Anybus-CC

CFW-11

Manual do Usuário

Manual do Usuário Anybus-CC

Série: CFW-11 Idioma: Português N º do Documento: 0899.5749 / 06

Data da Publicação: 09/2013

SUMÁRIO

SUMÁRI	0	3
SOBRE C	D MANUAL	6
		6
	QUES E DEFINIQUES ΕΝΤΛΟÃO ΝΙ ΙΜΈΦΙΟΛ	
NEFNES		0
1 INTR	ODUÇÃO AO BARRAMENTO DE CAMPO (FIELDBUS)	7
2 KITS	ACESSÓRIOS	8
2.1 DI	EVICENET	8
2.1.1	Acessório DEVICENET-05	
Pina	gem do Conector	8
Indic	e de alimentação pações	o 9
2.1.2	Instalação da Rede DeviceNet	9
Таха	de Comunicação	9
Ende	ereço na rede DeviceNet	
Resi	stores de terminação	
	DS	10 10
2.1.3	Configuração da Comunicação	
2.1.4	Acesso aos Parâmetros – Mensagens acíclicas	
2.2 PF	ROFIBUS	
2.2.1	Acessório PROFIBUS-05	
Pina	gem do Conector	
Indic	ações	
2.2.2 Tawa	Instalaçao da Rede Profibus	
Taxa Ende	i de Comunicação	13 13
Resi	stores de terminação	
Cabo	DS	14
Cone	ectores	14
Reco	omendações de instalação	
2.2.3	Configuração do Modulo	
2.2.4 23 F1	resso dos raiametros - mensagens aciclicas	
2.3 1	Acessório FTHERNETIP-05 e FTHERNET-2P-05	
Cone	ector	
Indic	ações	
2.3.2	Instalação da Rede Ethernet	17
Taxa	de Comunicação	
MAC	araaa na rada Etharnat	
Cabo		
Reco	omendações de instalação	
2.3.3	Configuração da Interface Ethernet	
HMS	Anybus IPconfig	
WEB	Browser	
2.3.4	Configuração da Comunicação	
∠.3.3 2⁄ M	AUESSU AUS PARAMEURUS - MENSAGENS ACICIICAS	
2.4 IVI 2/1	Acessório MODBUSTCP-05	
Cone		
Indic	ações	
2.4.2	Instalação da Rede Ethernet	
2.4.3	Configuração da Interface Ethernet	
2.4.4	Configuração da Comunicação	21
2.4.5	Endereçamento dos dados	22

2.5	PRO	FINET	23
2	2.5.1	Acessório PROFINETIO-05	23
	Conect	or	23
	Indicaç	ões	23
2	2.5.2	Instalação da Rede Ethernet	24
2	2.5.3	Configuração da Interface Ethernet	24
2	2.5.4	Configuração da Comunicação	24
2	2.5.5	Acesso aos Parâmetros – Mensagens acíclicas	25
2.6	RS2	32	25
2	2.6.1	Acessório RS232-05	25
	Pinagei	m do Conector	26
		io com a Pede	20
27	RS4	85	26
2.1	71	Acessória BS485-05	26
-	Pinage	m do Conector	26
	Indicac	ões	27
	Conexã	io com a Rede	27
3 F	PARAN Sími	IETRIZAÇÃO	28 28
P0.1	105 – SE	Γ ECÃO 1 ^a /2 ^a RAMPA	28
P0:	220 – SF		28
P02	220 - 0E 221 - SF	ELEÇÃO REFERÊNCIA I OCAL	28
P02	222 – SE	ELEÇÃO REFERÊNCIA REMOTA	28
P02	222 - 0E 223 - SE		28
P02	220 - 0E 224 - SE		28
P02	225 - SF		28
P02	226 – SF	ELEÇÃO GIBO REMOTO	28
P02	227 – SF	E E CÃO GIRA/PARA REMOTO	28
P02	228 – SF		28
P0:	313 – AC	ÃO PARA FRRO DE COMUNICAÇÃO	28
PO	680 – ES		29
PO	681 – VE	LOCIDADE DO MOTOR EM 13 BITS	30
P06	686 – PA	LAVRA DE CONTROLE VIA ANYBUS-CC	31
PO	687 – RE	FERÊNCIA DE VELOCIDADE VIA ANYBUS-CC	32
P06	695 – VA	LOR PARA AS SAÍDAS DIGITAIS	32
PO	696 – VA	LOR 1 PARA SAÍDAS ANALÓGICAS	33
PO	697 – VA	LOR 2 PARA SAÍDAS ANALÓGICAS	33
P06	698 – VA	LOR 3 PARA SAÍDAS ANALÓGICAS	33
P06	699 – VA	LOR 4 PARA SAÍDAS ANALÓGICAS	33
P0 7	723 – IDI	ENTIFICAÇÃO DA ANYBUS	34
P0 7	724 – ES	TADO DA COMUNICAÇÃO ANYBUS	34
P0 7	725 – EN	IDEREÇO DA ANYBUS	35
P0 7	726 – TA	XA DE COMUNICAÇÃO DA ANYBUS	35
P0 7	727 – PA	LAVRAS I/O ANYBUS	36
P0 7	728 – LE	ITURA #3 ANYBUS	37
P0 7	729 – LE	ITURA #4 ANYBUS	37
P0 7	730 – LE	ITURA #5 ANYBUS	37
P0 7	731 – LE	ITURA #6 ANYBUS	37
P0 7	732 – LE	ITURA #7 ANYBUS	37
P0 7	733 – LE	ITURA #8 ANYBUS	37
P0 7	734 – ES	CRITA #3 ANYBUS	38
P0 7	735 – ES	CRITA #4 ANYBUS	38
P0 7	736 – ES	CRITA #5 ANYBUS	38
P0 7	737 – ES	CRITA #6 ANYBUS	38
P0 7	738 – ES	CRITA #7 ANYBUS	38
P0 7	739 – ES	CRITA #8 ANYBUS	38
P0 7	799 – AT	RASO ATUALIZAÇÃO I/O	38
		-	

Шер

4	FALHAS E ALARMES RELACIONADOS COM A COMUNICAÇÃO SERIAL.	40
---	---	----

A129/F229 – MÓDULO ANYBUS-CC OFFLINE	40
A130/F230 – ERRO DE ACESSO AO MÓDULO ANYBUS-CC	40

SOBRE O MANUAL

Este manual fornece a descrição necessária para a operação do inversor de frequência CFW-11 utilizando os módulos Anybus-CC. Este manual deve ser utilizado em conjunto com o Manual do Usuário do CFW-11.

ABREVIAÇÕES E DEFINIÇÕES

American Standard Code for Information Interchange
Controller Area Network
Common Industrial Protocol
Carrier Sense Multiple Access/Collision Detection
Decentralized Periphery
Fieldbus Message Specification
Human Machine Interface
Internet Protocol
Medium Access Control
Module Status
Network Status
Open DeviceNet Vendor Association
Operation Mode
Profibus International
Programmable Logic Controller
Status
Transmission Control Protocol
User Datagram Protocol

REPRESENTAÇÃO NUMÉRICA

Números decimais são representados através de dígitos sem sufixo. Números hexadecimais são representados com a letra 'h' depois do número. Números binários são representados com a letra 'b' depois do número.

1 INTRODUÇÃO AO BARRAMENTO DE CAMPO (FIELDBUS)

O barramento de campo (mais conhecido por fieldbus) é um sistema de comunicação digital utilizado na indústria para interligar elementos primários de automação, tais como PLCs, drives, válvulas, sensores, atuadores, etc., conforme ilustrado na figura abaixo.

Figura 1.1: Ilustração de uma rede de campo

Hoje, existe uma grande variedade de protocolos no mercado, cada qual com suas vantagens e desvantagens. Cabe ao usuário/projetista avaliar quais os requisitos necessários à sua aplicação e escolher dentre as opções disponíveis.

Independente da escolha, as principais vantagens das redes industriais são:

- Redução significativa de cabos e custos de instalação;
- Redução do tempo de start-up;
- Maior confiabilidade e eficiência;
- Adição, remoção e substituição de equipamentos na rede sob carga (alimentação);
- Integração de vários fornecedores (padronização);
- Monitoramento efetivo do processo;
- Configuração de dispositivos via rede.

O CFW-11 suporta através do módulo de comunicação Anybus-CC, os protocolos mais difundidos na indústria, como DeviceNet, Profibus DP-V1, EtherNet/IP, Modbus TCP, PROFINET IO, entre outros, além de módulos passivos com as interfaces RS232 e RS485/422.

A seguir serão apresentadas as características dos módulos Anybus-CC disponíveis para o inversor de frequência CFW-11.

2 KITS ACESSÓRIOS

O inversor de frequência CFW-11 apresenta como acessório os módulos de comunicação Anybus-CC. Os módulos Anybus-CC são divididos em dois tipos: ativo e passivo.

Módulo Ativo: possui todo o hardware e software necessários para realizar a comunicação. Os seguintes módulos ativos estão disponíveis para o CFW-11:

- DeviceNet
- Profibus DP-V1
- EtherNet/IP
- Modbus TCP
- PROFINET IO

Módulo Passivo: estes dispositivos passivos funcionam apenas como conversores da camada física, não realizando qualquer processamento sobre o fluxo de dados. O CFW-11 apresenta as seguintes interfaces:

RS232

 \checkmark

RS485/422

NOTA!

Para os módulos passivos, a comunicação é feita através da interface serial do produto. Desta forma, deve-se consultar o Manual da Comunicação SerialManual do Usuário Modbus RTU para obter informações de como configurar e operar o produto utilizando esta interface.

2.1 DEVICENET

2.1.1 Acessório DEVICENET-05

- Item WEG: 11008158.
- Composto pelo módulo de comunicação Anybus ABCC-DEV, uma bula de instalação e uma chave torx para fixação do módulo.
- Interface certificada pela ODVA.
- Permite a parametrização do inversor de frequência via software de configuração de rede.

Pinagem do Conector

O módulo para comunicação DeviceNet possui um conector *plug-in* macho com a seguinte pinagem:

Tabela 2.1: Pinagem do conector plug-in para DeviceNet

Pino	Nome	Função	
1	V-	Pólo negativo da fonte de alimentação	
2	CAN_L	Sinal CAN_L	
3	Shield	Blindagem do cabo	
4	CAN_H	Sinal CAN_H	
5	V+	Pólo positivo da fonte de alimentação	

Fonte de alimentação

A fonte de alimentação da rede deve ser capaz de suprir corrente suficiente para alimentar os equipamentos e interfaces conectados na rede. Os dados para consumo individual e tensão de entrada para o acessório DEVICENET-05 são apresentados na tabela 2.2.

Tabela 2.2: Características da alimentação para interface

Tensão de alimentação (Vcc)				
Mínimo	Máxim	o Recomendado		
11	25		24	
Corrente (mA)				
Típic	0	Máximo		
36			38	

Indicações

DeviceNet define dois LEDs para indicação de estados, um para o módulo de comunicação (MS) e outro para a rede (NS).

