
Software

WLP

Manual do Usuário

Manual do Usuário

Série: WLP V8.7X

Idioma: Português

Data de Publicação: 02/2011

Índice

		0
Parte I	Bem Vindo	10
Parte II	Visão Geral	10
1	Informações Gerais	10
	Instalação e Inicialização do WLP	
	Introdução	
	Arquitetura do Projeto	
	Árvore de Projeto	
	Assistentes de Configuração	
/	Diálogos de Monitoração	16
Parte III	Menus	16
1	Projeto	16
	Novo	16
	Abrir	16
	Salvar	17
	Salvar Como	17
	Salvar Todos	17
	Fechar	
	Remover	_
	Imprimir	
	Visualizar Impressão	
	Configurar Impressora Unidades	
	Propriedades	_
	Idioma	
	Carregar Último Projeto ao Iniciar	
	Sair	
2	Editar	
	Desfazer	20
	Refazer	
	Recortar	20
	Copiar	20
	Colar	21
	Localizar	
3	Exibir	21
	Barra Padrão	
	Barra de Comunicação	
	Barra de Edição	
	Barra de Blocos	
	Barra de Página	
	Barra de Status	

	Grade	
	Nomes/Endereço	23
	Erros de Compilação	23
	Localização dos Erros de Compilação	23
	Informações da Compilação	23
	Tabela de Endereços	24
	Configuração dos Parâmetros do Usuário	24
	Configuração dos Perfis	24
4	Página	. 24
	Inserir Antes	
	Inserir Depois	
	Excluir	
	Anterior	
	Seguinte	
	Vai Para	
5	Inserir	
J		
	Apontador	
	Apagar Elemento	
	Comentário	
	Ligação	
	Horizontal	
	Vertical	
	Contatos	
	NO CONTACT.	
	NC CONTACT	
	Bobinas	
	COIL	
	NEG COIL	
	SET COIL	
	RESET COILPTS COIL	
	NTS COIL	
	Blocos de Função	
	Controle de Movimento	
	MC Power	
	MC_Reset	
	MC_Stop	
	MW_IqControl	
	STOP	
	QSTOP	
	Posicionamento	
	SCURVE	
	TCURVE	
	HOME	
	TCURVAR	
	CAM	
	CALCCAM	
	SHIFT	
	MC_MoveAbsolute	
	MC_NoveAbsolute	
	MC_StepAbsSwitch	
	MC_StepLimitSw itch	
	MC_StepEiniowitch	
	MC_StepDirect	
	o_0top="00t	04

	MC_FinishHoming	35
	MC_CamTableSelect	35
	MC_CamCalc	35
	MC_Camin	35
	MC_CamOut	36
	Movimento	36
	SETSPEED	
	JOG	
	SPEED	
	REF	
	MC_MoveVelocity	
	Seguidor	
	FOLLOW	
	AUTOREG	
	MC_Gearln	
	MC_GearInPos	
	MC_Phasing	
	MC_GearOut	
	Verificador	
	INPOS	
	INBWG	
	CLP	-
	TON	_
	RTC	40
	CTU	40
	PID	40
	FILTER	41
	CTENC	41
	Cálculo	41
	COMP	41
	MATH	41
	FUNC	42
	SAT	42
	MUX	42
	DMUX	43
	Transferência	43
	TRANSFER	43
	FL2INT	43
	NT2FL	43
	IDATA	44
	USERERR	44
	Rede CAN	44
	MSCA NWEG	44
	RXCA NWEG.	
	SDO	
	USERFB	
	MMC	
6	Ferramentas	
O	Valores dos Parâmetros	
	Anybus	
	CANOpen	
	Cam Profiles	
	Aplicação	57
	unar	5/

7	Construir	57
	Compilar	57
	Compilar Subrotina/Macro	58
	Depuração	58
8	Comunicação	58
	Download	58
	Upload	58
	Monitoração Online	59
	Configuração Monitoração Online	59
	Com Sinal	
	Sem Sinal	
	Decimal	
	Hexadecimal	
	Binário	
	Monitoração de Variáveis	
	Trend de Variáveis	
	Monitoração de Entradas/Saidas	
	Força Entradas/Saídas	
	Informações Gerais	
	Configurações	
9	Bloco do Usuário	
•		
	ConfiguraçõesInformações	
40		
10	Janela	
	Cascata	
	Lado a Lado na Horizontal	
	Lado a Lado na Vertical	
11	Ajuda	
	Tópicos de Ajuda	
	Sobre o WLP	63
Parte IV	Operações de Edição	64
	Selecionando Células	64
	Movendo Células	
3	Colando Células	66
Parte V	Monitoração	66
1	Introdução	66
	Barra de Botões	
	Monitoração Online	
	•	
	Monitoração de Valores Numéricos no Ladder	
	Escrita de Variáveis no Ladder	
	Monitoração de Variáveis	
	Trend de Variáveis	
8	Monitoração de Entradas e Saídas	77

9	Monitoração via IHM	79
10	Força Entradas/Saídas	. 79
11	Informações Gerais (Online)	83
	Tabela de Valores dos Parâmetros	
		. 00
Parte VI	Comunicação	84
1	Visão Geral Comunicação	. 84
2	Cabo Serial	. 84
3	Instalação/Remoção Driver USB	85
Parte VII	Linguagem	86
	Introdução	96
	Estrutura do Elemento	
	Tipo de Dados	
	Função dos Marcadores de Sistema Compatibilidade	
	Tipos de Argumentos	
	Referência Rápida	
	Estado do Eixo	
2	Texto	
-		
•	Comentário	
3	Contatos	
	NO CONTACT	
	NC CONTACT	
4	Bobinas	123
	COIL	. 123
	NEG COIL	. 123
	SET COIL	. 124
	RESET COIL	. 125
	PTS COIL	_
	NTS COIL	
5	Blocos de Função	128
	Controle de Movimento	. 128
	MC_Pow er	. 128
	MC_Reset	. 130
	MC_Stop	. 132
	MW_lqControl	. 135
	STOP	
	QSTOP	
	Posicionamento	
	SCURVE	
	TCURVE	
	HOME	
	TCURVARCAM	-
	CALCCAM	
	SHFT	
	MC MoveAbsolute	
	MC MoveRelative	

	MC_StepAbsSw itch	
	MC_StepLimitSw itch	
	MC_StepRefPulse	
	MC_StepDirect	
	MC_FinishHoming	
	MC_CamTableSelect	
	MW_CamCalc	
	MC_Camln	
	MC_CamOut	200
	Movimento	200
	SETSPEED	200
	JOG	204
	SPEED	206
	REF	209
	MC_MoveVelocity	
	Seguidor	215
	FOLLOW	_
	AUTOREG	_
	MC_Gearln	219
	MC_GearInPos	
	MC_Phasing	
	MC_GearOut	_
	Verificador	_
	INPOS	
	INBWG	228
	CLP	230
	TON	230
	RTC	
	СТU	234
	PID	237
	FILTER	240
	CTENC	242
	Calculation	245
	COMP	245
	MATH	246
	FUNC	253
	SAT	255
	MUX	256
	DMUX	258
	Transferência	259
	TRANSFER	259
	INT2FL	261
	FL2INT	261
	IDATA	262
	USERERR	264
	Rede CAN	265
	MSCANWEG	265
	RXCANWEG	265
	SDO	266
	USERFB	268
	MMC	282
i Blo	cos do Usuário	283
	USERFBs Instalados no WLP	283

9

Parte VIII	Compilador	284
1	Visão Geral Compilador	284
2	Erros Fatais do Compilador	284
3	Erros do Compilador	285
4	Advertências do Compilador	287
5	Informações da Compilação	288
Parte IX	Aplicações	288
1	Aplicações no WLP	288
Parte X	Obtendo Ajuda	292
1	Solucionando Problemas do Microcomputador	292
2	Direitos Autorais	293
Parte XI	Suporte Técnico	293
1	Suporte Técnico	293
	Índice	295

1 Bem Vindo

BEM-VINDO AO WEG LADDER PROGRAMMER!

Obrigado por você utilizar o **WEG LADDER PROGRAMMER**, um programa em ladder gráfico usado para facilitar o uso em ambientes de desenvolvimento integrado.

WLP é uma aplicação poderosa em 32 bits que concede a você características e funcionalidades para criar aplicações profissionais com simples cliques com o mouse.

2 Visão Geral

2.1 Informações Gerais

Este manual destina-se a descrever todas as funções e ferramentas disponíveis no software WLP.

O WLP "Weg Ladder Programmer" é um software para ambiente Windows que permite a programação em linguagem Ladder e o comando e monitoração dos seguintes equipamentos.

- cartão opcional PLC1 para inversores da linha CFW-09
- cartão opcional PLC2 para inversores da linha CFW-09
- cartão opcional POS2 para servoconversores SCA-05
- SoftPLC do inversor da linha CFW-11
- SoftPLC da soft-starter da linha SSW-06
- cartão opcional PLC11-01 para inversores da linha CFW-09
- cartão opcional PLC11-02 para inversores da linha CFW-09
- relé SRW01-PTC
- relé SRW01-RCD
- SoftPLC do servoconversor SCA06.
- SoftPLC do inversor da linha CFW 700.
- SoftPLC da soft-starter da linha SSW 7000.
- SoftPLC do inversor da linha CFW 500.

As principais características do software incluem:

- Edição do programa através de vários blocos de funções em ladder.
- Compilação do programa em ladder para linguagem compatível aos cartões.
- Transferência do programa compilado para os cartões.
- Leitura do programa existente nos cartões. (1) 10
- Monitoração Online do programa que está sendo executado nos cartões.
- Comunicação através de serial em RS-232 ou USB (2) 10 ponto-a-ponto com os cartões.
- Comunicação serial em RS-485 com até 30 cartões, desde que seja utilizado um conversor RS-232 para RS-485
- Ajuda Online com referência de todas as funções e blocos existentes no software.
- (1) Somente para SoftPLC do CFW-11, SoftPLC da SSW-06, PLC11-01 e PLC11-02.
- $(2) \ USB \ somente \ disponível \ para \ SoftPLC \ do \ CFW-11, PLC11-01, PLC11-02, SRW01-PTC \ , SRW01-RCD, SoftPLC \ do \ SCA06, e \ SoftPLC \ do \ SSW7000.$

2.2 Instalação e Inicialização do WLP

INSTALAÇÃO:

Para instalar o WLP no computador a partir do CD que acompanha o produto siga os passos abaixo:

- 1. Insira o CD do WLP na unidade de CD-ROM;
- 2. Através do ícone "Meu Computador" explore a unidade de CD-ROM;
- 3. Procure o arquivo "wlp-X.YZ.setup.exe" e execute o mesmo
- 4. Siga as instruções do Setup

O software WLP pode ser obtido também no *site* da Weg http://www.weg.net/, downloads e sistemas online. Ao baixar o instalador do WLP, ele estará compactado em um arquivo no formato ZIP. Deve-se descompactar esse arquivo para uma pasta temporária para então executar o setup de instalação.

Essa descompactação pode ser feita através de software como, por exemplo: 7Zip que está no *site* http://www.winzip.com/. Após descompactar os arquivos, estes aparecerão na pasta temporária. O arquivo "wlp-X.YZ.setup.exe" é o instalador do WLP. Para executá-lo deve-se dar um duplo clique sobre o mesmo.

INICIALIZAÇÃO:

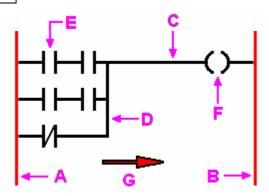
A seguir estão descritos os passos principais para iniciar um novo programa e transmiti-lo para a placa.

- 1. Abra o WLP.
- 2. Selecione a opção "Novo Projeto".
- 3. Digite um nome para o projeto.
- 4. Inicie a programação utilizando os comandos da barra de edição.
- 5. Após o programa estar concluído, teclar <F7> (menu-construir-compilar) para efetuar a compilação do projeto e corrigir os erros, se necessário.
- 6. Conectar o cabo do PC à placa.
- 7. Configurar a comunicação, selecionando a porta utilizada, o endereço da placa na rede, a taxa de transmissão,teclando <Shift>+<F8> (menu-comunicação-configurações).

OBS: A paridade deve ser sempre na opção "Sem Paridade"

8. Transmitir o programa teclando <F8> (menu - comunicação transmitir programa do usuário).

2.3 Introdução


Diagrama Ladder é uma representação gráfica de equações booleanas, combinando contatos (argumentos de entradas) com bobinas (resultados de saída).

O programa em Ladder possibilita testar e modificar dados por símbolos gráficos padrões. Estes símbolos são posicionados no diagrama ladder de maneira semelhante a uma linha de um diagrama lógico com relés. O diagrama Ladder é delimitados na esquerda e na direita por linhas de barramento.

COMPONENTES GRÁFICOS

Os componentes gráficos básicos de um diagrama Ladder são mostrados abaixo.

- A Barramento esquerdo
- B Barramento direito
- C Ligação horizontal
- D Ligação vertical
- E Contato
- F Bobina
- G-Fluxo de potência

Barramentos

O editor é delimitado na esquerda por uma linha vertical conhecida como barramento esquerdo, e na direita por uma linha vertical conhecida como barramento direito.

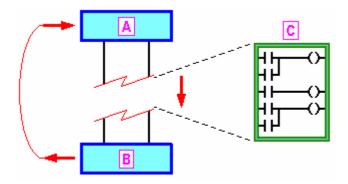
Elementos de Ligação e Estados

Os elementos de ligação podem ser horizontal ou vertical. O estado dos elementos de ligação podem ser denotados por 1 ou 0, correspondendo ao valor Booleano literal 1 ou 0, respectivamente. O termo estado da ligação tem que ser sinônimo do termo fluxo da potência.

O estado do barramento esquerdo pode ser considerado sempre 1. Nenhum estado é definido no barramento direito.

Um elemento de ligação horizontal tem que ser indicado por uma linha horizontal. Um elemento de ligação horizontal transmite o estado do elemento imediatamente a esquerda para o elemento imediatamente a direita.

Um elemento de ligação vertical tem que consistir de linhas verticais intersectadas por uma ou mais ligações horizontais em cada lado. O estado da ligação vertical deverá representar o OU dos estados 1 da ligações horizontais no lado esquerdo, isto é, o estado das ligações verticais deverá ser:


- 0 se o estado de todas as ligações horizontais incluídas na sua esquerda são 0
- 1 se o estado de uma ou mais ligações horizontais incluídas na sua esquerda são 1

O estado das ligações verticais tem que ser copiados para todas as ligações horizontais associados à sua direita. O estado das ligações verticais não pode ser copiado para as ligações horizontais associadas à sua esquerda.

CONTROLE DE EXECUÇÃO

A Figura 1 mostra como o programa em Ladder é executado. O cartão executa continuamente um ciclo de Varredura. O ciclo começa com o Sistema de E/S do hardware, compilando os últimos valores de todos os sinais de entrada e gravando seus valores em regiões fixas da memória.

- A- Entradas lidas para a memoria
- B Memória escrita nas Saídas
- C Varredura das linhas do ladder

As linhas do programa ladder são então executados num ordem fixa, iniciando com a primeira linha. Durante a varredura do programa, novos valores das saídas físicas., como determinadas a partir da lógica das várias linhas do ladder, são inicialmente inscritos numa região da memória de saída. Finalmente, quando o programa ladder terminou a execução, todos os valores de saída retidos na memória são inscritos nas saídas físicas pelo hardware PLC1 num única operação.

FORMA DE CÁLCULO DAS LÓGICAS

As lógicas são calculadas de cima para baixo e da esquerda para a direita como aparecem do Diagrama Ladder.

EXAMPLO DE TRAJETÓRIA

2.4 Arquitetura do Projeto

Um projeto consiste de um conjunto de configurações do projeto e um conjunto de arquivos fontes, que juntos determinam os arquivos de saída que você cria.

ARQUIVOS FONTE (PASTA DO PROJETO)

Um projeto é dividido em diversos arquivos fonte no diretório do projeto. Os arquivos fonte são descritos abaixo.

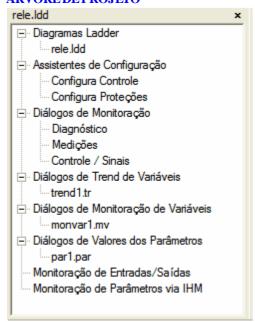
- <Project>.ldd = arquivo fonte do ladder
- <Project>.mld = arquivo fonte do USERFB
- <Project>.wcn = arquivo fonte do WSCAN (Configuração da rede CANOpen Mestre)
- <Project>.mol = arquivo de monitoração online
- <Project>.bus = arquivo de configuração da rede fieldbus

- <Project>.ai = arquivo com os tags das entradas analógicas
- <Project>.ao = arquivo com os tags das saídas analógicas
- <Project>.di = arquivo com os tags das entradas digitais
- <Project>.do = arquivo com os tags das saídas digitais
- <Project>.mx = arquivo com os tags dos marcadores de bit
- <Project>.mw = arquivo com os tags dos marcadores de float
- <Project>.mf = arquivo com os tags dos marcadores de word
- <Project>.rw = arquivo com os tags das words de leitura
- <Project>.rb = arquivo com os tags dos bytes de leitura
- <Project>.ww = arquivo com os tags das words de escrita
- <Project>.wb = arquivo com os tags dos bytes de escrita
- <Project>.pp = arquivo com os tags dos parâmetros programáveis do usuário
- <Project>.par = arquivo com os valores dos parâmetros
- <Project>.tr = arquivo de trend de variáveis (gráfico)
- <Project>.mv = arquivo de monitoração de variáveis

ARQUIVOS DETRABALHO (PASTA WORK)

Arquivos criados depois de uma compilação.

CmpInfo.txt = informações sobre a compilação, programas e arquivos Errors.crd = coordenadas dos erros encontrados no programa fonte Errors.txt = mensagem de erros dos erros encontrados no programa fonte <Project>.bin = programa executável que roda no cartão


ARQUIVOS DE DEPURAÇÃO (PASTA DEBUG)

Arquivos criados depois de uma compilação. Arquivos reservados pelo sistema.

2.5 Árvore de Projeto

Através dessa caixa é possível acessar os arquivos e funcionalidades disponíveis para o projeto. Para ativar essa caixa utilize o menu Exibir - Árvore de Projeto 22.

ÁRVORE DE PROJETO

A árvore de projeto possui os seguintes itens:

- Diagramas Ladder:

Lista todos os arquivos ladder do projeto.

Para abrir o arquivo ladder dê um duplo clique sobre o nome do arquivo.

Para a PLC11-01 e PLC11-02 além do ladder principal existirão os seguintes arquivos :

- INITIALIZE.sld : ladder executado somente na inicialização do cartão
- INT_DI108.sld : ladder executado pelo sinal da entrada digital de interrupção DI108
- INT_DI109.sld : ladder executado pelo sinal da entrada digital de interrupção DI109
- INT_TIMER.sld : ladder executado através de uma interrupção de tempo programável

- Assistentes de Configuração :

Lista todos <u>assistentes de configuração</u> 16 do projeto.

Para executar o assistente de configuração de um duplo clique sobre o nome do assistente.

Ao selecionar o assistente de configuração na árvore de projeto os seguintes itens da barra de botões serão ativados:

: download da configuração do assistente de configuração para o equipamento.

upload da configuração do assistente de configuração do equipamento.

Obs.:

O download do assistente de assistente de configuração só estará ativo após executar o assistente de configuração e gerar uma configuração válida, ou seja, concluir o assistente de configuração.

- Diálogos de Monitoração:

Lista todos diálogos de monitoração 16 do projeto.

Para abrir o diálogo de monitoração de um duplo clique sobre o nome do diálogo.

- Diálogos de Trend de Variáveis :

Lista todos os arquivos de trend de variáveis 73 do projeto.

Para abrir o diálogo de trend de variáveis de um duplo clique sobre o texto "Diálogos de Trend de Variáveis" ou sobre o nome do arquivo.

- Diálogos de Monitoração de Variáveis :

Lista todos os arquivos de monitoração de variáveis 71¹.

Para abrir o diálogo de monitoração de variáveis de um duplo clique sobre o texto "Diálogos de Monitoração de Variáveis" ou sobre o nome do arquivo.

- Diálogos de Valores dos Parâmetros :

Lista todos os arquivos de valores de parâmetros 46.

Para abrir o diálogo de valores de parâmetros de um duplo clique sobre o texto "Diálogos de Valores dos Parâmetros" ou sobre o nome do arquivo.

- Monitoração de Entradas/Saídas:

Acessa diálogo de monitoração de entradas/saídas 77.

Para abrir o diálogo de monitoração de entradas/saídas de um duplo clique sobre o texto "Monitoração de Entradas/Saídas".

- Monitoração de Parâmetros via IHM:

Acessa diálogo de monitoração de parâmetros via IHM 79.

Para abrir o diálogo de monitoração de entradas/saídas de um duplo clique sobre o texto "Monitoração de Parâmetros via IHM".

Assistentes de Configuração 2.6

São rotinas especialmente criadas para configurar de forma assistida o equipamento configurado no projeto. Essas rotinas guiamo usuário a configurar o equipamento de uma forma simples e auto explicativa. Essas rotinas são apresentadas de acordo como equipamento configurado e o projeto selecionado. Os assistentes de configuração também estão disponíveis no menu "Ferramentas" sub-menu "Equipamento".

Os seguintes equipamentos possuem assistentes de configuração definidos :

SRW01-PTC e SRW01-RCD:

- Configura Controle : configura o modo de controle do relê SRW01.
- Configura Proteções : configura a atuação das proteções do relê SRW01.

2.7 Diálogos de Monitoração

São diálogos especialmente criados para monitorar o equipamento configurado no projeto. Esses diálogos monitoram informações exclusivas do equipamento.

Esses diálogos são apresentadas de acordo como equipamento configurado e o projeto selecionado. Os diálogos de monitoração também estão disponíveis no menu "Comunicação" sub-menu "Equipamento".

Os seguintes equipamentos possuem diálogos de monitoração definidos :

SRW01-PTC e SRW01-RCD:

- Diagnóstico : apresenta informações do estado geral do relê SRW01.
- Medições : apresenta informações das medições do motor do relê SRW01.
- Controle/Sinais : apresenta comandos/informações para controle do relê SRW01.

3 Menus

3.1 **Projeto**

3.1.1 Novo

ACESSO

Menu: Projeto - Novo Tecla de Atalho: Ctrl+N

Barra de Ferramentas Padrão:

FUNÇÃO

Cria um novo projeto.

DES CRIÇÃO

Entre com o nome do novo projeto. Se o nome escolhido for váildo, o projeto será aberto depois da confirmação com o botão OK. Quando o botão Cancelar for ativado, o projeto é interrompido e a caixa de diálogo é fechada.

3.1.2 **Abrir**

ACESSO

Menu: Projeto - Abrir Tecla de Atalho: Ctrl+O

Barra de Ferramentas Padrão:

FUNÇÃO

Abre um projeto existente.

DESCRIÇÃO

Selecione um dos projetos da lista de projetos existentes e tecle o botão Abrir Projeto ou dê um double-click com o botão esquerdo do mouse.

3.1.3 Salvar

ACESSO

Menu: Projeto - Salvar Tecla de Atalho: Ctrl+S

Barra de Ferramentas Padrão:

FUNÇÃO

Salva o projeto corrente.

3.1.4 **Salvar Como**

ACESSO

Menu: Projeto - Salvar Como Tecla de Atalho: Ctrl+Shift+S

FUNÇÃO

Salva o projeto corrente com outro nome. É necessário entrar com o equipamento e versão de firmware.

DES CRIÇÃO

Entre um novo nome para o projeto corrente. Se o nome escolhido é válido, o projeto será aberto depois da confirmação com o botão OK. Se o botão Cancelar for ativado, o projeto é interrompido e a caixa de janela é fechada.

3.1.5 **Salvar Todos**

ACESSO

Menu: Projeto - Salvar Todos Tecla de Atalho: Ctrl+Alt+S

FUNÇÃO

Salva todos os projetos abertos.

3.1.6 **Fechar**

ACESSO

Menu: Projeto - Fechar Tecla de Atalho: Ctrl+F4

Barra de Ferramentas Padrão:

FUNCÃO

Fecha o projeto corrente.

3.1.7 Remover

ACESSO

Menu: Projeto - Remover Tecla de Atalho: Alt+Del

FUNÇÃO

Remove o projeto selecionado.

DESCRIÇÃO

Seleciona um projeto da lista de projetos existentes e aperte o botão "Remover Projeto" e confirme para ele ser deletado.

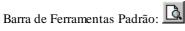
3.1.8 **Imprimir**

ACESSO

Menu: Projeto - Imprimir Tecla de Atalho: Ctrl+P

Barra de Ferramentas Padrão:

FUNÇÃO


Imprime o projeto ativo.

3.1.9 Visualizar Impressão

ACESSO

Menu: Projeto - Visualizar Impressão

Tecla de Atalho: Ctrl+W

FUNÇÃO

Mostra como o projeto será imprimido.

3.1.10 Configurar Impressora

ACESSO

Menu: Projeto - Configurar Impressora

Tecla de Atalho: Ctrl+U

FUNÇÃO

Muda as configurações da impressora e as opções de impressão.

3.1.11 Unidades

Menu: Projeto - Unidades Tecla de Atalho: Alt+U

FUNÇÃO

Permite ao usuário definir a unidade da posição, velocidade, aceleração e jerk para os valores constantes.

3.1.12 Propriedades

ACESSO

Menu: Projeto - Propriedades Tecla de Atalho: Alt+P

FUNÇÃO

Permite selecionar o equipamento e a sua respectiva versão de firwmare que será utilizado no projeto.

Nessa janela também é possível definir a senha que será utilizada como proteção de Upload para a SoftPLC do CFW-11, PLC11-01 e PLC11-02.

DES CRIÇÃO

Após o equipamento e a sua versão terem sido selecionados, o WLP desabilita e/ou habilita os comandos/blocos disponíveis na versão selecionada.

3.1.13 Idioma

ACESSO

Menu: Projeto - Idioma

FUNÇÃO

Selecionar entre o idioma português e o idioma inglês.

3.1.14 Carregar Último Projeto ao Iniciar

ACESSO

Menu: Projeto - Carregar Último Projeto ao Iniciar

FUNÇÃO

Abre o último projeto que estava sendo utilizado automaticamente quando o WLP for iniciado, se este comando estiver habilitado.

3.1.15 Sair

ACESSO

Menu: **Projeto - Sair** Tecla de Atalho: **Alt+F4**

FUNÇÃO

Fecha a aplicação.

3.2 Editar

3.2.1 Desfazer

ACESSO

Menu: Editar - Desfazer Tecla de Atalho: Ctrl+Z

Barra de Ferramentas Padrão:

FUNÇÃO

Desfaz a última ação executada.

DESCRIÇÃO

Somente 10 ações podem ser desfeitas. Este comando fica desabilitado quando nenhuma alteração foi executada ou após a última ação ter sido desfeita.

3.2.2 Refazer

ACESSO

Menu: Editar - Refazer Tecla de Atalho: Ctrl+Y

Barra de Ferramentas Padrão:

FUNÇÃO

Refaz a última ação desfeita.

DESCRIÇÃO

Somente 10 ações podem ser refeitas. Este comando só fica habilitado se alguma ação de desfazer ter sido acionada.

3.2.3 Recortar

ACESSO

Menu: Editar - Recortar Tecla de Atalho: Ctrl+X

Barra de Ferramentas Padrão:

FUNÇÃO

Copia as células selecionadas para a área de transferência e apaga.

DES CRIÇÃO

Este comando só fica habilitado a partir do momento que houver células selecionadas 64.

3.2.4 Copiar

ACESSO

Menu: Editar - Copiar Tecla de Atalho: Ctrl+C

Barra de Ferramentas Padrão:

FUNÇÃO

Copia as células selecionadas para a área de transferência.

DES CRIÇÃO

Este comando só fica habilitado a partir do momento que houver células selecionadas 64.

3.2.5 Colar

ACESSO

Menu: Editar - Colar Tecla de Atalho: Ctrl+V

Barra de Ferramentas Padrão:

FUNÇÃO

Transfere os dados da área de transferência para o editor.

DES CRIÇÃO

Este comando só fica habilitado a partir do momento que houver dados na área de transferência, ou seja, após algum comando de copiar 20 ou recortar 20 ter sido executado. Ver ítem Colando Células 66.

Localizar 3.2.6

ACESSO

Menu: Editar - Localizar Tecla de Atalho: Ctrl+F

Barra de Ferramentas Padrão:

FUNÇÃO

Localiza as coordenadas no editor dos elementos como endereço solicitado após apertar o botão iniciar. Então é aberta uma janela com a página, linha e coluna de todos os elementos encontrados. Esta janela só é fechada quando for apertado o botão Fechar ou o botão Sys (X).

DES CRIÇÃO

Para localizar os endereços no editor é necessário especificar um endereço possível. Caso contrário, o botão que habilita o início da busca é desabilitado. Para ver as possíveis faixas dos endereços, veja tipo de dado 87

3.3 **Exibir**

3.3.1 Barra Padrão

Menu: Exibir - Barra Padrão Tecla de Atalho: Ctrl+Shift+P

FUNÇÃO

Mostra ou esconde a barra padrão.

3.3.2 Barra de Comunicação

Menu: Exibir - Barra de Comunicação Tecla de Atalho: Ctrl+Shift+C

FUNÇÃO

Mostra ou esconde a barra de comunicação.

3.3.3 Barra de Edição

ACESSO

Menu: Exibir - Barra de Edição Tecla de Atalho: Ctrl+Shift+E

FUNÇÃO

Mostra ou esconde a barra de edição.

3.3.4 Barra de Blocos

ACESSO

Menu: Exibir - Barra de Blocos Tecla de Atalho: Ctrl+Shift+B

FUNÇÃO

Mostra ou esconde a barra de blocos.

3.3.5 Barra de Página

ACESSO

Menu: Exibir - Barra de Página Tecla de Atalho: Ctrl+Shift+G

FUNÇÃO

Mostra ou esconde a barra de página.

3.3.6 Barra de Status

ACESSO

Menu: Exibir - Barra de Status Tecla de Atalho: Ctrl+Shift+U

FUNÇÃO

Mostra ou esconde a barra de status.

3.3.7 Árvore de Projeto

ACESSO

Menu: Exibir - Barra de Status Tecla de Atalho: Ctrl+Shift+H

FUNÇÃO

Mostra ou esconde a <u>árvore de projeto</u> 14.

3.3.8 **Grade**

ACESSO

Menu: Exibir - Grade Tecla de Atalho: Ctrl+G

Barra de Ferramentas Padrão:

FUNÇÃO

Mostra ou esconde a grade.

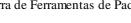
3.3.9 Nomes/Endereço

ACESSO

Menu: Exibir - Tag / Endereço Tecla de Atalho: Ctrl+Shift+T Barra de Ferramentas Padrão: TA

FUNÇÃO

Mostra o tag ou o endereço dos elementos.


3.3.10 Erros de Compilação

ACESSO

Menu: Exibir - Erros da Compilação

Tecla de Atalho: Ctrl+E

Barra de Ferramentas de Padrão:

FUNÇÃO

Mostra os erros da última compilação.

3.3.11 Localização dos Erros de Compilação

ACESSO

Menu: Exibir - Localização dos Erros de Compilação

Tecla de Atalho: Ctrl+L

Barra de Ferramentas Padrão:

FUNÇÃO

Mostra a célula que ocorreu erro na última compilação.

3.3.12 Informações da Compilação

Menu: Exibir - Informações da Compilação

Tecla de Atalho: Ctrl+I

Barra de Ferramentas Padrão:

FUNCÃO

Mostra informações 288 da última compilação.

3.3.13 Tabela de Endereços

ACESSO

Menu: Exibir - Tags dos Endereços

Tecla de Atalho: Ctrl+T

Barra de Ferramentas Padrão:

FUNÇÃO

Mostra todos os endereços, tipos de dado, tags e descrições existentes no projeto corrente. Ainda permite localizar o endereço que está selecionado, inserir um novo endereço e excluir o endereço que está selecionado.

3.3.14 Configuração dos Parâmetros do Usuário

Menu: Exibir - Tags dos Parâmetros do Usuário

Tecla de Atalho: Ctrl+G

Barra de Ferramentas Padrão: 📮

Mostra todos os parâmetros programáveis pelo usuário existentes no projeto corrente. As funções e as unidades destes parâmetros podem ser editadas e transferidas ao cartão.

3.3.15 Configuração dos Perfis

ACESSO

Menu: Exibir - Configuração dos Perfis

FUNÇÃO

Mostra a configuração do perfil padrão. Os valores do perfil padrão serão usados nos blocos de HOME e quando programado para ser usado nos blocos MC - Controle de Movimento.

3.4 **Página**

3.4.1 **Inserir Antes**

ACESSO

Menu: Página - Inserir Antes

Tecla de Atalho: Ctrl+B

Barra de Ferramentas Padrão: 🖼

FUNÇÃO

Insere uma página antes da página corrente.

DES CRIÇÃO

Este comando ficará desabilitado, caso o projeto contenha 255 páginas.

3.4.2 **Inserir Depois**

ACESSO

Menu: Página - Inserir Depois Tecla de Atalho: Ctrl+A

Barra de Ferramentas Padrão:

FUNÇÃO

Insere uma página depois da página corrente.

DESCRIÇÃO

Este comando ficará desabilitado, caso o projeto contenha 255 páginas.

3.4.3 **Excluir**

ACESSO

Menu: Página - Excluir Tecla de Atalho: Ctrl+Del

Barra de Ferramentas Padrão:

FUNÇÃO

Exlui a página corrente.

DESCRIÇÃO

Este comando só fica habilitado se o projeto tiver mais de 1 página. É necessário o projeto ter no mínimo 1 página.

3.4.4 **Anterior**

ACESSO

Menu: Página - Anterior Tecla de Atalho: Page Up

Barra de Ferramentas Padrão:

FUNÇÃO

Vai para a página anterior.

DESCRIÇÃO

Este comando fica desabilitado quando a página corrente é a primeira página do projeto.

3.4.5 Seguinte

ACESSO

Menu: Página - Seguinte Tecla de Atalho: Page Down

Barra de Ferramentas Padrão:

FUNÇÃO

Vai para a página seguinte.

DES CRIÇÃO

Este comando fica desabilitado quando a página corrente é a última página do projeto.

Vai Para 3.4.6

ACESSO

Menu: Página - Vai Para Tecla de Atalho: F5

Barra de Ferramentas Padrão:

FUNÇÃO

Vai para a página escolhida.

DES CRIÇÃO

Este comando abrirá uma caixa de dialogo onde é possível escolher a página deseja, definir um nome para página e também um comentário para a página.

3.5 Inserir

3.5.1 **Apontador**

ACESSO

Menu: Inserir - Apontador Tecla de Atalho: ESC

Barra de Ferramentas de Edição:

FUNÇÃO

Selecionar células 64 e alterar as propriedades dos elementos.

DESCRIÇÃO

Para alterar as propriedades dos componentes, basta dar um duplo-clique com o botão direito do mouse dentro do elemento.

3.5.2 **Apagar Elemento**

ACESSO

Menu: Inserir - Apagar Tecla de Atalho: Del

Barra de Ferramentas de Edição:

FUNÇÃO

Apaga um elemento.

DES CRIÇÃO

O cursor fica com forma de uma borracha. Clique com o botão esquerdo do mouse sobre o elemento que ele será apagado.

3.5.3 Comentário

ACESSO

Menu: Inserir - Comentário

Barra de Ferramentas de Edição: 🚾

FUNÇÃO

Insere um comentário 120.

DESCRIÇÃO

O cursor fica semelhate ao botão da barra de ferramentas acima. Você pode inserir o comentário clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o comentário não pode ser inserido e uma informação é escrita na barra de status.

3.5.4 Ligação

3.5.4.1 Horizontal

ACESSO

Menu: Inserir - Ligação - Horizontal
Barra de Ferramentas de Edição:

FUNÇÃO

Desenha uma ligação horizontal.

DES CRIÇÃO

O cursor fica semelhate ao botão da barra de ferramentas acima. Você pode inserir uma ligação horizontal clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a linha horizontal não pode ser inserida e uma informação é escrita na barra de status.

3.5.4.2 **Vertical**

ACESSO

Menu: Inserir - Ligação - Vertical
Barra de Ferramentas de Edição:

FUNÇÃO

Insere uma ligação vertical.

DES CRIÇÃO

O cursor fica semelhate ao botão da barra de ferramentas acima. Você pode inserir uma ligação vertical clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a linha vertical não pode ser inserida e uma informação é escrita na barra de status.

3.5.5 Contatos

3.5.5.1 NO CONTACT

ACESSO

Menu: Inserir - Contatos - NO CONTACT
Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento contato normalmente aberto 121.

DESCRIÇÃO

Você pode inserir o contato clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o contato não pode ser inserido e uma informação é escrita na barra de status.

3.5.5.2 NC CONTACT

ACESSO

Menu: Inserir - Contatos - NC CONTACT

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento contato normalmente fechado 122].

DESCRICÃO

Você pode inserir o contato clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o contato não pode ser inserido e uma informação é escrita na barra de status.

3.5.6 Bobinas

3.5.6.1 COIL

ACESSO

Menu: Inserir - Bobinas - COIL

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento bobina 123

DES CRIÇÃO

Você pode inserir a bobina clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a bobina não pode ser inserida e uma informação é escrita na barra de status.

3.5.6.2 NEG COIL

ACESSO

Menu: Inserir - Bobinas - NEG COIL

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento bobina negada 123.

DES CRIÇÃO

Você pode inserir a bobina clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a bobina não pode ser inserida e uma informação é escrita na barra de status.

3.5.6.3 SET COIL

ACESSO

Menu: Inserir - Bobinas - SET COIL

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento seta bobina 124.

DES CRIÇÃO

Você pode inserir a bobina clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a bobina não pode ser inserida e uma informação é escrita na barra de status.

3.5.6.4 RESET COIL

ACESSO

Menu: Inserir - Bobinas - RESET COIL

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento reseta bobina 125).

DESCRICÃO

Você pode inserir a bobina clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a bobina não pode ser inserida e uma informação é escrita na barra de status.

3.5.6.5 PTS COIL

ACESSO

Menu: **Inserir - Bobinas - PTS COIL**Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento bobina de transição positiva 126.

DES CRIÇÃO

Você pode inserir a bobina clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a bobina não pode ser inserida e uma informação é escrita na barra de status.

3.5.6.6 NTS COIL

ACESSO

Menu: Inserir - Bobinas - NTS COIL
Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento bobina de transição negativa 127.

DES CRIÇÃO

Você pode inserir a bobina clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, a bobina não pode ser inserida e uma informação é escrita na barra de status.

3.5.7 Blocos de Função

3.5.7.1 Controle de Movimento

3.5.7.1.1 MC_Pow er

ACESSO

Menu: Inserir - Blocos de Função - Controle de Movimento - MC_Power

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC Power 128]

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.1.2 MC_Reset

ACESSO

Menu: Inserir - Blocos de Função - Controle de Movimento - MC_Power

Barra de Ferramentas de Edição:

FUNCÃO

Insere um elemento MC Reset 130

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.1.3 MC_Stop

ACESSO

Menu: Inserir - Blocos de Função - Controle de Movimento - MC_Stop

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC Stop 132].

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.1.4 MW_lqControl

ACESSO

Menu: Inserir - Blocos de Função - Controle de Movimento - MW_IqControl

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MW_IqControl 135].

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.1.5 STOP

Menu: Inserir - Blocos de Função - Controle de Movimento - STOP

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento parada 136].

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.1.6 QSTOP

ACESSO

Menu: Inserir - Blocos de Função - Controle de Movimento - QSTOP

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento parada rápida 140.

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2 Posicionamento

3.5.7.2.1 SCURVE

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - SCURVE

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento <u>curva s</u> 142.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.2 TCURVE

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - TCURVE

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento <u>curva trapezoidal</u> 145].

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.3 HOME

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - HOME

Barra de Ferramentas de Edição: 🛂

FUNÇÃO

Insere um elemento busca zero máquina 1481.

DESCRICÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.4 TCURVAR

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - TCURVAR

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento curva trapezoidal variável 1521.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.5 CAM

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - CAM

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento CAM 155].

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.6 CALCCAM

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - CALCCAM

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento CALCCAM 1681.

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.7 SHIFT

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - SHIFT

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento deslocamento 171

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.8 MC_MoveAbsolute

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_MoveAbsolute

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC_MoveAbsolute 173].

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.9 MC_MoveRelative

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_MoveRelative

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC MoveRelative 1771.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.10 MC_StepAbsSwitch

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_StepAbsSwitch

Barra de Ferramentas de Edição: 🔎

FUNÇÃO

Insere um elemento MC_StepAbsSwitch 182].

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.11 MC_StepLimitSw itch

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_StepLimitSwitch

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC_StepLimitSwitch 185].

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.12 MC_StepRefPulse

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_StepRefPulse

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC_StepRefPulse 187

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.13 MC_StepDirect

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_StepDirect

Barra de Ferramentas de Edição:

FUNCÃO

Insere um elemento MC_StepDirect 190.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.14 MC_FinishHoming

ACESSO

Menu: Inserir - Blocos de Função - Posicionamento - MC_FinishHoming

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC_FinishHoming 1921

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.15 MC_CamTableSelect

ACESSO

Menu: Inserir - Bloco de Função - Posicionamento - MC_CamTableSelect

Barra de Ferramentas de Edição: 🔏

FUNÇÃO

Insere um elemento MC CamTableSelect 1931.

DESCRICÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.16 MC_CamCalc

ACESSO

Menu: Inserir - Bloco de Função - Posicionamento - MW_CamCalc

Barra de Ferramentas de Edição: 🔏

FUNÇÃO

Insere um elemento MW CamCalc 1941.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.17 MC_Camln

ACESSO

Menu: Inserir - Bloco de Função - Posicionamento - MC_CamIn

Barra de Ferramentas de Edição: 🔏

FUNCÃO

Insere um elemento MC CamIn 1971.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.2.18 MC_CamOut

ACESSO

Menu: Inserir - Bloco de Função - Posicionamento - MC_CamOut

Barra de Ferramentas de Edição: 🄏

FUNCÃO

Insere um elemento MC CamOut 2001

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.3 Movimento

3.5.7.3.1 SETSPEED

ACESSO

Menu: Inserir - Blocos de Função - Movimento - SETSPEED

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento seta velocidade 200

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.3.2 JOG

ACESSO

Menu: Inserir - Blocos de Função - Movimento - JOG

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento jog 2041.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.3.3 SPEED

Menu: Inserir - Blocos de Função - Movimento - SPEED

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento SPEED 2061.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.3.4 REF

ACESSO

Menu: Inserir - Blocos de Função - Movimento - REF

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento REF 2091.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.3.5 MC_MoveVelocity

ACESSO

Menu: Inserir - Blocos de Função - Movimento - MC_MoveVelocity

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC_MoveVelocity 212.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.4 Seguidor

3.5.7.4.1 FOLLOW

ACESSO

Menu: Inserir - Bloco de Função - Seguidor - FOLLOW

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento Seguidor 2151. Veja também MSCANWEG 2651.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.4.2 AUTOREG

ACESSO

Menu: Inserir - Blocos de Função - Seguidor - AUTOREG

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento AutoReg 216

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.4.3 MC_Gearln

ACESSO

Menu: Inserir - Bloco de Função - Seguidor - MC_GearIn

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC GearIn 2191.

DESCRICÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.4.4 MC_GearInPos

ACESSO

Menu: Inserir - Bloco de Função - Seguidor - MC_GearInPos

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MC GearInPos 222.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.4.5 MC_Phasing

ACESSO

Menu: Inserir - Bloco de Função - Seguidor - MC_Phasing

Barra de Ferramentas de Edição: 🕰

FUNCÃO

Insere um elemento MC Phasing 223.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.4.6 MC_GearOut

ACESSO

Menu: Inserir - Bloco de Função - Seguidor - MC_GearOut

Barra de Ferramentas de Edição: 🔏

FUNCÃO

Insere um elemento MC GearOut 225

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.5 Verificador

3.5.7.5.1 INPOS

ACESSO

Menu: Inserir - Blocos de Função - Verificador - INPOS

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento em posição 226.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.5.2 INBWG

ACESSO

Menu: Inserir - Blocos de Função - Verificador - INBWG

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento em movimento 228.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

CLP 3.5.7.6

3.5.7.6.1 TON

Menu: Inserir - Blocos de Função - CLP - TON

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento temporizador 230.

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.6.2 RTC

ACESSO

Menu: Inserir - Blocos de Função - CLP - RTC

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento RTC 2331.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.6.3 CTU

Menu: Inserir - Blocos de Função - CLP - CTU

Barra de Ferramentas de Blocos: 12...

FUNÇÃO

Insere um elemento contador incremental 234].

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na

3.5.7.6.4 PID

ACESSO

Menu: Inserir - Blocos de Função - CLP - PID

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento pid 237.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.6.5 FILTER

ACESSO

Menu: Inserir - Blocos de Função - CLP - FILTER

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento filtro 240

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.6.6 CTENC

ACESSO

Menu: Inserir - Blocos de Função - CLP - CTENC

Barra de Ferramentas de Bloco:

FUNÇÃO

Insere um elemento Contador de Encoder 242.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.7 Cálculo

3.5.7.7.1 COMP

ACESSO

Menu: Inserir - Blocos de Função - Cálculo - COMP

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento comparador 245

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.7.2 MATH

ACESSO

Menu: Inserir - Blocos de Função - Cálculo - MATH

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento aritmético 2461.

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.7.3 FUNC

ACESSO

Menu: Inserir - Blocos de Função - Cálculo - FUNC

Barra de Ferramentas de Blocos: f(x)

FUNÇÃO

Insere um elemento função matemática 253

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.7.4 SAT

ACESSO

Menu: Inserir - Blocos de Função - Cálculo - SAT

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento saturação 255.

DESCRICÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.7.5 MUX

ACESSO

Menu: Inserir - Blocos de Função - Cálculo - MUX

Barra de Ferramentas de Blocos:

FUNCÃO

Insere um elemento multiplexador 256.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.7.6 DMUX

ACESSO

Menu: Inserir - Blocos de Função - Cálculo - DMUX

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento demultiplexador 2581.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na

3.5.7.8 Transferência

3.5.7.8.1 TRANSFER

ACESSO

Menu: Inserir - Blocos de Função - Transferência - TRANSFER

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento transfer 259.

DESCRICÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.8.2 FL2INT

Menu: Inserir - Blocos de Função - Transferência - FL2INT

Barra de Ferramentas de Blocos: F:Í

FUNCÃO

Insere um elemento ponto flutuante para inteiro 261.

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.8.3 INT2FL

ACESSO

Menu: Inserir - Blocos de Função - Transferência - INT2FL

Barra de Ferramentas de Blocos: IF

FUNÇÃO

Insere um elemento inteiro para ponto flutuante 261.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.8.4 IDATA

ACESSO

Menu: Inserir - Blocos de Função - Transferência - IDATA

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento idata 262.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.8.5 USERERR

ACESSO

Menu: Inserir - Blocos de Função - Transferência - USERERR

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento USERERR 264.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.9 Rede CAN

3.5.7.9.1 MSCANWEG

ACESSO

Menu: Inserir - Blocos de Função - Rede Can - MS CANWEG

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MSCANWEG 265 l. Veja também FOLLOW 215 l.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.9.2 RXCANWEG

ACESSO

Menu: Inserir - Blocos de Função - Rede Can - RXCANWEG

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento RXCANWEG 265

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.9.3 SDO

ACESSO

Menu: Inserir - Blocos de Função - Rede CAN - SDO

Barra de Ferramentas de Blocos:

FUNÇÃO

Insere um elemento SDO 266.

DES CRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.10 USERFB

ACESSO

Menu: Inserir - Blocos de Função - USERFB

Barra de Ferramentas de Edição: 🏥

FUNÇÃO

Insere um elemento <u>USERFB</u> 268.

DESCRICÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.5.7.11 MMC

ACESSO

Menu: Inserir - Blocos de Função - MMC

Barra de Ferramentas de Edição:

FUNÇÃO

Insere um elemento MMC 282].

DESCRIÇÃO

Você pode inserir o bloco de função clicando o botão esquerdo do mouse na posição desejada. Se o cursor se alterar para o símbolo de proibido, o bloco de função não pode ser inserida e uma informação é escrita na barra de status.

3.6 **Ferramentas**

3.6.1 Valores dos Parâmetros

ACESSO

Menu: Ferramentas - Valores dos Parâmetros

Tecla de Atalho: F10

Barra de Ferramentas de Comunicação:

FUNÇÃO

Permite carregar os valores contidos nos parâmetros do cartão e salvá-los em um arquivo (.par). Também permitem carregar um arquivo (.par) e transferí-los aos parâmetros do drive.

DESCRIÇÃO

Tambémé possível alterar os valores contidos na lista através dos botões "Editar" e "Deletar".

3.6.2 **Anybus**

ACESSO

Menu: Ferramentas - Anybus

Tecla de Atalho: F11

FUNÇÃO

Permite ao usuário definir as variáveis de entradas e de saídas que serão utilizadas pelo anybus.

3.6.3 **CANOpen**

ACESSO

Menu: Ferramentas - CANopen Tecla de Atalho: Shift+F11

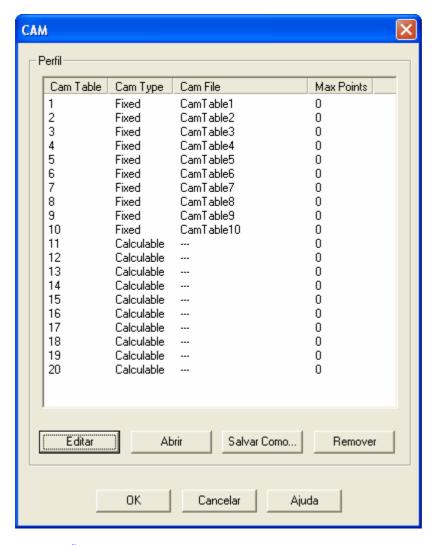
FUNÇÃO

Permite ao usuário configurar a rede CANopen mestre.

3.6.4 **Cam Profiles**

ACESSO

Menu: Ferramentas - Cam Profiles


Barra de Ferramentas:

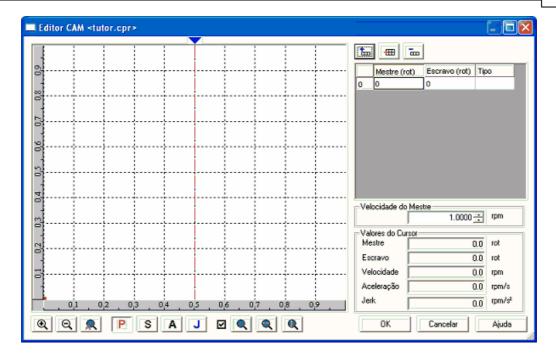
FUNÇÃO

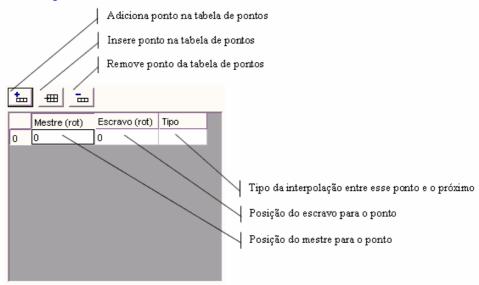
Permite carregar e editar as tabelas de pontos das curvas CAM.


DES CRIÇÃO

As tabelas de pontos (Cam Table) de 1 à 10 são tabelas de pontos fixos, que serão transmitidos no momento do download do aplicativo. Para usar as tabelas de 1 à 10, primeiramento o bloco MC CamTableSelect deve ser executado com a tabela desejada e após o bloco MC CamIn 1971.

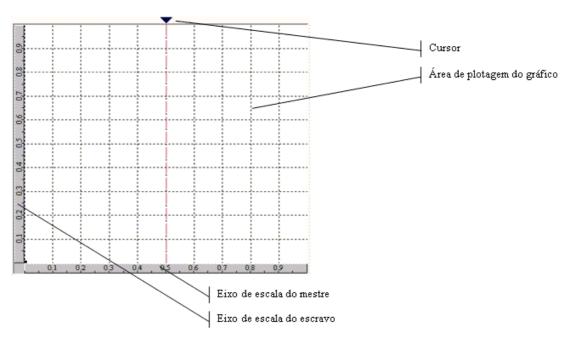
As tabelas de pontos de 11 à 20, são tabelas de pontos variáveis. Para usar as tabelas de 11 à 20, primeiramento o bloco MC_CamCalc 194 deve ser executado com a tabela desejada e após o bloco MC_CamIn 197.


Para o equipamento SCA06 é permitido programar no máximo 200 pontos fixos e 100 pontos variáveis, sendo que o número máximo de pontos variáveis de cada tabela deve ser configurado na coluna Max Points, conforme abaixo:


Para editar a tabela cam clique no botão "Editar", o editor de perfil cam abrirá, conforme figura a seguir :

Nessa janela existe os seguintes controles:

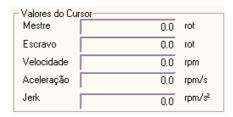
Tabela de pontos:



NOTAS!


- Como citado anteriormente o bloco CAM é sempre relativo, logo o primeiro ponto da tabela de pontos sempre será mestre=0 e escravo=0.
 - Mestre = eixo virtual
 - Escravo = eixo real (drive)

Gráfico do perfil:



Ferramentas de controle do gráfico:

Valores do cursor:

Valores relativos ao ponto selecionado do cursor.

