M
13	CPT-1.0-MT C-PB-10-M
14	CPT-2.0-MT C-PB-20-M
15	CPT-0.5-HT
16	CPT-1.0-HT
17	CPT-2.0-HT
18	CPS-0.5
19	CPSM-2.0
20	CTS-1.0
21	CTS-1.0-HT
22	CTS-2.0
23	C-LP-40-HM
24	C-LP-40-NM
25	CPB-0.5-HT
26	CPB-2.0-MT
27	CPB-0.5-MT
28	CPB-2.0
29	CPB-0.5

Tabela 4: Tipos de transdutor

Nome do transdutor	Tipo do transdutor			
30	CPS-1.0 CPT-1.0			
31	CWL-2			
32	CPS-1.0			
33	CPW (WT-1P-1.0 em AB82			
34	CPW (WT-1P-0.5 em NDT plástico			
35	CPW (WT-1P-1.0 em NDT plástico			
36	CPB-1.0-HT			
37	CPB-2.0-HT			
38	CPB-1.0			
39	CPB-1.0-MT			
301	C-RL-0.5			
302	C-RL-1			
304	C-RL-0.5			
305	C-RL-1			
307	C-RL-0.5			
308	C-RL-1			
310	C-RV-0.5			
311	C-RV-1			
313	C-RW-0.5			
314	C-RW-1			
401	C-RS-0.5 ¹			
402	C-RS-1 ¹			
403	C-RS-2			
407	UTXDR-2			
408	UTXDR-5			
601	CAT-0.5			
602	CAT-1			
603	CAT-2 ¹			
¹ Transdutor de suporte atual				

Tabela 4: Tipos de transdutor (cont.)

3.7.3b Definir um transdutor especial

3.7.3b Definir o transdutor especial

3.7.3b Definir o transdutor especial (cont.)

3.7.4 Programar as transversais

Figura 34: Exemplos de transversais

Selecione Traverses (Transversais) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Selecione a opção apropriada e pressione $[\sqrt{}]$ para retornar à tela anterior.

3.7.5 Programar o tipo de fluído

Se o tipo de fluído for desconhecido, o medidor executará cálculos com base na entrada do cliente. No entanto, se o tipo de fluido não for conhecido, abra a função Janelas de rastreamento discutidas abaixo. Não é necessário realocar os transdutores.

3.7.6 Programar a temperatura do fluído

°C

Fluid Temperature Fluid Temperature 25.000 Selecione Fluid Type (Tipo de fluido) e pressione [$\sqrt{$]. A tela a seguir é exibida.

Pressione [v] novamente e uma tela semelhante à seguinte é exibida.

Fluid Temperature UNIT: °C 25.000 [X]UNDO [√]SAVE [◀▶]MOVE [▲▼]MODF

Use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar a definição de Temperatura do fluido e pressione $[\checkmark]$ para retornar à tela anterior. Em seguida, pressione $[\checkmark]$ para retornar à tela Sensor Setup (Configuração do Sensor).

Observação: Como os cálculos do medidor são baseados nas informações do cliente, a temperatura afetará a velocidade do som durante a medição.

3.7.7 Programar o espaçamento do transdutor

Selecione Transducer Spacing (Espaçamento do Transdutor) e pressione [$\sqrt{}$]. A tela a seguir é exibida.

Pressione $[\sqrt{}]$ novamente. Observe este espaçamento de transdutor para definir os transdutores com base na entrada da configuração do sensor (tubulação, fluido e transdutores).

Observação: Se não for possível definir este espaçamento, entre em contato Lesta página foi deixado fina fábrica plana distributes destributes destructores de la contra de la seguinte de la contra de la seguinte é exibida.

Transducer Spacing						
UNIT: mm						
0.00 <u>0</u>						
[x]UNDO [√]SAVE						
[◀▶]MOVE [▲▼]MODF						

Use a tecla de seta $[\triangleleft]$ ou $[\triangleright]$ para selecionar o dígito a ser alterado, use as teclas de seta $[\triangle]$ ou $[\bigtriangledown]$ para alterar a definição e pressione $[\checkmark]$ para retornar à tela anterior. Em seguida, pressione $[\times]$ para retornar à tela Sensor Setup (Configuração do Sensor).

Observação: A alteração do espaçamento do transdutor deve apenas ser concluída com o contrato da fábrica.

Capítulo 4. Códigos de erro e solução de problemas

4.1 Exibição de erros na interface de usuário

A linha inferior do visor LCD exibe uma única mensagem de erro de prioridade máxima durante a operação. Esta linha, chamada de linha de erros, inclui duas partes: título do erro e sequência do erro. O título do erro indica o padrão de erros e o número de erros, enquanto a sequência de erros fornece uma descrição detalhada das informações de erro.

4.1.1 Título do erro

Padrão do erro	Título do erro
Erro de vazão	En (n é o número do erro)
Erro de dispositivo	Dn (n é o número do erro)
Aviso	Sn (n é o número do erro)

4.1.2 Sequência do erro de vazão

Erros de vazão são erros que ocorrem durante uma medição de vazão. Esses erros podem ser provocados por distúrbios no fluido, como excesso de partículas no fluxo de vazão ou gradientes extremos de temperatura. Os erros também poderiam ser provocados por uma tubulação vazia ou outro problema no próprio fluido. Normalmente, os erros de vazão não são causados por um defeito do dispositivo de medição de vazão, mas por um problema no próprio fluído.

Barra de			
opções	Descrição	Bom	Ruim
Tup	Exibe o tempo de trânsito do sinal ultrassônico à montante.	NA	NA
Tdn	Exibe o tempo de trânsito do sinal ultrassônico à jusante.	NA	NA
DeltaT	Exibe a diferença de tempo de trânsito entre os sinais à montante e à jusante.	NA	NA
Up Signal Quality	Exibe a qualidade do sinal do transdutor à montante.	≥1200	<400
Dn Signal Quality	Exibe a qualidade do sinal do transdutor à jusante.	≥1200	<400
Up Amp Disc	Exibe o valor da amplitude do sinal do transdutor à montante.	24 ± 5	<19 ou >29
DN Amp Disc	Exibe o valor da amplitude do sinal do transdutor à jusante.	24±5	<19 ou >29
SNR Up	Exibe o valor de sinal para ruído do sinal do transdutor à montante.	≥4	<4
SNR Dn	Exibe o valor de sinal para ruído do sinal do transdutor à jusante.	≥4	<4
Gain Up	Exibe o valor do ganho do transdutor à montante.	9-85	<9 ou >85
Gain Dn	Exibe o valor do ganho do transdutor à jusante.	9-85	<9 ou >85
Up Peak	Exibe o primeiro valor no sinal de correlação à montante, que é mais do que o limite positivo ou menos do que o limite negativo.	NA	NA
Dn Peak	Exibe o primeiro valor no sinal de correlação à jusante, que é mais do que o limite positivo ou menos do que o limite negativo.	NA	NA
PeakPctUp	Exibe o percentual de pico do sinal à montante.	NA	NA
PeakPctDn	Exibe o percentual de pico do sinal à jusante.	NA	NA

4.1.2a E1: Sinal baixo

Problema: Fraca intensidade do sinal ultrassônico ou o sinal excede o limite por meio do Programa;

- Causa: Quando o sinal for inferior ao valor de "Signal Low Limits" (Limites de sinal baixo) ou o sinal não for detectado quando a vazão for iniciada, o erro de Sinal Baixo ocorrerá. A intensidade fraca do sinal pode ser causada por um cabo com defeito, um problema de célula de vazão, um transdutor com defeito ou um problema no console eletrônico. Um sinal que excede os limites programados é provavelmente causado pela entrada de um valor indevido em *Program* (Programo) → *Advanced* (Avançado) → *Error Limits* (*Limites de erros*) → *Signal Low limits* (*Limites de sinal baixo*).
- Ação: Verifique os componentes na lista acima (Consulte "Diagnóstico" na página 76). Verifique também o valor inserido em Program (Programa) → Advanced (Avançado) → Error Limits (Limites de erro) → Signal Low limits (Limites de baixo sinal).
- 4.1.2b E2: Erro de velocidade do som
- **Problema:** A velocidade do som excede os limites programados em: Program (Programa) \rightarrow Advanced (Avançado) \rightarrow Error Limits (Limites de erros) \rightarrow SNSD +- limites.
- **Causa:** Este erro ocorre quando a velocidade medida do som estiver fora do limite da velocidade do som. O erro poderá ser causado por programação incorreta, condições de vazão ruins e orientação insuficiente do transdutor;
- **Ação:** Corrija os erros de programação. Consulte "Diagnóstico" na página 76, para corrigir os problemas da célula de vazão e/ou do transdutor. Verifique também o valor inserido em *Program* (Programa) \rightarrow *Advanced* (Avançado) \rightarrow *Error Limits* (*Limites de erro*) \rightarrow SNSD +- *limites*.
- 4.1.2c E3: Variação de velocidade
- **Problema:** A velocidade excede o limite programado em Program (Programa) → Advanced (Avançado) → Error Limits (Limites de erro) → Velocity Low/High (Velocidade baixa/alta);
- **Causa:** Este erro ocorre quando a velocidade medida está fora do limite de velocidade. O erro poderá ser causado por programação inadequada, condições de vazão ruins e/ou turbulência excessiva;
- Ação: Verifique se a taxa de vazão real está dentro dos limites programados. Além disso, verifique o valor inserido em *Program* (Programa) → *Advanced* (Avançado) → *Error Limits* (*Limites de erro*) → *Velocity Low/High* (*Velocidade baixa/alta*). Consulte "Diagnóstico" na página 76, para corrigir os problemas da célula de vazão e/ou do transdutor.
- 4.1.2d E4: Qualidade do sinal
- **Problema:** A qualidade sinal está fora dos limites programados em Program (Programa)→ Advanced (Avançado) → Error Limits (Limites de erro) → Correlation Peak (Pico de correlação).
- **Causa:** O pico dos sinais de correlação à montante e à jusante caiu abaixo do limite de pico de correlação definido em Program (Programa) \rightarrow Advanced (Avançado) \rightarrow Error Limits (Limites de erro) \rightarrow Correlațion Peak (Pico de correlação). Isso pode ser causado por um problema elétrico ou da célula de vazão.
- Ação: Verifique as fontes de interferência elétrica e a integridade do console eletrônico substituindo temporariamente por uma célula de vazão de teste comprovadamente em boas condições. Verifique os transdutores e realoque-os, se necessário. Consulte "Diagnóstico" na página 76, para instruções.

4.1.2e E5: Erro de amplitude

- **Problema:** A amplitude de sinais excede o limite programado no menu Program (Programa) \rightarrow Advanced (Avançado) \rightarrow Error Limits \rightarrow Amp Disc Min/Max (Disco de Amp. Mín./Máx.).
- **Causa:** Partículas sólidas ou líquidas podem estar presentes na célula de vazão. Acoplamento indevido para transdutores não intrusivos.
- **Ação:** Consulte "Diagnóstico" na página 76 para corrigir qualquer problema de célula de vazão.
- 4.1.2f E6: Ignorar ciclo
- **Problema:** A aceleração excede os limites programados no menu Program (Programa)→ Advanced (Avançado) → Error Limits (Limites de erro) → Acceleration (Aceleração).
- **Causa:** Esta condição é sempre provocada por condições indevidas de vazão ou alinhamento inadequado do transdutor.
- Ação: Consulte "Diagnóstico" na página 76, para corrigir todos os problemas da célula de vazão e/ou transdutor.

4.2 Diagnóstico

4.2.1 Introdução

Esta seção explica como solucionar o problema do AT600 se surgirem problemas no gabinete eletrônico, na célula de vazão ou nos transdutores. As indicações de um possível problema:

- Exibição de uma mensagem de erros na tela do display LCD, software Vitality PC ou HART.
- Leituras de vazão erráticas.
- Leituras de precisão duvidosa (isto é, leituras não consistentes com as de outro dispositivo de medição de vazão conectado ao mesmo processo).

Se uma das condições acima ocorrer, vá para as instruções apresentadas neste capítulo.

4.2.2 Problemas de célula de vazão

Se a solução de problema preliminar com o *Código de erro* indicar um possível problema na célula de vazão, continue nesta seção. Os problemas da célula de vazão encaixam em duas categorias: *problemas de fluído* ou *problemas de tubulação*. Leia as seções a seguir atentamente para determinar se o problema está, de fato, relacionado à célula de vazão. Se as instruções nesta seção não resolverem o problema, entre em contato com a GE para obter assistência.

4.2.2a Problemas de fluido

A maioria dos problemas relacionados ao fluido ocorre devido à não observação das instruções de instalação do sistema de medidor de vazão. Consulte o Capítulo 2, Instalação, para corrigir qualquer problema de instalação.

Se a instalação física do sistema cumprir as especificações recomendadas, é possível que o próprio fluido esteja impedindo medições precisas da taxa de vazão. O fluido sendo medido deve cumprir os seguintes requisitos:

1. *O fluido deve ser homogêneo, de fase única, relativamente claro e fluir uniformemente.*

Embora a entrada de um nível baixo de partículas possa ter pouco efeito na operação do AT600, quantidades excessivas de partículas sólidas absorverão ou dispersarão os sinais ultrassônicos. Essa interferência nas transmissões ultrassônicas por meio do fluido causará medições imprecisas da taxa de vazão. Além disso, os gradientes de temperatura na vazão do fluido podem resultar em leituras de taxa de vazão erráticas ou imprecisas.

2. O fluído não deve cavitar próximo da célula de vazão.

Os fluidos com uma pressão de vapor elevada podem cavitar perto ou na célula de vazão. Isso causa problemas provocados por bolhas de gás no fluido. Geralmente, a cavitação pode ser controlada por meio do design de instalação apropriado.

3. O fluido não deve atenuar excessivamente os sinais ultrassônicos.

Alguns fluidos, particularmente aqueles muito viscosos, absorvem prontamente a energia do ultrassom. Nesse caso, uma mensagem de código de erro será exibida no visor da tela para indicar se a intensidade do sinal ultrassônico é insuficiente para medições confiáveis.

4.2.2a Problemas de fluido (cont.)

4. A velocidade do som do fluído não deve ter uma variação excessiva.

O AT600 tolerará alterações relativamente grandes na velocidade do som do fluido, como as que podem ser causadas por variações na composição do fluido e/ou na temperatura. No entanto, essas alterações devem ocorrer lentamente. Flutuações rápidas na velocidade do som do fluido, para um valor consideravelmente diferente do programado no AT600, causarão leituras de taxa de vazão erráticas ou imprecisas. Consulte o Capítulo 3, *Ajuste e Programação Iniciais*, e se certifique de que a velocidade do som apropriada seja programada no medidor.

4.2.2b Problemas de tubulação

A maioria dos problemas relacionados à tubulação pode resultar da não observação das instruções de instalação, conforme descritas no Capítulo 2, ou da programação inadequada do medidor. Os problemas de tubulação mais comuns são:

1. A coleta de material nos locais do transdutor.

Restos acumulados nos locais do transdutor vão interferir na transmissão dos sinais ultrassônicos. E impedirão, dessa forma, medições precisas da taxa de vazão. O realinhamento da célula de vazão ou de transdutores, muitas vezes, cura esses problemas e, em alguns casos, os transdutores que se projetam no fluxo de vazão podem ser usados. Consulte o Capítulo 2, *Instalação*, para obter mais detalhes sobre práticas de instalação apropriadas.

2. Medições de tubulação inadequadas.

A precisão das medições da taxa de vazão não é melhor do que a precisão das dimensões programadas da tubulação. Para uma célula de vazão fornecida pela GE, os dados corrigidos serão incluídos na documentação. Para outras células de vazão, meça a espessura da parede e o diâmetro da tubulação com a mesma precisão desejada nas leituras de taxa de vazão. Além disso, verifique a tubulação quanto a amassados, excentricidade, deformidade de solda, linearidade e outros fatores que possam provocar leituras imprecisas. Consulte o Capítulo 3, *Configuração inicial*, para instruções sobre programação dos dados de tubulação.