O LED MS indica as condições do módulo em si. Ou seja, se ele está ou não apto a funcionar. A tabela abaixo mostra os estados possíveis:

Tabela 2.3: Estados do módulo DeviceNet

Estado	Descrição	Comentário
Apagado	Sem alimentação	-
Verde	Módulo operacional e em condições normais	-
Vermelho	Módulo em erro	Necessita reinicialização do equipamento.
Intermitente verde/vermelho	Equipamento realizando auto-teste	Ocorre durante a inicialização.

O LED NS fornece informações dos estados da rede DeviceNet. A tabela a seguir apresenta a descrição destes estados.

Estado	Descrição	Comentário		
Apagado Sem alimentação ou não <i>online</i>		Equipamento não está conectado a uma rede DeviceNet com outros equipamentos na mesma taxa de comunicação.		
Verde Online, conectado		Mestre alocou um conjunto de conexões do tipo I/O com o escravo. Nesta etapa ocorre efetivamente a troca de dados através de conexões do tipo I/O.		
Intermitente verde	<i>Online</i> , não conectado	Escravo completou com sucesso o procedimento de verificação do MAC ID. Isto significa que a taxa de comunicação configurada está correta (ou foi detectada corretamente no caso da utilização do autobaud) e que não há outros nodos na rede com o mesmo endereço. Porém, neste estágio, ainda não há um conjunto de conexões do tipo I/O estabelecidas.		
Intermitente vermelho	Uma ou mais conexões do tipo I/O expiraram	A troca de dados de I/O foi interrompida.		
Vermelho	Falha grave no link	Indica que o escravo não pode entrar na rede devido a problemas de endereçamento ou então devido à ocorrência de <i>bus off.</i> Verifique se o endereço configurado já não está sendo utilizado por outro equipamento, se a taxa de comunicação escolhida está correta ou se existem problemas na instalação.		
Intermitente verde/vermelho	Equipamento realizando auto- teste	Ocorre durante a inicialização.		

Tabela 2.4: Estados da rede DeviceNet

2.1.2 Instalação da Rede DeviceNet

Para a ligação do inversor de frequência utilizando a interface DeviceNet, os seguintes pontos devem ser observados:

Taxa de Comunicação

Equipamentos com interface Anybus-CC em geral permitem configurar a taxa de comunicação desejada, podendo variar de 125 Kbit/s até 500 Kbit/s. A taxa de comunicação (baud rate) que pode ser utilizada por um equipamento também depende do comprimento do cabo utilizado na instalação. Vale destacar que, para que seja possível desconectar o elemento da rede sem prejudicar o barramento, é interessante a colocação de terminações ativas, que são elementos que fazem apenas o papel da terminação. Desta forma, qualquer equipamento na rede pode ser desconectado do barramento sem que a terminação seja prejudicada. A tabela 2.5 apresenta a relação entre as taxas de comunicação e o comprimento máximo de cabo que pode ser utilizado na instalação, de acordo com o recomendado pela ODVA.

Tabela 2.5: Taxas de comunicação suportadas e comprimento do cabo

Taxa de comunicação	Comprimento do cabo		
500 Kbit/s	100 m		
250 Kbit/s	250 m		
125 Kbit/s	500 m		

Todos os equipamentos da rede devem ser programados para utilizar a mesma taxa de comunicação.

Endereço na rede DeviceNet

Todo dispositivo na rede DeviceNet deve possuir um endereço, ou MAC ID, entre 0 e 63. Este endereço precisa ser diferente para cada equipamento.

Resistores de terminação

A utilização de resistores de terminação nas extremidades do barramento CAN é fundamental para evitar reflexão de linha, que pode prejudicar o sinal transmitido e ocasionar erros na comunicação. Resistores de terminação no valor de 121 Ω / 0.25 W devem ser conectados entre os sinais CAN_H e CAN_L nas extremidades do barramento principal.

Figura 2.1: Exemplo de instalação do resistor de terminação

Cabos

Deve-se utilizar um cabo blindado com dois pares de fios, conforme definido pela especificação do protocolo DeviceNet.

Recomendações de instalação

Para interligar os diversos nós da rede, recomenda-se a conexão do equipamento diretamente a partir da linha principal, sem a utilização de derivações. Se utilizar derivações, deve-se seguir os limites de comprimento para derivações definidos pela especificação DeviceNet. Durante a instalação dos cabos, deve-se evitar sua passagem próxima a cabos de potência, pois isto facilita a ocorrência de erros durante a transmissão devido à interferência eletromagnética.

Figura 2.2: Exemplo de instalação em rede DeviceNet

O aterramento da malha do cabo (blindagem) deve ser feito somente em um ponto, evitando assim loops de corrente. Este ponto costuma ser a própria fonte de alimentação da rede. É recomendado que a rede seja alimentada em apenas um ponto, e o sinal de alimentação seja levado a todos os dispositivos através do cabo. Caso seja necessária mais de uma fonte de alimentação, estas devem estar referenciadas ao mesmo ponto.

2.1.3 Configuração da Comunicação

Para configurar e utilizar o módulo DeviceNet, siga os passos indicados abaixo:

- Com o módulo instalado, durante a fase de reconhecimento, será exibida uma mensagem de aviso na HMI do produto, e realizada a rotina de testes dos LEDs MS e NS. Após esta etapa, o LED MS deve acender sólido verde.
- Observe o conteúdo do parâmetro P0723. Veja se o módulo foi reconhecido. A detecção é feita de forma automática e não requer intervenção do usuário.
- Parametrize o equipamento conforme desejado para a aplicação:
 - Endereço: o endereço do equipamento é programado através do parâmetro P0725.
 - Taxa de comunicação: a taxa de comunicação é programada no parâmetro P0726.
 - Configuração de I/O: no parâmetro P0727 configure a quantidade de palavras que deseja comunicar com o mestre da rede. Este mesmo valor deverá ser ajustado no mestre DeviceNet. Para que este ajuste esteja completo, é necessário programar um valor diferente de 0 para os parâmetros P0728 a P0739 (ver item 3).
- Uma vez parametrizado, caso algum dos parâmetros descritos no item anterior seja alterado, é necessário reiniciar o equipamento.

Uma vez programado o equipamento, é necessário configurar a comunicação no mestre da rede:

- Arquivo EDS: registre o arquivo EDS no software de configuração da rede. O arquivo de configuração EDS é fornecido em um CD juntamente com o produto. É necessário observar a versão de software do equipamento, para utilizar um arquivo EDS que seja compatível com esta versão.
- Programação dos dados de I/O: durante a configuração da rede, é necessário definir a quantidade de dados de I/O comunicados entre mestre e escravo, bem como o método de transmissão destes dados. O protocolo DeviceNet define diferentes métodos de troca de dados, sendo que o módulo suporta os seguintes métodos:
 - Polled: método de comunicação em que o mestre envia um telegrama a cada um dos escravos da sua lista (scan list). Assim que recebe a solicitação, o escravo responde prontamente a solicitação do mestre. Este processo é repetido até que todos sejam consultados, reiniciando o ciclo.
 - Bit-strobe: método de comunicação onde o mestre envia para a rede um telegrama contendo 8 bytes de dados. Cada bit destes 8 bytes representa um escravo que, se endereçado, responde de acordo com o programado.

- Change of State: método de comunicação onde a troca de dados entre mestre e escravo ocorre apenas quando houver mudanças nos valores monitorados/controlados, até um certo limite de tempo. Quando este limite é atingido, a transmissão e recepção ocorrerão mesmo que não tenha havido alterações.
- Cyclic: outro método de comunicação muito semelhante ao anterior. A única diferença fica por conta da produção e consumo de mensagens. Neste tipo, toda troca de dados ocorre em intervalos regulares de tempo, independente de terem sido alterados ou não.

Se tudo estiver corretamente configurado, o LED NS do módulo acenderá em sólido verde. É nesta condição que ocorre efetivamente a troca de dados cíclicos entre o escravo e o mestre da rede.

2.1.4 Acesso aos Parâmetros – Mensagens acíclicas

Além da comunicação dos dados de I/O (cíclica), o protocolo DeviceNet também define um tipo de telegrama acíclico (*explicit messages*), utilizado principalmente em tarefas assíncronas tais como parametrização e configuração do equipamento.

Após o registro do arquivo EDS no software de configuração de rede, o usuário terá acesso à listagem completa dos parâmetros do equipamento os quais podem ser acessados via *explicit messages*. Cada parâmetro é acessado utilizando um endereçamento baseado em classe, instância e atributo. A tabela 2.6 descreve como endereçar os parâmetros do CFW-11.

Parâmetro	Classe	Instância	Atributo
P0001	Class 162 (A2h)	1	5
P0002	Class 162 (A2h)	2	5
P0003	Class 162 (A2h)	3	5
P0400	Class 162 (A2h)	400	5

Tabela	2.6:	Enderecamento	dos	parâmetros
rubbiu	2.0.	Lindologuinointo	400	paramotroo

2.2 PROFIBUS

2.2.1 Acessório PROFIBUS-05

- Item WEG: 11008107.
- Composto pelo módulo de comunicação Anybus ABCC-DPV1, uma bula de instalação e uma chave torx para fixação do módulo.
- Interface certificada pela Profibus International.
- Suporta funções DP-V1 (mensagens acíclicas).

Pinagem do Conector

O módulo para comunicação Profibus DP-V1 possui um conector DB9 fêmea com a seguinte pinagem:

Tabela 2.7: Pinagem do conector DB9 fêmea para Profibus

Pino	Nome	Função	
1	-	-	
2	-	-	
3	B-Line (+)	RxD/TxD positivo	
4	RTS	Request To Send	
5	GND	Referência (0 V) da interface RS485 (isolado)	
6	+5 V	+5 V para terminação ativa (isolado para o circuito RS485	
7	-	-	
8	A-Line (-)	RxD/TxD negativo	
9	-	-	

Indicações

Profibus define dois LEDs para indicação de estados, um para o módulo de comunicação (ST) e outro para o modo de operação (OP).

O LED ST indica as condições do módulo em si. Ou seja, se ele está ou não em condições para funcionar. A tabela 2.8 mostra os estados possíveis:

Tabela 2.8: Estados do módulo Profibus DP-V1

Estado	Descrição	Comentário
Apagado	Sem alimentação ou não inicializado	-
Verde	Módulo inicializado	-
Intermitente verde	Inicializado, mas em diagnóstico de eventos	Indica que foi diagnosticado algum problema no módulo e gerado um alarme.
Vermelho	Em erro	Necessita reinicialização do equipamento.

O LED OP fornece informações dos estados da rede Profibus. A tabela 2.9 apresenta uma breve descrição destes estados.

Tabela 2.9: Estados do modo de operação

Estado	Descrição	Comentário
Apagado	Sem alimentação ou não <i>online</i>	-
Verde	Dispositivo <i>online</i>	Neste estado ocorre efetivamente a troca de dados.
Intermitente verde	<i>Online</i> mas no estado <i>clear</i>	Neste estado ocorre a troca de dados, mas as saídas não são atualizadas.
Intermitente vermelho – pisca uma vez	Erro de parametrização	Configuração incorreta das propriedades da comunicação Profibus no mestre da rede.
Intermitente vermelho – pisca duas vezes	Indica erro na configuração Profibus	Indica que a quantidade de palavras de I/O (ou a ordem das palavras) ajustada no mestre está diferente da ajustada no equipamento.