Velocidade do mestre:

Velocidade utilizada para cálculo da velocidade, aceleração e jerk do escravo.

! NOTA

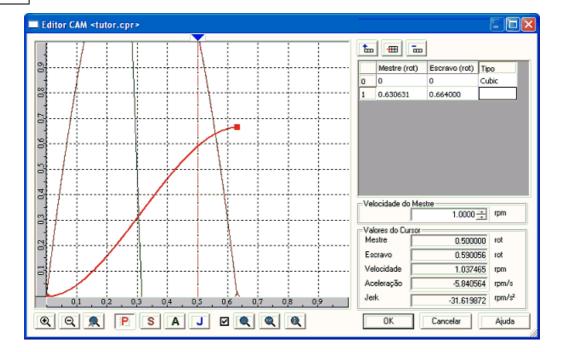
- A velocidade, aceleração e jerk do escravo devem ser utilizados como referência para o desenvolvimento do perfil cam, onde os mesmos são calculados numericamente e não levam em consideração carga, inércia, torque e a dinâmica do drive.

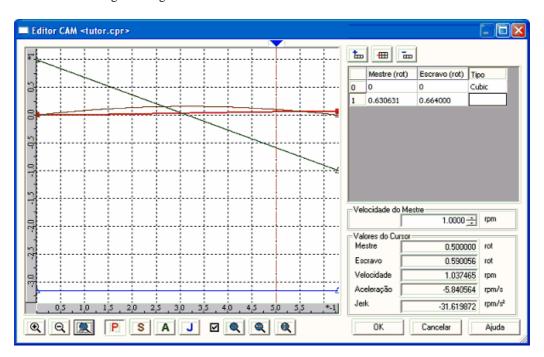
Adicionando um novo ponto no perfil cam:

Um ponto pode ser adicionado através dos botões adicionar ou inserir ponto ou através de um duplo clique do mouse no gráfico na posição onde deseja-se adicionar o ponto. O duplo clique pode ser feito em qualquer região do gráfico. Caso já exista uma interpolação nessa região o editor irá inserir esse ponto entre os dois pontos da interpolação.

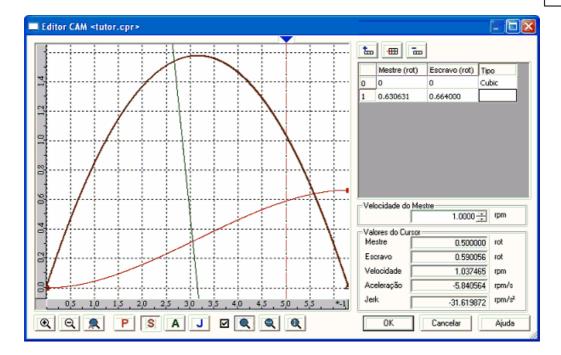
O ponto é sempre adicionado como interpolação do tipo linear.

Quando é adicionado ou inserido um ponto através dos respectivos botões os valores de mestre e escravo vem zerados. No caso da inserção de ponto isso pode ocasionar uma interrupção do perfil, pois a posição do mestre deve sempre crescer em relação a origem, então, deve-se editar o valor do mestre e escravo clicando sobre suas células na tabela de pontos.

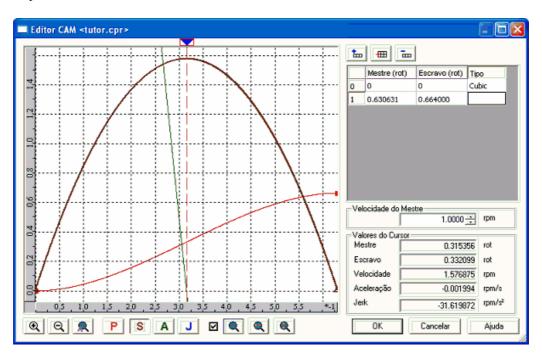

Na figura a seguir foi inserido um ponto através do duplo clique do mouse:


Para alterar o tipo da interpolação clique na célula de tipo na linha correspondente a origem da interpolação e selecione a desejada.

Na figura a seguir foi alterado o ponto para interpolação tipo cúbica.

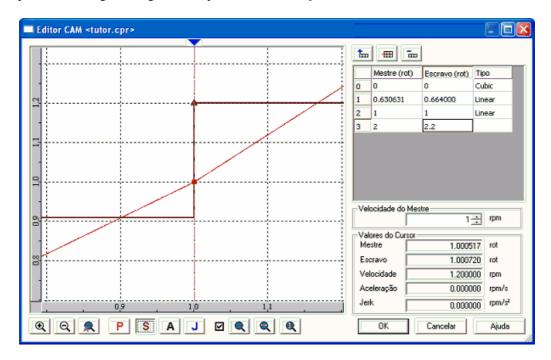


Agora nessa curva já é possível observar outras grandezas além da posição como velocidade, aceleração e jerk. Para uma melhor visualização de todas grandezas podemos utilizar o botão "Ajusta Zoom Tudo" conforme figura a seguir.



Da mesma maneira podemos escolher uma das grandeza e utilizar o botão "Aplica Zoom Selecionado". No exemplo a seguir foi efetuado um zoom na velocidade.

Outra ferramenta interessante de ser citada é o cursor. No exemplo a seguir posicionaremos o cursor no ponto de máxima velocidade.


Deve-se lembrar que as grandezas velocidade, aceleração e jerk do escravo são dependentes da velocidade do mestre, então é interessante altera-la de modo a simular algo muito próximo ao real. Na figura a seguir a velocidade do mestre será alterada para 1000 rpm e analisaremos a mesma posição do cursor.

Velocidade do Mestre		
	1000 🛨	rpm
Valores do Cursor		
Mestre	0.315356	rot
Escravo	0.332099	rot
Velocidade	1576.875185	rpm
Aceleração	-1994.056064	rpm/s
Jerk	-31619871813.905342	rpm/s²

Durante o projeto do perfil cam todas essas grandezas devem ser observadas pois as mesmas poderão ou não ser cumpridas em função de limitações mecânicas, elétricas e eletrônicas dos equipamentos envolvidos.

Como os gráficos de aceleração e jerk são calculados levando em consideração a interpolação entre dois pontos, nas junções entre interpolações lineares a aceleração e jerk serão mostrados como iguais a zero. Mas sabemos que teoricamente num degrau de velocidade a aceleração e jerk são infinitos, na prática a aceleração e jerk nesse momento dependerá também das limitações mecânicas, elétricas e eletrônicas dos equipamentos envolvidos. Esses degraus de velocidade devem ser observados e considerados no projeto do perfil cam. Na figura a seguir é exemplificado esta situação.

O bloco CAM tem disponível dois tipos de interpolação, linear e cúbica. Sendo utilizada as seguintes equações :

$$pe = pie * \left(\frac{pfm - pm}{pfm - pim}\right) + pfe * \left(\frac{pm - pim}{pfm - pim}\right)$$

$$ve = \left(\frac{-pie}{pfm - pim} + \frac{pfe}{pfm - pim}\right) * vm$$


```
ae = 0
je = 0

- Cúbica:

pe = a*(pm - pim)^3 + b*(pm - pim)^2 + c*(pm - pim) + pie

ve = (3*a*(pm - pim)^2 + 2*b*(pm - pim) + c)*vm

ae = (6*a*(pm - pim) + 2*b)*vm^2

je = 6*a*vm^3

Onde:

pe = posição do escravo

ve = velocidade do escravo

ae = aceleração do escravo

je = jerk do escravo

je = jerk do escravo

je = posição do mestre
```

pfm = posição final do mestre pie = posição inicial do escravo pfe = posição final do escravo a = coeficiente calculado pelo editor CAM

vm = velocidade do mestre pim = posição inicial do mestre

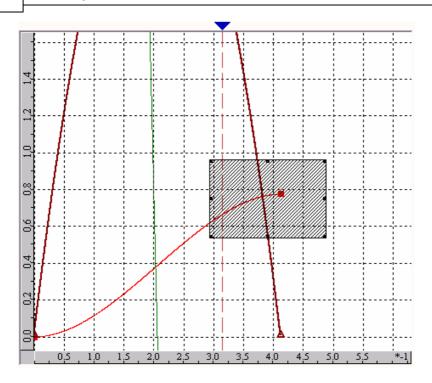
b = coeficiente calculado pelo editor CAM c = coeficiente calculado pelo editor CAM

Alterando um ponto no perfil cam:

Um ponto pode ser alterado através da tabela de pontos pela edição direta ou movendo o ponto no gráfico. Para mover o ponto no gráfico leve o mouse até o ponto em questão que é marcado com um quadrado vermelho, clique sobre o mesmo e mantenha o mouse pressionado e arraste o mesmo para a nova posição.

Ao clicar sobre o ponto a tabela de pontos será deslocada para o ponto em questão, selecionando a célula relacionada.

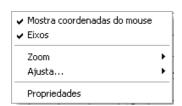
A operação de mover o ponto no gráfico é interativa e calcula todo o perfil a cada mudança do ponto em questão. O novo ponto pode ser visto na tabela de pontos.


Removendo um ponto no perfil cam:

O mesmo é removido diretamente na tabela de pontos. Para isso selecione uma das células respectiva ao ponto e clique no botão "Remover Ponto".

Zoom de uma área determinada do gráfico:

Clique com o mouse sobre um dos cantos da região que deseja executar o zoome mantenha o mouse pressionado, mova o mouse de modo a marcar uma região. Nesse momento um retângulo aparecerá no gráfico, solte o botão do mouse, e então dê um duplo clique sobre esse retângulo. Na figura a seguir um exemplo desse zoom.

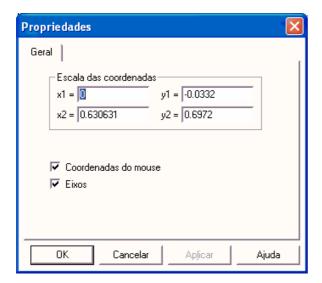


Movendo o gráfico:

Pressione a tecla SHIFT e clique com o mouse sobre o gráfico e mantenha o mouse pressionado, mova o mouse e gráfico moverá junto.

Menu gráfico:

Para ter acesso ao menu do gráfico clique com o botão direito do mouse sobre a área do gráfico, após o seguinte menu aparecerá.



Nesse menu é possível executar as seguintes operações :

- Habilitar/desabilitar coordenadas do mouse.
- Habilitar/desabilitar eixos x e y.
- Executar operações de zoom.
- Executar operações de ajuste da tela.
- Abrir caixa com as propriedades do gráfico.

Na figura a seguir é mostrada a caixa de propriedades do gráfico.

Nessa caixa de propriedades do gráfico é possível executar as seguintes operações :

- Ajustar manualmente a escala dos eixos x e y
- Habilitar/desabilitar coordenadas do mouse.
- Habilitar/desabilitar eixos x e y.

3.6.5 **Aplicação**

3.6.5.1 Criar

ACESSO

Menu: Ferramentas - Aplicação - Criar

Permite ao usuário criar um novo projeto ladder a partir de aplicações 288 pré definidas no WLP.

3.6.5.2 Configurar

ACESSO

Menu: Ferramentas - Aplicação - Configurar

FUNÇÃO

Permite ao usuário configurar um aplicação 288 previamente criada.

3.7 Construir

3.7.1 Compilar

Menu: Construir - Compilar

Tecla de Atalho: F7

Barra de Ferramentas Padrão:

FUNCÃO

Compila o projeto.

DESCRIÇÃO

Após a compilação, uma caixa de diálogo é aberta mostrando os possíveis erros da compilação 23, juntamente com a localização dos erros 23 no editor ladder. Veja também as mensagens de erros 285 erros fatais 284, advertências 287 e informações 288 do compilador.

3.7.2 Compilar Subrotina/Macro

ACESSO

Menu: Construir - Compilar Tecla de Atalho: Ctrl+F7

Barra de Ferramentas Padrão:

FUNÇÃO

Compila a subrotina/USERFB.

DES CRIÇÃO

Após a compilação, uma caixa de diálogo é aberta mostrando os possíveis erros da compilação 23, juntamente com a localização dos erros 23 no editor ladder. Veja também as mensagens de erros 285, erros fatais 284, advertências 287 e informações 288 do compilador.

3.7.3 Depuração

ACESSO

Menu: Construir - Depuração Tecla de Atalho: Shift+F7

FUNÇÃO

Ativa ou desativa as informações para depuração.

3.8 Comunicação

3.8.1 **Download**

ACESSO

Menu: Comunicação - Dowload

Tecla de Atalho: F8

Barra de Ferramentas de Comunicação:

FUNÇÃO

Escreve o programa do usuário no drive.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.2 **Upload**

ACESSO

Menu: Comunicação - Upload Tecla de Atalho: Alt + F8

Barra de Ferramentas de Comunicação:

FUNÇÃO

Lê o programa do usuário no drive.

IMPORTANTE

- * Verificar as Configurações 61 da Comunicação.
- * Somente disponível para SoftPLC do CFW-11, SoftPLC da SSW-06, SoftPLC do SSW7000, SoftPLC do CFW500.
- * Para SoftPLC do CFW-11 é possível proteger essa função por senha. Maiores detalhes verificar propriedades do projeto 191.

3.8.3 Monitoração Online

ACESSO

Menu: Comunicação - Monitoração Online

Tecla de Atalho: F9

Barra de Ferramentas de Comunicação:

FUNCÃO

Ativa ou desativa a monitoração online 67.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.4 Configuração Monitoração Online

3.8.4.1 Com Sinal

ACESSO

Menu: Comunicação - Configuração Monitoração Online - Com Sinal

FUNÇÃO

Durante a monitoração muda todas as caixas de monitoração online para formato com sinal.

3.8.4.2 Sem Sinal

ACESSO

Menu: Comunicação - Configuração Monitoração Online - Sem Sinal

FUNCÃO

Durante a monitoração muda todas as caixas de monitoração online para formato sem sinal.

3.8.4.3 **Decimal**

ACESSO

Menu: Comunicação - Configuração Monitoração Online - Decimal

FUNÇÃO

Durante a monitoração muda todas as caixas de monitoração online para formato decimal.

3.8.4.4 Hexadecimal

ACESSO

Menu: Comunicação - Configuração Monitoração Online - Hexadecimal

FUNÇÃO

Durante a monitoração muda todas as caixas de monitoração online para formato hexadecimal.

3.8.4.5 Binário

ACESSO

Menu: Comunicação - Configuração Monitoração Online - Binário

Durante a monitoração muda todas as caixas de monitoração online para formato binário.

3.8.5 Monitoração de Variáveis

ACESSO

Menu: Comunicação - Monitoração de Variáveis

Tecla de Atalho: Shift+F9

Barra de Ferramentas de Comunicação:

FUNÇÃO

Ativa ou desativa a monitoração de variáveis 71.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.6 Trend de Variáveis

ACESSO

Menu: Comunicação - Trend de Variáveis

Tecla de Atalho: Ctrl+F9

Barra de Ferramentas de Comunicação:

FUNÇÃO

Abre um diálogo mostrando um gráfico de tendência das variáveis 73 escolhidas.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.7 Monitoração de Entradas/Saídas

Menu: Comunicação - Monitoração de Entradas/Saídas

Tecla de Atalho: Alt+F9

Barra de Ferramentas de Comunicação:

FUNÇÃO

Abre um diálogo mostrando uma caixa de dialogo das entradas e saídas 777 do cartão e do drive.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.8 Monitoração via IHM

ACESSO

Menu: Comunicação - Monitoração via IHM

Tecla de Atalho: Ctrl+Alt+F9

Barra de Ferramentas de Comunicação:

FUNÇÃO

Abre um diálogo mostrando uma caixa de monitoração via IHM 791.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

Força Entradas/Saídas 3.8.9

ACESSO

Menu: Comunicação - Força Entradas/Saídas

Barra de Ferramentas de Comunicação:

FUNÇÃO

Abre um diálogo mostrando uma caixa de força entradas/saídas 791.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.10 Informações Gerais

ACESSO

Menu: Comunicação - Informações Gerais

Barra de Ferramentas de Comunicação:

FUNÇÃO

Abre um diálogo mostrando uma caixa de informações gerais (online) 831.

IMPORTANTE

* Verificar as Configurações 61 da Comunicação.

3.8.11 Configurações

ACESSO

Menu: Comunicação - Configurações

Tecla de Atalho: Shift+F8

FUNÇÃO

Configura a comunicação.

Porta: COM1 a COM8 ou USB.

3.9 Bloco do Usuário

3.9.1 Configurações

ACESSO

Menu: Bloco do Usuário - Configurações

Tecla de Atalho: Ctrl+M

FUNÇÃO

Edita configurações do USERFB que está sendo editado.

DES CRIÇÃO

Através desse menu é possível alterações as configurações previamente executadas no wizard de criação do USERFB.

3.9.2 Informações

ACESSO

Menu: Bloco do Usuário - Informações Tecla de Atalho: Ctrl+Shift+M

FUNÇÃO

Edita informações do USERFB que está sendo editado.

DESCRIÇÃO

Através desse menu é possível editar o texto que será exibido através do botão informações da caixa de propriedades do USERFB.

3.10 Janela

3.10.1 Cascata

ACESSO

Menu: Janela - Cascata

FUNÇÃO

Cascateia as janelas de todos os projetos abertos.

3.10.2 Lado a Lado na Horizontal

ACESSO

Menu: Janela - Lado a Lado na Horizontal

FUNÇÃO

Coloca as janelas de todos os projetos abertos lada a lado na horizontal.

3.10.3 Lado a Lado na Vertical

ACESSO

Menu: Janela - Lado a Lado na Vertical

FUNÇÃO

Coloca as janelas de todos os projetos abertos lada a lado na vertical.

3.11 **Ajuda**

3.11.1 Tópicos de Ajuda

ACESSO

Menu: Ajuda - Tópicos de Ajuda

Tecla de Atalho: F1

Barra de Ferramentas Padrão:

FUNÇÃO

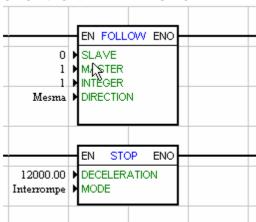
Mostra a ajuda.

3.11.2 Sobre o WLP

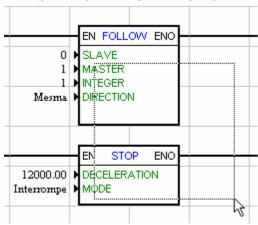
Menu: Ajuda - Sobre o WLP Tecla de Atalho: Ctrl+Shift+A

FUNÇÃO

Mostra informações do programa.


4 Operações de Edição

4.1 Selecionando Células


- 1. Ativar o comando Apontador 26.
- 2. Clicar com o botão esquerdo do mouse numa célula e arrastar o mouse até a célula desejada.

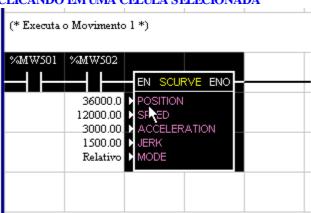
Estando as células selecionadas, é possível apagá-las teclando Delete.

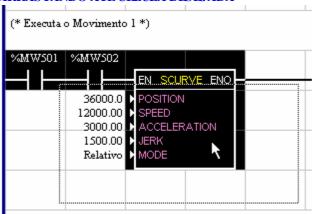
CLICANDO NA PRIMEIRA CÉLULA



ARRASTANDO ATÉ A ÚLTIMA CÉLULA

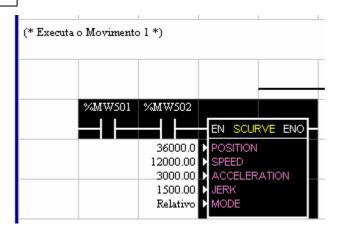
SOLTANDO O BOTÃO ESQUERDO DO MOUSE




4.2 Movendo Células

- 1. Selecionar as células 64 desejadas.
- 2. Clicar com o botão esquerdo do mouse em uma das células selecionadas e arrastar até a célula desejada.

CLICANDO EM UMA CÉLULA SELECIONADA



ARRASTANDO ATÉ CÉLULA DESEJADA

SOLTANDO O BOTÃO ESQUERDO DO MOUSE

4.3 Colando Células

- 1. <u>Selecionar as células</u> 64 desejadas.
- 2. Copiar 20 ou Recortar 20 as células para a área de transferência.
- 3. Ativar o comando Colar 21.

- 4. Clicar com o botão esquerdo do mouse na posição desejada.
- 5. Clicar com botão direito do mouse para finalizar a operação.

5 Monitoração

5.1 Introdução

A monitoração online é feita através da porta de comunicação da placa, da mesma maneira que o programa Ladder é carregado para a placa. Ou seja, uma vez o programa ladder compilado e carregado é possível através da porta de comunicação utilizar o programa WLP para representar gráfica e numericamente o estado lógico do programa ladder. Através da monitoração online pelo PC, é possível visualizar os estados lógicos de contatos e bobinas do programa ladder bem como o valor numérico atual de marcadores de word, float e parâmetros do drive e da placa.

5.2 Barra de Botões

FIGURA:

Nesta toolbar estão todas as funções relativas à monitoração online que são :

A MONITORAÇÃO DE VARIÁVEIS

- TREND DE VARIÁVEIS

💆 - MONITORAÇÃO DE ENTRADAS E SAÍDAS

দ - MONITORAÇÃO DE PARÂMETROS VIA IHM

N-FORÇA ENTRADAS/SAÍDAS

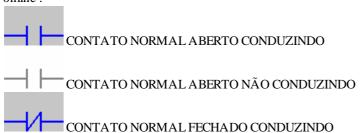
INFORMAÇÕES GERAIS (ONLINE)

Todas as funções da monitoração online podem ser utilizadas individualmente ou em conjunto, ou seja, todas utilizam o mesmo canal de comunicação com a placa de forma compartilhada. Então deve ficar bem claro que quanto mais funções de monitoração estão sendo utilizadas mais informações serão requeridas à placa tornando a monitoração mais lenta em função disso.

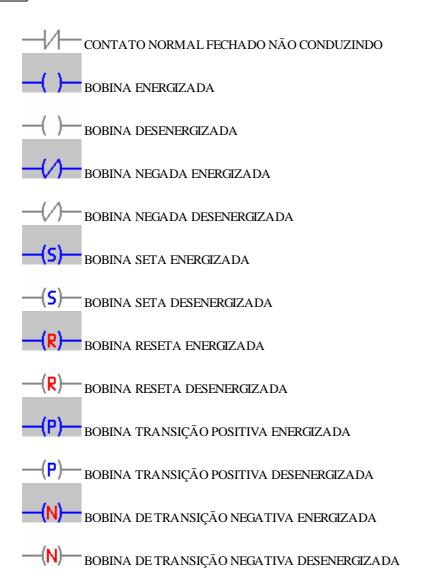
5.3 Monitoração Online

Após o programa ladder ser compilado e carregado na placa é possível monitorar o ladder pressionando o

botão de monitoração online . Neste momento o WLP tentará estabelecer a comunicação com a placa testando a comunicação com a mesma. Se a comunicação estiver correta, a barra de status na parte inferior do WLP indicará uma mensagem de sucesso:


Porta serial 1 aberta com sucesso.

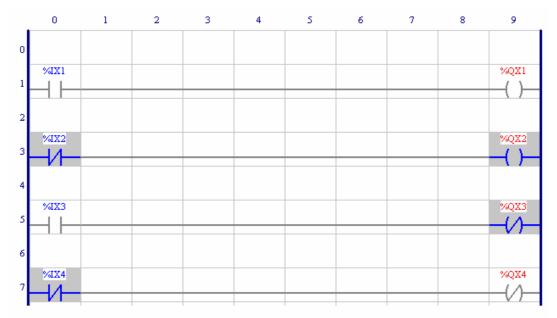
Nesta mesma barra existirá um indicador tipo LED da cor azul que ficará piscando indicando que a comunicação está operando .


Casso neste instante ocorra alguma falha de comunicação uma caixa abrirá com a informação da falha e possível solução e a monitoração online será desativada.

Uma vez estando à monitoração online ativa todas as ferramentas de edição ficarão desativadas e a janela de edição ira mostrar o estado lógico do programa em ladder. Para desativar a monitoração online basta pressionar o botão de monitoração online novamente.

A seguir será descrito a representação gráfica do estado lógico para contatos e bobinas em monitoração online :

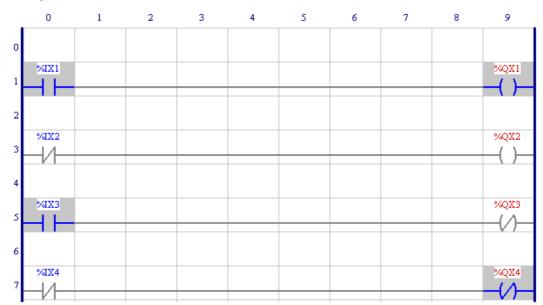
NOTA!


A linguagem utilizada para descrever o funcionamento do Ladder faz uma analogia a um circuito elétrico com contatores e seus respectivos contatos. Quando um contato no ladder é dito em estado de condução, referese à capacidade do mesmo de estar dando continuidade (seqüência de lógica) para a próxima fase do programa.

Da mesma forma, uma bobina "energizada" tem, na lógica do programa, seus contatos:

- Normalmente Abertos NA: em condução;
- Normalmente Fechados NF: em não condução.

A seguir, um exemplo de monitoração online no ladder, utilizando 4 entradas digitais (representadas cada uma por um contato do tipo NA ou NF) e 4 bobinas:

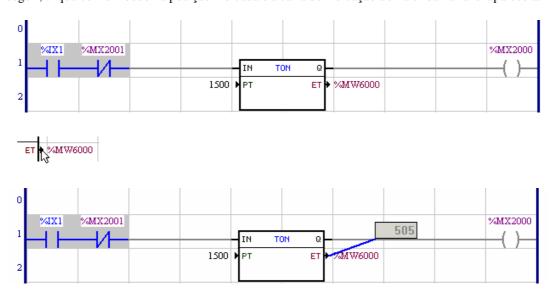

A figura anterior apresenta a sinalização gráfica do estado lógico de 4 entradas digitais quando desativadas, ou seja, quando não houver sinal em seus bornes.

Aquelas DI's associadas a contatos do tipo NA indicam não condução, e aquelas associadas a contatos do tipo NF indicam condução.

As bobinas normais estarão energizadas se o contato ligado a elas permitir condução, ou seja, entrada da bobina igual a 1.

As bobinas do tipo negadas aparecem como energizadas apenas quando o contato ligado a elas não estiver conduzindo, ou seja, entrada da bobina igual a 0.

Na figura a seguir as entradas digitais estão ativadas, com 24Vcc aplicado em seus bornes. Conforme a sinalização, o estado lógico dos contatos é o inverso do apresentado na figura 5.4 (NA= conduz e NF= não conduz).



Neste caso, o estado lógico dos contatos e bobinas são exatamente o contrário dos anteriores.

5.4 Monitoração de Valores Numéricos no Ladder

Alguns blocos de função no ladder como, por exemplo os blocos SCURVE e TCURVE, utilizam variáveis numéricas com marcadores de word, marcadores de float e parâmetros do drive ou da placa. A monitoração destas funções é feita com o clique do mouse no conector relacionado a variável numérica. Por exemplo, para monitorar o tempo atual de um temporizador que está no marcador de word %MW 6000, conforme figuras a seguir, clique com o mouse na posição indicada e a caixa de indicação do valor da variável aparecerá.

A caixa de monitoração pode ser posicionada em qualquer local da janela de edição do ladder, para tal, basta clicar na caixa mantendo o botão do mouse pressionado e arrastá-la para a posição desejada.

Figura - CAIXA REPOSICIONADA

Para apagar a caixa de monitoração basta clicar na mesma de modo a selecioná-la e pressionar a tecla DEL.

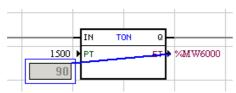


Figura - CAIXA SELECIONADA

Para remover a seleção basta pressionar a tecla ESC.

Para alterar o formato de monitoração da caixa de monitoração clique com o botão direito sobre a mesma que o seguinte menu aparecerá:

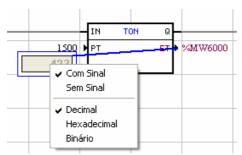
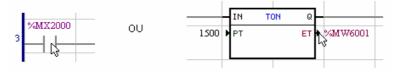


Figura - MENU FORMATO

Nesse menu e possível escolher as seguintes opções :

- Com Sinal
- Sem Sinal
- Decimal
- Hexadecimal
- Binário


Também é possível selecionar o formato de monitoração para todas as caixas de monitoração da página corrente para isso verifique nesse

help na opção Menus - Comunicação - Configuração Monitoração Online.

5.5 Escrita de Variáveis no Ladder

Com a monitoração online ativa é possível escrever valores em variáveis do tipo marcador de bit, marcador de word, marcador de float, marcador de bit de sistema, parâmetro do usuário, parâmetro de sistema e saídas digitais.

Para escrever em variáveis utilizadas em contatos ou bobinas basta dar um duplo clique sobre o mesmo, para escrever em variáveis utilizadas em blocos de função basta dar um duplo clique no conector da variável, conforme figura a seguir.

Após o duplo clique a seguinte caixa aparecerá.

Nessa caixa você deve escrever o novo valor a ser escrito e confirmar através do botão.

5.6 Monitoração de Variáveis

Através da janela de monitoração de variáveis é possível verificar o estado de variáveis utilizadas no programa ladder independente de estar ou não monitorando o ladder. Para carregar esta tela basta pressionar

o botão de monitoração de variáveis Da mesma maneira que na monitoração online neste momento o WLP tentará estabelecer a comunicação com a placa testando a comunicação serial com a mesma e efetuará as mesmas operações anteriormente descritas.

A janela de monitoração de variáveis tem o seguinte aspecto:

Para inserir novas variáveis basta pressionar o botão inserir. A seguinte caixa será exibida:

Nesta janela basta escolher o tipo, endereço e um símbolo representativo. No exemplo a seguir, foi selecionado o marcador de word %MW6000:

Inserir Variável	
Tipo	%MW: Marcador de Word
Endereço	6000
Símbolo	Tempo1
	OK Cancela

Ao pressionar o botão OK a variável será mostrada já na janela de monitoração de variáveis.

Neste momento, o número inserido na coluna denominada "valor" corresponde ao valor real da variável em questão adquirido da placa através da pota de comunicação.

Nesta caixa também é possível editar a variável em questão, apagar a mesma, movê-la de posição para cima e para baixo.

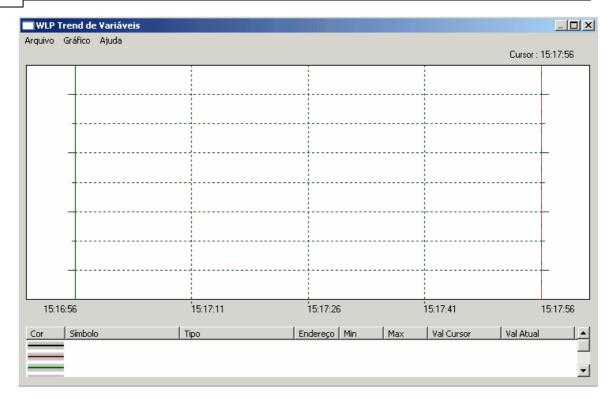
Através do menu Arquivo que está no canto superior esquerdo da janela é possível salvar e abrir as configurações das variáveis criadas.

Com a caixa de monitoração de variáveis ativa e configurada é possível escrever valores em variáveis do tipo marcador de bit, marcador de word, marcador de float, marcador de bit de sistema, parâmetro do usuário, parâmetro de sistema e saídas digitais.

Para escrever em variáveis basta selecionar com o mouse a variável a ser escrita e cliquar no botão "escrever" ou, dar um duplo clique sobre a variável que se deseja escrever. Após isso a seguinte caixa aparecerá.

Nessa caixa deve ser escrito o novo valor. Confirmar através do botão.

5.7 Trend de Variáveis


Através da janela de "trend de variáveis" é possível verificar o estado de variáveis utilizadas no programa ladder independente de estar ou não monitorando o ladder de maneira gráfica semelhante a um plotter de penas.

Para carregar esta janela basta pressionar o botão de trend de variáveis

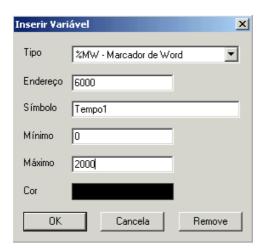
O dialogo de trend de variáveis temo seguinte aspecto:

Todas as configurações relacionadas ao trend de variáveis estão no menu Gráfico conforme figura a seguir:

O trend de variáveis tem uma operação um pouco diferente das outras citadas anteriormente, para utilizá-lo e necessário seguir a sequência citada abaixo:

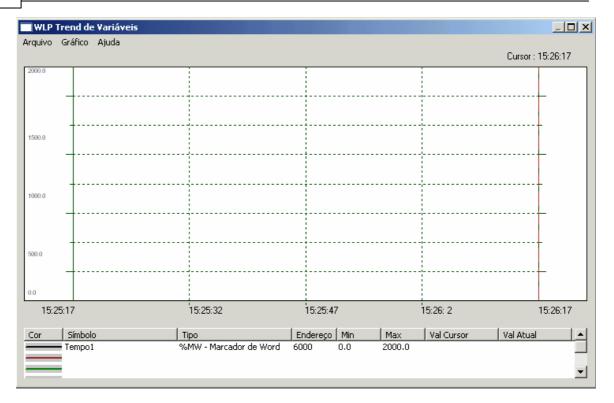
- 1º Configurar o gráfico através da opção "Configura"
- 2º Configurar as variáveis a serem plotadas através das opções "Variável 1 a 6"
- 3º Iniciar o trend através da opção "Inicia Trend"

CONFIGURAÇÃO DO TREND

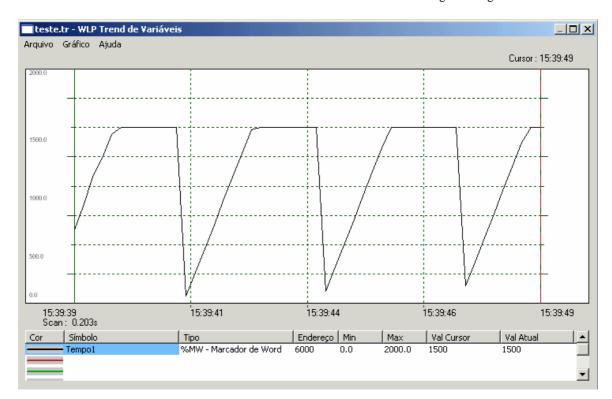


Nesta janela é possível selecionar o ciclo de leitura das variáveis que corresponde ao intervalo de tempo entre cada leitura das variáveis selecionadas. Escala do eixo X que corresponde a quantidade de tempo que será possível visualizar no gráfico.

CONFIGURAÇÃO DE VARIÁVEIS



Nesta janela basta escolher o tipo, endereço, um símbolo representativo, mínimo, máximo e cor da variável. No exemplo a seguir está selecionado o marcador de word %MW6000:


Ao pressionar o botão OK o diálogo de trend de variáveis ficará da seguinte maneira:

INICIAR TREND

Ao pressionar a opção "Inicia Trend", da mesma maneira que na monitoração online, neste momento o WLP tentará estabelecer a comunicação com a placa testando a comunicação com a mesma e efetuará as mesmas operações anteriormente descritas. Uma vez estabelecida a comunicação serial o trend irá adquirir as variáveis conforme o ciclo solicitado e desenhará as mesmas na tela conforme figura a seguir:

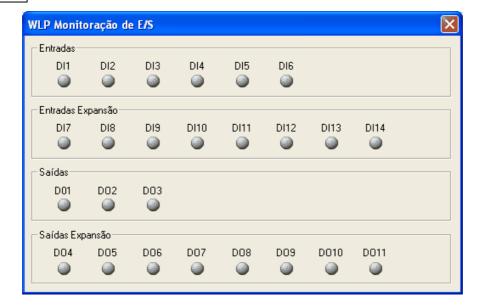
Nesta caixa também é possível, editar a variável em questão e apagar a mesma.

Através do menu Arquivo que está no canto superior esquerdo da janela é possível salvar e abrir as configurações de trend além de imprimir o trend em questão.

5.8 Monitoração de Entradas e Saídas

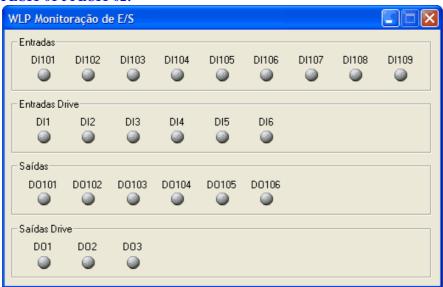
Através da janela de monitoração de entradas/saídas é possível verificar o estado das entradas e saídas digitais da placa e do drive. Para carregar esta janela basta pressionar o botão de monitoração de entradas/

saídas Da mesma maneira que na monitoração online, neste momento o WLP tentará estabelecer a comunicação com a placa testando a comunicação com a mesma e efetuará as mesmas operações anteriormente descritas.


A caixa de monitoração de entradas/saídas tem o seguinte aspecto:

PLC1, PLC2 e POS2:

SOFTPLC CFW-11:



SOFTPLC SSW-06 e SSW7000:

PLC11-01 e PLC11-02:

SRW01-PTC e SRW01-RCD:


As entradas/saídas ativas aparecem em verde, as inativas em cinza.

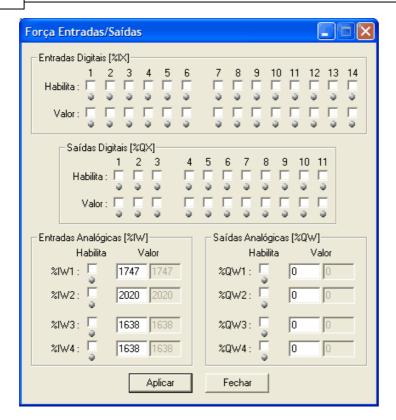
5.9 Monitoração via IHM

Através da janela de monitoração via IHM é possível monitorar e editar os valores dos parâmetros. Para

carregar esta janela basta pressionar o botão de monitoração via IHM . Da mesma maneira que na monitoração online, neste momento o WLP tentará estabelecer a comunicação com a placa testando a comunicação com a mesma e efetuará as mesmas operações anteriormente descritas.

A caixa de monitoração via IHM tem o seguinte aspecto:

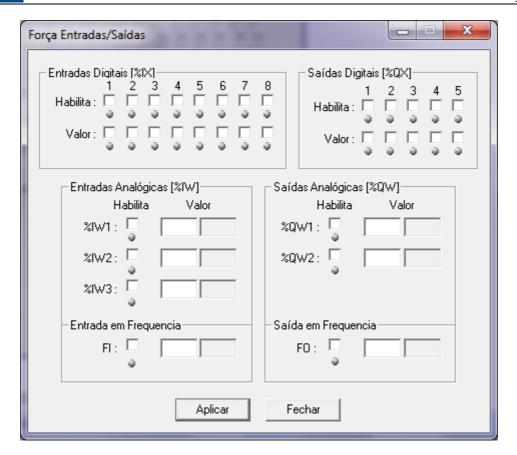
5.10 Força Entradas/Saídas


Através da força entradas/saídas é possível forçar valores nas entradas/saídas do cartão e do drive. Para

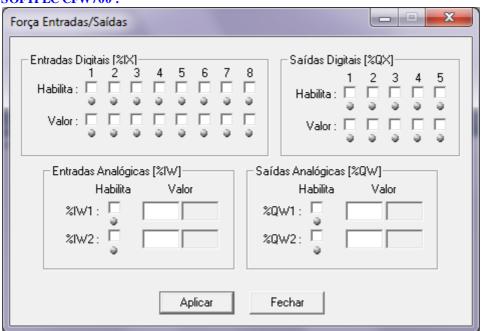
carregar esta janela basta pressionar o botão de força entradas/saídas . Da mesma maneira que na monitoração online, neste momento o WLP tentará estabelecer a comunicação com a placa testando a comunicação com a mesma e efetuará as mesmas operações anteriormente descritas.

A caixa de força entradas/saídas temo seguinte aspecto:

SOFTPLC CFW-11:



SOFTPLC SSW7000:



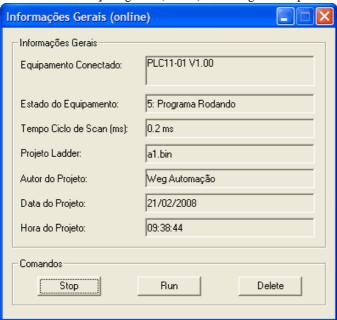
SOFTPLC CFW500:



SOFTPLC CFW700:

SOFTPLC SCA06:

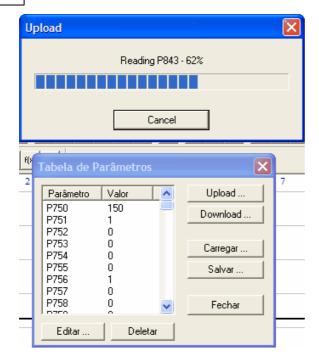
PLC11-01 e PLC11-02:


IMPORTANTE

* Somente disponível para os equipamentos acima mencionados.

5.11 Informações Gerais (Online)

A caixa de informações gerais (online) tem o seguinte aspecto :



5.12 Tabela de Valores dos Parâmetros

Consiste numa ferramenta que permite ler os valores contidos nos parâmetros do cartão, ou seja, do P750 ao P899, através do botão "Upload". Também é possível transferir os valores contidos na lista para o cartão através do botão "Download". Esta lista de valores pode ser salva em um arquivo ou carregada de um arquivo ".par".

Segue abaixo um exemplo de um processo de leitura dos valores dos parâmetros.

6 Comunicação

6.1 Visão Geral Comunicação

Comunicação:

Download 58

Upload 58

Monitoração Online 59

Monitoração de Variáveis 60

Trend de Variáveis 60

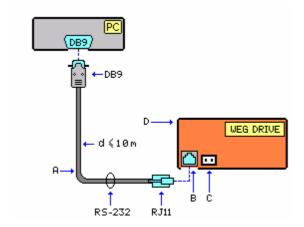
Monitoração de Entradas/Saídas 60

Monitoração via IHM 79

Configurações 61

Cabo Serial 84

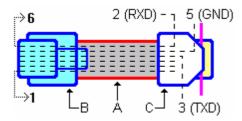
Instalação/Remoção Driver USB 85


6.2 Cabo Serial

Con	ector XC7	Função	Especificações
1	5VCC	Alimentação de 5VCC	Capacidade de corrente: 50mA
2	RTS	Request to send	
3	GND	Referência	
4	RX	Recebe	
5	GND	Referência	
6	TX	Transmite	

CONEXÃO

A figura abaixo mostra como deve ser feita a ligaca
o via RS-232 (ponto a ponto) entre o PC e o drive.



- A cabo para RS-232
- B conector RJ11
- D Drive WEG

CABO

A figura abaixo identifica as partes do cabo utilizado para conexao via RS-232 (ponto a ponto).

A - cabo chato 6 vias (utilizados somente pinos 2, 3 e 5 do conector DB9); tamanho maximo $10\,\mathrm{m}$

B - conector X4 (6x6)

C - conector DB9 femea

Sinal	PC (DB9)	Drive (XC7)
=======	========	=========
RXD	2	6
TXD	3	5
GND	5	5

6.3 Instalação/Remoção Driver USB

INSTALAÇÃO

O procedimento abaixo explica o método para instalar o driver USB no PC, para estabelecer a comunicação entre o PC e o drive pela porta USB. Leia com cuidado antes de iniciar os ajustes de hardware/software.

- Feche todas as aplicações no seu PC. Se você está usando um software anti-virus ou firewall, feche-os (ou desabilite suas funções).
- Após conectar o drive à porta USB do PC, Windows encontrará um novo hardware. O Assistente para adicionar novo hardware iniciará. O sistema operacional solicitará por drivers necessários. Escolha Instalar

de uma lista ou local específico (Avançado) e clique em Avançar.

- Certifique-se que as caixas Procurar o melhor driver nestes locais e Incluir este local na pesquisa estão ambas selecionadas.
- Clique Procurar. Agora você precisa entrar a rota do driver. Pasta "C:\Weg\WLP VX.YZ\DRIVER_USB" contém o driver. Escolha isto e clique Avançar.
- Se a localização que você especificou está correta, Windows localizará os drivers e continuará com a instalação.
- Após o Windows ter instalado os drivers necessários, você será notificado por uma janela indicando que o assistente terminou de instalar o software. Clique Concluir para completar o processo de instalação.

NOTA!

"C:\Weg\WLP VX.YZ\" é a pasta onde foi instalado o WLP.

VERIFICAÇÃO DA INSTALAÇÃO

Você pode verificar se a instalação foi bem sucedida no gerenciador de dispositivos (o drive precisa estar conectado ao PC).

- Para executar o gerenciador de dispositivos, clique Iniciar, click Executar, digite devmgmt.msc, e então clique OK. O gerenciado de dispositivos também pode ser acessado por Configurações > Painel de Controle > Sistema > Hardware > Gerenciador de Dispositivos.
- No gerenciador de dispositivos, próximo ao final da lista você deveria encontrar a entrada USBIO controlled devices contendo WEG USBIO R02. Isto indica que a instalação foi realizada com sucesso.

REMOÇÃO

- Conecte o drive ao PC.
- Abra o gerenciado de dispositivos e expanda a entrada USBIO controlled devices clicando o sinal +.
- Agora clique com o botão direito em WEG USBIO R02 e selecione Desinstalar.
- Confirme a remoção clicando OK.
- Windows desinstalará o driver e você poderá desconectar o drive do PC.

Reconectando o drive comecará o processo de instalação descrito anteriormente em Instalando USB Driver.

7 Linguagem

7.1 Introdução

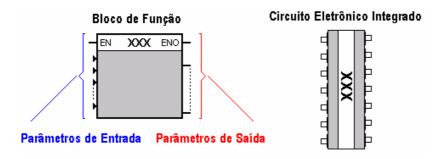
7.1.1 Estrutura do Elemento

CONTATO

Um contato é um elemento Booleano que transfere o valor para o link horizontal no lado direito, que é igual ao E Booleano do valor do link horizontal no seu lado esquerdo com uma função apropriada de uma entrada, saída e memória variável Booleana associada. O contato não modifica o valor da variável Booleana associada.

BOBINA

Uma bobina é um elemento Booleano que transfere o valor contido em sua entrada para a sua saída e guarda



o valor corrente. Ele só pode ser usado como sendo o último elemento da lógica.

BLOCO DE FUNÇÃO

Um bloco de função (FB) é parte de um programa de controle que está empacotado para poder ser utilizado em diferentes partes de um mesmo ou programas diferentes. O FB fornece uma solução de software para alguns problemas pequenos, tanto como a criação de um pulso de temporizador, ou pode fornecer o controle para uma peça maior de uma instalação ou máquina, como por exemplo, o controle de uma válvula de pressão.

Comparações foram feitas entre os FB e os objetos encontrados em programações orientadas por objetos, mas o conceito pode ser mais claramente entendido pela analogia com o hardware. Em muitos casos, o FB pode ser comparado com circuitos integrados.

EN - variável booleana, indica se a operação definida por uma função pode ser executada ou não. ENO - variável booleana, indica se as operações são executadas com sucesso ou não. Em resumo, estas entradas Booleanas permitem o fluxo de potência através do bloco.

7.1.2 Tipo de Dados

Tabela de Endereços PLC1, PLC2, POS2, SOFTPLC CFW-11 e SOFTPLC SSW-06:

Tabela de 1410	,				TÕES / EQU					
	PLC1 V2	2.0X	PLC2 V1.5X		POS2 V1.6X		SOFTPLC V2.0X		SOFTPLC V1.4X	
TIPO	CFW-	09	CFW-	09	SCA-()5	CFW-1	11	SSW-0)6
DE DADO	[Início]		[Início]		[Início]		[Início]		[Início]	
	[Fim]	Qtd	[Fim]	Qtd	[Fim]	Qtd	[Fim]	Qtd	[Fim]	Qtd
	%MX1000	672	%MX1000	672	%MX1000	672	-	-	-	-
Bit Retentivos	%MX1671		%MX1671		%MX1671					
		1200		1200		1200		1100		1100
	%MX2000	1308	%MX2000	1308	%MX2000	1308	%MX5000	1100	%MX5000	1100
Bit Voláteis	%MX3407		%MX3407		%MX3407		%MX6099		%MX6099	
Marcador de	%MW6000	100	%MW6000	100	%MW6000	100		_		_
Word	%MW6099		%MW6099		%MW6099					
Retentivos										
Marcador de	%MW7000	650	%MW7000	300	%MW7000	650	%MW8000	200	%MW8000	200
Word Voláteis	%MW7649		%MW7299		%MW7649		%MW8199		%MW8199	
Marcador de	%SX0	2	%SX0	4	%SX0	3	%SX3000	22	%SX3000	21
Bit de	%SX2		%SX3		%SX3		%SX3040		%SX3030	
Sistema (1)										

				CAR	TÕES / EQU	IPAME	ENTOS			
	PLC1 V2.0X		PLC2 V1.5X		POS2 V1.6X		SOFTPLC		SOFTPLC V1.4X	
TIPO	CFW-	09	CFW-	09	SCA-()5	CFW-	11	SSW-	06
DE DADO	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd
Marcador de Word de Sistema (1)	%SW0 %SW7	7	%SW0 %SW7	8	%SW0 %SW7	7	%SW3000 %SW3002	3	%SW3003 %SW3005	2
Marcador de Float Retentivos	%M95000 %MF9524	25	%M95000 %MF9524	25	%M95000 %MF9524	25	-	-	-	-
Marcador de Float Voláteis	%MF9000 %MF9174	175	%MF9000 %MF9174	175	%MF9000 %MF9174	175	%MF9000 %MF9199	200	-	-
Parâmetros do Usuário	%UW800 %UW899	100	%UW800 %UW899	100	%UW800 %UW899	100	%UW1010 %UW1049	40	%UW952 %UW969	18
Parâmetros do Sistema	%PW750 %PW799	50	%PW750 %PW799	50	%PW750 %PW799	50	%PW0 %PW1009	1100	%PW0 %PW950	951
Parâmetros do Drive	%PD0 %PD749	750	%PD0 %PD749	750	%PD0 %PD749	750	-	-	-	-
Entradas Digitais Próprias	%IX1 %IX9	9	%IX1 %IX9	9	%IX1 %IX9	9	-	-	-	-
Entradas Digitais do Drive	%IX101 %IX106	6	%IX101 %IX106	6	%IX101 %IX106	6	%IX1 %IX14	14 <u>(3)</u> 92	%IX1 %IX6	6
Saídas Digitais Próprias	%QX1 %QX6	6	%QX1 %QX6	6	%QX1 %QX6	6	-	-	-	-
Saídas Digitais do Drive	%QX101 %QX103	3	%QX101 %QX103		%QX101 %QX103	3	%QX1 %QX11	11 <u>(3)</u> [92]	%QX1 %QX3	3
Entradas Analógicas Próprias	-	-	%IW1	1	%IW1	1	-	-	-	-
Entradas Analógicas do Drive	%IW101 %IW102	2	%IW101 %IW102	2	%IW101 %IW102	2	%IW1 %IW4	4 <u>(3)</u> 92	-	-
Saídas Analógicas Próprias	-	-	%QW1 %QW2	2	-	-	-	-	-	-

		CARTÕES / EQUIPAMENTOS									
	PLC1 V2.0X		PLC2 V1.5X		POS 2 V1.6X		SOFTPLC		SOFTPLC		
TIPO	CFW-	09	CFW-	09	SCA-()5	CFW-	11	SSW-)6	
DE DADO	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	
Saídas Analógicas do Drive	%QW101 %QW102	2	%QW101 %QW102	2	%QW101 %QW102	2	%QW1 %QW4	4 <u>(3)</u> 92	%QW1 %QW2	2	
Parâmetros do USERFB	%PM0 %PM31	32	%PM0 %PM31	32	%PM0 %PM31	32	-	-	-	-	
Words de Leitura (2)	-	1	%RW0 %RW31	32	-	1	-	-	-	1	
Words de Escrita (2) 92	-	-	%WW0 %WW31	32	-	-	-	-	-	-	
Bytes de Leitura (2)	-	-	%RB0 %RB31	32	-	-	-	-	-	-	
Bytes de Escrita (2) 92	-	-	%WB0 %WB31	32	-	-	-	-	-	-	
Estado CANopen (2)	-	-	%RS0 %RS63	64	-	-	-	-	-	-	
Comando CANopen (2)	-	-	%WC0 %WC1	2	-	-	-	-	-	-	

Tabela de Endereços PLC11-01, PLC11-02, SRW01-PTC, SRW01-RCD e SCA06:

	,	CARTÕES / EQUIPAMENTOS								
	PLC11-01	V1.4X	SRW01-	PTC	SCA06 V1.1X		SOFTPLC	V1.0X	SOFTPLC V1.0X	
	PLC11-02	V1.4X	V2.02	K			SSW70	000	CFW50	00
TIPO	CFW-	11	SRW01-l	RCD						
DE DADO			V2.02	<u> </u>						
	[Início]		[Início]		[Início]		[Início]		[Início]	
	[Fim]	Qtd	[Fim]	Qtd	[Fim]	Qtd	[Fim]	Qtd	[Fim]	Qtd
Marcador de	%MX6100	384	-	-	%MX6000	2000	-	-	-	-
Bit Retentivos	%MX6483				%MX7999	(<u>4)</u> [92				
Marcador de	%MX6500	1488	%MX6100	1408	%MX8000	2000	%MX5000	1100	%MX5000	1100
Bit Voláteis	%MX7987		%MX7507		%MX9999	(<u>4)</u> [92	%MX6099		%MX6099	
Marcador de	%MW8200	-	_	-	%	1000	-	-	-	-
Word	%MW8399				MW12000	(<u>4)</u> [92				
Retentivos					%					
					MW12999					

		CARTÕES / EQUIPAMENTOS								
TIPO DE DADO	PLC11-01 V1.4X PLC11-02 V1.4X CFW-11		SRW01-PTC V2.0X SRW01-RCD V2.0X		SCA06 V1.1X		SOFTPLC V1.0X SSW7000		SOFTPLC V1.0X CFW500	
	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd
Marcador de Word Voláteis		600	%MW8200 %MW8849	650	% MW13000 % MW14999	2000 (4) [92]	%MW8000 %MW8199	200	%MW8000 %MW8199	200
Marcador de Bit de Sistema (1)	%SX3000 %SX3111	25	%SX3000 %SX3006	5	%SX3064 %SX3070	4	%SX3000 %SX3040	28	%SX3000 %SX3040	22
Marcador de Word de Sistema (1)	%SW3300 %SW3404	9	%SW3300	1	%SW3404 %SW3408	3	-	-	%SX3300 %SX3324	9
Marcador de Float Retentivos	%M92000 %MF9399	200	-	-	%MF16000 %MF16499		-	-	-	-
Marcador de Float Voláteis	%MF9400 %MF9999	600	%MF9000 %MF9174	175	%MF17000 %MF17999		-	-	-	-
Marcador de Double Retentivos	-	-	-	-	%MD18000 %MD18249		-	-	-	-
Marcador de Double Voláteis	-	-	-	-	%MD19000 %MD19549		-	-	-	-
Parâmetros do Usuário	%UW1300 %UW1499	200	%UW800 %UW899	100	%UW1050 %UW1249	200	%UW1010 %UW1059	50	%UW1010 %UW1059	50
Parâmetros do Sistema	%PW1200 %PW1299	100	%PW0 %PW799	800	%PW1000 %PW1049	50	%PW1000 %PW1002	3	%PW1000 %PW1002	3
Parâmetros do Drive	%PD0 %PD1049	1050	-	-	%PD0 %PD999	1000	%PD0 %PD999	1000	%PD0 %PD999	1000
Entradas Digitais Próprias	%IX101 %IX109	9	%IX1 %IX4	4	-	-	-	-	-	-
Entradas Digitais do Drive	%IX1 %IX6	6	-	-	%IX1 %IX3	3	%IX1 %IX6	6	1	8
Entradas	-	-	-	-	%IX101	36	-	-	-	-

				CAR	TÕES / EQU	IPAME	NTOS			
TIPO DE DADO	PLC11-01 V1.4X PLC11-02 V1.4X CFW-11		V2.02 S RW01-	SRW01-PTC V2.0X SRW01-RCD V2.0X		SCA06 V1.1X		V1.0X 000	SOFTPLC V1.0X CFW500	
	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd
Digitais Expansões					%IX312					
Saídas Digitais Próprias	%QX101 %QX106	6	%QX1 %QX4	4	-	-	-	-	-	-
Saídas Digitais do Drive	%QX1 %QX3	3	-	-	%QX1 %QX1	1	%IX1 %IX3	3	%QX1 %QX5	5
Saídas Digitais Expansões	-	-	-	-	%QX101 %QX306	18	-	-	-	-
Entradas Analógicas Próprias	%IW101	1	-	-	-	-	-	-	-	-
Entradas Analógicas do Drive	%IW1 %IW2	2	-	-	%IW1 %IW1	1	%IW1 %IW2	2	%IW1 %IW4	4
Entradas Analógicas Expansões	-	-	-	-	%IW2 %IW2	1	-	-	-	-
Saídas Analógicas Próprias	%QW101 %QW102	2	-	-	-	-	-	-	-	-
Saídas Analógicas do Drive	%QW1 %QW2	2	-	-	-	-	%QW1 %QW2	2	%QW1 %QW3	3
Saídas Analógicas Expansões	-	-	-	-	-	-	-	-	-	-
Parâmetros do USERFB	%PM0 %PM31	32	%PM0 %PM31	32	%PM0 %PM31	32	%PM0 %PM31	32	%PM0 %PM31	32
Words de Leitura (2)	%RW4200 %RW4299	100	-	-	- <u>(5)</u> [92 ^h]	-	-	-	-	-
Words de Escrita (2) 92	%WW4600 %WW4699	100	-	-	- <u>(5)</u> [92 ^h]	-	-	-	-	-
Bytes de Leitura (2)	%RB4400 %RB4499	100	-	-	- <u>(5)</u> 921	-	-	-	-	-

				CAR'	TÕES / EQU	IPAME	NTOS			
TIPO	PLC11-01 PLC11-02 CFW-1	V1.4X	SRW01-1 V2.02 SRW01-1	X	SCA06 V	71.1X	SOFTPLC SSW70		SOFTPLC CFW5	
DE DADO	Crw-	11	V2.02	-						
	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd	[Início] [Fim]	Qtd
Bytes de Escrita (2) 92 ^x	%WB4800 %WB4899	100	-	-	- <u>(5)</u> [92 ³]	-	-	-	-	-
Estado CANopen (2)	%RS4000 %RS4127	128	-	-	%RS4000 %RS4127	128	-	-	-	-
Comando CANopen (2)	%WC4136 %WC4137	2	-	-	%WC4142 %WC4143	2	-	-	-	-

- (1) Verificar funções do marcadores de sistema 92
- (2) Maiores detalhes consultar manual WSCAN (Weg Software CANopen Config)
- (3) Com módulos de expansão
- (4) A quantidade de marcadores é dinâmico a necessidade do usuário, sendo disponível um total de 2000 bytes de memória retentiva e 7344 bytes de memória volátil, que também serão usados para as variáveis internas dos blocos.
- (5) Utilizar parâmetros do usuário nos mapeamentos dos PDOs para acesso no ladder.

