

Manual Técnico

I.	ı	Introdução	4 -
II.	ı	Modelos Eletrônicos	5 -
	1.	Bebedouro BLUESKY ELETRONIC	5 -
:	2.	Bebedouro DURABRAND ELETRONIC	7 -
;	3.	Bebedouro ZAYT ELETRONIC	9 -
4	4.	Bebedouro MANANCIAL DA SAÚDE ELETRÔNICO	11 -
	5.	Bebedouro ELETRONIC	
(ŝ.	Bebedouro ELETRONIC TURBO	
-	7.	Bebedouro FRESH ELETRONIC	
	3.	Bebedouro FRESH ELETRONIC TURBO	
	9.	Bebedouro ICY ELETRÔNICO	
	ء. 10.		
	10.	Fullicador de Agua ELETRONICO	23 -
III.		Características das Unidades	26 -
	1.	Vista das Unidades	26 -
:	2.	Funcionamento	
	_	2.1 Princípio de funcionamento	
		2.2 Estado de Refrigeração Plena	
		2.3 Estado de Refrigeração Parcial	
		÷ ,	
•	3.	Montagem e Desmontagem da Unidade	
		3.2 Montagem	
	4.		
		4.1 Teste de detecção de vazamento com ar	
		4.2 Teste de detecção de vazamento com água	
į	5.	Módulo Peltier	35 -
	;	5.1 Testes no Módulo Peltier	35 -
(3 .	NTC	
		6.1 Teste para determinar o β(BETA) do NTC	40 -
	(6.2 Tabela de Valores de Resistência x Temperatura dos NTCs	40 -
•	7.		
		7.1 GCH-A	
		7.2 GCH-187.3 GCH-18A	_
		7.4 S126AM12/S126XF2	
		7.5 GCH-28	
		7.6 GCH-28B	
	•	7.7 HYS120-12E	60 -
		7.8 HYS120-12B	
		7.9 GCH-A23	
		7.10 Teste Elétrico na Fonte	
8	3.	Combinações entre Reservatórios, NTCs e Fontes de Tensão	65 -
(9.	Dissipadores de Calor Interno	
	,	9.1 Verificação e manutenção do dissipador interno	67 -

10.	 Dissipadores de Calor Externo	
11.	. Ventiladores	70 -
12.		
13.		
	•	
IV.	Partes Mecânicas	
1.	Separador de Água	
2.	Mangueiras	75 -
3.	Suportes das torneiras	75 -
4.	Torneiras	75 -
5.	Abraçadeiras	75 -
6.	Manifold	75 -
7.		
٧.	Modificações Recentes	- 77 -
VI.		
	Sanitização	
1.	Bebedouros	
2.	Purificadores	
	2.1 Substituição de liitio	01 -
VII.	Problemas, Causas e Soluções	82 -
VIII.	Apêndice	84 -
1.	Instrumentos	84 -
	1.1 Pontas de Prova	
	1.2 Voltímetro	
	1.3 Amperimetro	
	1.5 Ferro de solda	
	1.6 Sugador de Solda	
	1.7 Termômetro	
	1.8 Torquímetro	
	1.9 Graxa Dissipadora	
	1.10 Pasta Térmica	
	1.11 Cola Quente	
	1.12 Rolo para Passar Pasta Térmica	
	1.13 Álcool Isopropílico	87 -
IX.	Imagens	89 -
X	Tahelas	- 91 -

I. Introdução

A MASTERFRIO sempre trabalha para fornecer produtos que operem no mais perfeito estado e nas condições em que foram projetados para atuarem.

Este manual é direcionado a ajudar o técnico nos processos de manutenção e resolução de eventuais problemas que possam surgir nos BEBEDOUROS e PURIFICADORES ELETRÔNICOS, afim de aumentar a longevidade dos equipamentos produzidos pela MASTERFRIO.

Estarão detalhadas características de funcionamento, explicações sobre os componentes, testes a serem feitos, problemas detectados, possíveis causas, ações e soluções.

A MASTERFRIO sempre busca desenvolver os seus produtos para, cada vez mais, melhorá-los e adequálos às exigências dos nossos consumidores. Por este fato este manual estará sempre em constante modificação, ganhando novos procedimentos, novas técnicas, componentes, e tecnologias que serão eventualmente incorporados aos equipamentos da MASTERFRIO. Para se manter atualizados, os técnicos terão acesso a uma área restrita na página da MASTERFRIO na Internet, onde serão colocadas todas as atualizações sobre produtos, processos, tecnologias empregadas, e tudo mais necessário para que nossas assistências técnicas possam dar o suporte requerido por nossos consumidores finais.

Por mais abrangente que esse manual seja, sempre haverá defeitos, problemas e detalhes que não serão aqui relatados, portanto, a MASTERFRIO conta com a colaboração de todos para detectar e nos informar possíveis defeitos, problemas e situações não abordadas neste manual.

Nossos contatos são:

MASTERFRIO IND. COM. DE REFRIGERAÇÃO LTDA. RUA CARDOSO QUINTÃO, 691 – THOMÁS COELHO

RIO DE JANEIRO – RJ – CEP: 21381-460

SAC: 0800 7220112

ENDEREÇO ELETRÔNICO: suportesac@masterfrio.com.br

TEL / FAX: (21) 2127-0123

PÁGINA NA INTERNET: www.masterfrio.com.br

II. Modelos Eletrônicos

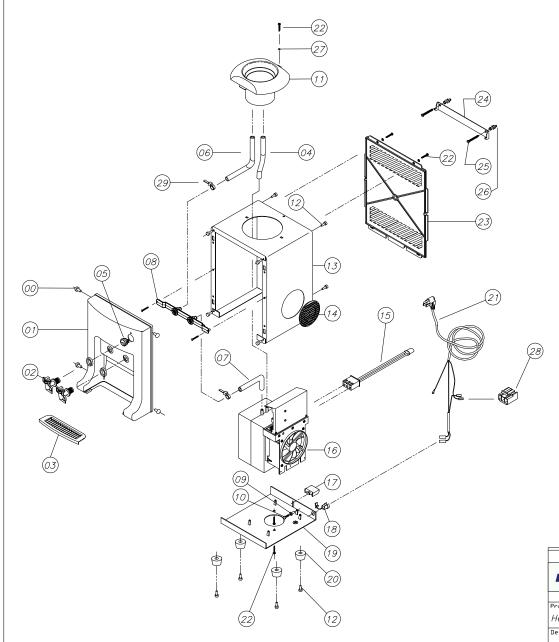

1. Bebedouro BLUESKY ELETRONIC

Figura I: Bebedouro BLUESKY ELETRONIC

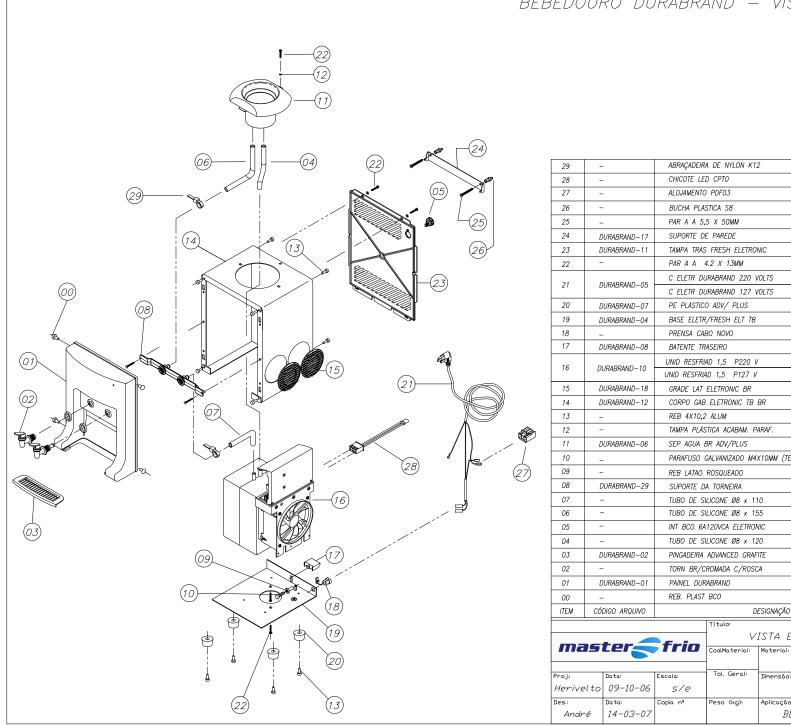
T	
Volume	0,7 l
Unidade	CD0,7-S
Alimentação	127 ou 220 V
Potência	70 W
Peso	4 Kg
Dimensões (AxLxP)	425x300x300 mm
Módulo Peltier	TEC1-12705
	TEC1-12706
Condições de uso	Interno (IPX0)

BEBEDOURO BLUESKY ELETRONIC

29	-	ABRAÇADEIRA DE NYLON K12	24126	02	
28	-	ALOJAMENTO PDF03	21522	01	
27	-	TAMPA PLÁSTICA ACABAM. PARAF. 34059			
26	-	BUCHA PLASTICA S8	24213	02	
25	_	PAR A A 5,5 X 50MM 22114			
24	BSELET-13	SUPORTE DE PAREDE	32343	01	
23	BSELET-11	TAMPA TRAS ELETRONIC 34195			
22	-	PAR. AA 4.2 x 13MM	22103	07	
21	BSELET-05	C ELETR BIVOLT	21324	01	
20	BSELET-07	PE PLASTICO ADV/ PLUS	34137	04	
19	BSELET-04	BASE REFRIG. ELETRONIC	31726	0:	
18	=	PRENSA CABO NOVO	21306	0:	
17	BSELET-08	BATENTE TRASEIRO	34152	0:	
16	205157 40	UNID RESFRIAD ELETRONIC 220 V	22512	0	
10	BSELET-10	UNID RESFRIAD ELETRONIC 127 V	22510	0	
15	-	CHICOTE LED CPTO	21327	0	
14	BSELET-14	4 GRADE LAT ELETRONIC		0	
13	BSELET-12	CORPO GAB ELETRONIC BR		0	
12	-	REB 4X10,2 ALUM	22503	1:	
11	BSELET-06	-06 SEP AGUA BR ADV/PLUS		0	
10	-	PARAFUSO GALVANIZADO M4X10MM (TERRA)	22120	0	
09	-	REB LATAO ROSQUEADO	22513	0	
08	BSELET-22	SUPORTE DA TORNEIRA	34216	0	
07	-	TUBO DE SILICONE Ø8 x 110mm	14420	0	
06	-	TUBO DE SILICONE Ø8 x 155mm	14420	0	
05	-	INT BCO 6A12OVCA ELETRONIC	21511	0	
04	-	- TUBO DE SILICONE Ø8 x 120mm		0	
03	BSELET-02 PINGADEIRA ELETRONIC		34194	0	
02	-	TORN BLUE SKY ELETRONIC	24156	02	
01	BSELET-01	PAINEL ELETRONIC	34198	0	
		REB. PLAST BCO	24124	0.	
00	-	NED. FLAST DOU	24124	U4	

			Título:			Cod.F	eça:		Quant:	
mactou Chio				ISTA EXPLODIDA					C	01
master frio			Cod.Material:	Material:						
Proj.:	Data:	Escala:	Tol. Geral:	Dimensão:	Obs.:					
Herivelto	21/12/06				Isent	o de	rebarbas			
Des.:	Data:	Copia nº	Peso (kg):	Aplicação:				10-01-08	0001-08	
ANDRE	21/12/06			BEBEDOURO 1	BL UE:	SKY	ELET	Data:	NA:	Aprov.:

2. Bebedouro DURABRAND ELETRONIC


Figura II: Bebedouro DURABRAND ELETRONIC

Volume	1,5
Unidade	CD1,5-S
Alimentação	127 ou 220 V
Potência	70 W
Peso	4 Kg
Dimensões (AxLxP)	425x300x320 mm
Módulo Peltier	TEC1-12705 TEC1-12706
Condições de uso	Interno (IPX0)

10-01-08 0001-08

NA: Aprov.

Data:

ITEM	CÓDIGO ARQUIVO	DESIGNAÇÃO	CÓDIGO ALMX.	QUA
00	-	REB. PLAST BCO 24124		08
01	DURABRAND-01	PAINEL DURABRAND	34128	01
02	-	TORN BR/CROMADA C/ROSCA 24175		02
03	DURABRAND-02	PINGADEIRA ADVANCED GRAFITE	34134	01
04	_	TUBO DE SILICONE Ø8 x 120 14420		01
05	_	INT BCO 6A120VCA ELETRONIC	21511	
06	_	TUBO DE SILICONE Ø8 x 175	14420	01
07	- DONABNAND-29	TUBO DE SILICONE Ø8 x 110	14420	01
08	DURABRAND-29	SUPORTE DA TORNEIRA	34216	01
09	_	REB LATAO ROSQUEADO	22513	0:
10		PARAFUSO GALVANIZADO M4X10MM (TERRA)	22120	01
11	DURABRAND-06	SEP AGUA BR ADV/PLUS 34142		01
12	_	TAMPA PLÁSTICA ACABAM. PARAF. 34059		0:
13	DOTABILAND 12	REB 4X10,2 ALUM 22503		12
14	DURABRAND-12	CORPO GAB ELETRONIC TB BR	31747	01
15	DURABRAND-18	GRADE LAT ELETRONIC BR	34196	02
16	DURABRAND-10	UNID RESFRIAD 1,5 P220 V UNID RESFRIAD 1,5 P127 V	21518 21517	01
17 DURABRAND-08 BATENTE TRASEIRO			34152	01
18	-	PRENSA CABO NOVO	21306	01
19	DURABRAND-04	BASE ELETR/FRESH ELT TB	31746	01
20	DURABRAND-07	PE PLASTICO ADV/ PLUS	34137	04
		C ELETR DURABRAND 127 VOLTS	21325	01
21	DURABRAND-05	C ELETR DURABRAND 220 VOLTS	21326	01
22	-	PAR A A 4.2 X 13MM	22103	07
23	DURABRAND-11	TAMPA TRAS FRESH ELETRONIC	34195	01
24	DURABRAND-17	SUPORTE DE PAREDE	32343	01
25	_	PAR A A 5,5 X 50MM	22114	02
26	-	BUCHA PLASTICA S8	24213	02
27	-	ALOJAMENTO PDF03 21522		
28	-	CHICOTE LED CPTO	21327	01
29	-	ABRAÇADEIRA DE NYLON K12	24126	02

VISTA EXPLODIDA

BEBEDOURO DURABRAND

Aplicação:

Escala:

Copia nº

Data:

14-03-07

André

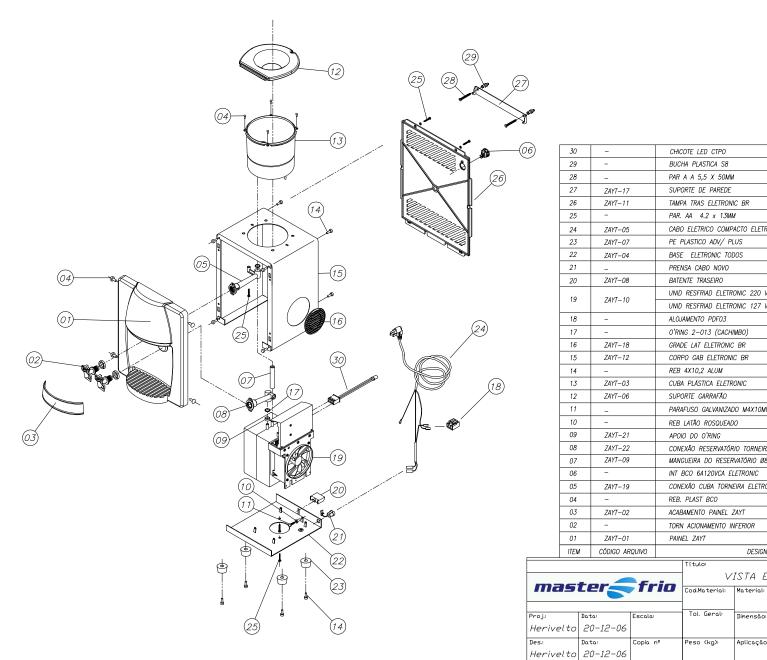
5/e

Peso (kg):

3. Bebedouro ZAYT ELETRONIC

Figura III: Bebedouro ZAYT

Volume	0,7
Unidade	CD0,7-S
Alimentação	127 ou 220 V
Potência	70 W
Peso	4 Kg
Dimensões (AxLxP)	395x308x300 mm
Módulo Peltier	TEC1-12705
	TEC1-12706
Condições de uso	Interno (IPX0)


01

Data: NA: Aprov.:

Isento de rebarbas

BEBEDOURO ZAYT

BEBEDOURO ZAYT

30	30 – CHICOTE LED CTPO		21327	01
29	-	- BUCHA PLASTICA S8		02
28	-	PAR A A 5,5 X 50MM	22114	02
27	ZAYT-17	SUPORTE DE PAREDE	32343	01
26	ZAYT-11	TAMPA TRAS ELETRONIC BR	34195	01
25	-	PAR. AA 4.2 x 13MM	22103	05
24	ZAYT-05	CABO ELETRICO COMPACTO ELETRONICO BIVOLT	21324	01
23	ZAYT-07	PE PLASTICO ADV/ PLUS	34137	04
22	ZAYT-04	BASE ELETRONIC TODOS	31726	01
21	_	PRENSA CABO NOVO	21306	01
20	ZAYT-08	BATENTE TRASEIRO	34152	01
19	74VT 10	UNID RESFRIAD ELETRONIC 220 V	21512	01
19	ZAYT-10	UNID RESFRIAD ELETRONIC 127 V	21510	01
18	-	ALOJAMENTO PDF03		01
17	-	O'RING 2-013 (CACHIMBO)	24217	01
16	ZAYT-18	GRADE LAT ELETRONIC BR		01
15	ZAYT-12	CORPO GAB ELETRONIC BR	31732	01
14	-	REB 4X10,2 ALUM	22503	12
13	ZAYT-03	CUBA PLÁSTICA ELETRONIC	34197	01
12	12 ZAYT-06 SUPORTE GARRAFÃO		34134	01
11	11 _ PARAFUSO GALVANIZADO M4X10MM (TERRA)		22120	01
10	-	REB LATÃO ROSQUEADO	22513	01
09	ZAYT-21	APOIO DO O'RING	34203	01
08	ZAYT-22	CONEXÃO RESERVATÓRIO TORNEIRA	40001	01
07	ZAYT-09	MANGUEIRA DO RESERVATÓRIO Ø8x55mm	14420	01
06	-	INT BCO 6A120VCA ELETRONIC	21511	01
05	ZAYT-19 CONEXÃO CUBA TORNEIRA ELETRONIC		34205	01
04	- REB. PLAST BCO		24124	08
03	ZAYT-02	ZAYT-02 ACABAMENTO PAINEL ZAYT		01
02	-	TORN ACIONAMENTO INFERIOR	24156	01
01	ZAYT-01	PAINEL ZAYT	34132	01
ITEM	CÓDIGO ARQUIVO	DESIGNAÇÃO	CÓDIGO ALMX.	QUANT.
	·	Título: Cod	d.Peça: Quan	t.:

