
Relé Inteligente

SRW 01 V1.3X

Manual da Comunicação DeviceNet

Manual da Comunicação DeviceNet

Série: SRW 01

Versão do Firmware: V1.3X

Idioma: Português

N° do Documento: 10000013013 / 02

Data da Publicação: 05/2009

SUMÁRIO

SOBRE O MANUAL	/
ABREVIAÇÕES E DEFINIÇÕESREPRESENTAÇÃO NUMÉRICA	
DOCUMENTOS	7
INTRODUÇÃO À COMUNICAÇÃO DEVICENET	
1.1 CAN	9
1.1.1 Frame de Dados	9
1.1.2 Frame Remoto	9
1.1.3 Acesso à Rede	9
1.1.4 Controle de Erros	9
1.1.5 Can e Devicenet	10
1.2 DEVICENET	10
1.2.1 Introdução	10
1.2.2 Camada Física	
1.2.3 Camada de Enlace de Dados	
1.2.4 Camada de Transporte e Rede	
1.2.5 Camada de Aplicação — Protocolo CIP	
1.2.6 Arquivo de configuração	
1.2.7 Modos de Comunicação	
1.2.8 Conjunto de Conexões Predefinidas Mestre/Escravo	14
KIT ACESSÓRIO	. 15
2.1 INTERFACE DEVICENET	15
2.1.1 Kit DeviceNet	15
2.1.2 Pinagem do Conector	15
2.1.3 Fonte de Alimentação	16
2.2 CONEXÃO COM A REDE	
2.3 CONFIGURAÇÃO DO MÓDULO	
2.4 ACESSO AOS PARÂMETROS	
2.5 INDICAÇÃO DE ESTADOS	
PARAMETRIZAÇÃO DO RELÉ	
P202 – Modo de Operação	
P220 – Seleção Local/Remoto	
P277 – Função da Saída Digital O1	
P278 – Função da Saída Digital O2	
P279 – Função da Saída Digital O3	
P280 – Função da Saída Digital O4	
P313 – Ação para Erro de Comunicação	
P703 – Reset de Bus Off	
P705 – Estado do Controlador CAN	
P706 – Contador de Telegramas CAN Recebidos	
P707 – Contador de Telegramas CAN Transmitidos	
P708 - Contador de Bus Off	
P710 - Contador de Mensagens CAN Perdidas	
P719 – Estado da Rede DeviceNetP720 – Estado do Mestre DeviceNet	
P720 – Estado do Mestre Devicenet	
P725 – Endereço do Modulo de ComunicaçãoP726 – Taxa de Comunicação do DeviceNet/Modbus	
P720 – Taxa de Comunicação do DeviceNet/Modbus P727 – Perfil de Dados para DeviceNet	
P728 – Quantidade de Palavras Escravo para o Mestre	
P729 – Palavra de Estado #1	
P730 – Parâmetro Transmitido na Palavra #2	
P731 – Parâmetro Transmitido na Palavra #3	
	_

<u>Sumário</u>

P732 – Parâmetro Transmitido na Palavra #4	31
P733 – Parâmetro Transmitido na Palavra #5	
P734 – Quantidade de Palavras Mestre para o Escravo	31
P735 – Palavra de Controle #1	
P736 – Parâmetro Recebido na Palavra #2	36
ERROS RELACIONADOS COM A COMUNICAÇÃO DEVICENET	37
E0061 - Bus Off	37
E0063 – Sem alimentação na interface CAN	
E0064 – Mestre em <i>Idle</i>	
E0067 - Timeout na Conexão DeviceNet	

SOBRE O MANUAL

Este manual fornece a descrição necessária para a operação do relé inteligente SRW 01 utilizando o protocolo DeviceNet. Este manual deve ser utilizado em conjunto com o manual do usuário SRW 01.

ABREVIAÇÕES E DEFINIÇÕES

ASCII American Standard Code for Information Interchange

CAN Controller Area Network
CIP Common Industrial Protocol
PLC Programmable Logic Controller
HMI Human-Machine Interface

ODVA Open DeviceNet Vendor Association

CAN in Automation.

RO Parâmetro somente leitura.

rw Parâmetro de leitura/escrita.

CFG Parâmetro de configuração, somente pode ser alterado com o motor parado.

Sys Parâmetro do sistema.

REPRESENTAÇÃO NUMÉRICA

Números decimais são representados através de dígitos sem sufixo. Números hexadecimais são representados com a letra 'h' após o número.

DOCUMENTOS

O protocolo DeviceNet para o SRW 01 foi desenvolvido com base nas seguintes especificações e documentos:

Documento	Versão	Fonte
CAN Specification	2.0	CiA
Volume One Common Industrial Protocol (CIP) Specification	3.2	ODVA
Volume Three	1.4	ODVA
DeviceNet Adaptation of CIP		

Para obter esta documentação, deve-se consultar a ODVA, que atualmente é a organização que mantém, divulga e atualiza as informações relativas à rede DeviceNet.

INTRODUÇÃO À COMUNICAÇÃO DEVICENET

Para a operação do relé inteligente SRW 01 em rede DeviceNet, é necessário conhecer a forma como a comunicação é feita. Para isto, este item traz uma descrição geral do funcionamento do protocolo DeviceNet, contendo as funções utilizadas pelo SRW 01. Para uma descrição detalhada do protocolo, consulte a documentação DeviceNet indicada no item anterior.

1.1 CAN

A rede DeviceNet é uma rede baseada em CAN, o que significa dizer que ela utiliza telegramas CAN para troca de dados na rede.

O protocolo CAN é um protocolo de comunicação serial que descreve os serviços da camada 2 do modelo OSI/ISO (camada de enlace de dados)¹. Nesta camada, são definidos os diferentes tipos de telegramas (frames), a forma de detecção de erros, validação e arbitração de mensagens.

1.1.1 Frame de Dados

Os dados em uma rede CAN são transmitidos através de um frame de dados. Este tipo de frame é composto principalmente por um campo identificador de 11 bits² (arbitration field), e um campo de dados (data field), que pode conter até 8 bytes de dados.

Identificador	8 bytes de dados							
11 bits	byte 0	byte 1	byte 2	byte 3	byte 4	byte 5	byte 6	byte 7

1.1.2 Frame Remoto

Além do frame de dados, existe também o frame remoto (RTR frame). Este tipo de frame não possui campo de dados, apenas o identificador. Ele funciona como uma requisição para que outro dispositivo da rede transmita o frame de dados desejado.

1.1.3 Acesso à Rede

Em uma rede CAN, qualquer elemento da rede pode tentar transmitir um frame para a rede em um determinado instante. Caso dois elementos tentem acessar a rede ao mesmo tempo, conseguirá transmitir aquele que enviar a mensagem mais prioritária. A prioridade da mensagem é definida pelo identificador do frame CAN, quanto menor o valor deste identificador, maior a prioridade da mensagem. O telegrama com o identificador 0 (zero) corresponde ao telegrama mais prioritário.

1.1.4 Controle de Erros

A especificação CAN define diversos mecanismos para controle de erros, o que a torna uma rede muito confiável e com um índice muito baixo de erros de transmissão que não são detectados. Cada dispositivo da rede deve ser capaz de identificar a ocorrência destes erros, e informar os demais elementos que um erro foi detectado.

Um dispositivo da rede CAN possui contadores internos que são incrementados toda vez que um erro de transmissão ou recepção é detectado, e decrementado quando um telegrama é enviado ou recebido com sucesso. Caso ocorra uma quantidade considerável de erros, o dispositivo pode ser levado para os seguintes estados:

- Warning: quando esse contador passa de um determinado limite, o dispositivo entra no estado de warning, significando a ocorrência de uma elevada taxa de erros.
- Error Passive: quando este valor ultrapassa um limite maior, ele entra no estado de error passive, onde ele pára de atuar na rede ao detectar que outro dispositivo enviou um telegrama com erro.
- ☑ **Bus Off:** por último, temos o estado de *bus off*, no qual o dispositivo não irá mais enviar ou receber telegramas.