7.1.3 Função dos Marcadores de Sistema

Função dos Marcadores de Sistema:

- PLC1 92
- PLC2 93
- POS2 94
- SOFTPLC CFW-11 94
- SOFTPLC SSW06 95
- PLC11-01 e PLC11-02 95
- **SRW01-PTC** 96
- **SRW01-RCD** 96
- -SCA06 96
- SSW7000 97

PLC1:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX0	Retorno Habilitação do Drive	Habilita Drive
%SX2	-	Reset Erro Fatal
%SX3	Alarme da Entrada Analógica	-
%SW0	Retorno de Velocidade do Drive [rpm]	-
%SW1	Retorno de Velocidade do Drive [13 bits]	-
%SW2	-	Gera Erro do Usuário
%SW3	Retorno de Erro do Cartão	-
%SW4 93	-	Comando Lógico do Drive
%SW5 94	Retorno do Estado Lógico do Drive	-

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SW7	Retorno Velocidade de Referência	-

PLC2:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX0	Retorno Habilitação do Drive	Habilita Drive
%SX1	Entrada Sensor PTC do Motor	-
%SX2	-	Reset Erro Fatal
%SX3	Alarme da Entrada Analógica	-
%SW0	Retorno de Velocidade do Drive [rpm]	-
%SW1	Retorno de Velocidade do Drive [13 bits]	-
%SW2	-	Gera Erro do Usuário
%SW3	Retorno de Erro do Cartão	-
<u>%SW4</u> 93	-	Comando Lógico do Drive
<u>%SW5</u> 94	Retorno do Estado Lógico do Drive	-
%SW6	Retorno Velocidade da Entrada de Encoder	
	Auxiliar [rpm]	-
%SW7	Retorno Velocidade de Referência	-

% SW4 Comando Lógico do Drive (PLC1/PLC2):

A palavra que define o comando lógico é formada por 16 bits, sendo 8 bits superiores 8 bits inferiores, tendo a seguinte construção:

Bits superiores selecionam a função que se quer acionar, quando o bit é colocado em 1.

- Bit 15 Reset de Erros do drive;
- Bit 14 Sem função;
- Bit 13 Salvar alterações do parâmetro P169/P170 na EEPROM;
- Bit 12 Comando Local/Remoto;
- Bit 11 Comando Jog;
- Bit 10 Sentido de giro;
- Bit 09 Habilita Geral;
- Bit 08 Gira/Pára.

Bits inferiores determinamo estado desejado para a função selecionada nos bits superiores,

- **Bit 7** Reset de Erros do drive: sempre que variar de 0 à 1, provocará o reset do drive, usando na presença de erros (exceto E24, E25, E26 e E27).
- **Bit 6** Sem função / detecção de STOP. Não é necessário acionar o bit superior correspondente ver descrição do parâmetro P310);
- **Bit 5** Salvar P169/P170 na EEPROM: 0 = Salvar, 1 = Não salvar;
- **Bit 4** Comando Local/Remoto: 0 = Local, 1 = Remoto;
- **Bit 3** Comando Jog: 0 = Inativo, 1 = Ativo;
- **Bit 2** Sentido de giro: 0 = Anti-Horário, 1 = Horário;
- **Bit 1** Habilita Geral: 0 = Desabilitado, 1 = Habilitado;
- **Bit 0** Gira/Pára: 0 = Parar, 1 = Girar.

PNOTAS!

- O drive somente executará o comando indicado no bit inferior se o bit superior correspondente estiver com o valor 1 (um). Se o bit superior estiver com o valor 0 (zero), o drive irá desprezar o valor do bit inferior correspondente.
- Quando P221=11 (referência local via PLC) e modo local ou P222=11 (referência remota via PLC) e modo remoto, os bits 0 e 2 (Gira/Pára e Sentido de Giro) não tem função. Nesse momento o comando Gira/Pará e

Sentido de Giro é exclusivo dos blocos de funções de movimento e posicionamento da placa PLC. Nessa situação a referência de velocidade entrará na referência total do drive, fazendo com que os parâmetros de rampa P100, P101, P102 e P103 não tenham função, e as rampas sejam gerados pelos blocos de funções de movimento e posicionamento.

- Quando P224=4 (Gira/Pára local via PLC) e modo local ou P227=4 (Gira/Pára remoto via PLC) e modo remoto, o Bit 1 do comando lógico e o marcador de bit de sistema %SX0 tem a mesma função, habilitar o drive.

% SW5 Retorno do Estado Lógico do Drive (PLC1/PLC2):

A palavra que define o estado lógico é formada por 16 bits, sendo 8 bits superiores 8 bits inferiores, tendo a seguinte construção:

Bits superiores indicamo estado da função associada

Bit 15 Erro ativo: $0 = N\tilde{a}o$, 1 = Sim;

Bit 14 Regulador PID: 0 = Manual, 1 = Automático;

Bit 13 Subtensão : 0 = Sem, 1 = com;

Bit 12 Comando Local/Remoto: 0 = Local, 1 = Remoto;

Bit 11 Comando Jog: 0 = Inativo, 1 = Ativo;

Bit 10 Sentido de giro: 0 = Anti-Horário, 1 = Horário;

Bit 09 Habilita Geral: 0 = Desabilitado, 1 = Habilitado;

Bit 08 Girar/Parar: 0 = Pára, 1 = Gira.

Bits inferiores indicamo número do código do erro.

POS2:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX0	Retorno Habilitação do Drive	Habilita Drive
%SX2	-	Reset Erro Fatal
%SX3	Alarme da Entrada Analógica	-
%SW0	Retorno de Velocidade do Drive [rpm]	-
%SW1	Retorno de Velocidade do Drive [13 bits]	-
%SW2	-	Gera Erro do Usuário
%SW3	Retorno de Erro do Cartão	-
<u>%SW5</u> 94	Retorno do Estado Lógico do Drive	-
%SW6	Retorno Velocidade da Entrada de Encoder	_
	Principal [rpm]	
%SW7	Retorno Velocidade de Referência	-
%SW8	Retorno Velocidade do Eixo Virtual [rpm]	-

% SW5 Retorno do Estado Lógico do Drive (POS2):

Indica o estado atual do servoconversor, conforme s seguir:

0 = Servoconversor desabilitado e sem erro.

- 1 = Servoconversor Ready (Habilitado e sem erro).
- 2 = Servoconversor em estado de erro. O display da HMI indica o código do erro.

SOFTPLC CFW-11:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3000	Habilitado Geral	-
%SX3001	-	Habilita Geral
%SX3002	Rampa Habilitada	-
%SX3003	-	Gira/Pára
%SX3004	Sentido de Giro	-
%SX3005	-	Sentido de Giro
%SX3006	JOG	<u>-</u>

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3007	-	JOG
%SX3008	Local/Remoto	-
%SX3009	-	Local/Remoto
%SX3010	Falha	-
%SX3011	-	Reset de Falhas
%SX3012	Subtensão	-
%SX3014	Operação PID	-
%SX3016	Alarme	-
%SX3018	Modo Configuração	-
%SX3032	Tecla HMI "1"	-
%SX3033	-	Referência de Torque
%SX3034	Tecla HMI "0"	-
%SX3036	Tecla HMI "Reverte Sentido de Giro"	-
%SX3038	Tecla HMI "Local/Remoto"	-
%SX3040	Tecla HMI "JOG"	-
%SW3300	Velocidade do Motor [13 bits]	-
%SW3301	-	Referência de Velocidade [13 bits]
%SW3302	Velocidade Síncrona do Motor [rpm	-

SOFTPLC SSW-06:

BOTH LC BB W-00.		
MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3000	Motor Girando	
%SX3001	-	1=Gira/0=Pára
%SX3002	Habilitado Geral	-
%SX3003	-	1=Habilita Geral
%SX3004	Em Jog	-
%SX3005	-	1=Jog
%SX3006	Em Aceleração	-
%SX3007	-	0=Horário/1=Anti-Horário
%SX3008	Em Limitação de Corrente	-
%SX3009	-	0=Local/1=Remoto
%SX3010	Em Tensão Plena	-
%SX3012	Com Alarme	-
%SX3014	Em Desaceleração	-
%SX3015	-	1=Reset de Erro
%SX3016	Em Remoto	-
%SX3018	Em Frenagem	-
%SX3020	Em Troca do Sentido de Giro	-
%SX3034	Em Sentido Anti-Horário	-
%SW3303	-	Erro do Usuário
%SW3305	-	Alarme do Usuário

PLC11-01 e PLC11-02:

I DOIL OF CITE	11 02 .	
MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3000	Habilitado Geral	-
%SX3002	Rampa Habilitada	-
%SX3004	Sentido de Giro	-
%SX3006	JOG	-
%SX3008	Local/Remoto	-
%SX3010	Falha	-

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3012	Subtensão	-
%SX3014	Operação PID	-
%SX3016	Alarme	-
%SX3018	Modo Configuração	-
%SX3032	Tecla HMI "1"	-
%SX3034	Tecla HMI "0"	-
%SX3036	Tecla HMI "Reverte Sentido de Giro"	-
%SX3038	Tecla HMI "Local/Remoto"	-
%SX3040	Tecla HMI "JOG"	-
%SX3064	Blinker 2Hz	-
%SX3066	Pulso Stop/Run	-
%SX3068	Sempre 0	-
%SX3070	Sempre 1	-
%SX3101	-	Habilita Geral
%SX3103	-	Gira/Pára
%SX3105	-	Sentido de Giro
%SX3107	-	JOG
%SX3109	-	LOC/REM
%SX3111	-	Reset de Falhas
%SW3300	Velocidade do Motor [13 bits]	-
%SW3302	Velocidade Síncrona do Motor [rpm]	-
%SW3304	Velocidade do Motor [rpm]	-
%SW3306	Referência de Velocidade [rpm]	-
%SW3308	Alarme	-
%SW3310	Falha	-
%SW3400	Velocidade - Encoder Auxiliar	-
%SW3402	Modo de Controle	-
%SW3404	Ciclos de scan decorridos	-

SRW01-PTC:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3000	Reset	Reset
%SX3001	Comando Local 1	Comando Local 1
%SX3002	Comando Local 2	Comando Local 2
%SX3003	Comando Local 3	Comando Local 3
%SX3005	Motor Rodando	-
%SX3006	Local/Remoto	Local/Remoto
%SW3300	PTC	-

SRW01-RCD:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3000	Reset	Reset
%SX3001	Comando Local 1	Comando Local 1
%SX3002	Comando Local 2	Comando Local 2
%SX3003	Comando Local 3	Comando Local 3
%SX3005	Motor Rodando	-
%SX3006	Local/Remoto	Local/Remoto

SCA06:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3064	Blinker 2Hz	-

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3066	Pulso Stop/Run	-
%SX3068	Sempre 0	-
%SX3070	Sempre 1	-
%SW3404	Ciclos de scan decorridos	-
%SX3406	Estado do Eixo 118 Real	-
%SW3408	Estado do Eixo 118 Virtual	-

SSW7000:

MARCADOR %SX3000	FUNÇÃO DE LEITURA Motor Girando	FUNÇÃO DE ESCRITA
	Motor Girando	<u>_</u>
		-
%SX3001	-	Habilita Geral
%SX3002	Habilitado Geral	-
%SX3003	-	Gira/Pára
%SX3004	Em Jog	-
%SX3005	-	Sentido de Giro
%SX3006	Em Aceleração	-
%SX3007	-	JOG
%SX3008	Em Limitação de Corrente	-
%SX3009	-	Local/Remoto
%SX3010	Em Tensão Plena	-
%SX3011	-	Reset de Falhas
%SX3012	Com Alarme	-
%SX3014	Em Desaceleração	-
%SX3016	Em Remoto	-
%SX3018	Em Frenagem	-
%SX3020	Em Troca de Sentido de Giro	-
%SX3021	-	Ativa 2ª Rampa
%SX3022	Em Sentido Anti-Horário	-
%SX3024	Com Bypass Fechado	-
%SX3026	Em Modo Configuração	-
%SX3028	Com Alimentação da Potência	-
%SX3030	Com Erro	-
%SX3032	Tecla HMI "1"	-
%SX3034	Tecla HMI "0"	-
%SX3036	Tecla HMI "Inverte"	-
%SX3038	Tecla HMI "Loc/Rem"	-
%SX3040	Tecla HMI "JOG"	-

CFW500:

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA
%SX3000	Habilitado Geral	-
%SX3001	-	Habilita Geral
%SX3002	Motor Girando	-
%SX3003	-	Gira/Pára
%SX3004	Sentido de Giro	-
%SX3005	-	Sentido de Giro
%SX3006	JOG	-
%SX3007	-	JOG
%SX3008	Local/Remoto	-
%SX3009	-	Local/Remoto

MARCADOR	FUNÇÃO DE LEITURA	FUNÇÃO DE ESCRITA		
%SX3010	Falha	-		
%SX3012	Subtensão	-		
%SX3014	Operação PID	-		
%SX3016	Alarme	-		
%SX3018	Modo Configuração	-		
%SX3020	Rampa Ativa			
%SX3021	-	Ativa 2ª Rampa		
%SX3032	Tecla HMI "1"	-		
%SX3034	Tecla HMI "0"	-		
%SX3036	Tecla HMI "Reverte Sentido de Giro"	-		
%SX3038	Tecla HMI "Local/Remoto"	-		
%SX3040	Tecla HMI "JOG"	-		
%SW3300	Velocidade do Motor [13 bits]	-		
%SW3301	-	-		
%SW3302	Velocidade Síncrona do Motor [rpm]	-		
%SW3304	Velocidade do Motor [rpm]	-		
%SW3306	Referência de Velocidade [13 bits]	-		
%SW3308	Alarme	-		
%SW3310	Falha	-		
%SW3320	Corr. Nom. HD Inv. [A x 10]	-		
%SW3322	Corr. Atual do Motor [A x 10]			
%SW3324	Torque Atual do Motor [% x 10]	-		
%SW3326	Entrada em Frequência (DI2)	-		

7.1.4 Compatibilidade

Abaixo está descrito os elementos/blocos e sua respectiva compatibilidade com os cartões suportados

PLC1, PLC2, POS2, SOFTPLC CFW-11 e SOFTPLC SSW-06:

, ,	COMPATIBILIDADE CARTÕES / EQUIPAMENTOS					
BLOCO LADDER	PLC1 V2.0X CFW-09	PLC2 V1.5X CFW-09	POS2 V1.6X SCA-05	SOFTPLC V2.0X CFW-11	SOFTPLC V1.4X SSW-06	
NO CONTACT	✓	✓	✓	✓	✓	
NC CONTACT	✓	✓	✓	✓	✓	
COIL	✓	✓	✓	✓	✓	
NEGATE COIL	✓	✓	✓	✓	✓	
SET COIL	✓	✓	✓	✓	✓	
RESET COIL	✓	✓	✓	✓	✓	
PTS COIS	✓	✓	✓	✓	✓	
NTS COIL	✓	✓	✓	✓	✓	
INPOS	✓	✓	✓	-	-	
INBWG	✓	✓	✓	-	-	
SCURVE	✓	✓	✓	-	-	
TCURVE	✓	✓	✓	-	-	
HOME	✓	✓	✓	-	-	
FOLLOW	√ (1) 10 h	✓	✓	-	-	
MSCANWEG	✓	√	✓	-	-	
SHIFT	✓	✓	✓	-	-	
STOP	✓	✓	✓	-	-	

	COMPATIBILIDADE CARTÕES / EQUIPAMENTOS					
BLOCO LADDER	PLC1 V2.0X CFW-09	PLC2 V1.5X CFW-09	POS2 V1.6X SCA-05	SOFTPLC V2.0X CFW-11	SOFTPLC V1.4X SSW-06	
JOG	✓	✓	✓	-	-	
SETSPEED	✓	✓	✓	-	-	
TON	✓	✓	✓	✓	✓	
CTU	✓	✓	✓	✓	✓	
TRANSFER	✓	✓	✓	✓	✓	
MATH	✓	✓	✓	✓	√ <u>(3)</u> [102]	
COMP	✓	✓	✓	✓	√ <u>(3)</u> 102	
SAT	✓	✓	✓	✓	√ <u>(3)</u> [102]	
FUNC	✓	✓	✓	✓	√ <u>(3)</u> 102	
INT2FLOAT	✓	✓	✓	✓	-	
FLOAT2INT	✓	✓	✓	✓	-	
PID	✓	✓	✓	✓	-	
FILTER	✓	✓	✓	✓	-	
AUTOREG	-	-	✓	-	-	
RXCANWEG	✓	✓	✓	-	-	
CTENC	✓	✓	✓	-	-	
USERFB	✓	✓	✓	-	-	
MUX	✓	✓	✓	✓	✓	
DMUX	✓	✓	✓	✓	✓	
IDATA	✓	✓	✓	✓	✓	
TCURVAR	✓	✓	✓	-	-	
QSTOP	✓	✓	✓	-	-	
SDO	-	√ <u>(2)</u> [101]	-	-	-	
CAM	-	-	✓	-	-	
CALCCAM	-	-	✓	-	-	
SPEED	✓	✓	✓	-	-	
RTC	-	-	-	√	-	
USERERR	-	-	-	√	-	
REF	-	-	-	√	-	
MMC	-	-	-	-	√ <u>(5)</u> 102	
MC_Power	-	-	-	-	-	
MC_Reset	_	_	_	-	_	
MC_MoveAbsolu te	-	-	-	-	-	
MC_MoveRelativ	-	-	-	-	-	
MC_MoveVelocit	-	-	-	-	-	
MC_Stop	-	-	-	-	-	
MC_GearIn	-	-	-	-	-	
MC_GearInPos	-	_	_	-	-	
MC_Phasing	-	_	_	-	-	
MC_GearOut	_	_	_	_	_	
MC_StepAbsSwit	-	-	-	-	-	

MC_Power	-	-	-	-	-
MC_Reset	-	-	-	-	-
MC_StepLimitSwit	-	-	ı	ı	-
MC_StepRefPulse	-	-	-	-	-
MC_StepDirect	-	-	-	-	-
MC_FinishHomin	-	-	-	-	-
g					

PLC11-01, PLC11-02, SRW01-PTC, SRW01-RCD, SCA06, SSW7000 e CFW500:

Lett vi,Tett	COMPATIBILIDADE CARTÕES / EQUIPAMENTOS						
BLOCO LADDER	PLC11-01 V1.4X PLC11-02 V1.4X CFW-11	SRW01-PTC V3.0X SRW01-RCD V3.0X	S CA06 V1.1X	SOFTPLC V1.1X SSW7000	SOFTPLC V1.0X CFW500		
NO CONTACT	✓	✓	✓	✓	✓		
NC CONTACT	✓	✓	✓	✓	✓		
COIL	✓	✓	✓	✓	✓		
NEGATE COIL	✓	✓	✓	✓	✓		
SET COIL	✓	✓	✓	✓	✓		
RESET COIL	✓	✓	✓	✓	✓		
PTS COIL	✓	✓	✓	✓	✓		
NTS COIL	✓	✓	✓	✓	✓		
INPOS	✓	-	-	-	-		
INBWG	✓	-	-	-	-		
SCURVE	✓	-	-	-	-		
TCURVE	✓	-	-	-	-		
HOME	✓	-	-	-	-		
FOLLOW	✓	-	-	-	-		
MSCANWEG	✓	-	-	-	-		
SHIFT	✓	-	-	-	-		
STOP	✓	-	-	-	-		
JOG	✓	-	-	-	-		
SETSPEED	✓	-	-	-	-		
TON	✓	✓	✓	✓	✓		
CTU	✓	✓	✓	✓	✓		
TRANSFER	✓	✓	√ (<u>4</u>) 102	✓	✓		
MATH	✓	✓	√ <u>(4)</u> 102	✓	✓		
COMP	✓	✓	√ (<u>4</u>) 102	✓	✓		
SAT	✓	✓	√ (<u>4)</u> 102	✓	✓		
FUNC	✓	✓	√ <u>(4)</u> 102	✓	✓		
INT2FLOAT	✓	✓	√ <u>(4)</u> 102	✓	✓		
FLOAT2INT	✓	✓	√ <u>(4)</u> 102	✓	✓		
PID	✓	-	✓	✓	✓		
FILTER	✓	-	✓	✓	✓		
AUTOREG	-	-	-	-	-		
RXCANWEG	✓	-	-	-	-		

	COMPATIBILIDADE CARTÕES / EQUIPAMENTOS					
BLOCO LADDER	PLC11-01 V1.4X PLC11-02 V1.4X CFW-11	SRW01-PTC V3.0X SRW01-RCD V3.0X		SOFTPLC V1.1X SSW7000	SOFTPLC V1.0X CFW500	
CTENC	✓	-	-	-	-	
USERFB	✓	✓	√ <u>(4)</u> 102	✓	✓	
MUX	✓	✓	✓	✓	✓	
DMUX	✓	✓	✓	✓	✓	
IDATA	✓	-	√ (4) 10 ²	✓	✓	
TCURVAR	✓	-	-	_	_	
QSTOP	✓	-	_	_	_	
SDO	√ (2) 101ì	_	✓ (2) 1011	_	_	
CAM	<u>√</u> .	_	-	_	_	
CALCCAM	✓	-	_	_		
SPEED	√	_	_	_	_	
RTC	√	_	√	√	_	
USERERR	√	√	√	√	✓	
REF	✓	_	_	_	✓	
MMC	-	_	_	_	_	
MC_Power	-	_	√	_	_	
MC_Reset	_	<u>-</u>	<u> </u>			
MC_MoveAbsolu te	-	-	√	-	-	
MC_MoveRelativ	-	-	✓	-	-	
MC_MoveVelocit	-	-	√	-	-	
y MW_IqControl	-	-	√	_	_	
MC_Stop	-	<u>-</u>	<i>√</i>	<u>-</u>		
MC_GearIn	-		<u> </u>	_	<u>-</u>	
MC_GearInPos			<i>,</i>			
MC_Phasing	-		, ✓	-	<u>-</u>	
MC_GearOut	-		, ✓	-		
MC_StepAbsSwit	-	-	√	-	-	
ch MC_StepLimitSwit	-	-	✓	-	-	
ch MC_StepRefPulse	_	_	√	_	_	
MC_StepDirect			<i>,</i>	<u>-</u>		
MC_FinishHomin	-	<u>-</u>	✓	-	<u>-</u> -	
MC_CamTableSel ect	-	-	✓	-	-	
MW_CamCalc	-	_	√	_	_	
MC_CamIn	-	_	√			
MC_CamOut	-	-	<u> </u>			
wic_camout	-	<u>-</u>	<u> </u>	_		

⁽¹⁾ somente via CAN. (2) cartão PLC2, PLC11-01, PLC11-02 e SCA06 habilitado como mestre CANOpen.

- (3) somente em inteiro.
- (4) possibilidade de operações em double float.
- (5) um bloco por ladder e somente com cartão opcional IOS6 da SSW06

7.1.5 Tipos de Argumentos

POSIÇÃO / OFFSET DE POSIÇÃO

A posição / offset é composta por três partes:

- · sinal
- · número de voltas
- · fração de voltas

Sinal .

O sinal é composto por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado do sinal pode ser:

- ·constante
- · parâmetro do usuário
- · marcador de bit
- · entrada digital

Para o tipo de dado constante, o valor pode ser:

- · positivo
- · negativo

Número de Voltas:

O número de voltas é composto por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado pode ser:

- ·constante
- · parâmetro do usuário
- · marcador de word

Para o tipo de dado constante, o valor deve ser programado de acordo com a unidade configurada no projeto e o campo "Fração de Volta" não precisa ser configurado.

Para os parâmetros do usuário e os marcadores de word a unidade considerada por este campo é o número de rotações.

Fração de Volta:

A fração de volta é composta apenas por um endereço, pois ela compartilha do mesmo tipo de dado do campo "Número de Voltas".

Se o tipo de dado for constante, este valor é ignorado, valendo apenas a constante configurada no campo "Número de Voltas".

Para os parâmetros do usuário e os marcadores de word, a unidade considerada por este campo é número de pulsos, sendo que pode variar entre, 0 a 65535 pulsos, que equivale a uma faixa de 0 a 359,9945068359375°.

VELOCIDADE / OFFSET DE VELOCIDADE

A velocidade é composta por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado da velocidade pode ser:

· constante

- · parâmetro do usuário
- · marcador de word

Para o tipo de dado constante, o valor deve ser programado de acordo com a unidade configurada no projeto.

Para os parâmetros do usuário e os marcadores de word a unidade considerada por este campo é o RPM (rotações por minuto).

ACELERAÇÃO / DESACELERAÇÃO

A aceleração é composta por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado da aceleração pode ser:

- · constante
- · parâmetro do usuário
- · marcador de word

Para o tipo de dado constante, o valor deve ser programado de acordo com a unidade configurada no projeto.

Para os parâmetros do usuário e os marcadores de word a unidade considerada por este campo é RPM/s (rotações por minuto por segundo).

JERK

O jerk é composto por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado do jerk pode ser:

- \cdot constante
- · parâmetro do usuário
- · marcador de word

Para o tipo de dado constante, o valor deve ser programado de acordo com a unidade configurada no projeto.

Para os parâmetros do usuário e os marcadores de word a unidade considerada por este campo é RPM/s² (rotações por minuto por segundo ao quadrado).

MODO

O modo é sempre uma constante.

Possui as opções:

- · relativo
- · absoluto

O modo relativo refere-se a um posicionamento a partir de sua última posição. Neste caso, o sentido de giro deste posicionamento é dado pelo sinal, ou seja, sentido horário se for positivo e sentido anti-horário se for negativo.

O modo absoluto refere-se a posição de zero máquina, só podendo ser utilizado se uma busca de zero já foi feita previamente.

SENTIDO DE ROTAÇÃO

O sentido de rotação é composto por um tipo de dado e um endereço.

O tipo de dado do endereço pode ser:

· constante

- · marcador de bit
- · entrada digital
- · parâmetro do usuário

Quando o tipo de dado for constante, temos as opções:

- · horário
- · anti-horário.

DIREÇÃO

O argumento direção é composto por um tipo de dado e um endereço.

O tipo de dado do endereço pode ser:

- ·constante
- · marcador de bit
- · entrada digital
- · parâmetro do usuário

Quando o tipo de dado for constante, temos as opções:

- · oposta
- · mesma.

EIXO

Determina para qual eixo será gerado a referência de velocidade e/ou posição.

Possui as seguintes opções:

- Real: eixo controlado pelo drive.
- Virtual: eixo utilizado pelo bloco CAM como mestre.

NOTA!

O bloco CAM e o eixo virtual somente está disponível para o cartão POS2 com versão de firmware >= 1.50.

CONTROLE

Determina o tipo de controle utilizado na execução do bloco.

Possui as seguintes opções:

- Automático: em função do controle previamente selecionado por outro bloco.
- Velocidade.
- Posição.

INTERO

O inteiro é composto por um tipo de dado e um endereço.

O tipo de dado inteiro pode ser:

- · constante
- · marcador de word
- · parâmetro do usuário

Atenção: Quando a parte inteira referir-se a um resultado de saída de qualquer bloco, o tipo de dado constante não é permitido.

Os limites do inteiro são:

- · máximo = 32767
- · mínimo = -32768

FLOAT

O float é composto por um tipo de dado e um endereço.

O tipo de dado do float pode ser:

- · constante float
- · marcador de float

Atenção: Quando o float referir-se a um resultado de saída de qualquer bloco, o tipo de dado constante float não é permitido.

Os limites do float são:

- \cdot máximo = 3.402823466e+38F
- \cdot mínimo = 1.175494351e-38F

Nota: No SCA06 alguns blocos poderão ser programados com **float** (constante float ou marcador de float) e double float (constante double ou marcador de double).

DOUBLE

O double é composto por um tipo de dado e um endereço.

O tipo de dado do double pode ser:

- · constante double
- · marcador de double

Atenção: Quando o double referir-se a um resultado de saída de qualquer bloco, o tipo de dado constante double não é permitido.

Os limites do double são:

- \cdot máximo = 1.79769313486231571e+308
- \cdot mínimo = 2.22507385850720138e-308

LIMITES

Os limites são compostos por 2 partes:

- · inteiro 104 / float 105 / double 105 máximo
- · inteiro 104 / float 105 / double 105 mínimo

VALORES DE ENTRADA / VALORES DE SAÍDA

Os valores são compostos por 2 partes:

- · inteiro 104 / float 105 / double 105 entrada
- · inteiro 104/ float 105/ double 105] saída

MODO DE CONTROLE

Determina o tipo da referência que será envida para o drive.

O tipo de dado pode ser:

- constante
- parâmetro do usuário
- marcador de bit
- entrada digital

Possui as seguintes opções :

- -0: referência de velocidade;
- 1 : referência de corrente de torque.

CORRENTE DE TORQUE

A corrente de torque é composta por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado da velocidade pode ser:

- constante
- parâmetro do usuário
- marcador de word
- marcador de float

O valor da referência de corrente de torque é em % da corrente nominal do motor

AXIS / SLAVE (Usado nos blocos MC - Controle de Movimento)

Determina para qual eixo será gerado a referência de velocidade e posição. Possui as seguintes opções :

- Real: eixo controlado pelo drive.
- Virtual: eixo virtual.

MASTER (Usado nos blocos MC - Controle de Movimento)

Determina qual será a fonte de referência de velocidade e/ou posição para o eixo mestre do sincronismo. Possui as seguintes opções :

- Contador Rápido: programar a função das entradas digitais 1 e 2 (P0300 e P0301) para Contador Rápido (opção 4), configurar o modo de contagem em P0500 e o número de pulsos por rotação em P0506.
- CANopen: .
- Entrada de Encoder:
- Eixo Virtual:

RATIO NUMERATOR

Este argumento será o numerador da relação de sincronismo dos blocos GearIn e GearInPos. O sinal indicará a direção do movimento, se o valor for positivo, o movimento será na mesma direção do mestre e se o valor for negativo, o movimento será na direção oposta ao mestre.

O argumento RatioNumerator pode ser programado com:

- constante
- marcador de word
- parâmetro do usuário

RATIO DENOMINATOR

Este argumento será o denominador da relação de sincronismo dos blocos GearIn e GearInPos. O seu valor é sem sinal e deve ser diferente de zero.

O argumento Ratio Denominator pode ser programado com:

- constante
- marcador de word
- parâmetro do usuário

${\bf POSITION/DISTANCE/SET\,POSITION/PHASE\,SHIFT\,(\,\,Us\,ado\,\,nos\,\,blocos\,\,MC\,\text{-}\,\,Controle\,\,de\,\,Movimento)}$

Este argumento pode ser programado com um valor constante ou através de um marcador de double.

O valor deve ser programado em voltas.

Exemplo: 10,5 voltas, -2,125 voltas e 0,025 volta.

VELOCITY (Usado nos blocos MC - Controle de Movimento)

A velocidade pode ser programada com um valor constante ou através de um marcador de float.

O valor deve ser programado em RPM (rotações por minuto).

O valor máximo permitido é 10.000 RPM.

No bloco MC_MoveVelocity, o sinal do valor da velocidade será a direção do movimento (positivo - horário e negativo - anti-horário), nos demais blocos somente será permitido valores positivos.

ACELERATION / DECELERATION (Usado nos blocos MC - Controle de Movimento)

A aceleração/desaceleração pode ser programada com um valor constante ou através de um marcador de float.

O valor deve ser programado em RPM/s (rotações por minuto por segundo).

O valor máximo permitido é 500.000 RPM/s.

Será permitido somente valores positivos.

IQ (Usado nos blocos MC - Controle de Movimento)

O Iq pode ser programado com um valor constante ou através de um marcador de float.

O valor deve ser programado em Arms (Ampères rms).

IQ RAMP (Usado nos blocos MC - Controle de Movimento)

A rampa de Iq pode ser programada com um valor constante ou através de um marcador de float.

O valor deve ser programado em Arms/s (Ampères rms por segundo).

DIRECTION (Usado nos blocos MC - Controle de Movimento)

Este argumento determina a direção do movimento.

A direção é sempre constante e pode ser:

- · MC_Positive (direção positiva)
- · MC Negative (direção negativa)
- · MC_SwitchPositive (somente no bloco MC_StepAbsSwitch, se AbsSwitch não acionada, direção positiva e se acionada, direção negativa)
- · MC_SwitchNegative (somente no bloco MC_StepAbsSwitch, se AbsSwitch não acionada, direção negativa e se acionada, direção positiva)

SWITCH MODE / LIMIT SWITCH MODE (Usado nos blocos MC - Controle de Movimento)

Este argumento determina o modo da leitura da entrada digital usada como AbsSwitch ou LimitSwitch.

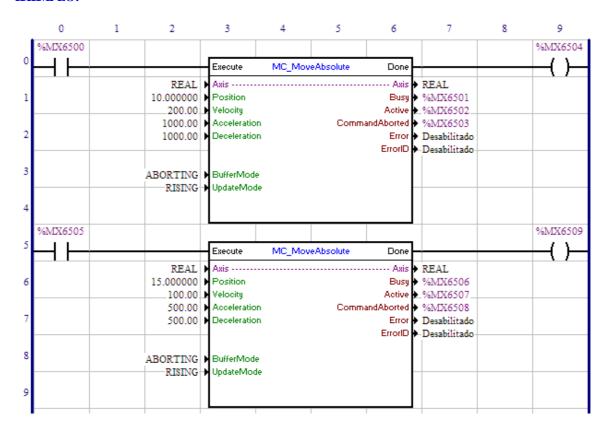
O Switch Mode / Limit Switch Mode é sempre constante e pode ser:

- · MC_EdgeOn (borda de subida)
- · MC EdgeOff (borda de descida)

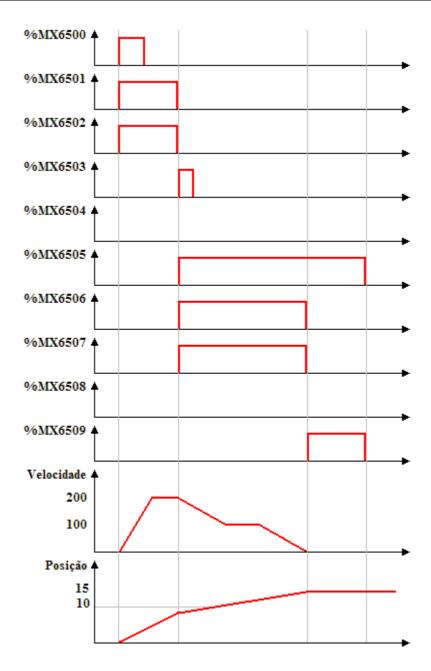
BUFFER MODE (Usado nos blocos MC - Controle de Movimento)

Este argumento determina quando e como o bloco será executado caso tenhamos outro bloco em execução.

O Buffer Mode é sempre constante e pode ser:


- · ABORTING
- · BUFFERED
- · SINGLE

ABORTING

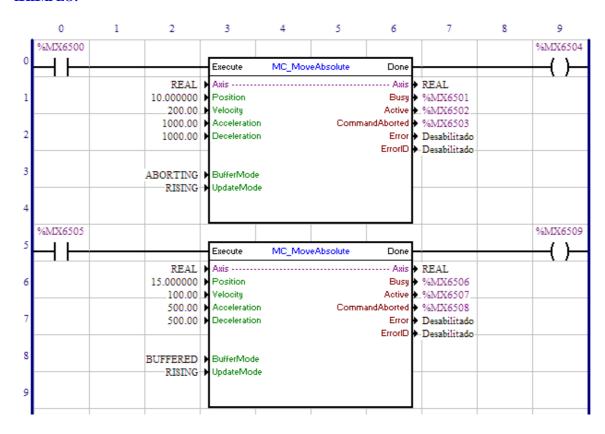

Quando executado um bloco programado em Aborting e outro bloco estiver em execução, o bloco em execução será abortado (cancelado) e esse novo bloco será executado imediatamente.

EXEMPLO:

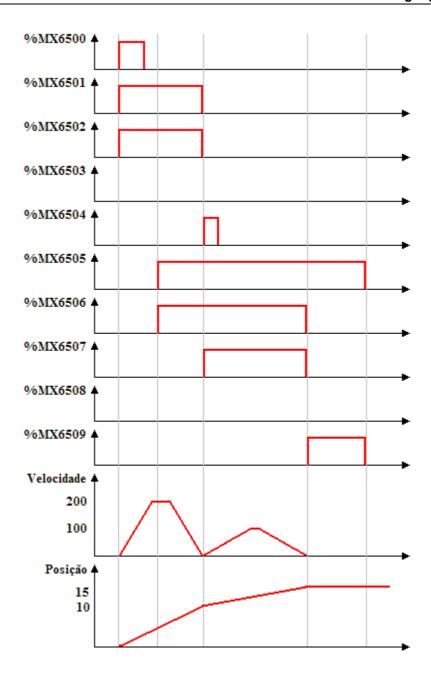
Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveAbsolute é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o posicionamento para a posição 10 voltas.

Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveAbsolute é instantaneamente executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse o posicionamento para a posição 15 voltas. Ao mesmo tempo os sinais Busy e Active do primeiro bloco, marcadores de bit 6501 e 6502, são resetados e o sinal CommandAborted, marcador de bit 6503, é setado por 1 scan.

Ao atingir a posição 15 voltas a saída Done do segundo bloco, marcador de bit 6509, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507, são resetados. A saída Done, marcador de bit



6509, permanece em 1 enquanto a entrada Execute, marcador de bit 6505, está setado.


BUFFERED

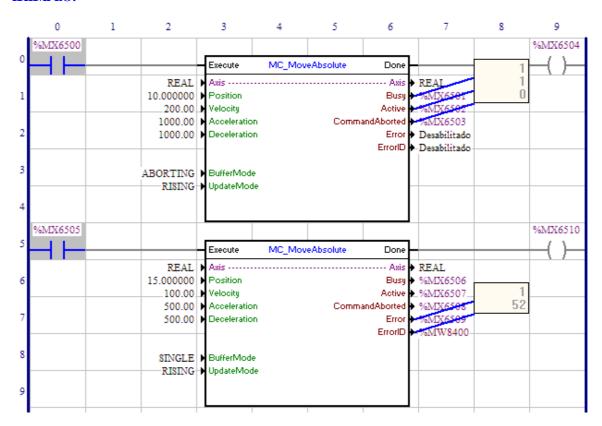
Já quando o bloco estiver programado em Buffered e se outro bloco estiver em execução, o bloco em execução continuará seu movimento até concluí-lo e esse novo bloco aguardará para então ser executado.

EXEMPLO:

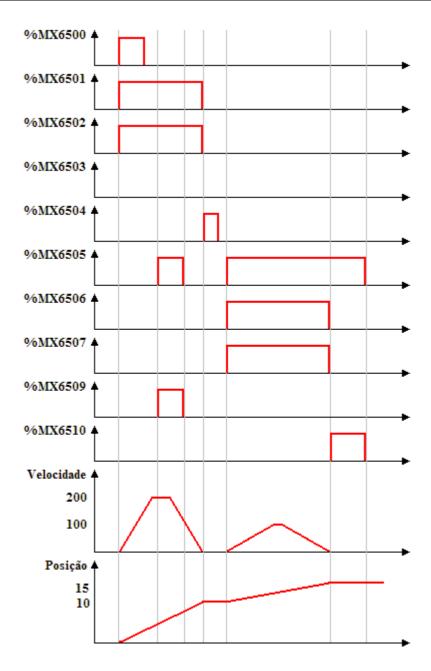
Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveAbsolute é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o posicionamento para a posição 10 voltas.

Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveAbsolute é iniciado, mas aguardará a conclusão do bloco em execução, com isso o sinal Busy deste bloco, marcador de bit 6506, é setado.

Ao atingir a posição 10 voltas o primeiro bloco é concluído, com isso os sinais Busy e Active deste bloco são resetados e a saída Done, marcador de bit 6504, é setado por 1 scan. Ao mesmo tempo iniciasse a execução do segundo bloco, o sinal Active, marcador de bit 6507, é setado e iniciasse a busca da posição 15


voltas.

Ao atingir a posição 15 voltas a saída Done do segundo bloco, marcador de bit 6509, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507, são resetados. A saída Done, marcador de bit 6509, permanece em 1 enquanto a entrada Execute, marcador de bit 6505, está setado.


SINGLE

Na tentativa de executar um bloco programado em SINGLE e se algum outro bloco estiver em execução, este bloco entrará em erro 52 e não será executado. Será mostrado na IHM o alarme A00052.

EXEMPLO:

Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveAbsolute é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o posicionamento para a posição 10 voltas.

Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveAbsolute é iniciado, mas como outro bloco está em execução, ocorrerá erro e o sinal Error, marcador de bit 6509, será setado e no marcador de word 8400 conterá o valor do erro 52. Será mostrado na IHM o alarme A00052.

Ao atingir a posição 10 voltas o primeiro bloco é concluído, com isso os sinais Busy e Active deste bloco são resetados e a saída Done, marcador de bit 6504, é setado por 1 scan.

Com uma nova transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveAbsolute é

executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse o posicionamento para a posição 15 voltas.

Ao atingir a posição 15 voltas a saída Done do segundo bloco, marcador de bit 6510, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507, são resetados. A saída Done permanece em 1 enquanto a entrada Execute, marcador de bit 6505, está setado.

UPDATE MODE (Usado nos blocos MC - Controle de Movimento)

Este argumento determina se a velocidade máxima do movimento será ou não atualizada durante a sua execução.

O Update Mode é sempre constante e pode ser:

- · RISING
- · ONLINE

RISING

O valor da velocidade máxima é obtido ao acionar o bloco, na transição de 0 para 1 do sinal Execute do bloco.

ONLINE

O valor da velocidade máxima pode ser modificado durante o movimento do bloco.

CAM TABLE (Usado nos blocos MC - Controle de Movimento)

O argumento Cam Table determina qual tabela de pontos da curva CAM deseja-se selecionar para sua execução.

O seu valor poderá ser de 1 a 10.

O argumento Cam Table pode ser programado com:

- constante
- marcador de word
- parâmetro do usuário

TABLE (Usado nos blocos MC - Controle de Movimento)

O argumento Table determina qual tabela de pontos da curva CAM será calculada de acordo com os argumentos do bloco.

O seu valor poderá ser de 11 a 20.

O argumento Table pode ser programado com:

- constante
- marcador de word
- parâmetro do usuário

CAM TABLE ID (Usado nos blocos MC - Controle de Movimento)

O argumento Cam Table ID é a identificação da tabela de pontos da curva CAM para uso no bloco MC_CamIn .

O seu valor poderá ser de 1 a 20.

O argumento Cam Table ID pode ser programado com:

- constante
- marcador de word
- parâmetro do usuário

NUMBER OF POINTS (Usado nos blocos MC - Controle de Movimento)

O argumento Number Of Points configura o número de pontos da curva CAM, sendo que o ponto inicial (posição zero do mestre e do escravo) não é considerado.

O número de pontos não pode ser maior que o número de pontos máximo da tabela de pontos correspondente, previamente programada através da ferramenta <u>CAM PROFILES</u> 46.

O argumento Number Of Points pode ser programado com:

- constante
- marcador de word
- parâmetro do usuário

MASTER POINTS (Usado nos blocos MC - Controle de Movimento)

Marcador de double que configura a posição do mestre do primeiro ponto desta curva CAM, a posição do mestre nos demais pontos será de acordo com o conteúdo dos marcadores de double subseqüentes ao selecionado, por exemplo, se o marcador de double configurado for o marcador de double 18010, a posição do eixo mestre no primeiro ponto será o conteúdo do marcador de double 18010, a posição do eixo mestre no segundo ponto será o conteúdo do marcador de double 18011 e assim por diante.

O valor do conteúdo do marcador de double deve ser programado em voltas. Exemplo: 1,5 voltas, 2,125 voltas e 10,025 volta.

Caso a posição do mestre de algum ponto for menor ou igual que a posição do mestre do ponto anterior, ocorrerá erro no bloco.

SLAVEPOINTS (Usado nos blocos MC - Controle de Movimento)

Marcador de double que configura a posição do escravo do primeiro ponto desta curva CAM, a posição do escravo nos demais pontos será de acordo com o conteúdo dos marcadores de double subseqüentes ao selecionado, por exemplo, se o marcador de double configurado for o marcador de double 18020, a posição do eixo escravo no primeiro ponto será o conteúdo do marcador de double 18020, a posição do eixo escravo no segundo ponto será o conteúdo do marcador de double 18011 e assim por diante.

O valor do conteúdo do marcador de double deve ser programado em voltas. Exemplo: 1,5 voltas, 2,125 voltas e 10,025 volta.

$CURVE\,TYPE\,(\,\,Us\,ado\,\,nos\,\,blocos\,\,MC\,\hbox{-}\,\,Controle\,\,de\,\,Movimento)$

Marcador de word que configura o tipo da curva do primeiro ponto desta curva CAM, o tipo da curva dos demais pontos será de acordo como conteúdo dos marcadores de word subseqüentes ao selecionado, por exemplo, se o marcador de word configurado for o marcador de word 12000, o tipo da curva será de acordo como conteúdo do marcador de word 12000, o tipo da curva do segundo ponto será o conteúdo do marcador de word 12001 e assim por diante.

O valor do conteúdo do marcador de word deve ser:

0 - linear ou

1 - spline cúbica

PERIODIC (Usado nos blocos MC - Controle de Movimento)

Este argumento determina se a execução da tabela de pontos da curva CAM será continua (periódica) ou não.

O argumento Periodic é sempre constante e pode ser:

- · Não Periódico
- · Periódico

Quando a tabela de pontos da curva CAM for Não Periódica, a curva CAM será executada uma única vez,

caso contrário, será executada continuamente.

END OF PROFILE (Usado nos blocos MC - Controle de Movimento)

O sinal End Of Profile é pulsado a cada momento em que a execução da curva CAM é terminada.

O tipo de dado do End Of Profile pode ser:

- · desabilitado
- · marcador de bit
- · saída digital

BUSY (Usado nos blocos MC - Controle de Movimento)

O sinal Busy informa se o bloco não foi finalizado.

O tipo de dado do Busy pode ser:

- · desabilitado
- · marcador de bit
- · saída digital

Ao iniciar o bloco, o sinal Busy é setado, permanecendo neste estado até a finalização do bloco.

ACTIVE (Usado nos blocos MC - Controle de Movimento)

O sinal Active informa se o bloco está em execução.

O tipo de dado do Active pode ser:

- · desabilitado
- · marcador de bit
- · saída digital

Quando o bloco é executado, o sinal Active é setado, permanecendo neste estado até a finalização do bloco. Se o bloco for do modo Aborting ou nenhum outro bloco estiver em execução, os sinais Active e Busy terão o mesmo sinal.

COMMAND ABORTED (Usado nos blocos MC - Controle de Movimento)

O sinal Command Aborted informa se o bloco foi abortado (cancelado).

O tipo de dado do CommandAborted pode ser:

- $\cdot \ desabilitado$
- · marcador de bit
- · saída digital

Se o bloco foi iniciado e ainda não finalizou o seu movimento (sinal Busy setado), e outro bloco com o modo Aborting for executado, o sinal CommandAborted é setado e permanece enquanto a entrada Executive estiver em 1. Os sinais Active e Busy são resetados.

ERROR (Usado nos blocos MC - Controle de Movimento)

O sinal Error informa se ocorreu erro na tentativa de executar o bloco.

O tipo de dado do Error pode ser:

- · desabilitado
- · marcador de bit
- · saída digital

Caso ocorra algumerro na tentativa de executar o bloco, o sinal Error é setado e permanece enquanto a entrada Executive estiver em 1.

