

Manual de Utilização

Versão 6.60

Setembro/2008

UL - Arquitectura e Engenharia, Ld^a Rua da Gandra, 291 4445-122 Alfena tel e fax: 22 967 22 07 e-maii: Ij.Ida@gmail.com www.ljlprojectos.com

I. INSTRUÇÕES GERAIS

O programa pode ser utilizado com o rato, clicando nos campos a preencher. O método mais correcto será de através do teclado fazer o seu preenchimento, e com ENTER ou TAB passar para outro campo. Este método também tem a vantagem de não deixar campos por preencher, pois o programa vai percorrendo todos os campos, ordenadamente.

Para recuar de campo (células) carregue em simultâneo o SHIFT + TAB.

Designação	V1	
Vão de cálculo	4,00	m
Base da secção b=	25	cm

Pode editar o conteúdo das células que aparecem com fundo amarelo, clicando sobre as mesmas.

Para escolher dentro de um conjunto de Option com as setas do teclado posicione-se e para escolher faça ENTER ou TAB.

Para seleccionar campos de Escolha clique num dos botões ou carregue no ESPAÇO.

Atribuir acções automáticamen	e 🔽 Verificar a flecha
Atribuir acções automáticamen	te Verificar a flecha

Para arrancar com programa clique em cima do comando "Continuar" da imagem seguinte, ou "Sair" para abandonar o programa.

Menu de ligação com os diversos módulos - Menu de fundo. Tanto pode aceder aos Menus através do sistema de menus do Windows,

como pode aceder através dos seguintes atalhos.

📕 BETARM 6.50 - CÁLCULO DE ESTRUTURAS EM BETÃO ARMADO
Escolha Materiais Calcular Calculo de Esforços Memória descritiva Instruções Acerca de Ejectar impressão Sair

	Módulo de Escolha de Materiais e Ficheiro de dados
	Módulo de Lajes pré-esforçadas (atalho para a Marca pré-seleccionada)
	Módulo de Lajes maciças
<÷}	Módulo de Lajes em cruz
	Módulo de Vigas
Π	Módulo de Vigas Contínuas
	Módulo de Pilares
	Módulo de Sapatas
F	Módulo de Cálculo de Momentos devido às excentricidades
T	Módulo de Flexão composta
H	Módulo de cálculo sísmico
L	Módulo de Muros de Suporte
S	Editor de resultados
C	Entrar na Memória descritiva - WORD
	Calculadora

Aspecto do ecrã principal

📕 BETARM 6.50	- CÁLCULO DE ESTRUTUR	AS EM BETÃO ARMADO						
Escolha Materiais	Calcular Calculo de Esforços M	lemória descritiva Instruções Ace	rca de Ejectar impr	ressão Sair				
			HL &		be	tarr	m 6	
🐮 Iniciar		🔊 👩 🕞 👋 🕅 Microsoft	Ent2 Evolor	- WI BETARM 6	A 2 Views	W Sem titulo	I I IVI-B	

II . MENU DE ESCOLHA DE MATERIAIS E FICHEIRO

Uma das inovações do **bet** a r moto é a possibilidade de, ao imprimir, guardar em ficheiro o que vai sendo impresso. Esse ficheiro poderá ser editado através do Editor de Ficheiros. Os valores das reacções de apoios das peças já calculadas vão sendo memorizados e o programa utiliza-os nos cálculos posteriores, com a escolha apenas da referência das peças já calculadas.

Para isso ao iniciar o programa, terá de alterar o nome do ficheiro de dados, caso contrário o programa gravará no ficheiro anterior.

Neste módulo escolha o tipo de Aço e Betão para o cálculo clicando no "option" desejado. Nesta versão foram acrescentadas as nomenclaturas dos betões e dos aços segundo o Eurocódigo europeu.

Pode escolher o recobrimento pretendido, de acordo com a norma Europeia NP EN 206-1 e a marca do pré-esforçado a atribuir ao

atalho das lajes pré-esforçadas. Contudo, pode sempre escolher as outras marcas através dos memus, conforme adiante falaremos.

Introduza, também o nome do ficheiro de dados. O programa cria dentro da pasta "Trabalhos\" uma outra com o nome que escolheu e dentro dela gravas os vários ficheiros relativos ao trabalho a efectuar.

Também possui a possibilidade de escolher entre

- Imprimir e Gravar
- Só gravar

No primeiro caso imprime na impressora definida no Windows e grava no ficheiro que estiver a utilizar, e na segunda opção só grava em ficheiro, permitindo também a posterior manipulação dos dados na memória descritiva do Word. Salienta-se o facto de, se optar pela escolha "Imprimir e Gravar", o comando dos diversos módulos passa a indicar "Imprimir", caso contrário passará a indicar "Gravar".

Depois faça "Aceitar Valores" para Sair. Se a directoria do trabalho já existir aparece a mensagem da figura à esquerda e pode continuar a trabalhar. Caso a mesma directoria não exista aparece então a mensagem da figura ao centro.

Também pode apagar um trabalho, escolhendo-o e em seguida carregar no comando "Apagar Trabalho" e confirma a opção na figura da direita.