VISTA EXPLODIDA

Dimensão:

Aplicação:

Tol. Geral:

Peso (kg):

Data:

Copia nº

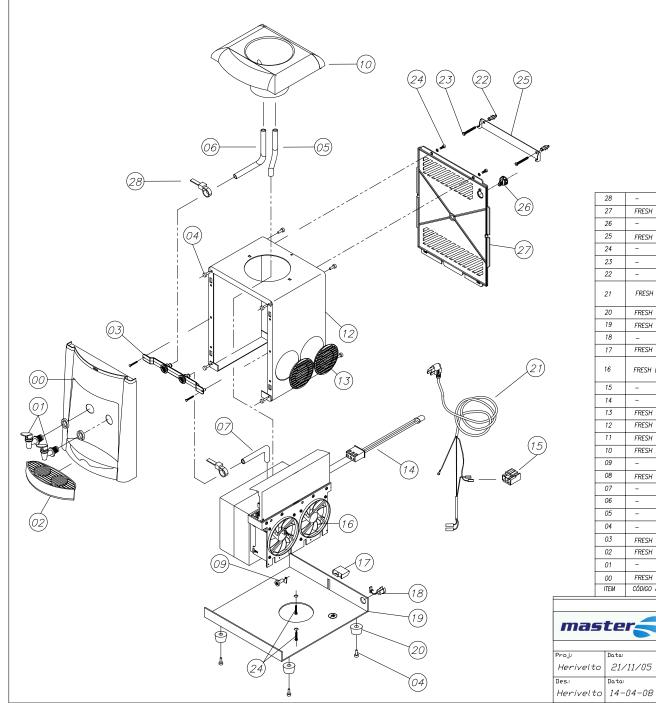

4. Bebedouro MANANCIAL DA SAÚDE ELETRÔNICO

Figura IV: Bebedouro MANANCIAL DA SAÚDE ELETRÔNICO

Volume	1,5 l
Unidade	CD1,5-D
Alimentação	127 ou 220 V
Potência	110 W
Peso	3,8 Kg
Dimensões (AxLxP)	440x310x340 mm
Módulo Peltier	TEC1-12705
	TEC1-12706
Condições de uso	Interno (IPX0)

VISTA EXPLODIDA BEBEDOURO MANANCIAL

		Título: Cor	l.Peça:	Quan	L .
		BRANCO	INOX	QUAN	
		PAINEL FRESH	34160	34204	01
01	-	TORN BR/CROMADA C/ROSCA	24175	24175	02
02	FRESH ELET-02	PINGADEIRA FRESH ELETRONIC	34123	34123	01
03	FRESH ELET-23	SUPORTE DA TORNEIRA	34216	34216	01
10B0 DE		REB 4X10.2 ALUM	22503	22503	12
05	_	TUBO DE SILICONE Ø8 x 120	14420	14420	0
06	 -	TUBO DE SILICONE Ø8 x 110 TUBO DE SILICONE Ø8 x 155	14420 14420	14420 14420	0
07	FRESH ELET-22	CHICOTE CHAVE COMUTADORA LINEAR	21329	21329	-
08		REB LATAO ROSQUEADO	22513	22513	0
09	FRESH ELEI-US	SEP FRESH/ ICY BRANCO			0
10	FRESH ELET-22 FRESH ELET-05	CHAVE CUMUTADORA LINEAR (127/220)	21525 34161	21525 34184	0
12		CORPO GAB FRESH ELET 220	31733	32356	0
13	FRESH ELET-13 FRESH ELET-11	GRADE LAT ELETRONIC	34196	34201	0.
14		CHICOTE LED CPTO	21327	21327	0
15	-	ALOJAMENTO PDF3-03	21522	211522	0
45		UNID RESFRIAD 1,5 P127 V	21517	21517	0
16	FRESH ELET-09	UNID RESFRIAD 1,5 P220 V	21518	21518	0
17	FRESH ELET-07	BATENTE TRASEIRO (ADV)	34152	34152	0
18	-	PRENSA CABO NOVO	21306	21306	0
19	FRESH ELET-03	BASE ELETRONIC TODOS	31726	31726	0
20	FRESH ELET-06	PE PLASTICO ADV/ PLUS	34137	34137	0
		C ELETR ELETRONIC 127 V	21318	21318	0
21	FRESH ELET-04	C ELETR ELETRONIC 220 V	21319	21319	0
22	-	BUCHA PLASTICA S8	24213	24213	0.
23	-	PAR A A 5,5 X 50MM	22114	22114	0.
24	-	PAR A A 4.2 X 13MM	22103	22103	0
25	FRESH ELET-12	SUPORTE DE PAREDE	32343	32343	0
26	-	INT BCO 6A120VCA ELETRONIC	21511	21514	0
27	FRESH ELET-10	TAMPA TRAS ELETRONIC	34195	34200	0
28		ABRAÇADEIRA DE NYLON K12	24126	24126	02

VISTA EXPLODIDA

300X437X325mm

BEBEDOURO MANANCIAL

Data: NA: Aprov.:

Dimensão:

Aplicação:

frio Cod.Material: Material:

Peso (kg):

5/e

Copia nº

Data:

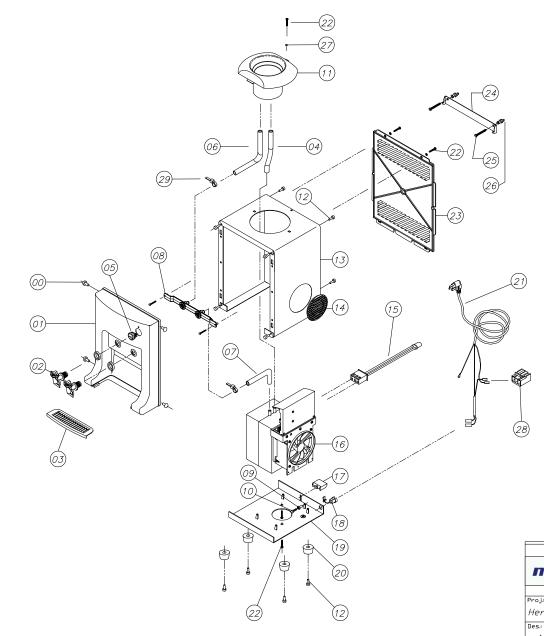

5. Bebedouro ELETRONIC

Figura V: Bebedouro ELETRONIC

Volume	0,7 ou 1,5 l
Unidade	CD0,7-S ou CD1,5-S
Alimentação	127 ou 220 V
Potência	70 W
Peso	3,8 Kg
Dimensões (AxLxP)	425x300x320 mm
Módulo Peltier	TEC1-12705 TEC1-12706
Condições de uso	Interno (IPX0)

BEBEDOURO ELETRONIC

29	-	ABRAÇADEIRA DE NYLON K12	24126	02
28	-	ALOJAMENTO PDF03	21522	01
27	-	TAMPA PLÁSTICA ACABAM. PARAF.	34059	01
26	-	BUCHA PLASTICA S8	24213	02
25	-	PAR A A 5,5 X 50MM	22114	02
24	ELET-17	SUPORTE DE PAREDE	32343	01
23	ELET-11	TAMPA TRAS ELETRONIC	34195	01
22	-	PAR. AA 4.2 x 13MM	22103	07
21	ELET-05	C ELETR BIVOLT	21324	01
20	ELET-07	PE PLASTICO ADV/ PLUS	34137	04
19	ELET-04	BASE REFRIG. ELETRONIC	31726	01
18	-	PRENSA CABO NOVO	21306	01
17	ELET-08	BATENTE TRASEIRO	34152	01
16	51.57 40	UNID RESFRIAD ELETRONIC 220 V	22512	01
16	ELET-10	UNID RESFRIAD ELETRONIC 127 V	22510	01
15	-	CHICOTE LED CPTO	21327	01
14	ELET-14	GRADE LAT ELETRONIC	34196	01
13	ELET-12	CORPO GAB ELETRONIC BR	31732	01
12	_	REB 4X10,2 ALUM	22503	12
11	ELET-06	SEP AGUA BR ADV/PLUS	34142	01
10	_	PARAFUSO GALVANIZADO M4X10MM (TERRA)	22120	01
09	_	REB LATAO ROSQUEADO	22513	01
08	ELET-25	SUPORTE DA TORNEIRA	34216	01
07	-	TUBO DE SILICONE Ø8 x 110mm	14420	01
06	-	TUBO DE SILICONE Ø8 x 155mm	14420	01
05	-	INT BCO 6A120VCA ELETRONIC	21511	01
04	-	TUBO DE SILICONE Ø8 x 117mm	14420	01
03	ELET-02	PINGADEIRA ELETRONIC	34194	01
02	-	TORN BLUE SKY ELETRONIC	24156	02
01	ELET-01	PAINEL ELETRONIC	34198	01
00	_	REB. PLAST BCO	24124	04
ITEM	CÓDIGO ARQUIVO	DESIGNAÇÃO	CÓDIGO ALMX.	QUANT

			Título:			Cod.Peça:		Peça: Q		
	t	fuin		ISTA EX	KPL0DIDA				(01
IIIdS	ter =	ITIU	Cod.Material:	Material:						
Proj.:	Data:	Escala:	Tol. Geral:	Dimensão		□bs.:				
Herivelto	21/12/06					Isent	o de rebarbas			
Des.:	Data:	Copia nº	Peso (kg):	Aplicação:				10-01-08	0001-08	
ANDRE	21/12/06				<i>BEBEDOURO</i>	ELE	TRONIC	Data:	NA:	Aprov.

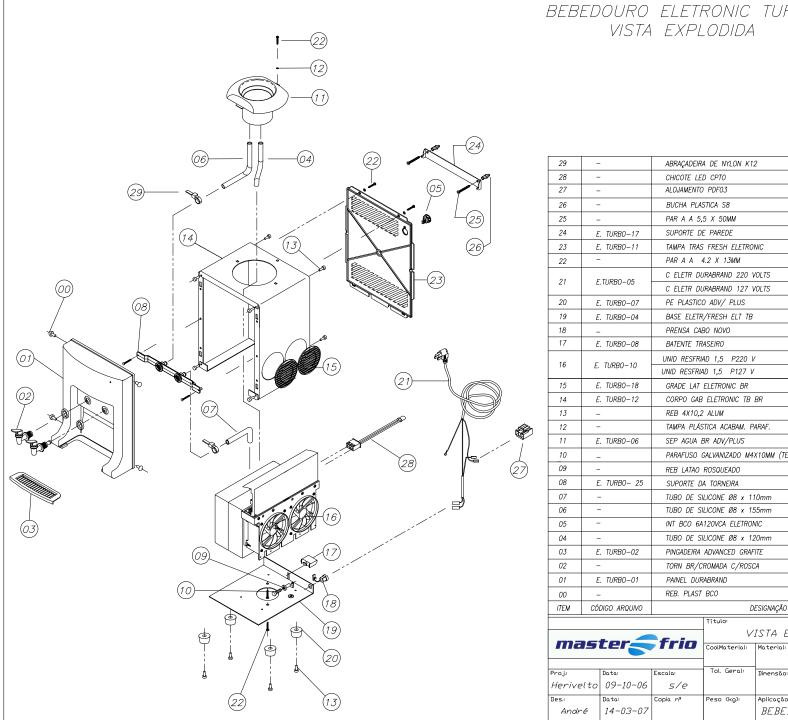

6. Bebedouro ELETRONIC TURBO

Figura VI: Bebedouro ELETRONIC TURBO

Volume	1,5 L
Unidade	CD1,5-D
Alimentação	127 ou 220 V
Potência	110 W
Peso	4 Kg
Dimensões (AxLxP)	425x300x320 mm
Módulo Peltier	TEC1-12705
	TEC1-12706
Condições de uso	Interno (IPX0)

BEBEDOURO ELETRONIC TURBO VISTA EXPLODIDA

		Título:	Cod.Peça:	Quant:	
ITEM	CÓDIGO ARQUIVO	DESIGNAÇÃO	CÓDIGO ALMX.	QUANT.	
00	_	REB. PLAST BCO	24124	08	
01	E. TURBO-01	PAINEL DURABRAND	34128	01	
02	-	TORN BR/CROMADA C/ROSCA	24175	02	
03	E. TURBO-02	PINGADEIRA ADVANCED GRAFITE	34134	01	
04	_	TUBO DE SILICONE Ø8 x 120mm	14420	01	
05	-	INT BCO 6A12OVCA ELETRONIC	21511	01	
06	_	TUBO DE SILICONE Ø8 x 155mm	14420	01	
07	-	TUBO DE SILICONE Ø8 x 110mm	14420	01	
08	E. TURBO- 25	SUPORTE DA TORNEIRA	34216	01	
09	_	REB LATAO ROSQUEADO	22513	01	
10	_	PARAFUSO GALVANIZADO M4X10MM (TERRA)	22120	01	
11	E. TURBO-06	SEP AGUA BR ADV/PLUS	34142	01	
12	_	TAMPA PLÁSTICA ACABAM. PARAF.	34059	01	
13	_	REB 4X10,2 ALUM 22503		12	
14	E. TURB0-12	CORPO GAB ELETRONIC TB BR	31747	01	
15	E. TURB0-18	GRADE LAT ELETRONIC BR	34196	02	
16	E. TURBO-10	UNID RESFRIAD 1,5 P127 V	21517	01	
10	5 711999 45	UNID RESFRIAD 1,5 P220 V	21518	01	
17	E. TURBO-08	BATENTE TRASEIRO	34152	01	
18	_	PRENSA CABO NOVO	21306	01	
19	E. TURBO-04	BASE ELETR/FRESH ELT TB	31746	01	
20	E. TURBO-07	PE PLASTICO ADV/ PLUS	34137	04	
21	E.TURBO-05	C ELETR DURABRAND 127 VOLTS	21325	01	
		C ELETR DURABRAND 220 VOLTS	21326	01	
22	-	PAR A A 4.2 X 13MM	22103	07	
23	E. TURBO-11	TAMPA TRAS FRESH ELETRONIC	34195	01	
24	E. TURB0-17	SUPORTE DE PAREDE	32343	01	
25	_	PAR A A 5,5 X 50MM	22114	02	
26	_	BUCHA PLASTICA S8 24213			
27	_	ALOJAMENTO PDF03 21522			
28	_	CHICOTE LED CPTO 21327			
29	_	ABRAÇADEIRA DE NYLON K12	24126	02	

VISTA EXPLODIDA

BEBEDOURO ELETRONIC TURBO

Dimensão:

Aplicação:

Tol. Geral:

Peso (kg):

Escala:

Copia nº

Data:

14-03-07

5/e

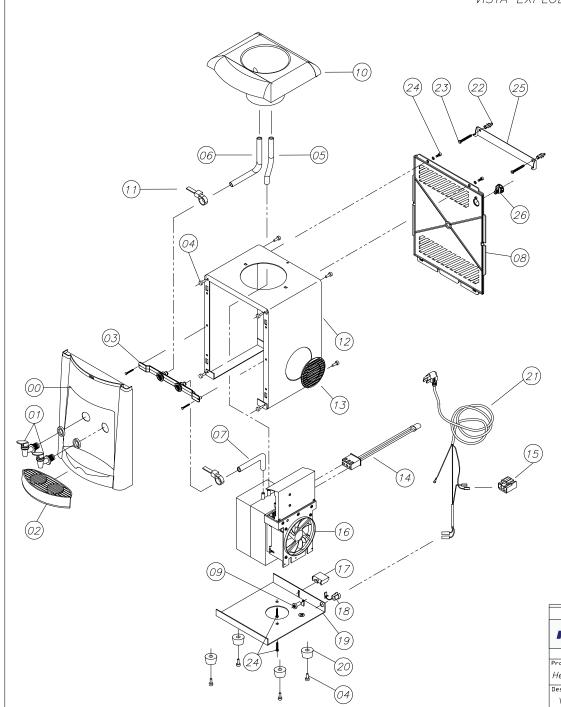

7. Bebedouro FRESH ELETRONIC

Figura VII: Bebedouro FRESH ELETRONIC

Volume	1,5
Unidade	CD1,5-S
Alimentação	127 ou 220 V
Potência	70 W
Peso	3,8 Kg
Dimensões (AxLxP)	440x310x340 mm
Módulo Peltier	TEC1-12705 TEC1-12706
Condições de uso	Interno (IPX0)

VISTA EXPLODIDA BEBEDOURO FRESH ELETRONIC

26	-	INT BCO 6A120VCA ELETRONIC	21511	21514	01
25	FRESH ELET-12	SUPORTE DE PAREDE	32343	32343	01
24	-	PAR A A 4.2 X 13MM	22103	22103	06
23	-	PAR A A 5,5 X 50MM	22114	22114	02
22	-	BUCHA PLASTICA S8	24213	24213	02
21	FRESH ELET-04	C ELETR ELETRONIC 220 V	21319	21319	01
21	7712077 2227 07	C ELETR ELETRONIC 127 V	21318	21318	01
20	FRESH ELET-06	PE PLASTICO ADV/ PLUS	34137	34137	04
19	FRESH ELET-03	BASE ELETRONIC TODOS	31726	31726	01
18	-	PRENSA CABO NOVO	21306	21306	01
17	FRESH ELET-07	BATENTE TRASEIRO (ADV)	34152	34152	01
16	FRESH ELET-09	UNID RESF. ELET. 0,7 220 V	22512	22512	01
10	FRESH ELEI-U9	UNID RESF. ELET. 0,7 127 V	22510	22510	01
15	-	ALOJAMENTO PDF3-03	21522	211522	01
14	-	CHICOTE LED CPTO	21327	21327	01
13	FRESH ELET-13	GRADE LAT ELETRONIC	34196	34201	01
12	FRESH ELET-11	CORPO GAB FRESH ELET 220	31733	32356	01
11	-	ABRAÇADEIRA DE NYLON K12	24126	24126	02
10	FRESH ELET-05	SEP FRESH/ ICY BRANCO	34161	34184	01
09	-	REB LATAO ROSQUEADO	22513	22513	01
08	FRESH ELET-10	TAMPA TRAS ELETRONIC	34195	34200	01
07	-	TUBO DE SILICONE Ø8 x 110	14420	14420	01
06	-	TUBO DE SILICONE Ø8 x 155	14420	14420	01
05	-	TUBO DE SILICONE Ø8 x 120	14420	14420	01
04	-	REB 4X10,2 ALUM	22503	22503	12
03	FRESH ELET-23	SUPORTE DA TORNEIRA	34216	34216	01
02	FRESH ELET-02	PINGADEIRA FRESH ELETRONIC	34123	34123	01
01	-	TORN BR/CROMADA C/ROSCA	24175	24175	02
00	FRESH ELET-01	PAINEL FRESH	34160	34204	01
ІТЕМ	CÓDIGO ARQUIVO	DESIGNAÇÃO	BRANCO	INOX	QUAN

			Título:			Cod.Peça:		Quant:	
	ter=	fuin		ISTA EXPLODIDA					
IIIds	LEI		Cod.Material:	Material:					
Proj.:	Data:	Escala:	Tol. Geral:	Dimensão:	Obs.:				
Herivelto	21/11/05	s/e	±0,2						
Des.:	Data:	Copia nº	Peso (kg):	Aplicação:					
VICTOR	21/11/05		BEB. FRESH ELETRONIC		Data:	NA:	Aprov.		