Além das dimensões reais da tubulação, a extensão da trajetória (C) e a dimensão axial (L), baseadas nos locais de montagem real, devem ser programadas com precisão no medidor de vazão. Para a célula de vazão GE Sensing, esses dados serão incluídos com a documentação do sistema. Se os transdutores forem montados em uma tubulação existente, essas dimensões devem ser medidas com precisão.

3. A parte interna da tubulação ou da célula de vazão devem estar relativamente limpas.

Acúmulo excessivo de escala, ferrugem ou detritos interferirá na medição da vazão. Em geral, um revestimento fino ou um acúmulo sólido com alta aderência na parede da tubulação não causará problemas. Descamações soltas ou revestimentos grossos (como piche ou óleo) interferem na transmissão por ultrassom e pode resultar em medições incorretas ou não confiáveis.

[esta página foi deixada em branco propositadamente]

Capítulo 5. Comunicação

5.1 MODBUS

5.1.1 Introdução

Em geral, o medidor de vazão AT600 segue o protocolo de comunicação padrão MODBUS definido pela referência ESPECIFICAÇÃO V1.1b DO PROTOCOLO DE APLICAÇÃO MODBUS. Esta especificação está disponível em www.modbus.org na Internet. Com esta referência como orientação, o operador pode usar qualquer mestre MODBUS para comunicação com o medidor de vazão.

Abaixo relacionamos os dois limites desta implementação:

- 1. O AT600 aceita apenas quatro códigos de função padrão. Eles são Read Holding Registers (0x03) [Ler registros em espera], Read Input Registers (0x04) [Ler registros de entrada], Write Multiple Registers (0x10) [Gravar múltiplos registros] e Read File Record (0x14) [Gravar registros de arquivo].
- 2. O medidor de vazão precisa de um intervalo de 15 ms entre as solicitações do Modbus. O objetivo principal do medidor de vazão é medir a vazão e impulsionar a saída; portanto, o servidor do Mobus tem uma baixa prioridade.

5.1.2 Mapa do MODBUS

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
100	100	256	Usuário	Etiqueta curta de produto	LG	CARAC * 16
	108	264	Usuário	Etiqueta longa de produto	LG	CARAC * 32
	118	280	Usuário	Mensagem do produto (para HART)	LG	CARAC * 32
	128	296	Usuário	Descritor do produto (para HART)	LG	CARAC * 16
140	140	320	Usuário	Número de série do produto eletrônico	LG	CARAC * 16
	148	328	Usuário	Número de série do grampo de fixação do produto	LG	CARAC * 16
	150	336	Usuário	Número de série do transdutor1 do produto	LG	CARAC * 16
	158	344	Usuário	Número de série do transdutor2 do produto	LG	CARAC * 16
300	300	768	LA	Versão do hardware principal	LA	CARAC * 8
	304	772	LA	Versão de hardware opcional	LA	CARAC * 8
	308	776	LA	Versão de software principal	LA	CARAC * 8
500	500	1280	Usuário	Grupo 1 da unid. global da volumétrica real	LG	INT32
	502	1282	Usuário	Grupo 2 da unid. global para dia	LG	INT32
	504	1284	Usuário	Grupo 3 da unid. global para dB	LG	INT32
	506	1286	Usuário	Grupo 4 da unid. global para densidade	LG	INT32

Tabela 5: Mapa do MODBUS

	.	- • • •				
	Registro (em hex)	Registro (em decimal)	Nivel de acesso	Descrição	LA/LG	Formato
	508	1288	Usuário	Grupo 5 da unid. global para dimensão	LG	INT32
	50A	1290	Usuário	Grupo 6 da unid. global para Hz	LG	INT32
	50C	1292	Usuário	Grupo 7 da unid. global para viscosidade	LG	INT32
	50E	1294	Usuário	Grupo 8 da unid. global para mA	LG	INT32
	510	1296	Usuário	Grupo 9 da unid. global para massa	LG	INT32
	512	1298	Usuário	Grupo 10 da unid. global para milissegundo	LG	INT32
	514	1300	Usuário	Grupo 11 da unid. global para nanossegundo	LG	INT32
	516	1302	Usuário	Grupo 12 da unid. global para percentual	LG	INT32
	518	1304	Usuário	Grupo 13 da unid. global para segundo	LG	INT32
	51A	1306	Usuário	Grupo 14 da unid. global da volumétrica padrão	LG	INT32
	51C	1308	Usuário	Grupo 15 da unid. global para termo	LG	INT32
	51E	1310	Visualizador	Grupo 16 da unid. global para tempo do totalizador	LG	INT32
	520	1312	Usuário	Grupo 17 da unid. global para totalizador	LG	INT32
	522	1314	Usuário	Grupo 18 da unid. global para sem unidade	LG	INT32
	524	1316	Usuário	Grupo 19 da unid. global para microssegundo	LG	INT32
	526	1318	Usuário	Grupo 20 da unid. global para velocidade	LG	INT32
	528	1320	Usuário	Grupo 21 da unid. global para aceleração	LG	INT32
540	540	1344	Visualizador	Comando de solicitação em lote	LG	INT32
	542	1346	Usuário	comando de solicitação de inventário	LG	INT32
	544	1348	Visualizador	senha solicitada pelo sistema	LG	INT32
	546	1350	Visualizador	comando solicitado pelo sistema	LG	INT32
700	700	1792	LA	Erro reportado pelo sistema	LA	INT32
	702	1794	LA	Bitmap de erro do sistema	LA	INT32
	704	1796	LA	Bitmap de erro de inicialização do sistema	LA	INT32
	706	1798	LA	Bitmap de erro de vazão do sistema	LA	INT32
	708	1800	LA	Bitmap de erro do dispositivo do sistema	LA	INT32

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
	70A	1802	LA	Bitmap de advertência do sistema	LA	INT32
740	740	1856	LA	Tipo de protocolo do sistema	LA	INT32
900	900	2304	Visualizador	Idioma do visor	LG	INT32
	902	2306	Usuário	Ativar luz de fundo do visor	LG	INT32
	904	2308	Usuário	Tempo limite do visor	LG	INT32
	906	2310	Visualizador	Tipo do visor	LG	INT32
	908	2312	Visualizador	Tipo de variável1 do visor	LG	INT32
	90A	2314	Visualizador	Tipo de variável2 do visor	LG	INT32
	90C	2316	Visualizador	Tipo de totalizador1 do visor	LG	INT32
	90E	2318	Visualizador	Tipo de totalizador2 do visor	LG	INT32
	910	2320	Visualizador	Seleção de decimal do visor	LG	INT32
940	940	2368	Usuário	selecionar a velocidade	LG	INT32
	942	2370	Usuário	selecionar a volumétrica real	LG	INT32
	944	2372	Usuário	selecionar a volumétrica padrão	LG	INT32
	946	2374	Usuário	selecionar massa	LG	INT32
	948	2376	Usuário	selecionar totalizador	LG	INT32
A00	A00	2560	LA	Valor de variável1 do visor	LA	(IEEE de 32 bits)
	A02	2562	LA	Valor de variável2 do visor	LA	(IEEE de 32 bits)
	A04	2564	LA	Valor do Totalizador1 do Visor	LA	(IEEE de 32 bits)
	A06	2566	LA	Valor do totalizador2 do visor	LA	(IEEE de 32 bits)
C00	C00	3072	Usuário	Valor de tratamento de erro de saída analógica	LG	(IEEE de 32 bits)
	C02	3074	Usuário	Valor de teste de saída analógica (percentual de amplitude)	LG	(IEEE de 32 bits)
	C04	3076	Usuário	Valor zero de saída analógica	LG	(IEEE de 32 bits)
	C06	3078	Usuário	Valor de amplitude de saída analógica	LG	(IEEE de 32 bits)
	C08	3080	Usuário	Valor de base de saída analógica	LG	(IEEE de 32 bits)
	COA	3082	Usuário	Valor total de saída analógica	LG	(IEEE de 32 bits)
C40	C40	3136	Usuário	Valor de pulso de saída digital 1	LG	(IEEE de 32 bits)
	C42	3138	Usuário	Valor de base de frequência de saída digital 1	LG	(IEEE de 32 bits)
	C44	3140	Usuário	Valor total de frequência de saída digital 1	LG	(IEEE de 32 bits)
	C46	3142	Usuário	Valor de alarme de saída digital 1	LG	(IEEE de 32 bits)
C80	C80	3200	Usuário	Valor de pulso de saída digital 2	LG	(IEEE de 32 bits)
	C82	3202	Usuário	Valor de base de frequência de saída digital 2	LG	(IEEE de 32 bits)

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
	C84	3204	Usuário	Valor total de frequência de saída digital 2	LG	(IEEE de 32 bits)
	C86	3206	Usuário	Valor de alarme de saída digital 2	LG	(IEEE de 32 bits)
D00	D00	3328	Usuário	Modo de saída analógica	LG	INT32
	D02	3330	Usuário	Tipo de saída analógica	LG	INT32
	D04	3332	Usuário	Modo de saída analógica 1	LG	INT32
	D06	3334	Usuário	Tipo de saída analógica 1	LG	INT32
	D08	3336	Usuário	Modo de saída analógica 2	LG	INT32
	D0A	3338	Usuário	Tipo de saída analógica 2	LG	INT32
D20	D20	3360	Usuário	Tipo de medição de saída analógica	LG	INT32
	D22	3362	Usuário	Tratamento de erro de saída analógica	LG	INT32
D40	D40	3392	Usuário	Tipo de medição de pulso de saída digital 1	LG	INT32
	D42	3394	Usuário	Valor de teste de pulso de saída digital 1	LG	INT32
	D44	3396	Usuário	Tratamento de erro de pulso de saída digital 1	LG	INT32
	D46	3398	Usuário	Tempo de pulso de saída digital 1	LG	INT32
D50	D50	3408	Usuário	Tipo de medição de pulso de saída digital 2	LG	INT32
	D52	3410	Usuário	Valor de teste de pulso de saída digital 2	LG	INT32
	D54	3412	Usuário	Tratamento de erro de pulso de saída digital 2	LG	INT32
	D56	3414	Usuário	Tempo de pulso de saída digital 2	LG	INT32
D60	D60	3424	Usuário	Tipo de medição de frequência de saída digital 1	LG	INT32
	D62	3426	Usuário	Valor de frequência de teste de saída digital 1	LG	INT32
	D64	3428	Usuário	Tratamento de erro de frequência de saída digital 1	LG	INT32
	D66	3430	Usuário	Valor de tratamento de erro de frequência de saída digital 1	LG	INT32
	D68	3432	Usuário	Frequência total da frequência de saída digital 1	LG	INT32
D70	D70	3440	Usuário	Tipo de medição da frequência de saída digital 2	LG	INT32
	D72	3442	Usuário	Valor de frequência do teste 2 de saída digital	LG	INT32
	D74	3444	Usuário	Tratamento de erro de frequência 2 de saída digital	LG	INT32

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
	D76	3446	Usuário	Valor de tratamento de erro de frequência 2 de saída digital	LG	INT32
	D78	3448	Usuário	Frequência total da frequência de saída digital 2	LG	INT32
D80	D80	3456	Usuário	Tipo de medição de alarme de saída digital 1	LG	INT32
	D82	3458	Usuário	Valor do teste de alarme de saída digital 1	LG	INT32
	D84	3460	Usuário	Estado do alarme de saída digital 1	LG	INT32
	D86	3462	Usuário	Tipo de alarme de saída analógica 1	LG	INT32
D90	D90	3472	Usuário	Tipo de medição de alarme de saída digital 2	LG	INT32
	D92	3474	Usuário	Valor de teste de alarme de saída digital 2	LG	INT32
	D94	3476	Usuário	Estado de alarme de saída digital 2	LG	INT32
	D96	3478	Usuário	Tipo de alarme de saída analógica 2	LG	INT32
E00	E00	3584	LA	Valor zero de medição de saída analógica	LA	(IEEE de 32 bits)
	E02	3586	LA	Valor de medição de pulso de saída digital 1	LA	(IEEE de 32 bits)
	E04	3588	LA	Valor de medição de frequência de saída digital 1	LA	(IEEE de 32 bits)
	E06	3590	LA	Valor de medição de alarme de saída digital 1	LA	(IEEE de 32 bits)
	E08	3592	LA	Valor de medição de pulso de saída digital 2	LA	(IEEE de 32 bits)
	EOA	3594	LA	Valor de medição de frequência de saída digital 2	LA	(IEEE de 32 bits)
	EOC	3596	LA	Valor de medição de alarme de saída digital 2	LA	(IEEE de 32 bits)
1100	1100	4352	Visualizador	Endereço de medidor HART	LG	INT32
	1102	4354	Visualizador	Tamanho do preâmbulo HART	LG	INT32
	1104	4356	Visualizador	ID do dispositivo HART®	LG	INT32
	1106	4358	Visualizador	Número de montagem HART	LG	INT32
1140	1140	4416	Visualizador	Índice 1 de variável dinâmica HART	LG	INT32
	1142	4418	Visualizador	Índice 2 de variável dinâmica HART	LG	INT32
	1144	4420	Visualizador	Índice 3 de variável dinâmica HART	LG	INT32
	1146	4422	Visualizador	Índice 4 de variável dinâmica HART	LG	INT32
1300	1300	4864	LA	Contagem de alterações de configuração do HART	LA	INT32
	1302	4866	LA	Status de dispositivo HART	LA	INT32

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
	1304	4868	LA	Status de dispositivo HART estendido	LA	INT32
	1306	4870	LA	Status master HART	LA	INT32
	1308	4872	LA	Status secundário HART	LA	INT32
	130A	4874	LA	Status de variável HART	LA	INT32
1500	1500	5376	Usuário	Taxa baud MODBUS PC	LG	INT32
	1502	5378	Usuário	Paridade MODBUS PC	LG	INT32
	1504	5380	Usuário	Bits de parada MODBUS PC	LG	INT32
	1506	5382	Usuário	Endereço de medidor MODBUS PC	LG	INT32
1540	1540	5440	Usuário	Controle de registro / status	LG	INT32
	1542	5442	Usuário	Intervalo entre registros	LG	INT32
	1544	5444	Usuário	Tempo de registro	LG	INT32
	1546	5446	Usuário	Número de variáveis a registrar	LG	INT32
1580	1580	5504	Usuário	matriz de endereços variáveis	LG	INT32
15C0	15C0	5568	Usuário	Matriz de código de unidade variável	LG	INT32
1700	1700	5888	LA	Taxa baud de serviço de PC	LA	INT32
	1702	5890	LA	Paridade de serviço de PC	LA	INT32
	1704	5892	LA	Bits de parada de serviço de PC	LA	INT32
	1706	5894	LA	Endereço de medidor de serviço PC	LA	INT32
1740	1740	5952	LA	Número de registros	LA	INT32
2000	2000	8192	Usuário	Diâmetro interno da tubulação	LG	(IEEE de 32 bits)
	2002	8194	Usuário	Diâmetro externo da tubulação	LG	(IEEE de 32 bits)
	2004	8196	Usuário	Espessura da parede da tubulação	LG	(IEEE de 32 bits)
	2006	8198	Usuário	Velocidade do som da tubulação	LG	(IEEE de 32 bits)
	2008	8200	Usuário	Espessura do revestimento	LG	(IEEE de 32 bits)
	200A	8202	Usuário	Velocidade do som de revestimento	LG	(IEEE de 32 bits)
	200C	8204	Usuário	Ângulo da cunha XDR	LG	(IEEE de 32 bits)
	200E	8206	Usuário	Tempo da cunha XDR	LG	(IEEE de 32 bits)
	2010	8208	Usuário	Velocidade do som da cunha	LG	(IEEE de 32 bits)
	2012	8210	Usuário	Velocidade do som do fluido	LG	(IEEE de 32 bits)
	2014	8212	Usuário	Velocidade do som do fluido mín	LG	(IEEE de 32 bits)
	2016	8214	Usuário	Velocidade do som do fluido máx.	LG	(IEEE de 32 bits)
	2018	8216	Usuário	Densidade estática do fluido	LG	(IEEE de 32 bits)
	201A	8218	Usuário	Densidade de referência do fluido	LG	(IEEE de 32 bits)
	201C	8220	Usuário	Temperatura do fluido	LG	(IEEE de 32 bits)
	201E	8222	Usuário	Espaço XDR	LG	(IEEE de 32 bits)
	2020	8224	Usuário	Fator de calibração	LG	(IEEE de 32 bits)