ERROR ID (Usado nos blocos MC - Controle de Movimento)

Enquanto o sinal Error estiver setado, o ErrorId conterá o código do erro.

O tipo de dado do ErrorId pode ser:

- · desabilitado
- · marcador de word
- · parâmetro do usuário

Para maiores informações sobre os erros ocorridos consulte a tabela de erros do bloco.

BLOCO RETENTIVO

Com a opção Bloco Retentivo selecionada, as variável internas do bloco serão salvas em memória retentiva, com isso o estado do bloco permanecerá o mesmo após resetar/reiniciar o drive.

7.1.6 Referência Rápida

LÓGICA

NOCONTACT - Contato Normalmente Aberto 121

NCCONTACT - Contato Normalmente Fechado 122

COIL - Bobina 123

NEGCOIL - Bobina Negada 123

SETCOIL - Seta Bobina 124

RESETCOIL - Reseta Bobina 125

PTSCOIL - Bobina de Transição Positiva 126

NTSCOIL - Bobina de Transição Negativa 127

BLOCOS DE CONTROLE DE MOVIMENTO

MC_Power - Habilitação do Eixo Real 128

MC Reset - Limpa Falha do Drive 130

MC_Stop - Parada 132

MW IqControl 135

STOP - Parada 136

OSTOP - Parada Rápida 140

BLOCOS DE POSICIONAMENTO

SCURVE - Curva S 142

TCURVE - Curva Trapezoidal 145

HOME - Busca Zero Máquina 148

TCURVAR - Curva Trapezoidal Variável 152

CAM - Curva Definida 155

SHIFT - Deslocamento 171

MC MoveAbsolute - Posicionamento Absoluto 173

MC_MoveRelative - Posicionamento Relativo 177

MC StepAbsSwitch - Busca AbsSwitch 182

MC_StepLimitSwitch - Busca LimitSwitch 185

MC StepRefPulse - Busca Pulso Nulo 187

MC_StepDirect - Muda Posição 190

MC FinishHoming - Cancela Referênciamento 192

BLOCOS DE MOVIMENTO

SETSPEED - Seta Velocidade 200

SPEED - Velocidade 206

JOG - Movimenta 204

REF - Envia Referência 209

MC MoveVelocity - Velocidade 212

BLOCOS DE SEGUIDOR

FOLLOW - Seguidor 215

AUTOREG - Registro Automático 216

MC_GearIn - Sincronismo em Velocidade 219

MC GearInPos - Sincronismo em Posição 222

MC_Phasing - Deslocamento Eixo Mestre 223

MC GearOut - Finaliza Sincronismo 225

BLOCOS VERIFICADOR

INPOS - Em Posição 226

INBWG - Em Movimento 228

BLOCOS DE CLP

TON - Temporizador 230

RTC - Relógio de Tempo Real 233

CTU - Contador Incremental 234

PID - Controle PID 237

FILTER - Filtro de 1ª Ordem 240

CTENC - Contador de Encoder 242

BLOCOS DE CÁLCULO

COMP - Comparador 245

MATH - Aritmético 246

FUNC - Função Matemática 253

SAT - Saturação 255

MUX - Multiplexador 256

DEMUX - Demultiplexador 258

BLOCOS DE TRANSFERÊNCIA

TRANSFER - Transferidor 259

INT2FL - Inteiro para Ponto Flutuante 261

FL2INT - Ponto Flutuante para Inteiro 261

IDATA - Transferência Indireta 262

USERERR - Erro do usuário 264

BLOCOS REDE CAN

MSCANWEG - Mestre CANWEG 265

RXCANWEG - Leitura CANWEG 265

SDO - Service Data Object 266

OUTROS BLOCOS

USERFB - Subrotina 268

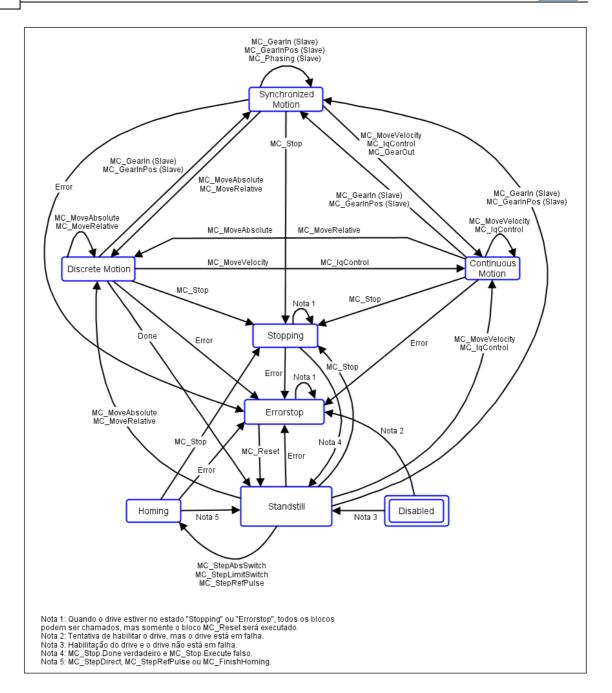
MMC - Controle Multimotores 282

TEXTO

Comentário 120

7.1.7 Estado do Eixo

O estado do eixo pode ser visualizado através dos marcadores de word do sistema %SW3406 e %SW3408, Estado do Eixo Real e Estado do Eixo Virtual respectivamente.


O estado do eixo poderá ser:

- 0 Disabled (Desabilitado)
- 1 Errorstop (Eixo com Falha)
- 2 Standstill (Habilitado)
- 3 Stopping (MC_Stop em execução)
- 4 Homing (Referenciando)
- 5 Continuous Motion (Movimento Contínuo)
- 6 Discrete Motion (Movimento Discreto)
- 7 Synchronized Motion (Movimento Sincronizado)

Através do Diagrama de Estados do Eixo é possível verificar o comportamento do eixo de acordo com os blocos MCs ativados.

7.2 Texto

7.2.1 Comentário

DES CRIÇÃO

Para alterar o texto do comentário, basta dar um duplo-clique sobre a linha do comentário. Entre com o novo texto e confirme teclando Ok.

Veia também 26 como inserir um Comentário no editor ladder.

DIÁLOGO

7.3 Contatos

7.3.1 NO CONTACT

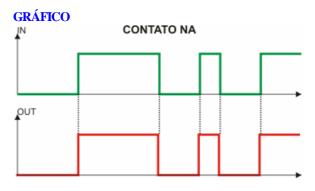
SÍMBOLO

DES CRIÇÃO

Écomposto por 1 entrada, 1 saída e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:


- · marcador de bit
- · entrada digital
- · saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) Valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.

(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Transfere o sinal contido em sua entrada para a sua saída, se o valor do seu argumento for 1. Caso contrário, transfere 0 para a sua saída.

EXEMPLO COMENTADO

Se o marcador de bit 2000 e a entrada digital 1 forem 1, escreve 1 no marcador de bit 1000. Caso contrário, escreve 0.

7.3.2 NC CONTACT

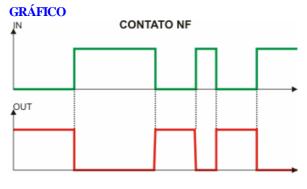
SÍMBOLO

DES CRIÇÃO

Écomposto por 1 entrada, 1 saída e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:


- · marcador de bit
- · entrada digital
- · saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) Valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.

(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Transfere o sinal contido em sua entrada para a sua saída, se o valor do seu argumento for 0. Caso contrário, transfere 0 para a sua saída.

EXEMPLO COMENTADO

Se o marcador de bit 2000 e a entrada digial 1 forem 0, escreve 1 no marcador de bit 1000. Caso contrário, escreve 0.

7.4 Bobinas

7.4.1 COIL

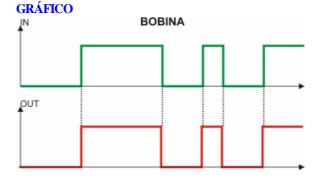
SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:


- · marcador de bit
- · saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) O valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado. Além disso, valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.

(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Transfere o sinal contido em sua entrada para o seu argumento.

EXEMPLO COMENTADO

Se o marcador de bit 2000 ou a entrada digital 1 for 1, escreve 1 no marcador de bit 1000. Caso contrário, escreve 0.

7.4.2 NEG COIL

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

- · marcador de bit
- · saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) O valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado. Além disso, valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.

(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Transfere o inverso do sinal contido em sua entrada para o seu argumento.

EXEMPLO COMENTADO

Se o marcador de bit 2000 ou a entrada digital 1 for 1, e o parâmetro do usuário 800 for 0, escreve 0 na saída digital 1. Caso contrário, escreve 1.

7.4.3 SET COIL

SÍMBOLO

DESCRIÇÃO

Écomposto por 1 entrada e 1 argumento.

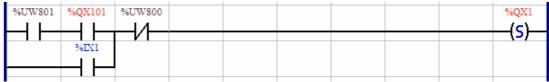
O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

· marcador de bit

- · saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) O valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado. Além disso, valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.


(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Quando o sinal de entrada for 1, o argumento é setado. O argumento somente será resetado quando um componente reseta bobina for ativado.

EXEMPLO COMENTADO

Se o parâmetro do usuário 801 e a saída digital 1 do drive forem 1, ou a entrada digital 1 for 1, e o parâmetro do usuário 800 for 0, seta a saída digital 1. Caso contrário, o valor da saída é mantido.

7.4.4 RESET COIL

SÍMBOLO

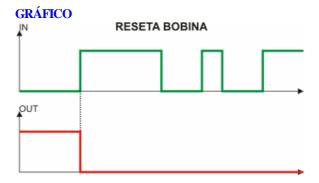
DES CRIÇÃO

É composto por 1 entrada e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

- · marcador de bit
- · saída digital
- \cdot parâmetro do usuário (1)
- · marcador de bit de sistema (2)


NOTAS: (1) O valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado. Além disso, valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.

(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Quando o sinal de entrada for 1, o argumento é resetado. O argumento somente será setado quando um componente seta bobina for ativado.

EXEMPLO COMENTADO

Se a entrada digital 1 for 1, reseta o parâmetro do usuário 800. Caso contrário, o valor do parâmetro é mantido.

7.4.5 PTS COIL

SÍMBOLO

DESCRIÇÃO

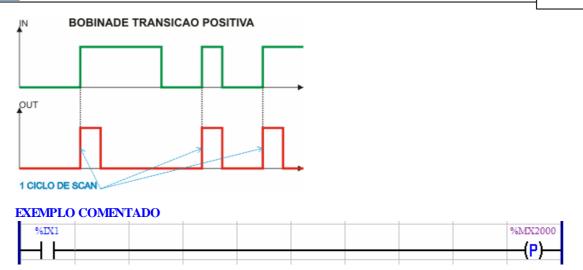
É composto por 1 entrada e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

- \cdot marcador de bit
- \cdot saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) O valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado. Além disso, valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.


(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Quando houver uma transição de 0 para 1 no sinal de entrada, o argumento é setado durante um ciclo de scan. Depois disso o argumento é resetado, mesmo que a sua entrada permaneça em 1.

GRÁFICO

Quando a entrada digital 1 for de 0 para 1, escreve 1 por um ciclo de scan no marcador de bit 2000.

7.4.6 NTS COIL

SÍMBOLO

DES CRIÇÃO

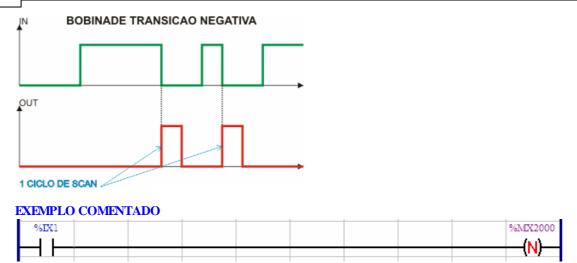
Écomposto por 1 entrada e 1 argumento.

O argumento é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

- · marcador de bit
- · saída digital
- · parâmetro do usuário (1)
- · marcador de bit de sistema (2)

NOTAS: (1) O valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado. Além disso, valores pares correspondem a 0, enquanto que valores ímpares correspondem a 1.


(2) Somente para SoftPLC do CFW-11 e SSW-06.

FUNCIONAMENTO

Quando houver uma transição de 1 para 0 no sinal de entrada, o argumento é setado durante um ciclo de scan. Depois disso, o argumento é resetado, mesmo que a sua entrada permaneça em 0.

GRÁFICO

Quando a entrada digital 1 for de 1 para 0, escreve 1 por um ciclo de scan no marcador de bit 2000.

7.5 Blocos de Função

7.5.1 Controle de Movimento

7.5.1.1 MC Power

SÍMBOLO

DES CRIÇÃO

Habilitação/Desabilitação do eixo real.

O comando de habilitação/desabilitação do eixo real será de acordo com a entrada Enable, se Enable for 0 o comando será de desabilitação e se for 1 o comando será de habilitação.

Quando o bloco MC_Power for usado para habilitação/desabilitação do eixo real, nenhuma entrada digital deverá estar programada para a função de Habilitação (opção 1), o Alarme A0120 poderá ocorrer.

ARGUMENTOS

É composto por 1 entrada Enable, 1 saída Status e 5 argumentos, sendo eles:

- Buffer $\underline{\mathsf{Mode}}$
- <u>Busy</u> 116
- Active 116
- Error 116
- Error Id 117

A entrada Enable é responsável pela habilitação/desabilitação do eixo real.

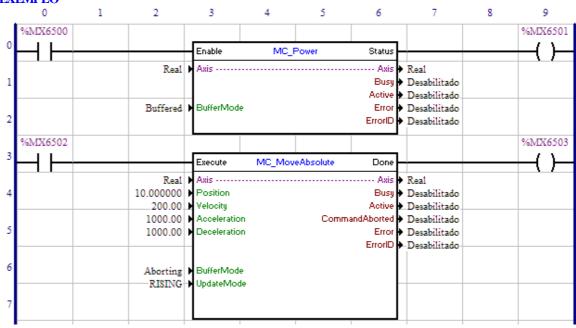
A saída Status informa o estado do eixo real.

O argumento Buffer Mode poderá ser:

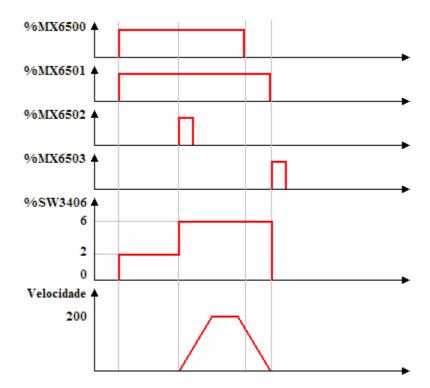
- Aborting: quando o comando for de desabilitação (Enable = 0), o eixo real será desabilitado imediatamente.
- Buffered: quando o comando for de desabilitação (Enable = 0), o eixo real será desabilitado somente quando todos os blocos de movimento terminarem .

MODO DE OPERAÇÃO

Ao habilitar o eixo real pela primeira vez, o drive poderá operar em malha de posição, dependendo do valor do parâmetro P0773. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.


Quando o eixo real estiver desabilitado, o estado do eixo 118 será "Disabled".

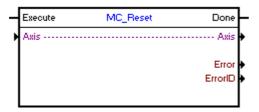
Ao habilitar o eixo real, o estado do eixo 118 mudará para "Standstill".


ERROS DO BLOCO

Error Id	Descrição
67	Drive no estado "Disabled" ou "Errorstop".
71	P202 diferente de 4 (PLC).

EXEMPLO

Ao alterar o valor de 0 para 1 do marcador de bit 6500, entrada Enable do bloco MC_Power, o eixo real é habilitado e o seu estado, marcador de word do sistema 3406, é alterado para "Standstill" (%SW 3406 = 2). A saída Status, marcador de bit 6501, é setada.


Tendo-se a transição de 0 para 1 do marcador de bit 6502 o bloco MC_MoveAbsolute é executado e iniciasse o posicionamento para a posição 10 voltas. O <u>estado do eixo 118</u> é alterado para "Discrete Motion" (% SW3406 = 6).

Enquanto o posicionamento é executado, o marcador de bit 6500, entrada Enable do bloco MC_Power, é resetado, mas como o BufferMode do MC_Power está configurado como "Buffered", o eixo somente será desabilitado na conclusão do posicionamento.

Ao finalizar o posicionamento, o marcador de bit 6503, saída Done do bloco MC_MoveAbsolute é setado por 1 ciclo de scan e o eixo é desabilitado (MC_Power.Enable = 0). O estado do eixo é alterado para "Disabled" (%SW3406 = 0).

7.5.1.2 MC Reset

SÍMBOLO

DES CRICÃO

Limpa Falha do Drive

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será executado. Se o eixo configurado estiver em Falha, o estado do eixo estará em "Errorstop", ao executar o bloco o estado do eixo 118 mudará para "Disabled".

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 4 argumentos, sendo eles:

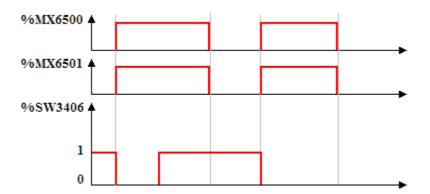
- Axis 106
- Error 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado.

MODO DE OPERAÇÃO


Ao executar o bloco MC_Reset, o drive não altera o modo de operação atual.

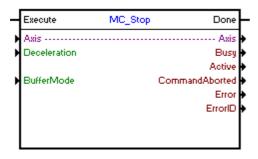

Na execução do bloco o <u>estado do eixo</u> 118 mudará para "Disabled" somente se o estado estava em "Errorstop".

ERROS DO BLOCO

Error Id	Descrição
71	P202 diferente de 4 (PLC).

EXEMPLO

Com o eixo real no estado de "Errorstop" (%SW3406 = 1) e uma transição de 0 para 1 do marcador de bit 6500, o bloco MC_Reset será executado e o estado do eixo 118 mudará para "Disabled" (%SW3406 = 0) . A saída


Done, marcador de bit 6501, permanecerá setada enquanto a entrada Execute estiver em 1.

Ocorrendo alguma falha no drive, o estado do eixo 1181 mudará para "Errorstop" (%SW3406 = 1).

Quando novamente ocorrer uma transição de 0 para 1 do marcador de bit 6500, o bloco MC_Reset será executado e o estado do eixo 118 mudará para "Disabled" (%SW3406 = 0) . A saída Done, marcador de bit 6501, permanecerá setada enquanto a entrada Execute estiver em 1.

7.5.1.3 MC_Stop

SÍMBOLO

DES CRIÇÃO

Executa uma parada.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Será executado uma parada com uma desaceleração configurada no argumento "Deceleration".

Quando a parada termina, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

Enquanto a entrada Execute estiver em 1, nenhum outro bloco MC será executado.

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 8 argumentos, sendo eles:

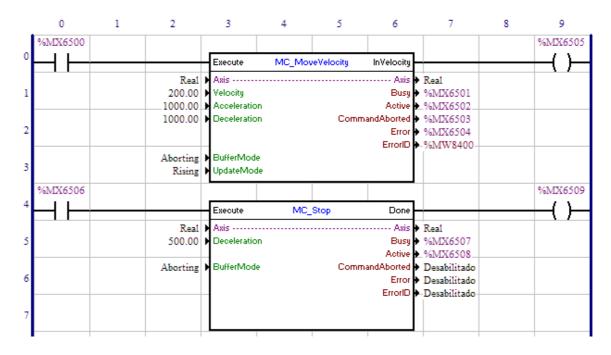
- Axis 106
- Deceleration 107
- Busy 116
- Active 116
- Command Aborted 116
- Error 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

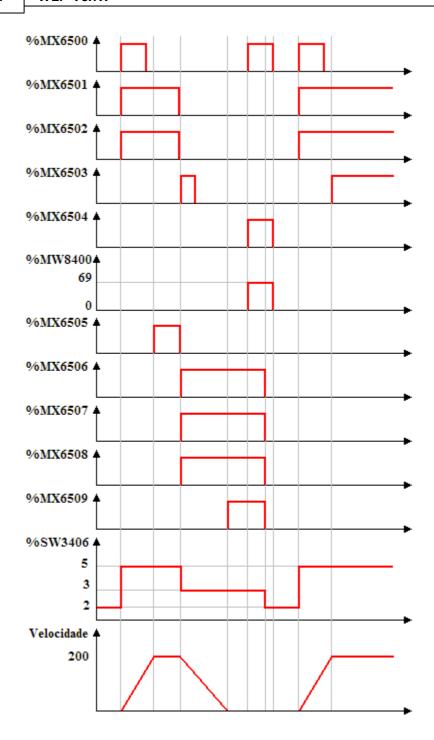
A saída Done informa o instante em que a parada é finalizada.

MODO DE OPERAÇÃO

Ao executar o bloco MC_Stop, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.



Na execução do bloco o <u>estado do eixo 118</u> mudará para "Stopping". Ao finalizar a parada e o bloco não estiver mais ativo, o <u>estado do eixo 118</u> mudará para "Standstill".


ERROS DO BLOCO

Error Id	Descrição
64	Desaceleração programada menor que a mínima permitida.
65	Desaceleração programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
71	P202 diferente de 4 (PLC).
78	Bloco MC não executado – Falha intema.

EXEMPLO

Na transição de 0 para 1 do marcador de bit 6500, o bloco MC_MoveVelocity é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o movimento para chegar a velocidade de 200 RPM. O estado do eixo (%SW3406) muda de 2 (Standstill) para 5 (Continuous Motion).

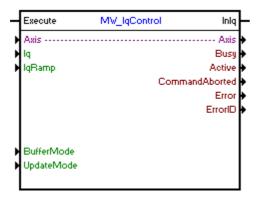
No instante em que a velocidade atinge 200 RPM, a saída InVelocity, marcador de bit 6505 é setado.

Tendo-se a transição de 0 para 1 do marcador de bit 6506 o bloco MC_Stop é instantaneamente executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6507 e 6508 respectivamente, são setados e iniciasse a parada. Ao mesmo tempo os sinais Busy, Active e InVelocity do bloco MC_MoveVelocity,

marcadores de bit 6501, 6502 e 6505, são resetados e o sinal CommandAborted, marcador de bit 6503, é setado por 1 scan. O estado do eixo (%SW3406) muda de 5 (Continuous Motion) para 3 (Stopping).

Ao finalizar a parada, a saída Done do bloco MC_Stop, marcador de bit 6509, é setado e permanece até a entrada Execute, marcador de bit 6506, está setado. O estado do eixo (%SW3406) permanece igual a 3 (Stopping) e nenhum outro bloco MC será executado.

Tendo-se a transição de 0 para 1 do marcador de bit 6500 o bloco MC_MoveVelocity é iniciado, mas como o bloco MC_Stop está ativo, ocorrerá erro e o sinal Error, marcador de bit 6504, será setado e no marcador de word 8400 conterá o valor do erro 69.


Quando a entrada Execute do bloco MC_Stop é resetada, os sinais Busy, Active e Done, marcadores de bit 6507, 6508 e 6509, são resetadoso. O estado do eixo (%SW3406) muda de 3 (Stopping) para 2 (Standstill) e outros blocos MCs poderão ser executados.

Na transição de 0 para 1 do marcador de bit 6500, o bloco MC_MoveVelocity é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o movimento para chegar a velocidade de 200 RPM. O estado do eixo (%SW3406) muda de 2 (Standstill) para 5 (Continuous Motion).

No instante em que a velocidade atinge 200 RPM, a saída InVelocity, marcador de bit 6505 é setado.

7.5.1.4 MW_IqControl

SÍMBOLO

DES CRIÇÃO

Executa o controle de Iq programado.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Para finalizar o bloco, é necessário a execução de outro bloco ou o drive passar para o estado "Disabled" ou "Errorstop".

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída InTorque e 11 argumentos, sendo eles:

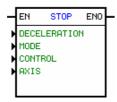
- <u>Axis</u> 106
- Iq 107
- Iq Ramp 107
- Buffer Mode 107
- Update Mode 114

- <u>Busy</u> 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- <u>Error Id</u> 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída InIq informa o instante em que atinge o Iq programado.

MODO DE OPERAÇÃO


Na execução do bloco o estado do eixo 118 mudará para "Continuous Motion".

ERROS DO BLOCO

Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado " Stopping ".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 differente de 4 (PLC).
74	Drive no estado " Homing ".
78	Bloco MC não executado — Falha interna.
80	Iq programado menor que o mínimo permitido.
81	Iq programado maior que o máximo permitido.
82	IqRamp programado menor que o mínimo permitido.
83	IqRamp programado maior que o máximo permitido.

7.5.1.5 STOP

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

- desaceleração 103
- <u>modo</u> 136
- controle 104
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa o instante que o bloco é finalizado.

Modo:

O modo é sempre uma constante.

Possui as opções:

- · interrompe
- · cancela

FUNCIONAMENTO

Se a entrada EN for 0, o este bloco não está ativo, a saída ENO fica em 0.

Se a entrada EN for 1, mesmo que seja por um ciclo de scan, é executado uma parada com um perfil trapezoidal baseado nas características programadas nos argumentos.

Quando a parada é concluída, a saída ENO vai para 1 durante um ciclo de scan, retornando a 0 posteriormente.

Depois de iniciado, o bloco de parada não é mais cancelado até a sua parada total, mesmo que a entrada EN vá para 0 antes do fim de sua parada.

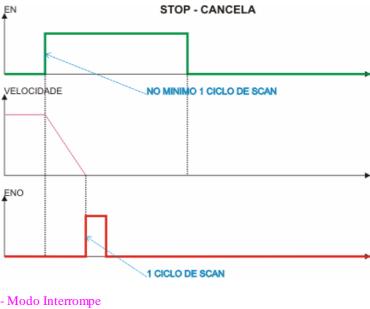
O modo interrompe faz com que o bloco permaneça parado enquanto a entrada EN for 1. No instante que a entrada EN for 0, o bloco de posicionamento previamente ativo é restaurado, desde que a posição corrente não seja maior ou igual a posição desejada pelo posicionamento previamente ativo. Isto poderia ocorrer, se a desaceleração do bloco de parada fosse muito lento.

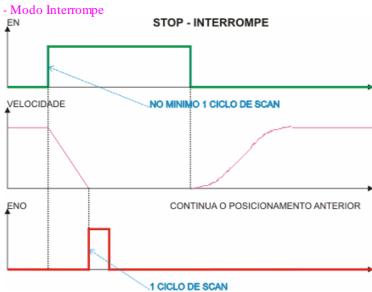
O modo cancela não restaura o posicionamento prévio quando a entrada EN for 0.

Nota: Se utilizado para parar uma busca de zero máquina, o modo de parada sempre será cancela, mesmo que a programação esteje setada para interrompe.

Importante: Este bloco não altera a forma de controle, seja ela em malha de posição ou em malha de velocidade.

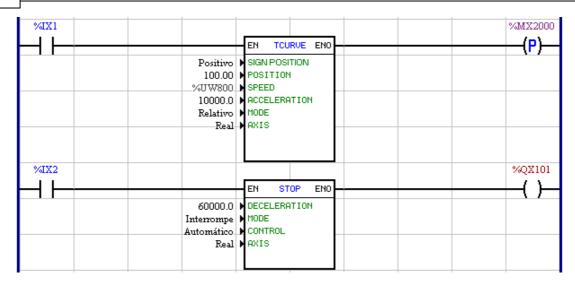
FLUXOGRAMA



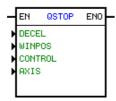


GRÁFICO

- Modo Cancela



EXEMPLO COMENTADO



Quando a entrada digital 1 for 1, um posicionamento de 100 voltas é habilitado. Se a entrada digital 2 for 1, o bloco de parada é habilitado, fazendo com que o posicionamento seje interrompido. Ao parar, é escrito na saída digital 1 do drive 1 por um ciclo de scan. No instante que a entrada digital 2 voltar para 0, o posicionamento de 100 voltas é completado.

7.5.1.6 QSTOP

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

- des aceleração 103
- posição 102
- controle 104
- eixo 104

A entrada EN é responsável pela habilitação do bloco.

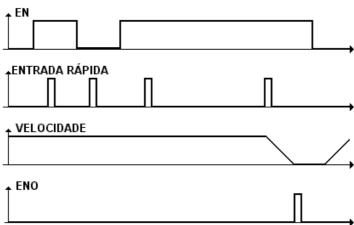
A saída ENO informa o instante que o movimento é finalizado.

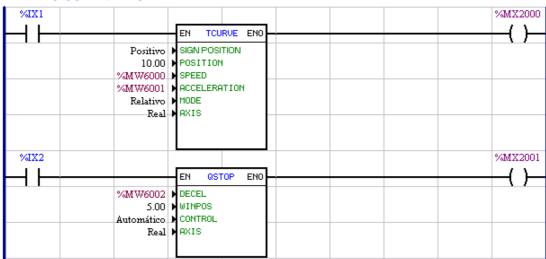
FUNCIONAMENTO

Se a entrada EN for 0, o bloco não está ativo, a saída ENO fica em 0.

Se a entrada EN for 1, o bloco é habilitado. Quando ocorrer um pulso na entrada rápida e o deslocamento decorrido após a habilitação do bloco for maior ou igual ao argumento posição, é executado uma parada com um perfil trapezoidal.

Quando a parada é concluída, a saída ENO vai para 1 durante um ciclo de scan, retornando a 0 posteriormente.

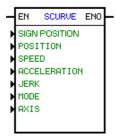

Para realizar outro deslocamento o bloco deve ser desabilitado pelo menos por um ciclo de scan.


Entrada Rápida (pulso nulo do encoder) - conector X8, pino 8 para a POS2 ou conector XC9, pino 8 para a PLC1 e PLC2.

Importante: Este bloco não altera a forma de controle, seja ela em malha de posição ou em malha de velocidade.

GRÁFICO

EXEMPLO COMENTADO


Quando a entrada digital 1 for 1, um posicionamento de 10 voltas é habilitado. Se a entrada digital 2 for 1, o bloco de parada rápida é habilitado, decorridos 5 voltas, quando ocorrer um pulso na entrada rápida do conector X8 o posicionamento será cancelado. Ao parar, é escrito 1 no marcador de bit 2001 por um ciclo de scan. No instante que a entrada digital 2 voltar para 0, o posicionamento poderá ser reiniciado.

7.5.2 Posicionamento

7.5.2.1 SCURVE

SÍMBOLO

DESCRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 6 argumentos, sendo eles:

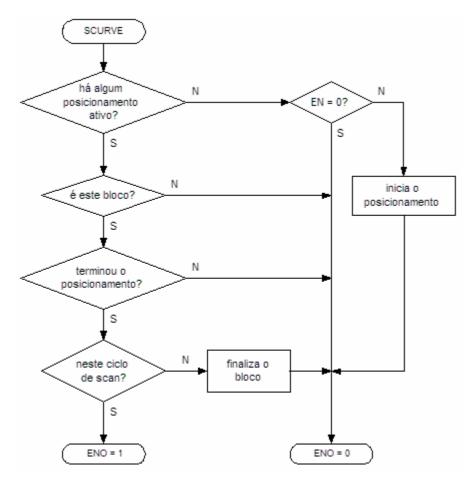
- posição 102
- velocidade 102
- aceleração 103
- jerk 103
- <u>modo</u> 103
- eixo 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa o instante que o bloco é finalizado.

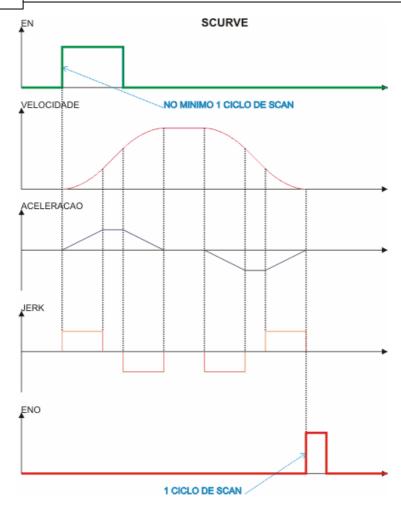
FUNCIONAMENTO

Se a entrada EN for 0, o bloco não é executado e a saída ENO vai para 0.


Se houver pelo menos um pulso durante um ciclo de scan na entrada EN e não houver outro bloco de posicionamento ativo, será executado um posicionamento com um perfil S baseado nas características programadas nos argumentos.

Quando o posicionamento termina, a saída ENO vai para 1 durante um ciclo de scan, retornando posteriormente a 0.

Importante: Este bloco trabalha em malha de posição, permanecendo assim mesmo após a sua conclusão.

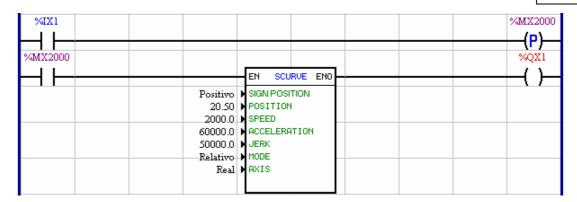

FLUXOGRAMA

GRÁFICO

EQUAÇÕES DA CINEMÁTICA

$$x = x0 + v0*t + (1/2)*a0*t^2 + (1/6)*J*t^3$$

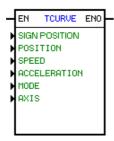
$$v = v0 + a0*t + (1/2)*J*t^2$$


$$a = a0 + J*t$$

onde:

- x = posição final
- x0 = posição inicial
- -v = velocidade final
- v0 = velocidade inicial
- a = aceleração final
- a0 = aceleração inicial
- -J = jerk

EXEMPLO COMENTADO



Se o drive estiver habilitado e o marcador de bit 2000 estiver em 1, um posicionamento com um perfil S, de 20,5 voltas positivo no modo relativo (sentido horario), a 2000 rpm, com uma aceleracao de 50.000 rpm/s e um jerk de 230.000 rpm/s^2 é executado. Quando o posicionamento é concluído, a saída digital 1 fica ativa por 1 ciclo de scan

7.5.2.2 TCURVE

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 5 argumentos, sendo eles:

- posição 102
- velocidade 102
- aceleração 103
- modo 103
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa o instante em que o bloco é finalizado.

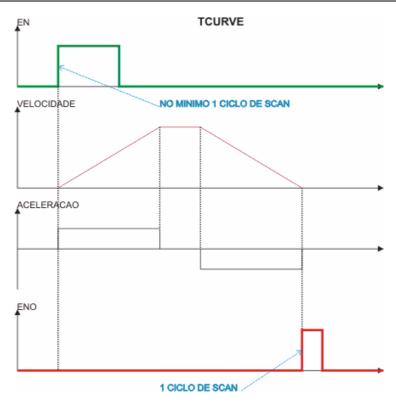
FUNCIONAMENTO

Se a entrada EN for 0, o bloco não é executado e a saída ENO vai para 0.


Se houver pelo menos um pulso durante um ciclo de scan na entrada EN e não houver outro bloco de posicionamento ativo, será executado um posicionamento com um perfil trapezoidal baseado nas características programadas nos argumentos.

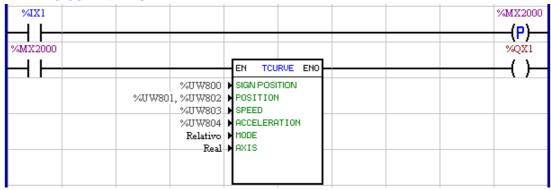
Quando o posicionamento termina, a saída ENO vai para 1 durante um ciclo de scan, retornando posteriormente a 0.

Importante: Este bloco trabalha em malha de posição, permanecendo assim mesmo após a sua conclusão.


FLUXOGRAMA

GRÁFICO

EQUAÇÕES DA CINEMÁTICA

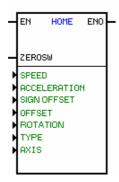

$$x = x0 + v0*t + (1/2)*a*t^2$$

$$v = v0 + a*t$$

onde:

- x = posição final
- x0 = posição inicial
- -v = velocidade final
- -v0 = velocidade inicial
- a = aceleração final

EXEMPLO COMENTADO



Quando for capturado uma transição de 0 para 1 na entrada digital 1, dispara um posicionamento para a posição absoluta configurada com sinal do parâmetro do usuário 800, com o número de voltas do parâmetro do usuário 801 e com a fração de volta do parâmetro do usuário 802, na velocidade do parâmetro do usuário 803 em rpm e com uma aceleração baseada no parâmetro do usuário 904 em rpm/s. Para isto é necessário que uma busca de zero máquina já tenha sido executada previamente. Quando terminar, escreve 1 durante 1 ciclo de scan na saída digital 1.

7.5.2.3 HOME

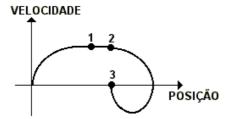
SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 entrada ZEROSW, 1 saída ENO e 6 argumentos, sendo eles:

- sentido de rotação 103
- velocidade 102
- aceleração 103
- offset (sinal, número de voltas, fração de volta) 102
- tipo:
- Padrão 148
- Imediato 149
- Uni-Direcional com Sensor 149
- Uni-Direcional com Sensor e Pulso Nulo 149
- Uni-Direcional com Pulso Nulo 150
- Bi-Directional com Sensor 150
- Bi-Direcional com Sensor e Pulso Nulo 151

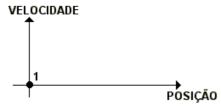
A entrada EN é responsável pela habilitação do bloco.


A entrada ZEROSW é responsável de informar ao bloco que a posição de zero máquina foi atingida. A saída ENO informa o instante que o bloco é finalizado.

TIPO:

Padrão

A busca de zero é iniciada com um perfil trapezoidal baseado nas características programadas. No instante em que houver um pulso de no mínimo um ciclo de scan na entrada ZEROSW, inicia-se a busca do pulso nulo. Assim que o pulso nulo for encontrado, inicia-se o processo de parada seguido do retorno a posição do pulso nulo.


- 1: Sensor Detectado
- 2 : Pulso Nulo Detectado
- 3 : Posição de Parada (posição do pulso nulo)

NOTA

Na hipótese deste bloco ser habilitado e a entrada ZEROSW estar em 1, a busca se inicia no sentido oposto ao programado até a entrada ZEROSW ir para 0. Neste instante, o bloco inverte o sentido de giro, repetindo o passo descrito no parágrafo anterior.

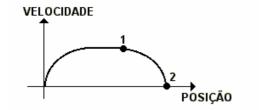
Imediato (*)

Quando o tipo programado for imediato, nenhum movimento é executado e a posição atual é considerada a posição do pulso nulo.

1 : Nova Posição do Pulso Nulo

NOTA!

Para a execução deste tipo não é necessário o drive habilitado.


Pode ser executado durante qualquer posicionamento.

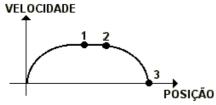
Uni-Directional com Sensor (*)

Esse tipo pode ser usado quando o pulso nulo do encoder não está disponível e é requerido rotação em somente um sentido.

A busca do sensor é iniciada com um perfil trapezoidal baseado nas características programadas. No instante em que o sensor é detectado, essa posição é considerada como sendo a posição do pulso nulo e inicia-se o processo de parada.

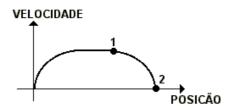
Se o bloco for habilitado e a entrada ZEROSW estiver em 1, a posição atual será considerada como sendo a posição do pulso nulo e nenhum movimento será executado.

- 1 : Sensor Detectado (nova posição do pulso nulo)
- 2 : Posição de Parada


Uni-Direcional com Sensor e Pulso Nulo (*)

Esse tipo pode ser usado quando o pulso nulo do encoder está disponível e é requerido rotação em somente

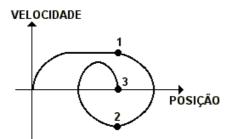
um sentido.


A busca do pulso nulo é iniciada com um perfil trapezoidal baseado nas características programadas. No instante em que o sensor é detectado, inicia-se a busca do pulso nulo. Assim que o pulso nulo for encontrado, inicia-se o processo de parada.

- 1: Sensor Detectado
- 2: Pulso Nulo Detectado
- 3: Posição de Parada

Uni-Direcional com Pulso Nulo (*)

A busca do pulso nulo é iniciada com um perfil trapezoidal baseado nas características programadas. Assim que o pulso nulo for encontrado, inicia-se o processo de parada.

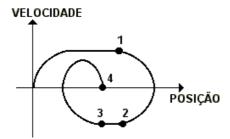

- 1: Pulso Nulo Detectado
- 2 : Posição de Parada

Bi-Directional com Sensor (*)

Esse tipo pode ser usado quando o pulso nulo do encoder não está disponível.

A busca do sensor é iniciada com um perfil trapezoidal baseado nas características programadas. No instante em que o sensor é detectado, inicia-se o processo de inversão de sentido. No instante em que o sensor não é mais detectado essa posição é considerada como sendo a posição do pulso nulo e inicia-se o processo de parada seguido do retorno a nova posição do pulso nulo.

Se o bloco for habilitado e a entrada ZEROSW estiver em 1, o movimento inicia-se no sentido contrário ao programado, quando o sensor não é mais detectado, essa posição é considerada como sendo a posição do pulso nulo e inicia-se o processo de parada seguido do retorno a nova posição do pulso nulo.


- 1 : Sensor Detectado
- 2 : Sensor Não Detectado (nova posição do pulso nulo)
- 3 : Posição de Parada (nova posição do pulso nulo)

Bi-Direcional com Sensor e Pulso Nulo (*)

A busca do pulso nulo é iniciada com um perfil trapezoidal baseado nas características programadas. No instante em que o sensor é detectado, inicia-se o processo de inversão de sentido. No instante em que o sensor não é mais detectado inicia-se a busca do pulso nulo. Assim que o pulso nulo for encontrado, inicia-se o processo de parada seguido do retorno a posição do pulso nulo.

Se o bloco for habilitado e a entrada ZEROSW estiver em 1, o movimento inicia-se no sentido contrário ao programado, quando o sensor não é mais detectado, inicia-se a busca do pulso nulo. Assim que o pulso nulo for encontrado, inicia-se o processo de parada seguido do retorno a posição do pulso nulo.

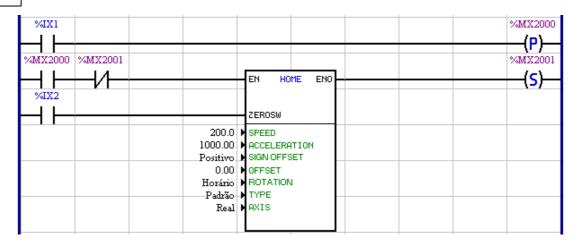
- 1 : Sensor Detectado
- 2 : Sensor Não Detectado
- 3: Pulso Nulo Detectado
- 4 : Posição de Parada (posição do pulso nulo)

FUNCIONAMENTO

Se a entrada EN for 0, o bloco não é executado e a saída ENO fica em 0.

Se houver pelo menos um pulso durante um ciclo de scan na entrada EN e não haver outro bloco de posicionamento ativo, a busca de zero é iniciada nas características programadas nos argumentos.

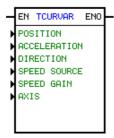
Então o bloco é finalizado e a saída ENO vai para 1 por um ciclo de scan, retornando a 0 posteriormente.


Na finalização deste bloco, a posição encontrada será referenciada com o valor do offset programado, que normalmente possui o valor zero. Se programássemos um offset negativo de 25 rotações, e executássemos um posicionamento relativo de 50 rotações com sinal positivo, a posição alcançada seria de 25 voltas e 0 de fração de volta, com sinal positivo. No entanto, se o posicionamento fosse absoluto, a posição final é 50 voltas e de 0 de fração de volta, com sinal positivo, girando na realidade 75 voltas no sentido horário.

NOTA: Se o tipo de busca de zero programado utilizar pulso nulo, a posição final pode sofrer um offset dependendo do valor do parâmetro 769, que provoca um adiantamento da posição em relação ao pulso nulo. Desta forma, a parada será o valor de P769 décimos de graus antes do pulso nulo.

IMPORTANTE: Após a busca de zero de máquina, o controle fica em malha de posição.

EXEMPLO COMENTADO



Considerando que o drive tenha sido recém resetado ou energizado, na transição de 0 para 1 da entrada digital 1, ativa a busca de zero máquina tipo padrão, pois o marcador de bit 2001 é inicializado em 0. Quando a entrada 2 vai para 1, inicia a busca do pulso nulo. Ao encontrá-lo, o motor começa a desacelerar e volta para a posição do pulso nulo encontrada mais o valor de P769. Assim que o posicionamento é concluído, o marcador 2001 é setado, que inabilita uma nova busca.

7.5.2.4 TCURVAR

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 6 argumentos, sendo eles:

- posição 102
- aceleração 103
- direção 104
- velocidade 152
- sincronismo 153
- eixo 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa o instante em que o bloco é finalizado.

Velocidade

A velocidade é composta por um tipo de dado e um endereço, dependendo da escolha do tipo de dado.

O tipo de dado da velocidade pode ser:

- · encoder (encoder auxiliar da PLC2 ou encoder principal da POS2)
- · parâmetro do usuário
- · marcador de word

Para os parâmetros do usuário e os marcadores de word a unidade considerada por este campo é o RPM (rotações por minuto).

Relação de Sincronismo

A relação de sincronismo é formada por 1 tipo de dado e 2 endereços ou constantes, dependendo da escolha do tipo de dado.

O tipo de dado pode ser:

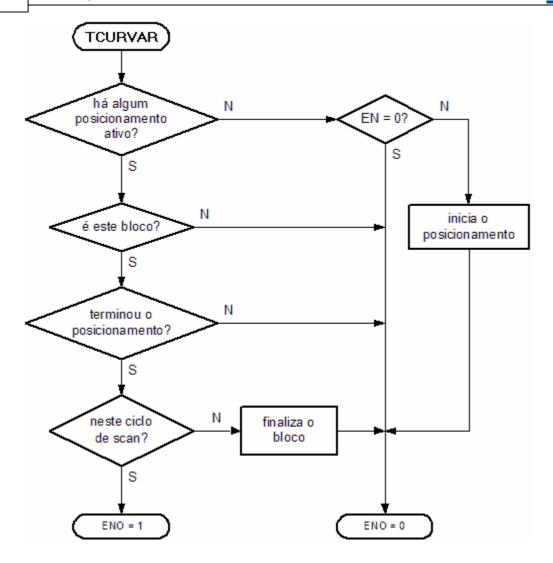
- ·constante
- · parâmetro do usuário
- · marcador de word

Os endereços ou constantes são destinados a relação do mestre e relação do escravo.

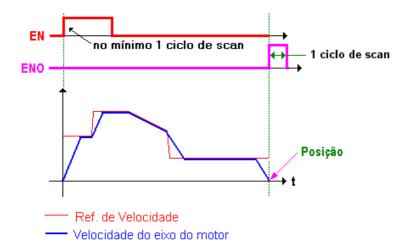
Importante: A relação de sincronismo só é aplicada quando a fonte de velocidade for pelo encoder.

FUNCIONAMENTO

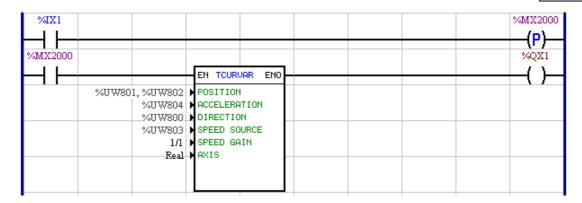
Se a entrada EN for 0, o bloco não é executado e a saída ENO vai para 0.


Se houver pelo menos um pulso durante um ciclo de scan na entrada EN e não houver outro bloco de posicionamento ativo, será executado um posicionamento com um perfil trapezoidal variável baseado nas características programadas nos argumentos.

Quando o posicionamento termina, a saída ENO vai para 1 durante um ciclo de scan, retornando posteriormente a 0.

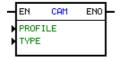

Importante: Este bloco trabalha em malha de posição, permanecendo assim mesmo após a sua conclusão.

FLUXOGRAMA



GRÁFICO

EXEMPLO COMENTADO



Quando for capturado uma transição de 0 para 1 na entrada digital 1, dispara um posicionamento configurada com sinal do parâmetro do usuário 800, com o número de voltas do parâmetro do usuário 801 e com a fração de volta do parâmetro do usuário 802, na velocidade do parâmetro do usuário 803 em rpm e com uma aceleração baseada no parâmetro do usuário 804 em rpm/s. Quando terminar, escreve 1 durante 1 ciclo de scan na saída digital 1.

7.5.2.5 CAM

SÍMBOLO:

DESCRIÇÃO:

É composto por 1 entrada EN, 1 saída ENO e 2 argumentos, sendo eles:

- Perfil:

Perfil de posicionamento CAM a ser executado.

- Tipo de Perfil Cam:

- Fixo: o perfil de posicionamento é transferido junto com o programa do usuário e não poderá sofrer alterações.
- Calculável: o perfil de posicionamento é transferido junto com o programa do usuário e poderá sofrer alterações através da execução do bloco CALCCAM. Para perfis de posicionamento calculáveis os seguintes parâmetros são necessáros :
 - Número Máximo de Pontos:

Valor constante que configura o número máximo de pontos que este CAM poderá ter.

• Primeiro Ponto Mestre

Marcador de float que configura a posição do mestre do primeiro ponto deste perfil CAM, a posição do mestre nos demais pontos será de acordo com o conteúdo dos marcadores de float subseqüentes ao selecionado. Os conteúdos dos marcadores de float utilizados devem ter o formato de voltas, exemplo: 1.5 voltas, 0.25 volta, ...

Importante: Caso a posição do mestre de algum ponto for menor que a posição do mestre do ponto anterior no momento da execução do bloco CALCCAM, este perfil CAM não será mais executado

sem que novamente o bloco CALCCAM seja executado com os conteúdos dos marcadores utilizados estejam corretos.

Primeiro Ponto Escravo

Marcador de float que configura a posição do escravo do primeiro ponto deste perfil CAM, a posição do escravo nos demais pontos será de acordo com o conteúdo dos marcadores de float subseqüentes ao selecionado. Os conteúdos dos marcadores de float utilizados devem ter o formato de voltas, exemplo: 1.5 voltas, 0.25 volta, ...

• Primeiro Tipo de Curva

Marcador de bit que configura o tipo de interpolação (0 para interpolação linear e 1 para interpolação cúbica) do primeiro ponto deste perfil CAM, o tipo de interpolação dos demais pontos será de acordo como conteúdo dos marcadores de bit subseqüentes ao selecionado.

• Número de Pontos

Marcador de word que configura a quantidade de pontos deste perfil CAM.

NOTAS!

- Caso o marcador de word programado conter valor maior que o argumento "Número Máximo de Pontos" no momento da execução do bloco CALCCAM, este perfil CAM não será mais executado sem que novamente o bloco CALCCAM seja executado com o conteúdo do marcador utilizado esteja correto.
- No primeiro ciclo de scan após o download do programa do usuário, o bloco CALCCAM carrega o número de pontos, os valores dos pontos e os tipos de interpolação para os argumentos programados nos blocos CAM calculáveis.

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa o instante em que o bloco é finalizado.

O bloco CAM é responsável pela execução de um posicionamento definido em seu perfil (profile). Basicamente um dispositivo CAM tem a função de converter um movimento rotativo em um movimento recíproco de avanço e recuo. Esse movimento de avanço e recuo é definido por um perfil cam. Umas das maneiras de definir mecanicamente esse perfil cam é mostrada no exemplo a seguir:

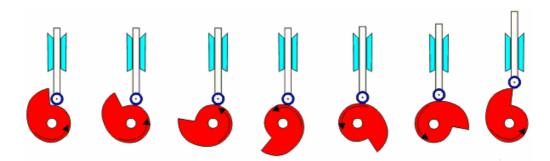


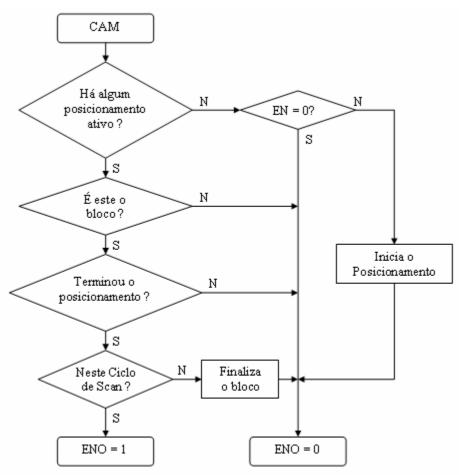
Figura - CAM mecânico.

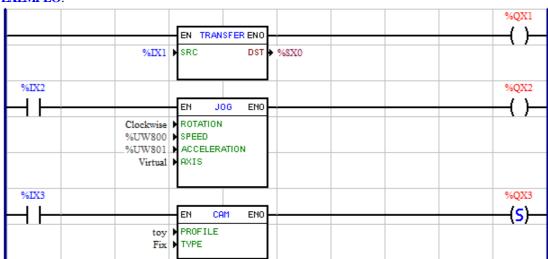
FUNCIONAMENTO:

Se a entrada EN for 0, o bloco não é executado e a saída ENO é 0.

Se a entrada EN for 1, o bloco executa o perfil CAM programado utilizando o eixo virtual como mestre. Todos os blocos de posicionamento e velocidade do WLP podem ser utilizado para gerar referência para o eixo virtual.

O bloco CAM é sempre relativo, ou seja, a posição do eixo virtual na inicialização do bloco será considerada como posição zero do mestre.