¹ Na especificação do protocolo CAN, é referenciada a norma ISO 11898 como definição da camada 1 deste modelo (camada física).

² A especificação CAN 2.0 define dois tipos de frames de dados: *standard* (11bits) e *extended* (29 bits). Para o protocolo DeviceNet do SRW 01, somente frames *standard* são aceitos.

Introdução à Comunicação DeviceNet

1.1.5 CAN e DeviceNet

Somente a definição de como detectar erros, criar e transmitir um frame não são suficientes para definir um significado para os dados que são enviados via rede. É necessário que haja uma especificação que indique como o identificador e os dados devem ser montados e como as informações devem ser trocadas. Desta forma os elementos da rede podem interpretar corretamente os dados que são transmitidos. Neste sentido, a especificação DeviceNet define justamente como trocar dados entre os equipamentos e como cada dispositivo deve interpretar estes dados.

Existem diversos outros protocolos baseados em CAN, como CANopen, J1939, etc., que também utilizam frames CAN para a comunicação. Porém estes protocolos não podem operar em conjunto na mesma rede.

1.2 DEVICENET

As seções a seguir apresentam de forma sucinta o protocolo DeviceNet.

1.2.1 Introdução

Apresentado em 1994, DeviceNet é uma implementação do protocolo *Common Industrial Protocol* (CIP) para redes de comunicação industrial. Desenvolvido originalmente pela Allen-Bradley, teve sua tecnologia transferida para a ODVA que, desde então, mantém, divulga e promove o DeviceNet e outras redes baseadas no protocolo CIP³. Além disso utiliza o protocolo *Controller Area Network* (CAN) para enlace de dados e acesso ao meio, camadas 2 e 1 do modelo OSI/ISO, respectivamente.

Utilizado principalmente na interligação de controladores industriais e dispositivos de entrada/saída (I/O), o protocolo segue o modelo produtor-consumidor, suporta múltiplos modos de comunicação e possui prioridade entre mensagens.

É um sistema que pode ser configurado para operar tanto numa arquitetura mestre-escravo quanto numa arquitetura distribuída ponto a ponto. Além disso, define dois tipos de mensagens, I/O (dados de processo) e *explicit* (configuração e parametrização). Possui também mecanismos de detecção de endereços duplicados e isolamento dos nodos em caso de falhas críticas.

Uma rede DeviceNet pode conter até 64 dispositivos, endereçados de 0 a 63. Qualquer um destes pode ser utilizado. Não há qualquer restrição, embora se deva evitar o 63, pois este costuma ser utilizado para fins de comissionamento.

1.2.2 Camada Física

DeviceNet usa uma topologia de rede do tipo tronco/derivação que permite que tanto a fiação de sinal quanto de alimentação estejam presentes no mesmo cabo. Esta alimentação, fornecida por uma fonte conectada diretamente na rede, supre os transceivers CAN dos nodos, e possui as seguintes características:

- **☑** 24 Vcc;
- ☑ Saída CC isolada da entrada CA;
- ☑ Capacidade de corrente compatível com os equipamentos instalados.

O tamanho total da rede varia de acordo com a taxa de transmissão utilizada, conforme mostrado na tabela abaixo.

³ CIP representa, na realidade, uma família de redes. DeviceNet, EtherNet/IP e ControlNet utilizam CIP na camada de aplicação. A diferença entre eles está primordialmente nas camadas de enlace de dados e física.

Tabela 1.1 - Tamanho da rede x Taxa de transmissão

Taxa de	Tamanho	Derivação			
transmissão	da rede	Máximo	Total		
125kbit/s	500m		156m		
250kbit/s	250m 6m		78m		
500kbit/s	100m		39m		

Para evitar reflexões de sinal na linha, recomenda-se a instalação de resistores de terminação nas extremidades da rede, pois a falta destes pode provocar erros intermitentes. Este resistor deve possuir as seguintes características, conforme especificação do protocolo:

 \square 121 Ω ;

☑ 0,25 W;

☑ 1 % de tolerância.

Em DeviceNet, diversos tipos de conectores podem ser utilizados, tanto selados quanto abertos. A definição do tipo a ser utilizado dependerá da aplicação e do ambiente de operação do equipamento. O SRW 01 utiliza um conector do tipo *plug-in* cuja pinagem está mostrada na seção 0. Para uma descrição completa dos conectores utilizados pelo DeviceNet consulte a especificação do protocolo.

1.2.3 Camada de Enlace de Dados

A camada de enlace de dados do DeviceNet é definida pela especificação do CAN, o qual define dois estados possíveis; dominante (nível lógico 0) e recessivo (nível lógico 1). Um nodo pode levar a rede ao estado dominante se transmitir alguma informação. Assim, o barramento somente estará no estado recessivo se não houver nodos transmissores no estado dominante.

CAN utiliza o CSMA/NBA para acessar o meio físico. Isto significa que um nodo, antes de transmitir, deve verificar se o barramento está livre. Caso esteja, então ele pode iniciar a transmissão do seu telegrama. Caso não esteja, deve aguardar. Se mais de um nodo acessar a rede simultaneamente, um mecanismo baseado em prioridade de mensagem entrará em ação para decidir qual deles terá prioridade sobre os outros. Este mecanismo é não destrutivo, ou seja, a mensagem é preservada mesmo que ocorra colisão entre dois ou mais telegramas.

CAN define quatro tipos de telegramas (*data, remote, overload, error*). Destes, DeviceNet utiliza apenas o frame de dados (*data frame*) e o frame de erros (*error frame*).

Dados são movimentados utilizando-se o frame de dados. A estrutura deste frame é mostrada na figura 1.1.

Já os erros são indicados através do frame de erros. CAN possui uma verificação e um confinamento de erros bastante robusto. Isto garante que um nodo com problemas não prejudique a comunicação na rede.

Para uma descrição completa dos erros, consulte a especificação do CAN.

lı	nterframe Space	1 bit	11 bits	1 bit	6 bits	0-8 bytes	15 bits	1 bit	1 bit	1 bit	7 bits	≥ 3 bits
		Start of Frame	Identifier	RTR bit	Control Field	Data Field	CRC Sequence	CRC Delimiter	ACK Slot	ACK Delimiter	End of Frame	nterframe Space

Figura 1.1 - Frame de dados CAN

Introdução à Comunicação DeviceNet

1.2.4 Camada de Transporte e Rede

DeviceNet requer que uma conexão seja estabelecida antes de haver troca de dados com o dispositivo. Para estabelecer esta conexão, cada nodo DeviceNet deve implementar o *Unconnected Message Manager* (UCMM) ou o *Group 2 Unconnected Port*. Estes dois mecanismos de alocação utilizam mensagens do tipo explicit para estabelecer a conexão, que a seguir será utilizada para a troca de dados de processo entre um nodo e outro. Esta troca de dados utiliza mensagens do tipo I/O (ver item 0).

Os telegramas DeviceNet são classificados em grupos, o qual definem funções e prioridades específicas. Estes telegramas utilizam o campo identificador (11 bits) do frame de dados CAN para identificar unicamente cada uma das mensagens, garantindo assim o mecanismo de prioridades CAN.

Um nodo DeviceNet pode ser cliente, servidor ou ambos. Além disso, clientes e servidores podem ser produtores e/ou consumidores de mensagens. Num típico nodo cliente, por exemplo, sua conexão produzirá requisições e consumirá respostas. Outras conexões de clientes ou servidores apenas consumirão mensagens. Ou seja, o protocolo prevê diversas possibilidades de conexão entre os dispositivos.