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
	2022	8226	Usuário	Viscosidade cinemática	LG	(IEEE de 32 bits)
2040	2040	8256	Usuário	Velocidade MultiK 1	LG	(IEEE de 32 bits)
	2042	8258	Usuário	Velocidade MultiK 2	LG	(IEEE de 32 bits)
	2044	8260	Usuário	Velocidade MultiK 3	LG	(IEEE de 32 bits)
	2046	8262	Usuário	Velocidade MultiK 4	LG	(IEEE de 32 bits)
	2048	8264	Usuário	Velocidade MultiK 5	LG	(IEEE de 32 bits)
	204A	8266	Usuário	Velocidade MultiK 6	LG	(IEEE de 32 bits)
2060	2060	8288	Usuário	Velocidade MultiK Fator K1	LG	(IEEE de 32 bits)
	2062	8290	Usuário	Velocidade MultiK Fator K 2	LG	(IEEE de 32 bits)
	2064	8292	Usuário	Velocidade MultiK Fator K 3	LG	(IEEE de 32 bits)
	2066	8294	Usuário	Velocidade MultiK Fator K 4	LG	(IEEE de 32 bits)
	2068	8296	Usuário	Velocidade MultiK Fator K 5	LG	(IEEE de 32 bits)
	206A	8298	Usuário	Velocidade MultiK Fator K 6	LG	(IEEE de 32 bits)
2080	2080	8320	Usuário	MultiK Reynolds 1	LG	(IEEE de 32 bits)
	2082	8322	Usuário	MultiK Reynolds 2	LG	(IEEE de 32 bits)
	2084	8324	Usuário	MultiK Reynolds 3	LG	(IEEE de 32 bits)
	2086	8326	Usuário	MultiK Reynolds 4	LG	(IEEE de 32 bits)
	2088	8328	Usuário	MultiK Reynolds 5	LG	(IEEE de 32 bits)
	208A	8330	Usuário	MultiK Reynolds 6	LG	(IEEE de 32 bits)
20A0	20A0	8352	Usuário	MultiK Reynolds Fator K 1	LG	(IEEE de 32 bits)
	20A2	8354	Usuário	MultiK Reynolds Fator K 2	LG	(IEEE de 32 bits)
	20A4	8356	Usuário	MultiK Reynolds Fator K 3	LG	(IEEE de 32 bits)
	20A6	8358	Usuário	MultiK Reynolds Fator K 4	LG	(IEEE de 32 bits)
	20A8	8360	Usuário	MultiK Reynolds Fator K 5	LG	(IEEE de 32 bits)
	20AA	8362	Usuário	MultiK Reynolds Fator K 6	LG	(IEEE de 32 bits)
20C0	20C0	8384	Usuário	Baixo limite de pico de correlação	LG	(IEEE de 32 bits)
	20C2	8386	Usuário	Limite de aceleração	LG	(IEEE de 32 bits)
	20C4	8388	Usuário	Limite mínimo de velocidade - usado para cálculo do limite mínimo volumétrico	LG	(IEEE de 32 bits)
	20C6		Usuário	Limite máximo de velocidade - usado para cálculo do limite máximo volumétrico	LG	(IEEE de 32 bits)
	20C8	8392	Usuário	Limite mínimo do discriminador de amplitude	LG	(IEEE de 32 bits)
	20CA	8394	Usuário	Limite máximo do discriminador de amplitude	LG	(IEEE de 32 bits)
	20CC	8396	Usuário	Velocidade do som menos/mais limite	LG	(IEEE de 32 bits)

	Registro	Registro (em	Nível de			
	(em hex)	decimal)	acesso	Descrição	LA/LG	Formato
	20CE	8398	Usuário	limite mínimo de sinal	LG	(IEEE de 32 bits)
20E0	20E0	8416	Usuário	Corte zero	LG	(IEEE de 32 bits)
	20E2	8418	Usuário	Desvio do DeltaT	LG	(IEEE de 32 bits)
2100	2100	8448	Usuário	Material de tubulação	LG	INT32
	2102	8450	Usuário	Material de revestimento	LG	INT32
	2104	8452	Usuário	Tipo XDR	LG	INT32
	2106	8454	Usuário	Frequência XDR	LG	INT32
	2108	8456	Usuário	Tipo de cunha XDR	LG	INT32
	210A	8458	Usuário	Tipo de fluido	LG	INT32
	210C	8460	Usuário	Existência de linha	LG	INT32
	210E	8462	Usuário	Número de transversais	LG	INT32
2140	2140	8512	Usuário	Habilitar correção de Reynolds	LG	INT32
	2142	8514	Usuário	Habilitar MultiK ativo	LG	INT32
	2144	8516	Usuário	Tipo MultiK	LG	INT32
	2146	8518	Usuário	Pares MultiK	LG	INT32
2180	2180	8576	Usuário	% de pico	LG	INT32
	2182	8578	Usuário	Pico mín%	LG	INT32
	2184	8580	Usuário	Pico máx.%	LG	INT32
	2186	8582	Usuário	Erros permitidos	LG	INT32
21C0	21C0	8640	Usuário	Habilitar TW ativo	LG	INT32
	21C2	8642	Usuário	Habilitar janelas de rastreamento	LG	INT32
	21C4	8644	Usuário	Tempo de resposta	LG	INT32
	21C6	8646	Usuário	Tamanho da amostra	LG	INT32
2200	2200	8704	LA	Velocidade	LA	(IEEE de 32 bits)
	2202	8706	LA	Volumétrica	LA	(IEEE de 32 bits)
	2204	8708	LA	Volumétrica padrão	LA	(IEEE de 32 bits)
	2206	8710	LA	Vazão de massa	LA	(IEEE de 32 bits)
2240	2240	8768	LA	Totais de avanço em lote	LA	(IEEE de 32 bits)
	2242	8770	LA	Totais de rev. em lote	LA	(IEEE de 32 bits)
	2244	8772	LA	Totais líquidos em lote	LA	(IEEE de 32 bits)
	2246	8774	LA	Tempo de totais em lote	LA	(IEEE de 32 bits)
	2248	8776	LA	Totais de avanço de inventário	LA	(IEEE de 32 bits)
	224A	8778	LA	Totais de rev. de inventário	LA	(IEEE de 32 bits)
	224C	8780	LA	Totais líquidos de inventário	LA	(IEEE de 32 bits)
	224E	8782	LA	tempo de totais de inventário	LA	(IEEE de 32 bits)
2280	2280	8832	LA	Tempo de trânsito à montante	LA	(IEEE de 32 bits)

	Registro (em hex)	Registro (em decimal)	Nível de acesso	Descrição	LA/LG	Formato
-	2282	8834	LA	Tempo de trânsito à jusante	LA	(IEEE de 32 bits)
	2284	8836	LA	DeltaT	LA	(IEEE de 32 bits)
	2286	8838	LA	Qualidade de sinal à montante	LA	(IEEE de 32 bits)
	2288	8840	LA	Qualidade de sinal à jusante	LA	(IEEE de 32 bits)
	228A	8842	LA	Discr. de ampl. à montante	LA	(IEEE de 32 bits)
	228C	8844	LA	Discrim. de amp à jusante	LA	(IEEE de 32 bits)
	228E	8846	LA	Canal de sinal à montante	LA	(IEEE de 32 bits)
	2290	8848	LA	Canal de sinal à jusante	LA	(IEEE de 32 bits)
	2292	8850	LA	Tempo no buffer no canal à montante	LA	(IEEE de 32 bits)
	2294	8852	LA	Tempo no buffer no canal à jusante	LA	(IEEE de 32 bits)
	2296	8854	LA	Ganho de sinal à montante	LA	(IEEE de 32 bits)
	2298	8856	LA	Ganho de sinal à jusante	LA	(IEEE de 32 bits)
22C0	22C0	8896	LA	Velocidade do som	LA	(IEEE de 32 bits)
	22C2	8898	LA	Número de Reynolds atual	LA	(IEEE de 32 bits)
	22C4	8900	LA	Fator de correção atual	LA	(IEEE de 32 bits)
	22C6	8902	LA	Comprimento do caminho P	LA	(IEEE de 32 bits)
	22C8	8904	LA	Comprimento axial L	LA	(IEEE de 32 bits)
2300	2300	8960	LA	Pico à montante +-	LA	INT32
	2302	8962	LA	Pico à jusante +-	LA	INT32
	2304	8964	LA	limite dinâmico no canal à montante	LA	INT32
	2306	8966	LA	limite dinâmico no canal à jusante	LA	INT32

5.2 HART

5.2.1 Identificação de dispositivos

O medidor de vazão AT600 permite a comunicação HART, cujo ID de fabricante é 0x9D (157 Dec) e o código de tipo de dispositivo é 0x9D73 (127 dec).

5.2.2 Comandos

5.2.2a Comandos universais

Comando	Função	Descrição
0	Ler identificador único	Retorna as informações de identidade sobre o medidor incluindo: tipo de dispositivo, níveis de revisão e ID de dispositivo.
1	Ler variável primária	Retorna o valor variável primário com seu código de unidade.

Tabela 6: Comandos universais para HART

Comando	Função	
2	Lor corrente de loop e	L à a corrente de loop e o cou percentual de variação
2	percentual de variação	le a corrente do 100p e o seu percentual de variação.
3	Ler variáveis dinâmicas e corrente de loop	Lê a corrente de loop e até quatro variáveis dinâmicas predefinidas. As variáveis dinâmicas e as unidades associadas são definidas pelos comandos 51 e 53.
6	Gravar endereço de sondagem	Grava o endereço de sondagem e modo de corrente de loop para o dispositivo de campo.
7	Ler configuração de loop	Lê o endereço de sondagem e o modo de corrente de loop.
8	Ler classificação de variáveis dinâmicas	Lê a classificação associada à variável dinâmica.
9	Ler variáveis de dispositivo com status	Solicite o valor e o status de até oito variáveis dinâmicas ou de dispositivo.
11	Lê o identificador único associado com etiqueta	Se a etiqueta especificada corresponder à etiqueta do medidor, ela responde com a resposta do Comando 0.
12	Ler mensagem	Lê a mensagem contida no medidor.
13	Ler etiqueta, descritor, data	Lê a etiqueta, o descritor e a data contidos no medidor.
14	Ler informações do transdutor variável principal	Lê o número de série do transdutor (medidor), código de unidades de amplitude mín./limites, limite máximo do transdutor, limite mínimo do transdutor e amplitude mínima para o transdutor de variáveis primárias.
15	Ler informações de dispositivo	Lê o código da seleção de alarmes, o código da função de transferência, código de unidades de valor da faixa, valor da faixa superior, valor de faixa inferior da variável primária, valor de amortecimento, código de proteção contra gravação e código de distribuidor privado de etiquetas.
16	Ler número da montagem final	Lê o número da montagem final associado ao medidor.
17	Gravar mensagem	Grava a mensagem no medidor.
18	Gravar etiqueta, descritor, data	Grava a etiqueta, o descritor e o código de data no medidor.
19	Gravar número da montagem final	Grava o número da montagem final no medidor.
20	Ler etiqueta longa	Lê a etiqueta longa de 32 bytes.
21	Ler o identificador único associado com etiqueta longa	Lê o identificador único associado com etiqueta longa.
22	Gravar etiqueta longa	Grava a etiqueta longa de 32 bytes.
38	Redefinir sinalizador de configuração alterada	Redefine a configuração do indicador alterado (Byte de status do dispositivo bit 6).
48	Ler status de dispositivo adicional	Retorna as informações de status do medidor não incluídas no código de resposta ou no byte de status do dispositivo.

Tabela 6: Comandos universais para HART (cont.)

5.2.2b Comandos comuns

Comando	Função	Descrição
33	Ler variáveis do dispositivo	Permite que um mestre solicite o valor de até quatro variáveis de dispositivo.
50	Ler atribuições de variáveis dinâmicas	Lê as variáveis de dispositivo atribuídas como variáveis primárias, secundárias, terciárias ou quaternárias.
51	Gravar atribuições de variáveis dinâmicas	Permite que o usuário atribua varíáveis de dispositivo às variáveis primárias, secundárias, terciárias ou quaternárias.
54	Ler informações de variáveis do dispositivo	Obter informações de variáveis do dispositivo.
59	Gravar número de preâmbulos de resposta	Define o número de bytes de preâmbulo assíncrono a ser enviado pelo medidor antes do início de uma mensagem de resposta.

Tabela 7: Comandos comuns

5.2.2c Comandos específicos de dispositivo

O medidor de vazão AT600 oferece suporte aos seguintes comandos específicos de dispositivo. Em alguns comandos, o parâmetro é o tipo de medição. Os tipos de medição são mostrados na Tabela 8 abaixo.

l'abela 8: l'ipo de medição				
Índice	Significado			
1	Velocidade			
2	Volumétrica			
3	Volumétrica padrão			
4	Vazão de massa			
5	Totalizador de avanço em lote			
6	Totalizador de rev. em lote			
7	Totalizador de líquidos em lote			
8	Tempo do totalizador em lote			
9	Totalizador de avanço do inventário			
10	Totalizador de rev. do inventário			
11	Totalizador de inventário líquido			
12	Tempo de totalizador de inventário			
13	Velocidade do som			
14	Reynolds Fator K			
15	MultiK Fator K			
16	Tempo de trânsito à montante			
17	Tempo de trânsito à jusante			
18	Deltat			
19	Qualidade de sinal à montante			
20	Erro de qualidade do sinal			
21	Discr. de amplitude à montante			
22	Discr. de amplitude à jusante			
23	Sinal à montante			
24	Sinal à jusante			
25	TW ativo à montante			
26	TW ativo à jusante			
27	Ganho à montante			
28	Ganho à jusante			
29	Bitmap de erro do sistema			
30	Número de erro reportado pelo sistema			
31	Pico à montante			
32	Pico à jusante			
33	Perc. de pico à montante			
34	Perc. de pico à jusante			

Tabela	8:	Tipo	de	med	licã
	•••		~~		

Comando 128 (0x80): Login com senha

Este comando enviará uma senha ao medidor de vazão. Se uma senha correta for inserida, o usuário poderá operar o medidor. Se nenhum comando for inserido por um período de dez minutos, o usuário será automaticamente desconectado.

l'abela 9: Bytes de dados de solicitação para login com senha				
Byte	Formato	Descrição		
0 - 3	32 sem sinal	Senha de usuário		

Tabela 9: Bytes de dados de solicitação para login com senha

Tabela 10: Bytes de dados de resposta para login com senha

Byte	Formato	Descrição
Nenhum		

Tabela 11: Códigos de resposta específica de comando para login com senha

Código	Classe	Descrição		
0	Êxito	Não há erros específicos de comando		
1-4		Indefinido		
5	Erro	Muito poucos bytes de dados recebidos		
6	Erro	Erro de comandos específicos de dispositivo		
7-15		Indefinido		
16	Erro	Acesso restrito		
17-127		Indefinido		

Comando 129 (0x81): Fazer logout e salvar

Este comando confirmará as alterações e efetuará o logout do medidor de vazão.

Tabela 12: Solicitar bytes de dados para logout e salvar

Byte	Formato	Descrição
Nenhum		

Tabela 13: Responder bytes de dados para logout e salvar

Byte	Formato	Descrição
Nenhum		

Comando 129 (0x81): Fazer logout e salvar (cont.)

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Tabela 14: Códigos de resposta específica de comando para logout e salvar

Comando 130 (0x82): Fazer logout sem salvar

Este comando fará o logout do medidor de vazão e não salvará nada.