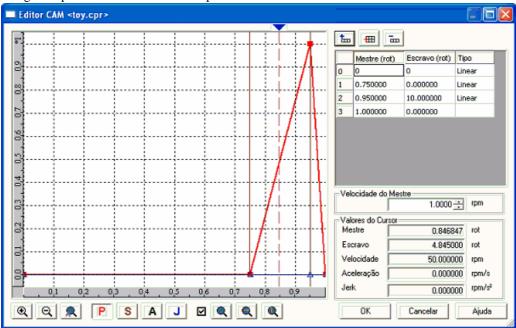

Quando o perfil cam termina, a saída ENO vai para 1 durante um ciclo de scan, retornando posteriormente a 0.


NOTA!

O eixo virtual é o eixo utilizado como mestre para o bloco CAM. Todos os blocos de posicionamento e movimento na POS2 a partir da versão de firmware 1.50 são capazes de gerar referência para o eixo virtual.

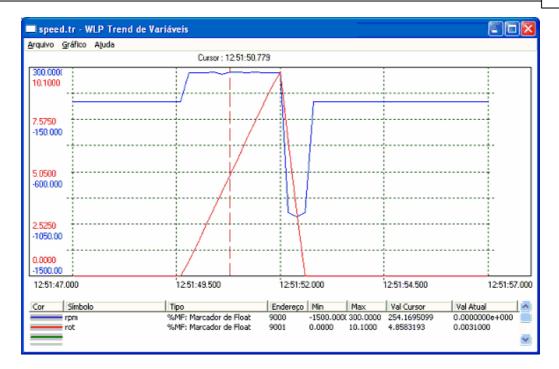
FLUXOGRAMA:

EXEMPLO:

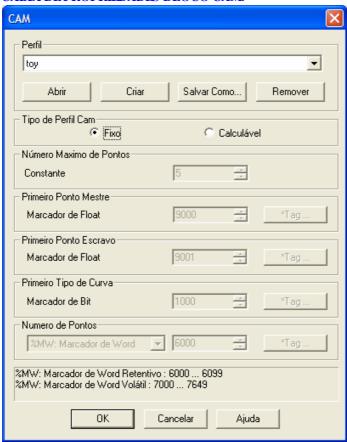


A entrada digital % IX1 habilita o drive.

A entrada digital %IX2 habilita o bloco JOG que está programado para gerar uma referência de velocidade para o eixo virtual definida pelo parâmetro do usuário %UW800 com aceleração definida pelo parâmetro do usuário %UW801.

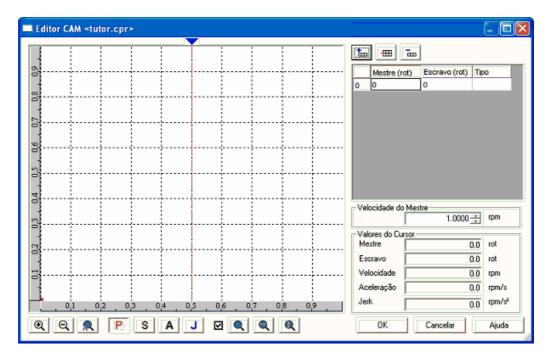

A entrada digital %IX3 habilita o bloco CAM que a partir desse instante seguirá o mestre de acordo com o perfil definido no parâmetro PROFILE. Ao terminar o perfil, a saída digital %QX3 será ativada. Se a entrada digital %IX3 estiver sempre ativa o perfil CAM será executado continuamente.

O seguinte profile foi utilizado no exemplo:

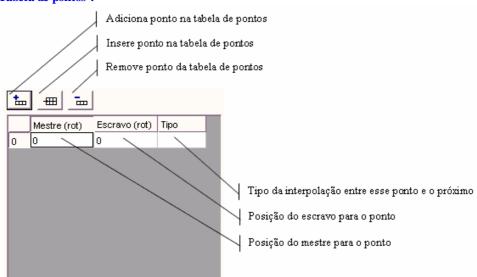


Através da monitoração online os seguintes dados foram adquiridos :

CAIXA DE PROPRIEDADES BLOCO CAM:


Esta caixa é chamada através de um duplo clique do mouse no bloco CAM. Nela é possível executar as seguintes operações:

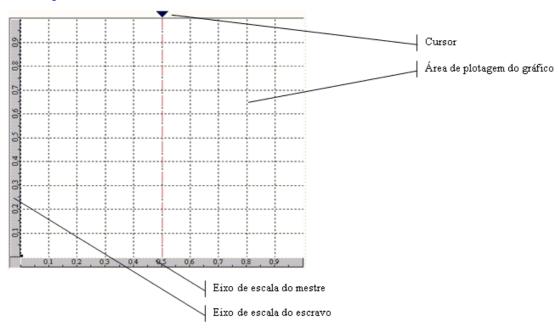
- Selecionar o perfil utilizado através da seleção de "Perfil".
- Abrir o perfil para edição através do botão "Abrir".
- Criar o novo perfil através do botão "Criar".
- Remover o perfil selecionado através do botão "Remover".
- Salvar com outro nome o perfil selecionado através do botão "Salvar Como...".

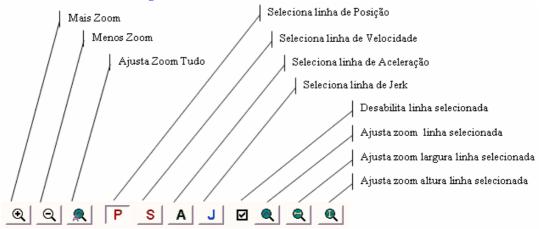

Criando um novo perfil cam:

Para criar um novo perfil cam clique no botão "Cria", uma caixa de entrada de valores solicitará o nome do novo perfil, após o editor de perfil cam abrirá, conforme figura a seguir :

Nessa janela existe os seguintes controles:

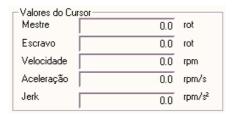
Tabela de pontos:




NOTAS!

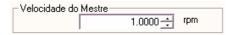
- Como citado anteriormente o bloco CAM é sempre relativo, logo o primeiro ponto da tabela de pontos sempre será mestre=0 e escravo=0.
 - Mestre = eixo virtual
 - Escravo = eixo real (drive)

Gráfico do perfil:



Ferramentas de controle do gráfico:

Valores do cursor:

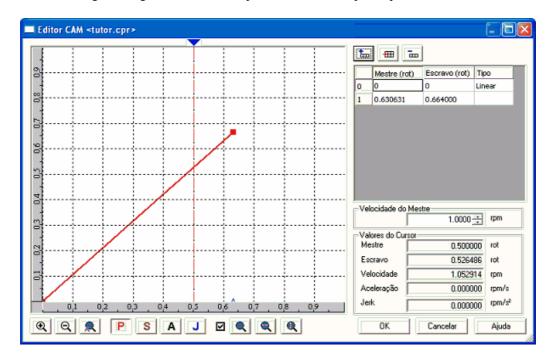

Valores relativos ao ponto selecionado do cursor.

Velocidade do mestre:

Velocidade utilizada para cálculo da velocidade, aceleração e jerk do escravo.

! NOTA

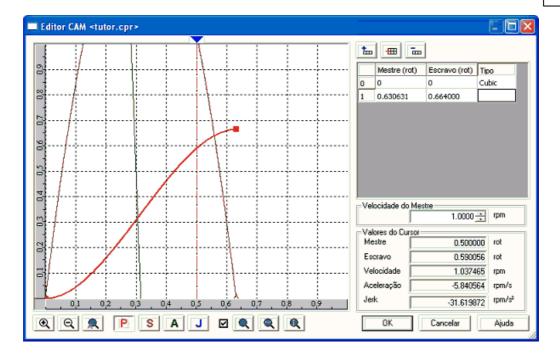
- A velocidade, aceleração e jerk do escravo devem ser utilizados como referência para o desenvolvimento do perfil cam, onde os mesmos são calculados numericamente e não levamem consideração carga, inércia, torque e a dinâmica do drive.

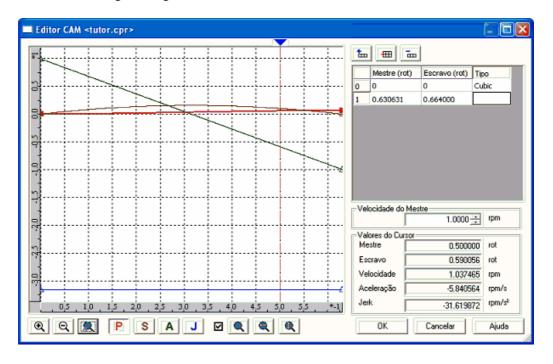

Adicionando um novo ponto no perfil cam:

Um ponto pode ser adicionado através dos botões adicionar ou inserir ponto ou através de um duplo clique do mouse no gráfico na posição onde deseja-se adicionar o ponto. O duplo clique pode ser feito em qualquer região do gráfico. Caso já exista uma interpolação nessa região o editor irá inserir esse ponto entre os dois pontos da interpolação.

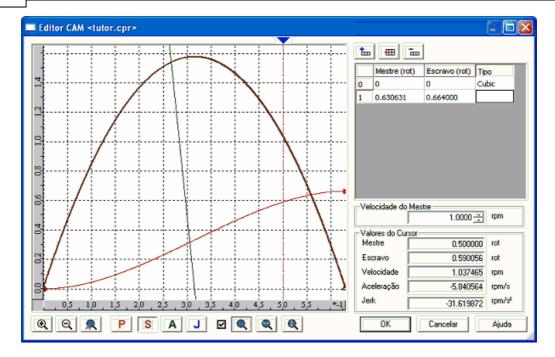
O ponto é sempre adicionado como interpolação do tipo linear.

Quando é adicionado ou inserido um ponto através dos respectivos botões os valores de mestre e escravo vem zerados. No caso da inserção de ponto isso pode ocasionar uma interrupção do perfil, pois a posição do mestre deve sempre crescer em relação a origem, então, deve-se editar o valor do mestre e escravo clicando sobre suas células na tabela de pontos.

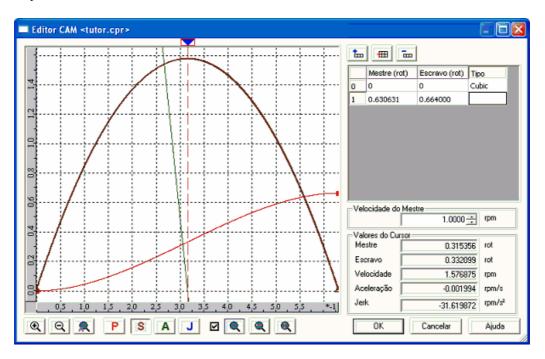

Na figura a seguir foi inserido um ponto através do duplo clique do mouse:


Para alterar o tipo da interpolação clique na célula de tipo na linha correspondente a origem da interpolação e selecione a desejada.

Na figura a seguir foi alterado o ponto para interpolação tipo cúbica.

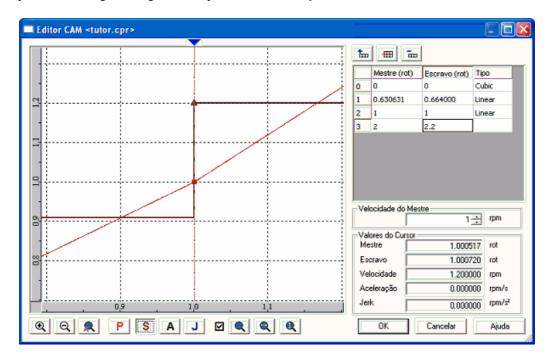


Agora nessa curva já é possível observar outras grandezas além da posição como velocidade, aceleração e jerk. Para uma melhor visualização de todas grandezas podemos utilizar o botão "Ajusta Zoom Tudo" conforme figura a seguir.



Da mesma maneira podemos escolher uma das grandeza e utilizar o botão "Aplica Zoom Selecionado". No exemplo a seguir foi efetuado um zoom na velocidade.

Outra ferramenta interessante de ser citada é o cursor. No exemplo a seguir posicionaremos o cursor no ponto de máxima velocidade.


Deve-se lembrar que as grandezas velocidade, aceleração e jerk do escravo são dependentes da velocidade do mestre, então é interessante altera-la de modo a simular algo muito próximo ao real. Na figura a seguir a velocidade do mestre será alterada para 1000 rpm e analisaremos a mesma posição do cursor.

Velocidade do Mestre				
	1000 🛨	rpm		
Valores do Cursor				
Mestre	0.315356	rot		
Escravo	0.332099	rot		
Velocidade	1576.875185	rpm		
Aceleração	-1994.056064	rpm/s		
Jerk	-31619871813.905342	rpm/s²		

Durante o projeto do perfil cam todas essas grandezas devem ser observadas pois as mesmas poderão ou não ser cumpridas em função de limitações mecânicas, elétricas e eletrônicas dos equipamentos envolvidos.

Como os gráficos de aceleração e jerk são calculados levando em consideração a interpolação entre dois pontos, nas junções entre interpolações lineares a aceleração e jerk serão mostrados como iguais a zero. Mas sabemos que teoricamente num degrau de velocidade a aceleração e jerk são infinitos, na prática a aceleração e jerk nesse momento dependerá também das limitações mecânicas, elétricas e eletrônicas dos equipamentos envolvidos. Esses degraus de velocidade devem ser observados e considerados no projeto do perfil cam. Na figura a seguir é exemplificado esta situação.

O bloco CAM tem disponível dois tipos de interpolação, linear e cúbica. Sendo utilizada as seguintes equações :

$$pe = pie^* \left(\frac{pfm - pm}{pfm - pim} \right) + pfe^* \left(\frac{pm - pim}{pfm - pim} \right)$$

$$ve = \left(\frac{-pie}{pfm - pim} + \frac{pfe}{pfm - pim} \right)^* vm$$

$$ae = 0$$
 $je = 0$

- Cúbica:

$$pe = a * (pm - pim)^{3} + b * (pm - pim)^{2} + c * (pm - pim) + pie$$

$$ve = (3 * a * (pm - pim)^{2} + 2 * b * (pm - pim) + c) * vm$$

$$ae = (6 * a * (pm - pim) + 2 * b) * vm^{2}$$

$$ie = 6 * a * vm^{3}$$

Onde:

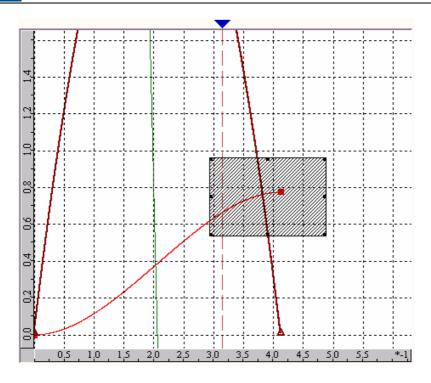
pe = posição do escravo
ve = velocidade do escravo
ae = aceleração do escravo
je = jerk do escravo
pm = posição do mestre
vm = velocidade do mestre
pim = posição inicial do mestre
pfm = posição final do mestre
pie = posição inicial do escravo
pfe = posição final do escravo
a = coeficiente calculado pelo editor CAM
b = coeficiente calculado pelo editor CAM
c = coeficiente calculado pelo editor CAM

Alterando um ponto no perfil cam:

Um ponto pode ser alterado através da tabela de pontos pela edição direta ou movendo o ponto no gráfico. Para mover o ponto no gráfico leve o mouse até o ponto em questão que é marcado com um quadrado vermelho, clique sobre o mesmo e mantenha o mouse pressionado e arraste o mesmo para a nova posição.

Ao clicar sobre o ponto a tabela de pontos será deslocada para o ponto em questão, selecionando a célula relacionada.

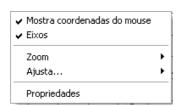
A operação de mover o ponto no gráfico é interativa e calcula todo o perfil a cada mudança do ponto em questão. O novo ponto pode ser visto na tabela de pontos.


Removendo um ponto no perfil cam:

O mesmo é removido diretamente na tabela de pontos. Para isso selecione uma das células respectiva ao ponto e clique no botão "Remover Ponto".

Zoom de uma área determinada do gráfico:

Clique com o mouse sobre um dos cantos da região que deseja executar o zoom e mantenha o mouse pressionado, mova o mouse de modo a marcar uma região. Nesse momento um retângulo aparecerá no gráfico, solte o botão do mouse, e então dê um duplo clique sobre esse retângulo. Na figura a seguir um exemplo desse zoom.



Movendo o gráfico:

Pressione a tecla SHIFT e clique com o mouse sobre o gráfico e mantenha o mouse pressionado, mova o mouse e gráfico moverá junto.

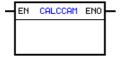
Menu gráfico:

Para ter acesso ao menu do gráfico clique com o botão direito do mouse sobre a área do gráfico, após o seguinte menu aparecerá.

Nesse menu é possível executar as seguintes operações :

- Habilitar/desabilitar coordenadas do mouse.
- Habilitar/desabilitar eixos x e y.
- Executar operações de zoom.
- Executar operações de ajuste da tela.
- Abrir caixa com as propriedades do gráfico.

Na figura a seguir é mostrada a caixa de propriedades do gráfico.


Propriedades			×
Geral			
x1 = 10 x2 = 0.63	s coordenadas 0631 adas do mous	y1 = -0.0332 y2 = 0.6972	
OK.	Cancelar	Aplicar	Ajuda

Nessa caixa de propriedades do gráfico é possível executar as seguintes operações :

- Ajustar manualmente a escala dos eixos x e y
- Habilitar/desabilitar coordenadas do mouse.
- Habilitar/desabilitar eixos x e y.

7.5.2.6 CALCCAM

SÍMBOLO:

DESCRIÇÃO:

É composto por 1 entrada EN e 1 saída ENO.

A entrada EN é responsável pela habilitação do bloco.

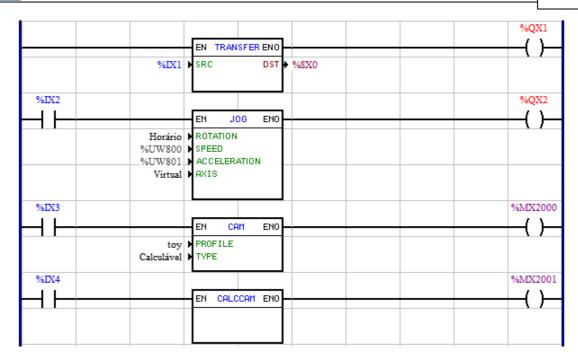
A saída ENO informa o instante em que o bloco é finalizado.

O bloco CALCCAM é responsável pelo cálculo dos blocos CAM definido como calculável), conforme o conteúdo dos argumentos desses blocos CAM.

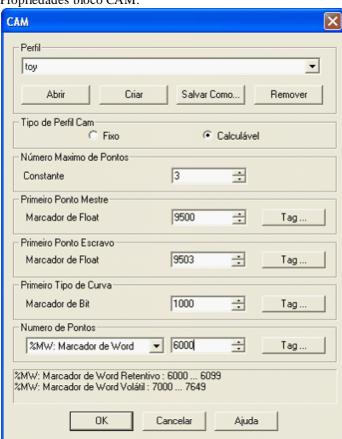
FUNCIONAMENTO:

Quando a entrada EN for de 0 para 1, o bloco é executado.

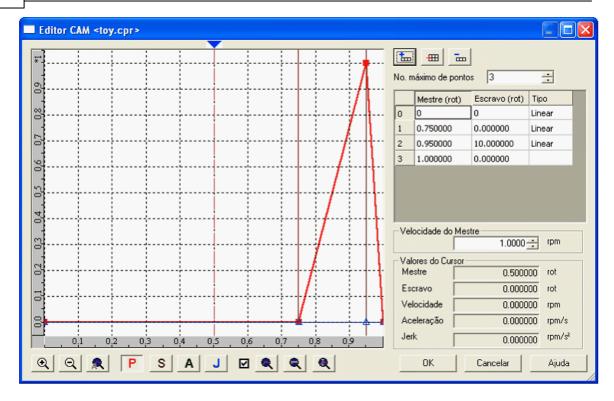
Ao terminar os cálculos dos blocos CAM calculáveis, a saída ENO vai para 1 durante um ciclo de scan, retornando posteriormente a 0.


NOTA!

No primeiro ciclo de scan após o download do programa do usuário, o bloco CALCCAM carrega o número de pontos, os valores dos pontos e os tipos de interpolação para os argumentos programados nos blocos CAM calculáveis.


EXEMPLO:

Ladder:



Propriedades bloco CAM:

Perfil CAM:

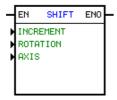
Após o download do programa do usuário será carregado o valor 3 para o marcador de word %MW6000. Os valores 0.75, 0.95 e 1.0 para os marcadores de float %MF9500, %MF9501 e %MF9502, respectivamente. Os valores 0.0, 10.0 e 0.0 para os marcadores de float %MF9503, %MF9504 e %MF9505, respectivamente. E os valores 0 (interpolação linear), 0 e 0 para os marcadores de bit %MX1000, %MX1001 e %MX1002, respectivamente.

Quando necessário alterar algum ponto de um perfil calculável, basta alterar os pontos desejados nos respectivos marcadores definidos e executar o bloco CALCCAM.

Neste exemplo para alterar o perfil CAM "toy" demonstrado anteriormente, basta carregar os novos valores nos marcadores citados e executar o bloco CALCCAM.

Importante:

- O bloco CALCCAM não será executado caso algum bloco CAM estiver ativo e será gerado o erro E68 na sua tentativa.
- Ao executar o bloco CALCCAM com algum marcador utilizado no perfil CAM contendo valor inadequado, na tentativa de executar esse perfil CAM será gerado o erro E53 e esse bloco CAM não será executado.


Valores Inadequados:

- Valor do Número de Pontos maior que o Número Máximo de Pontos.
- Valor da Posição do Mestre menor que a Posição do Mestre no ponto anterior.

7.5.2.7 SHIFT

SÍMBOLO

DES CRIÇÃO

Écomposto por 1 entrada EN, 1 saída ENO e 2 argumentos, sendo eles:

- incremento 171
- sentido de rotação 103
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

Incremento

O incremento é composto por um tipo de dado, um endereço ou um valor constante, dependendo da escolha do tipo de dado e a forma de incremento.

O tipo de dado pode ser:

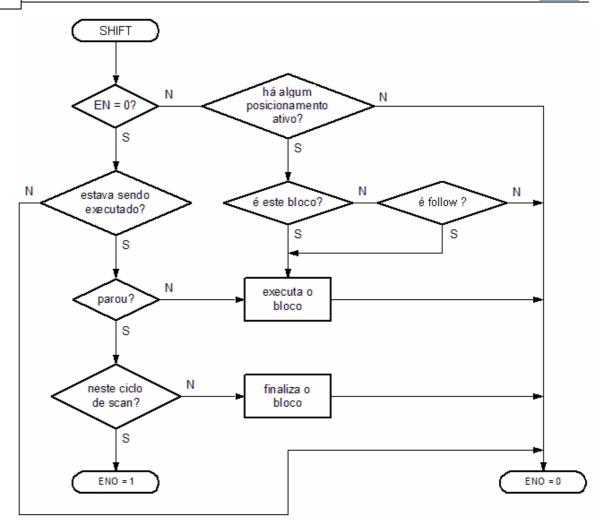
- ·constante
- · parâmetro do usuário
- · marcador de word

A forma de incremento pode ser:

- · graus / segundo
- · pulsos / ciclo de scan (65536 pulsos = 1 rotação)

FUNCIONAMENTO

Se a entrada EN for 0. o bloco não é executado e a saída ENO fica em 0.


Se a entrada EN for 1 e nenhum outro bloco de posicionamento estiver ativo, com exceção do bloco follow, então o bloco incrementa a posição do eixo do motor com o valor incremento de posição por segundo ou por ciclo de scan, dependendo da forma de incremento programado.

No instante que a entrada EN for para 0, o incremento de posição para, a saída ENO vai para 1 por um ciclo de scan, retornando a 0 posteriormente.

NOTA: O incremento pode ser atualizado online.

FLUXOGRAMA

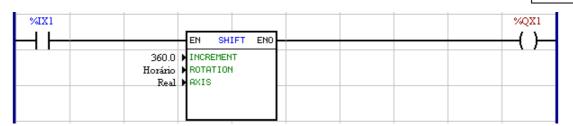
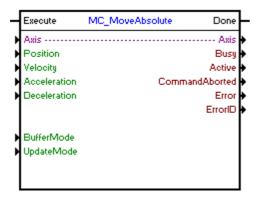


GRÁFICO EN Grau/Segundo ou Pulsos/Ciclo de Scan

EXEMPLO COMENTADO



Quando a entrada digital 1 estiver ativada o eixo de motor será deslocado 360º em um segundo no sentido horário.

7.5.2.8 MC_MoveAbsolute

SÍMBOLO

DES CRIÇÃO

Executa um posicionamento para a posição absoluta programada.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Será executado um posicionamento para a posição absoluta configurada no argumento "Position", com uma velocidade máxima configurada no argumento "Velocity" e uma aceleração/desaceleração configurada nos argumentos "Acceleration" e "Deceleration".

Dependendo da distância do posicionamento e dos valores de aceleração e desaceleração, a velocidade do motor não atingirá a velocidade máxima configurada.

A direção do posicionamento dependerá da posição atual do motor e a posição configurada. Se a posição atual for menor que a posição configurada, o posicionamento será na direção positiva (sentido horário) e se a posição atual for maior que a posição configurada, o posicionamento será na direção negaitiva (sentido antihorário).

Quando o posicionamento termina, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 13 argumentos, sendo eles:

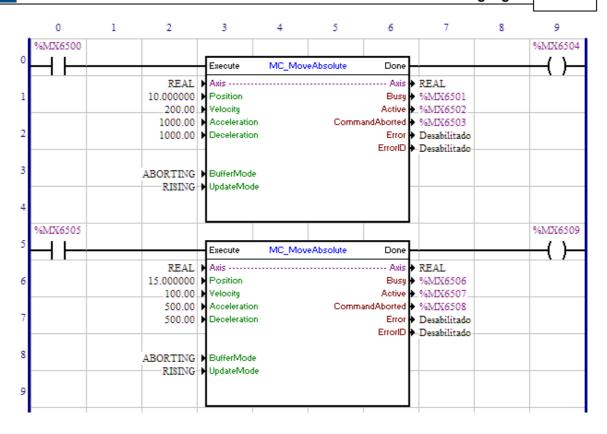
- <u>Axis</u> 106ो
- Position 106
- Velocity 106

- Aceleration 107
- <u>Deceleration</u> 107
- Buffer Mode 107
- <u>Update Mode</u> 114
- <u>Busy</u> 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- <u>Error Id</u> 117
- Bloco Retentivo 117

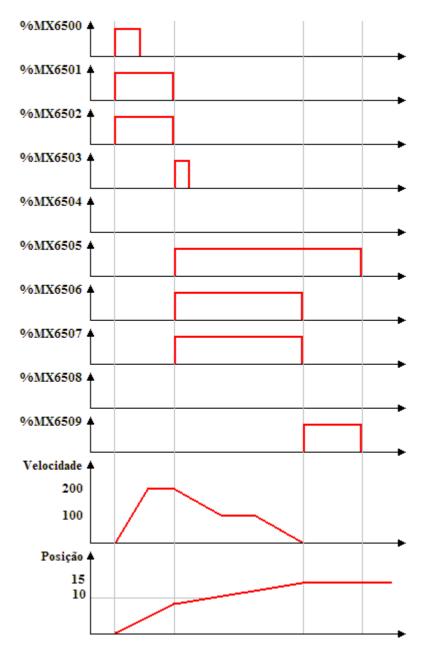
A entrada Execute é responsável pela habilitação do bloco. A saída Done informa o instante em que o bloco é finalizado.

MODO DE OPERAÇÃO

Ao executar o bloco MC_MoveAbsolute, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.

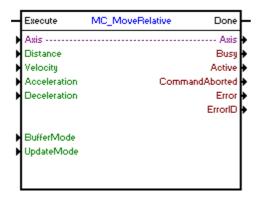

Na execução do posicionamento o <u>estado do eixo 118</u> mudará para "Discrete Motion". Ao concluir o posicionamento o <u>estado do eixo 118</u> mudará para "Standstill".

ERROS DO BLOCO


Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
60	Velocidade programada menor que a mínima permitida.
61	Velocidade programada maior que a máxima permitida.
62	Aceleração programada menor que a mínima permitida.
63	Aceleração programada maior que a máxima permitida.
64	Desaceleração programada menor que a mínima permitida.
65	Desaceleração programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado " Stopping ".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 diferente de 4 (PLC).
74	Drive no estado " Homing ".
78	Bloco MC não executado – Falha intema.

EXEMPLO

Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveAbsolute é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o posicionamento para a posição 10 voltas.


Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveAbsolute é instantaneamente executado (BufferMode - Aborting), com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse o posicionamento para a posição 15 voltas. Ao mesmo tempo os sinais Busy e Active do primeiro bloco, marcadores de bit 6501 e 6502, são resetados e o sinal CommandAborted, marcador de bit 6503, é setado por 1 scan.

Ao atingir a posição 15 voltas a saída Done do segundo bloco, marcador de bit 6509, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507, são resetados. A saída Done, marcador de bit 6509, permanece em 1 enquanto a entrada Execute, marcador de bit 6505, está setado.

7.5.2.9 MC MoveRelative

SÍMBOLO

DES CRIÇÃO

Executa um posicionamento com a distância programada.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Será executado um posicionamento com o deslocamento configurado no argumento "Distance", com uma velocidade máxima configurada no argumento "Velocity" e uma aceleração/desaceleração configurada nos argumentos "Acceleration" e "Deceleration".

Dependendo da distância do posicionamento e dos valores de aceleração e desaceleração, a velocidade do motor não atingirá a velocidade máxima configurada.

A direção do posicionamento dependerá do sinal da distância configurada. Se a distância for maior que zero, o posicionamento será na direção positiva (sentido horário) e se a distância for menor que zero, o posicionamento será na direção negaitiva (sentido anti-horário).

Quando o posicionamento termina, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

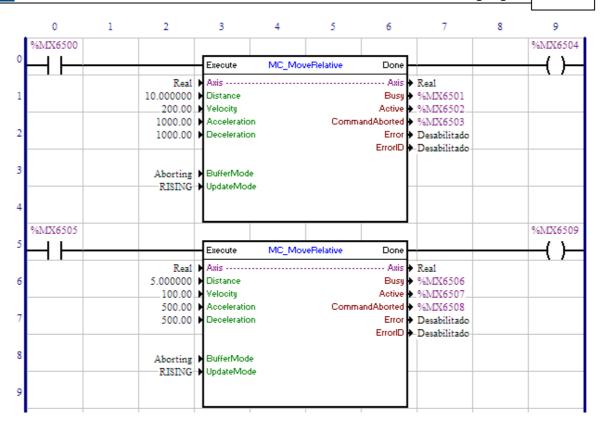
É composto por 1 entrada Execute, 1 saída Done e 13 argumentos, sendo eles:

- <u>Axis</u> 106
- Distance 106
- Velocity 106
- Aceleration 107
- Deceleration 107
- Buffer Mode 107
- Update Mode 114
- Busy 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- <u>Error Id</u> 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

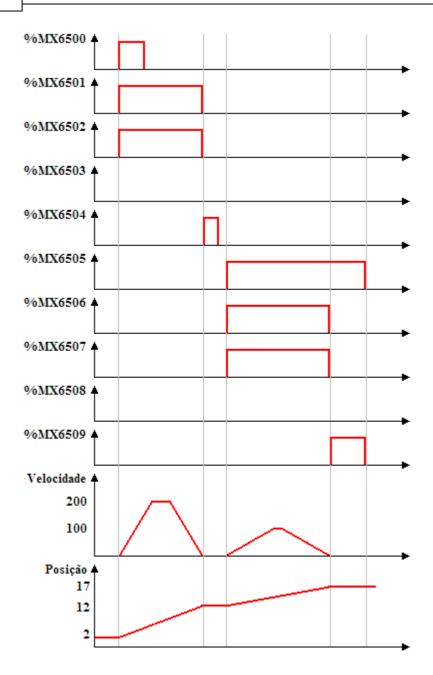
A saída Done informa o instante em que o bloco é finalizado.

MODO DE OPERAÇÃO


Ao executar o bloco MC_MoveRelative, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.

ERROS DO BLOCO

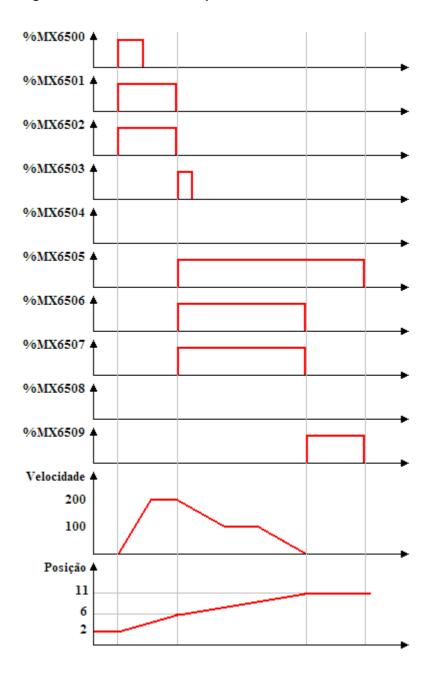
Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
60	Velocidade programada menor que a mínima permitida.
61	Velocidade programada maior que a máxima permitida.
62	Aceleração programada menor que a mínima permitida.
63	Aceleração programada maior que a máxima permitida.
64	Desaceleração programada menor que a mínima permitida.
65	Desaceleração programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado " Stopping ".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 diferente de 4 (PLC).
74	Drive no estado " Homing ".
78	Bloco MC não executado – Falha intema.


EXEMPLO

Execução completa dos dois blocos:

Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveRelative é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o posicionamento de 10 voltas.

Ao terminar o posicionamento de 10 voltas o primeiro bloco é concluído, com isso os sinais Busy e Active deste bloco são resetados e a saída Done, marcador de bit 6504, é setado por 1 scan.


Com uma transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveRelative é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse o posicionamento de 5 voltas.

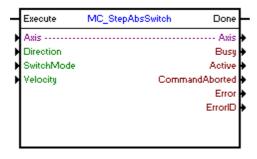
Ao terminar o posicionamento de 5 voltas a saída Done do segundo bloco, marcador de bit 6509, é setado e

os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507, são resetados. A saída Done permanece em 1 enquanto a entrada Execute, marcador de bit 6505, está setado.

Segundo bloco cancelando o primeiro bloco:

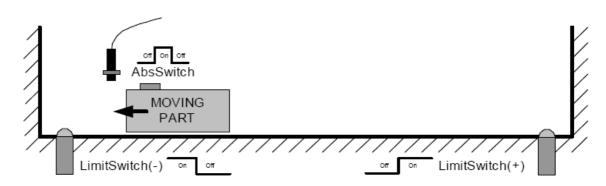
Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveRelative é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o posicionamento de 10 voltas.

Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveRelative é instantaneamente executado (BufferMode - Aborting), com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse o posicionamento de 5 voltas. Ao



mesmo tempo os sinais Busy e Active do primeiro bloco, marcadores de bit 6501 e 6502, são resetados e o sinal CommandAborted, marcador de bit 6503, é setado por 1 scan.

Ao terminar o posicionamento de 5 voltas a saída Done do segundo bloco, marcador de bit 6509, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507, são resetados. A saída Done permanece em 1 enquanto a entrada Execute, marcador de bit 6505, está setado.


7.5.2.10 MC_StepAbsSwitch

SÍMBOLO

DESCRIÇÃO

Executa a busca da posição da AbsSwitch.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

A AbsSwitch somente poderá ser ligada nas entradas digitais 1, 2 ou 3, sendo que a função programada da entrada digital deverá ser de acordo com o argumento "SwitchMode". Se SwitchMode for configurado como MC_EdgeOn (borda de subida), a função da entrada digital (P0300, P0301 ou P0302) deverá ser "armazena posição - borda de subida" (opção 8). Se SwitchMode for configurado como MC_EdgeOff (borda de descida), a função da entrada digital (P0300, P0301 ou P0302) deverá ser "armazena posição - borda de descida" (opção 9). Será considerado AbsSwitch a primeira entrada digital configurada conforme SwitchMode a partir da entrada digital 1. Caso nenhuma entrada digital esteja configurada conforme SwitchMode, ocorrerá o erro 77 no bloco e ele não será executado.

Se ao buscar a posição da AbsSwitch e atingir a posição de LimitSwitch (fim de curso), o movimento mudará de sentido até a posição da AbsSwitch.

A busca será executada com a velocidade configurada no argumento "Velocity" e uma aceleração/desaceleração configurado no "Perfil Padrão 24".

Com a execução do bloco MC_StepAbsSwitch, a posição de referência do usuário (P0051, P0052 e P0053) não é alterada.

Quando a busca termina, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

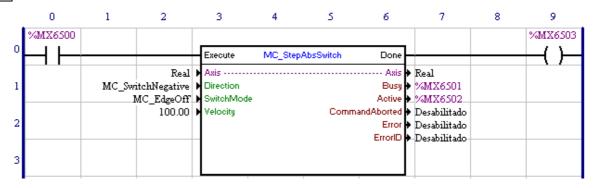
ARGUMENTOS

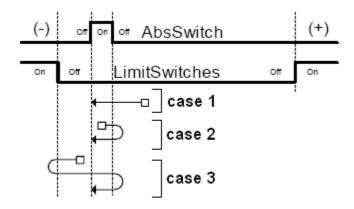
É composto por 1 entrada Execute, 1 saída Done e 10 argumentos, sendo eles:

- <u>Axis</u> 106
- <u>Direction</u> 107
- Switch Mode 107
- Velocity 106
- <u>Busy</u> 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- <u>Error Id</u> 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado.


MODO DE OPERAÇÃO


Ao executar o bloco MC_StepAbsSwitch, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.

ERROS DO BLOCO

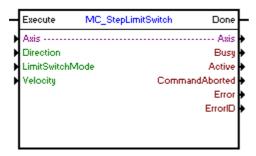
Error Id	Descrição
60	V elocidade programada menor que a mínima permitida.
61	V elocidade programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado "Stopping".
71	P202 differente de 4 (PLC).
76	Estado do Drive diferente de "Standstill" ou "Homing".
77	Entradas digitais 1, 2 e 3 não configuradas conforme "SwitchMode".

Na transição de 0 para 1 do marcador de bit 6500, o bloco MC_StepAbsSwitch é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse a busca da AbsSwitch.

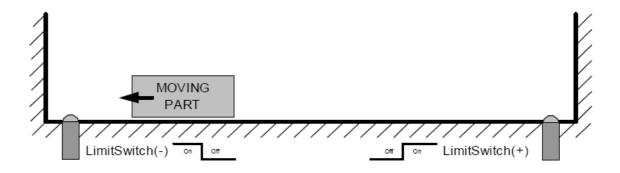
No **caso 1**, ao executar o bloco a AbsSwitch não está acionada, como o argumento "Direction" está configurado como "MC_SwitchNegative", o movimento será na direção negativa. Quando ocorrer uma borda de descida em AbsSwitch (SwitchMode = MC_EdgeOff), o motor para e volta para a posição em que a borda ocorreu.

No **caso 2**, ao executar o bloco a AbsSwitch está acionada, como o argumento "Direction" está configurado como "MC_SwitchNegative", o movimento será na direção positiva e ao sair da AbsSwitch o motor para e muda o movimento para a direção negativa. Quando ocorrer uma borda de descida em AbsSwitch (SwitchMode = MC_EdgeOff), o motor para e volta para a posição em que a borda ocorreu.

No **caso 3**, ao executar o bloco a AbsSwitch não está acionada, como o argumento "Direction" está configurado como "MC_SwitchNegative", o movimento será na direção negativa. Mas ao encontrar a LimitSwitch (fim de curso) o motor para e muda o movimento para a direção positiva. Ao sair da AbsSwitch o motor para novamente e muda o movimento para a direção negativa. Quando ocorrer uma borda de descida em AbsSwitch (SwitchMode = MC_EdgeOff), o motor para e volta para a posição em que a borda ocorreu.


Todos os movimentos serão realizados com uma aceleração/desaceleração programados em P0100 e P0101, exceto ao encontrar a LimitSwitch (fim de curso), onde o motor para instantaneamente.

Ao voltar a posição de borda de descida da Abs Switch, a saída Done do bloco, marcador de bit 6503, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502, são resetados. A saída Done, marcador de bit 6503, permanece em 1 enquanto a entrada Execute, marcador de bit 6500, está setado.


7.5.2.11 MC_StepLimitSwitch

SÍMBOLO

DES CRIÇÃO

Executa a busca da posição da LimitSwitch.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

A LimitSwitch somente poderá ser ligada nas entradas digitais 1, 2 ou 3, sendo que a função programada da entrada digital deverá ser de acordo com o argumento "LimitSwitchMode" e o argumento "Direction", conforme a tabela abaixo:

Direction	Limit Switch Mode	Função Entrada Digital
MC_Positive	MC_EdgeOn	Fim de curso horário ativo alto (opção 12)
MC_Positive	MC_EdgeOff	Fim de curso horário ativo baixo (opção 13)
MC_Negative	MC_EdgeOn	Fim de curso anti-horário ativo alto (opção 14)
MC_Negative	MC_EdgeOff	Fim de curso anti-horário ativo baixo (opção 15)

Será considerado LimitSwitch a primeira entrada digital configurada conforme a tabela, a partir da entrada digital 1. Caso nenhuma entrada digital esteja configurada conforme LimitSwitchMode e Direction, ocorrerá o erro 77 no bloco e ele não será executado.

A busca será executada com a velocidade configurada no argumento "Velocity" e uma aceleração/ desaceleração configurado no "Perfil Padrão 24".

Com a execução do bloco MC_StepLimitSwitch, a posição de referência do usuário (P0051, P0052 e P0053) não é alterada.

Quando a busca termina, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute

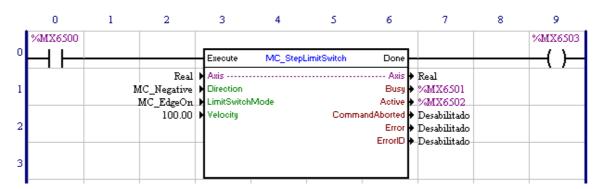
estiver em 1.

ARGUMENTOS

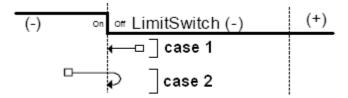
É composto por 1 entrada Execute, 1 saída Done e 10 argumentos, sendo eles:

- <u>Axis</u> 106
- Direction 107
- Limit Switch Mode 107
- Velocity 106
- Busy 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco. A saída Done informa o instante em que o bloco é finalizado.


MODO DE OPERAÇÃO

Ao executar o bloco MC_StepLimitSwitch, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.

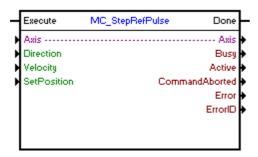

Na execução do bloco o <u>estado do eixo la la mudará para "Homing"</u> e permanecerá assimaté a execução dos blocos MC_StepRefPulse, MC_StepDirect ou MC_FinishHoming.

ERROS DO BLOCO

Error Id	Descrição
60	V elocidade programada menor que a mínima permitida.
61	V elocidade programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado "Stopping".
71	P202 diferente de 4 (PLC).
76	Estado do Drive diferente de "Standstill" ou "Homing".
77	Entradas digitais 1, 2 e 3 não configuradas conforme "LimitSwitchMode".

Na transição de 0 para 1 do marcador de bit 6500, o bloco MC_StepLimitSwitch é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse a busca da LimitSwitch.

No **caso 1**, ao executar o bloco a LimitSwitch não está acionada, como o argumento "Direction" está configurado como "MC_Negative", o movimento será na direção negativa. Quando ocorrer uma borda de subida em LimitSwitch (SwitchMode = MC_EdgeOn), o motor para e volta para a posição em que a borda ocorreu.


No **caso 2**, ao executar o bloco a LimitSwitch está acionada, mas mesmo com o argumento "Direction" configurado como "MC_Negative", o movimento será na direção positiva e ao sair da LimitSwitch o motor para e muda o movimento para a direção negativa. Quando ocorrer a borda de subida em LimitSwitch (LimitSwitchMode = MC_EdgeOn), o motor para e volta para a posição em que a borda ocorreu.

Todos os movimentos serão realizados com uma aceleração/desaceleração programados em P0100 e P0101, exceto ao encontrar a LimitSwitch (fim de curso), onde o motor para instantaneamente.

Ao voltar a posição de borda de subida da LimitSwitch, a saída Done do bloco, marcador de bit 6503, é setado e os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502, são resetados. A saída Done, marcador de bit 6503, permanece em 1 enquanto a entrada Execute, marcador de bit 6500, está setado.

7.5.2.12 MC_StepRefPulse

SÍMBOLO

DESCRIÇÃO

Executa a busca da posição do pulso nulo.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

A busca será executada com a velocidade configurada no argumento "Velocity" e uma aceleração/ desaceleração configurado no "Perfil Padrão 24".

Quando a busca termina, a posição de referência do usuário (P0051, P0052 e P0053) é alterada para o valor do argumento "SetPosition" e a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

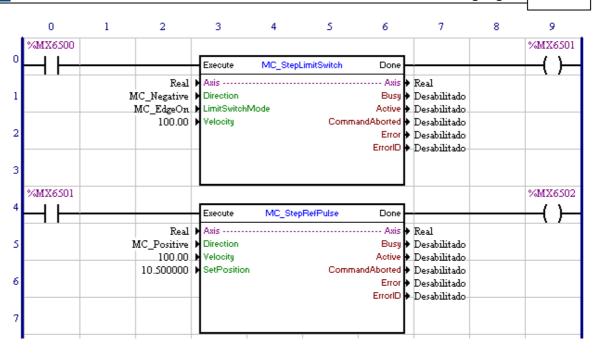
É composto por 1 entrada Execute, 1 saída Done e 10 argumentos, sendo eles:

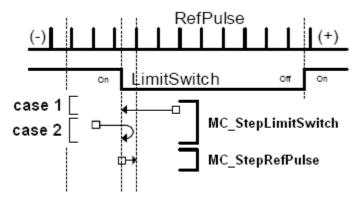
- <u>Axis</u> 106
- Direction 107
- Velocity 106
- SetPosition 106
- Busy 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado.

MODO DE OPERAÇÃO


Ao executar o bloco MC_StepRefPulse, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.


Na execução do bloco o <u>estado do eixo [118]</u> mudará para "Homing". Ao concluir a busca o <u>estado do eixo [118]</u> mudará para "Standstill".

ERROS DO BLOCO

Error Id	Descrição
60	V elocidade programada menor que a mínima permitida.
61	V elocidade programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado "Stopping".
71	P202 diferente de 4 (PLC).
76	Estado do Drive diferente de "Standstill" ou "Homing".

Na transição de 0 para 1 do marcador de bit 6500, o bloco MC_StepLimitSwitch é executado e iniciasse a busca da LimitSwitch.

No **caso 1**, ao executar o bloco a LimitSwitch não está acionada, como o argumento "Direction" está configurado como "MC_Negative", o movimento será na direção negativa. Quando ocorrer uma borda de subida em LimitSwitch (SwitchMode = MC_EdgeOn), o motor para e volta para a posição em que a borda ocorreu.

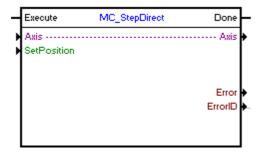
No **caso 2**, ao executar o bloco a LimitSwitch está acionada, mas mesmo com o argumento "Direction" configurado como "MC_Negative", o movimento será na direção positiva e ao sair da LimitSwitch o motor para e muda o movimento para a direção negativa. Quando ocorrer a borda de subida em LimitSwitch (LimitSwitchMode = MC_EdgeOn), o motor para e volta para a posição em que a borda ocorreu.

Todos os movimentos serão realizados com uma aceleração/desaceleração programados em P0100 e P0101, exceto ao encontrar a LimitSwitch (fim de curso), onde o motor para instantaneamente.

Ao voltar a posição de borda de subida da LimitSwitch, a saída Done do bloco, marcador de bit 6501, é setado e permanece em 1 enquanto a entrada Execute, marcador de bit 6500, está setado.

Na transição de 0 para 1 do marcador de bit 6501, o bloco MC_StepRefPulse é executado e iniciasse a busca do pulso nulo.

O movimento será na direção positiva e ao encontrar o pulso nulo, o motor para e volta para a posição do pulso nulo.


Todos os movimentos serão realizados com uma aceleração/desaceleração programados em P0100 e P0101.

Ao voltar a posição do pulso nulo, a saída Done do bloco, marcador de bit 6502, é setado e permanece em 1 enquanto a entrada Execute, marcador de bit 6501, está setado. A posição de referência do usuário (P0051, P0052 e P0053) é alterada para 10,5 voltas (P0051 = 8192, P0052 = 10 e P0053 = 0).

Quanto o marcador de bit 6500 é resetado, os marcadores de bit 6501 e 6502 também são resetados.

7.5.2.13 MC_StepDirect

SÍMBOLO

DES CRIÇÃO

Muda a posição de referência do usuário.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será executado e a posição de referência do usuário (P0051, P0052 e P0053) é alterada para o valor do argumento "SetPosition". A saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

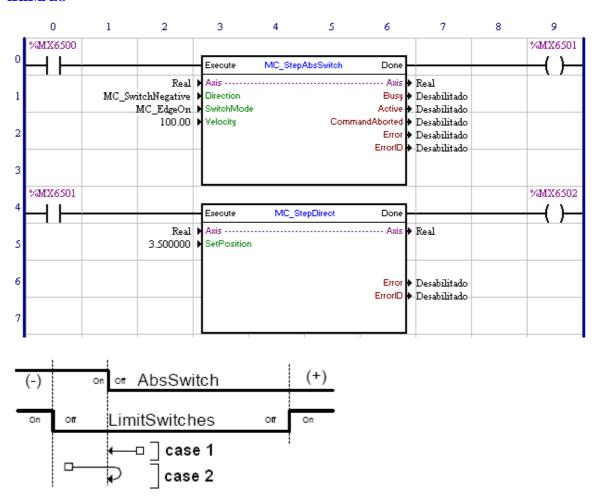
É composto por 1 entrada Execute, 1 saída Done e 5 argumentos, sendo eles:

- <u>Axis</u> 106
- SetPosition 106
- Error 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado.

MODO DE OPERAÇÃO


Na execução do bloco, se o estado do eixo 118 é "Homing", o estado do eixo 118 mudará para "Standstill", caso contrário permanecerá no estado atual.

ERROS DO BLOCO

Error Id	Descrição
71	P202 diferente de 4 (PLC).
76	Estado do Drive diferente de "Standstill" ou "Homing".

EXEMPLO

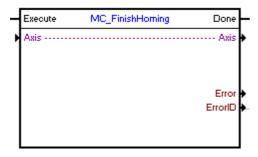
Na transição de 0 para 1 do marcador de bit 6500, o bloco MC_StepAbsSwitch é executado e iniciasse a busca da AbsSwitch. O estado do eixo 118 é alterado para "Homing".

No **caso 1**, ao executar o bloco a AbsSwitch não está acionada, como o argumento "Direction" está configurado como "MC_SwitchNegative", o movimento será na direção negativa. Quando ocorrer uma borda de subida em AbsSwitch (SwitchMode = MC_EdgeOn), o motor para e volta para a posição em que a borda ocorreu.

No **caso 2**, ao executar o bloco a AbsSwitch está acionada, como o argumento "Direction" está configurado como "MC_SwitchNegative", o movimento será na direção positiva e ao sair da AbsSwitch o motor para e muda o movimento para a direção negativa. Quando ocorrer uma borda de subida em AbsSwitch (SwitchMode = MC_EdgeOn), o motor para e volta para a posição em que a borda ocorreu.

Todos os movimentos serão realizados com uma aceleração/desaceleração programados em P0100 e P0101.

Ao voltar a posição de borda de subida da AbsSwitch, a saída Done do bloco, marcador de bit 6501, é setado e permanece em 1 enquanto a entrada Execute, marcador de bit 6500, está setado.



Na transição de 0 para 1 do marcador de bit 6501, o bloco MC_StepDirect é executado e a posição de referência do usuário (P0051, P0052 e P0053) é alterada para 3,5 voltas (P0051 = 8192, P0052 = 3 e P0053 = 0). O estado do eixo 118 é alterado para "Standstill".

Quanto o marcador de bit 6500 é resetado, os marcadores de bit 6501 e 6502 também são resetados.

7.5.2.14 MC_FinishHoming

SÍMBOLO

DES CRIÇÃO

Muda o estado do eixo 118 de "Homing" para "Standstill",

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será executado e o estado do eixo 118 mudará de "Homing" para "Standstill". A saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 4 argumentos, sendo eles:

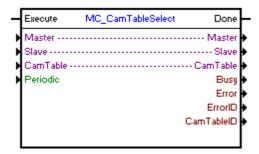
- Axis 106
- <u>Error</u> 116
- <u>Error Id</u> 117
- <u>Bloco Retentivo</u> 117

A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado.

MODO DE OPERAÇÃO

Na execução do bloco, se o <u>estado do eixo 118</u> é "Homing", o <u>estado do eixo 118</u> mudará para "Standstill", caso contrário permanecerá no estado atual.


ERROS DO BLOCO

Er	rror Id	Descrição
	71	P202 diferente de 4 (PLC).
	75	Estado do Drive diferente de "Homing".

7.5.2.15 MC_CamTableSelect

SÍMBOLO

DES CRIÇÃO

Seleciona uma tabela de pontos de uma curva CAM previamente programada através da ferramenta <u>CAM</u> <u>PROFILES</u> 46.

Para o uso do bloco MC CamIn 1971, uma tabela de pontos deverá ser selecionada através do bloco MC CamTableSelect ou a tabela de pontos deverá ser calculada através do bloco MW CamCalc 1941.