III . MÓDULO DE LAJES PRÉ-ESFORÇADAS

A imagem seguinte mostra o formulário para as lajes pré-esforçadas. O método de cálculo é o indicado no Manual Técnico anexo. Pode escolher algumas marcas de lajes pré-esforçadas mais conhecidas. Presentemente o programa possui as marcas da UNIFIX (Braga), MAPREL (Porto), RICEL (Porto de Mós), PREDIANA (Alentejo), PREMOLDE (Montijo). Conforme solicitação dos clientes estamos abertos à colocação de novas marcas no programa. Quem não pretender utilizar as marcas descritas, pode sempre usar a

genérica, que não indica nos cálculos a referência à marca, apenas à composição da mesma. Através do ícone met marca escolhida no menu das opções. Para as restantes marcas pede escolher através do Menu seguinte:

Faça as escolhas:

- Piso, Tecto ou Cobertura;
- ^o Designação da laje LP1, LP2, LT1, LT2, L.....;
- Introduza o vão de cálculo em metros;

 Escolha Atribuir acções automaticamente e o programa assume as acções mais frequentes em função do tipo de laje já escolhida

^o Caso se trate de uma laje com vão superior a 6,00 m, terá dificuldade em conseguir uma laje que verifique a flecha, e pode desligar essa verificação, que face ao REBAP, pode ser dispensada caso a altura mínima seja respeitada.

Caso não opte pela introdução automática de acções indique o Peso do revestimento, Peso das divisórias e Peso de

Telhado, bem como a sobrecarga. Clicando no comando ? obtém a tabela das sobrecargas

^o Escolha Laje com vigotas simples, duplas ou triplas, e seguidamente escolha na lista pendente o tipo de laje em função da abobadilha, por exemplo 48x09-12, 48x09-13, 48x09-14, etc. podendo percorrer a tabela com a barra de SCROLL ou com as setas.

Tipo de laje • Piso CTecto Cobertura	Momento Flector Msd= 13,23 kN/m Momento Flector - combinação frequente Msdf= 5,73 kN/m Momento Flector - combinação quase permanente Msdgp= 5,29 kN/m Esforço Transverso Vsd= 12,60 kN/m
Características da laje	Vigotas C. Duralas C. Turalas
Vão de cálculo	Tipo de laie
Altura mínima hmin= 14 cm	HT H Mrd Vrd Mfctk
Atribuir acções automáticamente 🔽 Verificar a flecha	48x09-12 48x09-13 48x09-14
Acções permanentes Peso dos tevestimentos rev= 0.50 kN/m2 Peso dos tevestimentos rev= 0.50 kN/m2 Peso dos tevestimentos rev= 1.50 kN/m2 Peso dos tevestimentos rev= 1.50 kN/m2 Peso de telhas telh= 0.00 kN/m2 Acções variáveis sc= 2.00 kN/m2 Sobrecarga cc= 2.00 kN/m2 Combinação de acções Sd = 1.5 G + 1.5 Q = 6.00 kN/m2 Combinação de acções Sd = 6 + Psi1.Q = 2.60 kN/m2	40.09-13 40.09-13 40.09-14 40.09-14 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Comb. quase permanente Sd qp = G+Psi2.Q = 2,40 kN/m2 Reacções dos apoios (sem majoração) R(G)= 4,20 kN/m R(Q)= 4,20 kN/m	- Observações
Armadura de distribuição Armadura distribuição A.d.= cm2 Malhasol	
Nervuras transversais	

As lajes que cumprem aparecem na cor azul e as que não cumprem alguma das condições de cálculo aparecem na cor vermelha.

Detarm6	Momento F Momento F Momento F	lector lector · combinação lector · combinação	o frequent o quase p	:e ermaner	Msd= Msdf= nte Msdqp=	21,83 11,47 11,02	<pre> kN/m kN/m kN/m kN/m</pre>
Piso C Tecto C Cobertura	Esforço Tr	ansverso			Vsd=	20,79	kN/m
Características da laje	Vigotas	C Cincles		C Du	-	C To	1.22
		(• Simples		t Du	plas	re-tub	bias
Vão de cálculo I = 4,20 m	Tipo de la	9	ШΤ		Med	Med	Molt
Altura mínima hmin= 14 cm	48x21-24	-	nı.	н	Mra	VIQ	MICK
	121	B3-48x21-24	24	21	17,50	24,40	10,30
Atribuir acções	122	B4-48x21-24	24	21	23,60	24,40	14,90
A	123	B5-48x21-24	24	21	29,70	24,40	19,00
Acções sobre a laje	124	B6-48x21-24	24	21	35,30	24,40	20,90
Peso próprio de laie pp= 2.60 kN/m2	125	B7-40821-24	24	21	41,20	24,40	24,10
Peso dos revestimentos rev= 0,50 kN/m2 Peso de divisórias div= 1,50 kN/m2 Peso de telhas telh= 0,00 kN/m2 TDTAL B= 4 cm kN/m2			E				
Acpões variáveis Sobrecarga sc= 2,00 kN/m2 ? kN/m2	Para e	ectuada	em cima	i do núm	iero (opção)	da primeira	coluna
Combinação de acções Sd = 1.5 G + 1.5 Q = 9,90 kN/m2 Comb. frequente Sd f = G + Psi1.Q = 5,20 kN/m2	Momento M. Flecto M. Flecto Esforço 1	Flector r - comb. freq. r - comb. q. perm. ransverso	Msd= Msdf= Msdqp= Vsd=	21,8 11,4 11,0 20,7	13 < 17 < 12 < 79 <	29,70 19,00 19,00 24,40	kN/m kN/m kN/m kN/m
Comb. quase permanente Sd qp = G+Psi2.Q = 5,00 kN/m2	Observaçã	ies					
Reacções dos apoios (sem majoração) R(G)= 9,66 kN/m R(G)= 4,20 kN/m Amadura de distribuição							
Armadura distribuição A.d.= 0,66 cm2 Malhasol AR 30							
Nervuras transversais							