Tabela 15: Solicitar bytes de dados para logout sem salvar

Byte	Formato	Descrição
Nenhum		

Tabela 16: Bytes de dados de solicitação para logout sem salvar

Byte	Formato	Descrição
Nenhum		

Tabela 17: Códigos de resposta específica de comando para logout sem salvar

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 135 (0x87): Ler direito de acesso do usuário atual

Este comando lerá o direito de acesso do usuário atual.

Tabela 18: Bytes de dados de solicitação para direito de acesso do usuário atual de leitura

Byte	Formato	Descrição
Nenhum		

Tabela 19: Bytes de dados de resposta para direito de acesso do usuário atual de leitura

Byte	Formato	Descrição
Nenhum		

Tabela 20: Códigos de resposta específica do comando para direito de acesso à leitura do usuário atual

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-127		Indefinido

Comando 136 (0x88): Envia a nova senha

Este comando enviará uma nova senha ao medidor de vazão. Se o usuário tiver esse direito, o medidor de vazão muda a senha do usuário.

Tabela 21: Bytes de dados de solicitação de envio de nova senha

Byte	Formato	Descrição
0 - 3	32 sem sinal	Senha de usuário

Tabela 22: Bytes de dados de resposta para envio de nova senha

Byte	Formato	Descrição
Nenhum		

Comando 136 (0x88): Envia nova senha (cont.)

Tube	Tubera 23. Courgos de resposta específica do comunido para envito de nova senha		
Código	Classe	Descrição	
0	Êxito	Não há erros específicos de comando	
1-4		Indefinido	
5	Erro	Muito poucos bytes de dados recebidos	
6	Erro	Erro de comandos específicos de dispositivo	
7	Erro	No modo de proteção contra gravação	
8-15		Indefinido	
16	Erro	Acesso restrito	
17-127		Indefinido	

Tabela 23: Códigos de resposta específica do comando para envio de nova senha

Comando 144 ((0x90): Ler Grupo de Unidade

Este comando lerá o grupo da unidade no medidor.

Byte	Formato	Descrição
0	8 sem sinal	Índice de grupo:
		1: Unidade de velocidade;
		2: Unidade de velocidade real;
		3: Unidade volumétrica padrão;
		4: Unidade de massa;
		5: Unidade do totalizador;
		6: Unidade de densidade;
		7: Dimensões de tubo;
		8: Térmica;
		9: Aceleração;

Tabela 24: Bytes de dados de solicitação para ler grupo de unidades

Comando 144 ((0x90): Ler Grupo de Unidade (cont.)

Byte	Formato	Descrição	
0	8 sem sinal	Índice de grupo:	
		1: Unidade de velocidade;	
		2: Unidade de velocidade real;	
		3: Unidade volumétrica padrão;	
		4: Unidade de massa;	
		5: Unidade do totalizador;	
		6: Unidade de densidade;	
		7: Dimensões de tubo;	
		8: Térmica;	
		9: Aceleração;	
1	Enum	código de unidade	

Tabela 25: Bytes de dados de resposta para ler grupo de unidades

Tabela 26: Códigos de resposta específica do comando para leitura de grupo de unidades

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 145 (0x91): Ler valor de densidade

Este comando lerá o valor de densidade no medidor.

Tabela 27: B	ytes de dados	de solicitação	para ler o valor	da densidade
		3		

Byte	Formato	Descrição
0	8 sem sinal	Tipo de densidade:
		1: Densidade real;
		2: Densidade de referência;

Comando 145 (0x91): Ler valor de densidade (cont.)

Byte	Formato	Descrição
0	8 sem sinal	Tipo de densidade:
		1: Densidade real;
		2: Densidade de referência;
1	8 sem sinal	Código de unidade de densidade
2 - 5	Flutuante	Valor de densidade

Tabela 28: Bytes de dados de resposta para ler o valor da densidade

Tabela 29: Códigos de resposta específica do comando para leitura de valor de densidade

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 146 (0x92): Ler definição de luz de fundo

Este comando deve ler a configuração de luz de fundo.

Tabela 30: Bytes de dados de solicitação para ler definição de luz de fundo.

Byte	Formato	Descrição
Nenhum		

Tabela 31: Bytes de dados de resposta para ler definição de luz de fundo.

Byte	Formato	Descrição
0	8 sem sinal	Chave de controle de luz de fundo (0:desligar/ 1:ligar)
1 - 4	32 sem sinal	Exibe o tempo limite da luz de fundo; unidade é segundo.

Comando 146 (0x92): Ler definição de luz de fundo (cont.)

	<i>(a)</i>	· · · · · · · · ·	~
Tabela 32: Códiaos de respost	a específica do comando	para leitura de defini	cão de luz de fundo
			3

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 152 (0x98): Ler grupo de unidade

Este comando gravará o grupo da unidade no medidor.

Byte	Formato	Descrição
0	8 sem sinal	Índice de grupo:
		1: Unidade de velocidade;
		2: Unidade de velocidade real;
		3: Unidade volumétrica padrão;
		4: Unidade de massa;
		5: Unidade do totalizador;
		6: Unidade de densidade;
		7: Dimensões de tubo;
		8: Térmica;
		9: Aceleração;
1	Enum	código de unidade

Tabela 33: Bytes de dados de solicitação para gravar grupo de unidades

Comando 152 (0x98): Gravar grupo de unidade (cont.)

Byte	Formato	Descrição
0	8 sem sinal	Índice de grupo:
		1: Unidade de velocidade;
		2: Unidade de velocidade real;
		3: Unidade volumétrica padrão;
		4: Unidade de massa;
		5: Unidade do totalizador;
		6: Unidade de densidade;
		7: Dimensões de tubo;
		8: Térmica;
		9: Aceleração;
1	Enum	código de unidade

Tabela 34: Bytes de dados de resposta para gravar grupo de unidades

Tabela 35: Códigos de resposta específica do comando para gravação de grupos de unidades

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3 - 4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8 - 15		Indefinido
16	Erro	Acesso restrito
17 - 127		Indefinido
Comando 153 (0x99): Gravar valor de densidade

Este comando gravará o valor de densidade no medidor.

Tabela 36: Bytes de dados de solicitação para gravar o valor da densidade

Byte	Formato	Descrição
0	8 sem sinal	Tipo de densidade:
		1: Densidade real;
		2: Densidade de referência;
1	8 sem sinal	Código de unidade de densidade
2 - 5	Flutuante	Valor de densidade

Tabela 37: Bytes de dados de resposta para gravar o valor da densidade

Byte	Formato	Descrição
0	8 sem sinal	Tipo de densidade:
		1: Densidade real;
		2: Densidade de referência;
1	8 sem sinal	Código de unidade de densidade
2 - 5	Flutuante	Valor de densidade

Tabela 38: Códigos de resposta específica do comando para gravação de valor de densidade

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3 - 4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8 - 15		Indefinido
16	Erro	Acesso restrito
17 - 127		Indefinido

Comando 154 (0x9A): Gravar luz de fundo do visor

Este comando é definido para luz de fundo.

Tabela 39: Bytes de dados de solicitação para gravar a luz de fundo.

Byte	Formato	Descrição
0	8 sem sinal	Chave de controle de luz de fundo (0:desligar/ 1:ligar)
1 - 4	32 sem sinal	Exibe o tempo limite da luz de fundo; unidade é segundo.

Tabela 40: Bytes de dados de resposta para gravar a luz de fundo do visor.

Byte	Formato	Descrição
0	8 sem sinal	Chave de controle de luz de fundo (0:desligar/ 1:ligar)
1 - 4	32 sem sinal	Exibe o tempo limite da luz de fundo; unidade é segundo.

Tabela 41: Códigos de resposta específica do comando para gravação de luz de fundo do visor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 160 (0xA0): Valores da faixa de medição analógica da leitura

Este comando tem como objetivo ler a faixa de medição analógica.

Tabela 42: Bytes de dados de solicitação para valores de faixa de medição analógica da leitura

Byte	Formato	Descrição
Nenhum		

Tabela 43: Bytes de dados de resposta para valor da faixa de medição analógica da leitura

Byte	Formato	Descrição
0	8 sem sinal	Código de unidade de valores da faixa superior e inferior
1 - 4	Flutuante	Valor do limite máximo
5 - 8	Flutuante	Valor do limite mínimo

Comando 160 (0xA0): Valores da faixa de medição analógica da leitura (cont.)

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1 - 5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7 - 127		Indefinido

Tabela 44: Códigos de resposta específica do comando para leitura de valor de faixa de medição analógica

Comando 161 (0xA1): Tratamento de erro de corrente de loop de leitura

Este comando tem como objetivo ler o tratamento de erro de saída de corrente de loop.

Tabela 45: Bytes de dados de solicitação para tratamento de erro de corrente de loop de leitura

Byte	Formato	Descrição
Nenhum		

Tabela 46: Bytes de dados de resposta para tratamento de erro de corrente de loop de leitura

Byte	Formato	Descrição
0	8 sem sinal	Tratamento do erro de saída analógica:
		0: Baixo;
		1: Alto;
		2: Manter;
		3: Outro valor;
1 - 4	Flutuante	Valor de erro, a unidade é mA

Tabela 47: Códigos de resposta específica do comando para tratamento de erro da corrente de loop de leitura

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1 - 5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7 - 127		Indefinido

Comando 168 (0xA8): Entrar/sair da corrente de loop fixa

Entrar/sair do modo de corrente fixa.

Tabela 48: Bytes de dados de solicitação para entrar /sair da corrente de loop fixo

Byte	Formato	Descrição
0	8 sem sinal	Nível de corrente fixo:
		0: Corrente de loop fixa de saída; 1: 4 mA fixos; 2: 20 mA fixos; 3: Percentagem fixa de escala

Tabela 49: Bytes de dados de resposta para entrar/sair da corrente de loop fixa

Byte	Formato	Descrição
0	8 sem sinal	Nível de corrente fixo:
		0: Corrente de loop fixa de saída; 1: 4 mA fixos; 2: 20 mA fixos; 3: Percentagem fixa de escala

Tabela 50: Código de resposta específica do comando para entrada/ saída de correntes de loop fixas

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8 - 10		Indefinido
11	Erro	Corrente de loop não ativa
12 - 15		Indefinido
16	Erro	Acesso restrito
17-31		Indefinido
32	Erro	Ocupado
33 - 127		Indefinido

Comando 169 (0xA9): Zerar corrente de loop

Este comando tem como objetivo compensar o zero ou o valor terminal inferior da corrente de loop no seu mínimo.

Byte	Formato	Descrição
0-3	Flutuante	Nível de corrente de loop medido externamente, unidades de miliampéres

Tabela 51: Bytes de dados de solicitação para zerar a corrente de loop

Tabela 52: Bytes de dados de resposta para zerar a corrente de loop

Byte	Formato	Descrição
0-3	Flutuante	Nível de corrente de loop medido externamente, unidades de miliampéres

Tabela 53: Códigos de resposta de específicos do comando para zerar corrente de loop

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-2		Indefinido
3	Erro	Parâmetro muito grande
4	Erro	Parâmetro muito pequeno
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8		Indefinido
9	Erro	Modo ou valor de corrente de loop incorreto
10 - 15		Indefinido
16	Erro	Acesso restrito
17-31		Indefinido
32	Erro	Ocupado
33 - 127		Indefinido

Comando 170 (0xAA): Definir ganho de corrente de loop

Este comando tem como objetivo compensar o ganho ou o valor terminal superior da corrente de loop no seu máximo.

	/	3 1 5 1
Byte	Formato	Descrição
0-3	Flutuante	Nível de corrente de loop medido externamente, unidades de miliampéres

Tabela 54: Bytes de dados de solicitação para definir ganho da corrente de loop

Tabela 55: Bytes de dados de resposta para definir ganho da corrente de loop

Byte	Formato	Descrição
0-3	Flutuante	Nível de corrente de loop medido externamente, unidades de miliampéres

Tabela 56: Códigos de resposta de específicos do comando para definir ganho da corrente de loop

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
0	Êxito	Não há erros específicos de comando
1-2		Indefinido
3	Erro	Parâmetro muito grande
4	Erro	Parâmetro muito pequeno
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8		Indefinido
9	Erro	Modo ou valor de corrente de loop incorreto
10 - 15		Indefinido
16	Erro	Acesso restrito
17 - 31		Indefinido
32	Erro	Ocupado
33 - 127		Indefinido

Comando 171 (0xAB): Definir percentual de corrente de loop

Este comando tem como objetivo definir o percentual de saída da corrente de loop.

Tabela 57: Bytes de dados de solicitação para definir percentual da corrente de loop

Byte	Formato	Descrição
0 - 3	Flutuante	Percentual de corrente de loop, unidades de percentual.

Tabela 58: Bytes de dados de resposta para definir percentual da corrente de loop

Byte	Formato	Descrição
0 - 3	Flutuante	Percentual de corrente de loop, unidades de percentual.

Tabela 59: Códigos de resposta específicos do comando para definir percentual da corrente de loop

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-2		Indefinido
3	Erro	Parâmetro muito grande
4	Erro	Parâmetro muito pequeno
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8		Indefinido
9	Erro	Modo ou valor de corrente de loop incorreto
10 - 15		Indefinido
16	Erro	Acesso restrito
17-31		Indefinido
32	Erro	Ocupado
33 - 127		Indefinido

Comando 172 (0xAC): Definir valores da faixa de medição analógica

Este comando tem como objetivo definir a faixa de medição analógica.

Tabela 60: Bytes de dados de so	licitação para definir valores	de faixa de medici	ão analóaica

Byte	Formato	Descrição
0	8 sem sinal	Código de unidade de valores da faixa superior e inferior
1 - 4	Flutuante	Valor do limite máximo
5 - 8	Flutuante	Valor do limite mínimo

Tabela 61: Bytes de dados de resposta para definir valores de faixa de medição analógica

Byte	Formato	Descrição
0	8 sem sinal	Código de unidade de valores da faixa superior e inferior
1 - 4	Flutuante	Valor do limite máximo
5 - 8	Flutuante	Valor do limite mínimo

Tabela 62: Códigos de resposta específica do comando para definir valores de faixa de medição analógica

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1 - 4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8	Aviso	Definir para valor mais próximo possível (limite superior ou inferior ajustado para incluir o valor da medição)
9	Erro	Valor de faixa inferior muito alto
10	Erro	Valor de faixa inferior muito baixo
11	Erro	Valor de faixa superior muito alto
12	Erro	Valor de faixa superior muito baixo
13 - 15		Indefinido
16	Erro	Acesso restrito
17		Indefinido
18	Erro	Código de unidades inválidas
19 - 31		Indefinido
32	Erro	Ocupado
33 - 127		Indefinido

Comando 173 (0xAD): Definir tratamento de erro da corrente de loop

Este comando definirá o tratamento de erro de saída de corrente de loop.

Byte	Formato	Descrição
0	8 sem sinal	Tratamento do erro de saída analógica:
		0: Baixo;
		1: Alto;
		2: Manter;
		3: Outro valor;
1 - 4	Flutuante	Valor de erro, a unidade é mA

Tabela 63: Bytes de dados de solicitação para definir tratamento de erro de corrente de loop

Tabela 64: Bytes de dados de resposta para definir tratamento de erro de corrente de loop

Byte	Formato	Descrição
0	8 sem sinal	Tratamento do erro de saída analógica:
		0: Baixo;
		1: Alto;
		2: Manter;
		3: Outro valor;
1 - 4	Flutuante	Valor de erro, a unidade é mA

Tabela 65: Códigos de resposta específica do comando para definir tratamento de erro da corrente de loop

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 176 (0xB0): Ler configuração digital

Este comando tem como objetivo ler a configuração da saída digital.

Tabela 66: Bytes de dados da solicitação

Byte	Formato	Descrição
Nenhum	8 sem sinal	Número de canais (1/2)

Tabela 67: Bytes de dados da resposta

Byte	Formato	Descrição
0	8 sem sinal	Número do canal
1	8 sem sinal	Tipo de saída digital:
		0: desligado; 1: pulso; 2: frequência; 3: alarme;

Tabela 68: Códigos de resposta específicos de comando

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 177 (0xB1): Ler configuração de pulso

Este comando deve ler a configuração do pulso.