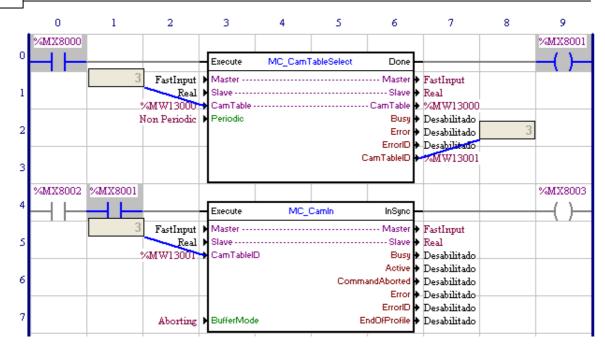
Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Quando a tabela for selecionada com sucesso, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 9 argumentos, sendo eles:

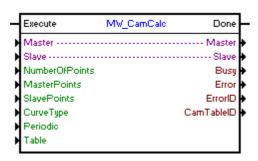
- Master 106
- Slave 106
- Cam Table 114
- Periodic 115
- **Busy** 116
- <u>Error</u> 116
- Error Id 117
- Cam Table ID 114
- Bloco Retentivo 117


A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado com sucesso.

ERROS DO BLOCO

Error Id	Descrição
82	Arquivo das tabelas de pontos da curva CAM inválido.
83	Cam Table inválido. Cam Table deve ser de 1 à 10.


Na transição de 0 para 1 do marcador de bit 8000, o bloco MC_CamTableSelect é executado, comisso a tabela de pontos "3" (conteúdo do marcador de word 13000) poderá ser utilizada pelo bloco MC_CamIn.

Ao executar o bloco, a saída Done, marcador de bit 8001, é setado e permanece em 1 enquanto a entrada Execute, marcador de bit 8000, está setado.

Nesse exemplo, o marcador de bit 8001 garante que o bloco MC_CamIn não será acionado antes do bloco MC_CamTableSelect ser executado com sucesso.

7.5.2.16 MW_CamCalc

SÍMBOLO

DES CRIÇÃO

Calcula uma tabela de pontos de uma curva CAM.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

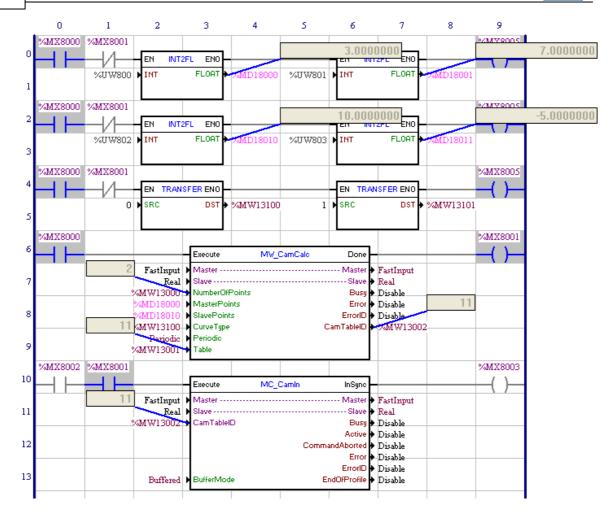
Quando a tabela de pontos estiver disponível, a saída Done vai para 1 durante um ciclo de scan ou enquanto a entrada Execute estiver em 1.

ARGUMENTOS

É composto por 1 <u>en</u>trada Execute, 1 saída Done e 13 argumentos, sendo eles:

- Master 106
- <u>Slave</u> 106
- Number Of Points 115
- Master Points 115
- Slave Points 115
- Curve Type 115
- Periodic 115
- Table 114 Busy 116 Error 116

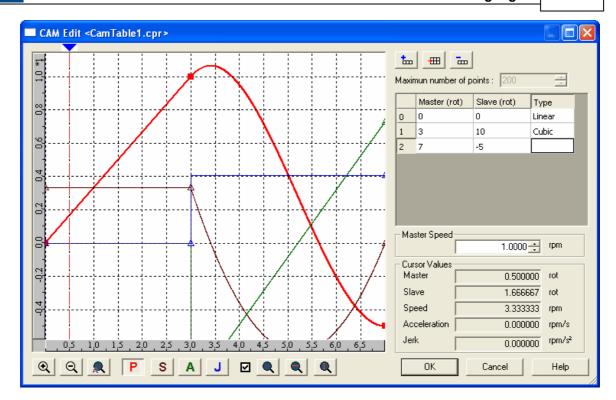
- <u>Error Id</u> 117
- Cam Table ID 114
- Bloco Retentivo 117


A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco é finalizado.

ERROS DO BLOCO

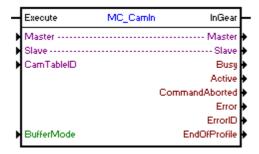
Error Id	Descrição
82	Arquivo das tabelas de pontos da curva CAM inválido.
83	Cam Table inválido. Cam Table deve ser de 1 à 10.
85	Número de pontos maior que o programado no configurador CAM PROFILES.
86	Posição do eixo mestre inválida. A posição do eixo mestre deve ser maior que a posição do ponto anterior.
87	Bloco MW_CamCalc em_execução. Somente é permitido a execução de um bloco MW_CamCalc de cada
	vez.
88	Tabela de pontos em uso pelo bloco MC_CamIn.
89	Marcador de double com posição do eixo mestre inexistente.
90	Marcador de double com posição do eixo escravo inexistente.
91	Marcador de word com tipo da curva inexistente.



Na transição de 0 para 1 do marcador de bit 8000, o bloco MW_CamCalc é executado e a tabela de pontos 11 (marcador de word 13001) será calculada de acordo com os argumentos do bloco.

Nesse exemplo, o número de pontos da curva será o conteúdo do marcador de word 13000 (2 pontos), a posição do eixo mestre será de acordo com os conteúdos dos marcadores de double 18000 e 18001 (3 e 7 voltas), a posição do eixo escravo será de acordo com os conteúdos dos marcadores de double 18010 e 18011 (10 e -5 voltas) e o tipo da curva será de acordo com os conteúdos dos marcados de word 13100 e 13101 (0 - linear e 1 - spline cúbica).

Colocando os mesmos valores na ferramenta CAM PROFILES 46 podemos observar a curva abaixo:



Ao finalizar o cálculo da tabela de pontos 11, a saída Done, marcador de bit 8001 é setado enquanto a entrada Execute permanece setada.

Com o marcador de bit 8001 setado, o bloco MC CamIn 1971 poderá ser executado.

7.5.2.17 MC CamIn

SÍMBOLO

DES CRIÇÃO

O bloco MC_CamIn é responsável pela execução de um posicionamento definido por uma tabele de pontos de uma curva CAM previamente selecionada pelo bloco MC_CamTableSelect 1931 ou previamente calculada pelo bloco MW_CamCalc 1941.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

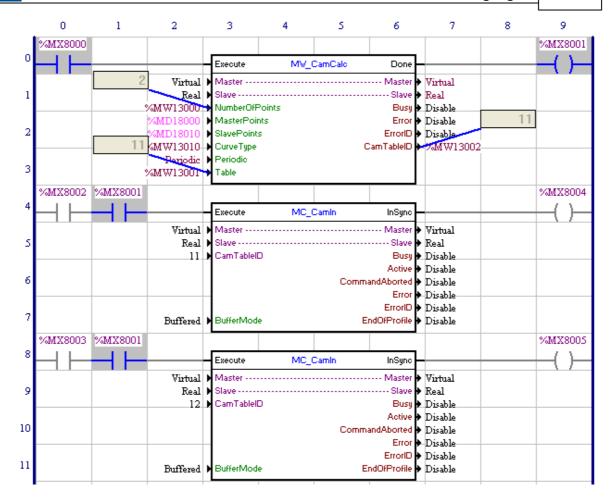
ARGUMENTOS

É composto por 1 entrada Execute, 1 saída InGear e 11 argumentos, sendo eles:

- Master 106
- <u>Slave</u> 106
- Cam Table ID 114
- Buffer Mode 107
- <u>Busy</u> 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- <u>Error Id</u> 117
- End Of Profile 116
- <u>Bloco Retentivo</u> 117

A entrada Execute é responsável pela habilitação do bloco. A saída InGear informa o instante em que o bloco está ativo.

MODO DE OPERAÇÃO


Ao executar o bloco MC_CamIn, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.

Na execução do bloco o estado do eixo 118 mudará para "Synchronized Motion".

ERROS DO BLOCO

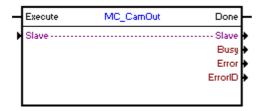
Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado " Stopping ".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 diferente de 4 (PLC).
74	Drive no estado " Homing ".
78	Bloco MC não executado — Falha interna.
84	Cam Table ID inválido. Primeiramente executar MC_CamTableSelect para Cam Table de 1 à 10 ou MW_CamCalc para Table de 11 à 20.

Na transição de 0 para 1 do marcador de bit 8000, o bloco MW_CamCalc é executado e a tabela de pontos 11 (marcador de word 13001) será calculada de acordo com os argumentos do bloco.

Ao finalizar o cálculo da tabela de pontos 11, a saída Done, marcador de bit 8001 é setado enquanto a entrada Execute permanece setada.

Com o marcador de bit 8001 setado, o bloco MC_CamIn poderá ser executado.

Na transição de 0 para 1 do marcador de bit 8002, o primeiro bloco MC_CamIn é executado.


Caso houver a necessidade de algum ajuste na tabela de pontos da curva CAM, basta fazer o ajuste nos marcadores de double 18000, 18001, 18010 e 18011, mudar o conteúdo do marcador de word 13001 para 12 e executar novamente o bloco MW CamCalc.

Na transição de 0 para 1 do marcador de bit 8003, o segundo bloco MC_CamIn (Buffer Mode programado Buffered) será executado (sem perda de posição do eixo mestre) assim que o primeiro bloco MC_CamIn terminar de executar a curva em execução.

7.5.2.18 MC_CamOut

SÍMBOLO

DES CRIÇÃO

Finaliza o bloco MC_CamIn 1971.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será executado e o sincronismo existente será finalizado. O eixo manterá a velocidade do instante em que o bloco é executado.

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 5 argumentos, sendo eles:

- <u>Slave</u> 106
- Busy 116
- Error 116
- Error Id 117
- Bloco Retentivo 117

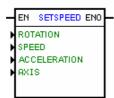
A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o bloco MC CamIn 197 é finalizado.

MODO DE OPERAÇÃO

Ao executar o bloco MC_CamOut, o drive não opera em malha de posição.

Na execução do bloco o estado do eixo 118 mudará para "Continuous Motion".


ERROS DO BLOCO

Error Id	Descrição
67	Drive no estado "Disabled" ou "Errorstop".
71	P202 diferente de 4 (PLC).
73	Drive não está no estado "Synchronized Motion".
78	Bloco MC não executado – Falha intema.

7.5.3 Movimento

7.5.3.1 **SETSPEED**

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

- sentido de rotação 103
- velocidade 201
- <u>aceleração</u> 103
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa quando a velocidade do motor atingir a velocidade programada.

Velocidade

A velocidade é composta por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado da velocidade pode ser:

- · constante
- · parâmetro do usuário
- · marcador de word
- · marcador de float

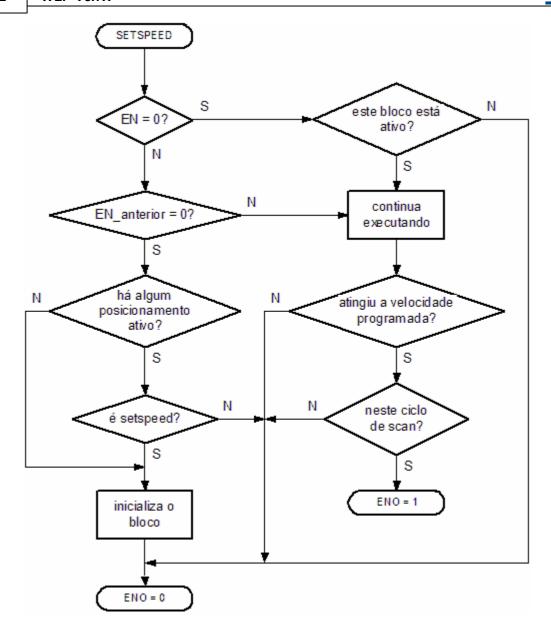
Para o tipo de dado constante, o valor deve ser programado de acordo com a unidade configurada no projeto.

Para os parâmetros do usuário, os marcadores de word e os marcadores de float a unidade considerada por este campo é o RPM (rotações por minuto).

FUNCIONAMENTO

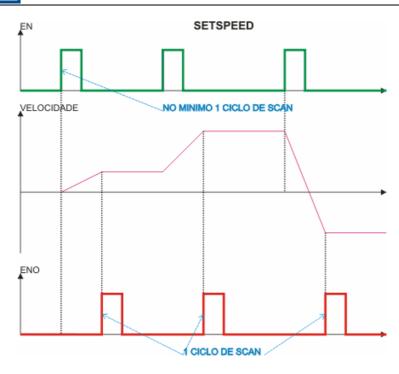
Se a entrada EN for 0, o bloco não é executado e saída ENO fica em 0.

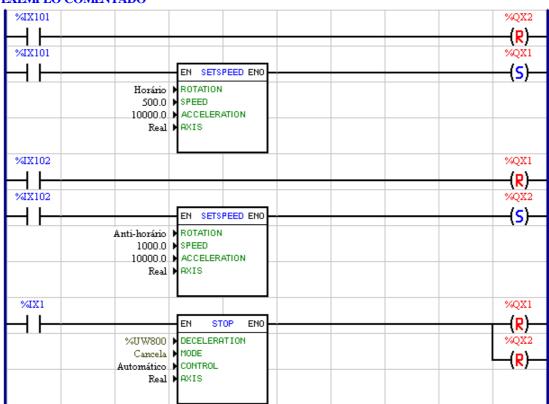
Se a entrada EN sofrer uma transição de 0 para 1 e nenhum outro bloco de movimento estiver ativo, com exceção do próprio bloco Seta Velocidade, é executado um perfil trapezoidal baseado nas características programadas dos argumentos e nunca é finalizado. No entanto, outros blocos Seta Velocidade podem ser habilitados online, alterando a programação dos seus argumentos.


Para acabar com este movimento é necessário utilizar o bloco parada.

A saída ENO só vai para 1 em um ciclo de scan, quando o bloco atingir a velocidade programada. Caso contrário sempre é 0.

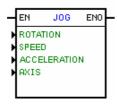
Importante: Este bloco trabalha em malha de velocidade, permanecendo assim mesmo após a sua conclusão.


FLUXOGRAMA



GRÁFICO

EXEMPLO COMENTADO



Na transição de 0 para 1 da entrada digital 1 do drive, o bloco com velocidade de 500 rpm no sentido horário é disparado. Quando esta velocidade é atingida, a saída digital 1 é setada. Na transição de 0 para 1 da entrada digital 2 do drive, o bloco com velocidade de 1000 rpm no sentido anti-horário é disparado e a saída digital 1 é resetada. Quando esta nova velocidade é atingida, a saída digital 2 é setada. Se a entrada digital 1 for acionada, qualquer um dos dois movimentos prévios que está ativo é cancelado e o motor para, e ambas saídas 1 e 2 são resetadas.

7.5.3.2 JOG

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

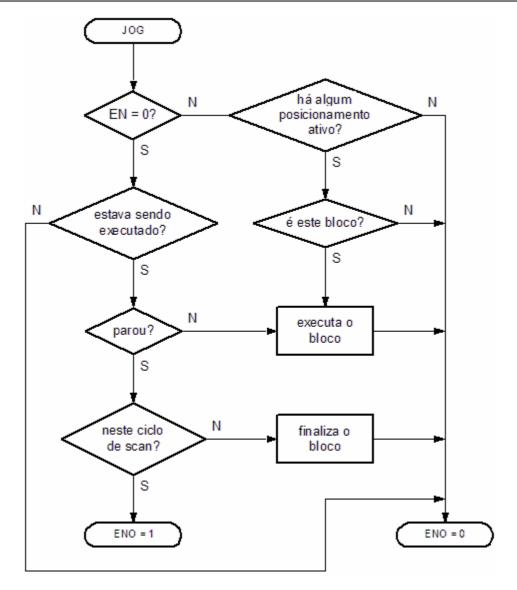
- sentido de rotação 103
- velocidade 102
- aceleração 103
- eixo 104

A entrada EN é responsável pela habilitação do bloco.

FUNCIONAMENTO

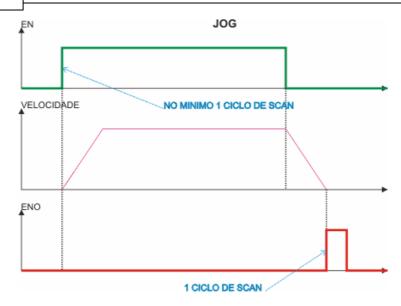
Se a entrada EN for 0, o bloco não é executado e a saída ENO fica em 0.

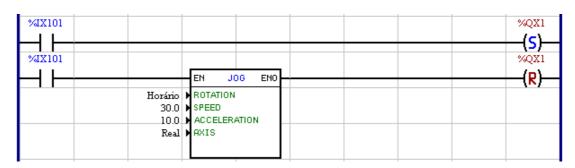
Se a entrada EN for 1 e nenhum outro bloco de posicionamento estiver ativo, o bloco executa um perfil trapezoidal baseado nas características programadas nos argumentos e inicia a desaceleração quando a entrada EN for 0.


No instante que a entrada EN for para 0, inicia-se a parada e quando ela for finalizada, a saída ENO vai para 1 por um ciclo de scan, retornando a 0 posteriormente.

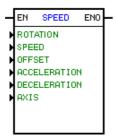
NOTA: A velocidade do JOG não é atualizada online, ou seja, mesmo que o valor da velocidade programada seja alterada, a velocidade deste bloco não sofrerá alteração.

Importante: Este bloco trabalha em malha de velocidade, permanecendo assim mesmo após a sua conclusão.


FLUXOGRAMA



GRÁFICO


EXEMPLO COMENTADO

Quando a entrada digital 1 do drive for 1, a saída digital 1 é setada e ao mesmo tempo o JOG é habilitado com uma velocidade de 0,3 rps. Quando a entrada 1voltar para 0, no momento que o bloco termina, ou seja, para totalmente, a saída 1 é resetada.

7.5.3.3 SPEED

SÍMBOLO:

DESCRIÇÃO:

É composto por 1 entrada EN, 1 saída ENO e 5 argumentos, sendo eles:

- sentido de rotação 103
- <u>velocidade</u> 207
- offset 102

- <u>aceleração</u> 103
- desaceleração 103
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa que o bloco está sendo executado.

O bloco SPEED é responsável pela escrita de referência de velocidade de acordo com os parâmetros de sentido de rotação, velocidade, offset, aceleração e desaceleração para o eixo selecionado pelo parâmetro eixo.

Velocidade:

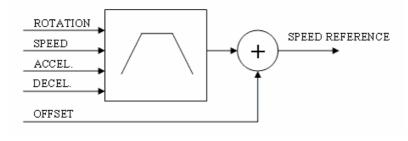
A velocidade é composta por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado da velocidade pode ser:

- · constante
- · parâmetro do usuário
- · marcador de word
- · marcador de float

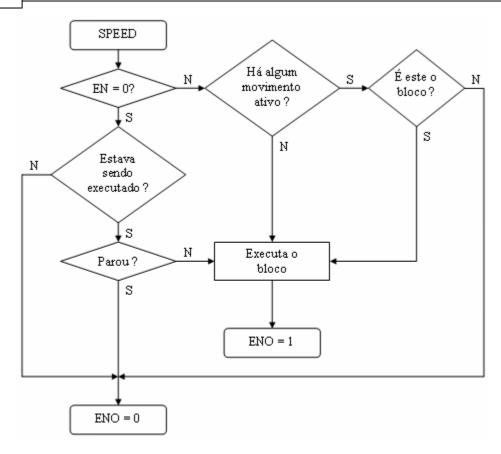
Para o tipo de dado constante, o valor deve ser programado de acordo com a unidade configurada no projeto.

Para os parâmetros do usuário, os marcadores de word e os marcadores de float a unidade considerada por este campo é o RPM (rotações por minuto).


FUNCIONAMENTO:

Se a entrada EN for 0, o bloco não é executado e saída ENO é zero.

Se a entrada EN for 1 e nenhum outro bloco de movimento estiver ativo, é executado um perfil trapezoidal baseado nas características programadas nos argumentos para atingir a velocidade programada em SPEED, nesse momento o argumento OFFSET também é somado à saída desse perfil e a saída ENO vai para 1. Se a entrada EN sofrer uma transição de 1 para 0 e esse bloco estiver ativo, é executado um perfil trapezoidal baseado nas características programadas nos argumentos para parar o movimento, quando a velocidade for igual a zero a saída ENO vai para 0.


Maiores detalhes no bloco diagrama, fluxograma, gráfico e exemplo a seguir.

BLOCO DIAGRAMA:

FLUXOGRAMA:

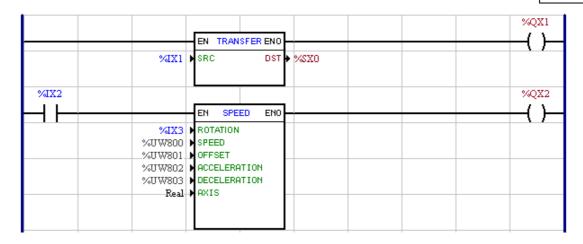


GRÁFICO:

A entrada digital %IX1 habilita o drive.

A entrada digital %IX2 habilita o bloco SPEED que através dos seus parâmetros de sentido de rotação, velocidade, offset, aceleração e desaceleração ira gerar uma referência de velocidade para o eixo real.

7.5.3.4 REF

SÍMBOLO:

DESCRIÇÃO:

É composto por 1 entrada EN, 1 saída ENO e 3 argumentos, sendo eles:

- Modo de Controle 105 "MODE"
- Velocidade 102 "SPEED"
- Corrente de Torque 105 "TORQUE"

A entrada EN é responsável pela habilitação do bloco e por enviar o comando de gira/pára ao drive. A saída ENO informa que o bloco está habilitado e sendo executado.

O bloco REF é responsável pela escrita de referência de velocidade ou referência de corrente de torque para o controle do drive (rampas, sentido de giro, etc...). A seleção do tipo da referência é feita no argumento "MODE". A referência de velocidade possui a opção de valor em 13 bits ou em rpm. A referência de corrente de torque é em % da corrente nominal do motor.

FUNCIONAMENTO:

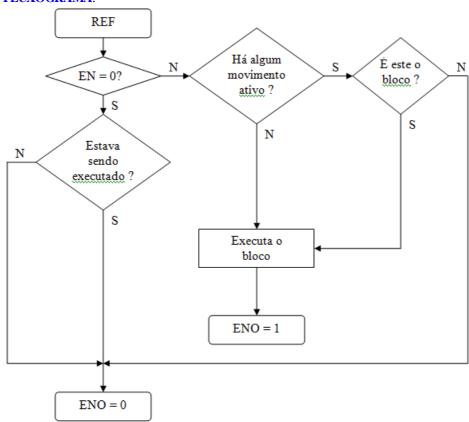
- Modo Velocidade:

Se a entrada EN for 0, o bloco não é executado e saída ENO é zero.

Se a entrada EN for 1, o drive estiver habilitado geral e nenhum outro bloco de movimento estiver ativo, o comando gira/pára vai para 1, o valor da referência de velocidade é escrita para o drive e a saída ENO vai para 1.

Se a entrada EN sofrer uma transição de 1 para 0 e esse bloco estiver ativo, o comando gira/pára vai para 0 e a saída ENO vai para 0.

- Modo Torque:


Se a entrada EN for 0, o bloco não é executado e saída ENO é zero.

Se a entrada EN for 1, o modo de controle do drive for vetorial (encoder ou sensorless), o drive estiver habilitado geral e nenhum outro bloco de movimento estiver ativo, o comando gira/pára vai para 1, o valor da referência de corrente de torque é escrita para o drive e a saída ENO vai para 1.

Se a entrada EN sofrer uma transição de 1 para 0 e esse bloco estiver ativo, é ativado o modo velocidade, o comando gira/pára vai para 0 e a saída ENO vai para 0.

NOTA: Valores negativos para referência de velocidade ou referência de corrente de torque impõem um sentido de giro do motor contrário ao definido no drive.

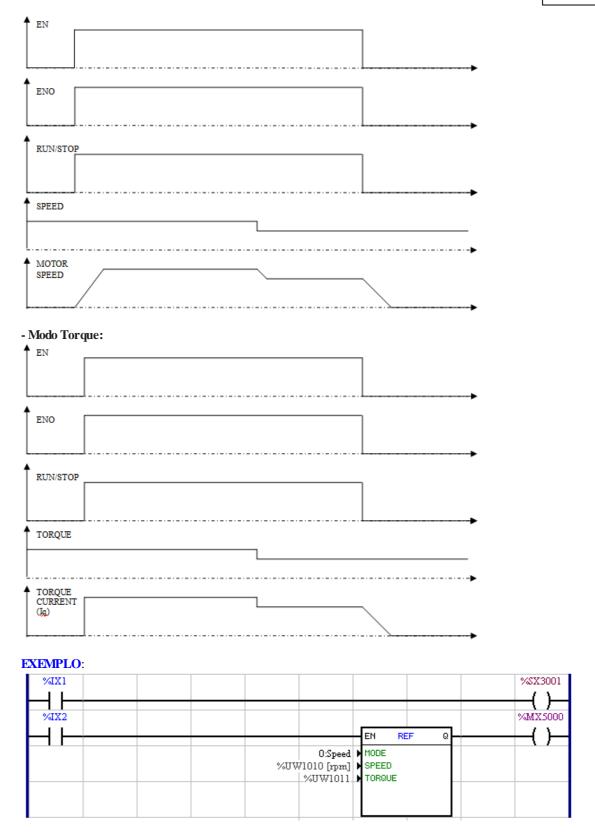
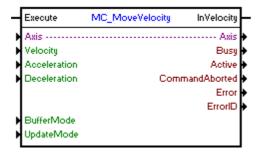

FLUXOGRAMA:

GRÁFICO:

- Modo Velocidade:


A entrada digital %IX1 habilita geral o drive.

A entrada digital %IX2 habilita o bloco REF, que está programado para ser somente referencia de velocidade, sendo então enviado ao drive o valor da referência de velocidade contido no parâmetro do usuário P1010.

7.5.3.5 MC_MoveVelocity

SÍMBOLO

DES CRIÇÃO

Executa um movimento para a velocidade programada.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Será executado um movimento para a velocidade configurada no argumento "Velocity" com uma aceleração/desaceleração configurada nos argumentos "Acceleration" e "Deceleration".

A direção do movimento dependerá do sinal da velocidade. Se a velocidade for maior que zero, o movimento será na direção positiva (sentido horário) e se a velocidade for menor que zero, o movimento será na direção negaitiva (sentido anti-horário).

Quando atinge a velocidade programada, a saída InVelocity vai para 1 e permanece enquanto o bloco estiver

Para finalizar o bloco, é necessário a execução de outro bloco ou o drive passar para o estado "Disabled" ou "Errorstop".

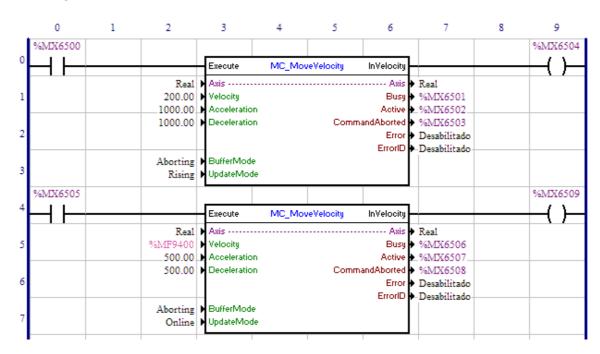
ARGUMENTOS

É composto por 1 entrada Execute, 1 saída InVelocity e 12 argumentos, sendo eles:

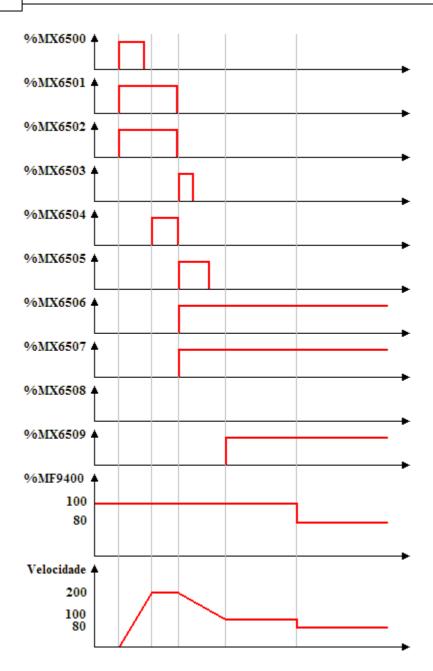
- <u>Axis</u> 106
- Velocity 106
- Aceleration 107
- <u>Deceleration</u> 107
- Buffer Mode 107
- Update Mode 114
- <u>Busy</u> 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída InVelocity informa o instante em que atinge a velocidade programada.


MODO DE OPERAÇÃO

Ao executar o bloco MC_MoveVelocity, o drive não opera em malha de posição.


Na execução do movimento o estado do eixo 118 mudará para "Continuous Motion".

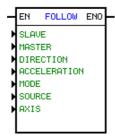
ERROS DO BLOCO

Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
60	Velocidade programada menor que a mínima permitida.
61	Velocidade programada maior que a máxima permitida.
62	Aceleração programada menor que a mínima permitida.
63	Aceleração programada maior que a máxima permitida.
64	Desaceleração programada menor que a mínima permitida.
65	Desaceleração programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado " Stopping ".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 diferente de 4 (PLC).
74	Drive no estado " Homing ".
78	Bloco MC não executado – Falha intema.

Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_MoveVelocity é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse o movimento para chegar a velocidade de 200 RPM.

No instante em que a velocidade atinge 200 RPM, a saída InVelocity, marcador de bit 6504 é setado.

Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_MoveVelocity é instantaneamente executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse o movimento para a velocidade de 100 RPM (neste instante o marcador de float 9400 contém o valor 100). Ao mesmo tempo os sinais Busy, Active e InVelocity do primeiro bloco, marcadores de bit 6501, 6502 e 6504, são resetados e o sinal CommandAborted, marcador de bit 6503, é setado por 1 scan.


Ao atingir a velocidade de 100 RPM, a saída InVelocity do segundo bloco, marcador de bit 6509, é setado e permanece até a execução de outro bloco.

Como o argumento UpdateMode está configurado como Online, com a mudança do valor do marcador de float 9400 para 80, a velocidade muda imediatamente para 80 RPM, sem executar uma rampa de aceleração/desaceleração.

7.5.4 Seguidor

7.5.4.1 FOLLOW

SÍMBOLO

DES CRIÇÃO

É formado por 1 entrada EN, 1 saída ENO e 6 argumentos sendo:

- Relação de sincronismo 215
- Direção 104
- Aceleração 103] Se for 0, a aceleração é desabilitada.
- Modo 103
- Fonte 215
- Eixo 104

A entrada EN habilita o escravo seguir o mestre baseado nos dados recebidos pela rede CAN. A saída ENO informa se o escravo atingiu o sincronismo.

Relação de Sincronismo

A relação de sincronismo é formada por 1 tipo de dado e 2 endereços ou constantes, dependendo da escolha do tipo de dado.

O tipo de dado pode ser:

- \cdot constante
- · parâmetro do usuário
- · marcador de word

Os endereços ou constantes são destinados a relação do mestre e relação do escravo. Modo

O modo é uma constante.

Possui as opções:

- · velocidade controla apenas o sincronismo de velocidade.
- · posição controla o sincronismo de posição e velocidade .

Fonte

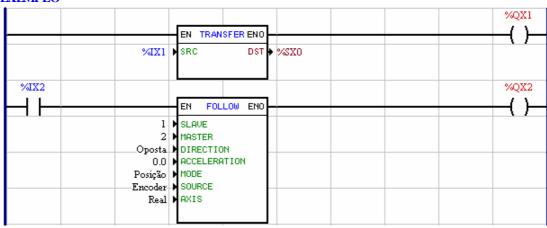
A fonte de sincronismo é uma constante.

Possui as opções:

- · encoder (válido somente para POS2 e PLC2)
- · rede CAN (mestre deve ter o bloco MSCANWEG 265 habilitado)
- · rede CANopen (habilitado via WSCAN 46 para PLC11-01 e PLC11-02 com versão >= 1.20)

NOTA!

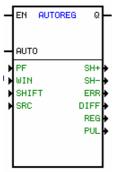
Só é possível fazer sincronismo entre placas PLC1 para PLC1, PLC2 para PLC2, PLC1 para PLC2 e POS2 para POS2.


Nunca PLC1 ou PLC2 para POS2.

FUNCIONAMENTO

Quando a entrada EN estiver ativa, o motor segue o mestre sincronizado em velocidade ou posição, via encoder ou rede CAN.

Somente quando o motor escravo atingir a relação especificada do motor mestre, a saída ENO é setada.


EXEMPLO

Se o mestre está enviando os dados via ENCODER, o motor escravo roda 1/2 vezes a velocidade do motor mestre..

7.5.4.2 **AUTOREG**

SÍMBOLO

DESCRIÇÃO

É composto por 2 entradas EN e AUTO, 1 saída ENO e 10 argumentos, sendo eles:

- pf (print format) float que define a distância em pulsos entre 2 sinais recebidos na entrada index (pulsos nulo)
 - win (window) float que define a janela de atuação de leitura do sinal na entrada index

- shift float que define o número máximo de pulsos que podem ser corrigido por período de amostragem
 - src (source) word constante que define se a contagem é feita através do encoder ou do resolver
 - sh+ marcador de bit que indica que o bloco shift no sentido horário deveria ser ativado
 - sh- marcador de bit que indica que o bloco shift no sentido anti-horário deveria ser ativado
 - err marcador de word que define o erro corrente do bloco
 - reg marcador de float que indica o número de pulsos entre os 2 últimos sinais na entrada index
 - pul indica o número de pulsos recebidos desde o último sinal recebido na entrada index

A entrada EN é responsável pela habilitação do bloco.

A entrada AUTO é torna a compensação do erro ativa.

A saída ENO vai para 1, somente após o bloco capturar o terceiro sinal index ter sido recebido quando não houver nenhum erro fatal.

NOTA: O sinal index é recebido pelo pino 8 do conector XC8 (sinal Z).

FUNCIONAMENTO

O objetivo desta função, eh fazer uma correção no sincronismo, sempre que uma houver uma variação de posição entre 2 sinais recebidos por uma fotocélula. O sinal da fotocélula, o qual chameremos de INDEX, é recebido pela mesmo pino em que a placa recebe o sinal do pulso nulo do encoder. Logo o sinal do pulso nulo do encoder NAO DEVE ser conectado.

No instante em que o bloco é habilitado (EN = 1), a leitura do INDEX é habilitada. Assim que os 2 primeiros INDEX's chegarem, é computado o numero de pulsos recebidos nesse intervalo e armazenado no REG (registro). Esse número de pulsos é obtido do RESOLVER (SRC = 0) ou do ENCODER (SRC = 1). O SRC (source) é uma opção de programção do bloco, sendo que o valor padrão é por RESOLVER.

Após o recebimento do primeiro INDEX, a função somente ativa a leitura do próximo INDEX apos a função receber o número de pulsos especificado em PF (PRINT FORMAT), dentro de uma janela especificada por WIN (WINDOW). Deste modo, a leitura do INDEX é somente válida dentro de PF - WIN e PF + WIN (sentido horário) ou PF + WIN e PF - WIN (sentido anti-horário).

PF deve ser configurarado com o valor em pulsos que o REG deve possuir, após a captura dos 2 primeiros INDEX's (REG nao será mais modificado). Se houver uma diferença maior que o valor configurado em WIN (WINDOW), o código 2 aparecerah em ERR (codigo do erro).

Após esta etapa de incialização, o valor obtido entre os INDEX's, são comparados com o valor de PF. O valor desta diferença é armazenado em DIFF (DIFFERENCE). Se o DIFF for maior que WIN, o código 1 aparecerá em ERR.

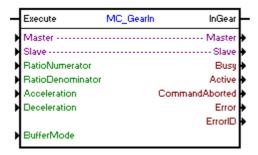
SH+ só vai para 1 se o INDEX for recebido com menos pulsos que PF e SH- só vai para 1 se o INDEX for recebido com mais pulsos que PF.

NOTA: Se PF for configurado com 0, ERR, WIN e SHIFT ficam sem função. O modulo da diferença em pulsos a cada 2 INDEX, é armazenda em DIFF. Se a diferença for positiva SH+ vai para 1. Caso contrário, SH- vai para 1.

Quando AUTO (AUTOMATIC) é 0, o bloco funciona em modo manual. Quando for 1, o modo automatico é habilitado, fazendo uma compensação que faça que o DIFF tenda a 0. A compensação sará feita em função do valor de SHIFT, que é dado em pulsos/período de amostragem.

A partir do terceiro INDEX, ou seja, apos a inicialização, a saída Q vai para 1, permanecendo nesse estado enquanto EN estiver em 1 e não houver erro, com exceção dos erros negativos que não são erros fatais.

PUL é o número de pulsos recebidos após o útimo INDEX. é atualizado no ciclo de scan.


OUTRAS INFORMAÇÕES

- EN: habilitação do bloco. 0: inativo, 1 ativo
- AUTO: 0: bloco em manual, ou seja, não executa a correção (SHIFT) mesmo que haja uma diferença entre PF e REG.
- 1: bloco em automático, ou seja, qualquer diferença existente entre PF e REGativa o bloco SHIFT (caso jah não esteja ativo), forçando uma correção deste erro.
- Q: 0: indica que o bloco não está habilitado, ou não terminou a seu processo de inicialização (não obteve 2 INDEX) ou há algumerro.
- 1: indica que o bloco está em funcionamento normal, ou seja, todos os parâmetros já podem ser usados com segurança.
- PF: é o PRINT FORMAT, ou seja, é a distância em número de pulsos entre 2 INDEX. Se algum INDEX for recebido antes de PF WIN ou depois de PF + WIN, a leitura é ignorada. Se o seu valor for nulo (0), o INDEX sempre é lido.
- WIN: janela para atuação do INDEX. Ver PF.
- SHIFT: valor de correção máximo em pulsos/periodo de amostragem, quando há um erro entre PF e REG e o bloco está em modo automático.
- SRC: 0: resolver, 1: encoder
- ERR: código de erro do bloco.
 - -2: 1 INDEX não recebido ou recebido apos PF + WIN (erro não fatal)
 - -1: PF tem um valor diferente de REG apos o 2 INDEX (erro não fatal)
 - 0: sem erro
 - 1: INDEX recebido depois de PF + WIN
 - 2: |PF REG| > WIN apos o recebimento do 2 INDEX (inicializacao).
- SH+: 0: normal, 1: necessita de uma correção positiva
- SH-: 0: normal, 1: necessita de uma correção negativa
- DIFF: |PF REG| empulsos
- REG: número de pulsos entre 2 INDEX
- PUL: número de pulsos decorridos desde o ultimo INDEX

7.5.4.3 MC_GearIn

SÍMBOLO

DES CRIÇÃO

Executa o sincronismo em velocidade entre os eixos programados.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Para o eixo escravo atingir a velocidade do eixo mestre, será realizado um movimento com uma aceleração/desaceleração configurada nos argumentos "Acceleration" e "Deceleration". Assim que o sincronismo for estabelecido, a saída InGear é setada.

A direção do movimento dependerá do sinal do RatioNumerator. Se RatioNumerator for maior que zero, o movimento será na mesma direção do eixo mestre e se RatioNumerator for menor que zero, o movimento será na direção oposta ao eixo mestre.

Para finalizar o bloco, é necessário a execução de outro bloco ou o drive passar para o estado "Disabled" ou "Errorstop".

ARGUMENTOS

Écomposto por 1 entrada Execute, 1 saída InGear e 13 argumentos, sendo eles:

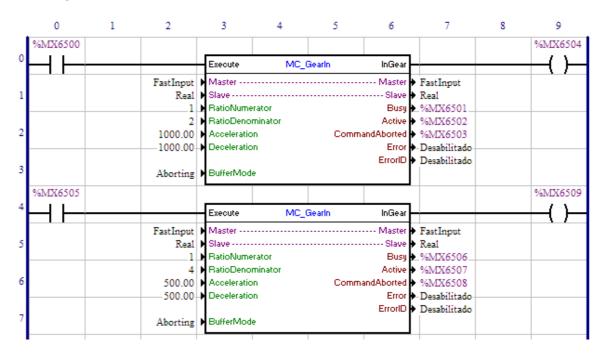
- Master 106
- Slave 106
- Ratio Numerator 106
- Ratio Denominator 106
- Aceleration 107
- <u>Deceleration</u> 107
- Buffer Mode 107
- Busy 116
- Active 116
- Command Aborted 116
- Error 116
- Error Id 117
- Bloco Retentivo 117

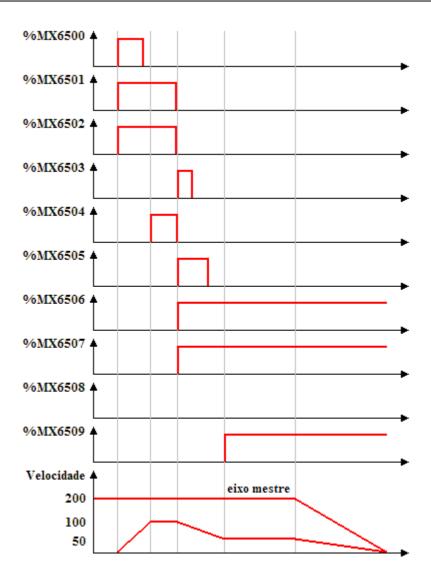
A entrada Execute é responsável pela habilitação do bloco.

A saída InGear informa o instante em que o sincronismo é estabelecido.

MODO DE OPERAÇÃO

Ao executar o bloco MC_GearIn, o drive não opera em malha de posição.


Na execução do bloco o estado do eixo 118 mudará para "Synchronized Motion".

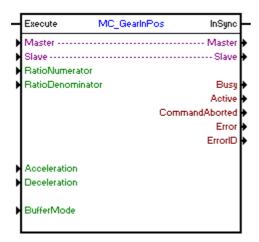

ERROS DO BLOCO

Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
62	Aceleração programada menor que a mínima permitida.
63	Aceleração programada maior que a máxima permitida.
64	Desaceleração programada menor que a mínima permitida.
65	Desa celeração programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado "Stopping".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 diferente de 4 (PLC).
72	Relação de sincronismo inválida.
74	Drive no estado "Homing".
78	Bloco MC não executado – Falha intema.

EXEMPLO

Na transição de 0 para 1 do marcador de bit 6500, o primeiro bloco MC_GearIn é executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6501 e 6502 respectivamente, são setados e iniciasse a busca do sincronismo com a aceleração configurada. Como a relação configurada é 1:2 e o eixo mestre está a 200 RPM, o eixo escravo deverá atingir 100 RPM para estabelecer o sincronismo.

No instante em que a velocidade atinge 100 RPM, a saída InGear, marcador de bit 6504 é setado.


Tendo-se a transição de 0 para 1 do marcador de bit 6505 o segundo bloco MC_GearIn é instantaneamente executado, com isso os sinais Busy e Active deste bloco, marcadores de bit 6506 e 6507 respectivamente, são setados e iniciasse a busca do sincronismo com a desaceleração configurada. Como a relação configurada é 1:4 e o eixo mestre está a 200 RPM, o eixo escravo deverá atingir 50 RPM para estabelecer o sincronismo. Ao mesmo tempo os sinais Busy, Active e InGear do primeiro bloco, marcadores de bit 6501, 6502 e 6504, são resetados e o sinal CommandAborted, marcador de bit 6503, é setado por 1 scan.

Ao atingir a velocidade de 50 RPM, a saída InGear do segundo bloco, marcador de bit 6509, é setado e permanece até a execução de outro bloco.

7.5.4.4 MC_GearInPos

SÍMBOLO

DES CRIÇÃO

Executa o sincronismo em posição entre os eixos programados.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será iniciado e executado de acordo com os argumentos configurados.

Para o eixo escravo atingir a velocidade do eixo mestre, será realizado um movimento com uma aceleração/desaceleração configurada nos argumentos "Acceleration" e "Deceleration". Assim que o sincronismo for estabelecido, a saída InSync é setada.

A direção do movimento dependerá do sinal do RatioNumerator. Se RatioNumerator for maior que zero, o movimento será na mesma direção do eixo mestre e se RatioNumerator for menor que zero, o movimento será na direção oposta ao eixo mestre.

Para finalizar o bloco, é necessário a execução de outro bloco ou o drive passar para o estado "Disabled" ou "Errorstop".

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída InSync e 13 argumentos, sendo eles:

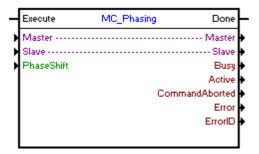
- Master 106
- Slave 106
- Ratio Numerator 106
- Ratio Denominator 106
- Aceleration 107
- Deceleration 107
- Buffer Mode 107
- Busy 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116
- Error Id 117
- Bloco Retentivo 117

A entrada Execute é responsável pela habilitação do bloco.

A saída InSync informa o instante em que o sincronismo é estabelecido.

MODO DE OPERAÇÃO

Ao executar o bloco MC_GearInPos, o drive passará a operar em malha de posição e permanece assim mesmo após a conclusão do bloco. Deve-se ajustar o ganho proporcional de posição (P0159) para obter um melhor desempenho do drive.


Na execução do bloco o estado do eixo 118 mudará para "Synchronized Motion".

ERROS DO BLOCO

Error Id	Descrição
52	Tentativa de executar bloco com BufferMode - Single quando outro bloco ativo.
62	Aceleração programada menor que a mínima permitida.
63	Aceleração programada maior que a máxima permitida.
64	Desaceleração programada menor que a mínima permitida.
65	Desaceleração programada maior que a máxima permitida.
67	Drive no estado "Disabled" ou "Errorstop".
69	Drive no estado "Stopping".
70	Tentativa de executar bloco com BufferMode - Buffered quando outro bloco ativo e outro bloco aguardando.
71	P202 diferente de 4 (PLC).
72	Relação de sincronismo inválida.
74	Drive no estado "Homing".
78	Bloco MC não executado – Falha intema.

7.5.4.5 MC_Phasing

SÍMBOLO

DES CRIÇÃO

Executa um deslocamento no eixo mestre programado.

Quando houver uma transição de 0 para 1 na entrada Execute, será executado um deslocamento na posição do eixo mestre conforme o valor de "PhaseShift".

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 9 argumentos, sendo eles:

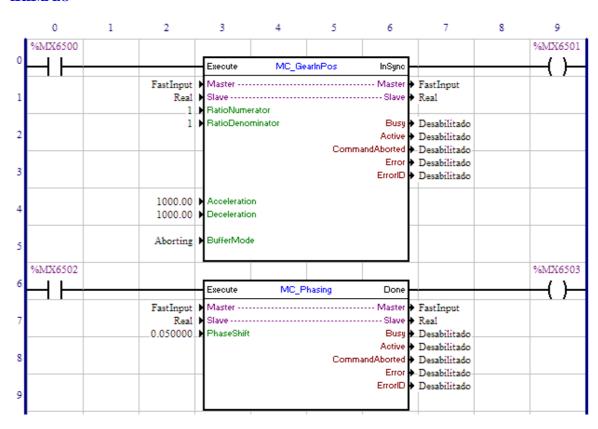
- Master 106
- <u>Slave</u> 106
- PhaseShift 106
- <u>Busy</u> 116
- Active 116
- Command Aborted 116
- <u>Error</u> 116

- <u>Error Id</u> 117
- Bloco Retentivo 117

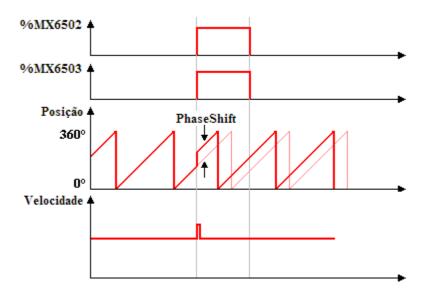
A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o deslocamento é realizado.

MODO DE OPERAÇÃO

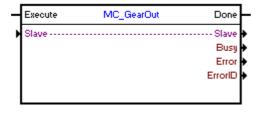

Ao executar o bloco MC_Phasing, o drive não altera o modo de operação atual.

Na execução do bloco o estado do eixo 118 não mudará.


ERROS DO BLOCO

Error Id	Descrição
67	Drive no estado "Disabled" ou "Errorstop".
71	P202 diferente de 4 (PLC).
73	Drive não está no estado "Synchronized Motion".
78	Bloco MC não executado – Falha interna.
79	Eixo Mestre não está em sincronismo.

EXEMPLO



Tendo-se o sincronismo de posição do Eixo Real com o Contador Rápido através do bloco MC_GearInPos e ocorrendo uma transição de 0 para 1 do marcador de bit 6502, o bloco MC_Phasing é executado e um deslocamento de 0,05 volta é aplicado ao eixo mestre, resultando um pulso na velocidade. A saída Done, marcador de bit 6503 é setado enquanto a entrada Execute está setada.

7.5.4.6 MC GearOut

SÍMBOLO

DES CRIÇÃO

Finaliza o sincronismo (blocos MC GearIn 219) ou MC GearIn Pos 222) no eixo programado.

Quando houver uma transição de 0 para 1 na entrada Execute, o bloco será executado e o sincronismo existente será finalizado. O eixo manterá a velocidade do instante em que o bloco é executado.

ARGUMENTOS

É composto por 1 entrada Execute, 1 saída Done e 5 argumentos, sendo eles:

- Slave 106
- Busy 116
- <u>Error</u> 116
- Error Id 117
- Bloco Retentivo

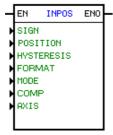
A entrada Execute é responsável pela habilitação do bloco.

A saída Done informa o instante em que o sincronismo é finalizado.

MODO DE OPERAÇÃO

Ao executar o bloco MC_GearOut, o drive não opera em malha de posição.

Na execução do bloco o estado do eixo 1181 mudará para "Continuous Motion".


ERROS DO BLOCO

Error Id	Descrição
67	Drive no estado "Disabled" ou "Errorstop".
71	P202 diferente de 4 (PLC).
73	Drive não está no estado "Synchronized Motion".
78	Bloco MC não executado – Falha intema.

7.5.5 Verificador

7.5.5.1 INPOS

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 5 argumentos, sendo eles:

- · posição 102
- histerese 226
- · modo 103
- comparação 226
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa se a posição real é maior ou igual ao valor programado, no sentido programado.

Histerese

A histerese é formada por 1 formato, 1 tipo de dado e 1 endereço ou constante, dependendo da escolha do tipo de dado.

O formato pode ser:

- · Percentual (%)
- · Pulsos (65536 pulsos = 1 rotação)

O tipo de dado pode ser:

- ·constante
- · parâmetro do usuário
- · marcador de word

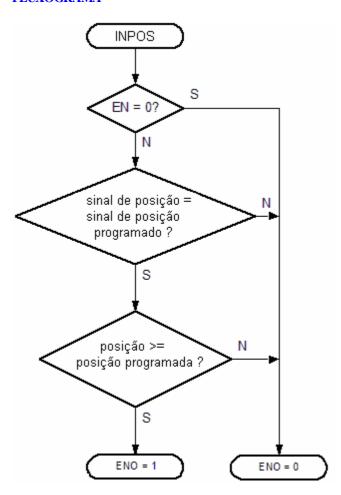
Comparação

O argumento comparação é sempre constante e pode ser:

- $\cdot >=$ (maior ou igual)
- $\cdot <=$ (menor ou igual)

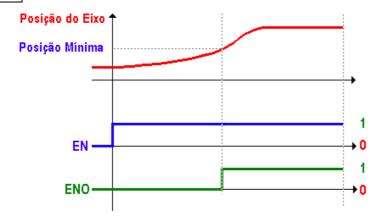
 $\cdot = (igual)$

FUNCIONAMENTO

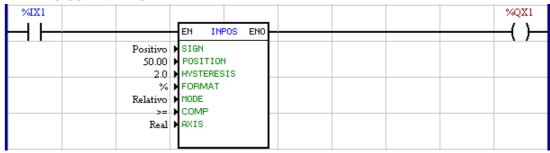

Se a entrada EN for 0, o bloco não é executado e a saída ENO permanece em 0.

Se a entrada EN for 1, o bloco compara o sinal de posição real e a posição real com os argumentos de sinal, posição e histerese programados.

Se a posição real tem o mesmo sinal que foi programado e ela for maior ou igual, menor ou igual ou igual a posição programada acrescido do valor de histerese programado, então é transferido 1 para a saída ENO. Caso contrário, é transferido 0 para a saída ENO.


A histerese serve para impedir oscilação na saída do bloco quando a posição real está muito próxima ou igual à posição programada. Por exemplo, para uma posição de 10 rotações com histerese de 1%, o bloco liga a saída ENO quando a posição real atingir 10,1 rotações, e somente a desliga quando a posição cair em torno dos 9,9 rotações. A histerese é dada em porcentagem, podendo variar entre 0.0% e 50.0%. Se for programada por parâmetro a unidade passa a ser "por mil", variando de 0 a 500.