O protocolo dispõe também de um recurso para detecção de nodos com endereços (Mac ID) duplicados. Evitar que endereços duplicados ocorram é, em geral, mais eficiente que tentar localizá-los depois.

1.2.5 Camada de Aplicação - Protocolo CIP

DeviceNet utiliza o *Common Industrial Protocol (CIP)* na camada de aplicação. Trata-se de um protocolo estritamente orientado a objetos utilizado também pelo ControlNet e pelo EtherNet/IP. Ou seja, ele é independente do meio físico e da camada de enlace de dados. A figura 1.2 apresenta a estrutura deste protocolo.

CIP tem dois objetivos principais:

- ☑ Transporte de dados de controle dos dispositivos de I/O.
- ☑ Transporte de informações de configuração e diagnóstico do sistema sendo controlado.

Um nodo (mestre ou escravo) DeviceNet é então modelado por um conjunto de objetos CIP, os quais encapsulam dados e serviços e determinam assim seu comportamento.

Existem objetos obrigatórios (todo dispositivo deve conter) e objetos opcionais. Objetos opcionais são aqueles que moldam o dispositivo conforme a categoria (chamado de perfil) a que pertencem, tais como: AC/DC Drive, leitor de código de barras ou válvula pneumática. Por serem diferentes, cada um destes conterá um conjunto também diferente de objetos.

Para mais informações, consulte a especificação do DeviceNet. Ela apresenta a lista completa dos perfis de dispositivos já padronizados pela ODVA, bem como os objetos que o compõem.

1.2.6 Arquivo de configuração

Todo nodo DeviceNet possui um arquivo de configuração associado⁴. Este arquivo contém informações importantes sobre o funcionamento do dispositivo e deve ser registrado no software de configuração de rede.

-

⁴ Conhecido por arquivo EDS.

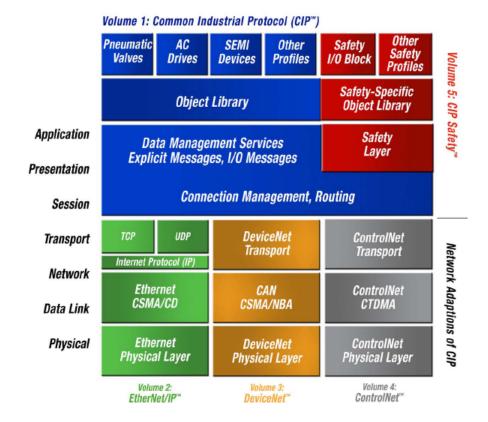


Figura 1.2 - Estrutura em camadas do protocolo CIP

1.2.7 Modos de Comunicação

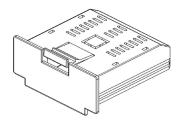
O protocolo DeviceNet possui dois tipos básicos de mensagens, I/O e explicit. Cada um deles é adequado a um determinado tipo de dado, conforme descrito abaixo:

- ☑ I/O: tipo de telegrama síncrono dedicado à movimentação de dados prioritários entre um produtor e um ou mais consumidores. Dividem-se de acordo com o método de troca de dados. Os principais são:
 - **Polled:** método de comunicação em que o mestre envia um telegrama a cada um dos escravos da sua lista (*scan list*). Assim que recebe a solicitação, o escravo responde prontamente a solicitação do mestre. Este processo é repetido até que todos sejam consultados, reiniciando o ciclo.
 - **Bit-strobe:** método de comunicação onde o mestre envia para a rede um telegrama contendo 8 bytes de dados. Cada bit destes 8 bytes representa um escravo que, se endereçado, responde de acordo com o programado.
 - **Change of State:** método de comunicação onde a troca de dados entre mestre e escravo ocorre apenas quando houver mudanças nos valores monitorados/controlados, até um certo limite de tempo. Quando este limite é atingido, a transmissão e recepção ocorrerão mesmo que não tenha havido alterações. A configuração desta variável de tempo é feita no programa de configuração da rede.
 - **Cyclic:** outro método de comunicação muito semelhante ao anterior. A única diferença fica por conta da produção e consumo de mensagens. Neste tipo, toda troca de dados ocorre em intervalos regulares de tempo, independente de terem sido alterados ou não. Este período também é ajustado no software de configuração de rede.
- Explicit: tipo de telegrama de uso geral e não prioritário. Utilizado principalmente em tarefas assíncronas tais como parametrização e configuração do equipamento.

Introdução à Comunicação DeviceNet

1.2.8 Conjunto de Conexões Predefinidas Mestre/Escravo

DeviceNet emprega fundamentalmente um modelo de mensagens ponto a ponto. Contudo, é bastante comum utilizar um esquema predefinido de comunicação baseado no mecanismo mestre/escravo.


Este esquema emprega um movimento simplificado de mensagens do tipo I/O muito comum em aplicações de controle. A vantagem deste método está nos requisitos necessários para rodá-lo, em geral menores se comparados ao UCMM. Até mesmo dispositivos simples com recursos limitados (memória, processador de 8 bits) são capazes de executar o protocolo.

KIT ACESSÓRIO

Para possibilitar a comunicação DeviceNet no relé inteligente SRW 01, é necessário utilizar um kit para comunicação DeviceNet, conforme descrição abaixo. Informações sobre a instalação deste módulo no relé podem ser obtidas no guia de instalação que acompanha o kit.

2.1 INTERFACE DEVICENET

2.1.1 Kit DeviceNet

- Composto pelo módulo de comunicação DeviceNet (figura ao lado) mais um guia de instalação.
- ☑ Interface isolada galvanicamente e com sinal diferencial, conferindo maior robustez contra interferência eletromagnética.
- ☑ Alimentação externa de 24 V através do cabo de rede DeviceNet.

2.1.2 Pinagem do Conector

Para a comunicação DeviceNet, o relé utiliza um conector *plug-in* de 8 vias (XC2) com a seguinte pinagem:

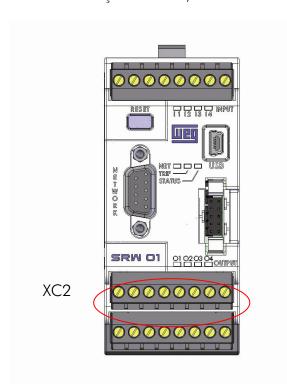


Tabela 2.1 - Pinagem do conector XC2 para interface DeviceNet

Pino	Sinal	Função
А	А	Sinal A (Profibus/Modbus)
В	В	Sinal B (Profibus/Modbus)
PE	PE	Terra de proteção
BK	V-	Pólo negativo da fonte de alimentação
BU	CAN_L	Sinal de comunicação CAN_L
SH	Shield	Blindagem do cabo
WH	CAN_H	Sinal de comunicação CAN_H
RD	V+	Pólo positivo da fonte de alimentação

ATENÇÃO!

Os pinos A e B são de uso exclusivo do protocolo Profibus/Modbus. Portanto, quando o relé utilizar o módulo de comunicação DeviceNet, estes devem permanecer desconectados.

ATENÇÃO!

O pino PE deve obrigatoriamente ser conectado num terra de proteção.

2.1.3 Fonte de Alimentação

A interface DeviceNet para o SRW 01 necessita de uma tensão de alimentação externa entre os pinos BK e RD do conector da rede (XC2). Para evitar problemas de diferença de tensão entre os dispositivos da rede, é recomendado que a rede seja alimentada em apenas um ponto, e o sinal de alimentação seja levado a todos os dispositivos através do cabo. Caso seja necessária mais de uma fonte de alimentação, estas devem estar referenciadas ao mesmo ponto. Os dados para consumo individual e tensão de entrada são apresentados na tabela a seguir.