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir, quando o quadro das observações não tiver mensagens. A escolha da laje desejada é feita clicando em cima do número de referência (neste caso o 123), ficando a laje escolhida com um fundo verde e actualizando todos os cálculos e verificações necessárias.

Após a confirmação do comando "Gravar" vai, para o ficheiro de resultados a informação seguinte:

LAJE LP1 - Laje de Pis	0		
CARACT. GEOMÉTRICAS	l= 4,20 m	h= 24 cm	d= 21 cm
ACÇÕES PERMANENTES	pp =2,61 kN/m2	rev=0,50 kN/m2	div=1,50 kN/m2
	G=4,60 kN/m2		
ACÇÕES VARIÁVEIS	sc =2,00 kN/m2	Q=2,00 kN/m2	
COMBINAÇÃO DE ACÇÕES	Sd =9,90 kN/m2	Sd (f)=5,20 kN/m2	Sd (qp)=5,00 kN/m2
ESFORÇOS ACTUANTES	Msd= 21,83 kNm	Vsd=20,79 kN	
	Msd (fctk)= 11,02 kNm	Msd (zero)= 11,02 kNm	
LAJE ADOPTADA	Referência B5-48x21-24		
ESFORÇOS RESISTENTES	Mrd= 29,70 kNm	Vrd=24,40 kN	Mrd (fctk) = 19,00 kNm
CÁLCULO DEFORMADA	f(max)=10,50 mm	f(inst)=1,65 mm	f (l.prazo)=4,57 mm
ARMADURA DISTRIBUIÇÃO	$Ad = 0,66 \ cm2$	Malhasol AR 30	
NERVURAS TRANSVERSAIS	Número de tarugos = 2	distanciados 1,40 m	At=0,57 cm2 c/ 2 Ø 8
REACÇÃO DOS APOIOS	R(G)=9,66 kN	R(Q)=4,20 kN	

IV. MÓDULO DE LAJES MACIÇAS

A imagem seguinte mostra o formulário para as lajes maciças. O método de cálculo é o indicado no Manual Técnico anexo. Faça as escolhas

- ° Simplesmente apoiada, em consola, semi-encastrada e duplamente encastrada
- ^o Designação da laje LE, LC, LCT, L.....

 Introduza o vão de cálculo em metros. Em função do vão é indicada a altura mínima da secção, em função do tipo de materiais e das condições de apoio.

 Escolha Atribuir acções automaticamente e o programa assume as acções mais frequentes em função do tipo de laje já escolhida

 Também pode escolher a opção "Cargas concentradas", e no canto inferior esquerdo colocar a Carga e a distância ao apoio esquerdo, sendo o Momento Flector calculado e adicionado ao restante, passando a laje a ser dimensionada para a acção total.

° Caso não opte pela introdução automática de acções indique o Peso do revestimento, Peso das divisórias e Peso de

degraus, bem como a sobrecarga. Clicando no comando 🛄 obtém a tabela das divisórias e a tabela das sobrecargas

^o Caso não tenha escolhido a opção "Cargas concentradas", pode então, nos momentos Flectores e Esforços Transversos, adicionar valores para estes esforços, devido a outras acções – terá de introduzir o Momento previamente calculado e majorado. Pode obter as fórmulas de cálculo nas Tabelas Técnicas, para uma diversidade de situações. Caso não pretende adicionar esses esforços, basta fazer ENTER e mantém o valor nulo.

• Na escolha das armaduras, clicando no comando 2 pode ter acesso à tabela das armaduras, coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

6	12			para 6ø12
6	12	6	10	para 6 ø 12 + 6 ø 10

- o Armadura de distribuição é igual, mas só possui uma combinação de varões.
- Caso tenha acrescentado Momento Flector e Esforço Transverso, terá de adicionar a quota parte da reacção de apoio.