Tabela 69: Bytes de dados de solicitação para ler configuração de pulso

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)

Tabela 70: Bytes de dados de resposta para ler configuração de pulso

Byte	Formato	Descrição
0	8 sem sinal	Número do canal
1	8 sem sinal	Tipo de medição:
		5: Total de avanço em lote;
		6: Total de reverso em lote;
		7: Total de lote líquido;
2	8 sem sinal	Unidade de valor de pulso
3 - 6	Flutuante	Valor de pulso
7 - 10	32 sem sinal	Tempo de pulso, unidade é MS
11	8 sem sinal	Tratamento de erro de pulso:
		2: Valor bom para reter;
		4: Parar;

Tabela 71: Códigos de res	posta específica do com	hando para leitura de	configuração de pulso

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 178 (0xB2): Ler configuração de frequência

Este comando tem como objetivo ler a configuração da frequência.

Tabela 72: Bytes de dados de solicitação para ler configuração de frequência

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)

Tabela 73: Bytes de dados de resposta para ler configuração de frequência

Byte	Formato	Descrição
0	8 sem sinal	Número do canal
1	8 sem sinal	Tipo de medição
2	8 sem sinal	Unidade de valor de frequência
3 - 6	Flutuante	Valor de base de frequência
7 - 10	Flutuante	Valor total de frequência
11 - 14	32 sem sinal	Frequência total, a unidade é Hz
15	8 sem sinal	Tratamento de erro de frequência:
		0: Baixo;
		1: Alto;
		2: Manter;
		3: Valor;
16 - 19	32 sem sinal	Valor de tratamento de erro, a unidade é Hz

Tabela 74: Códigos de resposta específica do comando para leitura de configuração de frequência

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 179 (0xB3): Ler configuração de alarme

Este comando deve ler a configuração de alarme.

Tabela 75: Bytes de dados de solicitação para ler configuração de alarme

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)

Tabela 76: Bytes de dados de resposta para ler configuração de alarme

Byte	Formato	Descrição
0	8 sem sinal	Número do canal
1	8 sem sinal	Tipo de medição
2	8 sem sinal	Unidade de valor do alarme
3 - 6	Flutuante	Valor de alarme
7	8 sem sinal	Tipo de alarme: 0: Baixo; 1: Alto; 2: Falha;
8	8 sem sinal	Estado do alarme: 0: Normal; 1: Seguro;

Tabela 77: Códigos de resposta específica do comando para leitura de configuração de alarme

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 184 (0xB8): Gravar configuração digital

Este comando tem como objetivo gravar a configuração de saída digital.

Tabela 78: Bytes de dados de solicitação para gravar configuração digital

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de saída digital:
		0: desligado; 1: pulso; 2: frequência; 3: alarme;

Tabela 79: Bytes de dados de resposta para gravar configuração digital

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de saída digital:
		0: desligado; 1: pulso; 2: frequência; 3: alarme;

Tabela 80: Códigos de resposta específica do comando para gravação de configuração digital

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
8-127		Indefinido

Comando 185 (0xB9): Gravar configuração de pulso

Este comando tem como objetivo gravar a configuração de pulso.

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de medição:
		5: Total de avanço em lote;
		6: Total de reverso em lote;
		7: Total de lote líquido;
2	8 sem sinal	Unidade de valor de pulso
3 - 6	Flutuante	Valor de pulso
7 - 10	32 sem sinal	Tempo de pulso, unidade é MS
11	8 sem sinal	Tratamento de erro de pulso:
		2: Valor bom para reter;
		4: Parar;

Tabela 81: B	vtes de dados	de solicitação	para gravar	configuração de pu	lso

Tabela 82: Bytes de dados de resposta para gravar configuração de pulso

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de medição:
		5: Total de avanço em lote;
		6: Total de reverso em lote;
		7: Total de lote líquido;
2	8 sem sinal	Unidade de valor de pulso
3 - 6	Flutuante	Valor de pulso
7 - 10	Flutuante	Tempo de pulso, unidade é MS
11	8 sem sinal	Tratamento de erro de pulso:
		0: Valor bom para reter;
		1: Parar;

Comando 185 (0xB9): Gravar configuração de pulso (cont.)

Tabela 83: Códigos de resposta específica do comando para gravação de configuração de pulso

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
8-127		Indefinido

Comando 186 (0xBA): Gravar configuração de frequência

Este comando tem como objetivo gravar a configuração da frequência.

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de medição
2	8 sem sinal	Unidade de valor de frequência
3 - 6	Flutuante	Valor de base de frequência
7 - 10	Flutuante	Valor total de frequência
11 - 14	32 sem sinal	Frequência total, a unidade é Hz
15	8 sem sinal	Tratamento de erro de frequência:
l		0: Baixo;
I		1: Alto;
l		2: Manter;
		3: Valor;
16 - 19	32 sem sinal	Valor de tratamento de erro, a unidade é Hz

Tabela 84: Bytes de dados de solicitação para gravar configuração da frequência

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de medição
2	8 sem sinal	Unidade de valor de frequência
3 - 6	Flutuante	Valor de base de frequência
7 - 10	Flutuante	Valor total de frequência
11 - 14	Flutuante	Frequência total, a unidade é Hz
15	8 sem sinal	Tratamento de erro de frequência:
		0: Baixo;
		1: Alto;
		2: Manter;
		3: Valor;
16 - 19	32 sem sinal	Valor de tratamento de erro, a unidade é Hz

Comando 186 (0xBA): Gravar configuração de frequência (cont.)

Tabela 85: Bytes de dados de resposta para gravar configuração de frequência

Tabela 86: Códigos de resposta específica do comando para gravação de configuração de frequência

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
8-127		Indefinido

Comando 187 (0xBB): Gravar configuração de alarme

Este comando tem como objetivo gravar a configuração de alarme.

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de medição
2	8 sem sinal	Unidade de valor do alarme
3 - 6	Flutuante	Valor de alarme
7	8 sem sinal	Tipo de alarme: 0: Baixo; 1: Alto; 2: Falha;
8	8 sem sinal	Estado do alarme: 0: Normal; 1: Seguro;

Tabela 87: Bytes de dados de solicitação para gravar configuração de alarme

Tabela 88: Bytes de dados de resposta para gravar configurações de alarme

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de medição
2	8 sem sinal	Unidade de valor do alarme
3 - 6	Flutuante	Valor de alarme
7	8 sem sinal	Tipo de alarme: 0: Baixo; 1: Alto; 2: Falha;
8	8 sem sinal	Estado do alarme: 0: Normal; 1: Seguro;

Tabela 89: Códigos de resposta específica do comando para gravação de configuração de alarme

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
8-127		Indefinido

Comando 191 (0xBF): Testar saída digital

Este comando tem como objetivo testar a saída digital.

Byte	Formato	Descrição	
0	8 sem sinal	Número de canais (1/2)	
1	8 sem sinal	Tipo de diâmetro externo de teste	
		Parada de teste	
		Pulso	
		Frequência	
		Alarme	
2 - 5	32 sem sinal	Testar valor	

Tabela 90: Bytes de dados de solicitação para testar a saída digital

Tabela 91: Bytes de dados de resposta para testar a saída digital

Byte	Formato	Descrição
0	8 sem sinal	Número de canais (1/2)
1	8 sem sinal	Tipo de diâmetro externo de teste
		Parada de teste
		Pulso
		Frequência
		alarme
2 - 5	32 sem sinal	Testar valor

Tabela 92: Códigos de resposta específica do comando para saída digital de teste

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
8-127		Indefinido

Comando 192 (0xC0): Ler tamanho dos tubos

Este comando tem como objetivo ler o tamanho dos tubos.

Tabela 93: Bytes de dados de solicitação para ler tamanho do tubo

Byte	Formato	Descrição
Nenhum		

Tabela 94: Bytes de dados de resposta para ler tamanho da tubulação

Byte	Formato	Descrição
0	8 sem sinal	Unidade de tamanho da tubulação
1 - 4	Flutuante	Valor de diâmetro externo da tubulação
5 - 8	Flutuante	Valor de diâmetro interno da tubulação
9 - 12	Flutuante	Valor WT da tubulação

Tabela 95: Códigos de resposta específica do comando para leitura de tamanho da tubulação

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 193 (0xC1): Ler material do tubo

Este comando tem como objetivo ler o material dos tubos.

Tabela 96. Bytes de dados de solicitação para ler material do tubo
--

Byte	Formato	Descrição
Nenhum		

Tabela 97: Bytes de dados de resposta para ler material do tubo

Byte	Formato	Descrição
0 - 3	32 sem sinal	Material da tubulação
4 - 7	Flutuante	Velocidade de som da tubulação

Tabela 98: Códigos de resposta específica do comando para leitura de material da tubulação

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 194 (0xC2): Ler atributo de revestimento da tubulação

Este comando tem como objetivo ler o atributo do revestimento da tubulação.

Tabela 99: Bytes de dados de solicitação para ler atributo de revestimento de tubulação

Byte	Formato	Descrição	-
Nenhum			

Tabela 100: Bytes de dados de resposta para ler atributo de revestimento de tubulação

Byte	Formato	Descrição
0	8 sem sinal	Revestimento existente
1 - 4	Flutuante	Espessura do revestimento
5 - 8	32 sem sinal	Material de revestimento
9 – 12	Flutuante	Velocidade do som do revestimento

Tabela 101: Códigos de resposta específica do comando para leitura de atributo da tubulação

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 195 (0xC3): Ler configuração do medidor do sensor

Este comando deve ler a configuração de medidor do sensor.

Tabela 102: Bytes de dados de solicitação para leitura de configuração do medidor de sensor

Byte	Formato	Descrição
Nenhum		

Tabela 103: Bytes de dados de resposta para leitura de configuração do medidor de sensor

Byte	Formato	Descrição
0-3	Flutuante	Corte zero

Tabela 104: Códigos de resposta específica do comando para leitura de configuração de medidor de sensor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 196 (0xC4): Ler informações do transdutor

Este comando tem como objetivo ler as informações do transdutor.

Tabela 105: B	vtes de dados	de solicitação	para ler as inforn	nações do transdutor
	,	ac soncitação		ações do ci ansadeor

Byte	Formato	Descrição
Nenhum		

Byte	Formato	Descrição
0 - 3	32 sem sinal	Tipo do transdutor:
		0: Outros
		10: CPT-0.5
		11: CPT-2.0
		12: CPT-0.5-MT C-PB-05-M
		13: CPT-1.0-MT C-PB-10-M
		14: CPT-2.0-MT C-PB-20-M
		15: CPT-0.5-HT
		16: CPT-1.0-HT
		17: CPT-2.0-HT
		18: CPS-0.5
		19: CPSM-2.0
		20: CTS-1.0
		21: CTS-1.0-HT
		22: CTS-2.0
		23: C-LP-40-HM
		24: C-LP-40-NM
		25: CPB-0.5-HT
		26: CPB-2.0-MT
		27: CPB-0.5-MT
		28: CPB-2.0
		29: CPB-0.5
		30: CPS-1.0 CPT-1

Tabela 106: Bytes de dados de resposta para ler as informações do transdutor

Byte	Formato	Descrição
		31: CWL-2
		32: CPS-1.0
		33: CPW (WT-1P-1.0 em AB82
		34: CPW (WT-1P-0.5 em NDT plástico
		35: CPW (WT-1P-1.0 em NDT plástico
		36: CPB-1.0-HT
		37: СРВ-2.0-НТ
		38: CPB-1.0
		39: CPB-1.0-MT
		301: C-RL-0.5
		302: C-RL-1
		304: C-RL-0.5
		305: C-RL-1
		307: C-RL-0.5
		308: C-RL-1
		310: C-RV-0.5
		311: C-RV-1
		313: C-RW-0.5
		314: C-RW-1
		401: C-RS 0.5M
		402: C-RS 1M
		403: C-RS 2M
		407: UTXDR-2
		408: UTXDR-5
		601: CAT0.5M
		602: CAT1M
		603: CAT2M
4 - 7	32 sem sinal	Frequência do transdutor
8 - 11	32 sem sinal	Tipo de cunha do transdutor
12 - 15	Flutuante	Ângulo de cunha do transdutor
16 - 19	Flutuante	SOS de cunha do transdutor
20 - 23	Flutuante	TW do transdutor

Tabela 106: Bytes de dados de resposta para ler as informações do transdutor (cont.)

Comando 196 (0xC4): Ler informações do transdutor

Tabela 107: Códigos de resposta específica do comando para leitura de informações do transdutor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 197 (0xC5): Ler transversais e espaçamento do transdutor

Este comando tem como objetivo ler as transversais e o espaçamento do transdutor.

Tabela 108: Bytes de dados de solicitação para ler transversais e espaçamento do transdutor

Byte	Formato	Descrição
Nenhum		

Tabela 109: Bytes de dados de resposta para ler transversais e espaçamento do transdutor

Byte	Formato	Descrição
0	8 sem sinal	Transversal do transdutor
1 - 4	flutuante	Espaçamento do transdutor

Tabela 110: Códigos de resposta específica do comando para leitura de transversais e espaçamento do transdutor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 198 (0xC6): Ler informações do fluido

Este comando tem como objetivo ler as informações do fluido.

Tabela 111: Bytes de dados de solicitação para ler as informações do fluido

Byte	Formato	Descrição
Nenhum		

Tabela 112: Bytes de dados de resposta para ler as informações do fluido

Byte	Formato	Descrição
0 - 3	32 sem sinal	Tipo de fluido:
		0: Outros
		1. Água
4 - 7	Flutuante	SOS de fluido
8 - 11	Flutuante	Fluido mínimo SOS
12 - 15	Flutuante	Fluido máximo SOS
16 - 19	Flutuante	Temperatura do fluido

Tabela 113: Códigos de resposta específica do comando para ler informações do fluido

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 200 (0xC8): Gravar tamanho das tubulações

Este comando tem como objetivo gravar o tamanho das tubulações.

Tabela 114: Bytes de dados de solicitação para gravar tamanho do tubo

Byte	Formato	Descrição
0	8 sem sinal	Unidade de tamanho da tubulação
1 - 4	Flutuante	Valor de diâmetro externo da tubulação
5 - 8	Flutuante	Valor de diâmetro interno da tubulação
9 - 12	Flutuante	Valor WT da tubulação

Comando 200 (0xC8): Gravar tamanho das tubulações (cont.)

rubela 115. Bytes de dados de resposta para gravar tamamo do tabo		
Byte	Formato	Descrição
0	8 sem sinal	Unidade de tamanho da tubulação
1 - 4	Flutuante	Valor de diâmetro externo da tubulação
5 - 8	Flutuante	Valor de diâmetro interno da tubulação
9 - 12	Flutuante	Valor WT da tubulação

Tabela 115: Bytes de dados de resposta para gravar tamanho do tubo

Tabela 116: Códigos de resposta específica do comando para gravação de tamanho da tubulação

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17		Indefinido
18	Erro	Código de unidade errado
19-127		Indefinido

Comando 201 (0xC9): Gravar material das tubulações

Este comando tem como objetivo gravar o material das tubulações.

Tabela 117: Bytes de dados de solicitação para gravar material do tubo

Byte	Formato	Descrição
0 - 3	32 sem sinal	Material da tubulação
4 - 7	Flutuante	Velocidade de som da tubulação

Tabela 118: Bytes de dados de resposta para gravar material da tubulação

Byte	Formato	Descrição
0 - 3	32 sem sinal	Material da tubulação
4 - 7	Flutuante	Velocidade de som da tubulação

Comando 201 (0xC9): Gravar material das tubulações (cont.)

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Tabela 119: Códigos de resposta específica do comando para gravação de material da tubulação

Comando 202 (0xCA): Gravação de atributo de revestimento da tubulação

Este comando tem como objetivo gravar o atributo do revestimento da tubulação.