Tabela 2.2 - Características da alimentação para interface CAN/DeviceNet

Tensão de alimentação (Vcc)					
Mínimo	Máximo	Э	Recomendado		
11	30		24		
	Corrent	e (r	nA)		
Típic	а		Máxima		
30			50		

2.2 CONEXÃO COM A REDE

Para a ligação do relé utilizando a interface DeviceNet, os seguintes pontos devem ser observados:

- ☑ Recomenda-se a utilização de cabos específicos para redes CAN/DeviceNet.
- Aterramento da malha do cabo (blindagem) somente em um ponto, evitando assim loops de corrente. Este ponto costuma ser a própria fonte de alimentação da rede. Se houver mais de uma fonte de alimentação, somente uma delas deverá estar ligada ao terra de proteção.
- ☑ Instalação de resistores de terminação somente nos extremos do barramento principal, mesmo que existam derivações.
- A fonte de alimentação da rede deve ser capaz de suprir corrente para alimentar todos os *transceivers* dos equipamentos. O módulo de comunicação DeviceNet do SRW 01 consome em torno de 30mA.

2.3 CONFIGURAÇÃO DO MÓDULO

Para configurar o módulo DeviceNet siga os passos indicados abaixo:

- 🗹 Com o relé desligado instale o módulo de comunicação DeviceNet no slot localizado na parte inferior do equipamento.
- ☑ Certifique-se de que ele está corretamente encaixado.
- ☑ Energize o relé.
- ☑ Verifique o conteúdo do parâmetro P084 e verifique se o módulo de comunicação foi corretamente reconhecido (P084 = 2). Consulte o guia de instalação e o manual do usuário se necessário.
- ☑ Ajuste o endereço do relé na rede através do parâmetro P725.
 - Valores válidos: 0 a 63.
- ☑ Ajuste a taxa de comunicação no P726. Valores válidos:
 - -0 = 125 kbit/s
 - -1 = 250 kbit/s
 - -2 = 500 kbit/s
 - 3 = Autobaud
- ☑ No parâmetro P727 configure o perfil de dados utilizado, ODVA ou WEG.
- Configure a quantidade de palavras de entrada e de saída nos parâmetros P728 e P734, respectivamente. Exatamente esta mesma quantidade de palavras deverá ser ajustada no mestre da rede. Para maiores detalhes consulte a parte relativa ao parâmetro P202 da seção 0.
- ☑ Desligue e lique novamente o SRW 01 para que as mudanças tenham efeito.
- ☑ Conecte os fios do cabo de rede no conetor XC2 (ver seção 0).
- 🗹 Registre o arquivo de configuração (arquivo EDS) no software de configuração da rede.
- ☑ Adicione o SRW 01 na *scan list* do mestre.
- ☑ No *software* de configuração da rede escolha um método para troca de dados com mestre, ou seja, *polled, change of state ou cyclic.* O módulo DeviceNet do SRW 01 suporta todos estes tipos de dados de I/O, além do *explicit* (dados acíclicos)

Se tudo estiver corretamente configurado, o parâmetro P719 indicará o estado 'Online, Não Conectado' ou 'Online, Conectado'. Observe também o parâmetro que indica o estado do mestre da rede, P720. Somente haverá troca efetiva de dados quando o estado do mestre for Run. Nesta situação o led NET deverá estar piscando ou sólido na cor verde.

Para mais informações a respeito dos parâmetros citados acima consulte a seção 0 ou manual do usuário.

2.4 ACESSO AOS PARÂMETROS

Após o registro do arquivo EDS no software de configuração de rede, o usuário terá acesso à listagem completa dos parâmetros do equipamento os quais podem ser acessados via *explicit messages*.

lsto significa que é possível fazer a parametrização e a configuração do relé através do software de configuração de rede.

Para detalhes de utilização deste recurso, consulte a documentação do software de programação do mestre da rede (PLC, PC, etc.).

2.5 INDICAÇÃO DE ESTADOS

A indicação dos estados e erros do SRW 01 na rede DeviceNet é feita através de mensagens no display da HMI⁵ (ver seção seguinte) e do led bicolor NET localizado na tampa frontal do equipamento. Este led bicolor (verde/vermelho) fornece informações limitadas a respeito do estado do módulo em si e do estado da comunicação.

A tabela abaixo mostra o comportamento deste led em função do estado do relé:

Estado	LED		Descrição
Device Not Powered/Not On-line	Apagado	Ø	Módulo de comunicação sem alimentação ou offline.
			Dispositivo não concluiu procedimento para ingresso na rede.
Device Operational and On-line,	Verde	\square	Dispositivo está em condições normais de operação, <i>on-line,</i> e
Connected			com conexões estabelecidas.
Device Operational and On-line,	Verde	\square	Dispositivo está em condições normais de operação, on-line,
Not Connected	Intermitente		mas sem conexões estabelecidas.
		V	Significa, geralmente, que o dispositivo não consta na scan list
			do mestre da rede.
Connection Time-Out	Vermelho	V	Uma ou mais conexões do tipo I/O foram para o estado timed-
	Intermitente		out (expiraram).
Critical Link Failure	Vermelho	\square	Dispositivo em condição de falha.
		\square	Foi detectado um erro que impediu a comunicação na rede,
			tipicamente Mac ID duplicado ou Bus Off.
			Verifique se o endereço ajustado não está em uso e se a taxa de
			comunicação está correta.

_

⁵ Quando presente.

Padrão: 1

Padrão: 2

PARAMETRIZAÇÃO DO RELÉ

A seguir serão apresentados apenas os parâmetros do relé inteligente SRW 01 que possuem relação com a comunicação DeviceNet. A descrição detalhada destes parâmetros encontra-se no manual do usuário do SRW 01.

P202 - Modo de Operação

Faixa de 0 = Transparente

Valores: 1 = Relé de Sobrecarga

2 = Partida Direta3 = Partida Reversa

4 = Partida Estrela-Triângulo5 = Partida Dahlander

6 = Partida Dois Enrolamentos (Pole-Changing)

7 = Modo PLC

Propriedades: Sys, CFG

Descrição:

Este parâmetro permite selecionar o modo de operação do SRW 01. As funções das entradas e saídas digitais são configuradas automaticamente conforme esta seleção.

P220 – Seleção Local/Remoto

Faixa de 0 = Sempre Local

Valores: 1 = Sempre Remoto

2 = Tecla HMI (LOC) 3 = Tecla HMI (REM) 4 = Entrada Digital I3

5 = Entrada Digital I4 6 = Fiedbus (LOC) 7 = Fieldbus (REM) 8 = USB/Ladder

Propriedades: Sys, rw

Descrição:

Este parâmetro define a fonte que irá selecionar o modo de funcionamento do SRW 01 (Local/Remoto) e seu estado inicial

P277 – Função da Saída Digital O1

P278 – Função da Saída Digital O2

P279 – Função da Saída Digital O3

P280 – Função da Saída Digital O4

Faixa de 0 = Uso Interno (P202) Padrão: P277 = 1

Valores: 1 = Ladder P278 = 1 2 = Fieldbus P279 = 1

P280 = 1

Propriedades: Sys, CFG

Descrição:

Define a fonte que controla a saída digital.

Uso Interno: é utilizada conforme o modo de operação selecionado (P202); **Ladder:** é utilizada pelo programa do usuário implementado em Ladder;

Fieldbus: é utilizada diretamente pelo mestre da rede industrial.

NOTA!

Vale lembrar que a disponibilidade das saídas digitais depende do modo de operação utilizado, pois é possível que uma ou mais saídas já estejam pré-alocadas para outras funções.

P313 – Ação para Erro de Comunicação

Faixa de 0 = Somente Indica Erro **Padrão:** 0

Valores: 1 = Desliga Motor

2 = Desliga Motor e Zera Comandos

3 = Vai para Local

Propriedades: Sys, rw

Descrição:

Este parâmetro permite selecionar qual a ação que deve ser executada pelo relé caso um erro de comunicação seja detectado.