2.2.2 Instalação da Rede Profibus

Para a ligação do inversor de frequência utilizando a interface ativa Profibus, os seguintes pontos devem ser observados:

Taxa de Comunicação

Não é necessário ajustar a taxa de comunicação do módulo Profibus, pois ele possui função autobaud e, portanto esta configuração é feita no mestre da rede.

Endereço

Todo dispositivo na rede Profibus, mestre ou escravo, é identificado na rede através de um endereço. Este endereço precisa ser diferente para cada equipamento. Valores válidos: 1 a 126.

Resistores de terminação

Para cada segmento da rede Profibus DP, é necessário habilitar um resistor de terminação nos pontos extremos do barramento principal. Conectores próprios para a rede Profibus que possuam chave para habilitação do resistor podem ser utilizados, mas a chave só deve ser habilitada (posição ON) caso o equipamento seja o primeiro ou último elemento do segmento. Vale destacar que, para que seja possível desconectar o elemento da rede sem prejudicar o barramento, é interessante a colocação de terminações ativas, que são elementos que fazem apenas o papel da terminação. Desta forma, qualquer equipamento na rede pode ser desconectado do barramento sem que a terminação seja prejudicada.

Cabos

É recomendado que a instalação seja feita com cabo do tipo A, cujas características estão descritas na tabela 2.10. O cabo possui um par de fios que deve ser blindado e trançado para garantir maior imunidade à interferência eletromagnética.

Impedância	135 a 165 Ω
Capacitância	30 pf/m
Resistência em loop	110 Ω/km
Diâmetro do cabo	> 0.64 mm
Seção transversal do fio	> 0.34 mm

A

Conectores

Existem diferentes modelos de conectores elaborados especificamente para aplicações em rede Profibus. Para o inversor de frequência CFW-11, é recomendado o uso de conectores com a ligação do cabo em 180 graus, pois, em geral, conectores com ligação em ângulos diferentes não podem ser utilizados devido às características mecânicas do produto.

Recomendações de instalação

O protocolo Profibus DP, utilizando meio físico RS485, permite a conexão de até 32 dispositivos por segmento, sem o uso de repetidores. Com repetidores, até 126 equipamentos endereçáveis podem ser conectados na rede. Cada repetidor também deve ser incluído como um dispositivo conectado ao segmento, apesar de não ocupar um endereço da rede.

É recomendado que a ligação de todos os dispositivos presentes na rede Profibus DP seja feita a partir do barramento principal. Em geral, o próprio conector da rede Profibus possui uma entrada e uma saída para o cabo, permitindo que a ligação seja levada para os demais pontos da rede. Derivações a partir da linha principal não são recomendadas, principalmente para taxas de comunicação maiores ou iguais a 1,5 Mbit/s.

Figura 2.3: Exemplo de instalação de rede Profibus DP

A passagem do cabo de rede Profibus DP deve ser feita separadamente (e se possível distante) dos cabos utilizados para alimentação da potência. Todos os equipamentos devem estar devidamente aterrados, preferencialmente na mesma ligação com o terra. A blindagem do cabo Profibus também deve ser aterrada. O próprio conector do equipamento já possui conexão com o terra de proteção e, desta forma, faz a ligação da blindagem ao terra quando o conector Profibus está ligado ao equipamento. Mas uma ligação melhor, feita por grampos de fixação entre a blindagem e um ponto de terra, também é recomendada.

2.2.3 Configuração do Módulo

Para configurar o módulo Profibus DP-V1 siga os passos indicados abaixo:

- Com o módulo instalado, durante a fase de reconhecimento, será exibida uma mensagem de aviso na HMI do produto e realizada a rotina de testes dos LEDs ST e OP. Após esta etapa, o LED ST do módulo deve acender sólido verde.
- Observe o conteúdo do parâmetro P0723. Veja se o módulo foi reconhecido. A detecção é feita de forma automática e não requer intervenção do usuário.
- Parametrize o equipamento conforme desejado para a aplicação:
 - Endereço: o endereço do equipamento é programado através do parâmetro P0725.
 - Configuração de I/O: no parâmetro P0727 configure a quantidade de palavras que deseja comunicar com o mestre da rede. Este mesmo valor deverá ser ajustado no mestre Profibus. Para que este ajuste esteja completo, é necessário programar um valor diferente de 0 para os parâmetros P0728 a P0739 (ver item 3).
- Uma vez parametrizado, caso algum dos parâmetros descritos no item anterior seja alterado, é necessário reiniciar o equipamento.

Uma vez programado o equipamento, é necessário configurar a comunicação no mestre da rede:

- Arquivo GSD: todo o elemento da rede Profibus DP possui um arquivo de configuração associado, com extensão GSD. Este arquivo descreve as características de cada equipamento, e é utilizado pela ferramenta de configuração do mestre da rede Profibus DP. Durante a configuração do mestre, deve-se utilizar o arquivo de configuração GSD fornecido juntamente com o equipamento. Este arquivo deve ser registrado no mestre da rede Profibus DP. O módulo será reconhecido como "Anybus CompactCom DPV1" na categoria "General".
- Programação dos dados de I/O: adicione o CFW-11 na lista de dispositivos do mestre, ajustando o número de palavras de I/O de acordo com o programado no P0727.

Se tudo estiver corretamente configurado, o LED OP do módulo acenderá em sólido verde. É nesta condição que ocorre efetivamente a troca de dados cíclicos entre o equipamento e o mestre da rede.

NOTA!

NOTA!

No software de configuração da rede Profibus, deve-se primeiro selecionar todas as palavras de entrada (*inputs*) para depois selecionar as palavras de saída (*outputs*), até a quantidade de palavras programada no P0727.

\bigcirc

 \checkmark

Para mais informações a respeito dos parâmetros citados acima consulte a seção 3.

2.2.4 Acesso aos Parâmetros – Mensagens acíclicas

O acessório de comunicação PROFIBUS-05 permite serviços de leitura/escrita em parâmetros através de funções acíclicas DP-V1. O mapeamento dos parâmetros é feito com base no endereçamento *slot* e *index*, conforme mostrado no equacionamento abaixo:

- Slot: (número do parâmetro 1) / 255.
- Index: (número do parâmetro 1) MOD 255.

Obs.: MOD representa resto da divisão inteira.

пь

2.3.1 Acessório ETHERNETIP-05 e ETHERNET-2P-05

Conector

O módulo para comunicação EtherNet/IP possui um conector RJ45 fêmea padrão (T-568A ou T-568B).

integrado).

módulo.

Indicações

EtherNet/IP define dois LEDs para indicação de estados, um para o módulo de comunicação (MS) e outro para a rede (NS).

Conector RJ45 padrão.

Interface certificada pela ODVA.

Item Ethernet-05: 10933688 (1 porta Ethernet).

Item Ethernet-2P-05: 12272760 (2 portas Ethernet com switch

Composto pelo módulo de comunicação Anybus ABCC-EIP, uma bula de instalação e uma chave torx para fixação do

O LED MS indica as condições do módulo em si. Ou seja, se ele está ou não apto a funcionar. A tabela abaixo mostra os estados possíveis:

Tabela 2.11: Estados do módulo EtherNet/IP

Estado	Descrição	Comentário
Apagado	Sem alimentação	-
Verde	Módulo controlado por um scanner em modo RUN	Neste estado ocorre efetivamente a troca de dados.
Intermitente verde	Não configurado ou scanner em modo IDLE	Neste estágio não há comunicação cíclica de dados com o mestre, ou scanner em modo IDLE.
Vermelho	Falha grave	Erro interno do módulo. Equipamento deve ser reinicializado.
Intermitente vermelho	Falha recuperável	Erro interno do módulo, mas o retorno ao estado normal ocorre automaticamente após corrigida a causa da falha.
Intermitente verde/vermelho	Equipamento realizando auto-teste	Ocorre durante a inicialização.

O LED NS indica as condições da rede EtherNet/IP.

Tabela 2.12: Estado da rede EtherNet/IP

Estado	Descrição	Comentário
Apagado	Sem alimentação ou sem endereço IP	Deve utilizar o software IPconfig para configurar o endereço do módulo de comunicação.
Verde	<i>Online</i> , conectado	Mestre alocou um conjunto de conexões do tipo I/O com o escravo. Nesta etapa ocorre efetivamente a troca de dados através de conexões do tipo I/O.
Intermitente verde	<i>Online</i> , não conectado	Neste estágio, ainda não há um conjunto de conexões do tipo I/O estabelecidas.
Vermelho	Falha grave ou endereço IP duplicado	Equipamento deve ser reinicializado para sair do estado de falha. Verificar os endereços IP na rede.
Intermitente vermelho	Uma ou mais conexões do tipo I/O expiraram	A troca de dados de I/O foi interrompida.
Intermitente verde/vermelho	Equipamento realizando auto-teste	Ocorre durante a inicialização.

O LED LINK indica o estado da conexão física da rede, bem como a atividade no barramento.

Tabela 2.13: Estado da conexão

Estado	Descrição	Comentário
Apagado	Sem Link	Sem conexão, sem atividade.
Verde	Link	Estabelecido link Ethernet, mas sem troca de dados.
Intermitente verde	Atividade no barramento	Indica efetivamente que há troca de telegramas com a rede.

2.3.2 Instalação da Rede Ethernet

Para a ligação do inversor de frequência utilizando a interface Ethernet, os seguintes pontos devem ser observados:

Taxa de Comunicação

As interfaces Ethernet dos cartões de comunicação Anybus-CC podem comunicar utilizando as taxas de 10 ou 100 Mbps, em modo *half* ou *full duplex*. Por padrão, os módulos estão configurados com detecção automática da taxa de comunicação.

MAC

Cada módulo Anybus-CC possui um MAC único, que é indicado em uma etiqueta presente na parte inferior do mesmo. Este MAC pode ser útil durante a etapa de configuração da interface, onde pode ser necessário fazer a diferenciação caso vários módulos sejam configurados simultaneamente, e deve ser anotado antes da sua instalação.

Endereço na rede Ethernet

Todo equipamento em uma rede Ethernet necessita de um endereço IP e de uma máscara de sub-rede.

O endereçamento IP é único na rede, e cada equipamento deve possuir um endereço IP diferente. A máscara da sub-rede serve para definir quais as faixas de endereço IP que são válidas na rede.

Estes atributos podem ser configurados automaticamente através de um servidor DHCP presente na rede, desde que esta opção esteja habilitada no módulo Anybus-CC.

Cabos

Para realizar a instalação, recomenda-se a utilização de cabos Ethernet blindados específicos para a utilização em ambiente industrial.

Recomendações de instalação

- Cada segmento de cabo deve ter no máximo 90 m.
- Deve-se utilizar um cabo direto para ligação do módulo a um concentrador (*switch*), ou um cabo cruzado (*cross-over*) para ligação direta entre o módulo e o PC/CLP.
- Quanto à topologia, existem dois modelos de cartão Anybus-CC: com uma ou duas portas Ethernet.
 - Para os modelos com uma porta, a topologia mais comum é em estrela, exatamente como é feito com redes de computadores. Neste caso, todos os equipamentos devem ser conectados a um concentrador (switch).