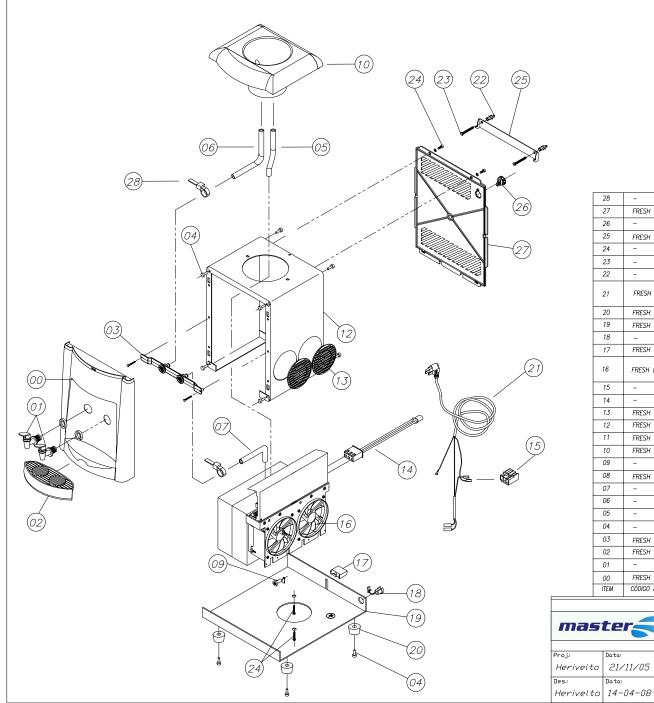

8. Bebedouro FRESH ELETRONIC TURBO

Figura VIII: Bebedouro FRESH ELETRONIC TURBO

Volume	1,5
Unidade	CD1,5-D
Alimentação	127 ou 220 V
Potência	110 W
Peso	4 Kg
Dimensões (AxLxP)	425x300x320 mm
Módulo Peltier	TEC1-12705 TEC1-12706
Condições de uso	Interno (IPX0)

VISTA EXPLODIDA BEBEDOURO FRESH TURBO

28 27	FRESH ELET-10	ABRAÇADEIRA DE NYLON K12 TAMPA TRAS ELETRONIC	24126 34195	24126 34200	02
26	-	INT BCO 6A120VCA ELETRONIC	21511	21514	0:
25	FRESH ELET-12	SUPORTE DE PAREDE	32343	32343	0
24	- FRESH ELET-12	PAR A A 4.2 X 13MM	22103	22103	0
23	_	PAR A A 5.5 X 50MM	22103	22103	0
22	 -	BUCHA PLASTICA S8	24213	24213	0.
		C ELETR ELETRONIC 220 V	21319	21319	0
21	FRESH ELET-04	C ELETR ELETRONIC 220 V	21319	21319	0
20	FRESH ELET-06	PE PLASTICO ADV/ PLUS	34137	34137	0
19		· · · · · · · · · · · · · · · · · · ·	31726		0
18	FRESH ELET-03	BASE ELETRONIC TODOS		31726	<u> </u>
17	FRESH ELET-07	PRENSA CABO NOVO	21306	21306	0
17	FRESH ELEI-U/	BATENTE TRASEIRO (ADV)	34152	34152 21518	0
16	FRESH ELET-09	UNID RESFRIAD 1,5 P220 V	21518		0
45		UNID RESFRIAD 1,5 P127 V	21517	21517	0
15	-	ALOJAMENTO PDF3-03	21522	211522	0
14	-	CHICOTE LED CPTO	21327	21327	0
13	FRESH ELET-13	GRADE LAT ELETRONIC	34196	34201	0
12	FRESH ELET-11	CORPO GAB FRESH ELET 220	31733	32356	0
11	FRESH ELET-22	CHAVE CUMUTADORA LINEAR (127/220)	21525	21525	C
10	FRESH ELET-05	SEP FRESH/ ICY BRANCO	34161	34184	C
09	-	REB LATAO ROSQUEADO	22513	22513	С
08	FRESH ELET-22	CHICOTE CHAVE COMUTADORA LINEAR	21329	21329	C
07	-	TUBO DE SILICONE Ø8 x 110	14420	14420	C
06	-	TUBO DE SILICONE Ø8 x 155	14420	14420	C
05	-	TUBO DE SILICONE Ø8 x 120	14420	14420	С
04	-	REB 4X10,2 ALUM		22503	1
03	FRESH ELET-23	SUPORTE DA TORNEIRA		34216	C
02	FRESH ELET-02	PINGADEIRA FRESH ELETRONIC		34123	0
01	-	TORN BR/CROMADA C/ROSCA	24175	24175	C
00	FRESH ELET-01	PAINEL FRESH	34160	34204	C
ІТЕМ	CÓDIGO ARQUIVO	DESIGNAÇÃO	BRANCO	INOX	QUA

VISTA EXPLODIDA

300X437X325mm

BEBEDOURO FRESH TURBO

Data: NA: Aprov.:

Dimensão:

Aplicação:

frio Cod.Material: Material:

Peso (kg):

5/e

Copia nº

Data

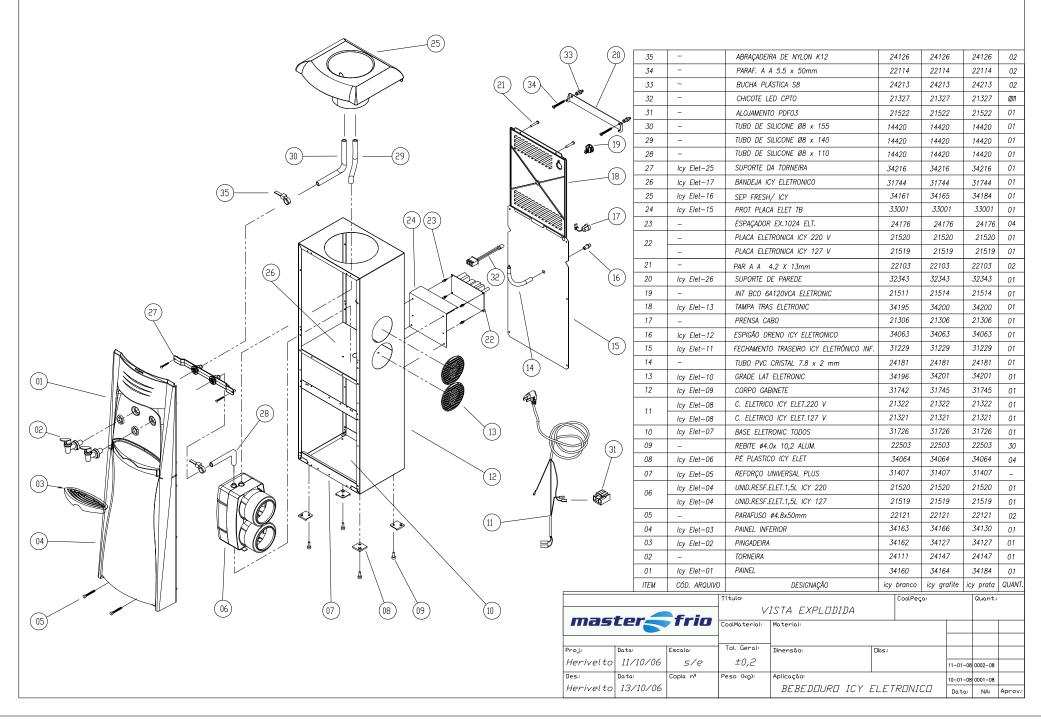
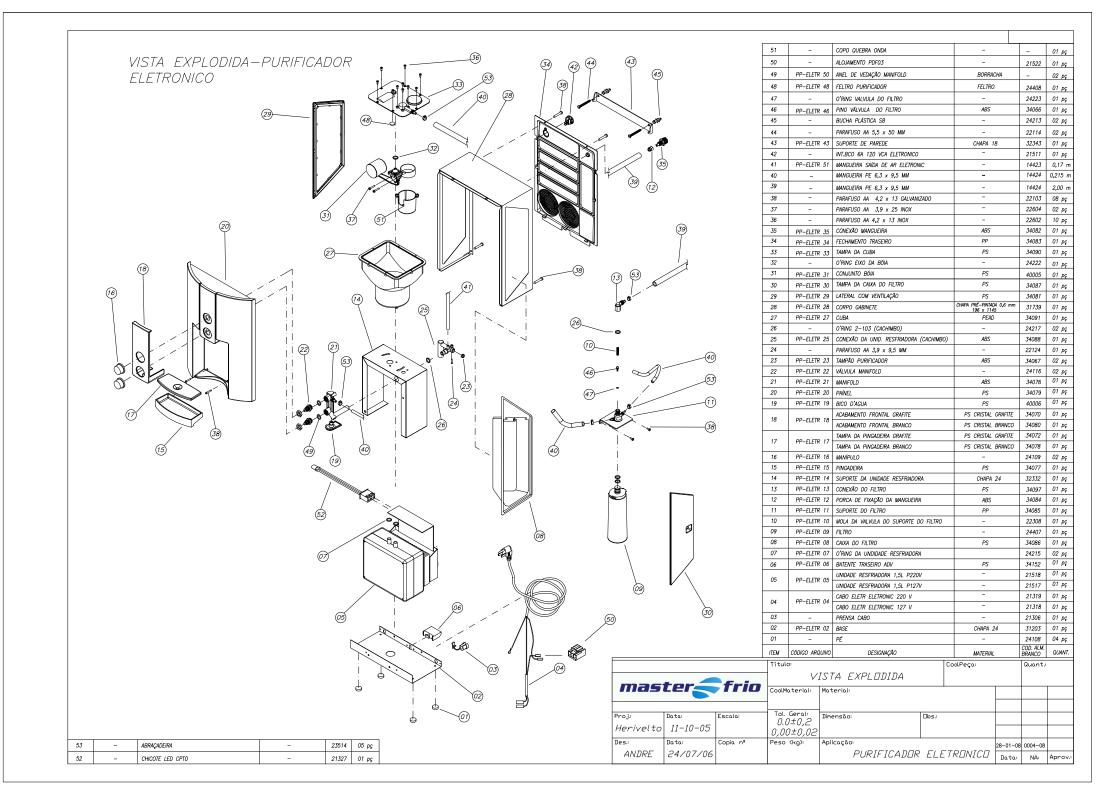

9. Bebedouro ICY ELETRÔNICO

Figura IX: Bebedouro ICY ELETRONIC

Volume	1,5 l ou 2,0 l
Unidade	ICY ou CD2,0-D
Alimentação	127 ou 220 V
Potência	110 W
Peso	8,1 Kg
Dimensões (AxLxP)	970x300x330 mm
Módulo Peltier	TEC1-12705
	TEC1-12706
Condições de uso	Externo (IPX1)

BEBEDOURO ICY ELETRONICO- VISTA EXPLODIDA



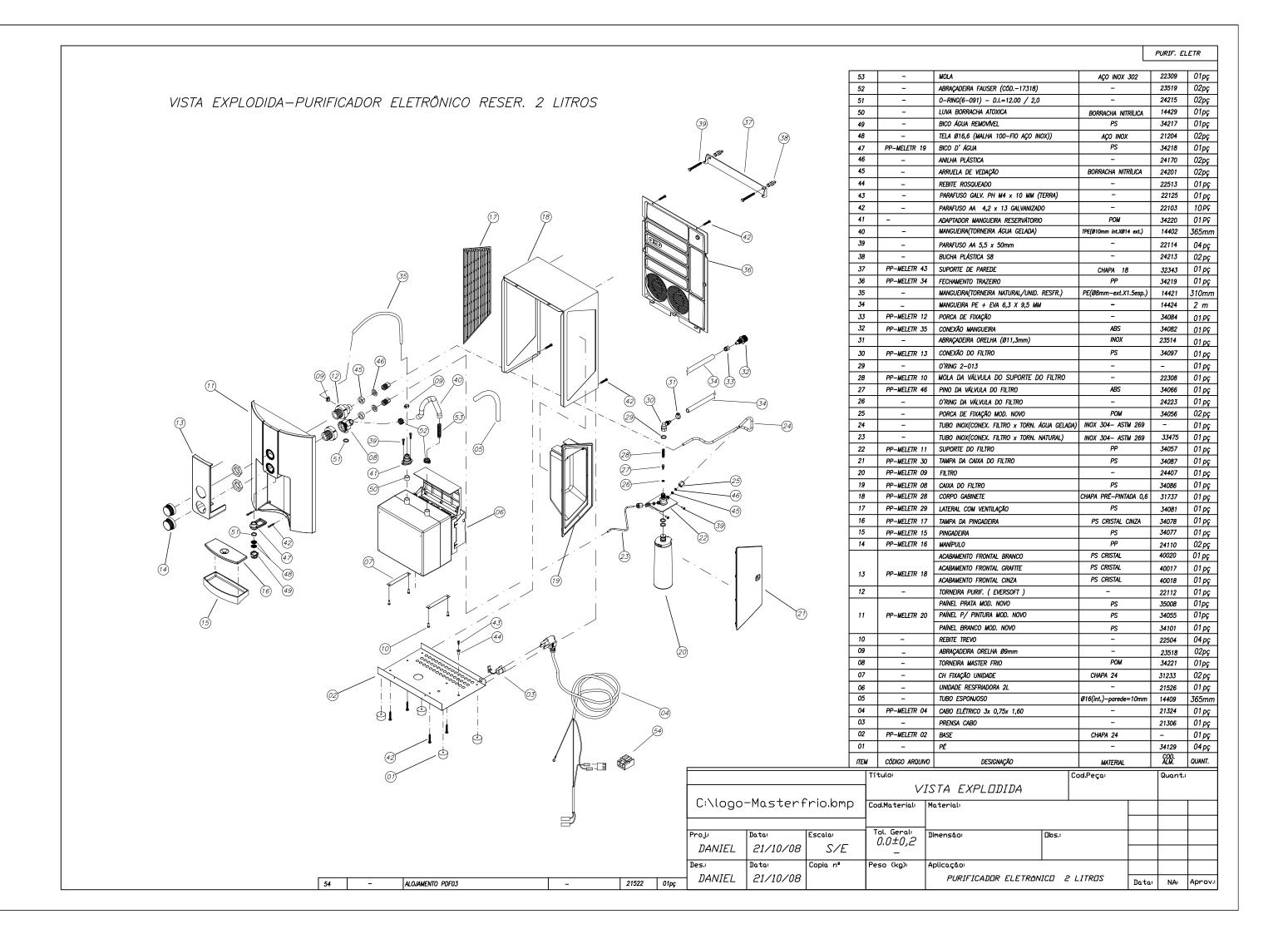
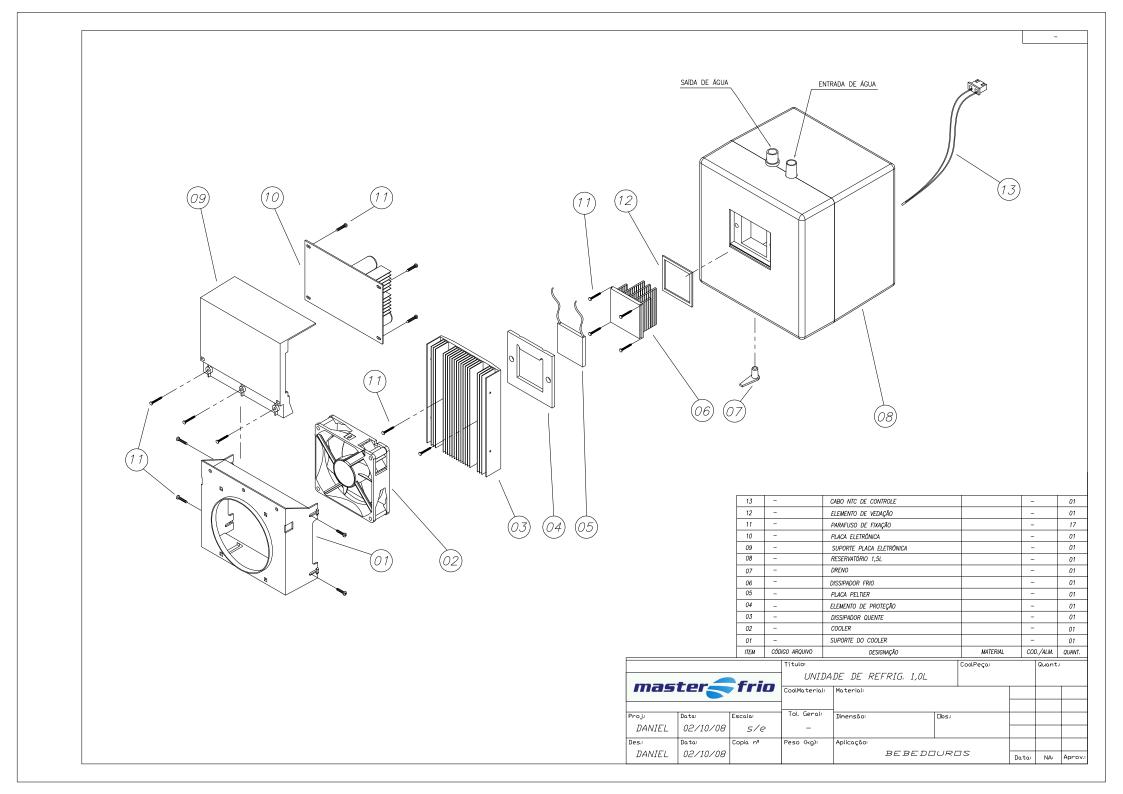
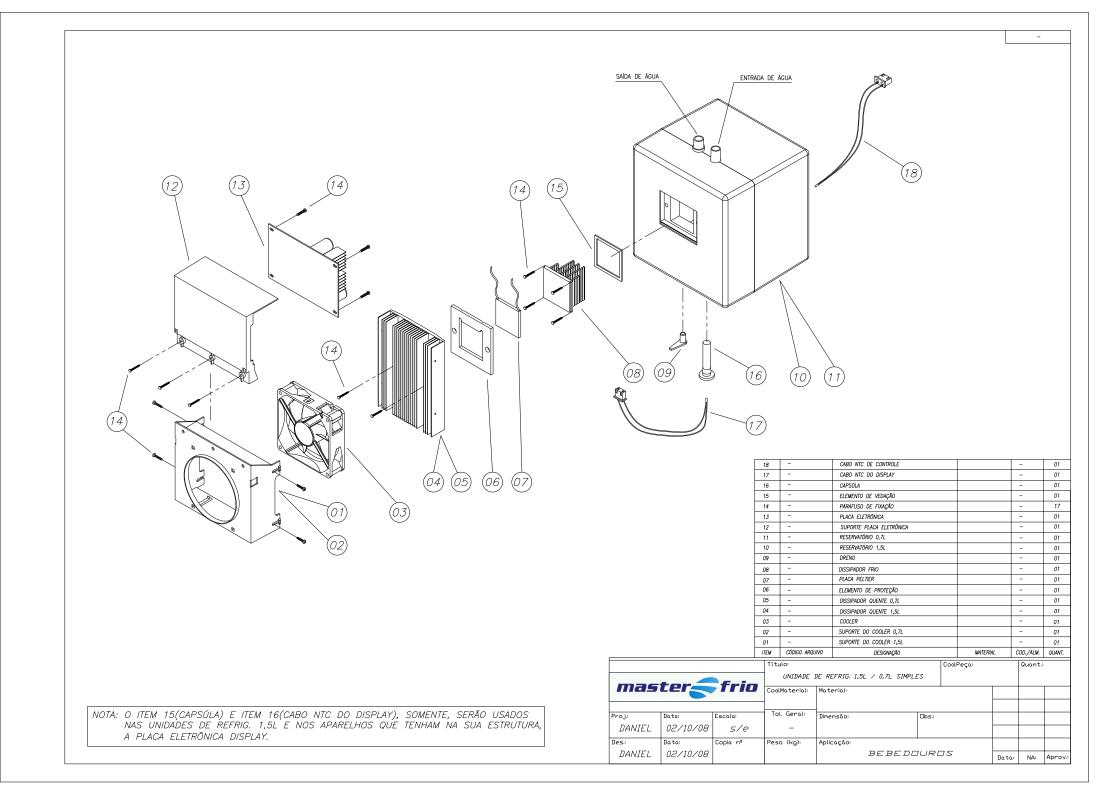