Tabela 3.1 - Valores para o parâmetro P313

Opções	Descrição
0 = Somente Indica Erro	Nenhuma ação é tomada, apenas sinaliza erro.
	Se a condição que causou o erro for resolvida, a
	indicação será automaticamente retirada do relé.
1 = Desliga Motor	Desliga motor, para os modos de operação onde
	existir este comando. É necessário executar o
	reset de erros para que a indicação seja retirada.
2 = Desliga Motor e Zera	Desliga motor e zera palavra de comando. É
Comandos	necessário executar o reset de erros para que a
	indicação seja retirada.
3 = Vai para Local	Vai para o modo local, se a seleção entre modo
	local/remoto estiver programada para ser
	executado via fieldbus. Se a condição que
	causou o erro for resolvida, a indicação será
	automaticamente retirada do relé.

Para a interface CAN utilizando o protocolo DeviceNet, são considerados erros de comunicação os seguintes eventos:

☑ Erro E0061: bus off.

☑ Erro E0063: sem alimentação na interface DeviceNet.

☑ Erro E0064: mestre da rede em modo *Idle.*

☑ Erro E0067: *timeout* em uma ou mais conexões I/O.

A descrição destes erros é feita na seção 4.

P703 - Reset de Bus Off

Faixa de 0 = Manual Padrão: 1

Valores: 1 = Automático

Propriedades: Sys, CFG

Descrição:

Permite programar qual o comportamento do relé ao detectar um erro de bus off na interface CAN.

Padrão: -

Tabela 3.2 - Valores para o parâmetro P703

Opções	Descrição										
0 = Reset Manual	Caso ocorra <i>bus off</i> , será indicado na HMI o erro E061, a										
	ação programada no parâmetro P313 será executada e										
	comunicação será desabilitada. Para que o relé retome a										
	comunicação através da interface DeviceNet, será necessário										
	desligar e ligar novamente o SRW 01.										
1 = Reset Automático	Caso ocorra <i>bus off</i> , a comunicação será reiniciada										
	automaticamente e o erro será ignorado. Neste caso, não será										
	feita a indicação de alarme na HMI e o relé não executará a ação descrita no P313.										
	ação descrita no roto.										

P705 – Estado do Controlador CAN

Faixa de 0 = Inativo

Valores: 1 = Autobaud

2 = Interface CAN ativa

3 = Warning 4 = Error Passive 5 = Bus Off

6 = Sem alimentação

Propriedades: RO

Descrição:

Permite identificar se o módulo de interface DeviceNet está devidamente instalado, e se a comunicação apresenta erros.

Tabela 3.3 - Valores para o parâmetro P705

Opções	Descrição
0 = Inativo	Interface CAN inativa. Ocorre quando o relé não
	possui módulo DeviceNet instalado ou logo após o
	relé ser energizado/reiniciado.
1 = Autobaud	Indica que rotinas de detecção do autobaud estão
	sendo executadas.
2 = Interface CAN ativa	Interface CAN ativa e sem erros.
3 = Warning	Controlador CAN atingiu o estado de warning.
4 = Error Passive	Controlador CAN atingiu o estado de <i>error passive</i> .
5 = Bus Off	Controlador CAN atingiu o estado de <i>bus off</i> .
6 = Sem alimentação	Interface CAN não possui alimentação entre os pinos
	BK e RD do conector XC2.

P706 – Contador de Telegramas CAN Recebidos

Faixa de 0 a 65535 **Padrão:** -

Valores:

Propriedades: RO

Descrição:

Este parâmetro funciona como um contador cíclico, que é incrementado toda vez que um telegrama CAN é recebido. Fornece um retorno para o operador se o dispositivo está conseguindo comunicar-se com a rede. Este contador é zerado sempre que o relé for ligado ou ao atingir o limite máximo do parâmetro.

P707 – Contador de Telegramas CAN Transmitidos

Faixa de 0 a 65535 Padrão: -

Valores:

Propriedades: RO

Descrição:

Este parâmetro funciona como um contador cíclico, que é incrementado toda vez que um telegrama CAN é transmitido. Fornece um retorno para o operador se o dispositivo está conseguindo comunicar-se com a rede. Este contador é zerado sempre que o relé for ligado ou ao atingir o limite máximo do parâmetro.

P708 – Contador de Bus Off

Faixa de 0 a 65535 Padrão: -

Valores:

Propriedades: RO

Descrição:

Contador cíclico que indica o número vezes que o relé entrou em estado de bus off na rede CAN. Este contador é zerado sempre que o relé for ligado ou ao atingir o limite máximo do parâmetro.

P709 - Contador de Mensagens CAN Perdidas

Faixa de 0 a 65535 Padrão: -

Valores:

Propriedades: RO

Descrição:

Contador cíclico que indica o número de mensagens recebidas pela interface CAN, mas que não puderam ser processadas pelo relé. Caso o número de mensagens perdidas seja incrementado com freqüência, recomenda-se diminuir a taxa de comunicação utilizada para a rede CAN. Este contador é zerado sempre que o relé for ligado ou ao atingir o limite máximo do parâmetro.

P719 - Estado da Rede DeviceNet

Faixa de 0 = Offline Padrão:

Valores: 1 = Online, Não Conectado

2 = Online, Conectado 3 = Conexão expirou

4 = Falha na Conexão

5 = Auto-baud

Propriedades: RO

Descrição:

Indica o estado da rede DeviceNet. A tabela a seguir apresenta uma breve descrição destes estados.

Tabela 3.4 - Valores para o parâmetro P719

Estado	Descrição
Offline	Sem alimentação ou não <i>online</i> . Comunicação não pode ser estabelecida.
Online, Não Conectado	Dispositivo <i>online</i> , mas não conectado. Escravo completou com sucesso o procedimento de verificação do MacID. Isto significa que a taxa de comunicação configurada está correta (ou foi detectada corretamente no caso da utilização do autobaud) e que não há outros nodos na rede com o mesmo endereço. Porém, neste estágio, ainda não há comunicação com o mestre.
Online, Conectado	Dispositivo operacional e em condições normais. Mestre alocou um conjunto de conexões do tipo I/O com o escravo. Nesta etapa ocorre efetivamente a troca de dados através de conexões do tipo I/O.
Conexão Expirou	Uma ou mais conexões do tipo I/O expiraram.
Falha na Conexão	Indica que o escravo não pode entrar na rede devido a problemas de endereçamento ou então devido à ocorrência de <i>bus off.</i> Verifique se o endereço configurado já não está sendo utilizado por outro equipamento, se a taxa de comunicação escolhida está correta ou se existem problemas na instalação.
Autobaud	Equipamento executando rotinas do mecanismo de autobaud.

P720 - Estado do Mestre DeviceNet

Faixa de 0 = R u n Padrão: -

Valores: 1 = Idle (Prog)

Propriedades: RO

Descrição:

Indica o estado do mestre da rede DeviceNet. Este pode estar em modo de operação (*Run*) ou modo de configuração (*Prog*).

Quando em *Run,* telegramas de leitura e escrita são processados e atualizados normalmente pelo mestre. Quando em *Prog,* apenas telegramas de leitura dos escravos são atualizados pelo mestre. A escrita, neste caso, fica desabilitada.

P725 - Endereço do Módulo de Comunicação

Faixa de 0 a 255 Padrão: 63

Valores:

Propriedades: Sys, CFG

Descrição:

Permite programar o endereço do módulo de comunicação do relé. É necessário que cada equipamento da rede possua um endereço diferente dos demais. Os endereços válidos para este parâmetro dependem do tipo de protocolo utilizado:

Modbus → endereços válidos: 1 a 247. DeviceNet → endereços válidos: 0 a 63. Profibus → endereços válidos: 1 a 125.