Figura 2.4: Topologia em estrela.

 Os modelos com duas portas possuem um switch integrado. Desta forma, além da ligação dos equipamentos em estrela para um concentrador, também é possível fazer a ligação em cadeia (*daisy chain*), permitindo uma topologia equivalente a um barramento.

Figura 2.5: Topologia em cadeia.

2.3.3 Configuração da Interface Ethernet

Para configurar a interface Ethernet dos módulos de comunicação, é necessário conectar o módulo a um PC para utilizar os seguintes programas:

HMS Anybus IPconfig

Este software é utilizado para programar o endereço IP do módulo. Ao executar este software, ele automaticamente fará uma varredura na rede com o objetivo de encontrar quais módulos estão conectados. Os módulos encontrados serão listados, mostrando as informações de endereço IP, sub-rede, gateway, etc. Se mais de um módulo for identificado, é necessário fazer a diferenciação através do MAC indicado na parte inferior do módulo Anybus-CC.

onfig					
∆ SN	GW	DHCP	Version	Туре	MAC
255.255.255.0	0.0.0	Off	2.05.3	Anybus-CC EtherN	00-30-11-04-A8-A3
				Scar	n Exit
	2007 fig / SN 255.255.255.0	2007fig SN GW 255,255,255,0 0.000	zonfig / SN GW DHCP 255:255.0 0.0.0.0 Of	2011fig / SN GW DHCP Version 255:255:255:0 0:0:0:0 0ii 2:05:3	zunffg / SN GW DHCP Version Type 255:255.255.0 0.0.0.0 Off 2.05.3 Anybus-CC EtherN

Figura 2.6: HMS Anybus IPconfig.

Para editar estas informações, basta clicar duas vezes no módulo desejado para que uma nova janela seja apresentada, onde é possível alterar estes campos.

Ethernet configura	ation	
IP address:	192 . 168 . 0 . 4	DHCP
Subnet mask:	255 . 255 . 255 . 0	OUn
		 Off
Default gateway:	0.0.0.0	
Primary DNS:	0.0.0.0	
Secondary DNS:	0.0.0.0	
Hostname:		
Password:		Change password
New password:		

Figura 2.7: Edição das informações no software IPconfig.

WEB Browser

Caso o endereço IP seja conhecido, é possível utilizar um navegador WEB para acessar as configurações e dados do módulo Anybus-CC. Digitando o endereço IP na barra de endereços do navegador, será apresentada uma página WEB com links para as configurações da interface ou para os dados do equipamento.

Nas configurações da interface, são apresentados diversos campos para programação do endereço IP, subrede, DHCP, dentre outros.

r connyuration	
P address:	192.168.0.4
Subnet mask:	255.255.255.0
Gateway:	0.0.0.0
Host name:	
Domain name:	
DNS1:	0.0.0
DNS2:	0.0.0.0
DHCP:	
	Store settings
SMTP Settings	
SMTP Settings SMTP Server:	
SMTP Settings SMTP Server: SMTP User: SMTP Decude	
SMTP Settings SMTP Server: SMTP User: SMTP Pswd:	Store settings
SMTP Settings SMTP Server: SMTP User: SMTP Pswd:	Store settings
SMTP Settings SMTP Server: SMTP User: SMTP Pswd: Ethernet Configuration	Store settings
SMTP Settings SMTP Server: SMTP User: SMTP Pswd: Ethernet Configuration Comm Settings:	Store settings

Figura 2.8: Página WEB de configuração da interface

Os dados mapeados nas áreas de entrada/saída (I/O) também podem sem acessados através do navegador WEB, através do link "Parameter Data". Através desta página, é possível ler os dados de monitoração, bem como alterar os dados de controle do equipamento.

	Any	bus-CC EtherNet/IP
	Number of p	Parameters per page: 10 Set
#	Parameter	¥alue
1	Logical Status	1536
2	Speed in 13 bits	0
3	Anybus-CC Control	0 Set
4	Anybus-CC Speed Ref.	0 Set
		1-4

Figura 2.9: Página WEB com dados de entrada/saída

NOTA!

Se houver comunicação cíclica entre o módulo e o mestre da rede, os dados de controle enviados pelo mestre sobrescreverão os dados enviados através desta página. Desta forma, os comandos enviados por esta página só serão executados caso o módulo esteja no estado offline.

2.3.4 Configuração da Comunicação

Para configurar e utilizar o módulo EtherNet/IP, siga os passos indicados abaixo:

- Com o módulo instalado, durante a fase de reconhecimento, será exibida uma mensagem de aviso na HMI do produto, e realizada a rotina de testes dos LEDs MS e NS. Após esta etapa, o LED MS deve acender sólido verde.
- Observe o conteúdo do parâmetro P0723. Veja se o módulo foi reconhecido. A detecção é feita de forma automática e não requer intervenção do usuário.
- Parametrize o equipamento conforme desejado para a aplicação:
 - Configuração do endereço IP e da taxa de comunicação são explicados no item 2.3.3.
 - Configuração de I/O: no parâmetro P0727 configure a quantidade de palavras que deseja comunicar com o mestre da rede. Este mesmo valor deverá ser ajustado no scanner EtherNet/IP. Para que este

ajuste esteja completo, é necessário programar um valor diferente de 0 para os parâmetros P0728 a P0739 (ver item 3).

 Uma vez parametrizado, caso algum dos parâmetros descritos no item anterior seja alterado, é necessário reiniciar o equipamento.

Uma vez programado o equipamento, é necessário configurar a comunicação no mestre da rede:

- Arquivo EDS: registre o arquivo EDS no software de configuração da rede. O arquivo de configuração EDS é fornecido em um CD juntamente com o produto.
- Para a configuração do mestre, além do endereço IP utilizado pelo módulo EtherNet/IP, é necessário indicar o número das instâncias de I/O e a quantidade de dados trocados com o mestre em cada instância. Para o módulo de comunicação EtherNet/IP, devem ser programados os seguintes valores:
 - Instância de entrada (input): 100
 - Instância de saída (output): 150
- O módulo EtherNet/IP é descrito na rede como "Generic Ethernet Module". Utilizando estas configurações é possível programar o mestre da rede para se comunicar com o equipamento.

Se tudo estiver corretamente configurado, o LED NS do módulo acenderá em sólido verde. É nesta condição que ocorre efetivamente a troca de dados cíclicos entre o escravo e o mestre da rede.

2.3.5 Acesso aos Parâmetros – Mensagens acíclicas

Além da comunicação dos dados cíclica, o protocolo EtherNet/IP também define um tipo de telegrama acíclico, utilizado principalmente em tarefas assíncronas tais como parametrização e configuração do equipamento. A tabela 2.6 traz a classe, instância e atributo para acesso dos parâmetros do equipamento.

2.4 MODBUS TCP

2.4.1 Acessório MODBUSTCP-05

- Item WEG: 11550476.
- Composto pelo módulo de comunicação Anybus ABCC-EIT, uma bula de instalação e uma chave torx para fixação do módulo.
- Conector RJ45 padrão.

Conector

O módulo para comunicação Modbus TCP possui um conector RJ45 fêmea padrão (T-568A ou T-568B).

Indicações

Modbus TCP define dois LEDs para indicação de estados, um para o módulo de comunicação (MS) e outro para a rede (NS).

O LED MS indica as condições do módulo em si. Ou seja, se ele está ou não apto a funcionar. A tabela 2.14 mostra os estados possíveis:

Estado	Descrição	Comentário
Apagado	Sem alimentação	-
Verde	Operação normal	-
Vermelho	Falha grave	Erro interno do módulo. Equipamento deve ser reinicializado.
Intermitente vermelho	Falha recuperável ou conflito de endereço IP	Erro interno do módulo, mas o retorno ao estado normal ocorre automaticamente depois de corrigida a causa da falha. Verificar endereços IP na rede.
Intermitente verde/vermelho	Equipamento realizando auto-teste	Ocorre durante a inicialização.

Tabela 2.14: Estados o	do módulo N	Modbus TCP
------------------------	-------------	------------

O LED NS indica as condições da rede Modbus TCP.

 Tabela 2.15: Estado da rede Modbus TCP

Estado	Descrição	Comentário
Apagado	Sem alimentação ou sem endereço IP	Deve utilizar o software lPconfig para configurar o endereço do módulo de comunicação.
Verde	Module is in Process Active or Idle state	-
Intermitente verde	Aguardando conexões	-
Vermelho	Falha grave ou conflito de endereço IP	Equipamento deve ser reinicializado para sair do estado de falha. Verificar endereços IP na rede.
Intermitente vermelho	Timeout	A troca de dados foi interrompida.
Intermitente verde/vermelho	Equipamento realizando auto-teste	Ocorre durante a inicialização.

O LED LINK indica o estado da conexão física da rede, bem como a atividade no barramento.

Tabela	2.16:	Estado	da	conexão

Estado	Descrição	Comentário
Apagado	Sem Link	Sem conexão, sem atividade.
Verde	Link	Estabelecido link ethernet, mas sem troca de dados entre mestre e escravo.
Intermitente verde	Atividade no barramento	Indica efetivamente que há troca de dados entre o mestre e o escravo.

2.4.2 Instalação da Rede Ethernet

Para a ligação do inversor de frequência utilizando a interface Ethernet, o item 2.3.2 deve ser consultado.

2.4.3 Configuração da Interface Ethernet

Para configurar a interface Ethernet dos módulos de comunicação, é necessário consultar o item 2.3.3.

2.4.4 Configuração da Comunicação

Para configurar e utilizar o módulo Modbus TCP, siga os passos indicados abaixo:

- Com o módulo instalado, durante a fase de reconhecimento, será exibida uma mensagem de aviso na HMI do produto, e realizada a rotina de testes dos LEDs MS e NS. Após esta etapa, o LED MS deve acender sólido verde.
- Observe o conteúdo do parâmetro P0723. Veja se o módulo foi reconhecido. A detecção é feita de forma automática e não requer intervenção do usuário.
- Parametrize o equipamento conforme desejado para a aplicação:
 - Configuração do endereço IP e da taxa de comunicação são explicados no item 2.3.3.
 - Configuração de I/O: no parâmetro P0727 configure a quantidade de palavras que deseja comunicar com o mestre da rede. Para que este ajuste esteja completo, é necessário programar um valor diferente de 0 para os parâmetros P0728 a P0739 (ver item 3).
- Uma vez parametrizado, caso algum dos parâmetros descritos no item anterior seja alterado, é necessário reiniciar o equipamento.

Uma vez programado o equipamento, é necessário configurar a comunicação no mestre da rede:

- Configure o mestre para acessar as palavras de I/O Anybus conforme o mapa de memória apresentado no item 2.4.5.
- Para configurar o timeout da comunicação e ordem dos bytes deve-se utilizar o WEB browser conforme figura 2.10.