10. Purificador de Água ELETRÔNICO

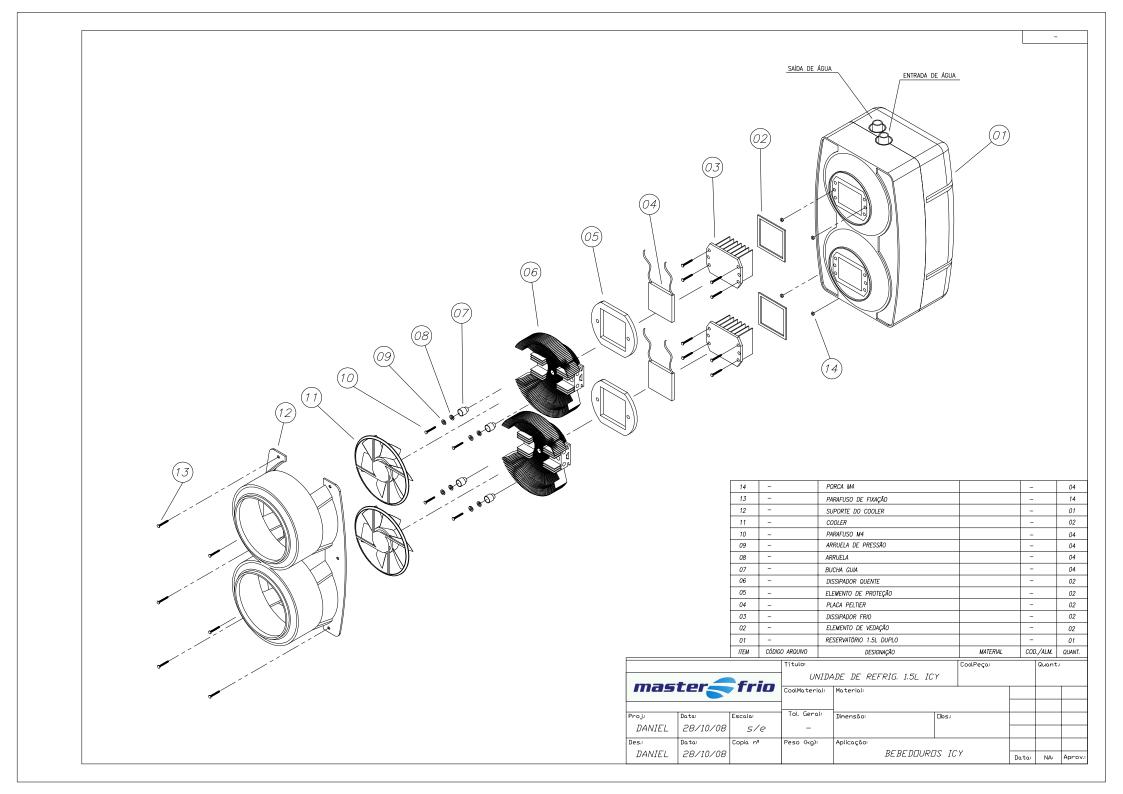
Figura X: Purificador de Água MASTERFRIO

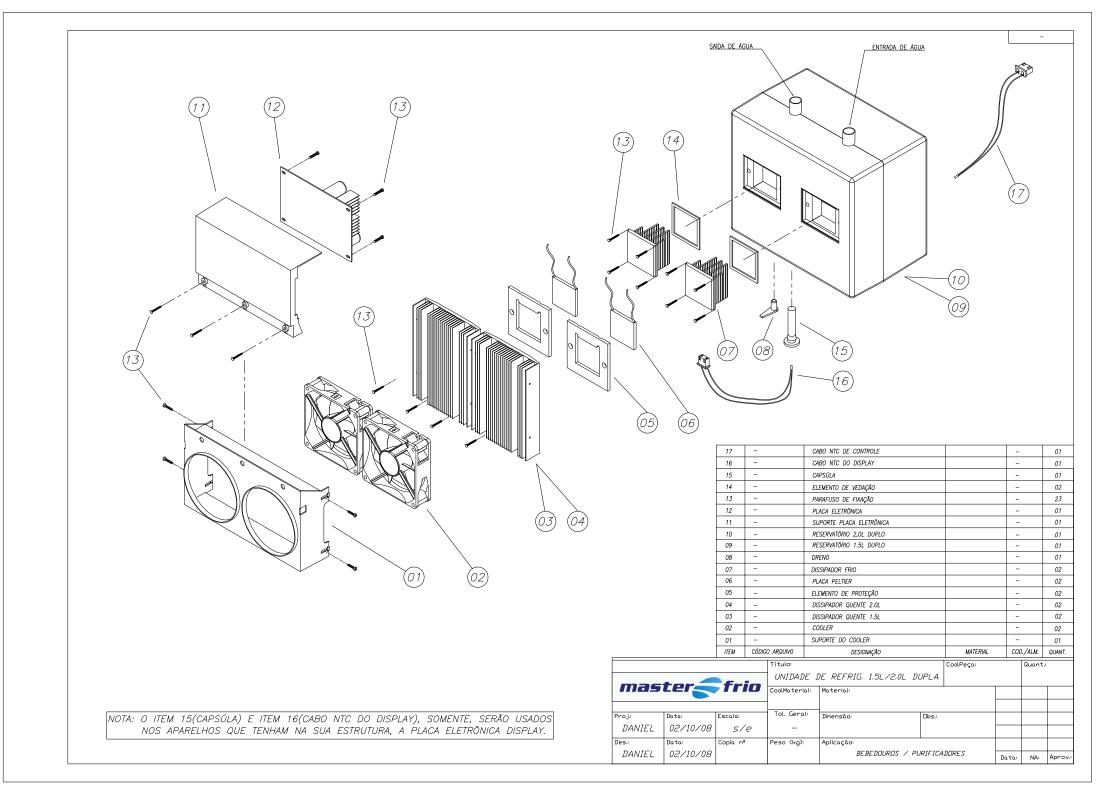
Volume	1,5
Unidade	CD1,5-D ou CD2,0-D
Alimentação	127 ou 220 V
Potência	110 W
Peso	5,1 Kg
Dimensões (AxLxP)	425x312x270 mm
Módulo Peltier	TEC1-12705
	TEC1-12706
Condições de uso	Interno (IPX0)

III. Características das Unidades


1. Vista das Unidades


As unidades eletrônicas de refrigeração da MASTERFRIO seguem um padrão operacional.


São divididas em unidades SIMPLES (com um módulo Peltier, ver capítulo Módulo Peltier, pág. - 35 -), e DUPLA (com dois módulos Peltier, ver capítulo Módulo Peltier, pág. - 35 -).


As unidades eletrônicas de refrigeração de água são compostas pelos elementos mostrados nas vistas explodidas abaixo.

Vale ressaltar que as unidades SIMPLES, DUPLA e ICY têm volumes, e tamanho de dissipadores diferentes. Essas diferenças estarão descritas na própria vista de cada unidade.

2. Funcionamento

Os BEBEDOUROS e PURIFICADORES apresentam estados de refrigeração diferentes de acordo com a temperatura da água.

Abaixo seque uma breve explanação do funcionamento da unidade e seus estados de funcionamento.

2.1 Princípio de funcionamento

Os BEBEDOUROS e PURIFICADORES eletrônicos funcionam com uma tecnologia de refrigeração que se baseia no EFEITO PELTIER. O EFEITO PELTIER foi observado pelo físico francês Jean Charles Athanase Peltier em 1834. Ele notou que ao se forçar uma corrente elétrica por uma junção de dois materiais diferentes, ocorria um efeito térmico: um lado da junção esfriava e o outro esquentava. Portanto havia transferência de calor de um lado da junção para o outro.

As unidades eletrônicas refrigeram através de uma célula semicondutora chamada de MÓDULO PELTIER (ver Módulo Peltier, pág. - 35 -). O módulo Peltier trabalha como a bomba de calor do sistema, proporcionando uma troca térmica entre a água que se encontra no reservatório e o ambiente externo, por meio dos dissipadores de calor interno e externo (capítulos Dissipadores de Calor Interno, pág. - 67 - e Dissipadores de Calor Externo, pág. - 68 -).

A água dentro do reservatório fica em contato com o dissipador de calor interno (Dissipadores de Calor Interno, pág. - 67 -), e este em contato com a face fria do módulo Peltier. O dissipador interno é o responsável pela condução de calor entre a água e o módulo Peltier.

O calor que é retirado da água precisa ser dissipado para o ambiente externo, assim se utiliza o dissipador de calor externo (Dissipadores de Calor Externo, pág. - 68 -), que por condução troca calor com a face quente do módulo Peltier e depois, por convecção, troca este mesmo calor com o ambiente externo.

Ajudando o dissipador externo temos o ventilador (Ventiladores, pág. - 70 -). Este promove uma ventilação forçada do ar que está em contato com o dissipador externo, não o deixando aquecer demais e por ventura saturar e atrapalhar a troca térmica.

2.2 Estado de Refrigeração Plena

O estado de refrigeração plena é a fase de resfriamento da água, onde esta se encontra acima do valor desejado para consumo. Neste estado a fonte de tensão atua com $12V_{CC}$ no módulo Peltier e nos ventiladores (valores podem variar por modelo de fonte, ver Fontes de Tensão, pág. - 44 -).

2.3 Estado de Refrigeração Parcial

O estado de refrigeração parcial ocorre quando a água atinge o valor desejado de temperatura para consumo. Ocorre o corte de controle. Neste estado a fonte de tensão atua com $5V_{CC}$ ou $3V_{CC}$ (ver valores por modelo de fonte em Fontes de Tensão, pág. - 44 -). É fundamental notar que a unidade neste estado ainda resfria a água de forma a suprir as perdas de calor na unidade, porém, numa intensidade muito menor do que a encontrada no ESTADO DE REFRIGERAÇÃO PLENA.

Com o consumo e eventuais (mesmo que pequenas) perdas para o ambiente, o normal será que a unidade entre em estado de refrigeração plena novamente.

2.4 Estado de Segurança

O estado de segurança é um estado especial, não encontrado em todos modelos de fontes de tensão, para evitar um possível congelamento da água dentro do reservatório. Neste estado ocorre o corte de segurança.

Ele ocorre quando a unidade chega ao valor de temperatura da água desejado, efetua o corte de controle, e mesmo assim continua a diminuir a temperatura da água de forma a chegar no ponto de congelamento. Este fato ocorre em condições ambientais onde a temperatura da água de entrada e do ar ambiente estão abaixo de 20°C.

A fonte de tensão atua neste estado com um valor de $\sim 1V_{CC}$ nos módulos Peltier e nos ventiladores (ver disponibilidade do estado por modelo em Fontes de Tensão, pág. - 44 -).

3. Montagem e Desmontagem da Unidade

3.1 Desmontagem

O processo a seguir guiará o técnico responsável por no desmonte do aparelho.

- Desligue o aparelho e retire-o da tomada
- Retire toda água existente no reservatório.
- Desconecte os botões e chaves presas ao corpo do BEBEDOURO ou do PURIFICADOR.
- Desconecte as conexões hidráulicas na unidade.
- Remova os parafusos.
- Retire a unidade de dentro do BEBEDOURO ou do PURIFICADOR.
- Retire a fonte, com o seu suporte, do reservatório.
- Remova a fonte de seu suporte.
- Desconecte todos os cabos que ligam a fonte ao ventilador (Ventiladores, pág. 70 -) e ao módulo Peltier (Módulo Peltier- 35 -).
- Desconecte todos os outros componentes: NTC (NTC, pág. 39 -), e LEDs (LEDs, pág. 71 -).
- Remova o ventilador do dissipador externo (Dissipadores de Calor Externo, pág. 68 -), retirando os parafusos.
- Remova o dissipador externo retirando os parafusos.
- Limpe a pasta térmica que permanece no dissipador externo com álcool isopropílico.
- Após a retirada do dissipador já será visto o módulo Peltier. Remova o módulo. Este é preso somente com a pressão feita entre dissipador externo e o interno, e envolto em um isolamento de polietileno expandido.
- Remova o módulo e limpe a pasta térmica que permanece neste com álcool isopropílico.
- Remova os parafusos que prendem o dissipador interno.
- Remova o dissipador interno e limpe a pasta térmica com álcool isopropílico.
- No reservatório restará o NTC. Caso seja necessário retirar o NTC, retire a cola que o prende no reservatório.
- Limpe o NTC, retirando toda pasta térmica nele contida.

3.2 Montagem

A seguir veremos o processo inverso ao descrito anteriormente. Aqui veremos como montar uma unidade.

- Caso o NTC tenha sido retirado do reservatório, recoloque-o seguindo as instruções abaixo. Caso contrário siga para os dissipadores.
- Limpe o poço do NTC no reservatório com o auxilio de um COTONETE, ou algum instrumento similar.

CUIDADO: NÃO PASSE PASTA TÉRMICA NO NTC.

- Coloque o dissipador interno no seu local e prenda-o com os parafusos quatros parafusos.
- O módulo Peltier, que será posto logo após, tem que ser tratado com pasta térmica. O modo de passagem desta pasta tem que ser uniforme e em quantidade suficiente, e não em demasia ou falta.
- Passe pasta térmica nas duas faces do módulo Peltier, e só nele. A pasta térmica deve ser passada em quantidade mínima, e de maneira uniforme. NÃO PASSAR PASTA TÉRMICA NOS DISSIPADORES.
- Colocar o módulo Peltier atentando para o fato de que a face fria tem que ficar em contato com o dissipador interno (frio). A inversão do módulo nesta parte acarretará no mau funcionamento do equipamento, que não irá refrigerar a água.
- Atente também para a posição dos fios, que devem ficar de maneira que facilitem a instalação na unidade e à conexão na fonte, e também não se esqueça da vedação que fica no entorno do módulo Peltier.
- Coloque o dissipador externo sobre o módulo Peltier.
- Usando os parafusos antes retirados, prenda o dissipador ao reservatório. Neste ponto é muito importante que os parafusos sejam apertados de maneira uniforme, e com um torque final de 0.5N.m. É muito importante essa condição, pois o contato entre o módulo Peltier e o dissipador externo é fundamental para o bom rendimento da unidade em geral.

ATENÇÃO: NÃO APERTAR EM DEMASIA OS PARAFUSOS DO DISSIPADOR EXTERNO. SE FOR SUBMETIDO A UM TORQUE MUITO FORTE, O MÓDULO PELTIER PODERÁ SOFRER DANOS ESTRUTURAIS.

- Instale o ventilador no dissipador externo.
- Conecte os cabos e fios do módulo Peltier e do ventilador na fonte.
- Recoloque a fonte em seu suporte.
- Prenda o suporte à unidade.
- Coloque a unidade no equipamento e prenda-os com parafuso.

4. Reservatório de Água

Figura XI: Reservatórios de água

Nos diferentes reservatórios, além do armazenamento da água é feita a troca térmica.

Os reservatórios são construídos com diferentes materiais plásticos. O reservatório em si é feito de PEAD (polietileno de alta densidade) injetado, que é recoberto por um isolante térmico de PU (poliuretano) e que por fim, são cobertos por uma capa de PP (polipropileno).

A MASTERFRIO utiliza vários reservatórios de volumes variados. Ao serem encontrados reservatórios de 1 litro com problemas, sugerimos a compra fora de garantia de um CD1,5-S.

Dentre todos os modelos, nos reservatórios de 1,5 litro com um único módulo Peltier encontraremos, nos modelos novos, uma diferença na distância entre a saída e a entrada de água. Nos modelos mais novos esta distância é maior que nos reservatórios mais antigos.

Existem alguns testes que são feitos nos reservatórios para verificar se não há vazamentos de qualquer tipo.

4.1 Teste de detecção de vazamento com ar

O teste para detectar vazamentos utilizando ar, consiste em aplicar uma pressão no reservatório de aproximadamente $0.04 \frac{Kgf}{cm^2}$ ou 0.57PSI ou $400mmH_2O$, e com um manômetro medir se haverá variação de pressão dentro do reservatório.

4.2 Teste de detecção de vazamento com água

O teste para detectar vazamento utilizando água consiste em encher o reservatório no seu volume total, e observar se não haverá vazamento nas conexões, dissipadores, dreno ou em sua estrutura.

5. Módulo Peltier

Figura XII: Módulo Peltier

O Módulo Peltier é a célula de semicondutores que opera de acordo com o EFEITO PELTIER. É a "bomba de calor" do sistema. Quando alimentado na polaridade correta, retira calor da água por meio do dissipador frio e o cede ao dissipador quente, que é externo ao reservatório.

O módulo Peltier deve ser inspecionado com muito cuidado na manutenção de uma unidade. Os seguintes testes deverão ser levados em consideração.