Caso este parâmetro seja alterado, ele somente será válido após o relé ser desligado e ligado novamente.

P726 - Taxa de Comunicação do DeviceNet/Modbus

Faixa de 0 = 125 Kbit/s 4,8 Kbit/s Padrão: 3

Valores: 1 = 250 Kbit/s 9,6 Kbit/s

2 = 500 Kbit/s 19,2 Kbit/s 3 = Autobaud/38,4 Kbit/s

Propriedades: Sys, CFG

Descrição:

Permite programar o valor desejado para a taxa de comunicação dos cartões DeviceNet e Modbus, em bits por segundo. Esta taxa deve ser a mesma para todos os equipamentos conectados na rede. Os valores da esquerda (acima) referem-se exclusivamente à rede DeviceNet. Quando for selecionada a opção 'Autobaud', o SRW 01 se ajustará automaticamente à taxa de comunicação atual da rede.

Mas para que este mecanismo funcione, é obrigatório que haja dois ou mais equipamentos comunicando-se ativamente na rede.

Após uma detecção com sucesso, o parâmetro da taxa de comunicação (P726) altera-se automaticamente para a taxa selecionada. Para executar novamente a função de autobaud, é necessário mudar o parâmetro P726 para 'Autobaud'.

Caso este parâmetro seja alterado, ele somente será válido após o relé ser desligado e ligado novamente.

P727 – Perfil de Dados para DeviceNet

Faixa de 0 = ODVA Padrão: 0

Valores: 1 = WEG

Propriedades: Sys, CFG

Descrição:

Permite selecionar o perfil de dados a ser utilizado pelo relé, ou seja, o formato dos dados para operação do equipamento via rede DeviceNet. A opção ODVA representa o padrão definido no perfil *Motor Overload Profile* da ODVA. Dentro deste perfil, o SRW 01 implementa as instâncias 2/50 (*Basic Overload*). O tamanho dos dados desta instância é de apenas 1 byte para entrada e 1 byte para saída.

NOTA!

Caso o parâmetro P727 seja alterado, ele somente será válido após o relé ser desligado e ligado novamente.

Abaixo é apresentado o formato dos dados de monitoramento e controle para este perfil.

0 = Formato dos dados para as instâncias ODVA *Basic Overload* (1 byte):

A opção 0 (ODVA) deste parâmetro seleciona a instância de I/O conhecida por *Basic Overload*. Estas instâncias representam a mais simples interface de operação de um equipamento segundo o perfil *Motor Overload Profile*. O mapeamento dos dados é mostrado abaixo.

Monitoramento (Entrada)

Instância	Bit							
	7	6	5	4	3	2	1	O
50								Faulted

Bits (Byte 0)	Valores
Bit O	0: relé não está em estado de falha
Faulted	1: alguma falha registrada pelo relé
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual

NOTA!

Falha, neste contexto, significa erro, trip ou alarme.

Controle (Saída)

Instância	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
	7	6	5	4	3	2	1	O
2						Fault Reset		

Bits (Byte 0)	Valores
Bit 2	0: sem função
Fault Reset	1: se em estado de falha, executa o reset do relé

NOTA!

Falha, neste contexto, significa erro, trip ou alarme.

1 = Formato dos dados para as instâncias WEG:

A opção 1 (WEG) deste parâmetro seleciona o perfil de dados WEG, que nada mais é que a interface de operação do equipamento via rede segundo o modo de operação escolhido no parâmetro P202. Os parâmetros P729 e P735 apresentam o formato destes dados para cada um dos modos de operação.

P728 – Quantidade de Palavras Escravo para o Mestre

Faixa de 1 a 5 Padrão: 1

Valores:

Propriedades: Sys, rw

Descrição:

Permite selecionar a quantidade de palavras de entrada comunicadas com o mestre. Cada palavra possui o seguinte significado:

1ª Word: representa a palavra de estado, que depende do modo de operação escolhido. Para facilitar o diagnóstico, o conteúdo desta palavra é mostrado no parâmetro P729.

2ª Word: conteúdo enviado para o mestre programável utilizando o parâmetro P730.

3º Word: conteúdo enviado para o mestre programável utilizando o parâmetro P731.

4ª Word: conteúdo enviado para o mestre programável utilizando o parâmetro P732.

5ª Word: conteúdo enviado para o mestre programável utilizando o parâmetro P733.

NOTA!

Caso o parâmetro P728 seja alterado, ele somente será válido após o relé ser desligado e ligado novamente.

P729 – Palavra de Estado #1

Faixa de 0000h – FFFFh Padrão: -

Valores:

Propriedades: RO

Descrição:

Permite a monitoração do estado do relé. O conteúdo deste parâmetro é transmitido para o mestre da rede DeviceNet, sempre na primeira palavra de entrada. O formato desta palavra depende do modo de operação do SRW 01, programado através do parâmetro P202.

Modo Transparente (P202 = 0):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Estado da Entrada 14	Estado da Entrada 13	Estado da Entrada 12	Estado da Entrada 11	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Estado da Entrada 11	1: entrada digital 11 ativada
Bit 6	0: entrada digital 12 desativada
Estado da Entrada 12	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Estado da Entrada 13	1: entrada digital 13 ativada
Bit 8	0: entrada digital 14 desativada
Estado da Entrada 14	1: entrada digital 14 ativada
Bits 9 a 15	Reservado

Modo Relé de Sobrecarga (P202 = 1):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Estado da Entrada 14	Estado da Entrada 13	Estado da Entrada 12	Estado da Entrada 11	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Estado da Entrada 11	1: entrada digital 1 ativada
Bit 6	0: entrada digital 12 desativada
Estado da Entrada 12	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Estado da Entrada 13	1: entrada digital 13 ativada
Bit 8	0: entrada digital 14 desativada
Estado da Entrada 14	1: entrada digital 14 ativada
Bits 9 a 15	Reservado

Modo Partida Direta (P202 = 2):

Monitoramento (Entrada)

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Estado da Entrada 14	Check Back (Entrada 13)	Botão LIGA (Entrada 12)	Botão DESLIGA (Entrada 11)	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Botão DESLIGA	1: entrada digital 11 ativada
Bit 6	0: entrada digital 12 desativada
Botão LIGA	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Check Back	1: entrada digital 13 ativada
Bit 8	0: entrada digital 14 desativada
Estado da Entrada 14	1: entrada digital 14 ativada
Bits 9 a 15	Reservado

Modo Partida Reversa (P202 = 3):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Check Back (Entrada 14)	Botão LIGA Reverso (Entrada 13)	Botão LIGA direto (Entrada 12)	Botão DESLIGA (Entrada 11)	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Botão DESLIGA	1: entrada digital 11 ativada
Bit 6	0: entrada digital 12 desativada
Botão LIGA direto	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Botão LIGA Reverso	1: entrada digital 13 ativada
Bit 8	0: entrada digital 14 desativada
Check Back	1: entrada digital 14 ativada
Bits 9 a 15	Reservado

Modo Partida Estrela-Triângulo (P202 = 4):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Check Back K1- K3 (Entrada 14)	Check Back K1- K2 (Entrada I3)	Botão LIGA (Entrada 12)	Botão DESLIGA (Entrada 11)	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Botão DESLIGA	1: entrada digital I1 ativada
Bit 6	0: entrada digital 12 desativada
Botão LIGA	1: entrada digital I2 ativada
Bit 7	0: entrada digital 13 desativada
Check Back K1-K2	1: entrada digital I3 ativada
Bit 8	0: entrada digital 14 desativada
Check Back K1-K3	1: entrada digital l4 ativada
Bits 9 a 15	Reservado