FLUXOGRAMA



GRÁFICO

EXEMPLO COMENTADO

Neste exemplo o bloco INPOS está sempre ativado.

Neste caso, se o motor estiver na posição positiva maior ou igual a 50 rotações (respeitando a histerese de 2%), escreve 1 na saída digital 1. Caso contrário, escreve 0.

7.5.5.2 INBWG

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

- · velocidade 102
- · sentido de rotação 103
- <u>histerese</u> 228
- <u>eixo</u> 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa se o sentido de rotação é o mesmo do sentido programado e se a velocidade do motor é maior ou igual ao valor programado.

Histerese

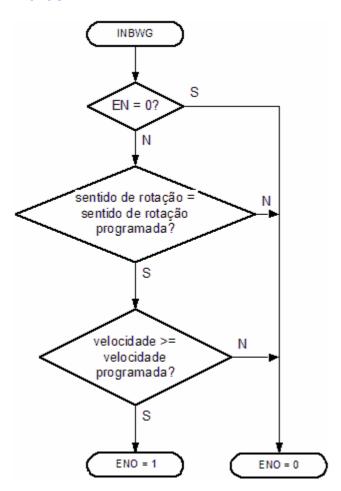
A histerese é formada por 1 formato, 1 tipo de dado e 1 endereço ou constante, dependendo da escolha do tipo de dado.

O formato é:

· Percentual (%)

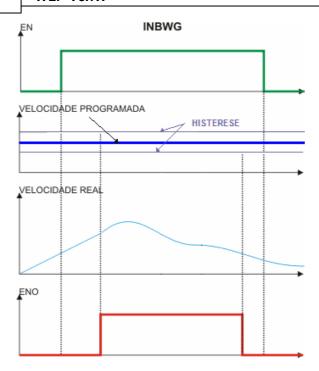
O tipo de dado pode ser:

- $\cdot \ constante$
- · parâmetro do usuário
- · marcador de word

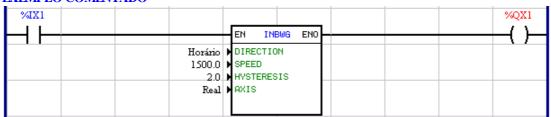

FUNCIONAMENTO

Se a entrada EN for 0, o bloco não é executado e a saída ENO vai para 0.

Se a entrada EN for 1, o bloco compara a velocidade e o sentido de giro do motor com os argumentos de velocidade e de sentido de giro programados.


Se o motor está girando no mesmo sentido do argumento de sentido de rotação programado e a velocidade do motor for maior ou igual do que o argumento de velocidade programado, então é transferido 1 para a saída ENO. Caso contrário, é transferido 0 para a saída ENO.

FLUXOGRAMA



GRÁFICO

EXEMPLO COMENTADO

Enquanto a entrada digital 1 estiver em 1, o bloco INBWG está ativado. Neste caso, se a o motor estiver rodando no sentido horário e sua velocidade for maior ou igual a 1500 rpm (respeitando a histerese), escreve 1 na saída digital 1. Caso contrário, escreve 0.

7.5.6 CLP

7.5.6.1 TON

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada IN, 1 saída Q e 2 argumentos, sendo eles:

- · PT tempo desejado
- · ET tempo decorrido

A entrada IN é responsável pela habilitação do bloco.

A saída Q informa se o tempo decorrido atingiu o tempo programado.

PT (Tempo Desejado)

O tempo desejado é composto por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado do sinal pode ser:

- ·constante
- · parâmetro do usuário
- · marcador de word

Para o tipo de dado constante, o valor máximo permitido é 65535.

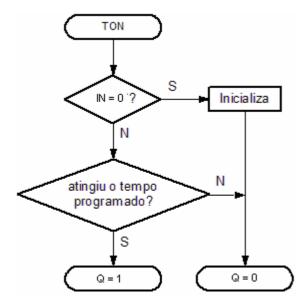
Para PLC1, PLC2 e POS2 a base de tempo é 1ms, para a SoftPLC do CFW-11 e SoftPLC da SSW-06 a base de tempo é 10ms.

ET (Tempo Decorrido)

O tempo decorrido é composto por um tipo de dado e um endereço.

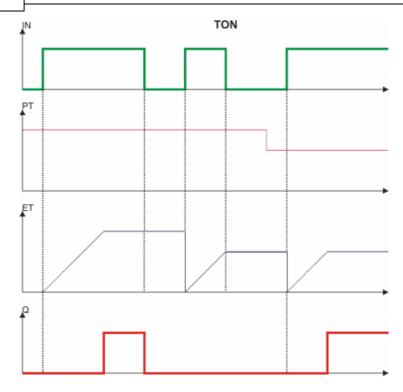
O tipo de dado do tempo decorrido pode ser:

- · parâmetro do usuário
- · marcador de word

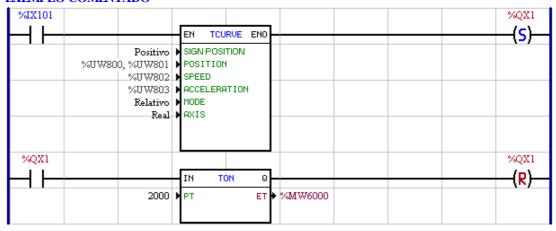

NOTA: Na opção parâmetro do usuário, o valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado.

FUNCIONAMENTO

Se a entrada IN for 0, o argumento de tempo decorrido é resetado e a saída Q vai para 0.

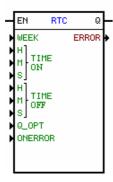

Se a entrada IN for 1, o tempo decorrido é incrementado até atingir o valor contido no argumento de tempo desejado. Ao atingir este valor, a saída Q vai para 1, ficando nesse estado até a entrada IN ir para 0.

FLUXOGRAMA



GRÁFICO

EXEMPLO COMENTADO



Quando a entrada digital 1 do drive for 1, um posicionamento baseado nos parâmetros do usuário 800 a 803 é habilitado. Quando este posicionamento termina, a saída digital 1 é setada e o temporizador é habilitado. Após os 2000 ms programados estourarem, a saída digital 1 é resetada.

7.5.6.2 RTC

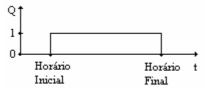
SÍMBOLO

DES CRIÇÃO

Écomposto por 1 entrada EN, 1 saída Q e 6 argumentos, sendo eles:

- · WEEK dias da semana programados para atuação do bloco
- · TIME ON (horário inicial) hora, minuto e segundo para ligar saída
- TIME OFF (horário final) hora, minuto e segundo para desligar saída
- Q_OPT opção de saída normal ou invertida
- ONERROR opção para condição de erro (gera alarme ou gera falha para o drive)
- ERROR indicação de erro no bloco RTC

A entrada EN é responsável pela habilitação do bloco.


A saída Q á acionada conforme programação dos argumentos.

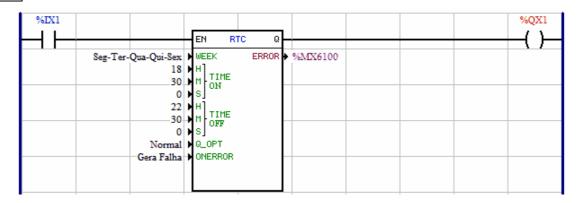
FUNCIONAMENTO

Se a entrada EN for 0, e a saída Q é 0.

Se a entrada EN for 1:

 Q_OPT = 0 (saída normal) - saída Q vai para nível 1 somente quando o horário corrente é maior que o horário inicial e é menor que o horário final.

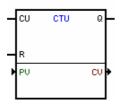
• Q_OPT = 1 (saída invertida) - saída Q vai para nível 1 somente quando o horário corrente é menor que o horário inicial ou é maior que o horário final.


Obs :

Quando houver erro no relógio de tempo real o mesmo será indicado na saída ERROR.

No CFW11, PLC11-01 e PLC11-02 a IHM deve estar sempre conectada para utilização desse bloco.

EXEMPLO COMENTADO



Quando a entrada digital 1 for 1, e o dia da semana for Segunda, Terça, Quarta, Quinta ou Sexta-Feira e a hora atual for >= 18:30:00 e <= 22:30:00 a saída digital 1 será acionada.

7.5.6.3 CTU

SÍMBOLO

DES CRIÇÃO (Counter Up)

É composto por 1 entrada CU, 1 entrada R, 1 saída Q e 2 argumentos, sendo eles:

- · PV contagem desejada
- · CV contagem decorrida

A entrada CU é a entrada de contagem.

A entrada R reseta a contagem.

A saída Q informa se o valor de contagem programado foi atingido.

PV (Contagem Desejada)

A contagem desejada é composta por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado da contagem desejada pode ser:

- ·constante
- · parâmetro do usuário
- · marcador de word

Para o tipo de dado constante, o valor máximo permitido é 65535.

CV (Contagem Decorrida)

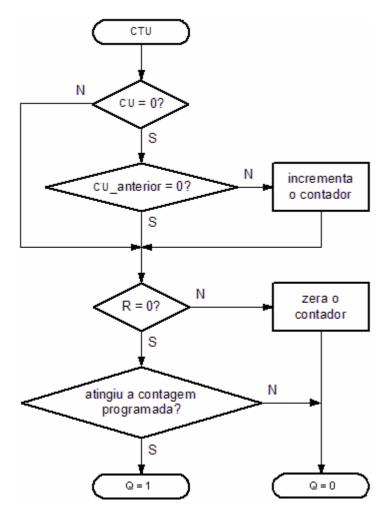
A contagem decorrida é composta por um tipo de dado e um endereço.

O tipo de dado da contagem decorrida pode ser:

- · parâmetro do usuário
- · marcador de word

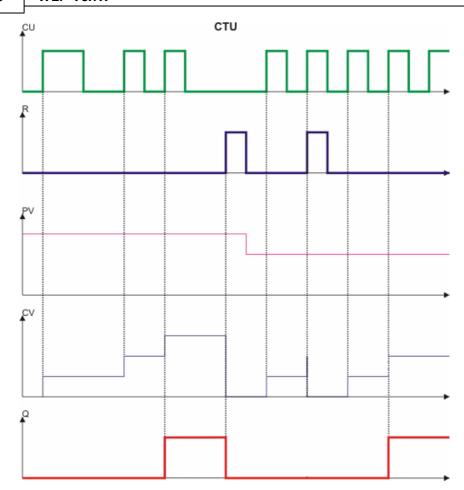
NOTA: Na opção parâmetro do usuário, o valor corrente não é salvo na memória E2PROM, ou seja, este

último valor não é recuperado.

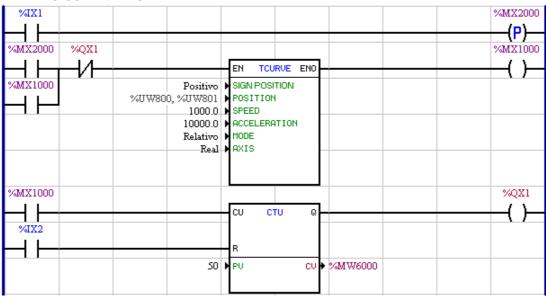

FUNCIONAMENTO

Quando a entrada CU for de 0 para 1, o valor de contagem decorrida é incrementado, a menos que a entrada R esteja em 1.

Quando o valor de contagem decorrida atingir o valor de contagem desejado, a saída Q vai para 1, permanecendo nesse estado até que a entrada R vá para 1. Caso contrário, a saída Q é 0.

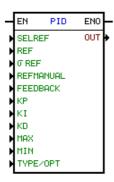

Enquanto a entrada R estiver em 1, o valor de contagem decorrida é resetado e a contagem não é incrementada.

FLUXOGRAMA



GRÁFICO

EXEMPLO COMENTADO


Se houver uma transição de 0 para 1 na entrada digital 1 ou o marcador de bit 1000 for 1, e a saída digital 1 for 0, um posicionamento TCURVE é habilitado. Na sua conclusão, o marcador 1000 vai para 1, fazendo com que o bloco CTU efetue uma contagem e novamente aciona o posicionamento, desde que a entrada digital 2 seja

0. Quando o contador sentir 50 transições positivas no marcador 1000, ou seja, efetuou 50 posicionamentos, a saída digital 1 vai para 1, fazendo com que um novo posicionamento não seje possível de ser feito, até que a entrada digital 2 for 1, resetando a saída 1.

7.5.6.4 PID

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 8 argumentos, sendo eles:

- · sinais 238 (referência, feedback e saída de controle)
- · ganhos 238 (KP, KI, KD)
- · <u>seleção</u> 237 (0=automático ou 1=manual)
- · limites (máximo, mínimo) 105
- · filtro da referência automática 237
- · referência manual 238
- · modo do controlador 2381 (direto ou reverso)
- · tipo 238 (acadêmico ou paralelo)

A entrada EN é responsável pela habilitação do bloco.

A saída ENO é uma cópia do valor da entrada EN.

Selecão

O argumento seleção é composto por um tipo de dado e um endereço.

O tipo de dado do endereço pode ser:

- $\cdot \ constante$
- \cdot marcador de bit
- · entrada digital
- · parâmetro do usuário

Quando o tipo de dado for constante, temos as opções:

- · automático
- · manual.

Filtro da Referência Automática

O Filtro da Referência Automática é um filtro passa baixa, sendo que a constante de tempo é programada através do argumento Filtro.

O argumento Filtro é composto por um tipo de dado e um endereço.

O tipo de dado do float pode ser:

- constante float;
- marcador de float.

Referência Manual

O argumento Referência Manual é composto por um tipo de dado e um endereço.

O tipo de dado do float pode ser:

- constante float;
- marcador de foat.

Modo do Controlador

O modo do controlador é sempre constante, podendo ser:

- direto (erro = referência automática realimentação);
- reverso (erro = realimentação referência automática).

Sinais

Os sinas são compostos por 4 partes:

- · float referência 105
- · <u>float realimentação</u> 105
- · float controle 105

Ganhos

Os ganhos são compostos por 3 partes:

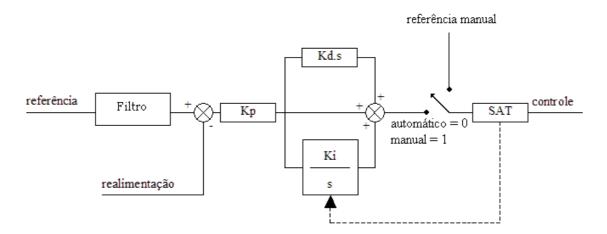
- · float ganho proporcional (Kp) 105
- · float ganho integral (Ki) 105
- · float ganho derivativo (Kd) 105

Como todos os tipos de dado deste bloco são constante float ou marcador de float, é útil fazer o uso dos blocos INT2FL e FL2INT.

FUNCIONAMENTO

A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, o bloco é executado. Caso contrário, os argumentos são resetados.


IMPORTANTE: No máximo 2 blocos de PID podem estar ativos por vez. A partir do terceiro, não são executados, mesmo que estejam ativos em sua entrada EN.

BLOCO DIAGRAMA

Paralelo referência manual Kd.s referência manual Kd.s Filtro Kp automático = 0 manual = 1 Ki realimentação

Acadêmico

Definições:

e = referência filtrada - realimentação

u = controle

Kp = ganho proporcional

Ki = ganho integral (inverso do tempo integral (1/Ti))

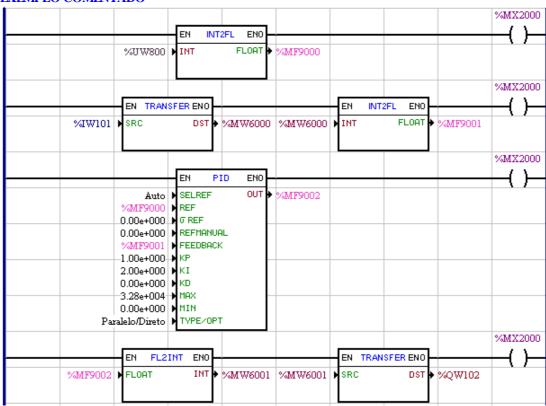
Kd = ganho derivativo (tempo derivativo)

EQUAÇÕES DISCRETAS

Acadêmico

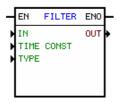
$$u(k) = u(k-1) + Kp*((1 + Ki*Ts + (Kd/Ts))*e(k) - (Kd/Ts)*e(k-1))$$

Paralelo


$$u(k) = u(k-1) + (Kp + Ki*Ts + (Kd/Ts))*e(k) - (Kd/Ts)*e(k-1)$$

Sendo:

Ts = periodo de amostragem


EXEMPLO COMENTADO

Resumidamente, o valor de referência é dado pelo parâmetro do usuário 800, que por sua vez é convertido para o marcador de float 9000. O valor do sinal de realimentação é dado pelo valor contido na entrada analógica 1 do drive, que é transferido ao marcador de word 6000 e convertido ao marcador de float 9001. A saída de controle do bloco PID é o marcador 9002, que é convertido para o marcador de word 6001. O valor contido no marcador de word 6001 é transferido para a saída analógica 2 do drive.

7.5.6.5 FILTER

SÍMBOLO

DES CRIÇÃO

Écomposto por 1 entrada EN, 1 saída ENO e 2 argumentos, sendo eles:

- · valores (entrada, saída) 105
- · tipo de filtro 241
- · float constante de tempo 105 [segundos]

A entrada EN é responsável pela habilitação do bloco. A saída ENO é uma cópia do valor da entrada EN.

Como todos os tipos de dado deste bloco são constante float ou marcador de float, é útil fazer o uso dos blocos INT2FL e FL2INT.

Tipo de Filtro

O tipo de filtro é uma constante, que pode ser:

- · passa baixa
- · passa alta

FUNCIONAMENTO

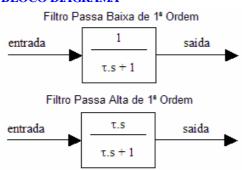
A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, o bloco é executado. Caso contrário, os argumentos são resetados.

A fórmula do Filtro é dada por:

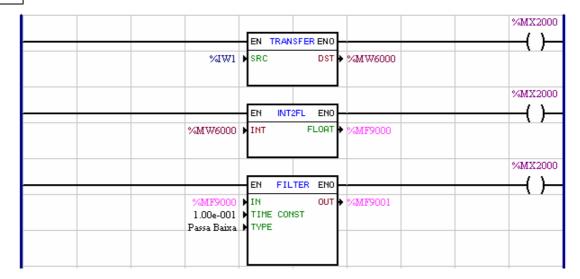
- passa baixa

[saida] = [entrada] / ([constante de tempo] * s + 1) para filtros passa baixa


- passa alta

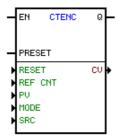
[saída] = ([entrada] *[constante de tempo] * s) / ([constante de tempo] * s + 1) para filtros passa alta

NOTA: A constante de tempo é dada em segundos.


IMPORTANTE: No máximo 2 blocos de filtro podem estar ativos por vez. A partir do terceiro, não são executados, mesmo que estejam ativos em sua entrada EN.

BLOCO DIAGRAMA

EXEMPLO COMENTADO



O valor contido na entrada analógica 1 do drive é transferido ao marcador de word 6000. Este marcador de word 6000 é convertido para o marcador de float 9000. O marcador de float 9000 é a entrada do filtro, cuja constante de tempo é 0,1s, resultando no marcador de float 9001.

7.5.6.6 CTENC

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 entrada PRESET, 1 saída Q e 6 argumentos, sendo eles:

Reset 242

Referência de contagem - float 105 (REF CNT)

Preset - float 105 (PV)

Modo de contagem 242 (MODE)

Encoder 243 (SRC)

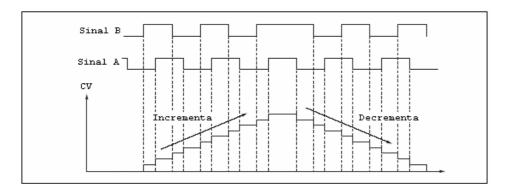
Valor corrente - float 105 (CV)

A entrada EN é responsável pela habilitação do bloco.

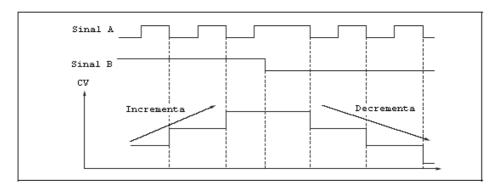
A entrada PRESET atribui o valor de preset contido em PV em CV.

A saída Q vai para 1 durante um ciclo de scan se o valor de pulsos contados atingiu o valor de pulsos desejados, retornando a 0 posteriormente.

Reset


Temos dois tipos de reset, através do pulso nulo do encoder principal ou através de marcador de bit, entrada digital, saída digital ou parâmetro do usuário.

Modo de Contagem (MODE)


O modo de contagem é sempre constante, sendo possível os seguintes modos:

Modo 1: a contagem de pulsos é realizada em quadratura entre os sinais A e B, conforme figura a seguir. O resultando tem uma resolução de quatro vezes a resolução do encoder.

Modo 2: a contagem de pulsos é realizada somente através do sinal A, o sinal B tem a finalidade de escolha de sentido da contagem, crescente ou decrescente.

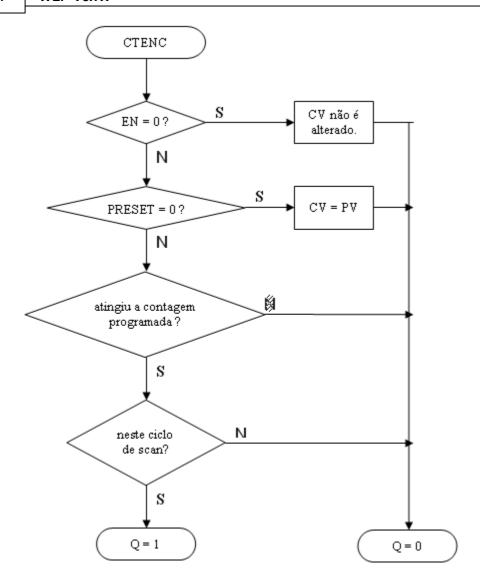
Obs.: Somente o encoder auxiliar da PLC2 e o encoder da POS2 tem a opção de contagem no modo 2, se os mesmos não estiver sendos usados como realimentação de posição.

Encoder (SRC)

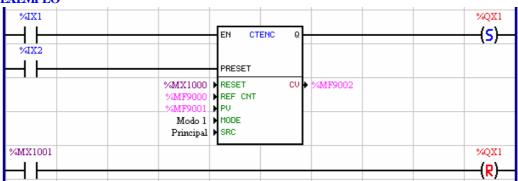
Determina qual encoder será feito à contagem dos pulsos, encoder principal ou auxiliar.

FUNCIONAMENTO

Se a entrada EN for zero, o argumento de valor corrente (CV) não é alterado.


Se a entrada EN for 1, o argumento de valor corrente (CV) é zerado na transição positiva de EN e então é iniciada a da contagem dos pulsos do encoder principal ou auxiliar. Quando o valor de pulsos contados atingir a referência de contagem (REF CNT), a saída Q vai para 1 durante um ciclo de scan, retornando a 0 posteriormente.

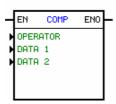
Se ocorrer um RESET, o argumento de valor corrente (CV) é zerado.


Se a entrada PRESET for 1, o argumento de valor corrente (CV) terá o mesmo valor do argumento preset (PV).

FLUXOGRAMA

EXEMPLO

Quando a entrada digital 1 é ligada, o bloco contador de encoder é habilitado, zerando o valor do marcador de float 9002 e iniciando a contagem dos pulsos do encoder principal. Se a entrada digital 2 for ligada, o valor de preset contido no marcador de float 9001 é transferido para o marcador de float 9002. Quando o valor do marcador de float 9002 atingir o valor de referência, contido no marcador de float 9000, a saída digital 1 é setada, pois a saída Q do bloco contador gera um pulso por um ciclo de scan, podendo ser resetada através



do marcador de bit 1001. Se o marcador de bit 1000 for um, o valor do marcador de float é zerado.

7.5.7 Calculation

7.5.7.1 COMP

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

- · formato
- · operador
- · dado 1
- · dado 2

A entrada EN é responsável pela habilitação do bloco.

A saída ENO vai para 1 dependento do operador, dado 1 e dado 2.

Formato

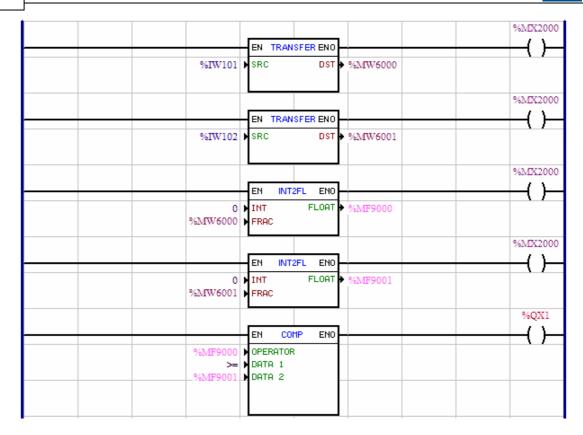
O formato é sempre constante, podendo ser do tipo inteiro 104 ou ponto flutuante 105.

Operador:

O operador é sempre constante.

Possui as opções:

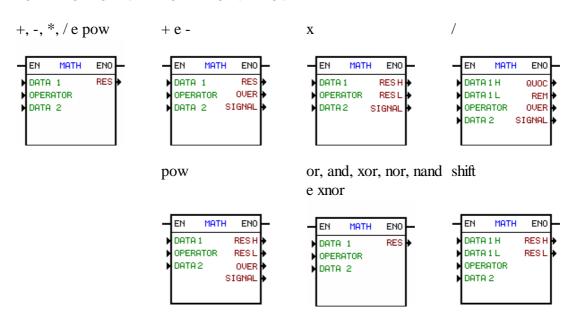
- \cdot Igual a (=)
- · Diferente de (~=)
- · Maior que (>)
- · Maior ou igual a (>=)
- · Menor que (<)
- · Menor ou igual a (<=)


FUNCIONAMENTO

Quando a entrada EN é 0, o bloco não é executado e a saída ENO vai para 0.

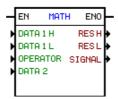
Enquanto a entrada EN for 1 e a comparação [dado 1] [operador] [dado 2] é verdadeira, a saída ENO vai para 1. Caso contrário, vai para 0.

EXEMPLO COMENTADO



Neste exemplo, se o valor contido na entrada analógica 1 do drive for maior ou igual ao valor contido na entrada analógica 2 do drive, liga a saída digital 1. Caso contrário, desliga a saída digital 1.

7.5.7.2 MATH


SÍMBOLO

FORMATO FLOAT: FORMATO INTEIRO:

ashift

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 9 argumentos, sendo eles:

FORMATO FLOAT	FORMATO INTEIRO
- formato = float - operador - dado 1 - dado 2 - resultado	- formato = inteiro - operador - dado 1 - parte baixa - dado 1 - parte alta - dado 2 - resultado - parte baixa - resultado - parte alta - overflow - sinal

A entrada EN é responsável pela habilitação do bloco.

A saída ENO é uma cópia do valor da entrada EN.

Formato:

O formato é sempre constante, podendo ser do tipo inteiro 104 ou ponto flutuante 105.

Operador:

O operador é sempre constante.

Possui as opções:

Para ponto flutuante 105:

- · Adição
- · Subtração
- · Multiplicação
- · Divisão
- · Potência

Para <u>inteiro</u> 104]:

- · Adição 248
- · Subtração 248
- · Multiplicação 248
- · <u>Divisão</u> 249
- · Potência 249
- · OR 249
- · <u>AND</u> 249

- · XOR 249
- · NOR 249
- . NAND 250
- . XNOR 250
- · Shift 250
- · Ashift 250

FUNCIONAMENTO

A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, é executada a operação matemática programada entre os argumentos.

Para o formato ponto flutuante a operação executada é dada por:

```
[float resultado] = [float dado 1] [operador] [float dado 2]
```

Numa divisão pela constante 0, é gerado um "warning" na compilação. Caso a divisão seja efetuada com um marcador de float no denominador, essa verificação não acontece, porém, em ambos os casos o valor é saturado aos valores máximo ou mínimo de float, dependendo do valor do numerador ser maior ou menor que 0

Para efeitos do sinal da saturação, zero é considerado com sinal positivo.

Para o formato inteiro a operação executada é dada por:

* Adição:

```
[resultado] = [dado 1] + [dado 2]
[word] = [word] + [word]
```

O bit sinal é ligado quando o resultado da operação for menor que zero.

O bit overflow é ligado quando [dado 1] + [dado 2] > 32767, nesse momento o resultado fica saturado em 32767.

O bit overflow é ligado quando [dado 1] + [dado 2] < -32768, nesse momento o resultado fica saturado em - 32768.

* Subtração:

```
[resultado] = [dado 1] - [dado 2]
[word] = [word] - [word]
```

O bit sinal é ligado quando o resultado da operação for menor que zero.

O bit overflow é ligado quando [dado 1] + [dado 2] > 32767, nesse momento o resultado fica saturado em 32767.

O bit overflow é ligado quando [dado 1] + [dado 2] < -32768, nesse momento o resultado fica saturado em -32768.

* Multiplicação:

```
[resultado high, resultado low] = [dado 1] x [dado 2]
[double word] = [word] x [word]
```

Resultado high e resultado low representam um dado de 32 bits, sendo que o resultado high contém os 16 bits mais significativos da multiplicação e o resultado low contém os 16 bits menos significativos da multiplicação.

O bit sinal é ligado quando o resultado da operação for menor que zero.

* Divisão:

```
[quociente, resto] = [dado 1 high, dado1 low] ÷ [dado 2]

[word, word] = [double word] ÷ [word]
```

Dado1 high e dado1 low representam um dado de 32 bits, sendo que o dado1 high contém os 16 bits mais significativos e o dado1 low contém os 16 bits menos significativos.

Quociente contém o quociente da divisão e o resto contém o resto da divisão.

O bit sinal é ligado quando o resultado da operação for menor que zero.

O bit overflow é ligado quando [dado 1 high, dado 1 low] \div [dado 2] > 32767, nesse momento o quociente fica saturado em 32767e resto fica saturado em 65535.

O bit overflow é ligado quando [dado 1 high, dado1 low] \div [dado 2] < -32768, nesse momento o quociente fica saturado em -32768 e resto fica saturado em 0.

O bit overflow é ligado caso a divisão seja efetuada com um parâmetro ou marcador no denominador que contenha valor zero, nesse momento o quociente e resto ficam saturados em 32767 ou -32768, dependendo do valor do numerador ser maior ou menor que zero.

Para efeitos do sinal da saturação, nesse caso, zero é considerado com sinal positivo.

* Potência:

```
[resultado high, resultado low] = [dado 1] ^ [dado 2]
[double word] = [word] ^ [word]
```

Resultado high e resultado low representam um dado de 32 bits.

O bit sinal é ligado quando o resultado da operação for menor que zero.

O bit overflow é ligado quando [dado 1] ^ [dado 2] > 2147483647, nesse momento o resultado fica saturado em 2147483647.

* OR:

```
[resultado low] = [dadol low] + [dado 2]

[word] = [word] + [word]
```

* AND:

```
[resultado low] = [dado1 low] \times [dado 2]

[word] = [word] \times [word]
```

* XOR:

[resultado low] = [dado1 low]
$$\oplus$$
 [dado 2]
[word] = [word] \oplus [word]

* NOR:

$$[resultado] = \overline{[dado 1] + [dado 2]}$$
$$[word] = \overline{[word] + [word]}$$

*NAND:

```
[resultado low] = \overline{\text{[dado1 low]} \times \text{[dado 2]}}

[word] = \overline{\text{[word]} \times \text{[word]}}
```

* XNOR:

```
[resultado low] = \overline{\text{[dadol low]} \oplus \text{[dado 2]}}

[word] = \overline{\text{[word]} \oplus \text{[word]}}
```

* Shift:

```
[resultado high, resultado low] = [dado 1 high, dado1 low] >> [dado 2]
[double word] = [double word] >> [word]

ou

[resultado high, resultado low] = [dado 1 high, dado1 low] << [dado 2]
[double word] = [double word] << [word]
```

Dado 2 é a quantidade de casas deslocadas, sendo que quando dado 2 for positivo, o deslocamento será para a esquerda "<<" e quando dado 2 for negativo, o deslocamento será para a direita ">>". É inserido zero nos bits deslocados.

* Ashift:

```
[resultado high, resultado low] = [dado 1 high, dado1 low] >> [dado 2]
[double word] = [double word] >> [word]

ou

[resultado high, resultado low] = [dado 1 high, dado1 low] << [dado 2]
[double word] = [double word] << [word]
```

O operador Ashift tem o mesmo funcionamento do operador Shift, com a diferença que o sinal do dado 1 não é deslocado e nem alterado.

Para as operações em formato inteiro são usados os seguintes formatos :

```
* WORD = 16 bits com sinal
Mínimo negativo = -32768
Máximo positivo = 32767

* DOUBLE WORD = 32 bits com sinal
Mínimo negativo = -2147483648
Máximo positivo = 2147483647
```

Como a double word é representado por duas words distintas é necessário entendermos como isso funciona, então, um número em double word será a composição dessas duas words onde a word high representará os 16 bits mais significativos da double word e a word low os 16 bits menos significativos dessa double word, conforme esquema a seguir:


```
32 BITS = 31 ... 16 15 ... 0

DOUBLE WORD = WORD HIGH WORD LOW
```

Então para compor uma double word é necessário determinar essas duas words distintas, essa composição pode ser determinada pelas seguintes regras:

```
* Números positivos (0 < WORD HIGH < 32767) :
```

```
WORD HIGH = INTEIRO( DOUBLE WORD / 65536 )
WORD LOW = DOUBLE WORD - ( WORD HIGH x 65536 )
```

Ou

DOUBLE WORD = WORD HIGH x 65536 + WORD LOW

Exemplo: DOUBLE WORD = 500.000

```
WORD HIGH = INTEIRO ( 500.000 / 65536) = 7
WORD LOW = 500.000 - (7 \times 65536) = 41248
DOUBLE WORD = 7 \times 65536 + 41248 = 500.000
```

* Números negativos (32768 < WORD HIGH < 65535):

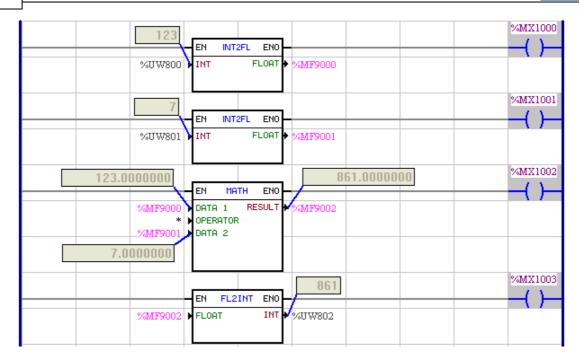
```
WORD HIGH = INTEIRO( DOUBLE WORD / 65536 ) + 65535
WORD LOW = DOUBLE WORD - ( (WORD HIGH-65536) * 65536 )
```

Ou

DOUBLE WORD = (WORD HIGH - 65535) x 65536 + WORD LOW - 65536

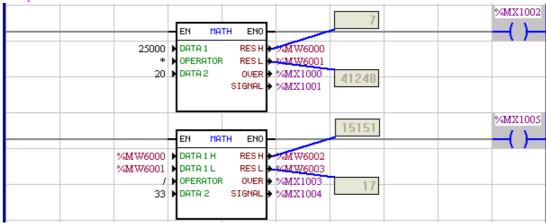
Exemplo: DOUBLE WORD = -325.000

```
WORD HIGH = INTEIRO ( -325.000 / 65536) + 65535 = 65531

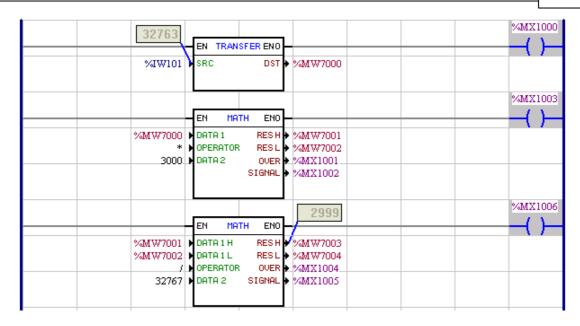

WORD LOW = -325.000 - ( (65531-65536) x 65536 ) = 2680

DOUBLE WORD = (65531 - 65535) x 65536 + 2680 - 65536 = 325.000
```

EXEMPLOS:


Exemplo 1:

Os parâmetros do usuário 800 e 801 são convertidos para os marcadores de float 9000 e 9001. O marcador de float 9000 e multiplicado pelo marcador de float 9001 e o resultado é armazenado no marcador de float 9002. O resultado é convertido para inteiro e armazenado no parâmetro do usuário 802.



Multiplica 25000 por 20 sendo o resultado igual a 500.000 que é equivalente a resultado high = 7 e resultado low = 41248, após divide 500.000 por 33 sendo o resultado 15151 e resto 17.

Exemplo 3:

Converte entrada analógica 1 do drive para unidade de engenharia.

Faixa de valores:

AI => -10...0...10Vcc => -32768...0...32767 => -3000...0...3000

Fórmula utilizada:

Resultado = AI * 3000 / 32767

7.5.7.3 FUNC

SÍMBOLO

DESCRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 3 argumentos, sendo eles:

- $\cdot \ formato$
- · função
- · valores (entrada, saída)

A entrada EN é responsável pela habilitação do bloco.

A saída ENO é uma cópia do valor da entrada EN.

Formato:

O formato é sempre constante, podendo ser do tipo inteiro 104 ou ponto flutuante 105.

Funcão

A função é sempre constante.

Para o formato ponto flutuante, possui as opções:

· absoluto (módulo)

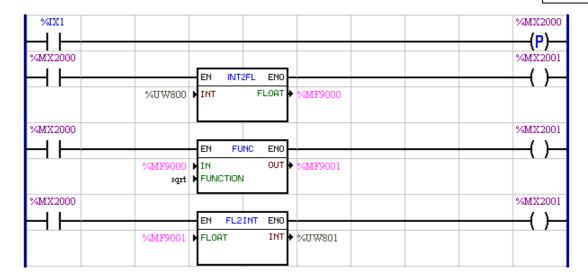
- · negativo
- · raiz quadrada
- · seno
- ·coseno
- · tangente
- · arco seno
- · arco coseno
- · arco tangente
- · exponencial
- · logaritmo natural
- · logaritmo base 10
- · parte fracionária
- · truncar
- · arredondamento

Para o formato inteiro, possui as opções:

- · absoluto (módulo)
- · negativo

NOTA: Para as funções trigonométricas, o ângulo é dado em radianos

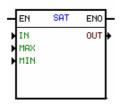
FUNCIONAMENTO


A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, o bloco é executado.

```
As fórmulas são:
absoluto: [saída] = | [entrada] |
negativo: [saída] = - [entrada]
raiz quadrada: [saída] = sqrt ([entrada])
seno: [saída] = sen ([entrada])[entrada] em radianos
coseno: [saída] = cos ([entrada])[entrada] em radianos
tangente: [saída] = tan ([entrada])[entrada] em radianos
arco seno: [saída] = asen ([entrada])[saída] em radianos
arco coseno: [saída] = acos ([entrada])[saída] em radianos
arco tangente: [saída] = atan ([entrada])[saída] em radianos
e^{X}: [saída] = e^{([entrada])}
ln: [saída] = ln ([entrada])
log: [saída] = log ([entrada])
frac: [saída] = frac ([entrada])
trunc: [saída] = trunc ([entrada])
round: [saída] = round ([entrada])
```

EXEMPLO COMENTADO



Na transição de 0 para 1 na entrada digital 1, o parâmetro do usuário 800 é convertido para o marcador de float 9000. Então é calculado a raiz quadrada do valor contido no marcador de float 9000 e salvo no marcador de float 9001. O valor do marcador de float 9001 é convertido para o parâmetro do usuário 801.

7.5.7.4 SAT

SÍMBOLO

DESCRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 3 argumentos, sendo eles:

- · formato
- · valores (entrada, saída)
- · limites (máximo, mínimo)

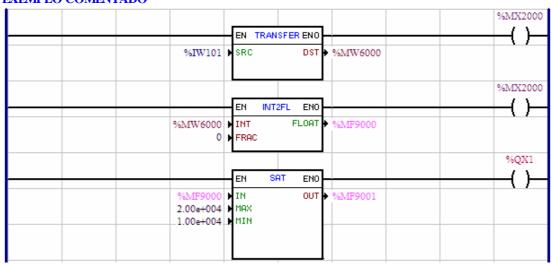
A entrada EN é responsável pela habilitação do bloco.

A saída ENO indica quando ocorre uma saturação.

Formato

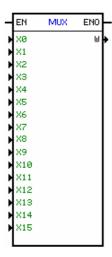
O formato é sempre constante, podendo ser do tipo inteiro 104 ou ponto flutuante 105.

FUNCIONAMENTO


Se a entrada EN é 0, o bloco não é executado e a saída ENO vai para 0.

Enquanto a entrada EN for 1, o bloco é executado. A saída ENO só vai para 1 se houver uma saturação. Caso contrário, a saída ENO fica em 0.

A idéia do bloco é transferir os dados da entrada para a saída se estiverem dentro dos limites programados. Se estes valores forem maiores ou menores que os valores máximos e mínimos programados, o valor da saída é saturado com estes valores.


EXEMPLO COMENTADO

O valor contido na entrada analógica 1 do drive é transferido para o marcador de word 6000, que por sua vez é convertido para o marcador de float 9000. O valor lido da entrada analógica é um valor entre 0 e 32767. O bloco SAT faz com que no marcador de float 9001 seja lido somente um valor entre 10000 e 20000.

7.5.7.5 MUX

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 17 argumentos, sendo eles:

bit 0 a 15 word

A entrada EN é responsável pela habilitação do bloco.

A saída ENO estará ligada enquanto o bloco estiver sendo executado.

BIT 0 a 15

O argumento bit é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

- · desabilitado
- · constante
- · marcador de bit
- · entrada digital
- · saída digital
- · parâmetro do usuário

WORD

O argumento word é composto por um tipo de dado e um endereço.

O tipo de dado do tempo decorrido pode ser:

- · parâmetro do usuário
- · marcador de word

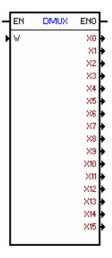

FUNCIONAMENTO

A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, o bloco é executado.

Se o bloco estiver habilitado, o valor do argumento word será composto pelos valores contidos nos argumentos bit 0 a 15.

EXEMPLO COMENTADO


A entrada digital 1 habilita o bloco MUX, quando o bloco é executado o parâmetro do usuário 801 conterá o valor 1, caso contrario conterá 0.

O conteúdo do marcador de word 6000 será composto pelos valores dos marcadores de bit 1000 a 1015, ou seja, se os valores dos marcadores de bit 1000 a 1015 pares conterem 1 e os impares 0, o valor do marcador de word 6000 será em binário '0101010101010101010 e em decimal 21845.

7.5.7.6 DMUX

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 17 argumentos, sendo eles:

word bit 0 a 15

A entrada EN é responsável pela habilitação do bloco.

A saída ENO estará ligada enquanto o bloco estiver sendo executado.

WORD

O argumento word é composto por um tipo de dado e um endereço.

O tipo de dado do tempo decorrido pode ser:

- · parâmetro do usuário
- · marcador de word

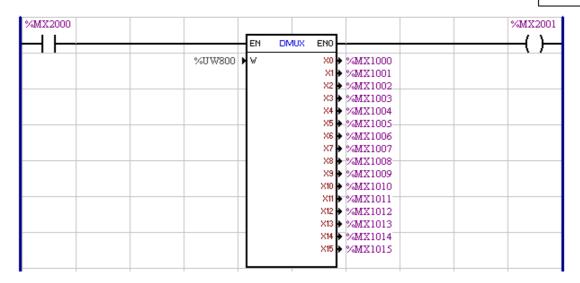
BIT 0 a 15

O argumento bit é composto por um tipo de dado e um endereço.

O tipo de dado do argumento pode ser:

- · desabilitado
- · marcador de bit
- · saída digital
- · parâmetro do usuário

FUNCIONAMENTO


A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, o bloco é executado.

Se o bloco estiver habilitado, o valor dos argumentos bit será composto pelos valores contidos nos bits do argumento word.

EXEMPLO COMENTADO

O marcador de bit 2000 habilita o bloco DMUX, quando o bloco é executado o marcador de bit 2001 será setado, caso contrario resetado.

O conteúdo dos marcadores de bit 1000 a 1015 será composto pelos valores dos bits do parâmetro do usuário 800, ou seja, se o valor do parâmetro do usuário 800 for 3, em binário '00000000000011', os marcadores de bit 1000 e 1001 conterá 1 e os demais 0.

7.5.8 Transferência

7.5.8.1 TRANSFER

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 2 argumentos, sendo eles:

- · SRC dado fonte
- · DST dado destino

A entrada EN é responsável pela habilitação do bloco.

A saída ENO vai para 1 somente quando o dado destino for atualizado.

SRC (Dado Fonte)

O dado fonte é composto por um tipo de dado e um endereço ou um valor constante, dependendo da escolha do tipo de dado.

O tipo de dado do dado fonte pode ser:

- · constante
- · constante float
- · constante de double
- · marcador de bit
- · marcador de word
- · marcador de float

- · marcador de double
- · marcador de bit de sistema 92
- · marcador de word de sistema 92
- · entrada digital
- · saída digital
- · entrada analógica
- · saída analógica
- · parâmetro do usuário
- · parâmetro do sistema
- · parâmetro do drive

DST (Dado Destino)

O dado destino é composto por um tipo de dado e um endereço e é o local onde é salvo o valor do dado fonte.

O tipo de dado do dado destino pode ser:

- · marcador de bit
- · marcador de word
- · marcador de float
- · marcador de double
- · marcador de bit de sistema 92
- · marcador de word de sistema 92
- · saída digital
- · saída analógica
- · parâmetro do usuário
- · parâmetro do sistema
- · parâmetro do drive

NOTA: Na opção parâmetro do usuário, o valor corrente não é salvo na memória E2PROM, ou seja, este último valor não é recuperado.

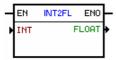
FUNCIONAMENTO

A saída ENO vai para 1 se a entrada EN for 1 e após o dado destino ter sido atualizado.

Quando a entrada EN está ativa, o valor contido no dado fonte é transferido para o dado destino. Caso contrário, nada é feito.

Atenção à compatibilidade quanto aos tipos de dados fonte e destino.

EXEMPLO COMENTADO


A entrada digital 1 em 1, habilita o TRANSFER. Com isto o valor contido na entrada analógica 1 pode ser visualizado no parâmetro do usuário 800.

Uma aplicação útil do bloco TRANSFER é a sua utilização para habilitar o motor à partir, por exemplo, de uma entrada digital. Assim, SRC teria uma entrada digital como valor, e DST o marcador de bit de sistema que corresponde a habilitação do drive. Lembrar que o motor só é habilitado se o mesmo já estiver habilitado no drive. Isso pode ser programado, por exemplo, na entrada digital 1 do drive.

7.5.8.2 INT2FL

SÍMBOLO

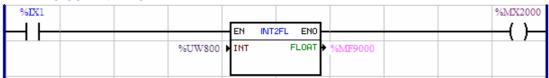
DES CRIÇÃO

Écomposto por 1 entrada EN, 1 saída ENO e 2 argumentos, sendo eles:

- · inteiro entrada 104
- · float resultado 105

A entrada EN é responsável pela habilitação do bloco.

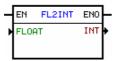
A saída ENO é uma cópia do valor da entrada EN.


FUNCIONAMENTO

A entrada EN sempre transfere o seu valor para a saída ENO.

Enquanto a entrada EN for 1, os valores contidos na word inteira é transferido ao marcador de float.

A entrada em inteiro representa um número inteiro e pode variar de -32768 a 32767.


EXEMPLO COMENTADO

Converte o valor do parâmetro do usuário 800 para o marcador de float 9000.

7.5.8.3 FL2INT

SÍMBOLO

DES CRIÇÃO

É composto por 1 entra<u>da</u> EN, 1 saída ENO e 2 argumentos, sendo eles:

- · float entrada 105
- · inteiro resultado 104

A entrada EN é responsável pela habilitação do bloco.

A saída ENO é uma cópia do valor da entrada EN.

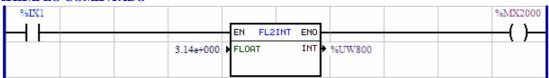
ATENCÃO:

Para conversão de um valor de posição em ponto flutuante utilizar a <u>USERFB</u> 268 FLOAT2PO. Sua função é converter um valor em ponto flutuante em número de voltas e fração de voltas.

Ex: o valor de entrada 3.5 teria como valores de saída 3 (como número de voltas) e 32768 (como fração de voltas).

FUNCIONAMENTO

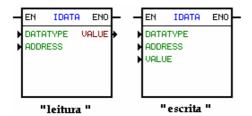
A entrada EN sempre transfere o seu valor para a saída ENO.


Enquanto a entrada EN for 1, o valor contido no float é transferido para a word inteira.

O resultado em inteiro representa um número inteiro e pode variar de -32768 a 32767.

Se o valor float for maior que 32767, na conversão seu valor é saturado resultando numa word inteira, igual a 32767.

Se o valor float for menor que -32768, na conversão seu valor é saturado resultando numa word inteira, igual a -32768.


EXEMPLO COMENTADO

Quando a entrada digital 1 for 1, o valor 3 é transferido para o parâmetro do usuário 800.

7.5.8.4 IDATA

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 3 argumentos, sendo eles:

modo (leitura / escrita) indexador valor

A entrada EN é responsável pela habilitação do bloco.

A saída ENO informa se o indexador é válido.

Indexador

O argumento indexador é composto por dois tipos de dados e um endereço.

O tipo de dado do endereço pode ser:

- ·constante
- · marcador de word
- · parâmetro do usuário

E o tipo de dado a ser lido ou escrito pode ser:

- · marcador de bit
- \cdot marcador de word

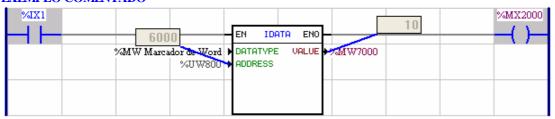
- · marcador de float
- · marcador de double
- · marcador de bit sistema 92
- · marcador de word sistema 92
- · entrada digital
- · saída digital
- · entrada analógica
- · saída analógica
- · parâmetro do usuário
- · parâmetro do sistema
- · parâmetro do drive

Valor

O argumento valor é composto por um tipo de dado e um endereço.

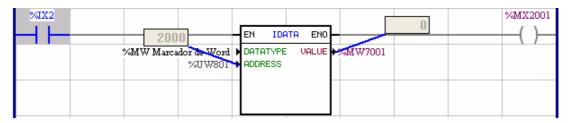
O tipo de dado do valor pode ser:

- · marcador de bit
- · marcador de word
- · marcador de float
- · marcador de double
- · entrada digital
- · saída digital
- · entrada analógica
- · saída analógica
- · parâmetro do usuário
- · parâmetro do sistema
- · parâmetro do drive


FUNCIONAMENTO

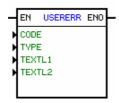
Se o modo programado for leitura e a entrada EN estiver ativa, o valor contido no endereço do indexador será o endereço do dado a ser transferido para o endereço do argumento valor. Se o valor contido no endereço do indexador for um valor válido para o tipo a ser lido, a saída ENO é setada, caso contrário resetada.

Por exemplo, se o tipo de dado a ser lido for parâmetro do drive e o valor contido no endereço do indexador for menor ou igual a 750, ENO será setado, se for maior que 750, ENO será resetado.


E se o modo programado for escrita, o valor contido no endereço do argumento valor, será transferido para o endereço contido no endereço do indexador.

EXEMPLO COMENTADO

A entrada digital 1 em 1, habilita o IDATA. Com isto o valor contido no marcador de word 6000 é transferido para o marcador de word 7000, e o marcador de bit 2000 é setado.



A entrada digital 2 em 1, habilita o IDATA. Mas como o valor contido no parâmetro do usuário P801 não é um valor de marcador de word, o marcador de bit 2001 é resetado e nenhum valor é transferido para o marcador de word 7001.

7.5.8.5 **USERERR**

SÍMBOLO

DESCRICÃO

É composto por 1 entrada EN, 1 saída ENO e 4 argumentos, sendo eles:

- \cdot CODE Código do alarme ou falha 950 a 999 (PLC11-01 e PLC11-02) ou 750 a 799 (SoftPLC CFW11).
 - · TYPE Tipo de Erro 0: Alarme, 1: Falha
 - TEXTL1 Texto do erro linha 1 (12 caracteres)
 - TEXTL2 Texto do erro linha 2 (12 caracteres)

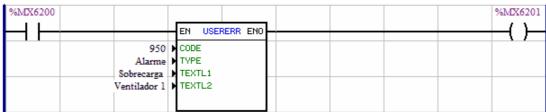
A entrada EN é responsável pela habilitação do bloco.

A saída ENO indica que o bloco está ativo.

FUNCIONAMENTO

Se a entrada EN for 0, a saída Q é 0.

Quando a entrada EN for ativada, o código do alarme ou falha é mostrado na IHM do drive, com o respectivo texto.


Se for um alarme, e o bloco for desabilitado, o alarme é removido da IHM.

Se for uma falha, e o bloco for desabilitado, a falha não é removida da IHM. Nesse caso é necessário resetar o drive.