Tabela 120: Bytes de dados de solicitação para gravar atributo de revestimento de tubulação

Byte	Formato	Descrição
0	8 sem sinal	Revestimento existente
1 - 4	Flutuante	Espessura do revestimento
5 - 8	32 sem sinal	Material de revestimento
9 - 12	Flutuante	Velocidade do som do revestimento

Tabela 121: Bytes de dados de resposta para gravar atributo de revestimento de tubulação

Byte	Formato	Descrição
0	8 sem sinal	Revestimento existente
1 - 4	Flutuante	Espessura do revestimento
5 - 8	32 sem sinal	Material de revestimento
9 - 12	Flutuante	Velocidade do som do revestimento

Comando 202 (0xCA): Gravação de atributo de revestimento da tubulação (cont.)

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Tabela 122: Códigos de resposta específica do comando para gravação de atributo da tubulação

Comando 203 (0xCB): Gravação de configuração do medidor do sensor

Este comando deve gravar a configuração de medidor do sensor.

Tabela 123: Bytes de dados de solicitação para gravação de configuração do medidor de sensor

Byte	Formato	Descrição
0 - 3	Flutuante	Corte zero

Tabela 124: Bytes de dados da resposta

Byte	Formato	Descrição
0 - 3	Flutuante	Corte zero

Tabela 125: Códigos de resposta específica do comando para gravação de configuração de medidor de sensor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 204 (0xCC): Gravar informações do transdutor

Este comando tem como objetivo gravar as informações do transdutor.

Byte	Formato	Descrição
0 - 3	32 sem sinal	Tipo do transdutor:
		0: Outros
		10: CPT-0.5
		11: CPT-2.0
		12: CPT-0.5-MT C-PB-05-M
		13: CPT-1.0-MT C-PB-10-M
		14: CPT-2.0-MT C-PB-20-M
		15: CPT-0.5-HT
		16: CPT-1.0-HT
		17: CPT-2.0-HT
		18: CPS-0.5
		19: CPSM-2.0
		20: CTS-1.0
		21: CTS-1.0-HT
		22: CTS-2.0
		23: C-LP-40-HM
		24: C-LP-40-NM
		25: CPB-0.5-HT
		26: CPB-2.0-MT
		27: CPB-0.5-MT
		28: CPB-2.0
		29: CPB-0.5
		30: CPS-1.0 CPT-1.0
		31: CWL-2
		32: CPS-1.0
		33: CPW (WT-1P-1.0 em AB82
		34: CPW (WT-1P-0.5 em NDT plástico
		35: CPW (WT-1P-1.0 em NDT plástico
		36: CPB-1.0-HT
		37: СРВ-2.0-НТ
		38: CPB-1.0
		39: CPB-1.0-MT

Tabela 126: Bytes de dados de solicitação para gravar as informações do transdutor

Byte	Formato	Descrição
		301: C-RL-0.5
		302: C-RL-1
		304: C-RL-0.5
		305: C-RL-1
		307: C-RL-0.5
0 - 3	32 sem sinal	Tipo do transdutor:
		0: Outros
4 - 7	32 sem sinal	Frequência do transdutor
8 - 11	32 sem sinal	Tipo de cunha do transdutor
12 - 15	32 sem sinal	Ângulo de cunha do transdutor
16 - 19	32 sem sinal	SOS de cunha do transdutor
20 - 23	32 sem sinal	TW do transdutor

Tabela 126: Bytes de dados de solicitação para gravar as informações do transdutor (cont.)

Comando 204 (0xCC): Gravar informações do transdutor (cont.)

Tabela 127: Bytes de dados de resposta para gravar as informações do transdutor

Byte	Formato	Descrição
0 - 3	32 sem sinal	Tipo do transdutor:
		0: Outros
4 - 7	32 sem sinal	Frequência do transdutor
8 - 11	32 sem sinal	Tipo de cunha do transdutor
12 - 15	32 sem sinal	Ângulo de cunha do transdutor
16 - 19	32 sem sinal	SOS de cunha do transdutor
20 - 23	32 sem sinal	TW do transdutor

Tabela 128: Códigos de resposta específica do comando para gravação de informações do transdutor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 205 (0xCD): Gravar transversais e espaçamento do transdutor

Este comando tem como objetivo gravar transversais e espaçamento do transdutor.

Tabela 129: Bytes de dados de solicitação para gravar transversais e espaçamento do transdutor

Byte	Formato	Descrição
0	8 sem sinal	Transversal do transdutor
1 - 4	flutuante	Espaçamento do transdutor

Tabela 130: Bytes de dados de solicitação para gravar transversais e espaçamento do transdutor

Byte	Formato	Descrição
0	8 sem sinal	Transversal do transdutor
1 - 4	32 sem sinal	Espaçamento do transdutor

Tabela 131: Códigos de resposta específica do comando para gravação de transversais e espaçamento do transdutor

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 206 (0xCE): Gravar informações do fluido

Este comando tem como objetivo gravar as informações do fluido.

Byte	Formato	Descrição
0 - 3	32 sem sinal	Tipo de fluido:
		0: Outros
		1. Água
4 - 7	Flutuante	SOS de fluido
8 - 11	Flutuante	fluido mínimo SOS
12 - 15	Flutuante	Fluido máximo SOS
16 - 19	Flutuante	Temperatura do fluido

Tabela 132: Bytes de dados de solicitação para gravar as informações do fluido

Tabela 133: Bytes de dados de resposta para gravar as informações do fluido

Byte	Formato	Descrição
0 - 3	32 sem sinal	Tipo de fluido:
		0: Outros
		1. Água
4 - 7	Flutuante	SOS de fluido
8 - 11	Flutuante	fluido mínimo SOS
12 - 15	Flutuante	Fluido máximo SOS
16 - 19	Flutuante	Temperatura do fluido

Tabela 134: Códigos de resposta específicos de comando

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 208 (0xD0): Ler configuração de calibração

Este comando tem como objetivo ler a configuração de calibração.

Tabela 135: Bytes de dados de solicitação para ler configuração de calibração

Byte	Formato	Descrição
Nenhum		

Tabela 136: Bytes de dados de resposta para ler configuração de calibração

Byte	Formato	Descrição
0	8 sem sinal	Correção de Reynolds
1	8 sem sinal	Habilitar MultiK ativo
2	8 sem sinal	Tipo de Fator K:
		0: Velocity, 1: Reynolds
3 – 6	Flutuante	Fator K estático
7	8 sem sinal	Pontos do fator K
8 - 11	Flutuante	Viscosidade cinemática

Tabela 137: Códigos de resposta específica do comando para leitura de configuração de calibração

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-5		Indefinido
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 209 (0xD1): Ler tabela de Fator K Velocity

Este comando tem como objetivo ler a tabela do Fator K Velocity.

Tabela 138: Bytes de dados de solicitação para ler tabela de Fator K Velocity

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Velocity (1 - 6)

Tabela 139: Bytes de dados de resposta para ler tabela de Fator K Velocity

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Velocity (1 - 6)
1	8 sem sinal	Unidade de Velocity
2 – 5	Flutuante	Valor de Velocity
6 – 9	Flutuante	Valor KV de Velocity

Tabela 140: Códigos de resposta específica do comando para leitura de tabela de Fator K Velocity

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 210 (0xD2): Ler tabela de Fator K Reynolds

Este comando tem como objetivo ler a tabela do Fator K Reynolds.

Tabela 141: Bytes de dados de solicitação para ler tabela de Fator K Reynolds

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Reynolds (1 - 6)

Tabela 142: Bytes de dados de resposta para ler tabela de Fator K Reynolds

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Reynolds (1 - 6)
1 - 4	Flutuante	Valor Reynolds
5 - 8	Flutuante	Valor KV de Reynolds

Tabela 143: Códigos de resposta específica do comando para leitura de tabela de Fator K Reynolds

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido
Comando 216 (0xD8): Gravar configuração de calibração

Este comando tem como objetivo gravar a configuração de calibração.

Byte	Formato	Descrição	
0	8 sem sinal	Correção de Reynolds: 0: Desativar, 1: Ativar	
1	8 sem sinal	Habilitar MultiK ativo: 0: Desativar, 1: Ativar	
2	8 sem sinal	Tipo de Fator K:	
		0: Velocity, 1: Reynolds	
3 – 6	Flutuante	Fator K estático	
7	8 sem sinal	Pontos do fator K	
8 - 11	Flutuante	Viscosidade cinemática	

Tabela 144: Bytes de dados de solicitação para gravar configuração de calibração

Tabela 145: Bytes de dados de resposta para gravar configuração de calibração

Byte	Formato	Descrição
0	8 sem sinal	Correção de Reynolds
1	8 sem sinal	Habilitar MultiK ativo
2	8 sem sinal	Tipo de Fator K:
		0: Velocity, 1: Reynolds
3 – 6	Flutuante	Fator K estático
7	8 sem sinal	Pontos do fator K
8 - 11	Flutuante	Viscosidade cinemática

Tabela 146: Códigos de resposta específica do comando para gravação de configuração de calibração

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 217 (0xD9): Gravar tabela de Fator K Velocity

Este comando tem como objetivo ler a tabela do Fator K Velocity.

rubela 147. Dytes de dudos de solicitação para graval tabela de rutor invelocity		
Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Velocity (1 - 6)
1	8 sem sinal	Unidade de Velocity
2 – 5	Flutuante	Valor de Velocity
6 – 9	Flutuante	Valor KV de Velocity

Tabela 147: Bytes de dados de solicitação para aravar tabela de Fator K Velocity

Tabela 148: Bytes de dados de resposta para gravar tabela de Fator K Velocity

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Velocity (1 - 6)
1	8 sem sinal	Unidade de Velocity
2 – 5	Flutuante	Valor de Velocity
6 – 9	Flutuante	Valor KV de Velocity

Tabela 149: Códigos de resposta específica do comando para gravar tabela de Fator K Velocity

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 218 (0xDA): Gravar tabela de Fator K Reynolds

Este comando deve ler a tabela do Fator K Reynolds.

Tabela 150: Bytes de dados de solicitação para gravar tabela de Fator K Reynolds

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Reynolds (1 - 6)
1 – 4	Flutuante	Valor Reynolds
5 – 8	Flutuante	Valor KV de Reynolds

Tabela 151: Bytes de dados de resposta para gravar tabela de Fator K Reynolds

Byte	Formato	Descrição
0	8 sem sinal	Índice de Fator K Reynolds (1 - 6)
1 - 4	Flutuante	Valor Reynolds
5 – 8	Flutuante	Valor KV de Reynolds

Tabela 152: Códigos de resposta específica do comando para gravar tabela de Fator K Reynolds

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 224 (0xE0): Ler limites de erro

Este comando tem como objetivo ler os limites de erro do medidor de vazão.

		J
Byte	Formato	Descrição
0	8 sem sinal	Limite de erro:
		1. Limite de pico de correlação
		2. Limite de aceleração
		3. Limite mínimo de velocidade
		4. Limite máximo de velocidade
		5. Discr. de ampl. mín.
		6. Discr. de ampl. máx.
		7. Limite mínimo de sinal
		8. Limite de velocidade do som
		9. Erros permitidos

Tabela 153: Bytes de dados de solicitação para ler limites de erro

Tabela 154: Bytes de dados de resposta para ler limites de erro

Byte	Formato	Descrição
0	8 sem sinal	Limite de erro:
		1. Limite de pico de correlação
		2. Limite de aceleração
		3. Limite mínimo de velocidade
		4. Limite máximo de velocidade
		5. Discr. de ampl. mín.
		6. Discr. de ampl. máx.
		7. Limite mínimo de sinal
		8. Limite de velocidade do som
		9. Erros permitidos
1-4	flutuante	Valor de limite de erro

Tabela 155: Códigos de resposta específica do comando para ler limites de erro

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 225 (0xE1): Configuração de sinal

Este comando tem como objetivo ler a configuração de sinal do medidor de vazão.

100	rabela 150. Dytes de dados de soneitação para leitara de configuração do sinar		
Byte	Formato	Descrição	
0	8 sem sinal	tipo de configuração de sinais:	
		1. Deslocamento Delta T	
		2. Pico de percentual	
		3. Pico mín. de percentual	
		4. Pico máx. de percentual	

Tabela 156: Bytes de dados de solicitação para leitura de configuração do sinal

Tabela 157: Bytes de dados de resposta para leitura de configuração do sinal

Byte	Formato	Descrição
0	8 sem sinal	tipo de configuração de sinais:
		1. Deslocamento Delta T
		2. Pico de percentual
		3. Pico mín. de percentual
		4. Pico máx. de percentual
1 - 4	Flutuante	valor de configuração de sinal

Tabela 158: Códigos de resposta específica do comando para ler configuração de sinais

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 226 (0xE2): Ler n/s do medidor de vazão

Este comando tem como objetivo ler o número de série do medidor de vazão.

Byte	Formato	Descrição
0	8 sem sinal	N/S do medidor de vazão:
		 S/N eletrônico Sensor à montante N/S N/S do sensor à jusante

Tabela 159: Bytes de dados de solicitação para ler o número de série do medidor de vazão

Tabela 160: Bytes de dados de resposta para ler o número de série do medidor de vazão

Byte	Formato	Descrição
0	8 sem sinal	tipo de configuração de sinais:
		1. N/S eletrônico
		2. Sensor à montante
		3. S/N
		4. N/S do sensor à jusante
1 - 16	8 sem sinal	S/N

Tabela 161: Códigos de resposta específica do comando para leitura de n/s do medidor de vazão

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 227 (0xE3): Ler versão do medidor de vazão

Este comando tem como objetivo ler a versão do medidor de vazão.

Tabela 162: Bytes de dados de solicitação para leitura da versão do medidor de vazão

Byte	Formato	Descrição
0	8 sem sinal	Versão do medidor de vazão
		1. Versão do hardware principal
		2. Versão de software principal

Tabela 163: Bytes de dados de resposta para leitura da versão do medidor de vazão

Byte	Formato	Descrição
0	8 sem sinal	Tipo de versão:
		1, Versão do hardware principal
		2. Versão de software principal
1 - 8	8 sem sinal	Número de versão

Tabela 164: Códigos de resposta específica do comando para leitura da versão do medidor de vazão

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 232 (0xE8): Gravar limites de erro

Este comando tem como objetivo gravar os limites de erro do medidor de vazão.

Byte	Formato	Descrição
C	8 sem sinal	Limite de erro
		Limite de pico de correlação
		Limite de aceleração
		Limite mínimo de velocidade
		Limite máximo de velocidade
		Discr. de ampl. mín.
		Discr. de ampl. máx.
		Limite mínimo de sinal
		Limite de velocidade do som
		Erros permitidos
1 - 4	flutuante	Valor de limite de erro

Tabela 165: Bytes de dados de solicitação para gravar limites de erro

Tabela 166: Bytes de dados de resposta para gravar limites de erro

Byte	Formato	Descrição
0	8 sem sinal	Limite de erro
		Limite de pico de correlação
		Limite de aceleração
		Limite mínimo de velocidade
		Limite máximo de velocidade
		Discr. de ampl. mín.
		Discr. de ampl. máx.
		Limite mínimo de sinal
		Limite de velocidade do som
		Erros permitidos
1 - 4	flutuante	Valor de limite de erro

Comando 232 (0xE8): Gravar limites de erro (cont.)

Tabela 167: Códigos de resposta específica do comando para gravar limites de erro

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 233 (0xE9): Gravar configuração de sinal

Este comando tem como objetivo gravar a configuração de sinal do medidor de vazão.

Byte	Formato	Descrição
0	8 sem sinal	tipo de configuração de sinais:
		Delta T de compensação
		Pico de percentual
		Pico mín. de percentual
		Pico máx. de percentual
1 - 4	Flutuante	valor de configuração de sinal

Tabela 168: Bytes de dados de solicitação para gravar a configuração do sinal

Tabela 169: Bytes de dados de resposta para gravar a configuração do sinal

Byte	Formato	Descrição
0	8 sem sinal	tipo de configuração de sinais:
		Delta T de compensação
		Pico de percentual
		Pico mín. de percentual
		Pico máx. de percentual
1 - 4	Flutuante	valor de configuração de sinal

Tabela 170: Códigos de resposta específica do comando para gravar configuração de sinais

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 239 (0xEF): Redefinir dados do medidor de vazão

Este comando tem como objetivo redefinir os dados do medidor de vazão.