IP Configuration	
IP address:	192.168.0.4
Subnet mask:	255.255.255.0
Gateway:	192.168.0.1
Host name:	
Domain name:	
DNS1:	0.0.0.0
DNS2:	0.0.0.0
DHCP:	
	Store settings
Ethernet Configuration	Store settings
	Store settings
Modbus Configuration	[cn
Connitmo (s):	bU
Process tmo (ms):	10
Word order:	Little-endian
	Store settings

Figura 2.10: Página WEB com configuração do timeout e ordem dos bytes

- O campo Comm tmo é utilizado para configurar o timeout de conexão TCP e o campo Process tmo permite programar o tempo para a detecção de erro de comunicação.
- O campo Word order configura a ordem dos *bytes* de cada palavra em *little endian* (último byte mais significativo) ou *big endian* (primeiro byte mais significativo).
- Conecte o cabo de rede no módulo.
- Se tudo estiver corretamente configurado, o LED NS do módulo acenderá em sólido verde e o LED LINK começará a piscar indicando atividade normal na rede.

NOTA!

Para mais informações a respeito dos parâmetros citados acima consulte a seção 3.

2.4.5 Endereçamento dos dados

Modbus TCP não define um canal de dados cíclicos dedicado como outras redes. Contudo, no módulo Anybus-CompactCom, as palavras de I/O podem ser acessadas pela rede através de registradores dedicados.

As palavras de I/O podem ser acessadas como bits (Coils e Discrete Inputs) ou como registradores de 16 bits (Holding Registers e Input Registers).

Os parâmetros do equipamento podem ser acessados somente como registradores do tipo Holding.

O mapeamento modbus é apresentado nas tabelas a seguir:

Faixa de endereço Des 0000h 00EEh Palavras de Escrita Anybu	scrição us.
0000h 00EEh Palavras de Escrita Anvhi	us.
	US
0100h 01FFh Palavras de Leitura Anybu	
0210h FFFFh Exemplo: Parâmetros do equipame Para encontrar o e correspondente ao parâm END = 210h + (Número F Exemplo: P0003 = 210h + (3h - 1h)	ento. endereço do registrador netro: Parâmetro -1)) = 212h

Tabela 2.17: Endereçamento para registradores do tipo Holding

Tabela 2.18: Endereçamento para registradores do tipo Input

Faixa de endereço	Descrição	
0000h 00FFh	Palavras de Leitura Anybus.	

Tabela 2.19: Endereçamento para bits do tipo Coil

Faixa de endereço	Descrição	
0000h 0FFFh	Palavras de Escrita Anybus.	

Tabela 2.20: Endereçamento para bits do tipo Discrete Input

Faixa de endereço de Bit	Descrição
0000h 0FFFh	Palavras de Leitura Anybus.

NOTA!

Escritas em palavras de leitura não terão efeito, e leitura de registradores não utilizados retornarão o valor zero.

2.5 PROFINET

 \checkmark

2.5.1 Acessório PROFINETIO-05

- Item WEG: 11550548.
- Composto pelo módulo de comunicação Anybus ABCC-PRT, uma bula de instalação e uma chave torx para fixação do módulo.
- 2 conectores RJ45 padrão.

Conector

O módulo para comunicação PROFINET IO possui dois conectores RJ45 fêmea padrão (T-568A ou T-568B). Apresenta *swicth* integrado possibilitando a ligação em cadeia (*daisy chain*).

Indicações

PROFINET IO define dois LEDs para indicação de estados, um para o módulo de comunicação (MS) e outro para a rede (NS). A figura 2.11 descreve os LEDs de indicação.

Figura 2.11: Descrição dos LEDs de indicação do módulo PROFINET IO

O LED MS(2) indica as condições do módulo em si. A tabela 2.21 mostra os estados possíveis:

Estado	Descrição	Comentários
Apagado	Sem alimentação	-
Verde	Operação normal	-
Intermitente verde – pisca uma vez	Diagnóstico presente	Não utilizado.
Intermitente verde – pisca duas vezes	Reconhecimento	Sinalização utilizada por uma ferramenta de engenharia para reconhecimento do equipamento na rede.
Vermelho	Falha grave	Erro interno na comunicação entre cartão Anybus-CC e o equipamento (Exception). Equipamento deve ser reinicializado.
Intermitente vermelho – pisca uma vez		Indica que a quantidade de palavras de I/O (ou a ordem das palavras) não foi corretamente configurada no mestre da rede.
Intermitente vermelho – pisca duas vezes	Endereço IP não configurado	Deve utilizar o software IPconfig para configurar o endereço do módulo de comunicação ou utilizar o mestre PROFINET para opção configuração automática do endereço IP.
Intermitente vermelho - pisca três vezes	Nome da estação não configurado	O equipamento deve ser configurado em uma rede PROFINET para que o nome da estação seja atribuído pelo mestre da rede.
Intermitente vermelho – pisca quatro vezes	Erro interno	Equipamento deve ser reinicializado.
Intermitente verde/vermelho	Equipamento realizando auto-teste	Ocorre durante a inicialização.

Tabela 2.21: Estados do modo de operação

O LED NS(1) indica as condições da rede PROFINET IO.

Tabela 2.22: Estado da rede PROFINET IO

Estado	Descrição	Comentário
Apagado	Offline	Módulo sem alimentação. Sem conexão com o mestre da rede.
Verde	Online (RUN)	Estabelecida conexão com o mestre da rede. Mestre da rede em RUN.
Intermitente verde	Online (STOP)	Estabelecida conexão com o mestre da rede. Mestre da rede em STOP.

O LED LINK(5 e 6) indica o estado da conexão física da rede, bem como a atividade no barramento.

Tabela 2.23: Estado da conexão

Estado	Descrição	Comentário
Apagado	Sem Link	Sem conexão, sem atividade.
Verde	Link	Estabelecido link ethernet, mas sem troca de dados entre mestre e escravo.
Intermitente verde	Atividade no barramento	Indica efetivamente que há troca de dados entre o mestre e o escravo.

2.5.2 Instalação da Rede Ethernet

Para a ligação do inversor de frequência utilizando a interface Ethernet, o item 2.3.2 deve ser consultado.

2.5.3 Configuração da Interface Ethernet

Para configurar a interface Ethernet dos módulos de comunicação, é necessário consultar o item 2.3.3.

2.5.4 Configuração da Comunicação

Para configurar e utilizar o módulo PROFINET IO, siga os passos indicados abaixo:

- Com o módulo instalado, durante a fase de reconhecimento, será exibida uma mensagem de aviso na HMI do produto, e realizada a rotina de testes dos LEDs MS e NS. Após esta etapa, o LED MS deve acender sólido verde.
- Observe o conteúdo do parâmetro P0723. Veja se o módulo foi reconhecido. A detecção é feita de forma automática e não requer intervenção do usuário.
- Parametrize o equipamento conforme desejado para a aplicação:
 - Configuração do endereço IP e da taxa de comunicação são explicados no item 2.3.3.

- Configuração de I/O: no parâmetro P0727 configure a quantidade de palavras que deseja comunicar com o mestre da rede. Exatamente este mesmo valor deverá ser ajustado no mestre PROFINET. Para que este ajuste esteja completo, é necessário programar um valor diferente de 0 para os parâmetros P0728 a P0739 (ver item 3).
- Uma vez parametrizado, caso algum dos parâmetros descritos no item anterior seja alterado, é necessário reiniciar o equipamento.

Uma vez programado o equipamento, é necessário configurar a comunicação no mestre da rede:

- Arquivo GSD: registre o arquivo GSD para PROFINET (GSDML) no software de configuração da rede. O arquivo de configuração GSD é fornecido em um CD juntamente com o produto. O módulo será reconhecido como "Anybus CompactCom PRT 2-Port" na categoria "General".
- Para a configuração do mestre os seguintes pontos devem ser observados:
 - A mesma quantidade de dados ajustada no escravo deve ser programada no mestre. Estes dados devem ser programados obedecendo a seguinte ordem: primeiro todas as palavras de entrada (*input*) e então todas as palavras de saída (*output*);
 - O endereço IP do escravo pode ser configurado manualmente (via IPconfig) ou atribuído automaticamente pelo mestre PROFINET (caso possua esta função);
 - Deve ser informada a topologia da rede, indicando exatamente as conexões entre os equipamentos PROFINET.

NOTA!

Para mais informações a respeito dos parâmetros citados acima consulte a seção 3.

2.5.5 Acesso aos Parâmetros – Mensagens acíclicas

Além da comunicação cíclica, o protocolo PROFINET também permite realizar requisições acíclicas utilizadas principalmente para transmitir dados de diagnóstico, parametrização e configuração do equipamento. Para o equipamento utilizando o módulo Anybus-CC, praticamente todos os parâmetros podem ser acessados através desta forma de comunicação.

O protocolo PROFINET define a seguinte estrutura para o endereçamento dos componentes utilizados na configuração da rede:

- AR (Application Relation);
- API (Application Process Identifier);
- Slot;
- Subslot.

O AR e API são utilizados para identificar o módulo Anybus-CC durante a etapa de configuração da rede. Slot/Subslot não são relevantes para acesso acíclico dos dados para o equipamento. Uma vez identificado o módulo, os parâmetros são acessados indicando o índice (Index) e o tamanho do dado (Length) acessado:

- Index: representa o número do parâmetro;
- Length: o tamanho dos dados acessados. Todos os parâmetros do equipamento são acessados como Word (2 bytes).

2.6 RS232

2.6.1 Acessório RS232-05

- Item WEG: 11008160.
- Composto pelo módulo de comunicação Anybus ABCC-RS232 (figura ao lado), uma bula de instalação e uma chave torx para fixação do módulo.
- Permite taxas de transmissão de até 57.6 kbps.

Pinagem do Conector

O módulo de interface RS232 possui um conector DB9 macho com a seguinte pinagem:

 Tabela 2.24: Pinagem do conector DB9 macho para RS232

Pino	Nome	Função
1	-	-
2	RxD	Recepção de dados RS232
3	TxD	Transmissão de dados RS232
4	-	-
5	GND	Referência (0 V) da interface
6	-	-
7	RTS	Requisição de transmissão (R equest To S end)
8	-	-
9	-	-

Indicações

LED PWR: LED verde. Quando aceso, indica que o módulo está alimentado.

Conexão com a Rede

Para a ligação do equipamento utilizando a interface passiva RS232, os seguintes pontos devem ser observados:

- Utilize cabos de boa qualidade, preferencialmente blindados.
- Mantenha o comprimento do cabo dentro dos limites estipulados pela norma, em geral da ordem de 10 m.
- Evite passá-lo próximo de cabos de potência e alimentação.

2.7 RS485

2.7.1 Acessório RS485-05

- Item WEG: 11008161.
- Composto pelo módulo de comunicação Anybus ABCC-RS485 (figura ao lado), uma bula de instalação e uma chave torx para fixação do módulo.
- Permite taxas de transmissão de até 57.6 kbps.