bet arm 6	Esforços actuantes
	Momento Flector Msd= 11,81 + 7,50 = 19,31 kNm/m
	Esforço Transverso Vsd= 15,75 + 7,50 = 23,25 kN/m
C Apoio em consola	Armadura principal
C Semi-encastrada (escada)	Momento reduzido una 0.190 Mpa
C Duplamente encastrada	Description de services
Características da laje	Percentagem de armadura w= 0,212 %
	As= 6,52 cm2
Designação L1 d h	? realizável com 6 0 12 + 0 0 0
Vão de cálculo I = 3,00 m As	Armadura efectiva As(ef)= 6.79 cm2
Altura mínima hmin= 10 cm	
Altura total adoptada h= 12 cm	Armadura de distribuição
Altura útil da secção d= <u>10</u> cm	Ad= 1,36 cm2 realizável com 6 Ø 6
Base da secção b= 100 cm	Armadura efectiva Ad(ef)= 1,70 cm2
✓ Atribuir acções automáticamente ✓ Cargas concentradas Acções permanentes Pero mónio da laie Pero mónio da laie pn= 200 kN/m2	Absorvido pelo betão Vod= 54,00 kN/m Absorvido pelo betão Vod= 54,00 kN/m
Peso dos revestimentos rev= 0.50 kN/m2	Reacções dos apoios
Pesodos Degraus deg= 0,00 kN/m2	R(G) sem majoração R(G)= 7,50 + 5,00 = 12,50 kN/m
Peso Divisórias div= 1,50 kN/m2 ?	R(Q) sem majoração R(Q)= 3.00 kN/m
Accões valiáveis	Observações
Sobrecarga sc= 2.00 kN/m2 ?	
TOTAL Q= 2.00 kN/m2	
Combinação de Acções	
Sd = 1.5 G + 1.5 Q = 10,50 kN/m2	
Carga Concentrada	
Carga concentrada F= 10,00 kN	

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir , quando o quadro das observações não tiver mensagens.

Ao clicar sobre o comando "Gravar" passa a informação seguinte para o ficheiro de dados.

ICAS		
l= 3,00 m - Simplesmente	apoiada	
h= 12 cm	d= 10 cm	b= 100 cm
pp =3,00 kN/m2	rev=0,50 kN/m2	div=1,50 kN/m2
G=5,00 kN/m2		
sc = 2,00 kN/m2	Q=2,00 kN/m2	
Sd =10,50 kN/m2		
Msd=19,31 kNm	μ= 0,180 MPa	w= 0,212 %
Msd (*)=11,81 kNm	Msd (**)=7,50 kNm	
As= 6,52 cm2 realizável o	com 6 Ø 12 pml	As(ef.)= 6,79 cm2
As= 1,36 cm2 realizável o	com 6 Ø 6 pml	As(ef.)= 1,70 cm2
Vsd=23,25 kN	Vcd=54,00 kN	Vwd=0,00 kN
Vsd (*)=15,75 kN	Vsd (**)=7,50 kN	
R(G) = 7,50(*) + 5(*)	= 12,50 kN	R(Q)=3,00 kN
carga uniformemente dist	ribuída	
a outras cargas		
	ICAS 1= 3,00 m - Simplesmente h= 12 cm pp =3,00 kN/m2 G=5,00 kN/m2 Sc =2,00 kN/m2 Sd =10,50 kN/m2 Msd=19,31 kNm Msd (*)=11,81 kNm As= 6,52 cm2 realizável o Vsd=23,25 kN Vsd (*)=15,75 kN R(G)=7,50 (*) + 5 (**) carga uniformemente dist: a outras cargas	ICAS l= 3,00 m - Simplesmente apoiada h= 12 cm d= 10 cm pp =3,00 kN/m2 rev=0,50 kN/m2 G=5,00 kN/m2 sc =2,00 kN/m2 Q=2,00 kN/m2 Sd =10,50 kN/m2 Msd=19,31 kNm μ = 0,180 MPa Msd (*)=11,81 kNm Msd (**)=7,50 kNm As= 6,52 cm2 realizável com 6 Ø 12 pml As= 1,36 cm2 realizável com 6 Ø 6 pml Vsd=23,25 kN Vcd=54,00 kN Vsd (*)=15,75 kN Vsd (**)=7,50 kN R(G)=7,50 (*) + 5 (**) = 12,50 kN carga uniformemente distribuída a outras cargas

Esta informação será adicionada à anterior no ficheiro podendo ver a mesma, editando-o através do comando "Editar ficheiro de resultados"