5.1 Testes no Módulo Peltier

O módulo Peltier deve apresentar algumas características elétricas e estruturais para ser classificado como apto a exercer sua função com eficiência.

a Teste elétrico com a unidade montada

- Verifique se a unidade está desligada e desconectada da rede.
- Na fonte de tensão, retire a conexão positiva (fio vermelho) do módulo Peltier. Atentar para o fato de que dependendo do modelo da fonte o módulo Peltier pode ser soldado ou conectado nesta.
- Conecte / solde um JUMPER no lugar da conexão positiva da Peltier.
- Agora conecte um AMPERÍMETRO (vide Amperímetro, pág. 84 -) em série com o módulo Peltier, ou seja, entre o *JUMPER* e o fio previamente solto do módulo.
- Conecte o cabo de alimentação elétrica a rede, e ligue o sistema.
- Espere de 1 a 2 minutos até a corrente estabilizar
- Se o valor da corrente, para este teste, for maior ou igual a 3,6A, o módulo está apto a ser usado. Caso contrário o módulo encontra-se com baixa performance, e pode sob condições de

temperatura ambiente maiores que 30°C não reduzir a temperatura da água a contento. Neste caso recomenda-se a troca do módulo Peltier.

- Após o teste, se aprovado, atenção à recolocação correta do fio positivo do módulo Peltier na saída positiva da fonte, para evitar danos posteriores no módulo e na fonte.
- Se reprovada seguir com os demais testes.

b Inspeção Visual

- Desmonte a unidade de acordo com o capítulo Montagem e Desmontagem, pág. 32 -.
- Nesta parte o técnico responsável terá que atentar para sinais visuais de deterioração do módulo Peltier com muita atenção, para não aprovar módulos defeituosos e também reprovar módulos normais.
- Verificar a existência de rachaduras na estrutura do módulo
- Verificar se a vedação do módulo não está deteriorada, com aspecto frágil, furada, etc.
- Verificar se o módulo não está oxidado, reparando na existência de manchas verdes na vedação do módulo.
- Se aprovado no teste visual, passar ao próximo teste.
- Se reprovado no teste descartar o uso deste módulo no equipamento.

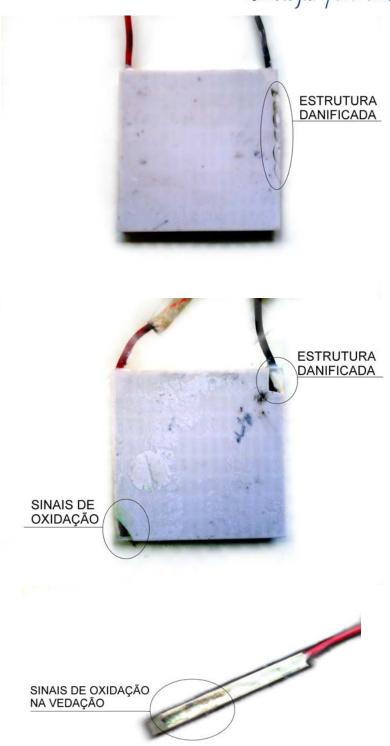


Figura XIII: Módulos Peltier danificados

c Teste elétrico com o módulo Peltier fora da unidade

- Aprovada na inspeção visual diferencie a face quente da face fria do módulo Peltier.
- A face fria do módulo Peltier é a face que ficará para cima no momento em que o fio vermelho estiver do lado direito.
- Coloque a face quente do módulo em um dissipador de semelhante dimensão ao usado na unidade para esta face (ver Dissipadores de Calor Externo, pág. 68 -).
- Coloque na face fria do módulo um dissipador de dimensões semelhantes ao dissipador utilizado na unidade para esta face (ver Dissipadores de Calor Interno, pág. 67 -).
- Conecte um amperímetro em SÉRIE com o módulo.
- Conecte o módulo Peltier a uma fonte de tensão contínua, estabilizada, de 12V, desligada (pode ser a própria fonte usada nas unidades, assegurando-se que esta esteja em perfeitas condições de funcionamento).
- Ligue a fonte de tensão contínua.
- Assegure-se que o contato físico entre os dissipadores e o módulo esteja sob alguma pressão.
 Muitas vezes é usado um peso de aproximadamente 2Kg sobre um dos dissipadores. No capítulo Apêndice, página 84 será mostrada uma GIGA de teste para módulos Peltier que recomendamos fortemente a montagem pelas assistências técnicas.
- Espere de 1 a 2 minutos até a corrente estabilizar.
- A corrente mínima para este teste é de 3,5A.
- Sendo aprovada no teste, monte a unidade com cuidado, evitando danos posteriores (ver Montagem e Desmontagem, pág. 32 -).

Para realizar o teste do módulo Peltier fora da unidade, aconselha-se a utilização de uma giga de teste semelhante à apresentada abaixo:

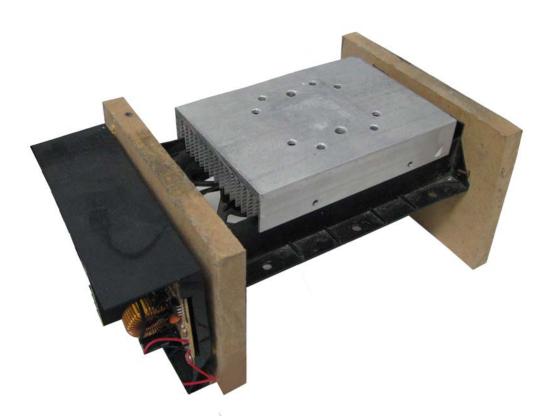


Figura XIV: Giga de teste de corrente para o módulo Peltier

Teste elétrico com 12V	Montado na unidade	Fora da unidade
Corrente para aprovação	$i \ge 3.6A$	$i \ge 3.5A$
Corrente para reprovação	i < 3,6A	i < 3.5A

Tabela I: Teste de corrente no módulo Peltier

OBS.: Na montagem na unidade, a melhor dissipação de calor, reverte-se em um aumento na corrente.

6. NTC

Figura XV: NTC

O sensor de temperatura usado nas unidades são os NTC. NTC são resistores sensíveis cuja função é uma mudança grande, previsível e precisa em sua resistência elétrica quando o seu entorno sofrer uma mudança de temperatura.

São utilizados os sensores do tipo Coeficiente de Temperatura negativo (NTC - Negative Temperature Coefficient), que exibem uma diminuição em sua resistência elétrica quando submetidos a um aumento em temperatura, e vice-versa.

Os NTCs usados pela MASTERFRIO são os de 10 k Ω com β (BETAS) 3435, 3950 e 3600, por motivos de adequação a performance da unidade que será melhor abordado na Tabela XIV: Modelo da Fonte x Posição do Poço x , na página - 66 -.

Os NTCs são chamados de 10 k Ω , pois esta é a resistência que estes se encontram à 25 $^{\circ}$ C.

Os $\beta(BETAS)$ são a característica de cada NTC e a maneira na qual ele se comportará perante a uma determinada temperatura. Por exemplo, em um NTC de 10 k Ω com BETA 3435 a 5°C, apresenta uma resistência de 22,77 k Ω , enquanto que um de BETA 3950 apresenta uma resistência de 25,69 k Ω e o 3600 apresenta uma de 23,34 k Ω .

BETAS Temperatura	3435	3600	3950
5°C	22,77 kΩ	23,34 kΩ	25,69 kΩ

Tabela II: Tabela de resistência dos NTCs com diferentes BETAS a 5°C

Para eventuais testes nos NTCs, é necessário que estes sejam feitos com temperaturas que variem entre 0°C e 5°C. Como será notado nas tabelas de valores abaixo, em temperaturas maiores que 15°C, os diferentes NTCs se comportam de maneira muito semelhante, dificultando sua identificação. Contudo, em temperaturas abaixo de 5°C suas curvas se afastam bastante, dando a possibilidade de determinar mais precisamente o seu BETA.

Os NTCs usados nos BEBEDOUROS e PURIFICADORES são construídos com um cabo de dois fios, com um conector PEF1-02.

6.1 Teste para determinar o β(BETA) do NTC

O teste a ser feito é simples e rápido.

- Retire o NTC de seu poço na unidade, retirando a cola usada, também como isolante térmico.
- Tempere um recipiente com água entre 0°C e 5°C
- Confira com um Termômetro (vide Termômetro, pág. 85 -) aferido, a temperatura da água.
- Coloque o NTC no recipiente, junto ao termômetro.
- Com um Ohmímetro (vide Ohmímetro, pág. 85 -), faça a medição da resistência elétrica do NTC naquela determinada temperatura.
- Anote os valores de temperatura e de resistência, e compare com as tabelas fornecidas abaixo.

6.2 Tabela de Valores de Resistência x Temperatura dos NTCs

Obs.: em azul estão os valores de temperatura recomendados para o teste de determinação do BETA do NTC.

NTC 10k-3435 ±1%							
T (°C)	R (kΩ)	T (°C)	R (kΩ)	T (°C)	R (kΩ)	T (°C)	R (kΩ)
0,00	28,43	7,20	20,70	14,40	15,28	21,60	11,46
0,20	28,18	7,40	20,53	14,60	15,16	21,80	11,38
0,40	27,93	7,60	20,36	14,80	15,03	22,00	11,29
0,60	27,69	7,80	20,18	15,00	14,90	22,20	11,21
0,80	27,45	8,00	20,00	15,20	14,79	22,40	11,13
1,00	27,18	8,20	19,83	15,40	14,67	22,60	11,05
1,20	26,94	8,40	19,66	15,60	14,55	22,80	10,96
1,40	26,71	8,60	19,50	15,80	14,43	23,00	10,91
1,60	26,48	8,80	19,33	16,00	14,31	23,20	10,82
1,80	26,24	9,00	19,16	16,20	14,19	23,40	10,73
2,00	25,99	9,20	19,00	16,40	14,08	23,60	10,64
2,20	25,77	9,40	18,84	16,60	13,97	23,80	10,56
2,40	25,54	9,60	18,69	16,80	13,86	24,00	10,47
2,60	25,32	9,80	18,53	17,00	13,74	24,20	10,39
2,80	25,09	10,00	18,36	17,20	13,63	24,40	10,31
3,00	24,87	10,20	18,21	17,40	13,52	24,60	10,22
3,20	24,65	10,40	18,06	17,60	13,41	24,80	10,14
3,40	24,44	10,60	17,91	17,80	13,31	25,00	10,00
3,60	24,23	10,80	17,77	18,00	13,19	25,20	9,93
3,80	24,02	11,00	17,60	18,20	13,09	25,40	9,85
4,00	23,79	11,20	17,46	18,40	12,98	25,60	9,78
4,20	23,59	11,40	17,32	18,60	12,88	25,80	9,71
4,40	23,39	11,60	17,17	18,80	12,78	26,00	9,64
4,60	23,19	11,80	17,03	19,00	12,67	26,20	9,56
4,80	22,99	12,00	16,88	19,20	12,57	26,40	9,49
5,00	22,77	12,20	16,74	19,40	12,47	26,60	9,42
5,20	22,58	12,40	16,61	19,60	12,37	26,80	9,35
5,40	22,39	12,60	16,47	19,80	12,28	27,00	9,26
5,60	22,20	12,80	16,34	20,00	12,17	27,20	9,19
5,80	22,01	13,00	16,19	20,20	12,08	27,40	9,12
6,00	21,80	13,20	16,06	20,40	11,98	27,60	9,06
6,20	21,62	13,40	15,93	20,60	11,89	27,80	8,99
6,40	21,43	13,60	15,80	20,80	11,79	28,00	8,92
6,60	21,25	13,80	15,67	21,00	11,70	29,00	8,58
6,80	21,07	14,00	15,53	21,20	11,62	30,00	8,27
7,00	20,88	14,20	15,41	21,40	11,54		

Tabela III: Temperatura x Resistência NTC 10k - 3435

NTC 10k-3600 ±1%							
T (°C)	R (kΩ)	T (°C)	R (kΩ)	T (°C)	R (kΩ)	T (°C)	R (kΩ)
0,00	29,37	7,20	21,15	14,40	15,44	21,80	11,37
0,20	29,11	7,40	20,96	14,60	15,31	22,00	11,28
0,40	28,84	7,60	20,78	15,00	15,07	22,20	11,19
0,60	28,58	7,80	20,60	15,20	14,94	22,40	11,09
0,80	28,32	8,00	20,40	15,40	14,82	22,60	11,00
1,00	28,03	8,20	20,23	15,60	14,70	23,00	10,83
1,20	27,78	8,40	20,05	15,80	14,58	23,20	10,75
1,40	27,53	8,60	19,88	16,00	14,45	23,40	10,66
1,60	27,28	8,80	19,71	16,20	14,33	23,60	10,58
1,80	27,03	9,00	19,52	16,40	14,21	23,80	10,50
2,00	26,77	9,20	19,35	16,60	14,09	24,00	10,41
2,20	26,52	9,40	19,19	16,80	13,98	24,20	10,33
2,40	26,29	9,60	19,02	17,00	13,85	24,40	10,24
2,60	26,05	9,80	18,86	17,20	13,74	24,60	10,16
2,80	25,82	10,00	18,68	17,40	13,63	24,80	10,09
3,00	25,56	10,20	18,52	17,60	13,52	25,00	10,00
3,20	25,33	10,40	18,37	17,80	13,41	25,20	9,92
3,40	25,11	10,60	18,21	18,00	13,29	25,40	9,85
3,60	24,88	10,80	18,06	18,20	13,18	25,60	9,77
3,80	24,66	11,00	17,89	18,40	13,07	25,80	9,69
4,00	24,42	11,20	17,74	18,60	12,97	26,00	9,61
4,20	24,20	11,40	17,59	18,80	12,86	26,20	9,54
4,40	23,99	11,60	17,44	19,00	12,75	26,40	9,46
4,60	23,78	11,80	17,29	19,20	12,65	26,60	9,39
4,80	23,57	12,00	17,13	19,40	12,55	26,80	9,32
5,00	23,34	12,20	16,99	19,60	12,44	27,00	9,24
5,20	23,13	12,40	16,84	19,80	12,34	27,20	9,17
5,40	22,93	12,60	16,70	20,00	12,24	27,40	9,10
5,60	22,73	12,80	16,56	20,20	12,14	27,60	9,03
5,80	22,52	13,00	16,41	20,40	12,04	27,80	8,96
6,00	22,31	13,20	16,27	20,60	11,95	28,00	8,89
6,20	22,11	13,40	16,13	20,80	11,85	29,00	8,55
6,40	21,92	13,60	16,00	21,00	11,75	30,00	8,22
6,60	21,72	13,80	15,86	21,20	11,65		
6,80	21,53	14,00	15,72	21,40	11,56		
7,00	21,33	14,20	15,58	21,60	11,47		

Tabela IV: Temperatura x Resistência NTC 10k - 3600

NTC 10k-3950 ±1%							
T (°C)	R (kΩ)	T (°C)	R (kΩ)	T (°C)	R (kΩ)	T (°C)	R (kΩ)
0,00	33,10	7,20	23,05	16,00	15,08	22,40	11,24
0,20	32,77	7,40	22,82	16,20	14,94	22,60	11,14
0,40	32,44	7,60	22,60	16,40	14,81	22,80	11,04
0,60	32,12	7,80	22,39	16,60	14,67	23,00	10,94
0,80	31,80	8,00	22,15	16,80	14,54	23,20	10,84
1,00	31,45	8,20	21,94	17,00	14,39	23,40	10,75
1,20	31,14	8,40	21,73	17,20	14,26	23,60	10,65
1,40	30,83	8,60	21,51	17,40	14,13	23,80	10,56
1,60	30,52	8,80	21,30	17,60	14,00	24,00	10,46
1,80	30,22	9,00	21,09	17,80	13,87	24,20	10,37
2,00	29,88	9,20	20,89	18,00	13,74	24,40	10,28
2,20	29,59	9,40	20,69	18,20	13,61	24,60	10,19
2,40	29,29	9,60	20,50	18,40	13,48	24,80	10,10
2,60	29,01	9,80	20,30	18,60	13,35	25,00	10,00
2,80	28,72	10,00	20,09	18,00	13,74	25,20	9,91
3,00	28,41	10,20	19,90	18,20	13,62	25,40	9,83
3,20	28,13	10,40	19,71	18,40	13,49	25,60	9,74
3,40	27,85	10,60	19,53	18,60	13,37	25,80	9,66
3,60	27,58	10,80	19,34	18,80	13,25	26,00	9,57
3,80	27,31	11,00	19,14	19,00	13,12	26,20	9,49
4,00	27,01	11,20	18,96	19,20	13,00	26,40	9,40
4,20	26,75	11,40	18,78	19,40	12,89	26,60	9,32
4,40	26,49	11,60	18,60	19,60	12,77	26,80	9,24
4,60	26,23	11,80	18,43	19,80	12,66	27,00	9,16
4,80	25,97	12,00	18,24	20,00	12,53	27,20	9,07
5,00	25,69	12,20	18,07	20,20	12,42	27,40	8,99
5,20	25,44	12,40	17,90	20,40	12,31	27,60	8,91
5,40	25,20	12,60	17,73	20,60	12,20	27,00	9,16
5,60	24,95	12,80	17,57	20,80	12,09	27,20	9,08
5,80	24,71	13,00	17,38	21,00	11,97	27,40	9,00
6,00	24,45	13,20	17,22	21,20	11,86	27,60	8,92
6,20	24,21	13,40	17,06	21,40	11,76	27,80	8,85
6,40	23,98	13,60	16,90	21,60	11,66	28,00	8,77
6,60	23,75	13,80	16,75	21,80	11,55	29,00	8,40
6,80	23,52	14,00	16,58	22,00	11,44	30,00	8,04
7,00	23,27	14,20	16,43	22,20	11,34		

Tabela V: Temperatura x Resistência NTC 10k - 3950

7. Fontes de Tensão

A fonte de tensão é a responsável por fornecer as tensões necessárias para o funcionamento correto e preciso de cada componente da unidade. É uma fonte chaveada onde serão ligados através de cabos específicos os módulos Peltier, os LEDs, os ventiladores e o NTC da unidade de refrigeração.

A fonte de tensão também trabalha como controladora de temperatura da água. Nela é executado o corte de controle e o corte de segurança anticongelamento.

7.1 GCH-A

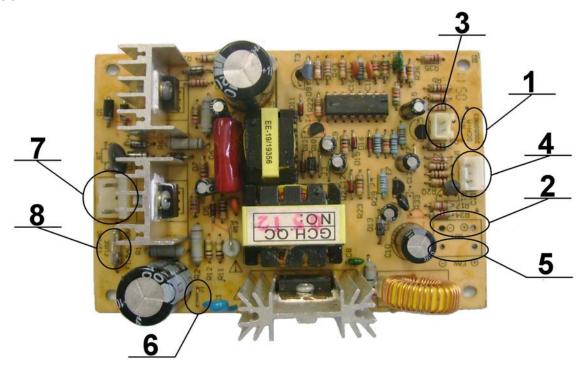


Figura XVI: Fonte de tensão GCH-A

- 1. Identificação da fonte
- 2. Conectores da Peltier
- 3. Conector do NTC
- 4. Conector do LED

- 5. Conectores do Ventilador
- 6. JUMPER BIVOLT
- 7. Entrada da rede
- 8. Fusível

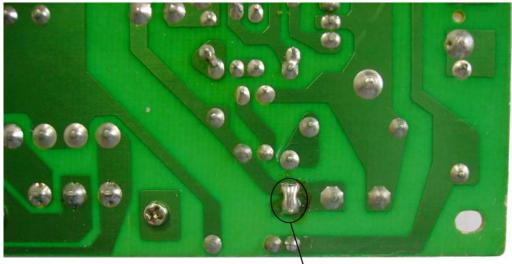
Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,4 $V \pm 10\%$
	$Ventiladores \cong 12,4V \pm 10\%$
	$NTC \cong 1.3V \pm 10\%$
	$LED(R-GND) \cong 1.9V \pm 10\%$
	$LED(G-GND) \cong 0V$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> ≅ 5,9V ±10%
	$Ventiladores \cong 5.9V \pm 10\%$
	$NTC \cong 1.7V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 1.9V \pm 10\%$

Tabela VI: Especificações elétricas da GCH-A

a Comutação da tensão de entrada

Na fonte GCH-A a comutação da chave BIVOLT será feita retirando ou colocando o *JUMPER* BIVOLT do circuito.