Byte	Formato	Descrição
0	8 sem sinal	Redefinir tipo:
		1. Redefinir registro de erro
		2, Avançar inventário
		3. Reverter no inventário
		4. Inventário líquido
		5. Tempo do inventário
		6. Todos
		7. Inventário

Tabela 1/1: Bytes de dados de solicitação para redefinir os dados do medidor de vazac

Tabela 172: Bytes de dados de resposta para redefinir os dados do medidor de vazão

Byte	Formato	Descrição
0	8 sem sinal	Redefinir tipo:
		Redefinir registro de erro
		Avançar inventário
		Reverter no inventário
		Inventário líquido
		Tempo do inventário
		Todos
		Inventário

Tabela 173: Códigos de resposta específica do comando para redefinir dados do medidor de vazão

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7	Erro	No modo de proteção contra gravação
8-15		Indefinido
16	Erro	Acesso restrito
17-127		Indefinido

Comando 241 (0xF1): Ler a definição de fábrica

Este comando deve ler a configuração de fábrica.

Tabela 174: Bytes de dados de solicitação para ler definição de fábrica

Byte	Formato	Descrição
Nenhum		

Byte	Formato	Descrição
0	8 sem sinal	Tempo de resposta
		0,5s
		1s
		5s
		10s
		30s
		60s
1 - 4	32 sem sinal	Tamanho da amostra:
		2
		4
		8
		16
		32

Tabela 175: Bytes de dados de resposta para ler definição de fábrica

Tabela 176: Códigos de resposta específica do comando para leitura de definição de fábrica

Código	Classe	Descrição
0	Êxito	Não há erros específicos de comando
1		Indefinido
2	Erro	Seleção inválida
3-4		Indefinido
5	Erro	Muito poucos bytes de dados recebidos
6	Erro	Erro de comandos específicos de dispositivo
7-127		Indefinido

Comando 248 (0xF8): Gravar a definição de fábrica

Este comando tem como objetivo gravar a configuração de fábrica.

Byte	Formato	Descrição
0	8 sem sinal	Tempo de resposta
		0,5s
		1s
		5s
		10s
		30s
		60s
1 - 4	32 sem sinal	Tamanho da amostra:
		2
		4
		8
		16
		32

Tabela 177: Bytes de dados de solicitad	ação para gravar definição de fábrica
	· · · · · · · · · · · · · · · · · · ·

Tabela 178: Bytes de dados de resposta para gravar definição de fábrica

Byte	Formato	Descrição		
0	8 sem sinal	Tempo de resposta		
		0,5s		
		1s		
		5s		
		10s		
		30s		
		60s		
1 - 4	32 sem sinal	Tamanho da amostra:		
		2		
		4		
		8		
		16		
		32		

Comando 248 (0xF8): Gravar a definição de fábrica (cont.)

Tabela 179: Có	digos de resposta	específica do com	hando para gravar	a definição de fábrica

Código	Classe	Descrição		
0	Êxito	Não há erros específicos de comando		
1		Indefinido		
2	Erro	Seleção inválida		
3-4		Indefinido		
5	Erro	Muito poucos bytes de dados recebidos		
6	Erro	Erro de comandos específicos de dispositivo		
7	Erro	No modo de proteção contra gravação		
8-15		Indefinido		
16	Erro	Acesso restrito		
17-127		Indefinido		

Comando 253 (0xFD): Redefinir para configuração de fábrica

Este comando tem como objetivo redefinir a configuração para a configuração de fábrica.

T 400 D	1 1 1 1 1	•• ~	1 6 ~	C' ~ I C'I '
Tabela 180: Bytes (de dados de solio	CITACAO para re	edefinicao para	configuração de fabrica
1 4 5 6 1 4 5 7 8 6 6 7		sitagao para it	saoiniyao para	ooningan ayao ao nabinoa

	-	
Byte	Formato	Descrição
Nenhum		

Tabela 181: B	vtes de dados	de resposta	para redefinici	ão para confi	auração de fábrica
					J = = = = = = = = = = = = = = = = = =

Byte	Formato	Descrição
Nenhum		

Tabela 182: Códigos de resposta específica do comando para redefinir para configuração de fábrica

Código	Classe	Descrição		
0	Êxito	Não há erros específicos de comando		
1-4		Indefinido		
5	Erro	Muito poucos bytes de dados recebidos		
6	Erro	Erro de comandos específicos de dispositivo		
7	Erro	No modo de proteção contra gravação		
8-15		Indefinido		
16	Erro	Acesso restrito		
17-127		Indefinido		

5.3 Status do dispositivo adicional

O comando 48 retorna 4 bytes de dados, com as seguintes informações de status:

Sta	Status do dispositivo adicional HART			Bits de status do
Byte	Bit	Descrição de erro	Classe	dispositivo definidos
0	0	Erro de amplitude	Erro	4, 7
	1	Sinal baixo	Erro	4, 7
	2	Erro de velocidade do som	Erro	4, 7
	3	Variação de velocidade	Erro	4, 7
	4	Qualidade do sinal	Erro	4, 7
	5	Ignorar ciclo	Erro	4, 7
	6	Reservar		
	7	Reservar		
1	0	Reservar		
	1	Reservar		
	2	Reservar		
	3	Reservar		
	4	Reservar		
	5	Reservar		
	6	Reservar		
	7	Reservar		
2	0	Erro FPGA		4, 7
	1	Definir arquivos de erro CRC		4, 7
	2	Erro de flash		4, 7
	3	Erro de Teclado/LED		4, 7
	4	Erro de E/S		4, 7
	5	Erro de exibição		4, 7
	6	Erro de RTC		4, 7
	7	Reservar		
3	0	No modo de configuração		4, 0
	1	Não calibrado		4, 0
	2	Reservar		
	3	Reservar		
	4	Reservar		
	5	Reservar		
	6	Reservar		
	7	Reservar		

Tabela 183: Status do dispositivo adicional HART

5.4 Variáveis de dispositivo

Medição	Código de variáveis de	Código de classificação de variável do dispositivo		
	dispositivo	Código	Classificação	
Velocidade	0	67	Velocidade	
Volumétrica real	1	66	Vazão volumétrica	
Volumétrica padrão	2	66	Vazão volumétrica	
Totais de avanço em lote	3	68	Volumétrica	
Totais de reversão em lote	4	68	Volumétrica	
Totais líquidos em lote	5	68	Volumétrica	
Tempo do totalizador em lote	6	70	Tempo	
Totais de avanço de inventário	7	68	Volumétrica	
Totais de reversão de inventário	8	68	Volumétrica	
Totais de inventário líquidos	9	68	Volumétrica	
Tempo de totalizador de inventário	10	70	Tempo	
Vazão de massa	11	72	Vazão de massa	
Velocidade do som	12	67	Velocidade	
Reynolds	13	0	Sem classificação	
Fator K	14	0	Sem classificação	
Tempo de trânsito à montante	15	70	Tempo	
Tempo de trânsito à jusante	16	70	Tempo	
DeltaT	17	70	Tempo	
Qualidade de sinal à montante	18	0	Sem classificação	
Qualidade de sinal à jusante	19	0	Sem classificação	
Discr. de ampl. à montante	20	0	Sem classificação	
Discr. de amplitude à jusante	21	0	Sem classificação	
Sinal à montante	22	0	Sem classificação	
Sinal à jusante	23	0	Sem classificação	
TW ativo à montante	24	0	Sem classificação	
TW ativo à jusante	25	0	Sem classificação	
Ganho à montante	26	0	Sem classificação	
Ganho à jusante	27	0	Sem classificação	
Status de erro	28	0	Sem classificação	
Erro reportado	29	0	Sem classificação	
Pico à Montante	30	0	Sem classificação	
Pico à jusante	31	0	Sem classificação	
% de pico mont.	32	81	Analítico	
% de pico jus.	33	81	Analítico	

Tabela 184: Variáveis de dispositivo

5.5 Unidades de engenharia de HART

Os tipos de unidade permitidos para as variáveis dos dispositivo de medidor de vazão AT600 estão na lista abaixo.

Variável de dispositivo			Unidade
Código	Classificação	Código	Descrição
64	Temperatura	32	Graus Celsius
		33	Graus Fahrenheit
66	Vazão volumétrica	27	pés cúbicos por dia
		130	Pés cúbicos por hora
		15	Pés cúbicos por minuto
		26	Pés cúbicos por segundo
		187	Pés cúbicos padrão por dia
		185	Pés cúbicos padrão por hora
		123	Pés cúbicos padrão por minuto
		186	Pés cúbicos padrão por segundo
		29	Metros cúbicos por dia
		19	Metros cúbicos por hora
		131	Metros cúbicos por minuto
		28	Metros cúbicos por segundo
		240	Milhões de metros cúbicos por dia
		187	Metros cúbicos padrão por dia
		188	Metro cúbico padrão por hora
		189	Metro cúbico padrão por minuto
		190	Metro cúbico padrão por segundo
		235	galão por dia
		136	Galões por hora
		16	Galões por minuto
		22	Galões por segundo
		135	Barris por dia
		134	Barris por hora
		133	Barris por minuto
		132	Barris por segundo
		174	Litros por dia
		138	Litros por hora
		17	Litros por minuto
		24	Litros por segundo
		25	milhão de litros por dia

			v	
Variável de dispositivo		Unidade		
Código	Classificação	Código	Descrição	
		177	Litros padrão por dia	
		178	Litro padrão por hora	
		179	Litro padrão por minuto	
		180	Litro padrão por segundo	
67	Velocidade	20	Pés por segundo	
		21	Metros por segundo	
68	Volume	43	Metro cúbico	
		41	Decímetro cúbico (litro)	
		243	Mega litros	
		244	Milhões de metros cúbicos	
		112	Pés cúbicos	
		40	Galão	
		46	Barris	
		245	Mega galões	
		246	Milhão de pés cúbicos	
		172	Metro cúbico padrão	
		171	Litros padrão	
		61	Quilograma	
		62	Tonelada métrica	
		168	Pés cúbicos padrão	
		63	Libra	
		247	Quilo Libra	
		64	Toneladas americanas	
69	Comprimento	44	Pés	
		47	Polegada	
		45	Metro	
		49	Milímetro	
70	Tempo	172	Nanossegundos	
		171	Microssegundos	
		170	Milissegundos	
		51	Segundos	
		50	Minuto	
		52	Hora	
		53	Dia	
72	Vazão de massa	73	Quilogramas por segundo	

Tabela 185: Unidades de engenharia de HART (cont.)

Variável de dispositivo		Unidade	
Código	Classificação	Código	Descrição
		74	Quilogramas por minuto
		75	Quilogramas por hora
		76	Quilogramas por dia
		242	Toneladas métricas por segundo
		77	Toneladas métricas por minuto
		78	Toneladas métricas por hora
		79	Toneladas métricas por dia
		80	libras por segundo
		81	libras por minuto
		82	libras por hora
		83	libras por dia
		241	Toneladas americanas por segundo
		84	Toneladas americanas por minuto
		85	Toneladas americanas por hora
		86	Toneladas americanas por dia
73	Massa por volume	94	Libras por pés cúbicos
		92	Quilogramas por metro cúbico
74	Viscosidade	54	Centistokes
		248	Metro quadrado por seg
81	Analítico	57	Percentual
96	Aceleração	171	Pés por segundo quadrado
		172	Metro por segundo quadrado
0	Não classificado	38	dB
		156	Hertz

Tabela 185: Unidades de engenharia de HART (cont.)

[esta página foi deixada em branco propositadamente]

Apêndice A. Especificações

A.1 Operação e desempenho

A.1.1 Tipos de fluido

Líquidos: Fluidos acusticamente condutores, incluindo a maioria dos líquidos limpos e muitos líquidos com sólidos ou bolhas de gases.

A.1.2 Medição de vazão

Modo Transit-TimeTM de correlação patenteado

A.1.2a Tamanhos de medidores

Padrão: 50 a 600 mm (2 a 24 pol.)

Opcional: até 7500 mm (300 pol.) disponíveis sob solicitação.

A.1.2b Precisão

- ±1% de leitura com calibração (2 pés/s e maior) (abaixo 2 pés/s)
- **Observação:** A instalação final assume um perfil de vazão totalmente desenvolvido (tipicamente 10 diâmetros à montante e 5 diâmetros à jusante em tubo reto de líquidos) e fluidos monofásicos. Aplicações com disposições de tubos que induzem à formação de redemoinhos (por exemplo, duas junções fora do plano) podem precisar de outros tubos retos ou de condicionamento da vazão.

A.1.2c Fluido de calibragem

Água

A.1.2d Repetitividade

±0,2% de leitura

A.1.2e Faixa (bidirecional)

- 0,03 a 12,19 m/s (0,1 a 40 pés/s)
- A.1.2f Habilidade de faixas (Geral)

400:1

A.2 Corpo do medidor/Transdutor

A.2.1 Material do corpo do medidor

Alumínio (ASTM A380)

A.2.2 Sistema Transdutor AT6 e materiais

Corpo do transdutor AT6: Alumínio (ASTM AL6061)

Corpo do grampo de fixação: Alumínio (ASTM AL6061)/aço inoxidável (ASTM A304)

A.2.3 Sistema Transdutor C-RS e materiais

Corpo do transdutor C-RS: Aço inoxidável (ASTM A316)

Corpo do grampo de fixação: Alumínio (ASTM AL6061)

Favor contatar outro representante de vendas para outros transdutores.

A.2.4 Faixas de temperatura do medidor

-20°C a 55°C (-4°F a 131°F)

A.2.5 Faixas de temperatura do transdutor AT6

-40°C a 150°C (-40°F a 302°F)

A.2.6 Faixas de temperatura do transdutor C-RS

-40°C a 150°C (-40°F a 302°F)

Favor contatar outro representante de vendas para outros transdutores.

A.2.7 Faixa de umidade

Até 90% de UR

Favor contatar outro representante de vendas para tropicalização da unidade para 100% de UR

A.2.8 Variação de altitude

Até 2000 metros no máximo

A.2.9 Cabos de transdutor CAT

Cabo coaxial RG316 de até 90 metros (300 pés)

Faixa de temperatura é de -40°C a 150°C (-40°F a 302°F).

A.2.10 Especificação e requisitos de cabeamento

Variação do diâmetro do cabo para conexão de força: 7 a 12 mm, consulte o Orifício do Prensa-Cabo 1 em Figura 23 na página 17

Faixa de diâmetros do cabo para conexão Hart, Modbus e E/S: 5 a 8 mm, consulte o Orifício do Prensa-Cabo 2, 3 e 4 pol. Figura 23 na página 17

Variação de temperaturas de cabo para conexão PWR, Hart, Modbus e E/S: -10°C a 85°C (14°F a 185°F);

O cabo deve atender ao padrão CE e UL abaixo: Seção sólida transversal do condutor varia de: 0,2 mm² a 2,5 mm² Seção torcida transversal do condutor varia de: 0,2 mm² a 2,5 mm² Seção torcida transversal do condutor, com ferrula sem conector plástico varia de: 0,25 mm² a 1 mm² Seção transversal do condutor torcida com terminal e conector plástico varia de: 0,25 mm² a 1 mm² Seção transversal torcida do condutor AWG/kcmil varia de: 12 a 26 AWG de acordo com UL/CUL varia de: 14 a 28

A.2.11 Requisito para fixação do cabo e torque do prensa-cabo

Consulte Figura 23 na página 17 para a posição do orifício do prensa-cabo.