📕 JL.TXT - Bloco de notas			
<u>Ficheiro E</u> ditar Formatar <u>V</u> er	Ajuda		Source Republication
			0
LAJE LP1 - Laje de Pis CARACT. GEOMÉTRICAS ACÇÕES PERMANENTES ACCÕES VARIÁVEIS) 1= 4,20 m pp =2,61 kN/m2 G=4,60 kN/m2 5c =2.00 kN/m2	h= 24 cm rev=0,50 kN/m2 Ω=2.00 kN/m2	d= 21 cm div=1,50 kN/m2
COMBINAÇÃO DE ACÇÕES ESFORÇOS ACTUANTES LAJE ADOPTADA	Sd =9,90 kN/m2 Msd= 21,83 kNm Msd (fctk)= 11,02 kNm Referência B5-48x21-24	Sd (f)=5,20 kN/m2 Vsd=20,79 kN Msd (zero)= 11,02 kNm	Sd (qp)=5,00 kN/m2
ESFORÇOS RESISTENTES CÁLCULO DEFORMADA ARMADURA DISTRIBUIÇÃO	Mrd= 29,70 kNm f(max)=10,50 mm Ad = 0.66 cm2	Vrd=24,40 kN f(inst)=1,65 mm Malhasol AR 30	Mrd (fctk)= 19,00 kNm f (l.prazo)=4,57 mm
NERVURAS TRANSVERSÁIS REACÇÃO DOS APOIOS	Número de tarugos = 2 R(G)=9,66 kN	distanciados 1,40 m R(Q)=4,20 kN	At=0,57 cm2 c/ 2 Ø 8
LAJE L1 CARACTERÍSTICAS GEOMÉTR: Vão de cálculo	ICAS l= 3.00 m - Simplesmente	apoiada	
Dimensões da peça ACÇÕES PERMANENTES	h= 12 cm pp =3,00 kN/m2 G=5.00 kN/m2	d= 10 cm rev=0,50 kN/m2	b= 100 cm di∨=1,50 kN/m2
ACÇÕES VARIÁVEIS COMBINAÇÃO DE ACÇÕES MOM ELECTOR (total)	sc =2,00 kN/m2 sd =10,50 kN/m2 Msd=19,31 kN/m2	Q=2,00 kN/m2	μ μ Π 212 %
ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO	Msd (*)=11,81 kNm As= 6,52 cm2 realizável As= 1,36 cm2 realizável	Msd (**)=7,50 kNm com 6 Ø 12 pml com 6 Ø 6 pml	As (ef.) = 6,79 cm2 As (ef.) = 1,70 cm2
ESF. TRANSVERSO (total) REACÇÃO DOS APOIOS	VS0=23,25 KN VSd (*)=15,75 KN R(G)=7,50 (*) + 5 (**) cance uniformmente dist	VCO=54,00 KN VSd (**)=7,50 kN V = 12,50 kN V = 12,50 kN	vwa=0,00 kN R(Q)=3,00 kN
(**) - Esforços devido a 	a outras cargas	337 0 4764	
<			2

IV. MÓDULO DE LAJES MACIÇAS ARMADAS EM CRUZ

A imagem seguinte mostra o formulário para as lajes maciças. O método de cálculo é o indicado no Manual Técnico anexo. Faça as escolhas

- Lajes armadas em cruz com apoios simples e com continuidade (9 tipos) e com um dos vãos sem apoios bordo livre (8 casos)
- Designação da laje LP, LT, LX, L.....

Introduza o vão maior e o vão menor, em metros. A relação dos vãos terá de seu entre 0,5 e 1, ou seja um dos vãos não pode ultrapassar o dobro do outro, senão utilize laje armada numa direcção. Em função do vão é indicada a altura mínima da secção, em função do tipo de materiais e das condições de apoio.

Indique o Peso do revestimento, Peso das divisórias, bem como a sobrecarga. Clicando no comando obtém a tabela das divisórias e a tabela das sobrecargas

Para cada caso – apoio simples, - apoio com continuidade – apoio livre terá a indicação dos Momentos Flectores, do valor do momento reduzido, da percentagem de armadura e da secção das armaduras necessárias e após introdução das armaduras, aparece o *As (ef.)*, (Armadura efectiva na secção em estudo – neste caso nos apoios).

• Na escolha das armaduras, clicando no comando pode ter acesso à tabela das armaduras, coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

6	12			para 6ø12
6	12	6	10	para 6 ø 12 + 6 ø 10

- Caso tenha acrescentado Momento Flector e Esforço Transverso, terá de adicionar a quota parte da reacção de apoio.
- Também aparece indicado o valor do Esforço Transverso, valor da parcela de Esforço Transverso absorvida pelo betão, e parcela de Esforço Transverso a absorver pelas armaduras, que em princípio será sempre zero.
- As reacções dos apoios devido à acção permanente R(G) e à acção variável R(Q) aparecem em quadro próprio, bem como o cálculo da deformada (flecha)

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir, quando o quadro das observações não tiver mensagens.

Imagem de exemplo dos nove primeiros tipos de laje.

bet arm 6	
	(kNm) (MPa) (%) As As(ef)
Encastrado Apoiado Bordo livre	Armaduras inferiores NÃO) perpendiculares ao vão 2
0.7.4	
C Tipo 2	
C Tipo 3	Maior (Lx) 5,77 0,05 0,06 1,75 6 0 8 3,02
© Tipo 4	Armadura superior (APOIOS) perpendiculares ao vão ?
C Tipo 5	menor (Ly) 1420 0.13 0.15 464 6 0 10 471
C Tino 8 D	
C Tipo 9 +	Armadura inferior (BORDO LIVRE)
Outras =>	
Características da laje	Resistência ao Esforço Transverso Reacções dos apoios
Designação	Vsd (kN/m) Vcd (kN/m) Vwd (kN/m) R G (kN/m) R Q (kN/m)
Vão maior Lx = 5 nn m	Apoio A 15.58 54.00 0.00 Apoio A 7.19 3.20
Vão menor Ly = 4,00 m Ly / Lx = 0,80	Apoio B 7,03 54,00 0,00 Apoio B 3,25 1,44
Altura mínima hmín= 9 cm	Apoio C 15,58 54,00 0,00 Apoio C 7,19 3,20
Altura total adoptada h= 12 cm	Apolo D 7,03 54,00 0,00 Apolo D 3,25 1,44
Altura útil da secção d= 10 cm	Calculo da deformada (flecha)
Base da secção b= 100 cm	Flecha = 3,800 mm
Acçoes sobre a laje	
Acçoes permanentes Peso próprio da laia pp- 200 kN/m2	Ubservações
Peso dos revestimentos rev= 0.50 kN/m2	
Peso Divisórias div= 1.00 kN/m2	
TOTAL G= 4,50 kN/m2	
Acções variáveis	
Sobrecarga ? sc= 2,00 kN/m2	
Combinação de Áccões TOTAL Q= 2,00 kN/m2	