- Identifique onde o JUMPER BIVOLT se encontra na fonte
- Na parte posterior da fonte, identifique os pontos de solda deste *JUMPER*.
- Para configurar a fonte em 220V, retire a solda dos pontos e retire o JUMPER.

Fonte em 220V

Figura XVII: CGH-A em 220V

• Numa fonte preparada para uma rede de 127V, o *JUMPER* deverá estar conectado ao circuito.

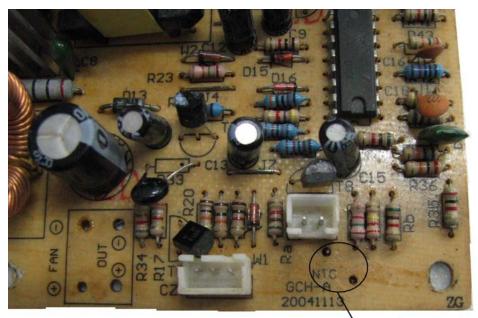

Fonte em 127V

Figura XVIII: GCH-A em 127V

Tecnologia para uma vida melhor.

Haverá situações, que serão descritas no capítulo Combinações entre Reservatórios, NTCs e Fontes de Tensão, página - 65 -, em que será pedido que se coloque um resistor em paralelo com o NTC. Em certas fontes de tensão como esta (GCH-A) e a S126AM12, existe um lugar específico para a colocação deste resistor. No caso da GCH-A, veja na figura abaixo:

Lugar para a colocação do resistor em paralelo com o NTC

Figura XIX: Posição do resistor em paralelo com NTC

7.2 GCH-18

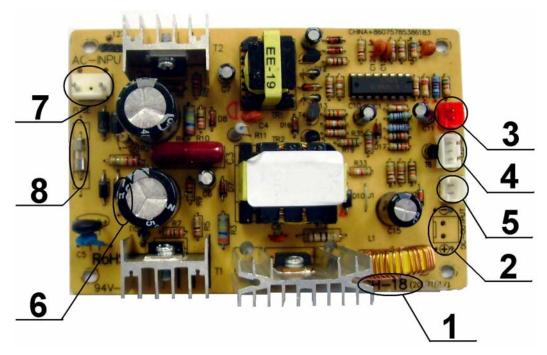


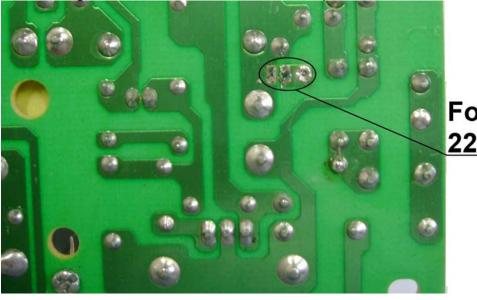
Figura XX: Fonte de tensão GCH-18

- 1. Identificação da fonte
- 2. Conectores da Peltier
- 3. Conector do NTC
- 4. Conector dos LED

- 5. Conectores do Ventilador
- 6. Jumper BIVOLT
- 7. Entrada da rede
- 8. Fusível

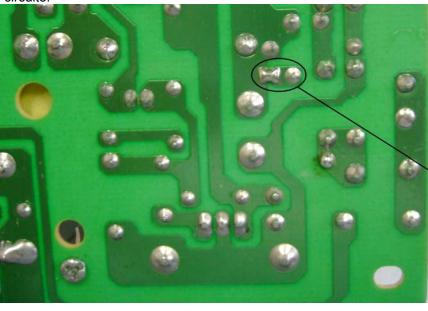
Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,5 $V \pm 10\%$
	$Ventiladores \cong 12,5V \pm 10\%$
	$NTC \cong 1.3V \pm 10\%$
	$LED(R-GND) \cong 2.5V \pm 10\%$
	$LED(G-GND) \cong 0V$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> \cong 2,9 $V \pm 10\%$
	$Ventiladores \cong 2,9V \pm 10\%$
	$NTC \cong 2.5V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 2.5V \pm 10\%$


Tabela VII: Especificações elétricas da GCH-18

a Comutação da tensão de entrada

Na fonte GCH-18 a comutação da chave BIVOLT será feita retirando ou colocando o *JUMPER* BIVOLT do circuito.


- Identifique onde o JUMPER BIVOLT se encontra na fonte
- Na parte posterior da fonte, identifique os pontos de solda deste *JUMPER*.
- Para configurar a fonte em 220V, retire a solda dos pontos e retire o JUMPER.

Fonte em 220V

Figura XXI: CGH-18 em 220V

• Numa fonte preparada para uma rede de 127V, o *JUMPER* deverá estar conectado ao circuito.

Fonte em 127V

Figura XXII: GCH-18 em 127V

7.3 GCH-18A

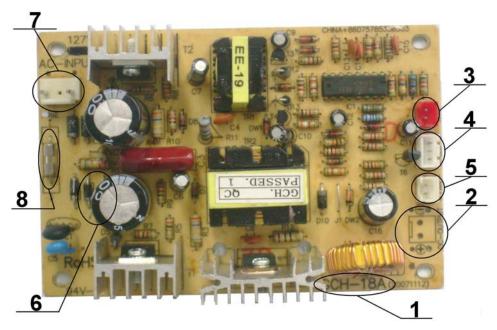


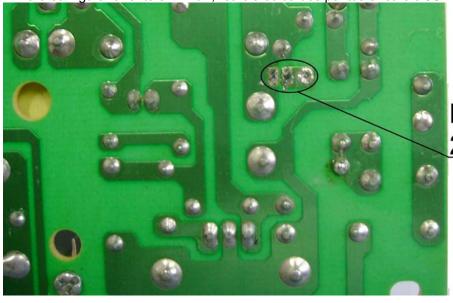
Figura XXIII: Fonte de tensão GCH-18A

- 1. Identificação da fonte
- 2. Conectores da Peltier
- 3. Conector do NTC
- 4. Conector do LED
- 5. Conectores do Ventilador

- 6. *JUMPER* BIVOLT7. Entrada da rede
- 8. Fusível

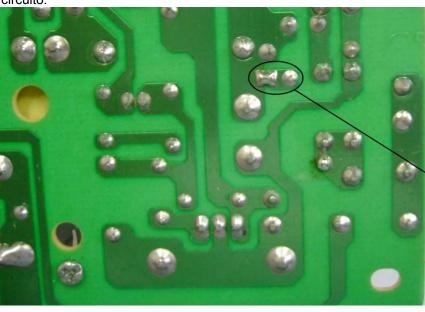
Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,5 $V \pm 10\%$
	$Ventiladores \cong 12,5V \pm 10\%$
	$NTC \cong 1,5V \pm 10\%$
	$LED(R-GND) \cong 1.9V \pm 10\%$
	$LED(G-GND) \cong 0V$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> $\cong 4.7V \pm 10\%$
	$Ventiladores \cong 4,7V \pm 10\%$
	$NTC \cong 2.1V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 1.9V \pm 10\%$


Tabela VIII: Especificações elétricas da GCH-18A

a Comutação da tensão de entrada

Na fonte GCH-18A a comutação da chave BIVOLT será feita retirando ou colocando o *JUMPER* BIVOLT do circuito.


- Identifique onde o JUMPER BIVOLT se encontra na fonte
- Na parte posterior da fonte, identifique os pontos de solda deste *JUMPER*.
- Para configurar a fonte em 220V, retire a solda dos pontos e retire o JUMPER.

Fonte em 220V

Figura XXIV: CGH-18A em 220V

• Numa fonte preparada para uma rede de 127V, o *JUMPER* deverá estar conectado ao circuito.

Fonte em 127V

Figura XXV: GCH-18A em 127V

7.4 S126AM12/S126XF2

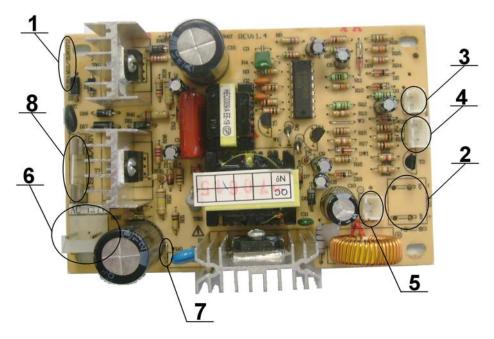


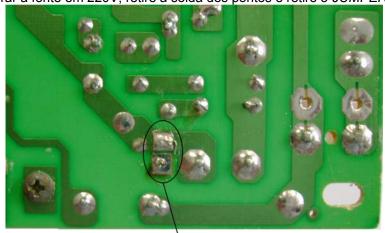
Figura XXVI: Fonte de tensão S126AM12 / S126XF12

- 1. Identificação da fonte
- 2. Conectores dos Módulos Peltier
- 3. Conector do NTC
- 4. Conector dos LEDs

- 5. Conectores dos Ventiladores
- 6. Entrada da rede
- 7. JUMPER BIVOLT
- 8. Fusível

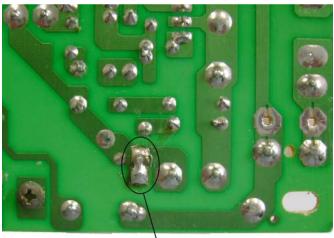
Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,4 $V \pm 10\%$
	$Ventiladores \cong 12,4V \pm 10\%$
	$NTC \cong 1.3V \pm 10\%$
	$LED(R-GND) \cong 0$
	$LED(G-GND) \cong 1.9V \pm 10\%$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> ≅ 3,8 <i>V</i> ±10%
	$Ventiladores \cong 3.8V \pm 10\%$
	$NTC \cong 1.9V \pm 10\%$
	$LED(R-GND) \cong 1.9V \pm 10\%$
	$LED(G-GND) \cong 0V$


Tabela IX: Especificações elétricas da S126M12/S126XF2

a Comutação da tensão de entrada

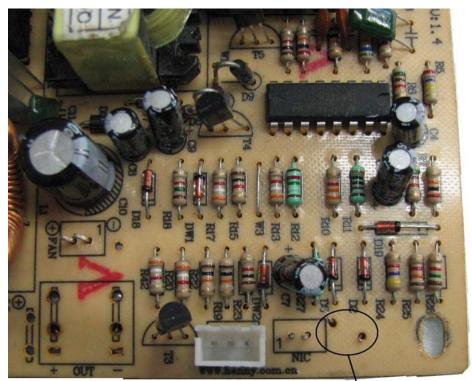
Na fonte SM126AM12 a comutação da chave BIVOLT será feita retirando ou colocando o *JUMPER* BIVOLT do circuito.


- Identifique onde o JUMPER BIVOLT se encontra na fonte
- Na parte posterior da fonte, identifique os pontos de solda deste *JUMPER*.
- Para configurar a fonte em 220V, retire a solda dos pontos e retire o JUMPER.

Fonte em 220V

Figura XXVII: SM126AM12 em 220V

• Numa fonte preparada para uma rede de 127V, o *JUMPER* deverá estar conectado ao circuito.



Fonte em

Figura XXVIII: SM126AM12 em 127V

Como dito na parte da fonte GCH-A, abaixo se encontra o lugar na fonte S126AM12 para a colocação do resistor em paralelo

Lugar de colocação do resistor em paralelo com o NTC

Figura XXIX: Posição do resistor em paralelo com o NTC

7.5 GCH-28

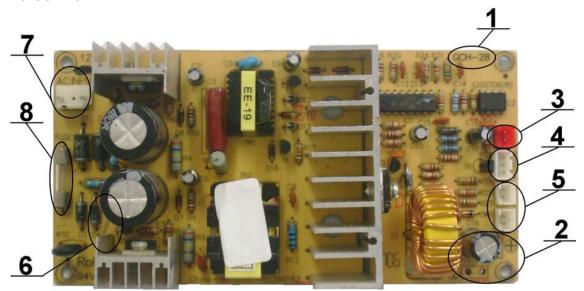


Figura XXX: Fonte de tensão GCH-28

- 1. Identificação da fonte
- 2. Conectores dos Módulos Peltier
- 3. Conector do NTC
- 4. Conector dos LEDs

- 5. Conectores dos Ventiladores
- 6. JUMPER BIVOLT
- 7. Entrada da rede
- 8. Fusível

Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> ≅ 12,3 <i>V</i> ±10%
	$Ventiladores \cong 12,3V \pm 10\%$
	$NTC \cong 1.3V \pm 10\%$
	$LED(R-GND) \cong 1.9V \pm 10\%$
	$LED(G-GND) \cong 0V$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> \cong 5,5 $V \pm 10\%$
	$Ventiladores \cong 5,5V \pm 10\%$
	$NTC \cong 4.9V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 1.9V \pm 10\%$

Tabela X: Especificações elétricas da GCH-28

a Comutação da tensão de entrada

Na fonte GCH-28 a comutação da chave BIVOLT será feita unindo ou não dois pontos de solda na placa

- Identifique os pontos "X" e "Y" na parte posterior da fonte.
- Para configurar a fonte em 220V, retire a solda entre os dois pontos

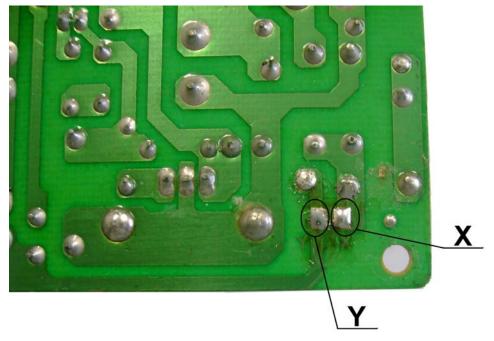


Figura XXXI: GCH-28 em 220V

Para configurar a fonte em 127V una novamente os dois pontos com estanho.

Figura XXXII: GCH-28 em 127V

7.6 GCH-28B

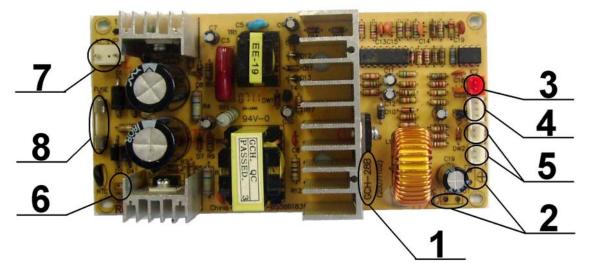


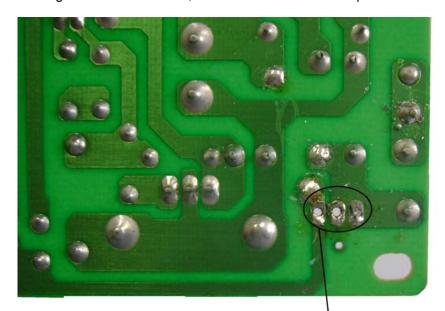
Figura XXXIII: Fonte de tensão GCH-28B

- 1. Identificação da fonte
- 2. Conectores dos Módulos Peltier
- 3. Conector do NTC
- 4. Conector dos LEDs
- 5. Conectores dos Ventiladores
- 6. JUMPER BIVOLT
- 7. Entrada da rede
- 8. Fusível

Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,5 $V \pm 10\%$
	$Ventiladores \cong 12,5V \pm 10\%$
	$NTC \cong 1.2V \pm 10\%$
	$LED(R-GND) \cong 1.9V \pm 10\%$
	$LED(G-GND) \cong 0V$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> \cong 4,7 $V \pm 10\%$
	$Ventiladores \cong 4,7V \pm 10\%$
	$NTC \cong 2.0V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 1,9V \pm 10\%$
Tensões no estado de segurança	$M\acute{o}dulo\ Peltier\cong 1V\pm 10\%$
	$Ventiladores \cong 1V \pm 10\%$
	$NTC \cong 4.9V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 1,9V \pm 10\%$

Tabela XI: Especificações elétricas da GCH-28B

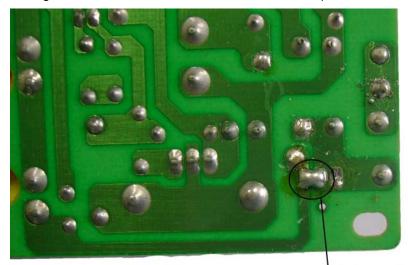


Nos modelos mais novos desta placa serão encontrados bornes e conectores extras, que facilitam a conexão dos módulos Peltier à fonte e a conexão do cabo BIVOLT (ver Erro! A origem da referência não foi encontrada., pág. Erro! Indicador não definido.).

a Comutação da tensão de entrada

Na fonte GCH-28B a comutação da chave BIVOLT será feita unindo ou não dois pontos de solda na placa

- Identifique os pontos "X" e "Y" na parte posterior da fonte.
- Para configurar a fonte em 220V, retire a solda entre os dois pontos.



Fonte em 220V

Figura XXXIV: GCH-28B em 220V

• Para configurar a fonte em 127V una novamente os dois pontos com estanho.

Fonte em 127V

Figura XXXV: GCH-28B em 127V

7.7 HYS120-12E

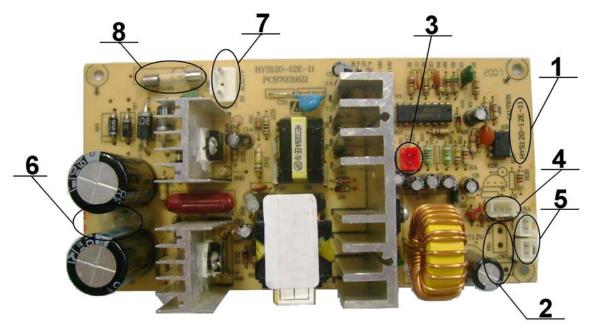


Figura XXXVI: Fonte de tensão HYS120-12E

- 1. Identificação da fonte
- 2. Conectores dos Módulos Peltier
- 3. Conector do NTC
- 4. Conector dos LEDs

- 5. Conectores dos Ventiladores
- 6. JUMPER BIVOLT
- 7. Entrada da rede
- 8. Fusível

Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs)

Tensão de entrada	127V ou 220V
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,1 $V \pm 10\%$
	$Ventiladores \cong 12,1V \pm 10\%$
	$NTC \cong 1,6V \pm 10\%$
	$LED(R - GND) \cong 1.9V \pm 10\%$
	$LED(G-GND) \cong 0V$
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> \cong 5,1 <i>V</i> \pm 10%
	$Ventiladores \cong 5,1V \pm 10\%$
	$NTC \cong 5V \pm 10\%$
	$LED(R-GND) \cong 0V$
	$LED(G-GND) \cong 0V$

Tabela XII: Especificações elétricas da HYS120-12E

a Comutação da tensão de entrada

Na fonte HYS120-12E a comutação se dá retirando o *JUMPER* BIVOLT do circuito. O processo é semelhante ao das fontes anteriores, mudando apenas a localização deste *JUMPER*.