Modo Partida Dahlander (P202 = 5):

Monitoramento (Entrada)

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Check Back (Entrada 14)	Botão LIGA velocidade baixa (Entrada 13)	Botão LIGA velocidade alta (Entrada 12)	Botão DESLIGA (Entrada 11)	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Botão DESLIGA	1: entrada digital 11 ativada
Bit 6	0: entrada digital 12 desativada
Botão LIGA velocidade alta	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Botão LIGA velocidade baixa	1: entrada digital 13 ativada
Bit 8	0: entrada digital l4 desativada
Check Back	1: entrada digital l4 ativada
Bits 9 a 15	Reservado

Modo Partida Dois Enrolamentos (Pole-Changing) (P202 = 6):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Check Back (Entrada 14)	Botão LIGA velocidade baixa (Entrada 13)	Botão LIGA velocidade alta (Entrada 12)	Botão DESLIGA (Entrada II)	Modo Remoto	Motor Ligado	Alarme	Trip	Erro

Bits (Byte 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	0: motor desligado
Motor Ligado	1: motor ligado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Botão DESLIGA	1: entrada digital 11 ativada
Bit 6	0: entrada digital 12 desativada
Botão LIGA velocidade alta	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Botão LIGA velocidade baixa	1: entrada digital 13 ativada
Bit 8	0: entrada digital 14 desativada
Check Back	1: entrada digital 14 ativada
Bits 9 a 15	Reservado

Modo PLC (P202 = 7):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Estado da Entrada 14	Estado da Entrada 13	Estado da Entrada 12	Estado da Entrada 11	Modo Remoto	Reservado	Alarme	Trip	Erro

Bits (Bytes 0 e 1)	Valores
Bit O	0: relé não está no estado de erro
Erro	1: relé está no estado de erro
	Obs.: o número do erro pode ser lido através do parâmetro P016 – Erro Atual
Bit 1	0: relé não está no estado de trip
Trip	1: relé está no estado de trip
	Obs.: o número da falha de trip pode ser lido através do parâmetro P016 – Erro Atual
Bit 2	0: relé não está no estado de alarme
Alarme	1: relé está no estado de alarme
	Obs.: o número do alarme pode ser lido através do parâmetro P016 – Erro Atual
Bit 3	Reservado
Bit 4	0: relé em modo local
Modo Remoto	1: relé em modo remoto
Bit 5	0: entrada digital 11 desativada
Estado da Entrada I1	1: entrada digital 11 ativada
Bit 6	0: entrada digital 12 desativada
Estado da Entrada 12	1: entrada digital 12 ativada
Bit 7	0: entrada digital 13 desativada
Estado da Entrada 13	1: entrada digital 13 ativada
Bit 8	0: entrada digital 14 desativada
Estado da Entrada 14	1: entrada digital l4 ativada
Bits 9 a 15	Reservado

Padrão: 0

P730 – Parâmetro Transmitido na Palavra #2

P731 – Parâmetro Transmitido na Palavra #3

P732 – Parâmetro Transmitido na Palavra #4

P733 – Parâmetro Transmitido na Palavra #5

Faixa de 0 a 899

Valores:

Propriedades: Sys, rw

Descrição:

Estes parâmetros permitem ao usuário programar a leitura via rede de qualquer outro parâmetro do equipamento. Ou seja, eles contêm o número de um outro parâmetro.

Por exemplo, P730 = 5. Neste caso será enviado via rede o conteúdo do P005 (freqüência da rede). Deste forma, na posição de memória do mestre da rede correspondente à segunda palavra de leitura, será lida a freqüência do motor.

Função	O	oção	do	P7	28
Palavra de Estado #1	1	2			
Parâmetro Transmitido na Palavra #2 (conteúdo do parâmetro P730)			3	1	
Parâmetro Transmitido na Palavra #3 (conteúdo do parâmetro P731)				4	5
Parâmetro Transmitido na Palavra #4 (conteúdo do parâmetro P732)					
Parâmetro Transmitido na Palavra #5 (conteúdo do parâmetro P033)					

P734 – Quantidade de Palavras Mestre para o Escravo

Faixa de 1 ou 2 Padrão: 1

Valores:

Propriedades: Sys, rw

Descrição:

Permite selecionar a quantidade de palavras de saída comunicadas com o mestre. Cada palavra possui o seguinte significado:

1º Word: representa a palavra de controle, que depende do modo de operação escolhido. Para facilitar o diagnóstico, o conteúdo desta palavra é mostrado no parâmetro P735.

2º Word: conteúdo enviado para o mestre programável utilizando o parâmetro P736.

NOTA!

Caso o parâmetro P734 seja alterado, ele somente será válido após o relé ser desligado e ligado novamente.

P735 – Palavra de Controle #1

Faixa de 0000h – FFFFh Padrão: 0000h

Valores:

Propriedades: RO

Descrição:

Palavra de comando do relé via interface DeviceNet. Este parâmetro somente pode ser alterado via interface DeviceNet. Para as demais fontes (HMI, USB, Serial, etc.) ele se comporta como um parâmetro somente de leitura. Representa, na verdade, a própria palavra de controle, cujo formato de dados varia conforme o modo de operação escolhido (P202).

Para que os comandos escritos neste parâmetro sejam executados, é necessário que o relé esteja em modo remoto. Para os comandos de envio do relé para modo remoto e controle das saídas digitais, é necessário programar os parâmetros P220 e P277 a P280 para a opção 'Fieldbus'.

Modo Transparente (P202 = 0):

Controle (Saída)

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Valor para Saída O3	Valor para Saída O2	Valor para Saída O1	Modo Remoto	Reset	Reservado	Reservado	Reservado

Bits (Byte 0 e 1)	Valores
Bits 0 a 2	Reservado
Bit 3	0 . 1
Reset	0 → 1: quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bit 5	0: desabilita saída digital O1
Valor para Saída O1	1: habilita a saída digital O1
Bit 6	0: desabilita saída digital O2
Valor para Saída O2	1: habilita a saída digital O2
Bits 7	0: desabilita saída digital O3
Valor para Saída O3	1: habilita a saída digital O3
Bit 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

Modo Relé de Sobrecarga (P202 = 1):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Valor para Saída O3	Reservado	Reservado	Modo Remoto	Reset	Reservado	Reservado	Reservado

Bits (Byte 0 e 1)	Valores
Bits 0 a 2	Reservado
Bit 3 Reset	0 → 1: quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bits 5 e 6	Reservado
Bits 7	0: desabilita saída digital O3
Valor para Saída O3	1: habilita a saída digital O3
Bit 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

Modo Partida Direta (P202 = 2):

Controle (Saída)

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Valor para Saída O3	Valor para Saída O2	Reservado	Modo Remoto	Reset	Reservado	LIGA	DESLIGA

Bits (Byte 0 e 1)	Valores
Bit 0 DESLIGA	0 → 1: desliga motor
Bit 1 LIGA	0 → 1: liga motor
Bit 2	Reservado
Bit 3	0 > 1
Reset	0 → 1: quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bit 5	Reservado
Bit 6	0: desabilita saída digital O2
Valor para Saída O2	1: habilita a saída digital O2
Bit 7	0: desabilita saída digital O3
Valor para Saída O3	1: habilita a saída digital O3
Bit 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

Modo Partida Reversa (P202 = 3):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Valor para Saída O3	Reservado	Reservado	Modo Remoto	Reset	LIGA Reverso	LIGA Direto	DESLIGA