Pinagem do Conector

O módulo de interface RS485/422 possui um conector DB9 fêmea com a seguinte pinagem:

Tabela 2.25: Pinagem do conector DB9 fêmea para RS485/422

Pino	Modo RS422	Modo RS485	Função		
1	Term Pwr	Term Pwr	+5 V para terminação ativa (isolado)		
2	-	-	-		
3	-	-	-		
4	Mode Select	Mode Select	Não conectado: Modo RS485		
			Conectado ao GND: Modo RS422		
5	GND GND		Referência (0 V) do circuito de interface (isolado)		
6	RxD	-	Linha de recepção de dados (Modo RS422)		
7	RxD (invertido)	-	Não utilizado (Modo RS485)		
8	TxD	RxD/TxD	Linha de transmissão de dados (Modo RS422)		
9	TxD (invertido) RxD/TxD (invertido)		Linha de dados bidirecional (Modo RS485)		

Indicações

LED PWR: LED verde. Quando aceso, indica que o módulo está alimentado.

Conexão com a Rede

Para a ligação do equipamento utilizando a interface passiva RS485, os seguintes pontos devem ser observados:

- Utilize cabos blindados de boa qualidade.
- Mantenha o comprimento do cabo dentro dos limites estipulados pela norma, em geral da ordem de 1000 metros.
- Evitar passar os cabos de comunicação próximos de cabos de potência.
- Coloque resistores de terminação entre os fios dos sinais de dados (RxD/TxD e TxD/RxD) dos nodos das extremidades da rede. Isto evitará reflexões na linha.

3 PARAMETRIZAÇÃO

A seguir serão apresentados apenas os parâmetros do inversor de frequência CFW-11 que possuem relação direta com a comunicação.

3.1 SÍMBOLOS PARA DESCRIÇÃO DAS PROPRIEDADES

RO	Parâmetro somente de leitura
CFG	Parâmetro somente alterado com o motor parado
NET	Parâmetro visível através da HMI se o equipamento possuir interface de rede instalada – RS232, RS485, CAN, Anybus-CC, Profibus – ou se a interface USB for conectada

P0105 – SELEÇÃO 1ª/2ª RAMPA

P0220 – SELEÇÃO FONTE LOCAL/REMOTO

P0221 – SELEÇÃO REFERÊNCIA LOCAL

P0222 – SELEÇÃO REFERÊNCIA REMOTA

P0223 – SELEÇÃO GIRO LOCAL

P0224 – SELEÇÃO GIRA/PARA LOCAL

P0225 – SELEÇÃO JOG LOCAL

P0226 – SELEÇÃO GIRO REMOTO

P0227 – SELEÇÃO GIRA/PARA REMOTO

P0228 – SELEÇÃO JOG REMOTO

Estes parâmetros são utilizados na configuração da fonte de comandos para os modos local e remoto do produto. Para que o equipamento seja controlado através da interface Anybus-CC, deve-se selecionar uma das opções 'Anybus-CC' disponíveis nos parâmetros.

A descrição detalhada destes parâmetros encontra-se no manual de programação do inversor de frequência CFW-11.

P0313 – AÇÃO PARA ERRO DE COMUNICAÇÃO

Faixa de	0 = Inativo	Padrão: 1
Valores:	1 = Para por Rampa	
	2 = Desabilita Geral	
	3 = Vai para Local	
	4 = Vai para Local e mantém comandos e referência	
	5 = Causa Falha	
Propriedades	: CFG	
Grupo de ace	SSO 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	111 Estados/Comandos	

Descrição:

Este parâmetro permite selecionar qual a ação deve ser executada pelo equipamento, caso ele seja controlado via rede e um erro de comunicação seja detectado.

Opção	Descrição
0 = Inativo	Nenhuma ação é tomada, equipamento permanece no estado
	atual.
1 – Para por Bampa	O comando de parada por rampa é executado, e o motor para de
	acordo com a rampa de desaceleração programada.
2 = Desabilita Geral	O equipamento é desabilitado geral, e o motor para por inércia.
3 = Vai para Local	O equipamento é comandado para o modo local.
4 = Vai para Local e mantém comandos e referência	O equipamento é comandado para o modo local, mas os comandos de habilitação e a referência de velocidade recebidos via rede são mantidos em modo local, desde que o equipamento seja programado para utilizar, em modo local, comandos via HMI ou Start/Stop a 3 fios, e a referência de velocidade via HMI ou potenciômetro eletrônico.
5 = Causa Falha	No lugar de alarme, um erro de comunicação causa uma falha no equipamento, sendo necessário fazer o reset de falhas do equipamento para o retorno da sua operação normal.

Tabela 3.1: Opções para o parâmetro P0313

São considerados erros de comunicação os seguintes eventos:

Comunicação Anybus-CC:

- Alarme A129/Falha F229: Anybus-CC offline.
- Alarme A130/Falha F230: erro de acesso ao módulo Anybus-CC.

As ações descritas neste parâmetro são executadas através da escrita automática dos respectivos bits no parâmetro de controle da interface de rede que corresponde à falha detectada. Desta forma, para que os comandos escritos neste parâmetro tenham efeito, é necessário que o equipamento esteja programado para ser controlado pela interface de rede utilizada (com exceção da opção "Causa Falha", que bloqueia o equipamento mesmo que ele não seja controlado via rede). Esta programação é feita através dos parâmetros P0220 até P0228.

P0680 - ESTAI	DO LÓGICO
Ecivo do	
Valores:	
Propriedades:	RO
Grupo de aces	so 01 GRUPOS PARÂMETROS
via HMI:	L 49 Comunicação L 111 Estados/Comandos

Descrição:

Permite a monitoração do estado do equipamento. Cada bit representa um estado:

Bits	15	14	13	12	11	10	9	8	7	6	5	4	3 a 0
Função	Em Falha	Automático (PID)	Subtensão	LOC/REM	JOG	Sentido de Giro	Habilitado Geral	Motor Girando	Em Alarme	Em modo de configuração	Segunda Rampa	Parada Rápida Ativa	Reservado

Bits	Valores
Bits 0 a 3	Reservado.
Bit 4	0: Drive não possui comando de parada rápida ativo.
Parada Rápida Ativa	1: Drive está executando o comando de parada rápida.
	0: Drive está configurado para utilizar como rampa de aceleração e desaceleração para o motor a primeira
Bit 5	rampa, programada nos parâmetros P0100 e P0101.
Segunda Rampa	1: Drive está configurado para utilizar como rampa de aceleração e desaceleração para o motor a segunda
	rampa, programada nos parâmetros P0102 e P0103.
Bit 6	0: Drive operando normalmente.
Em Modo de Configuração	1: Drive em modo de configuração. Indica uma condição especial na qual o drive não pode ser habilitado:
	Executando rotina de autoajuste.
	Executando rotina de start-up orientado.
	Executando função copy da HMI.
	Executando rotina auto-guiada do cartao de memoria flash.
	Possui incompatibilidade de parametrização.
	Sem alimentação no circuito de potencia do drive.
Bit 7	0: Drive não está no estado de alarme
Em Alarme	1. Drive está no estado de alarme
2	Obs.: o número do alarme pode ser lido através do parâmetro P0048 – Alarme Atual.
Bit 8	0: Motor está parado
Motor Girando	1: Drive está girando o motor à velocidade de referência, ou executando rampa de aceleração ou
	desaceleração.
Bit 9	0: Drive está desabilitado geral.
Habilitado Geral	1: Drive está habilitado geral e pronto para girar motor.
Bit 10	0: Motor girando no sentido reverso.
Sentido de Giro	1: Motor girando no sentido direto.
Bit 11	0: Função JOG inativa.
JOG	1: Função JOG ativa.
Bit 12	0: Drive em modo local.
LOC/REM	1: Drive em modo remoto.
Bit 13	0: Sem subtensão.
Subtensão	1: Com subtensão.
Bit 14	0: Em modo manual (função PID).
Automático (PID)	1: Em modo automático (função PID).
Bit 15	0: Drive não está no estado de falha.
Em Falha	1: Alguma falha registrada pelo drive.
	Obs.: O número da falha pode ser lido através do parâmetro P0049 – Falha Atual.

Tabela 3.2: Funções dos bits para o parâmetro P0680

P0681 – VELOCIDADE DO MOTOR EM 13 BITS

Faixa de Valores:	- 32768 a 32767	Padrão: -
Propriedades:	RO	
Grupo de aces	so 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 111 Estados/Comandos	

Descrição:

Permite monitorar a velocidade do motor. Esta palavra utiliza resolução de 13 bits com sinal para representar a rotação síncrona do motor:

- P0681 = 0000h (0 decimal) \rightarrow velocidade do motor = 0
- P0681 = 2000h (8192 decimal) → velocidade do motor = rotação síncrona

Valores de velocidade intermediários ou superiores podem ser obtidos utilizando esta escala. Por exemplo, para um motor de 4 polos e 1800 rpm de rotação síncrona, caso o valor lido seja 2048 (0800h), para obter o valor em rpm deve-se calcular:

8192 => 1800 rpm 2048 => Velocidade em rpm
Velocidade em rpm = <u>1800 × 2048</u> 8192
Velocidade em rpm = 450 rpm

Valores negativos para este parâmetro indicam motor girando no sentido reverso de rotação.

P0686 – PALAVRA DE CONTROLE VIA ANYBUS-CC

Faixa de Valores:	0000h a FFFFh	Padrão: 0000h
Propriedades:	-	
Grupo de aces	so 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 111 Estados/Comandos	

Descrição:

Palavra de comando do equipamento via interface Anybus-CC. Este parâmetro somente pode ser alterado via interface Anybus-CC. Para as demais fontes (HMI, etc.) ele se comporta como um parâmetro somente de leitura.

Para que os comandos escritos neste parâmetro sejam executados, é necessário que o equipamento esteja programado para ser controlado via Anybus-CC. Esta programação é feita através dos parâmetros P0105 e P0220 até P0228.

Cada bit desta palavra representa um comando que pode ser executado no produto.

Bits	15 a 8	7	6	5	4	3	2	1	0
Função	Reservado	Reset de Falhas	Parada Rápida	Utiliza Segunda Rampa	LOC/REM	JOG	Sentido de Giro	Habilita Geral	Gira/Para

Tabela 3.3: Funções dos bits para o parâmetro P0686

Bits	Valores
Bit 0	0: Para motor por rampa de desaceleração.
Gira/Para	1: Gira motor de acordo com a rampa de aceleração até atingir o valor da referência de velocidade.
Bit 1	0: Desabilita geral o drive, interrompendo a alimentação para o motor.
Habilita Geral	1: Habilita geral o drive, permitindo a operação do motor.
Bit 2	0: Sentido de giro do motor oposto ao da referência (sentido reverso).
Sentido de Giro	1: Sentido de giro do motor igual ao da referência (sentido direto).
Bit 3	0: Desabilita a função JOG.
JOG	1: Habilita a função JOG.
Bit 4	0: Drive vai para o modo local.
LOC/REM	1: Drive vai para o modo remoto.
Bit 5	0: Drive utiliza como rampa de aceleração e desaceleração do motor os tempos da primeira rampa,
Utiliza Segunda Rampa	programada nos parâmetros P0100 e P0101.
	1: Drive utiliza como rampa de aceleração e desaceleração do motor os tempos da segunda rampa,
	programada nos parâmetros P0102 e P0103.
Bit 6	0: Não executa comando de parada rápida.
Parada Rápida	1: Executa comando de parada rápida.
	Obs.: quando o tipo de controle (P0202) for V/f ou VVW não se recomenda a utilização desta função.
Bit 7	0: Sem função.
Reset de Falhas	1: Se em estado de falha, executa o reset do drive.
Bits 8 a 15	Reservado.