- Identifique onde o JUMPER BIVOLT se encontra na fonte
- Na parte posterior da fonte, identifique os pontos de solda deste JUMPER.
- Para configurar a fonte em 220V, retire a solda dos pontos e retire o JUMPER.

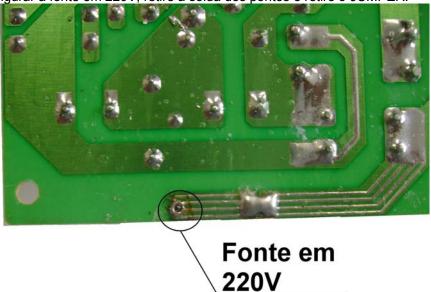


Figura XXXVII: HYS120-12E em 220V

• Numa fonte preparada para uma rede de 127V, o *JUMPER* deverá estar conectado ao circuito.

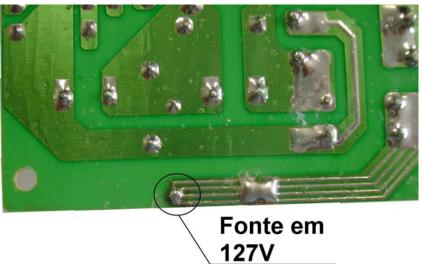


Figura XXXVIII: HYS120-12E em 127V

7.8 HYS120-12B

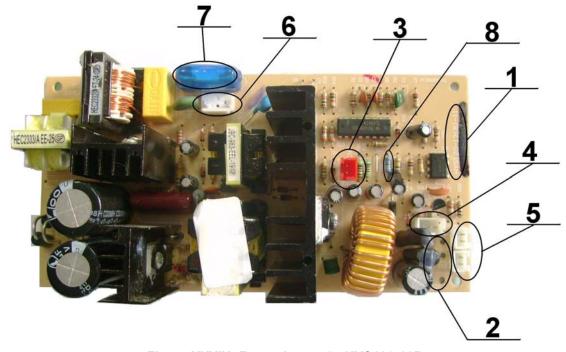


Figura XXXIX: Fonte de tensão HYS120-12B

- 1. Identificação da fonte
- 2. Conectores dos Módulos Peltier
- 3. Conector do NTC
- 4. Conector dos LEDs

- 5. Conectores dos Ventiladores
- 6. Entrada da rede
- 7. Fusível
- 8. Resistor de referência (R19)

Características elétricas com carga total (módulo(s) Peltier, ventilador(es), sensor de temperatura, e LEDs).

Tensão de entrada	127V ou 220V	
Tensões no estado de refrigeração plena	<i>Módulo Peltier</i> \cong 12,1 $V \pm 10\%$	
	$Ventiladores \cong 12,1V \pm 10\%$	
	$NTC \cong 1,2V \pm 10\%$	
	$LED(R-GND) \cong 1.9V \pm 10\%$	
	$LED(G - GND) \cong 0V$	
Tensões no estado de refrigeração parcial	<i>Módulo Peltier</i> \cong 3,0 <i>V</i> \pm 10%	
	$Ventiladores \cong 3.0V \pm 10\%$	
	$NTC \cong 4.9V \pm 10\%$	
	$LED(R-GND) \cong 0$	
	$LED(G-GND) \cong 1.9V \pm 10\%$	

Tabela XIII: Especificações elétricas da HYS120-12B



Existem ainda duas variações do modelo HYS120-12B; a mudança consiste no RESISTOR 19 (R19). Encontramos em algumas fontes este resistor de $24k\Omega$ (azul), e em outras $19k\Omega$ (verde). Apesar de pequena, é uma mudança significativa no comportamento da fonte fazendo com que se tornem diferentes quando em funcionamento na unidade.

a Comutação da tensão de entrada

Na fonte HYS120-12B o *JUMPER* BIVOLT não se encontra à mostra no circuito. Assim a comutação se dará como mostrado nas figuras abaixo:

Com o ponto de solda em aberto a unidade está em 220V

Fonte em 220V

Figura XL: HYS120-12B em 220V

Já com o ponto de solda fechado temos:

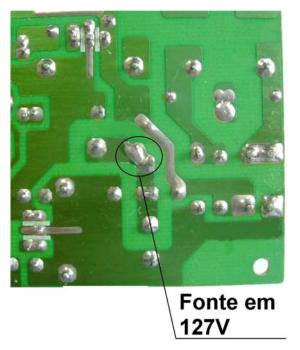


Figura XLI: HYS120-12B em 127V

7.9 GCH-A23

Este modelo de fonte se encontra obsoleto nos projetos de BEBEDOURO e PURIFICADORES; ao encontrar este modelo instalado em algum produto, é pedido que seja substituído por um de acordo com a tabela Tabela XIV: Modelo da Fonte x Posição do Poço x NTC, página - 39 -.

7.10 Teste Elétrico na Fonte

Para saber se uma fonte tem condições de utilização nos BEBEDOUROS e PURIFICADORES ela tem que ser aprovada, antes de tudo, no teste elétrico.

O teste elétrico determina se a fonte está fornecendo valores de tensão corretos em sua saída.

- 1. Teste de continuidade no fusível
- 2. Verificar JUMPER BIVOLT:
 - Se o JUMPER estiver fechado 127V
 - Se o JUMPER estiver aberto 220V
- 3. Medir a tensão de entrada na fonte
- 4. Medir a tensão de saída nos conectores do módulo Peltier.
- 5. Medir a tensão de saída nos conectores dos ventiladores.
- 6. Medir a tensão de saída no conector dos LEDs (ver modelo)
- 7. Medir a tensão no conector do NTC

8. Combinações entre Reservatórios, NTCs e Fontes de Tensão

RESERVATÓRIO	POSIÇÃO DO POÇO DO NTC NO RESERVATÓRIO	NTC	FONTE DE TENSÃO	OBSERVAÇÃO
CD0,7-S	INFERIOR	3950	GCH-A	Com um resistor de 82KΩ em paralelo com o NTC
			S126AM12	Com um resistor de 120KΩ em paralelo com o NTC
		3435	GCH-A	Com GRAXA dissipadora HILL 60 no poço do NTC de controle
			S126AM12	
	INFERIOR	3950	GCH-18	Com GRAXA dissipadora HILL 60 no poço do NTC de controle
			GCH-18A	Com GRAXA dissipadora HILL 60 no poço do NTC de controle
			S126AM12	
CD1,5-S			S126AM12	Com poço de latão, usar resistor de 143KΩ em paralelo com o NTC de controle.
			GCH-A	
	SUPERIOR	3435	GCH-A	Com poço de latão, usar resistor de 143KΩ em paralelo com o NTC de controle.
			GCH-18	
			GCH-18A	
		3950	GCH-18	
			GCH-18A	
CD1,5-S (NOVA)	SUPERIOR	3600	GCH-18A	
ICY-1,5	-	3435	HYS120-12B	Com um resistor de $2,7k\Omega$ em série com o NTC (fontes $24~k\Omega$)
			HYS120-12B	Com um resistor de 161K Ω em paralelo com o NTC (fontes 19 $k\Omega$)
			HYS120-12E	

CD1,5-D	INFERIOR	3435	HYS120-12B	
			HYS120-12E	Com GRAXA dissipadora HILL 60 no poço do NTC de controle
		3950	GCH-28	
			GCH-28B	
	SUPERIOR	3435	HYS120-12B	
			HYS120-12E	
			GCH-28	
			GCH-28B	
		3950	HYS120-12B	
			HYS120-12E	
			GCH-28	
			GCH-28B	
CD2,0-D	SUPERIOR	3435	GCH-28B	

Tabela XIV: Modelo da Fonte x Posição do Poço x NTC

9. Dissipadores de Calor Interno



Figura XLII: Dissipador interno

É o dissipador responsável por fazer a condução térmica entre a água e o módulo Peltier.

É de alumínio anodizado, tem sua área menor que a do dissipador externo, fica em contato com a face fria do módulo Peltier, e é encontrado nas cores preta ou natural.

9.1 Verificação e manutenção do dissipador interno

O dissipador interno é o componente do sistema que está em contato permanente com a água. Como dito acima é o responsável pela condução térmica entre a água e o módulo Peltier.

Para uma eficiência na condução do calor, a área de contato entre o módulo Peltier e o dissipador tem que ser o maior possível. Por este motivo os dissipadores não podem estar sujos ou empenados.

Para determinar se um dissipador está empenado ou não, a MASTERFRIO utiliza um teste simples e de fácil aplicação por qualquer técnico em campo.

Utilizando uma régua, coloque-a em contato com a parte lisa do dissipador e, contra a luz, observe se há grandes deformidades entre a régua e o dissipador.

Se houver passagem de luz pela junção, o dissipador tem imperfeições em sua superfície e não está próprio para uso.

É de grande importância que os dissipadores se encontrem limpos. A sujeira atrapalha a troca térmica e conseqüentemente atrapalha o rendimento da unidade.

Um dissipador é limpo por um processo fácil, que é descrito abaixo:

- Pegue o dissipador sujo e enxágüe em água corrente.
- Mergulhe-o em uma solução de água com ZENNITH. Cuidado no manuseio deste produto, ele é altamente agressivo.
- Deixe de molho por 20 minutos.

- Retire o dissipador do banho, e enxágüe-o novamente em água corrente.
- Deixe-o secar.

10. Dissipadores de Calor Externo

Figura XLIII: Dissipadores externos

É o dissipador que faz a troca de calor do módulo Peltier com o ambiente externo. A dissipação de calor no dissipador externo é feita através de convecção forçada. É feito em alumínio na cor natural, tem sua área muito maior em relação ao dissipador interno, e fica em contato com a face quente do módulo Peltier.

O dissipador externo (quente) é de grande importância no rendimento da unidade. Um dissipador não apropriado, empenado e / ou sujo, acarretará uma unidade com desempenho menor que o esperado.

É importante que o dissipador seja muito bem inspecionado e limpo, no caso de uma desmontagem da unidade.

Figura XLIV: Dissipadores de calor

10.1 Verificação e manutenção do dissipador externo

Para o dissipador externo se utiliza o mesmo tratamento, tanto para identificação de empeno e limpeza, dado ao dissipador interno.

11. Ventiladores

Figura XLV: Ventilador

O ventilador é o responsável pela ventilação forçada para a troca térmica entre o dissipador externo e o ar. Sem este a troca térmica não é feita de maneira satisfatória causando superaquecimento do dissipador, e eventual dano ao módulo Peltier.

Veja a tabela abaixo, onde são definidas as condições de velocidade de giro do ventilador de acordo com o modo de funcionamento que se encontra o equipamento.

Modo de Operação	Tensão nos Terminais	Velocidade Aparente
Refrigerando	$\cong 12V \pm 5\%$	Nominal
Corte de Controle	≅ 5V ou 3V ± 5% *	Reduzida
Corte de Segurança	$\cong 1V \pm 5\%$	Parado

Tabela XV: Estado do Ventilador x Modo de Operação

-

^{*} Ver modelo da fonte de tensão

12. LEDs

Figura XLVI: LED

Os LEDs são a interface visual entre o aparelho e o usuário.

Existem vários tipos, com várias funções e vários cabos de conexão nos BEBEDOUROS e PURIFICADORES.

Modelo	Significado	Execução	Cor
Bebedouro DURABRAND;			
Bebedouro ZAYT; Bebedouro BLUESKY;	• LED aceso: estado de refrigeração		
Bebedouro COMPACTO	plena	Cabo com	
ELETRONIC; Bebedouro FRESH ELETRONIC;	• LED apagado: estado de	1 (um) LED	Vermelho
Bebedouro ICY	refrigeração parcial ou aparelho desligado	LED	
ELETRONIC; Purificador	333.9		
de Água ELETRÔNICO.			

Tabela XVI: Tabela de LEDs

13. Cabos de Alimentação Elétrica

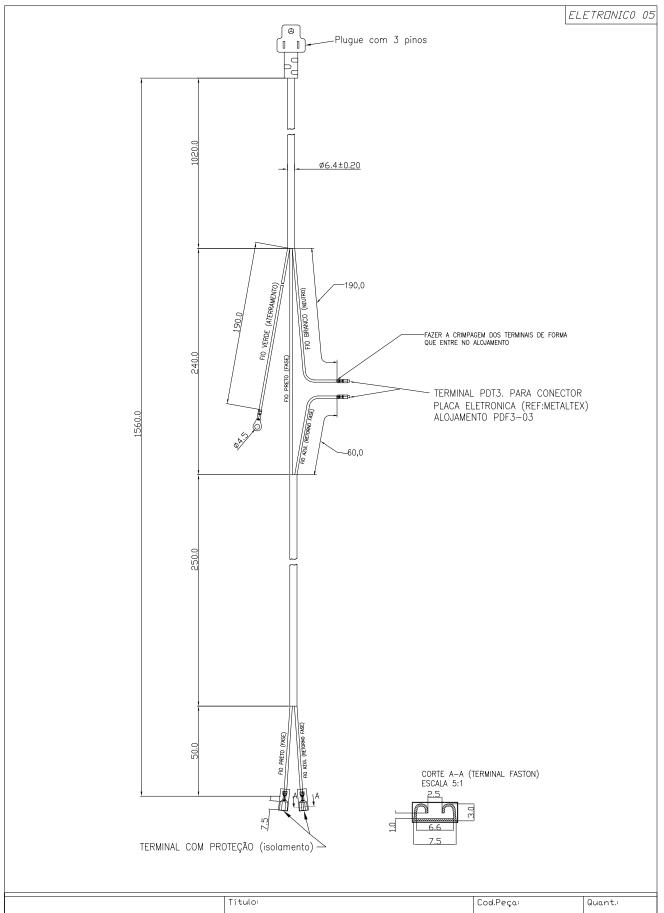


Figura XLVII: Cabo de alimentação elétrica

É o cabo que ligará o aparelho à rede elétrica instalada no local de uso. Rede esta que deve estar ou em 127V, ou em 220V.

Dependendo do modelo do BEBEDOURO e do PURIFICADOR pode ser constituído por 2 ou 3 fios (sem considerar o fio terra), e ter vários tipo de chaves comutadoras.

Em modelos mais antigos poderão ser encontrados cabos de alimentação elétrica com um LED. Nos aparelhos que utilizam este cabo o LED simplesmente indica se este está ligado ou desligado, diferentemente dos aparelhos com LED conectado na fonte de tensão (Fontes de Tensão, pág. - 44 -).

			Título:				Cod.Peça:		Quant:	
master frio			CABO ELÉTRICO C/ 2 POLOS		21324		01			
			Cod.Material:	Material:				11-08-05	0019-05	
					FIO FLEXÍV	EL 3	×0./5MM	29-11-06	0037-06	
Proj.:	Data:	Escala:	Tol. Geral:	Dimensão		□bs.:				
Herivelto	25-02-05	S/E	±10mm		_	ISENT	DE REBARBAS			
Des.:	Data:	Copia nº:	Peso (kg):	Aplicação:						
HNF	25-02-05		_		BEBEDOURO	ELE	TR≙NIC□	Data:	Na:	Aprov.

Abaixo serão relacionados os tipos de interruptores e chaves utilizados para ligar ou desligar os aparelhos.

Modelo	Tipo do botão LIGA / DESLIGA	Local do Botão no Equipamento
Bebedouro DURABRAND; Bebedouro ZAYT; Bebedouro BLUESKY; Bebedouro ICY ELETRONIC; Purificador de Água ELETRÔNICO.	Interruptor de embutir	Traseira
Bebedouro COMPACTO ELETRONIC; Bebedouro FRESH ELETRONIC.	Interruptor de embutir	Frontal

Tabela XVII: Tipos de cabo de alimentação elétrica

Modelo	Identificação na Vista Explodida
BEBEDOURO ZAYT ELETRONIC	24
BEBEDOURO ICY ELETRONIC	11
BEBEDOURO BLUESKY ELETRONIC; BEBEDOURO DURABRAND ELETRONIC; BEBEDOURO COMPACTO ELETRONIC; BEBEDOURO FRESH ELETRONIC; BEBEDOURO FRESH ELETRONIC TURBO;	21

Tabela XVIII: Identificação do cabo de alimentação elétrica (vista explodida)

IV. Partes Mecânicas

1. Separador de Água

É o suporte onde o garrafão de água será colocado nos bebedouros. É onde ocorrerá a separação da água que irá para o reservatório para ser refrigerada, e a que irá direto para a torneira e será a água natural.

2. Mangueiras

São as conexões que conduzem a água do separador para o reservatório ou para a torneira.

3. Suportes das torneiras

São os suportes que fixam as torneiras ao aparelho e onde se faz a ligação das mangueiras com as mesmas.

4. Torneiras

É o dispositivo por onde o usuário retira a água.

Cada modelo usa um tipo de torneira, vide cada um nas vistas explodidas dos modelos no capítulo Modelos Eletrônicos, na página - 5 -.

5. Abraçadeiras

São os componentes responsáveis pela fixação das mangueiras às torneiras, ao separador e ao reservatório.

6. Manifold

É o dispensador de água natural e gelada. Encontrado em alguns modelos de PURIFICADORES (ver vistas explodidas no capítulo Modelos Eletrônicos, na página - 5 -).

7. Montagem e Desmontagem do Aparelho

No bebedouro para se fazer uma manutenção correta e sem riscos de danificar outras partes, é recomendado fazer o seguinte processo:

- Desligar o aparelho e retira o cabo de alimentação da tomada.
- Retirar o galão de água.
- Retirar a água do reservatório pelo dreno.
- Retirar o fechamento traseiro, retirando os parafusos. Atente para os cabos elétricos que possam estar conectados a estes.
- Desconectar as mangueiras do reservatório.
- Retirar a unidade do equipamento para ter melhor acesso aos componentes mecânicos.

OBS.: no caso de substituição de qualquer um desses componentes ver, para cada modelo, na vista explodida deste, a peça correta a ser substituída.

V. Modificações Recentes

Nos últimos meses foram feitas algumas modificações mecânicas nos BEBEDOUROS e PURIFICADORES:

BEBEDOURO

- Retirada da Cuba

Foi substituída a cuba pelo SEPARADOR, para simplificar a montagem e manutenção.

Figura XLVIII: Modificação na cuba do bebedouro: projeto antigo e projeto novo

- Substituição da torneira com a rosca paralela, por uma com a rosca cônica. Essa substituição foi feita para evitar a quebra no suporte da torneira.