Para fazer um desempenho de vedação IP67 confiável do gabinete durante o cabeamento, o prensa-cabo deve ser bem apertado, abaixo do valor do torque temos uma referência para tornar a vedação NEMA 4X/IP67 confiável entre cabo e prensa-cabo:

Torque de operação para orifício de prensa-cabo 1 e 5: 2,7 N.M

Torque de operação para orifício de prensa-cabo 2, 3 e 4: 2.5 N.M

A.3 Componentes eletrônicos

A.3.1 Compartimentos

Revestimento de epóxi, sem cobre, alumínio

A.3.2 Impermeável

Compartimentos: IP67

Favor contatar outro representante de vendas da GE para outros transdutores.

A.3.3 Classificações eletrônicas (Pendente)

CE (Diretiva de compatibilidade eletromagnética) IEC 61326-1:2012, IEC 61326-2-3:2012, LVD 2006/95/EC, EN 61010-1 2010) ETL (UL61010-1, CSA 22.2 No 61010.1, No. 142, FCC parte 15, CISPR 11) Conformidade de WEEE Conformidade de ROHS

Observação: O pacote eletrônico inclui uma bateria instalada que deve ser substituída apenas em um Centro de Serviço da GE. A substituição envolve desoldagem dos contatos da bateria, que podem provocar uma falha na Segurança Funcional. Entre em contato com a GE Service para solicitar a troca dessa bateria.

A.3.4 Idiomas de exibição

Inglês/chinês/alemão/francês/italiano/japonês/português/russo/espanhol

O medidor será definido no idioma solicitado pelo cliente antes do envio para o cliente.

A.3.5 Teclado

Teclado de película, teclado de seis botões, para operação de funcionalidade completa

A.3.6 Entradas/saídas

Padrão: Uma saída analógica*, saída de serviço (RS485), duas saídas digitais***, entrada de uma porta; Opção A: Uma saída analógica* com HART**, saída de serviço (RS485), duas saídas digitais***, entrada de uma porta; Opção B: Uma saída analógica*, saída de serviço (RS485), uma saída Modbus (RS485), duas saídas digitais***, entrada de uma porta:

*Saída analógica é compatível com NAMUR NE43

**HART é compatível com o protocolo da versão 7

***Saídas digitais são programáveis como saídas de pulso, frequência, alarme ou controle. Saídas digitais serão configuradas no modo de saída conforme solicitado pelo cliente antes da remessa para o cliente.

Apêndice B. Registros de dados

B.1 Registro de serviço

Sempre que um procedimento de serviço é executado no medidor de vazão AT600, os detalhes do serviço devem ser registrados neste apêndice. Um histórico de serviço preciso do medidor pode ser muito útil na resolução de qualquer problema futuro.

B.2 Entrada de dados

Registre dados de serviço completos e detalhados para o AT600 na Tabela 186 abaixo. Faça cópias adicionais da tabela, conforme o necessário.

Data	Descrição do serviço executado	Executado

Tabela 186: Registro de serviço

B.3 Ajustes iniciais

Os valores dos ajustes da medição inicial imediatamente após a instalação inicial do medidor e a verificação da operação adequada devem ser inseridos abaixo.

Parâmetro	Valor inicial
DE da tubulação	
DI da tubulação	
Espessura da parede da tubulação	
Material de tubulação	
Velocidade de som da tubulação	
Espessura do revestimento	
Material de revestimento	
ID do transdutor	
Frequência do transdutor	
Tipo de cunha do transdutor	
Ângulo de cunha do transdutor	
SOS de cunha do transdutor	
TW do transdutor	
Transversais	
Tipo de fluido	
SOS de fluído	
Fluido mínimo SOS	
Fluido máximo SOS	
Temperatura do fluido	
Espaçamento do transdutor	

Tabela 187: Ajustes iniciais

B.4 Parâmetros de diagnóstico

Os valores dos parâmetros de diagnósticos imediatamente após a instalação inicial do medidor e a verificação da operação adequada devem ser inseridos abaixo. Esses valores iniciais podem ser comparados aos valores atuais para ajudar a diagnosticar qualquer defeito futuro do sistema.

Parâmetro	Valor inicial
Velocidade	
Volumétrica real	
Volumétrica padrão	
Totais de avanço em lote	
Totais de reversão em lote	
Totais líquidos em lote	
Tempo do totalizador em lote	
Totais de avanço de inventário	
Totais de reversão de inventário	
Totais de inventário líquidos	
Tempo de totalizador de inventário	
Vazão de massa	
Velocidade do som	
Reynolds	
Fator K	
Tempo de trânsito à montante	
Tempo de trânsito à jusante	
DeltaT	
Qualidade de sinal à montante	
Qualidade de sinal à jusante	
Discr. de ampl. à montante	
Discr. de amplitude à jusante	
Sinal à montante	
Sinal à jusante	
TW ativo à montante	
TW ativo à jusante	
Ganho à montante	
Ganho à jusante	
Status de erro	
Erro reportado	
Pico à montante	
Pico à jusante	
% de pico à montante	
% de pico à jusante	

Tabela 188: Parâmetros de diagnóstico

[esta página foi deixada em branco propositadamente]

Apêndice C. Mapas de menus

C.1 Menu Display Measurement (Medição de exibição)

Figura 35: Menu Display Measurement (Medição de exibição)

C.2 Main Menu (Menu Principal)

Figura 36: Main Menu (Menu Principal)

C.3 Main Menu (Menu Principal) > Menu User Preferences (Preferências de Usuário)

165

C.4 Main Menu (Menu Principal) > Menu Inputs/Outputs (Entradas/Saídas)

Figura 38: Main Menu (Menu Principal) > Menu Inputs/Outputs (Entradas/Saídas)

C.5 Main Menu (Menu Principal) > Menu Sensor Setup (Configuração do Sensor)

Figura 39: Main Menu (Menu Principal) > Menu Sensor Setup (Configuração do Sensor)

C.6 Main Menu (Menu Principal) > Menu Calibration (Calibração)

C.7 Main Menu (Menu Principal) > Menu Advanced (Avançado)

C.8 Main Menu (Menu Principal) >Menu Factory (Fábrica)

Figura 42: Main Menu (Menu Principal) >Menu Factory (Fábrica)
Α

49
1
4

В

Bits de parada MODBUS	55
Bits/Paridade de Modbus, selecionar	54
Bloqueio do teclado	32

С

Casas decimais
Programação para totalizador
Comandos específicos de dispositivo
Comandos HART
Definir ganho de corrente de loop 104
Definir percentual de corrente de loop 105
Definir tratamento de erro da corrente de loop 107
Definir valores da faixa de medição analógica 106
Entrar/sair da corrente de loop fixa 102
Envia a nova senha
Fazer logout e salvar
Fazer logout sem salvar
Gravação de atributo de revestimento da tubulação
126
Gravação de configuração do medidor do sensor . 127
Gravar configuração de alarme 116
Gravar configuração de calibração 135
Gravar configuração de pulso
Gravar configuração digital 112
Gravar definição de fábrica147
Gravar grupo de unidade
Gravar informações do fluido 131
Gravar informações do transdutor
Gravar limites de erro
Gravar luz de fundo do visor
Gravar material das tubulações
Gravar tabela de Fator K Reynolds 137
Gravar tabela de Fator K Velocity
Gravar tamanho das tubulações
Gravar transversais e espaçamento do transdutor . 130
Gravar valor de densidade

Ler atributo de revestimento da tubulação 119
Ler configuração de alarme
Ler configuração de calibração
Ler configuração de frequência
Ler configuração de pulso
Ler configuração de sinal 139
Ler configuração digital
Ler configuração do medidor do sensor
Ler definição de fábrica 146
Ler definição de luz de fundo
Ler direito de acesso do usuário atual
Ler informações do fluido
Ler informações do transdutor
Ler limites de erro
Ler material do tubo
Ler n/s do medidor de vazão
Ler tabela de Fator K Reynolds
Ler tabela de Fator K Velocity
Ler tamanho dos tubos
Ler transversais e espaçamento do transdutor 123
Ler valor de densidade
Ler versão do medidor de vazão 141
Login com senha
Redefinir dados do medidor de vazão
Redefinir para configuração de fábrica
Testar saída digital 117
Tratamento de erro de corrente de loop de leitura. 101
Valores da faixa de medição analógica da leitura . 100
Zerar corrente de loop 103
Comandos universais
Comunicação digital, programar
Configuração do medidor58
Configuração do sensor
Conformidade ambiental viii
Corte zero, definir

D

Data da publicação	i
Definir ganho de corrente de loop	104
Definir percentual de corrente de loop	105
Definir tratamento de erro da corrente de loop	107
Definir unidades	. 36
Definir valores da faixa de medição analógica	106

Ε

E1, Sinal fraco74
Entradas/saídas
Entrar/sair da corrente de loop fixa
Envia a nova senha
Espaçamento do transdutor, programar $\dots \dots 72$
Estado de alarme, definir
Exibição
Exibição de erro

F

Fazer logout e salvar	91
Fazer logout sem salvar	92
Formato de exibição	31
Frequência de teste	49

G

Gabinete eletrônico, instalar5
Grampos de fixação não intrusivos
Montagem na tubulação
Grampos de fixação não intrusivos, instalar7
Gravação de atributo de revestimento da tubulação . 126
Gravação de configuração do medidor do sensor 127
Gravar
Gravar a definição de fábrica 147
Gravar configuração de alarme
Gravar configuração de calibração
Gravar configuração de frequência
Comandos HART
Gravar configuração de frequência114, 115
Gravar configuração de pulso 113, 114
Gravar configuração digital 112
Gravar grupo de unidade
Gravar informações do fluido
Gravar informações do transdutor
Gravar limites de erro 142
Gravar luz de fundo do visor

Gravar tabela de Fator K Reynolds	. 137
Gravar tabela de Fator K Velocity	. 136
Gravar tamanho das tubulações	. 124
Gravar transversais e espaçamento do transdutor	. 130
Gravar valor de densidade	99

Η

HART
Comandos específicos de dispositivo 90
Identificação de dispositivos

I

Identificação de dispositivos	1
Idioma, programação	3
Iniciar ou parar)

L

Ler a definição de fábrica	146
Ler atributo de revestimento da tubulação	119
Ler configuração de calibração	132
Ler configuração de frequência	111
Ler configuração de pulso	109
Ler configuração de sinal	139
Ler configuração digital	108
Ler configuração do medidor do sensor	120
Ler definição de luz de fundo	. 96
Ler direito de acesso do usuário atual	. 93
Ler informações do fluido	124
Ler informações do transdutor	121
Ler limites de erro	138
Ler material do tubo	119
Ler n/s do medidor de vazão	140
Ler tabela de Fator K Reynolds	134
Ler tabela de Fator K Velocity	133
Ler tamanho dos tubos	118
Ler transversais e espaçamento do transdutor	123
Ler valor de densidade	. 95
Ler versão do medidor de vazão	141
Localização do grampo de fixação	7
Localização do transdutor	7
Login com senha	. 91
Luz de fundo	. 38

Μ

Ν

Número do documento	•		•		•	•	•		•	•	•	•	•	•	•	•	•	•	i
---------------------	---	--	---	--	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---

Ρ

Parágrafos de informações vii
Preferências de usuário
Ajustes
Definir unidades
Densidade
Exibição
Senha
Problemas de célula de vazão
Problemas de fluido76
Problemas de tubulação
Programação do totalizador
Casas decimais

R

Redefinir dados do medidor de vazão	. 145
Redefinir para configuração de fábrica	. 148
Regulamentos de segurança	3
Revestimento da tubulação, definir	61
Rótulo do medidor	35

S

-
Saída analógica, calibrar
Saída de pulso, definir 44
Saída Digital, Desativar
Segurança
Equipamento auxiliar
Equipamento pessoal viii
Problemas geraisvii
Senha
Sequência do erro de vazão73
Seta para a direita
Seta para baixo
Seta para cima
Seta para esquerda
Sistema de Transdutores AT
Sistema do transdutor, instalar
Status do dispositivo adicional HART 149
-

Т

Tecla Enter
Tecla Escape
Teclado
Teclas de seta
Telas de totalizador, alterar medição ou valor 27
Telas de uma ou duas variáveis, alterar 25
Telas de uma ou duas variáveis, tipo de medição 26
Temperatura do fluido, programar 71
Tempo de pulso, definir
Tempo limite
Teoria da operação
Testar alarmes
Testar saída digital117
Tipo de alarme, definir51
Tipo de fluido, programar
Tipo de medição de alarme, definir 50
Tipo de medição de frequência, definir 47
Tipo de medição para saída digital, definir
Título do erro73
Totalizador
Redefinir
Transdutor especial, definir
Transdutor, programar 63
Transversais, programar,

U

v

Valor base/valor completo/frequência, definir 47
Valor de alarme, definir
Valor de pulso, definir
Valores da faixa de medição analógica da leitura 100
Variáveis de dispositivo
Visor, programar
Z
Zerar corrente de loop 103

Declarações de Certificação e Segurança para Transmissores Ultrassônicos de Vazão da GE Measurement & Control

Ao instalar este aparelho, os seguintes requisitos devem ser atendidos:

- A fiação em campo deve ser classificada pelo menos 10°C acima de 70°C.
- Os cabos de conexão devem ser montados com segurança e protegidos de danos mecânicos, tração e torção.
- Os cabos de entrada são NPT 3/4 pol.
- São necessários prensa-cabos com design à prova de chamas aprovado. Eles devem ser instalados de acordo com as instruções do fabricante. Quando os prensa-cabos são fornecidos pela GE, as instruções do fabricante fornecidas à GE serão incluídas na documentação.
- As entradas de cabo não utilizadas devem ser vedadas usando um plugue rosqueado certificado.
- Modificações no gabinete à prova de chamas não são permitidas.
- O aparato deve ser desenergizado antes da abertura.
- A instalação deve estar em conformidade com IEC/EN 60079-14.
- O equipamento é de design "d" tipo à prova de chamas e em conformidade com: EN 60079-0:2009, EN 60079-1:2007, EN 60529:1991 +A1:2000, IEC 60079-0:2011, IEC 60079-1:2007, IEC 60529:2001.
- O produto não contém peças expostas que produzam temperatura de superfície por infravermelho, ionização eletromagnética ou perigos não elétricos.
- O produto não deverá ser exposto a tensões mecânica e térmica que excedam as permitidas na documentação da certificação e no manual da instrução.
- O produto não pode ser consertado pelo usuário; ele deverá ser substituído por um produto equivalente certificado. Os reparos devem ser executados única e exclusivamente pelo fabricante ou por um agente de manutenção aprovado.
- Somente pessoal competente e treinado pode instalar, operar e fazer manutenção no equipamento.
- O produto é um equipamento elétrico e deve ser instalado em área de risco seguindo as exigências do Certificado de Inspeção Tipo CE. A instalação deverá ser executada de acordo com todos os códigos e práticas padrão internacionais, nacionais e locais, e regulamentações locais para equipamentos resistentes a fogo e de acordo com as instruções contidas no manual. O circuito não deve ser acessado durante a operação.

Condições especiais para uso seguro: Consulte o fabricante se forem necessárias informações dimensionais sobre as juntas à prova de chamas.

Marcações: As marcações devem aparecer no produto conforme mostradas abaixo:

1100 Technology Park Drive, Billerica, MA 01821, EUA Telefone: 978-437-1000 ou 800-833-9438 CSS-0001, Rev. A Junho de 2012

Sensing House, Shannon Free Zone East, Shannon, County Clare, Irlanda Telefone: +353 61 470200 [esta página foi deixada em branco propositadamente]

Centrais de Atendimento ao Cliente

EUA

The Boston Center 1100 Technology Park Drive Billerica, MA 01821 EUA Tel: 800 833 9438 (ligação gratuita) 978 437 1000 E-mail: sensing@ge.com

Irlanda

Sensing House Shannon Free Zone East Shannon, County Clare Irlanda Tel: +353 (0)61 470200 E-mail: gesensingsnnservices@ge.com

Uma Empresa com Certificado <u>ISO 9001:2008</u>

www.gemeasurement.com/quality-certifications

www.gemeasurement.com

©2015 General Electric Company. Todos os direitos reservados. Especificações sujeitas à alteração sem aviso.