Imagem de exemplo dos outros oito tipos de laje (este exemplo está com mensagem de erro na armadura e no tipo de varões comerciais . ver na armadura do bordo livre ainda não está escrito o diâmetro de varões (considera diâmetro de 1 cm, que não existe; após a introdução do segundo número (0, 2 ou 6) a mensagem desaparece.

bet arm 6	Armaduras
Tipo de apoios	
///// Encastrado Apolado Bordo livre	Armaduras interiores (VAU) perpendiculares ao vao
C Tipo 10	Maior (Ly) 6,76 0,13 0,15 2,74 6 Ø 8 3,02
	menor (Lx) 2,41 0,05 0,05 0,90 6 Ø 6 1,70
C Tipo 13	Armadura superior (APOIOS) perpendiculares ao vão ?
C Tipo 14	Major (Lu) 10.75 0.01 0.05 4.07 0. 0 10 4.71
C Tipo 15	
C Tipo 16 / 1	
	Armadura inferior (BORDO LIVRE perpendicular ao vão ?
Outras <=	10,27 0,20 0,24 4,43 6 0 1 0,05
Características da laje	Resistência ao Esforço Transverso Reacções dos apoios
	(kN/m) (kN/m) (kN/m)
Vão maior	
Vão menor Ly = 3.00 m Ly / Lx = 0.75	Apoio B 9.88 36.50 0.00 Apoio B 4.56 2.03
Altura mínima hmin= 7 cm	Apoio C 0,00 36,50 0,00 Apoio C 0,00 0,00
Altura total adoptada h= 10 cm	Apoio D 9,88 36,50 0,00 Apoio D 4,56 2,03
Altura útil da secção d= 8 cm	Calculo da deformada (flecha)
Base da secção b= 100 cm	Flecha.= 8,500 mm
Acçoes sobre a laje	
Acções permanentes	Ubservações
Peso dos revestimentos rev= 0.50 kN/m	2
Peso Divisórias div= 1,50 kN/m	2
TOTAL G= 4,50 kN/m	2. ESCOLHA DIAMETROS DE VAROES COMERCIAIS
Acções variaveis	A ARMADURA PRINCIPAL E INSUFICIENTE
TOTAL Q= 2.00 kN/m	2

Ao clicar sobre o comando "Gravar" passa a informação seguinte para o ficheiro de dados.

LAJE LX1			
Tipo de apoios:	(4) Apoiada em dois k	oordos opostos / Encastrad	a em dois bordos opostos
CARACT. GEOMÉTRICAS			
Vãos de cálculo	ly= 4,00 m	lx=5,00 m	ly/lx=0,8
Dimensões da peça	h=12 cm	d=10 cm	b=100 cm
ACÇÔES PERMANENTES	pp =3,00 kN/m2 G=4,50 kN/m2	rev=0,50 kN/m2	div=1,00 kN/m2
ACÇÕES VARIÁVEIS	sc =2,00 kN/m2	Q=2,00 kN/m2	
COMBINAÇÃO DE ACÇÕES	Sd =9,75 kN/m2		
MOMENTOS FLECTORES			
Positivo (X)	Msd x + = 5,77 kNm	μ= 0,054 MPa	w= 0,057
Positivo (Y)	Msd y + = 5,77 kNm	μ= 0,054 MPa	w= 0,057
Negativo (X)	Msd x - = 14,20 kNm	μ= 0,133 MPa	w= 0,151
ARMADURAS			
Positiva (perp. Y)	As $x + = 1,75$ cm2 realized	zável com 6 Ø 8 pml	As(ef.)= 3,02 cm2
Positiva (perp X)	As y+ = 1,75 cm2 realiz	zável com 6 Ø 8 pml	As(ef.)= 3,02 cm2
Negativa (perp. Y)	As $x - = 4,64$ cm2 realized	zável com 6 Ø 10 pml	As(ef.)= 4,71 cm2
ESFORÇO TRANSVERSO			
Apoio A	Vsd (A)=15,58 kN	Vcd=54,00 kN	Vwd=0,00 kN
Apoio B	Vsd (B)=7,03 kN	Vcd=54,00 kN	Vwd=0,00 kN
Apoio C	Vsd (C)=15,58 kN	Vcd=54,00 kN	Vwd=0,00 kN
Apoio D	Vsd (D)=7,03 kN	Vcd=54,00 kN	Vwd=0,00 kN
REACÇÃO DOS APOIOS			
Apoio A	Ra(G)=7,19 kN	Ra (Q)=3,20 kN	
Apoio B	Rb(G)=3,25 kN	Rb (Q)=1,44 kN	
Apoio C	Rc(G)=7,19 kN	Rc $(Q) = 3,20$ kN	
Apoio D	Rd(G)=3,25 kN	Rd (Q)=1,44 kN	

V. MÓDULO DE VIGAS

O método de cálculo, para as Vigas, é o indicado no Manual Técnico anexo. Faça as escolhas

- [°] Simplesmente apoiada, em consola, semi-encastrada, meio encastramento e duplamente encastrada
- ° Designação da viga V1, V2, V3, V4 V....
- Introduza o vão de cálculo em metros. Em função do vão é indicada a altura mínima da secção, em função do tipo de materiais e das condições de apoio.
- Introduza a secção da viga, altura e base

No quadro das Acções sobre as vigas, aparecem duas "listas pendentes", que possuem as designações das lajes já calculadas no trabalho actual. Uma refere-se à laje que descarrega à esquerda e a outra à laje que descarrega à direita.