Figura XLIX: Torneira sem chanfro e com chanfro

- Modificações do modelo ICY

Substituição da unidade atual (ICY) de 1,45 l, pela unidade CD2,0-D que comporta 2,0 l. Para realizar a manutenção na unidade de refrigeração ou nas partes hidráulicas, o acesso será pela parte traseira. A fixação da tampa traseira, que antes era feita com rebites, com a mudança a mesma será fixada através de parafusos.

Reforço da fixação do painel inferior, proporcionando maior resistência, evitando com isto, a quebra do mesmo durante o transporte.

PURIFICADOR

- Retirada da Cuba

Para eliminar pontos de vazamento e ter mais segurança na estanqueidade da entrada da áqua

Figura L: Modificação na cuba do purificador: projeto antigo e projeto novo

- Retirada do conjunto manifold

Com a retirada da cuba, teve que se projetar um dispositivo que suportasse a pressão de entrada d'água da rede. Com isso foi substituído o conjunto MANIFOLD por torneiras com fechamento através de um êmbolo e mola.

Figura LI: Torneira com fechamento através de êmbolo e mola

- Retirada das mangueiras plásticas Substituição das mesmas por tubos INOX, proporcionando maior segurança no sistema hidráulico.
- Aumento na ventilação do equipamento Foi substituída a lateral com entrada de ar nas extremidades, por uma totalmente aletada. Foram feitos furos na base do equipamento com o mesmo objetivo.

Figura LII: Lateral aletada e base furada

VI. Sanitização

Na limpeza externa dos BEBEDOUROS e PURIFICADORES não use abrasivos, saponáceos, detergentes clorados, sabões cáusticos, álcool ou solventes. É de recomendação da MASTERFRIO que a limpeza seja feita com um pano úmido e sabão neutro.

A pingadeira é de fácil limpeza já que é removível e encaixável.

A diferença primária entre um BEBEDOURO da MASTERFRIO e um PURIFICADOR de água MASTERFRIO é a entrada de água na unidade. No caso do bebedouro, a água é proveniente de um galão com água pré-filtrada:

Figura LIII: Galão de água para o bebedouro

Já o purificador recebe água da rede e, por meio de um elemento filtrante, filtra a água proveniente desta.

Figura LIV: Filtro do Purificador

1. Bebedouros

No caso do BEBEDOURO, a limpeza do reservatório de água gelada e da cuba deve ser feita com uma solução bactericida, seguindo as instruções abaixo:

- Desligue o aparelho retire-o da tomada.
- Retire o garrafão de água e esvazie a água que se encontra no separador usando a torneira de água natural.
- Retire a água que se encontra no reservatório usando o dreno que se encontra na parte de baixo do equipamento.
- Recoloque o tampo do dreno reparando que ele esteja bem colocado, empurrando-o até o final
- Com a torneira de água gelada aberta (fechar quando começar a sair água pela torneira), coloque 3 (três) litros de água e 6 (seis) gotas de cloro na cuba.
- Espere 20 minutos.
- Esvazie o separador e o reservatório pelo mesmo processo descrito acima.
- Recoloque o garrafão e ligue o aparelho.

2. Purificadores

2.1 Substituição de filtro

Recomenda-se que o filtro do purificador seja trocado em aproximadamente 12 meses. Lembrando sempre que a vida útil do filtro depende do consumo que o equipamento é submetido e a qualidade da água que é utilizada nele.

Atente sempre a sinais que possam evidenciar a saturação do filtro. Podem ser eles:

- Diminuição sensível da vazão de água natural.
- O visor no fundo do filtro se encontra nas cores barrentas ou muito escuras.

A troca do filtro será feita da seguinte maneira:

Abra a porta lateral, onde se encontra o filtro.

Retire o filtro, girando-o sempre para a esquerda.

O filtro se soltará naturalmente, sem a necessidade de forças maiores para isso.

Retire a tampa de proteção do filtro novo.

Recoloque o filtro novo em seu lugar, e prenda o mesmo girando sempre para a direita.

VII. Problemas, Causas e Soluções

Problemas	Causas	Ações / Soluções
1. O Bebedouro e / ou	a. Falta de alimentação	Verificar se há tensão na rede.
Purificador não liga	adequada	 Verificar se a tensão do equipamento
3	b. Falta de conexões	confere com a da rede.
	adequadas	 Verificar se o cabo de alimentação está
	c. Falha na fonte de tensão	na tomada.
		Verificar com o botão LIGA / DESLIGA
		acionado, se há tensão na entrada da
		fonte.
		Verificar se as conexões de entrada na
		fonte estão corretas
		Verificar fusível.
		Verificar se as tensões de saída da
		fonte estão conforme o previsto no
		capítulo Fontes de Tensão (pág 44 -).
		Ver cada caso específico.
		Verificar se o NTC está O.K.
		Trocar a fonte.
2. O fusível abre ao	a. A fonte não foi preparada	Verificar se a tensão do equipamento
ligar o aparelho	para a tensão de rede	confere com a da rede.
	b. Mau funcionamento da	Caso não haja chave BIVOLT, faça as
	fonte de tensão	mudanças recomendadas no capítulo
		Fontes de Tensão (pág 44 -). Ver cada
		caso específico.
		Trocar a fonte
3. A fonte não está	a. O modelo não tem suporte	• Fazer a conversão da tensão de
preparada para a tensão	para chavear entre uma	entrada na própria fonte, como explicado
nominal da rede, e não	tensão e outra	em cada caso específico no capítulo
tem chave comutadora.	146	Fontes de Tensão, página - 44
4. LED de refrigeração	a. Má instalação do LED	Verificar se há tensão nos terminais de
não acende, mas a	b. LED danificado	saída da fonte
unidade aciona. (ver	c. Cabos danificados	Verificar terminal do LED – terminal
modelo no capítulo		vermelho (positivo) no R, e o preto
LEDs, pág 71 -)		(negativo) no pino do meio.
		Verificar se o LED não está queimado.
		Verificar se o cabo de alimentação do
5. Ventilador não gira	a Aparalha am aorta da	LED não está partido.
5. Ventilador não gira	a. Aparelho em corte de	
	segurança b. Empecilho mecânico	corte de segurança.
	impedindo o movimento	Verificar se não existem quaisquer objetos obstruindo a rotação do
	c. Ventilador danificado	objetos obstruindo a rotação do ventilador.
	d. Mau funcionamento da	Verificar se o NTC está conectado
	fonte de tensão	corretamente.
		Verificar se há tensão nos terminais do
		ventilador.
		Se houver troque o ventilador.
		Caso contrário verificar eventuais
		problemas na fonte de tensão.
		אוסטופווומס וומ וטוונכ עב נכווסמט.

Tabela XIX: Tabela de problemas, causas e soluções elétricos/eletrônicos

1.	Dissipador externo parece solto	a.	Parafusos de fixação não estão bem instalados.	 Verificar se a instalação mecânica da unidade está correta, e dentro do padrão adotado pela MASTERFRIO (ver capítulo Montagem e Desmontagem, pág 32 -).
2.	Suporte da torneira quebrado	a.	Instalação inadequada da torneira	Trocar o suporte
3.	Mangueiras soltas	a. b.	Instalação inadequada. Ausência da braçadeira de fixação.	 Trocar a mangueira por uma de tamanho adequado Utilizar a braçadeira de fixação
4.	Torneira vazando	a. b. c.	Má instalação Desgaste por fadiga Uso inadequado	Reinstalar a torneiraTrocar a torneira
5.	Manifold quebrado	a. b.	Desgaste	Trocar o manifold
6.	Água com aspecto, cor, cheiro e / ou gosto estranho	a.	Filtro saturado	Trocar o filtro

Tabela XX: Tabela de problemas, causas e soluções mecânicos

VIII. Apêndice

1. Instrumentos

São necessários vários instrumentos de medida e ferramentas para desinstalar, instalar, testar, e detectar defeitos nos modelos eletrônicos de BEBEDOUROS e PURIFICADORES da MASTERFRIO.

É de fundamental importância que estes instrumentos utilizados sejam bem calibrados para não gerar resultados falsos, que possam acarretar tanto a uma aprovação de componentes defeituosos, quanto a uma reprovação de componentes dentro das especificações de uso.

Abaixo veremos alguns instrumentos necessários a um técnico para a manutenção dos equipamentos.

1.1 Pontas de Prova

A ponta de prova é o dispositivo que interligará o aparelho ao dispositivo em teste. Apesar de não parecer uma fonte de erro, a qualidade da ponta de prova pode sim alterar o resultado final da medição.

Uma ponta de prova tem que ser bem construída, com baixa impedância e com isolamento apropriado. Pode ser encontrada em lojas que vendem artigos eletrônicos.

1.2 Voltímetro

Voltímetro é o instrumento utilizado para medir a diferença de potencial (tensão, voltagem, DDP, etc.) entre dois pontos num circuito elétrico / eletrônico.

Para utilizar este medidor, é preciso colocá-lo em PARALELO com o ponto a ser medido.

A unidade de medida adotada pelo Sistema Internacional de Unidades é o VOLT (V).

Pode ser encontrado em lojas que vendem artigos eletrônicos.

1.3 Amperímetro

É o instrumento capaz de medir a intensidade no fluxo da corrente elétrica que passa através da sessão transversal de um condutor.

É sempre ligado em SÉRIE com o elemento a ser medido.

A unidade de medida adotada pelo Sistema Internacional de Unidades é o AMPÈRE (A).

Pode ser encontrado em lojas que vendem artigos eletrônicos.

1.4 Ohmímetro

É o instrumento que mede uma resistência elétrica entre dois pontos.

A unidade de medida adotada pelo Sistema Internacional de Unidades é o OHM (Ω) .

Pode ser encontrado em lojas que vendem artigos eletrônicos.

1.5 Ferro de solda

O ferro de solda é uma haste de metal que ao ser ligada à rede elétrica aquece por causa de sua resistência ôhmica.

Sua temperatura varia de acordo com o modelo e qualidade do instrumento utilizado.

Ao manusear este instrumento é preciso ter muito cuidado para evitar eventuais queimaduras no usuário.

Pode ser encontrada em lojas que vendem artigos eletrônicos.

1.6 Sugador de Solda

O sugador de solda é útil na hora de retirar uma solda. Suga o metal de solda quando aquecido e em estado líquido, retirando-o do circuito e abrindo o vínculo entre o componente e este.

Figura LV: Sugador de solda

Pode ser encontrada em lojas que vendem artigos eletrônicos.

1.7 Termômetro

É o instrumento destinado a medir a temperatura de um determinado corpo.

Existem vários tipos de termômetros, com variadas maneiras de medição. É muito importante que o usuário conheça muito bem e saiba manusear o termômetro para que não haja erros nas leituras que poderão ser feitas.

Recomenda-se fortemente utilizar um termômetro em graus Celsius (°C).

Pode ser encontrada em lojas qualquer loja que venda instrumentos de medição.

1.8 Torquímetro

É o instrumento que mede um determinado torque aplicado em um determinado corpo.

A unidade de medida adotada pelo Sistema Internacional de Unidades é o N.m (NEWTON*metro).

1.9 Graxa Dissipadora

A GRAXA DISSIPADORA é uma graxa com alto teor de partículas de óxidos metálicos que dá a característica de alta condutibilidade térmica.

Utilizada na recolocação do NTC no poço (se necessário), onde auxilia na transferência de calor entre o poço e o NTC e melhora a leitura da temperatura dentro do primeiro.

É usada a graxa HILL 60 da HILLMAN, com as seguintes características:

Aspecto: Pastoso Cor: Branca

Densidade relativa a 20/4°C: 1.15 (mínimo)

Fluído base: Polidimetilsiloxane

Viscosidade a 25 ° C: 1000 cp (mínimo)

Espessante: Inorgânico Teor de óxido: 15 a 17% Ponto de gota: não tem

Limites de Temperatura: - 40 a 200º C

Para adquirir a graxa, entrar em contato com a HILLMAN (www.hillman.com.br).

1.10 Pasta Térmica

A pasta térmica é um composto químico desenvolvido para ajudar na condução de calor entre dois corpos distintos.

A pasta térmica preenche os espaços existentes na superfície dos materiais. No caso de um contato entre dois corpos a pasta térmica aumenta a área de contato entre eles, aumentando o fluxo de calor nessa junção.

A pasta térmica que a MASTERFRIO utiliza em seus produtos é da IMPLASTEC com as seguintes características:

- Temperatura de Trabalho -40 a 200 °C
- Consistencia Pastosa
- Condutividade térmica 2,0 W/mK
- Componente Básico Silicone alto peso molecular
- Exudação 0,4%

Pode ser encontrada em lojas que vendem artigos eletrônicos.

1.11 Cola Quente

É utilizada para fixa e isolar o NTC no seu poço na unidade. Para aplicá-la é usado um aplicador.

Figura LVI: Aplicador de cola quente

É encontrada em qualquer papelaria ou lojas que vendam artigos de escritório.

1.12 Rolo para Passar Pasta Térmica

O rolo para passar pasta térmica é uma ferramenta muito útil para evitar pasta em demasia e a falta desta no momento de passar a pasta nos módulos Peltier.

Figura LVII: Rolo para passar pasta térmica

Uma opção para o rolo para passar pasta térmica, seria uma espátula ou um palito semelhantes aos usados em consultórios médicos.

1.13 Álcool Isopropílico

O álcool isopropílico, ou isopropanol, é uma substância química incolor, com forte odor, à temperatura ambiente é líquido e é inflamável.

O álcool isopropílico é de grande utilidade na limpeza de componentes eletrônicos pois tem menos de 1% de água na sua composição e tem poucas impurezas. Assim diminui o risco de oxidação do componente que será feita a limpeza.

É muito importante na limpeza dos módulos Peltier e dissipadores, quando uma unidade for desmontada. A pasta térmica que está tanto no módulo quanto no dissipador, deve ser limpa para evitar excessos quando for feita a remontagem da unidade (ver capítulo Montagem e Desmontagem, pág. - 32 -).

IX.Imagens

Figura I: Bebedouro BLUESKY ELETRONIC		
Figura II: Bebedouro DURABRAND ELETRONIC	7	7 -
Figura III: Bebedouro ZAYT	8) -
Figura III: Bebedouro ZAYTFigura IV: Bebedouro MANANCIAL DA SAÚDE ELETRÔNICO	- 11	۱ -
Figura V: Bebedouro ELETRONIC	- 13	3 -
Figura VI: Rehedouro ELETRONIC TURRO	. 15	5 -
Figura VIII: Bebedouro FRESH ELETRONIC	- 17	7 -
Figura VIII: Bebedouro FRESH ELETRONIC TURBO	- 19) -
Figura IX: Bebedouro ICY ELETRONIC	- 21	1 -
Figura X: Purificador de Água MASTERFRIO	- 23	3 -
Figura XI: Reservatórios de água	- 34	1 -
Figura XII: Módulo Peltier	- 35	5 -
Figura XIII: Módulos Peltier danificados		
Figura XIV: Giga de teste de corrente para o módulo Peltier	- 38	3 -
Figura XV: NTC	- 39) -
Figura XVI: Fonte de tensão GCH-A	- 45	5 -
Figura XVII: CGH-A em 220V		
Figura XVIII: GCH-A em 127V	- 46	3 -
Figura XIX: Posição do resistor em paralelo com NTC	- 47	7 -
Figura XX: Fonte de tensão GCH-18	- 48	3 -
Figura XXI: CGH-18 em 220V	- 49) -
Figura XXII: GCH-18 em 127V	- 49	9 -
Figura XXIII: Fonte de tensão GCH-18A	- 50) -
Figura XXIV: CGH-18A em 220V	- 51	۱ -
Figura XXV: GCH-18A em 127V		
Figura XXVI: Fonte de tensão S126AM12 / S126XF12	- 52	2 -
Figura XXVII: SM126AM12 em 220V		
Figura XXVIII: SM126AM12 em 127V		
Figura XXIX: Posição do resistor em paralelo com o NTC		
Figura XXX: Fonte de tensão GCH-28		
Figura XXXI: GCH-28 em 220V		
Figura XXXII: GCH-28 em 127V		
Figura XXXIII: Fonte de tensão GCH-28B		
Figura XXXIV: GCH-28B em 220V		
Figura XXXV: GCH-28B em 127V		
Figura XXXVI: Fonte de tensão HYS120-12E	- 60	·) _
Figura XXXVII: HYS120-12E em 220V		
Figura XXXVIII: HYS120-12E em 127V		
Figura XXXIX: Fonte de tensão HYS120-12B		
Figura XL: HYS120-12B em 220V		
Figura XLI: HYS120-12B em 127V	- 64	1 -
Figura XLII: Dissipador interno		
Figura XLIII: Dissipadores externos		
Figura XLIV: Dissipadores de calor		
Figura XLV: Ventilador		
Figura XLVI: LED		
Figura XLVII: Cabo de alimentação elétrica		
Figura XLVIII: Modificação na cuba do bebedouro: projeto antigo e projeto novo		
Figura XLIX: Torneira sem chanfro e com chanfro		
Figura L: Modificação na cuba do purificador: projeto antigo e projeto novo		
Figura LI: Torneira com fechamento através de êmbolo e mola		
Figura LII: Lateral aletada e base furada		
	- 80	

Figura LIV: Filtro do Purificador	80 -
Figura LV: Sugador de solda	
Figura LVI: Aplicador de cola quente	87 -
Figura LVII: Rolo para passar pasta térmica	87 -

X. Tabelas

Tabela I: Teste de corrente no módulo Peltier	39 -
Tabela II: Tabela de resistência dos NTCs com diferentes BETAS a 5°C	40 -
Tabela III: Temperatura x Resistência NTC 10k – 3435	41 -
Tabela IV: Temperatura x Resistência NTC 10k – 3600	42 -
Tabela V: Temperatura x Resistência NTC 10k – 3950	43 -
Tabela VI: Especificações elétricas da GCH-A	45 -
Tabela VII: Especificações elétricas da GCH-18	48 -
Tabela VIII: Especificações elétricas da GCH-18A	50 -
Tabela IX: Especificações elétricas da S126M12/S126XF2	
Tabela X: Especificações elétricas da GCH-28	55 ·
Tabela XI: Especificações elétricas da GCH-28B	
Tabela XII: Especificações elétricas da HYS120-12E	60 -
Tabela XIII: Especificações elétricas da HYS120-12B	
Tabela XIV: Modelo da Fonte x Posição do Poço x NTC	66
Tabela XV: Estado do Ventilador x Modo de Operação	70 -
Tabela XVI: Tabela de LEDs	71 -
Tabela XVII: Tipos de cabo de alimentação elétrica	74 -
Tabela XVIII: Identificação do cabo de alimentação elétrica (vista explodida)	74 -
Tabela XIX: Tabela de problemas, causas e soluções elétricos/eletrônicos	82 -
Tabela XX: Tabela de problemas, causas e soluções mecânicos	83 -