P0687 – REFERÊNCIA DE VELOCIDADE VIA ANYBUS-CC

Faixa de	-32768 a 32767	Padrão: 0
Valores:		
Propriedades:	:-	
Grupo de aces	SSO 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 111 Estados/Comandos	

Descrição:

Permite programar a referência de velocidade para o motor via interface Anybus-CC. Este parâmetro somente pode ser alterado via Anybus-CC. Para as demais fontes (HMI, etc.) ele se comporta como um parâmetro somente de leitura.

Para que a referência escrita neste parâmetro seja utilizada, é necessário que o produto esteja programado para utilizar a referência de velocidade via Anybus-CC. Esta programação é feita através dos parâmetros P0221 e P0222.

Esta palavra utiliza resolução de 13 bits com sinal para representar a rotação síncrona do motor:

- P0687 = 0000h (0 decimal) \rightarrow referência de velocidade = 0
- P0687 = 2000h (8192 decimal) → referência de velocidade = rotação síncrona

Valores de velocidade intermediários ou superiores podem ser obtidos utilizando esta escala. Por exemplo, para um motor de 4 polos e 1800 rpm de rotação síncrona, caso deseje-se uma referência de 900 rpm, devese calcular:

1800 rpm => 8192 900 rpm => Referência em 13 bits	
	1
Referencia em 13 bits = 900×8192 1800	
Referência em 13 bits = 4096	=> Valor correspondente a 900 rpm na escala em 13 bit

Este parâmetro também aceita valores negativos para inverter o sentido de rotação do motor. O sentido de rotação da referência, no entanto, depende também do valor do bit 2 da palavra de controle – P0686:

- Bit 2 = 1 e P0686 > 0: referência para o sentido direto
- Bit 2 = 1 e P0686 < 0: referência para o sentido reverso</p>
- Bit 2 = 0 e P0686 > 0: referência para o sentido reverso
- Bit 2 = 0 e P0686 < 0: referência para o sentido direto</p>

P0695 – VALOR PARA AS SAÍDAS DIGITAIS

Faixa de Valores:	00000b a 11111b	Padrão: 00000b
Propriedades:	-	
Grupo de aces	SSO 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 111 Estados/Comandos	

Descrição:

Possibilita o controle das saídas digitais através das interfaces de rede (Serial, CAN, etc.). Este parâmetro não pode ser alterado através da HMI.

Cada bit deste parâmetro corresponde ao valor desejado para uma saída digital. Para que a saída digital correspondente possa ser controlada de acordo com este conteúdo, é necessário que sua função seja programada para "Conteúdo P0695", nos parâmetros P0275 a P0279.

0

para D01

Valor

1

para DO2

Valor

Tabela 3.4: Funções dos bits para o parâmetro P0695

Bits	Valores
Bit 0	0: saída DO1 aberta.
Valor para DO1	1: saída DO1 fechada.
Bit 1	0: saída DO2 aberta.
Valor para DO2	1: saída DO2 fechada.
Bit 2	0: saída DO3 aberta.
Valor para DO3	1: saída DO3 fechada.
Bit 3	0: saída DO4 aberta.
Valor para DO4	1: saída DO4 fechada.
Bit 4	0: saída DO5 aberta.
Valor para DO5	1: saída DO5 fechada.
Bits 5 a 15	Reservado.

P0696 – VALOR 1 PARA SAÍDAS ANALÓGICAS

P0697 – VALOR 2 PARA SAÍDAS ANALÓGICAS

P0698 – VALOR 3 PARA SAÍDAS ANALÓGICAS

P0699 – VALOR 4 PARA SAÍDAS ANALÓGICAS

Faixa de Valores:	-32768 a 32767	Padrão: 0
Propriedades:	-	
Grupo de aces	SSO 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 111 Estados/Comandos	

Descrição:

Possibilita o controle das saídas analógicas através das interfaces de rede (Serial, CAN, etc.). Estes parâmetros não podem ser alterados através da HMI.

O valor escrito nestes parâmetros é utilizado como valor para a saída analógica, desde que a função da saída analógica desejada seja programada para "Conteúdo P0696 / P0697 / P0698 / P0699", nos parâmetros P0251, P0254, P0257 ou P0260.

O valor deve ser escrito em uma escala de 15 bits (7FFFh = 32767)¹ para representar 100 % do valor desejado para a saída, ou seja:

- P0696 = 0000h (0 decimal) \rightarrow valor para a saída analógica = 0 %
- P0696 = 7FFFh (32767 decimal) \rightarrow valor para a saída analógica = 100 %

Neste exemplo foi mostrado o parâmetro P0696, mas a mesma escala é utilizada para o parâmetro P0697 / P0698 / P0699. Por exemplo, deseja-se controlar o valor da saída analógica 1 através da serial. Neste caso deve fazer a seguinte programação:

- Escolher um dos parâmetros P0696, P0697, P0698 ou P0699 para ser o valor utilizado pela saída analógica 1. Neste exemplo, vamos escolher o P0696.
- Programar, na função da saída analógica 1 (P0254), a opção "Conteúdo P0696".

¹ Para a resolução real da saída, consulte o manual do produto.

Padrão: -

Através da interface de rede, escrever no P0696 o valor desejado para a saída analógica 1, entre 0 e 100 %, de acordo com a escala do parâmetro.

UPD

NOTA!

Caso a saída analógica seja programada para operar de -10 V até 10 V, valores negativos para estes parâmetros devem ser utilizados para comandar as saídas com valores negativos de tensão, ou seja, -32768 até 32767 representa uma variação de -10 V até 10 V na saída analógica.

P0723 – IDENTIFICAÇÃO DA ANYBUS

Faixa de () a 25	
Valores:		
Propriedades: F	RO	
Grupo de acess	0	01 GRUPOS PARÂMETROS
via HMI:		∟49 Comunicação
		L 114 Anybus

Descrição:

Permite identificar o modelo do módulo Anybus-CC conectado ao CFW-11.

Opções	Modelo
0 = Inativo	Nenhum módulo de comunicação instalado
1 = RS232	Módulo passivo RS232
2 = RS422	Módulo passivo RS485/422 instalado e
	configurado para RS422
3 = USB	Módulo passivo USB
4 = Serial Server	Módulo passivo Serial Server (Ethernet)
5 = Bluetooth	Módulo passivo Bluetooth
6 = Zigbee	Módulo passivo Zigbee
7 = WLAN	Módulo passivo WLAN
89 = Reservado	Reservado para uso futuro
10 = RS485	Módulo passivo RS485/422 instalado e
	configurado para RS485
1115 = Reservado	Reservado para uso futuro
16 = Profibus DP	Módulo ativo Profibus DP
17 = DeviceNet	Módulo ativo DeviceNet
18 = CANopen	Módulo ativo CANopen
19 = EtherNet/IP	Módulo ativo EtherNet/IP
20 = CC-Link	Módulo ativo CC-Link
21 = Modbus TCP	Módulo ativo Modbus TCP
22 = Modbus RTU	Módulo ativo Modbus RTU
23 = PROFINET IO	Módulo ativo PROFINET IO
24 = Reservado	Reservado para uso futuro
25 = Reservado	Reservado para uso futuro

Tabela 3.5: Valores para o P0723

P0724 – ESTADO DA COMUNICAÇÃO ANYBUS

Faixa de	0 = Inativo	Padrão: -
Valores:	1 = Não suportado	
	2 = Erro de acesso	
	3 = Offline	
	4 = Online	
Propriedades:	: NET	
Grupo de aces	sso 01 GRUPOS PARÂMETROS	
via HMI:	∟49 Comunicação	
	L 114 Anybus	

Descrição:

Fornece informações do estado do módulo de comunicação.

Padrão: 0

Tabela 3.6: Funções dos bits para o parâmetro P0724

Estados	Descrição
0 = Inativo	Sem módulo de comunicação Anybus-CC detectado.
1 = Não suportado	Módulo Anybus-CC detectado não é suportado pelo CFW-11.
2 = Erro de Acesso	Detectado problema no acesso aos dados entre o equipamento e o módulo de comunicação Anybus-CC.
3 = Offline	Comunicação com problemas. Não há troca de dados cíclica com o mestre.
4 = Online	Comunicação normal. Troca de dados cíclica e acíclica efetiva entre o CFW-11 e o mestre da rede.

P0725 – ENDEREÇO DA ANYBUS

Faixa de	0 a 255		
Valores:			
Propriedades:	CFG		
Grupo de aces	SO	01 GRUPOS PARÂMETF	ROS
via HMI:		∟49 Comunicação	
		L 114 Anvbus	

Descrição:

Permite configurar o endereço do CFW-11 na rede. A faixa de endereçamento varia de acordo com o protocolo utilizado. Para DeviceNet o limite superior é 63 (0 a 63) e para Profibus é 126 (1 a 126). Para EtherNet/IP, Modbus TCP e PROFINET IO, o endereçamento dos nodos é feito através do software HMS AnyBus IPconfig, e segue as regras do Internet Protocol (IP).

Para detalhes sobre a configuração do módulo EtherNet/IP, Modbus TCP e PROFINET IO consulte a seção 2.3.3.

P0726 – TAXA	DE CON	IUNICAÇÃO DA ANYBUS	
Faixa de Valores:	0 a 3		Padrão: 0
Propriedades:	CFG		
Grupo de aces	sso	01 GRUPOS PARÂMETROS	
via HMI:		L 49 Comunicação L 114 Anybus	

Descrição:

Permite programar o valor desejado para a taxa de comunicação do módulo Anybus-CC. Esta taxa deve ser igual para todos os equipamentos conectados na rede e varia de acordo com o protocolo utilizado.

- DeviceNet: 0 = 125 kbps, 1 = 250 kbps, 2 = 500 kbps e 3 = autobaud.
- Profibus²: autobaud (taxa de comunicação definida pelo mestre).
- EtherNet/IP, Modbus TCP ou PROFINET IO²: 10/100 Mbps half ou full-duplex (configuração através do próprio servidor WEB do módulo).

² Parâmetro não visível na HMI.