Bits (Byte 0 e 1)	Valores
Bit 0	0 → 1: desliga motor
DESLIGA	7 To dooring a more
Bit 1	0 11 line meter ne centido direte
LIGA Direto	0 → 1: liga motor no sentido direto
Bit 2	O . 1. line mater no contide reverse
LIGA Reverso	0 → 1: liga motor no sentido reverso
Bit 3	O > 1. guando am fallag avaguta a recet de relá
Reset	0 → 1: quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bits 5 e 6	Reservado
Bit 7	0: desabilita saída digital O3
Valor para Saída O3	1: habilita a saída digital O3
Bits 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

Modo Partida Estrela-Triângulo (P202 = 4):

Controle (Saída)

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Reservado	Reservado	Reservado	Modo Remoto	Reset	Reservado	LIGA	DESLIGA

Bits (Byte 0 e 1)	Valores
Bit 0	0 → 1: desliga motor
DESLIGA	U → I: desliga molor
Bit 1	O > 1. line motor
LIGA	$0 \rightarrow 1$: liga motor
Bit 2	Reservado
Bit 3	0 > 1
Reset	0 → 1: quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bits 5 a 7	Reservado
Bit 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

Modo Partida Dahlander (P202 = 5):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Reservado	Reservado	Reservado	Modo Remoto	Reset	LIGA velocidade Baixa	LIGA velocidade Alta	DESLIGA

Bits (Byte 0 e 1)	Valores
Bit 0 DESLIGA	0 → 1: desliga motor
Bit 1 LIGA velocidade alta	0 ightarrow 1 : liga motor com velocidade alta
Bit 2 LIGA velocidade baixa	0 ightarrow 1 : liga motor com velocidade baixa
Bit 3 Reset	0 → 1 : quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bits 5 a 7	Reservado
Bit 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

Modo Partida Dois Enrolamentos (Pole-Changing) (P202 = 6):

Controle (Saída)

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Reservado	Reservado	Reservado	Modo Remoto	Reset	LIGA velocidade Baixa	LIGA velocidade Alta	DESLIGA

Bits (Byte 0 e 1)	Valores				
Bit 0 DESLIGA	0 → 1: desliga motor				
Bit 1 LIGA velocidade alta	0 ightarrow 1 : liga motor com velocidade alta				
Bit 2 LIGA velocidade baixa	0 ightarrow 1 : liga motor com velocidade baixa				
Bit 3 Reset	0 → 1: quando em falha, executa o reset do relé				
Bit 4	0: vai para modo local				
Modo Remoto	1: vai para o modo remoto				
Bits 5 a 7	Reservado				
Bit 8	0: desabilita saída digital O4				
Valor para Saída O4	1: habilita a saída digital O4				
Bits 9 a 15	Reservado				

Modo PLC (P202 = 7):

Bits	15 a 9	8	7	6	5	4	3	2	1	0
Função	Reservado	Valor para Saída O4	Valor para Saída O3	Valor para Saída O2	Valor para Saída O1	Modo Remoto	Reset	Reservado	Reservado	Reservado

Bits (Bytes 0 e 1)	Valores
Bits 0 a 2	Reservado
Bit 3 Reset	0 → 1: quando em falha, executa o reset do relé
Bit 4	0: vai para modo local
Modo Remoto	1: vai para o modo remoto
Bit 5	0: desabilita saída digital O1
Valor para Saída O1	1: habilita a saída digital O1
Bit 6	0: desabilita saída digital O2
Valor para Saída O2	1: habilita a saída digital O2
Bits 7	0: desabilita saída digital O3
Valor para Saída O3	1: habilita a saída digital O3
Bit 8	0: desabilita saída digital O4
Valor para Saída O4	1: habilita a saída digital O4
Bits 9 a 15	Reservado

NOTA!

A maior parte dos bits de comando das palavras acima tem um comportamento semelhante à *push-buttons*, ou seja, apenas a transição $0 \to 1$ é importante. Assim, o projetista da rede deve ter o cuidado de escrever 0 novamente nestes bits após enviar um comando de transição válido.

P736 – Parâmetro Recebido na Palavra #2

Faixa de 0 a 899 Padrão: 0

Valores:

Propriedades: Sys, rw

Descrição:

Este parâmetro permite ao usuário programar a escrita via rede de qualquer outro parâmetro do equipamento. Ou seja, ele contém o número de um outro parâmetro.

Por exemplo, P736=163. Neste caso será enviado via rede o conteúdo a ser escrito no P163 (desabilita programa do usuário). Deste modo, a posição de memória do mestre da rede correspondente à segunda palavra de escrita, deve conter o valor para o P163.

Função	Opção do P734		
Palavra de Controle #1	1	0	
Parâmetro Recebido na Palavra #2 (conteúdo do parâmetro P736)		2	

ERROS RELACIONADOS COM A COMUNICAÇÃO DEVICENET

E0061 - Bus Off

Descrição:

Detectado erro de bus off na interface CAN.

Atuação:

Caso o número de erros de recepção ou transmissão detectados pela interface CAN seja muito elevado, o controlador CAN pode ser levado ao estado de *bus off*, onde ele interrompe a comunicação e desabilita a interface CAN.

Caso ocorra erro de bus off, a comunicação CAN será desabilitada, o alarme E0061 aparecerá na HMI do relé e a ação programada no P313 será executada. Para que a comunicação seja restabelecida, é necessário desligar e ligar novamente o relé, ou retirar e ligar novamente a alimentação da interface CAN, para que a comunicação seja reiniciada.

Possíveis Causas/Correção:

- ☑ Verificar curto-circuito nos cabos de transmissão do circuito CAN.
- ☑ Verificar se os cabos não estão trocados ou invertidos.
- ☑ Verificar se resistores de terminação com valores corretos foram colocados somente nos extremos do barramento principal.
- ☑ Verificar se a instalação da rede CAN foi feita de maneira adequada.

E0063 - Sem alimentação na interface CAN

Descrição:

Indica que a interface CAN não possui alimentação entre os pinos BK e RD do conector XC2.

Atuação:

Para que seja possível enviar e receber telegramas através da interface CAN, é necessário fornecer alimentação externa para o circuito de interface.

Se for detectada a falta de alimentação na interface CAN, a comunicação é desabilitada, será mostrado E0063 na HMl do relé e este executará a ação programada no P313. Caso a alimentação do circuito seja restabelecida, a indicação de alarme será retirada da HMl e a comunicação CAN será reiniciada.

Possíveis Causas/Correção:

- Medir se existe tensão entre os pinos BK e RD do conector da interface CAN está em torno de 24V.
- ☑ Verificar se os cabos de alimentação não estão trocados ou invertidos.
- ☑ Verificar problema de contato no cabo ou no conector da interface CAN.

E0064 - Mestre em Idle

Descrição:

Alarme que indica que o mestre da rede DeviceNet está em modo *Idle*.

Atuação:

Atua quando o SRW 01 detectar que o mestre da rede foi para o modo *Idle*. Neste modo, apenas as variáveis lidas do escravo continuam sendo atualizadas na memória do mestre. Nenhum dos comandos enviados ao escravo é processado.

Neste caso será mostrado E0064 na HMI do relé. É necessário colocar novamente o mestre em modo *Run* (estado normal de operação do equipamento) para que a comunicação volte e a mensagem de aviso seja apagada da HMI.

Erros Relacionados com a Comunicação DeviceNet

Possíveis Causas/Correção:

☑ Ajuste a chave que comanda o modo de operação do mestre para execução (*Run*) ou então o bit correspondente na palavra de configuração do software do mestre. Em caso de dúvidas, consulte a documentação do mestre em uso.

E0067 – *Timeout* na Conexão DeviceNet

Descrição:

Alarme que indica que uma ou mais conexões I/O DeviceNet expiraram.

Atuação:

Ocorre quando, por algum motivo, o mestre não conseguir acessar informações no escravo.

Neste caso será mostrado E0067 na HMI do relé.

Possíveis Causas/Correção:

☑ Verificar se o mestre está presente na rede e em modo *Run.*