Obs.:

Se outro alarme/falha estiver ativo, ao ativar o bloco, este alarme/falha do usuário não sobrepõe ao alarme/falha ativo.

EXEMPLO COMENTADO

Quando o marcador de bit %MX6200 for 1 será gerado o alarme 950 na IHM do drive com a mensagem "Sobrecarga Ventilador 1".

7.5.9 Rede CAN

7.5.9.1 MSCANWEG

SÍMBOLO

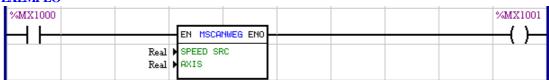
DES CRIÇÃO

É formado por 1 entrada EN, 1 saída ENO e 2 argumentos, sendo eles:

- Fonte da velocidade: seleciona qual velocidade o Mestre CANWEG irá transmitir para os escravos, a velocidade real ou a referência de velocidade.
- Eixo: determina qual o eixo Mestre CANWEG irá transmitir para os escravos, o eixo real ou o eixo virtual.

A entrada EN é responsável por habilitar o mestre a enviar a velocidade e a posição real via rede CAN aos escravos conectados.

A saída ENO informa se a rede CAN está habilitada.


FUNCIONAMENTO

Quando este bloco está habilitado, o envia a velocidade e posição real via rede CAN ciclicamente.

NOTA: Se o bloco não for habilitado no mestre, o escravo não seguirá o mestre.

IMPORTANTE: O protocolo CAN deve estar desabilitado, ou seja, P770 = 0.

EXEMPLO

Quando o marcador de bit %MX1000 estiver ligado o cartão enviará ciclicamente a velocidade real e a posição do eixo real.

7.5.9.2 RXCANWEG

SÍMBOLO

DESCRIÇÃO

É composto por 1 entrada EN e 1 saída ENO e 2 argumentos, sendo eles:

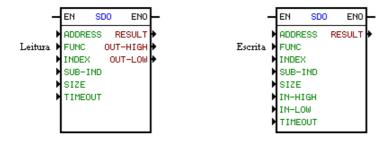
- velocidade marcador de float onde será recebido a velocidade (bits)
- posição marcador de float onde será recebido a posição (voltas)

A entrada EN é responsável pela habilitação do bloco.

A saída ENO vai para 1 enquanto o bloco está lendo os dados da rede CANWEG (mestre deve ter o bloco MSCANWEG [265] habilitado).

IMPORTANTE: O protocolo CAN deve estar desabilitado, ou seja, P770 = 0.

FUNCIONAMENTO


Assim que o bloco é habilitado, os dados de velocidades e posição lidos pela rede CANWEG, são armazenados nos seus respectivos marcadores de float.

EXEMPLO

7.5.9.3 SDO

SÍMBOLO:

DESCRIÇÃO:

É composto por 1 entrada EN, 1 saída ENO e 9 argumentos, sendo eles:

ADDRESS : Endereço do nó da rede CANopen

FUNC: Função (leitura ou escrita)

INDEX : Índice do objeto que deseja-se ler ou escrever (decimal)

SUB-IND : Sub-índice so objeto que deseja-se ler ou escrever (decimal)

SIZE: Tamanho do objeto que deseja-se ler ou escrever (bytes)

TIMEOUT: Tempo em ms de espera para leitura ou escrita do valor

RESULT: Resultado da execução do bloco

0 =executado com sucesso

1 = cartão não pode executar a função (exemplo : mestre não habilitado)

2 = timeout na espera da resposta pelo mestre

3 = escravo retornou erro

OUT-HIGH: Valor mais significativo do objeto lido (word)

OUT-LOW: Valor menos significativo do objeto lido (word)

IN-HIGH: Valor mais significativo a ser escrito no objeto (word)

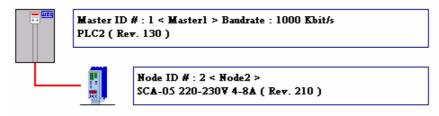
OUT-HIGH: Valor menos significativo a ser escrito no objeto (word)

A entrada EN é responsável pela habilitação do bloco.

A saída ENO vai para 1 após executar o bloco

FUNCIONAMENTO:

Se a entrada EN for zero, o bloco não é executado.


Se a entrada EN sofrer uma transição de 0 para 1, o cartão envia uma mensagem via rede CANopen para um escravo da rede, de acordo com os argumentos programados. Se o bloco estiver programado para leitura, o cartão fará a requisição para o escravo, e o valor informado pelo escravo será salvo nos argumentos de saída. Se o bloco estiver programado para escrita, os argumentos de entrada serão escritos no objeto correspondente do escravo. Após a execução do bloco a saída ENO vai para 1 e só retorna a zero após a entrada EN for para zero.

EXEMPLO:

Leitura da tensão DC do SCA-05:

Através do software WSCAN verifica-se que a tensão DC do SCA-05 corresponde ao objeto 2004h (hexadecimal) que em decimal é igual a 8196. Como o objeto é um INTEGER16 então o número de bytes = 2.

Rede (WSCAN):

Dicionário de objetos (WSCAN):

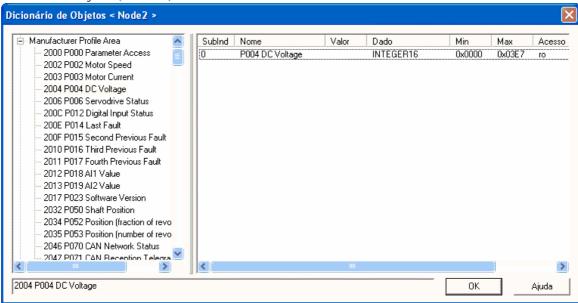
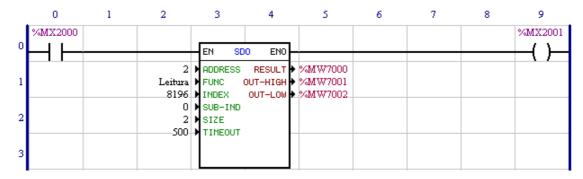
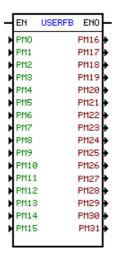



Diagrama ladder:

Funcionamento:

Quando o marcador de bit %MX2000 sofrer uma transição de 0 para 1 o cartão enviará uma mensagem via rede CANopen solicitando a leitura do objeto 2004h, ao receber o valor do objeto o mesmo será armazenado nos marcadores de word %MW7001 e %MW7002.


Nota!

WSCAN = Software configurador do mestre de rede CANopen WEG.

Esse bloco só funciona quando o cartão estiver habilitado como mestre da rede CANopen, ou seja, uma configuração de rede válida seja carregada através do software WSCAN para o cartão.

7.5.10 USERFB

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 32 argumentos, sendo eles:

- 16 parâmetros de entrada (PM0 a PM15)
- 16 parâmetros de entrada/saída (PM16 a PM31)

Nota: No SCA06 os parâmetros PM16 a PM31 são somente parâmetros de saída.

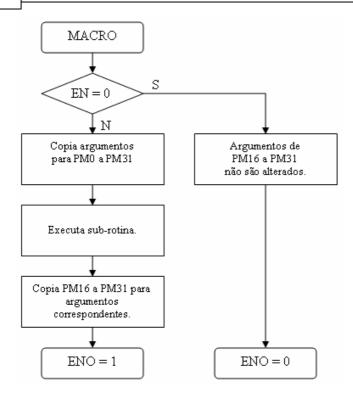
A entrada EN é responsável pela habilitação do bloco.

A saída ENO estará ligada enquanto o bloco estiver sendo executado.

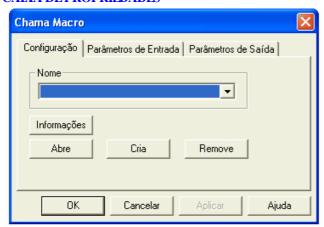
O bloco USERFB é responsável pela execução de uma sub-rotina ladder criada pelo usuário.

Parâmetros do USERFB são áreas de memória que servem para que o programa principal que chama o USERFB possa interagir com a sub-rotina programada dentro do USERFB, eles podem ser do tipo BOOLEANO, WORD e FLOAT.

A tabela a seguir mostra os operandos que podem ser utilizados para cada de tipo de parâmetro do USERFB:

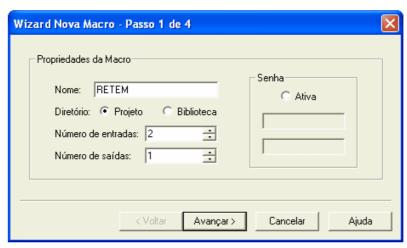

Tipo do Parâmetro do US ERFB	Entradas PM0 a PM15	Entradas/S aídas PM16 a PM31
BOOLEANO	%MX - Marcador de Bit %IX – Entrada Digital	%MX – Marcador de Bit %QX – Saída Digital
WORD	Constante %UW – Parâmetro do Usuário %MW – Marcador de Word %IW – Entrada Analógica	%UW – Parâmetro do Usuário %MW – Marcador de Word %QW – Saída Analógica
FLOAT	Constante de Float %MF – M arcador de Float	%MF – Marcador de Float
DOUBLE	Constante de Double %MD – Marcador de Double	%MF – Marcador de Double

FUNCIONAMENTO


Se a entrada EN for zero, os argumentos de saída PM16 a PM31 não são alterados. Se a entrada EN for 1, o conteúdo dos argumentos programados em PM0 a PM31 (No SCA06 somente os parâmetros de entrada - PM0 a PM15) são copiados para a área de memória correspondente aos parâmetros do USERFBs (PM), em seguida a sub-rotina em ladder é chamada e executada e após o conteúdo dos parâmetros do USERFB PM16 a PM31 são copiados para os argumentos correspondentes.

FLUXOGRAMA

CAIXA DE PROPRIEDADES


Esta caixa é chamada através de um duplo clique no bloco USERFB. Nela é possível executar as seguintes operações:

- → Selecionar o USERFB utilizado para essa chamada através da seleção de "Nome".
- → Obter informações do USERFB selecionado através do botão "Informações".
- → Abrir o USERFB para edição através do botão "Abre".
- → Criar o novo USERFB através do botão "Cria".
- → Remover o USERFB selecionada através do botão "Remove".
- → Definir os argumentos dos parâmetros de entrada através da aba "Parâmetros de Entrada".
- → Definir os argumentos dos parâmetros de saída através da aba "Parâmetros de Saída".

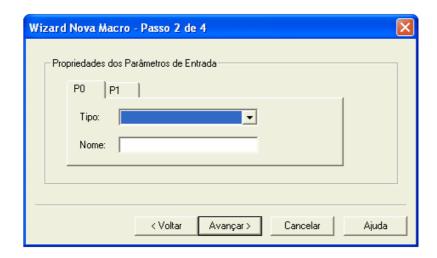
CRIANDO UM NOVO USERFB

Para criar um novo USERFB clique no botão "Cria", um assistente de criação ajudará na definição dos parâmetros necessários para o USERFB, conforme exemplo a seguir.

No primeiro passo do assistente de criação do USERFB, será definido o nome, o número de parâmetros de entrada e saída, se o USERFB será armazenado no projeto ou numa biblioteca de USERFBs, e uma senha para a mesma.

Quando for selecionado a opção Diretório = Projeto o USERFB estará armazenada em {Caminho onde WLP está instalado}\PROJECTS\{Nome do Projeto}\MACROS\

Quando for selecionado a opção Diretório = Biblioteca o USERFB estará armazenada em {Caminho onde WLP está instalado}\ MACROS\

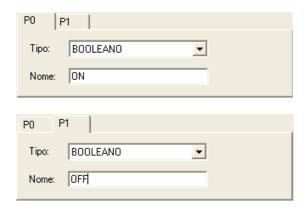

Numa instalação padrão do WLP {Caminho onde WLP está instalado} = C:\WEG\WLP VX.YZ onde X.YZ é a versão do WLP.

Observação:

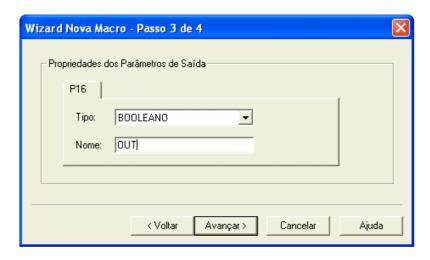
USERFBs armazenadas na biblioteca de USERFB podem ser utilizadas por qualquer projeto.

Caso a opção senha esteja ativa e você defina uma senha, ela deverá ser seguramente lembrada, pois a mesma garantirá a edição do USERFB futuramente.

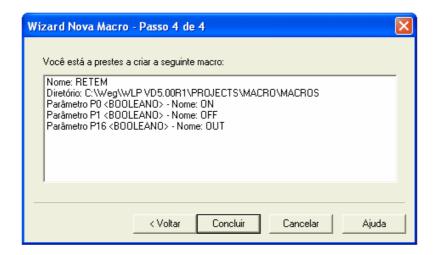
Clique no botão "Avançar":


No segundo passo do assistente de criação do USERFB, serão definidas as propriedades dos parâmetros de entrada.

O tipo do parâmetro pode ter uma das três opções a seguir:

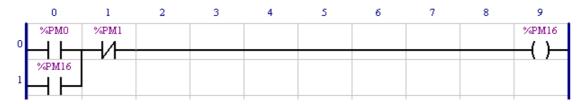


Nesse exemplo os parâmetros de entrada serão definidos da seguinte maneira:


Clique no botão "Avançar":

No terceiro passo do assistente de criação do USERFB, serão definidas as propriedades dos parâmetros de saída.

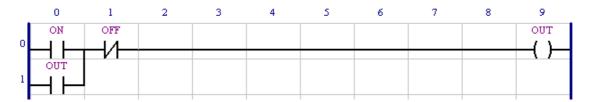
Clique no botão "Avançar":


No quarto passo do assistente de criação do USERFB é possível revisar todas as opções definidas anteriormente, caso seja necessário fazer alguma modificação é possível clicar no botão "Voltar", se tudo estiver correto, clique em "Concluir".

Após clicar no botão concluir um nova janela de edição ladder será criado conforme figura a seguir:

Pode-se observar que essa janela terá o nome do USERFB mais a extensão ".mld" que define um arquivo do tipo USERFB.

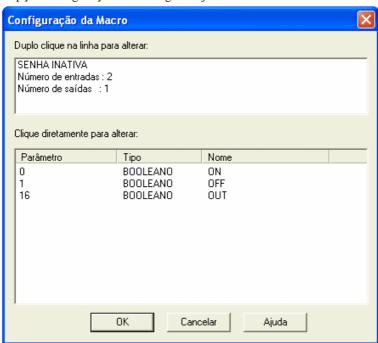
Para o exemplo em questão utilizaremos o seguinte diagrama ladder:



Onde %PM0 = parâmetro do USERFB 0, %PM1 = parâmetro do USERFB 1 e %PM16 = parâmetro do USERFB 16.

No diagrama em ladder do USERFB é possível utilizar todos os blocos ladder disponíveis para o equipamento em questão, sendo que todos os argumentos desses blocos podem ser definidos como parâmetro do USERFB.

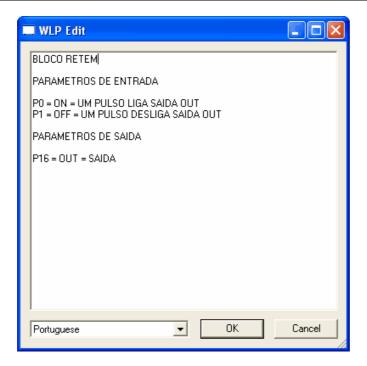
Ao ativar a opção do Tag do WLP o diagrama ladder será apresentado da seguinte maneira.



Os símbolos para cada parâmetro do USERFB foram definidos no assistente de criação.

Caso seja necessário alterar alguma configuração do USERFB definido no assistente de criação é possível através do menu "USERFB" acessar duas opções, conforme figura a seguir.

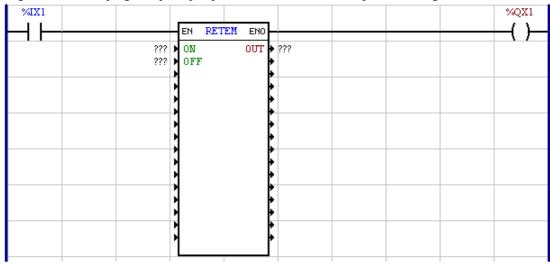
A opção configuração abre a seguinte janela:



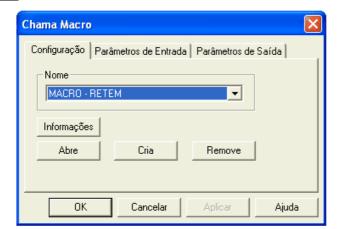
Nessa janela é possível executar as seguintes operações:

- → Ativar/desativar senha do USERFB clicando diretamente na opção "SENHA ATIVA/INATIVA".
- → Alterar o número de parâmetros de entrada/saída clicando diretamente sobre o número de entradas/saídas.
- → Alterar o tipo do parâmetro clicando diretamente sobre o tipo do parâmetro.
- → Alterar o nome do parâmetro clicando diretamente sobre o nome do parâmetro.

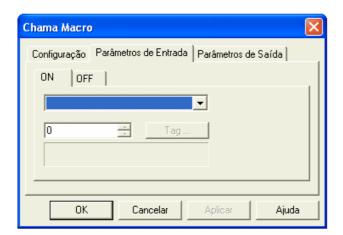
A opção informações abre a seguinte janela:

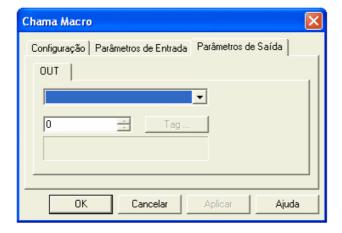


Nessa janela é possível de maneira simplificada editar um texto que será exibido quando o botão informações da caixa de propriedades do USERFB for pressionado.

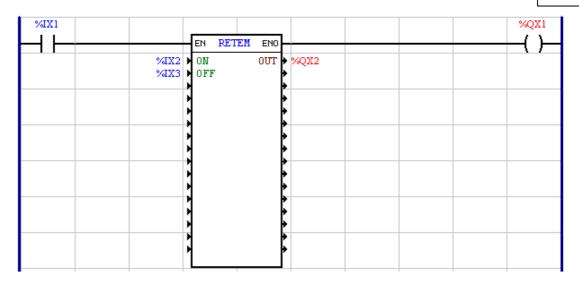

Este arquivo tem formato "rtf" e pode ser editado através de um editor avançado diretamente no diretório onde foi armazenado o USERFB.

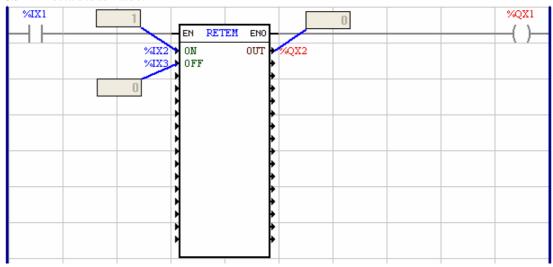
Após o novo USERFB ser configurado, podemos fechar a janela do diagrama ladder do USERFB, então o diagrama ladder do programa principal que chama o USERFB deve aparecer da seguinte maneira:

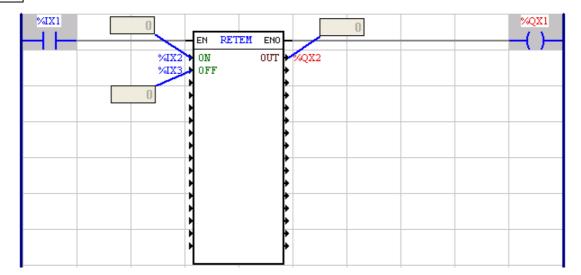

Agora o bloco USERFB é representado na tela com as opções e definições atribuídas à USERFB. Com um duplo clique sobre à USERFB à caixa de propriedades aparecerá da seguinte maneira:



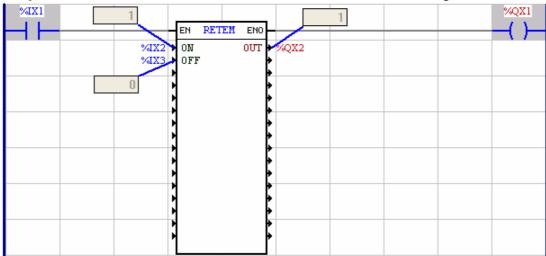
O nome do USERFB possui duas informações "{Localização do USERFB} — {Nome do USERFB}" sendo que a localização do USERFB pode ter duas opções, "WLP" ou o nome do projeto. WLP significa que o USERFB está armazenada na biblioteca de USERFBs conforme descrito anteriormente, e pode ser acessada por outros projetos.


Ao clicar na opção parâmetros de entrada e após parâmetros de saída, a caixa de propriedades terá a seguinte aparência:


Após definição dos parâmetros de entrada e saída o diagrama em ladder ficará da seguinte maneira:

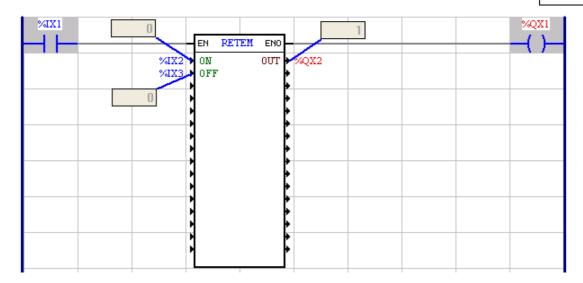

Agora compilando o programa principal que compilará o USERFB em conjunto, e transferindo o mesmo para o cartão teremos as seguintes situações:

Situação 1: Mesmo com a entrada "ON" do USERFB ativada a saída "OUT" continua desligada, pois o bloco USERFB está desabilitado.



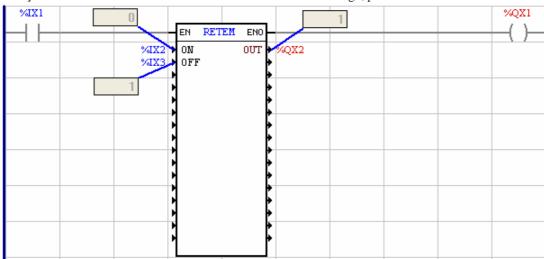
Situação 2: Como USERFB habilitado a saída "OUT" está desligada, pois a entrada "ON" está desligada.

Situação 3: Como USERFB habilitado e ativando a entrada "ON" a saída "OUT" é ligada.

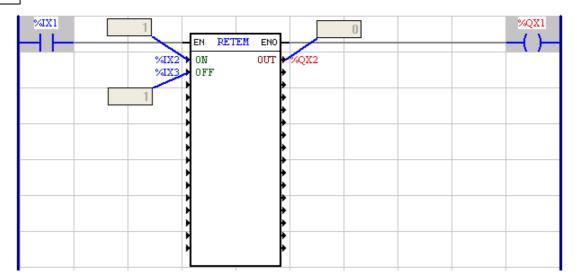

Nesse momento é possível monitorar o funcionamento interno do USERFB, para isso desabilite a monitoração online do programa principal, abra à USERFB e então ative a monitoração online.

Observação: A monitoração online de um USERFB é feita pela leitura dos parâmetros do USERFB que utilizam a mesma área de memória para todas as chamadas do USERFB, para efeito de depuração de um USERFB sugerimos que seja utilizada uma só chamada do USERFB no programa principal nesse momento, pois assim a monitoração será fiel à chamada em questão. Após a depuração do USERFB você pode utilizar quantas chamadas do USERFB forem necessárias, limitada à capacidade de programa do cartão.

Situação 4: Com a entrada "ON" desativada a saída "OUT" continua ligada devido à retenção no diagrama ladder do USERFB.

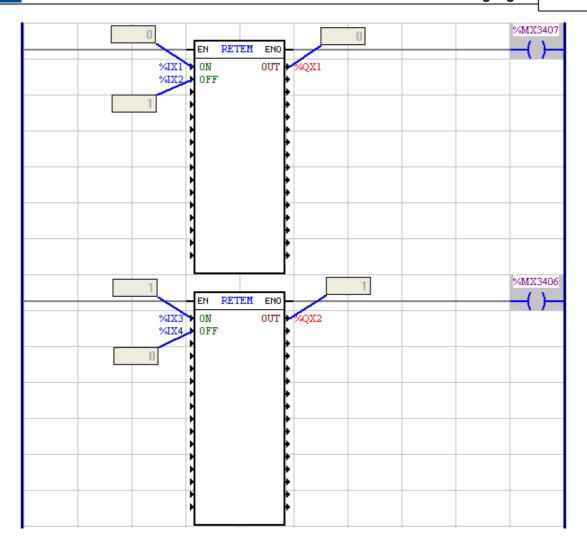


Monitoração da situação interna do USERFB:



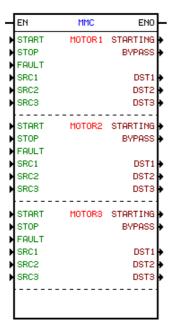
Situação 5: Com a entrada "OFF" ativada a saída "OUT" não desliga, pois o bloco USERFB está desabilitado.

Situação 6: Com a entrada "OFF" ativada a saída "OUT" é desligada.



Monitoração da situação interna do USERFB:

Na figura a seguir é mostrado um exemplo de utilização de um USERFB em múltiplas chamadas. Todas as chamadas executam o mesmo diagrama ladder mas de maneira independente, em função dos operadores programados para ela.



7.5.11 MMC

SÍMBOLO

DES CRIÇÃO

É composto por 1 entrada EN, 1 saída ENO e 33 argumentos, sendo eles:

Para o acionamento multimotor foi desenvolvido um bloco de função chamado de MMC – "MultiMotor Control", que possibilita, em conjunto com o cartão opcional IOS6 da SSW 06, o acionamento automático de até três motores.

Propriedades Motor 1, 2 ou 3:

- START: Aciona o motor em 1.
- STOP: Desaciona o motor em 0.
- FAULT: Desaciona o motor em 0.
- STARTING: Indica motor partindo ou parando.
- BYPASS: Indica by-pass acionado.
- SRC1: Dado fonte.
- SRC2: Dado fonte.
- SRC3: Dado fonte.
- DST1: Dado destino.
- DST2: Dado destino.
- DST2: Dado destino.

FUNCIONAMENTO

Maiores detalhes de funcionamento favor consultar o "Guia de Aplicação Multimotores" disponível em conjunto com a documentação da SSW-06.

7.6 Blocos do Usuário

7.6.1 USERFBs Instalados no WLP

O bloco <u>USERFB</u> 268 é responsável pela execução de uma subrotina criada pelo usuário. No instalador do WLP foram disponibilizados alguns blocos USERFBs com funções pré-definidas para utilização do usuário. A seguir breve descrição sobre os mesmos.

ANALOG_I - Conversão de entrada analógica

Converte valor lido pela entrada analógica no formato binário para um valor em unidade de engenharia, conforme escala definida.

ANALOG_O - Conversão de saída analógica

Converte um valor em unidade de engenharia, com uma escala definida, para saída analógica no formato binário.

DIAMCALC - Cálculo de diâmetro

Calcula o diâmetro de uma bobina em mm conforme relação entre a velocidade de linha em m/min e a velocidade do motor em rpm.

DIAMLENG - Estimação de diâmetro

Estima o diâmetro de uma bobina em mm conforme o comprimento e espessura do material bobinado.

DMux - Conversão de word para binário

Converte uma word em seus respectivos 16 bits.

DRAW

Implementação da função draw para uma dada referência de velocidade. O draw é um valor que pode ser somado ou multiplicado ao valor de uma dada referência de velocidade.

EP - Potenciômetro eletrônico

Implementação da função potenciômetro eletrônico para referência de velocidade.

FLOAT2PO - Conversão de ponto flutuante para posição

Converte um valor (rotações) em ponto flutuante para posição em voltas e fração de voltas. Estes valores podem ser utiliza-

dos diretamente nas entradas dos blocos de posicionamento.

LRAMP - Rampa linear de referência

Implementação de rampa linear de referência conforme tempo de aceleração ou desaceleração programadas, mais rampa

de desaceleração rápida, com opção de seleção de referência lenta ou normal.

MFILTER - Filtro passa baixa de 1^a ordem

Implementação de filtro passa baixa de 1ª ordem com habilitação e reset. Este bloco filtro não possui a mesma dinâmica do bloco FILTER do WLP, pois seus cálculos dependem do ciclo de scan da placa.

MMIN2RPM - Conversão de velocidade em m/min para rpm

Calcula a velocidade do motor em rpm conforme a velocidade de linha em m/min e o diâmetro do rolo acionado.

Mux - Conversão de binário para word

Converte 16 bits em uma word respectiva.

PO2Float - Conversão de posição para ponto flutuante

Converte a posição do eixo real ou virtual (somente POS2) no formato sinal, voltas e fração de voltas para um número em ponto flutuante. È feita a aquisição dos dados diretamente dos parâmetros da placa, sendo então convertidos para um número em ponto flutuante.

RPM2MMIN - Conversão de velocidade em rpm para m/min

Calcula a velocidade de linha em m/min conforme a velocidade do motor em rpm e o diâmetro do rolo acionado.

RPMCFW09 - Conversão de velocidade real no formato 13/15 bits para rpm

Através do marcador de Word do sistema %SW1 (Velocidade real (13/15 bits)) e do parâmetro do sistema % P767 (RPM síncrono do motor), tem-se a leitura da velocidade do motor em rpm como também o seu sentido de giro. Somente para CFW09.

TAPER - Cálculo da função taper / dureza

Através da definição de um diâmetro inicial e um diâmetro final efetua-se a função taper (dureza) para bobinamento conforme um setpoint de força pré-definido e um percentual de decréscimo deste setpoint.

8 Compilador

8.1 Visão Geral Compilador

Comandos:

Compilar 57

Compilar Subrotina/USERFB 58

Depuração 58

Exibir:

Erros de Compilação 23

Informações da Compilação 23

Localização dos Erros de Compilação 23

Mensagens:

Erros do Compilador 285

Erros Fatais do Compilador 284

Advertências do Compilador 287

Informações de Compilação 288

8.2 Erros Fatais do Compilador

Os seguintes tópicos tratam dos erros fatais de compilação.

"Erro Fatal C1 : Janela do compilador não pode ser criada"

Por que : erro de memória

Ação: fechar e recomeçar a aplicação ou reiniciar o computador

"Erro Fatal C2: diretório não encontrado '% 1'"

Por que: erro interno

Ação: notificar a Assistência Técnica da WEG ou seu representante WEG, informando-lhe a descrição e detalhes de como reproduzir este erro

"Erro Fatal C3: compilador recebeu um argumento inválido"

Por que : erro interno

Ação : notificar a Assistência Técnica da WEG ou seu representante WEG, informando-lhe a descrição e

detalhes de como reproduzir este erro

"Erro Fatal C4: arquivo '% 1' não pode ser aberto ==> causou ..."

Por que : o arquivo não existe ou não pode ser acessado; erro no arquivo

Ação: baseado na causa do erro, tentar eliminar o erro

"Erro Fatal C5 : diretório '% 1' não pode ser criado"

Por que: Erro no hard disk

Ação: recomeçar o computador e compilar novamente

"Erro Fatal C6: equipamento incorreto"

Por que : arquivo fonte < Project>. LDD está corrompido

Ação: criar um novo programa

"Erro Fatal C7 : número incorreto de páginas"

Por que : arquivo fonte <Project>.LDD está corrompido

Ação: criar um novo programa

"Erro Fatal C8 :arquivo não pode ser aberto

Por que : arquivo fonte <Project>.LDD está corrompido Ação : editar seu programa novamente e salvá-lo

"Erro Fatal C9 : estouro da memória de longs de rascunho"

Por que : memôria de rascunho para blocos WLP excedeu seu limite

Ação: diminuir tamanho do programa

"Erro Fatal C10 : estouro da memória de bytes de rascunho"

Por que : memôria de rascunho para blocos WLP excedeu seu limite

Ação: diminuir tamanho do programa

8.3 Erros do Compilador

Os seguintes tópicos tratam dos erros de compilação.

"Erro C101 : versão incorreta do header"

Por que : arquivo fonte <Project>.LDD está corrompido

Ação: criar um novo programa

"Erro C102 : versão incorreta do software"

Por que : arquivo fonte <Project>.LDD está corrompido

Ação: criar um novo programa

"Erro C103 : versão incorreta do body"

Por que : arquivo fonte < Project>. LDD está corrompido

Ação: criar um novo programa

"Erro C104 : endereço inexistente"

Por que: o campo endereço está vazio

Ação: preencher o campo endereço com um endereço válido

"Erro C105 : tipo de célula desconhecido"

Por que : arquivo fonte <Project>.LDD está corrompido

Ação: criar um novo programa

"Erro C106 : tipo de bloco de função desconhecido"

Por que : arquivo fonte <Project>.LDD está corrompido

Ação: criar um novo programa

"Erro C107 : elemento indefinido na lista de instrução"

Por que: erro interno

Ação : notificar a Assistência Técnica da WEG ou seu representante WEG, informando-lhe a descrição e

detalhes de como reproduzir este erro

"Erro C108: linha inválida"

Por que : arquivo fonte contém caracteres inválidos

Ação: salvar e fechar o programa; recomeçar o programa novamente

"Erro C109: ligação vertical com conexão na direita"

Por que: esta versão não aceita conexão na direita

Ação: apagar a conexão na direita

"Erro C110 : ligação vertical sem conexão"

Por que : há uma ligação vertical que não tem um elemento em um de seus limites

Ação: apagar a ligação vertical

Nota: erro disponível apenas no WLP V1.00

"Erro C111 : contato não pode ser conectado diretamente na borda direita"

Por que: nenhuma bobina foi encontrada na última coluna

Ação: apagar a linha horizontal, inserir uma bobina na última coluna e conectar o contato e a bobina

"Erro C112 : somente bobinas podem ser conectadas na borda direita"

Por que : a última coluna contém um elemento que não é uma bobina

Ação: apagar o elemento e inserir uma bobina

"Erro C113: elemento se torna uma lógica inválida"

Por que : o programa não está completo

Ação: elementos deveriam ser conectados da borda esquerda à borda direita

Nota: erro disponível apenas no WLP V1.00

"Erro C114: endereço inválido"

Por que : endereço inserido em algum bloco é invalido Ação : verificar endereço do elemento que gerou o erro

"Erro C115 : bloco não é válido para o equipamento com a versão de firmware configurada"

Por que : bloco inserido no programa não é compatível com equipamento e versão de firmware configurado

Ação: apagar bloco ou verificar equipamento configurado

"Erro C116 : parâmetro do USERFB invalido"

Por que : parâmetro do USERFB utilizado dentro do USERFB não é válido ou está desabilitado Ação : verificar parâmetro do USERFB do elemento dentro do USERFB que gerou o erro

"Erro C117: programação inválida do USERFB"

Por que: programação dentro do USERFB não é válida

Ação: verificar programa dentro do USERFB

"Erro C118 : matemática com word não permitida para essa versão de firmware"

Por que : matématica de word não é compatível com equipamento e versão de firmware configurado

Ação: apagar bloco, verificar bloco ou verificar equipamento configurado

"Erro C119 : entrada de encoder não permitida para esse equipamento"

Por que : contador de encoder programado com entrada não disponível para equipamento configurado

Ação: apagar bloco ou verificar equipamento configurado

"Erro C120 : modo de contagem não permitido para esse equipamento"

Por que : contador de encoder programado com modo de contagem não disponível para entrada de encoder

configurada

Ação: verificar programação do bloco

"Erro C121 : USERFB não pode conter bloco USERFB"

Por que : inserido bloco USERFB dentro de um projeto do USERFB

Ação: apagar bloco USERFB

"Erro C122 : programação não permitida para essa versão de software/equipamento"

Por que : programação do bloco que indica erro não é permitida para versão de software do equipamento ou

para o equipamento configurado no projeto

Ação: verificar propriedades do projeto ou mudar programação do bloco em questão

"Erro C123: arquivo não encontrado"

Por que : arquivo não encontrado no caminho especificado

Ação : verificar programação do bloco checando se o mesmo aponta para o arquivo em questão

"Erro C124 : arquivo de profiles cam não foi gerado"

Por que: arquivo binário dos profiles cam não foi gerado

Ação: verificar programação e possíveis erros gerados para os blocos caminseridos no projeto

"Erro C125 : memória reservada para os perfis cam excedida"

Por que : a soma de todos os pontos utilizados em todos os blocos caminseridos no projeto excedeu a

capacidade de memória determinada para os perfis cam

Ação: apagar algum bloco cam ou diminuir o número de pontos do mesmo

"Erro C126 : erro na compilação do USERFB"

Por que : ocorreu algumerro na compilação do bloco USERFB em questão Ação : verificar bloco cam tentando compilar o mesmo individualmente

"Erro C127: memória reservada para programa usuario excedida"

Por que: tamanho do programa excedeu memória determinada para o programa do usuário

Ação: diminuir o tamanho do programa do usuário

"Erro C128 : recurso em ponto flutuante não suportado "

Por que : tentativa de utilizar ponto flutuante em equipamento que não suporta ponto flutuante

Ação: modificar blocos para utilizar ponto fixo (inteiro)

8.4 Advertências do Compilador

Os seguintes tópicos tratam das advertências de compilação:

"Advertência C201 : elemento não está conectado no lado esquerdo"

Por que: elemento não está conectado com outros elementos no lado esquerdo

Ação: completar ou apagar a lógica

"Advertência C202 : valor da posição é muito pequeno para gerar uma trajetória"

Por que : este valor de posição não gerará nenhuma trajetória; esta advertência pode ocorrer nos blocos de

função: em posição, curva S, curva trapezoidal, curva trapezoida variável e deslocamento.

Ação: preencher o campo com um valor > 360/65536 (0.0054931640625)

"Advertência C203 : logica incompleta"

Porque: ha uma ligação vertical ou elemento sem conexão (programa não esta completo)

Ação: apagar a lógica ou conectar os elementos corretamente (borda esquerda e borda direita)

"Advertência C204 : valor do deslocamento é muito pequeno"

 $Porque: nesta \ condição, o \ bloco \ em \ des locamento \ tende \ manter \ a \ sua \ saída \ sempre \ em \ nível \ lógico \ 1.$

Ação: preencher o campo com um valor > 360/65536 (0.0054931640625)

"Advertência C205 : velocidade de referência do encoder é nula (nao vai girar)"

Porque : A relação de transformação entre o mestre e o escravo é nula.

Ação : programar algum valor diferente de zero na relação inteira e/ou programar um valor diferente de zero para a relação do escravo.

"Advertência C206 : divisão por 0"

Porque : o divisor do bloco matemático é uma constante float que é 0.

Ação: alterar o dado 2 para um valor diferente de 0. Caso isso não seje feito, o resultado da divisão será saturado para o valor máximo.

"Advertência C207: endereço de entrada é igual ao endereço de saída."

Porque: utilizado mesma variável na entrada e saída do bloco

Ação: utilizar variáveis diferentes

8.5 Informações da Compilação

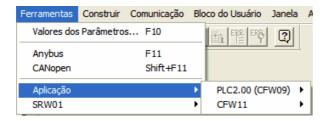
Informações sobre o compilador, programa e arquivos são mostrados numa caixa de diálogo.

Informações do Compilador

Ele mostra o equipamento, nome do projeto, hora, data e tempo transcorrido desde a última compilação.

Informações do Programa

Ele mostra o número de páginas, lógicas e elementos usados no programa do usuário.

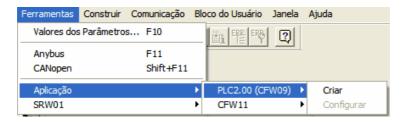

Informações dos Arquivos

Ele mostra o nome, hora, data e tamanho dos arquivos que foram gerados durante a última compilação.

9 Aplicações

9.1 Aplicações no WLP

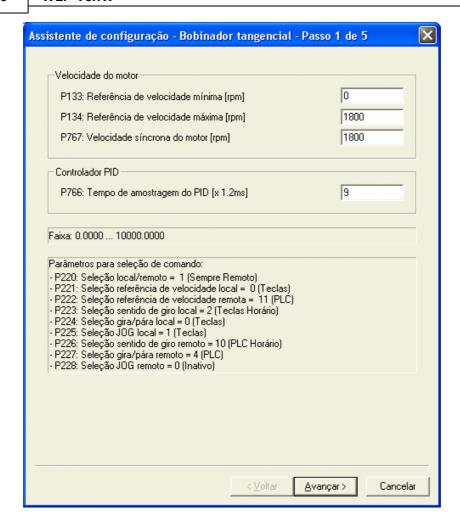
- Através do menu "Ferramentas" opção "Aplicação", selecione o equipamento desejado, conforme figura abaixo, obtem-se assimacesso ao conjunto de aplicações desenvolvidas para uso no WLP.


- No WLP V7.10 ou superior os menus de aplicação foram organizados de acordo com equipamento e tipo de aplicação conforme figura a seguir (metodologia nova).

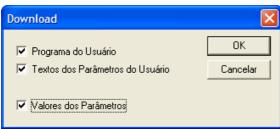
Nesse exemplo ao clicar sobre a opção "Controle Fixo" será criado uma aplicação para CFW11 Multibombas Controle Fixo.

- Nas versão inferiores ao WLP V7.10 era usado uma estrutura em função do equipamento conforme figura a seguir (metodologia antiga).

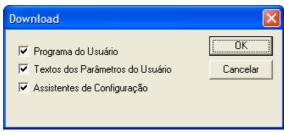
Nesse exemplo ao clicar sobre a opção "Criar" será criado uma aplicação para a PLC2 onde será aberto o diálogo a seguir para definir o tipo de aplicação e o nome da aplicação.



Obs.:

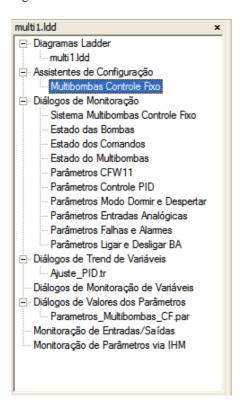

Mesmo utilizando o WLP V7.10 ou superior ainda existirão aplicações desenvolvidas na metodologia antiga que poderão ser utilizadas sem nenhuma restrição.

- Em ambos os casos citados a cima após as seleções e confirmações, será iniciado um <u>assistente de</u> <u>configuração</u> 16 que irá configurar os parâmetros da aplicação, conforme exemplo abaixo.

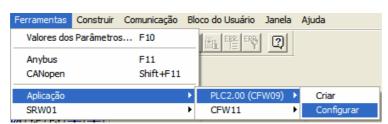


- Após os passos do assistente de configuração, será iniciado o processo de transmissão do programa do usuário, dos textos dos parâmetros do usuário e dos valores dos parâmetros (metodologia antiga) ou assistentes de configuração (metodologia nova), observando sempre que só será transmitido o item que estiver selecionado. Na figuras abaixo, os três itens estão habilitados à transmissão:

Metodologia antiga (WLP < V7.10)

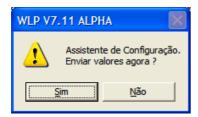


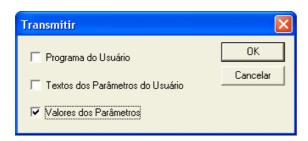
Metodologia nova (WLP >= V7.10)


Com isto termina-se o processo de criação do aplicativo desejado. Caso haja necessidade de alteração dos valores do parâmetro de configuração, é possível chamar novamente o assistente de configuração conforme a seguir.

- Para aplicações desenvolvidas na metodologia nova através da <u>árvore de projeto 14</u> conforme figura a seguir.

Para executar o assistente de configuração de um duplo clique sobre o nome do assistente.


- Para aplicações desenvolvidas na metodologia antiga através do menu "Ferramentas" opção "Aplicação", clique em "Configurar", conforme figura a seguir.


Após a conclusão do assistente de configuração, é iniciado novamente o processo de transmissão para atualizar o as alterações feitas conforme a seguir.

- Metodologia nova:

- Metodologia antiga:

Neste caso, pode-se efetuar somente a transmissão dos valores dos parâmetros, conforme figura abaixo:

Para maiores detalhes sobre a aplicação, consultar o seu respectivo Guia de Aplicação disponível no CD que acompanha o produto.

10 Obtendo Ajuda

10.1 Solucionando Problemas do Microcomputador

Este capítulo descreve problemas que você pode ter enquanto estiver rodando este aplicativo.

RESOLUÇÃO DO VÍDEO

800x600 é a resolução recomendada.

Este aplicativo está designado para rodar em computadores capazes de mostrar 65536 ou mais cores. Embora o aplicativo rode em sistemas que mostram apenas 256 cores, há notável redução da qualidade da imagem. Quando se roda numa resolução de 640x480, alguns dos maiores gráficos podem ser mostrados fora da janela ativa. É recomendado que você rode este aplicativo numa resolução de 800x600 ou maior.

DESEMPENHO

Há vários caminhos para que este aplicativo rode mais rapidamente. Muitos dos métodos descritos abaixo são dicas que ajudarão no desmpenho de algumas aplicações em Windows. Para maiores informações sobre performace, consulte sua documentação Windows.

Este aplicativo usa sua memória de acesso aleatória do computador (RAM). Se este aplicativo rodar vagarosamente, ou se você obter mensagens de erro dizendo a você "fora de memória", você não poderá ter RAM suficiente. A seguir são dadas algumas dicas para melhorar o uso da memória avaliada do seu computador.

- Feche todas as aplicações que não estão sendo utilizadas.

- Adicione mais RAM (memória) em seu computador. Você pode determinar quanta memória é necessária verificando no painel de controle a performace do Window 98 ou no gerenciador de tarefas do Windows XP.
- Se você está usando mais que 256 cores em sua tela de vídeo, você pode querer diminuir para 256 cores. Para mais informações sobre como mudar sua tela, consulte a documentação do seu Windows.

Para mais informações sobre melhora de desempenho, consulte a documentação do Windows.

PROBLEMAS DE IMPRESSÃO

A resolução da tela e impressão não são freqüentemente as mesmas, então quando você imprime, o resultado pode não ser o mesmo que você vê na tela.

Se uma falha de proteção geral aparecer quando você imprime um tópico, verifique o driver da impressora. Mude para a uma versão mais atualizada do driver, se possível.

Assegure que sua impressora esteje ativada e que você possa imprimir para ela de qualquer aplicação. Se o problema persistir, abra a página de propriedades da impressora que você está usando. Clique na tabela de fontes, e então selecione um método de download de fontes True Types que trabalharão melhor com seu sistema.

10.2 Direitos Autorais

As informações contidas neste documento podem mudar sem aviso prévio. Os nomes de empresas, produtos, pessoas, caracteres, e/ou dados mencionados aqui são ficção e não pretendem de nenhuma maneira representar qualquer pessoa, empresa, produtos, ou eventos reais, a não ser que notificados.

Nenhuma parte deste documento pode ser reproduzidas ou transmitidas de qualquer forma ou por meios eletrônicos ou mecânicos, incluindo fotocópia, gravação, ou sistemas de armazenagem de dados, para qualquer propósito a não ser para uso pessoal do usuário, sem a permissão prévia por escrito da empresa WEG. Permissão para imprimir uma copia é permitida somente por meio eletrônico.

A WEG pode ter patentes, pedidos de patentes, marcas registradas, direitos autorais, ou outras propriedades intelectuais contidas neste documento. O fornecimento deste documento não dá o direito a qualquer licença de patente, marca registrada, direitos autorais ou outra propriedade intelectual qualquer.

Outros produtos ou nomes de empresas aqui mencionadas podem ser marcas comerciais de seus respectivos proprietários.

11 Suporte Técnico

11.1 Suporte Técnico

Para mais detalhes, treinamento ou serviços, por favor contate a WEG nos seguintes endereços:

Suporte

E-mail

0800@weg.net

Correspondência WEG Automação Ltda Departamento de Assistência Técnica e Qualidade Avenida Prefeito Waldemar Grubba, 3000 - Vila Lalau CEP 89256-900 Jaraguá do Sul, SC - Brasil

Telefone DDG 0800-7010701 (somente para o Brasil)

Fax

++55 47 3276-4200

Fora do Brasil

Contate uma filial ou representante WEG.

Índice

- A -

Abrir 16 Ajuda 63 Apagar 26 Aplicação 57 Aplicações 288 Apontador 26 Argumentos 102 **AUTOREG** 38, 216 Autoria 293

- B -

Barras 21, 22
Blocos 98, 117
Bobina 28, 29, 123, 124, 125, 126, 127
Busca chave AbsSwitch 182
Busca Chave LimitSwitch (fim de curso) 185
Busca Pulso Nulo 187

- C -

CALCCAM 32, 168 Calcula Nova Tabela Cam 194 Cálculo 41, 42, 43, 245, 246, 253, 255, 256, 258 CAM 32, 155, 168 Cam Profiles 46 44, 45, 265, 266 CAN CANOpen 45, 46, 266 Células 64, 65, 66 CLP 40, 41, 230, 233, 234, 237, 240, 242 Colar 21 Comentário 26, 120 41, 245 COMP Compatibilidade 98 Compilação 23, 57, 58, 284, 285, 287, 288 Comunicação 58, 59, 60, 61, 84, 85 27, 28, 121, 122 Contato Copiar 20 CTENC 41, 242

CTU 40, 234

- D -

Dados 87

Desfazer 20

Deslocamento Eixo Mestre 223

DMUX 43, 258

Download 58

- E -

Editar 20, 21, 64, 65, 66
Endereços 23, 24
Entradas 60, 61, 77, 79
Erros 23
Excluir 25
Executa curva Cam 197
Exibir 21, 22, 23, 24

- F -

Fechar 17 Ferramentas 46, 57 Fieldbus 46 **FILTER** 41, 240 Finaliza Home Finaliza MC_CamIn 200 Finaliza MC Gearln e MC GearlnPos 225 FL2INT 43, 261 FOLLOW 37, 215 Force 61, 79 **FUNC** 42, 253

- G -

Grade 23

- H -

Habilita Drive 128 HOME 32, 148

- | -

IDATA 44, 262

MC_Reset Idioma 19 130 IHM 60, 79 MC StepAbsSwitch 182 MC_StepDirect **Imprimir** 18 190 **INBWG** 39, 228 MC_StepLimitSwitch 185 Informações MC_StepRefPulse 10, 61, 83 187 MC Stop Inicialização 11 132 **INPOS** 39, 226 MMC 45, 282 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, Monitoração 59, 60, 61, 66, 67, 70, 71, 73, 77, 79, 40, 41, 42, 43, 44, 45 Inserir Página 24, 25 Movimento 36, 37, 200, 204, 206, 209, 212 Instalação MSCANWEG 44, 265 11 INT2FL 43, 261 Muda a posição de referência do usuário 190 Introdução MUX 42, 256 11 135 MW_CamCalc 194 MW_lqControl 135 Janela 63 JOG 36, 204 Nomes 23 Novo 16 86, 87, 92, 98, 102, 117, 120, 121, 122, 123, 124, 125, 126, 127, 136, 140, 142, 145, 148, 152, O que é o WLP 155, 168, 171, 200, 204, 206, 209, 215, 216, 226, 228, Online 230, 233, 234, 237, 240, 242, 245, 246, 253, 255, 256,

Ladder 86, 87, 92, 98, 102, 117, 120, 121, 122
123, 124, 125, 126, 127, 136, 140, 142, 145, 148, 155, 168, 171, 200, 204, 206, 209, 215, 216, 226, 230, 233, 234, 237, 240, 242, 245, 246, 253, 255, 258, 259, 261, 262, 264, 265, 266, 268, 282, 283
Ligação 27
Linguagem 86, 87, 92, 98, 102, 117
Localizar 21

- M -

Marcadores 92 MATH 41, 246 MC CamIn 197 MC_CamOut 200 MC_CamTableSelect 193 MC FinishHoming 192 MC Gearln MC_GearInPos 222 225 MC_GearOut MC MoveAbsolute 173 MC_MoveRelative 177 MC_MoveVelocity 212 MC_Phasing 223 128 MC_Power

Página 24, 25, 26 Parada 30, 31, 132, 136, 140 Parâmetros 24, 46, 60, 79, 83 Perfil Cam 46 PID 40, 237 Posicionamento 31, 32, 33, 142, 145, 148, 152, 155, 168, 171 Posicionamento Absoluto 173 Posicionamento Relativo 177 292 Problemas Projeto 13, 14, 16, 17, 18, 19, 288 Propriedades 19

- Q -

QSTOP 31, 140

- R -

Recortar 20
REF 37, 209
Refazer 20
Referência 117
Remover 18
Reseta Falha do Drive 130
RTC 40, 233
RXCANWEG 44, 265

- S -

Saídas 60, 61, 77, 79 Sair 19 Salvar 17 SAT 42, 255 SCURVE 31, 142 SDO 45, 266 Seguidor 37, 38, 215, 216 Seleciona Tabela Cam 193 Serial 84 SETSPEED 36, 200 SHIFT 33, 171 Sincronismo em Posição 222 Sincronismo em Velocidade 219 Sistema 92 Sobre 63 Solução 292 SPEED 36, 206 STOP 30, 136 Suporte 293

- T -

TCURVAR 32, 152
TCURVE 31, 145
TON 40, 230
TRANSFER 43, 259
Transferência 43, 44, 259, 261, 262, 264
Trend 60, 73

- U -

Unidades 18

Upload 58 USB 85 USERERR 44, 264 USERFB 45, 62, 268, 283

- V -

Variáveis 60, 71, 73, 87, 92 Verificador 39, 226, 228

- W -

WLP 10, 11, 13, 19, 63