P0727 – PALAVRAS I/O ANYBUS

Faixa de	1 = Configuração Flexível	Padrão: 2
Valores:	2 = 2 Palavras	
	3 = 3 Palavras	
	4 = 4 Palavras	
	5 = 5 Palavras	
	6 = 6 Palavras	
	7 = 7 Palavras	
	8 = 8 Palavras	
	9 = Cartão PLC11	
Propriedades:	CFG	
Grupo de aces	so 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 114 Anybus	

Descrição:

Para a opção 1 - Configuração Flexível:

Permite que a quantidade de palavras de I/O seja configurada pelo usuário, possibilitando que o tamanho da área de leitura (entrada – *input*) e escrita (saída – *output*) seja diferente. Utilizando esta opção, duas palavras de leitura e duas de escritas já estão pré-definidas. São elas:

Leitura #1 Anybus = P0680 (Estado Lógico) Leitura #2 Anybus = P0681 (Velocidade em 13 bits)

Escrita #1 Anybus = P0686 (Controle Anybus-CC) Escrita #2 Anybus = P0687 (Referência de Velocidade Anybus-CC)

O tamanho total da área de entrada e da área de saída que será comunicado com o mestre da rede também dependerá da programação dos parâmetros P0728 a P0739:

- P0728 ... P0733: além das duas palavras de leitura pré-definidas, também será adicionado à área de leitura as palavras programadas nestes parâmetros, caso o conteúdo programado para estes parâmetros seja diferente de zero. O primeiro parâmetro programado como zero desabilita a utilização dos demais parâmetros na sequência.
- P0734 ... P0739: além das duas palavras de escrita pré-definidas, também será adicionado à área de escrita as palavras programadas nestes parâmetros, caso o conteúdo programado para estes parâmetros seja diferente de zero. O primeiro parâmetro programado como zero desabilita a utilização dos demais parâmetros na sequência.

Para as opções de 2 a 8 palavras:

Permite programar a quantidade de palavras de I/O que serão trocadas com o mestre da rede. Duas palavras de leitura e duas de escritas já estão pré-definidas. São elas:

Leitura #1 Anybus = P0680 (Estado Lógico) Leitura #2 Anybus = P0681 (Velocidade em 13 bits)

Escrita #1 Anybus = P0686 (Controle Anybus-CC) Escrita #2 Anybus = P0687 (Referência de Velocidade Anybus-CC)

Demais palavras de leitura e escrita são definidas pelos parâmetros P728 a P739. Para estas opções a quantidade de palavras de entrada (*input*) é sempre igual à quantidade de palavras de saída (*output*), independente da programação nos parâmetros P0728 até P0739.

Para a opção 9 - Cartão PLC11:

Caso esta opção seja selecionada, a quantidade de palavras de I/O comunicadas com o mestre, bem como o conteúdo de cada palavra, deve ser configurada utilizando o software de programação do cartão PLC11 – WLP. Neste caso, não existirão palavras pré-definidas, e os parâmetro P0728 a P0739 não possuirão função.

Data type	Address	Tag	Add
1 %UW: User Parameter	1490	PLC Parameter	
%MX: Bit Marker	6500		Del
			Up
			Down
utputs (Master->Board)		Tee	
utputs (Master->Board) Data type	Address	Tag PLC Parameter	Add
Utputs (Master->Board) Data type %UW: User Parameter %UW: User Parameter	Address 1499 1498	Tag PLC Parameter PLC Parameter	Add
Utputs (Master->Board) Data type 2011 2012 User Parameter 2012 2014 User Parameter 2014 2014 Word Marker 2014 Word Marker	Address 1499 1498 8401 8402	Tag PLC Parameter PLC Parameter	Add
tiputs (Master->Board) Data type 2UW: User Parameter 2UW: User Parameter 2WW: Word Marker 2MW: Word Marker 2MX: Bit Marker	Address 1499 1498 8401 8402 6516	Tag PLC Parameter PLC Parameter	Add Del Up
tputs (Master->Board) Data type 2UW: User Parameter 2UW: User Parameter 2MW: Word Marker 2MW: Word Marker 2MM: Bit Marker 2MM: Bit Marker	Address 1499 1498 8401 8402 6516 6532	Tag PLC Parameter PLC Parameter	Add Del Up Down
tputs (Master>Board) Data type %UW: User Parameter %UW: User Parameter %MW: Word Marker %MW: Word Marker %MX: Bit Marker %MX: Bit Marker	Address 1499 1498 8401 8402 6516 6532	Tag PLC Parameter PLC Parameter	Add Del Up Down
utputs (Master>Board) Data type 20.0%: User Parameter 20.0%: User Parameter 20.0%: Word Marker 20.0%: Set Marker 20.0%: Bit Marker 20.0%: Retentive Word Marker	Address 1499 1498 8401 8402 6516 6532	Tag PLC Parameter PLC Parameter	Add Del Up Down
utputs (Master>Board) Data type ZUW: User Parameter ZUW: User Parameter ZUW: User Parameter ZUW: User Parameter ZMW: Word Marker ZMM: Bet Marker WW: Retentive Word Marker	Address 1499 1498 8401 8402 6516 6532 r: 8200 839 8400 8999	Tag PLC Parameter PLC Parameter PLC Parameter	Add Del Up Down

Figura 3.1: Exemplo de programação dos dados de I/O utilizando o software WLP

Para mais informações sobre esta função, consulte a documentação do software WLP.

NOTA!

Após download da configuração das palavras de I/O através do WLP, o equipamento deve ser desligado e ligado novamente.

P0728 – LEITURA #3 ANYBUS

P0729 – LEITURA #4 ANYBUS P0730 – LEITURA #5 ANYBUS

P0731 – LEITURA #6 ANYBUS

P0732 – LEITURA #7 ANYBUS

P0733 – LEITURA #8 ANYBUS

Faixa de	0 a 1499	Padrão: 0 (desabilitado)
valores:		
Propriedades:	CFG	
Grupo de aces	so 01 GRUPOS PARÂMETROS	
via HMI:	L 49 Comunicação	
	L 114 Anybus	

Descrição:

Estes parâmetros permitem ao usuário programar a leitura via rede de qualquer outro parâmetro do equipamento³. Ou seja, eles contêm o número de um outro parâmetro.

Por exemplo, P0728 = 5. Neste caso será enviado via rede o conteúdo do P0005 (frequência do motor). Deste modo, na posição de memória do PLC correspondente à terceira palavra de leitura, será lida a freqüência do motor.

NOTA!

Caso o cartão PLC11 seja utilizado, também é possível programar parâmetros do cartão PLC11 para serem transmitidos via Anybus-CC.

Estes parâmetros não são utilizados caso P0727 = 9 (Cartão PLC11). Neste caso, a programação dos dados transmitidos e recebidos via rede é feita através do software WLP.

³ Exceto parâmetro P0000 que é considerado inválido.

Padrão: 0 (desabilitado)

P0734 – ESCRITA #3 ANYBUS

P0735 – ESCRITA #4 ANYBUS

P0736 – ESCRITA #5 ANYBUS

P0737 – ESCRITA #6 ANYBUS

P0738 – ESCRITA #7 ANYBUS

P0739 – ESCRITA #8 ANYBUS

 Faixa de
 0 a 1499

 Valores:
 Propriedades: CFG

 Grupo de acesso
 01 GRUPOS PARÂMETROS

 via HMI:
 L 49 Comunicação

<u>49 Comunicaçao</u> L 114 Anybus

Descrição:

Estes parâmetros permitem ao usuário programar a escrita via rede de qualquer outro parâmetro do equipamento⁴. Ou seja, eles contêm o número de um outro parâmetro.

Por exemplo, P0734 = 100. Neste caso será enviado via rede o conteúdo a ser escrito no P0100. Deste modo, a posição de memória do PLC correspondente à terceira palavra de escrita, deve conter o valor para o P0100.

NOTA!

Caso o cartão PLC11 seja utilizado, também é possível programar parâmetros do cartão PLC11 para serem transmitidos via Anybus-CC.

Estes parâmetros não são utilizados caso P0727 = 9 (Cartão PLC11). Neste caso, a programação dos dados transmitidos e recebidos via rede é feita através do software WLP.

P0799 – ATRASO ATUALIZAÇÃO I/O

Faixa de	0.0 a 999	9.0	
Valores:			
Propriedades:	CFG		
Grupo de aces	so (01 GRUPOS PA	ARÂMETROS
via HMI:		L 49 Com	unicação
		∟111	Estados/Comandos

Descrição:

Permite programar o tempo de atraso para atualização dos dados mapeados nas palavras de escrita (informações recebidas pelo equipamento) via rede de comunicação Profibus DP, Devicenet, CANopen e interface Anybus. O tempo de atraso é acionado na transição do estado do equipamento na rede de offline para online⁵, conforme figura 3.2.

Padrão: 0.0

⁴ Exceto parâmetro P0000 que é considerado inválido.

⁵ Para esta função, online representa o estado onde ocorre a troca de dados de I/O cíclicos de operação entre os equipamentos da rede.

Online	Offline		Online
		Atraso	
	Não atualiza palavi	as de escrita	Atualiza palavras de escrita

Figura 3.2: Atraso na atualização das palavras de I/O

4 FALHAS E ALARMES RELACIONADOS COM A COMUNICAÇÃO SERIAL

A129/F229 – MÓDULO ANYBUS-CC OFFLINE

Descrição:

Indica interrupção na comunicação Anybus-CC. Módulo de comunicação foi para o estado offline.

Atuação:

Atua quando por algum motivo há uma interrupção na comunicação entre o CFW-11 e o mestre da rede.

Neste caso será sinalizada através da HMI a mensagem de alarme A129 – ou falha F229, dependendo da programação feita no P0313. Para alarmes, esta indicação desaparecerá automaticamente no momento em que a condição que causou o erro também deixar de existir.

Ocorre somente após o equipamento estar online.

Possíveis Causas/Correção:

- Verificar se o mestre da rede está configurado corretamente e operando normalmente.
- Verificar curto-circuito ou mau contato nos cabos de comunicação.
- Verificar se os cabos não estão trocados ou invertidos.
- Dependendo da interface, verificar se resistores de terminação com valores corretos foram colocados somente nos extremos do barramento principal.
- Verificar a instalação da rede de maneira geral passagem dos cabos, aterramento.

A130/F230 – ERRO DE ACESSO AO MÓDULO ANYBUS-CC

Descrição:

Indica erro de acesso ao módulo de comunicação Anybus-CC.

Atuação:

Atua quando o cartão de controle não consegue ler informações do módulo ou quando houver incompatibilidade de hardware.

Neste caso será sinalizada através da HMI a mensagem de alarme A130 ou falha F230, dependendo da programação feita no P0313. É necessário desligar e ligar novamente o equipamento para que uma nova tentativa de acesso ao cartão Anybus-CC seja feita.

Possíveis Causas/Correção:

- Verificar se o módulo Anybus-CC está corretamente encaixado no conector XC44.
- Verificar se os parâmetros de configuração da interface Anybus-CC não possuem valores inválidos para o tipo de módulo conectado, ou se a quantidade de palavras de I/O programadas excede o limite permitido para o módulo.
- Certificar-se de que não existem dois opcionais (cartão WEG e módulo Anybus-CC passivo) simultaneamente instalados contendo a mesma interface (RS232 ou RS485). Neste caso o cartão opcional WEG terá preferência sobre o módulo Anybus-CC, que permanecerá desabilitado indicando A130.

WEG Drives & Controls - Automação LTDA. Jaraguá do Sul – SC – Brasil Fone 55 (47) 3276-4000 – Fax 55 (47) 3276-4020 São Paulo – SP – Brasil Fone 55 (11) 5053-2300 – Fax 55 (11) 5052-4212 automacao@weg.net www.weg.net