	Esforços actuantes
betarm(6)	Msd positivo = 1,88 + 0,00 = 1,88 kNm/m
	Msd negativo = 3,76 + 0,00 = 3,76 kNm/m
C Meio encastramento	Vsd (appip A) = 5.64 + 0.00 = 5.64 kN/m
C Apoio em consola	Vsd [apoio B] = 5.64 + 0.00 = 5.64 kN/m
C Semi-encastrada	
Encastramento perfeito	Armadura para Momento positivo Armadura para Momento negativo
C Simplesmente apoiada	μ= 0,010 Mpa μ= 0,019 Mpa
Paracterísticas da vica	w'= 0,000 % w'= 0,000 %
	w= 0,010 % w= 0,019 %
Designação V1 A's	2 As= 101 cm2 2 As= 101 cm2
Vão de cálculo I = 4 nn m	
	As(ef)= cm2 As(ef)= cm2
Altura mínima hmin= 12 cm	Esforce Transverse
Alt total adoptada h= cm As	
	Esforço Transverso Máximo Vsd= 5,64 kN/m
Altura útil secção d= 27 cm + b+	Parcela absorvida pelo betão Vcd= 40,50 kN/m
Acçoes sobre a viga	Parccela a absorver por estribos Vwd= 0,00 KN/m
Escolha laje à esquerda Escolha laje à direita	Armadura transversal
•	Estribos Secção cm2
LP1	
L1 Acções variáveis (Q)	Afastamento Max. cm Necess. cm Adopt. 0 cm
LX1a IX1b	Est. Transverso absorvida p/ estribos Vwd= kN/m
LX1 c Laje L1= 0.00 kN/m	Deserve des services
LX1 d Laje L2= 0,00 kN/m	Pale 270 kN/m Pble 270 kN/m
? parede= 0,00 kN/m	11d- 3,76 NWIII 110- 3,76 NWIII
Soma G= 199 kN/m Soma G= 0.00 kN/m	Observações
.ombinação de Acções 5d =1.5 G + 1.5 Q = 2,82 kN/m	
Carga Concentrada	
La P al Criss consultada E-	
Dist as apoin and D- 0.00 m	
I B VI Disc do apoio esq. D- [[] III	

 Clicando nas mesmas pode escolher a laje em questão e os valores das reacções dos apoios serão assumidos automaticamente, conforme se ilustra na imagem seguinte

-Acçoes sobre	e a viga —					
Escolha laje à esquerda			Escolha la	Escolha laje à direita		
LX1 b	-	LX1 c	1	-		
Acçõe: permanentes (G)			Acçã	ões valiávei:	s (Q)	
pp=	1,88	kN/m	×			
Laje L1=	3,24	kN/m	Laje L1=	1,44	kN/m	
Laje L2=	7,19	kN/m	Laje L2=	3,19	kN/m	
? parede=	0,00	kN/m				
Soma G=	12,31	kN/m	Soma Q=	4,63	kN/m	
Combinação	de Acções	Sd =1.5	5G + 1.5Q =	25,41	kN/m	

 Os valores que agora estão assumidos (células amarelas) podem ser alterados, bastando para isso clicar na própria célula.

	Esforços actuantes
betarm 6	Msd positivo = 16,94 + 0,00 = 16,94 kNm/m
Apoios	Msd negativo = 33,88 + 0,00 = 33,88 kNm/m
C Meio encastramento	Vsd (apoio A) = 50,82 + 0,00 = 50,82 kN/m
C Apoio em consola	Vsd (apoio B) = 50,82 + 0,00 = 50,82 kN/m
C Semi-encastrada	Armadura para Momento positivo Armadura para Momento negativo
Encastramento perfeito C. Simplemente perfeito	un 0007 Men un 0077 Men
Complesmente apolada	w'= 0,000 % w'= 0,000 %
Características da viga	w= 0.095 % w= 0.204 %
Designação V1 A's	2 4 = 197 cm2 2 4 = 422 cm2
Vão de cálculo I = 4 00 m	
Pasa da sassão ba lor on de b	
	As(ef)= cm2 As(ef)= cm2
Altura mínima hmin= 12 cm	Esforço Transverso
Alt total adoptada h= 30 cm As	Enforce Transverse Máxime Ved- 50.00 kN/m
Altura útil seccão d= 77 cm + b+	Parcela absorvida pelo betão Vcd= 10,50 kN/m
	Parccela a absorver por estribos Vwd= 10,32 kN/m
Escolha laie à esquerda Escolha laie à direita	Amadura transversal
	Estribos Secção cm2
Acções permanentes (G) Acções variáveis (Q)	Afastamento Maxcm Necesscm Adopt cm
pp= 1,88 kN/m	Est. Transverso absorvida p/ estribos Vwd= kN/m
Laje L1= 3,24 kN/m Laje L1= 1,44 kN/m	Beaccões dos apoios
Laje L2= 7,19 kN/m Laje L2= 3,19 kN/m	Ra = 33,88 kN/m Rb = 33,88 kN/m
7 parede= 0,00 KN/m	- Observações
Soma G= 12,31 kN/m Soma Q= 4,63 kN/m	observações
Combinação de Acções Sd =1.5 G + 1.5 Q = 25,41 kN/m	
Carga Concentrada	
F Carga concentrada F= 0,00 kN	
/// V//	

 Caso queira optar pelo sistema antigo (introduzir as acções manualmente), pode sempre fazê-lo. Assim, faça "ENTER" quando estiver sobre as listas pendentes e introduza os valores das reacções que nela descarregam. Esses valores, são os valores de lajes já calculadas, e poderão ser consultados nas impressões já realizadas ou no ficheiro de

dados gerado pelo computador – ver mais capítulo 8. Clicando no comando 20 obtém a tabela de pesos das paredes.

^o Em função do tipo de apoio, pode escolher no canto inferior esquerdo colocar a Carga e a distância ao apoio esquerdo, sendo o Momento Flector calculado e adicionado ao restante, passando a laje a ser dimensionada para a acção total. Alerta-se para o facto de a opção meio encastramento não permitir essa introdução.

^o Caso não tenha introduzido valores nas cargas concentradas, pode ainda adicionar Momento Flector e Esforços Transversos devido a outras acções – terá de introduzir o Momento previamente calculado e majorado. Pode obter as fórmulas de cálculo nas Tabelas Técnicas, para uma diversidade de situações. Caso não pretende adicionar esses esforços, basta fazer ENTER e mantém o valor nulo.

^o A tabela para introdução das armaduras surge no ecrã, conforme sejam necessárias ou não, em função do tipo de viga a calcular. No caso das vigas simplesmente apoiadas, caso apareça a solicitação das armaduras negativas, estas devem-se à necessidade de colocação de armaduras de tracção e não devido a momentos nos apoios. Na viga em consola, é a mesma situação mas com a armadura inferior (de tracção). Já no caso das vigas semi-encastradas, vigas duplamente encastradas e com meio encastramento, o momento é que condiciona a armadura. Contudo, o computador calcula ambas as armaduras e compara-as e selecciona a mais alta.

• Na escolha das armaduras, clicando no comando pode ter acesso à tabela das armaduras, coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

6	12			para 6ø12
6	12	6	10	para 6 ø 12 + 6 ø 10

 Os estribos, são escolhidos numa lista pendente, em função do diâmetro e do número de ramos na secção. Após a selecção dos estribos, o computador questiona o afastamento pretendido.

	E storços actuantes
Detarmo	Msd positivo = 19,36 + 32,93 = 52,29 kNm/m
Apoios	Msd negativo = 38,72 + 8,23 = 46,95 Kivim/m
C Meio encastramento	Vsd (apoio A) = 55,31 + 5,36 = 60,67 kN/m
C Apoio em consola	Vsd (apoio B) = 55,31 + 4,64 = 59,95 kN/m
Semi-encastrada	Armadura para Momento positivo Armadura para Momento negativo
C Simplesmente anniada	u= 0.143 Mpa u= 0.128 Mpa
Construction de vier	w'= 0,000 % w'= 0,000 %
Laracterísticas da viga	w= 0,163 % w= 0,144 %
Designação V1 A's	2 As= 4.64 cm2 2 As= 4.10 cm2
Vão de cálculo I = 4 20 m	
Pana da ananão da la com	
	As(ef)= 5,65 cm2 As(ef)= 4,52 cm2
Altura mínima hmin= 13 cm	Esforço Transverso
Alt. total adoptada h= 40 cm As	Fotoron Transueron Másimo
Altura útil seccão de 27 cm Lb	Parcela absorvida pelo betão Vode 55.50 kN/m
	Parccela a absorver por estribos Vwd= 517 kN/m
Acções sobre a viga Escolha lais à osquerda	Amadura transvered
	Estribos
	Diànata C (de Juneal)
Acções permanentes (G) Acções variáveis (Q)	Afastamer Diâmetro 6 (de 3 ramos) cm Adopt. 0 cm
pp= 250 kN/m	Est Trans Diametro 6 (de 4 ramos)
Laje L1= 324 kN/m Laje L1= 1.44 kN/m	Diâmetro 8 (de 2 ramos)
Laje L2= 7,19 kN/m Laje L2= 3,19 kN/m	Heacçoes (Diâmetro 8 (de 4 ramos)
? parede= 0,00 kN/m	Diametro 10 (de 2 ramos)
Soma G = 12 93 kN/m Soma Q = 4 63 kN/m	Observações
compinação de Acçues - 50 = 1.5 d + 1.5 d = 1 - 26,34 - KN/M	
Carga Concentrada	
Carga concentrada F= 10.00 kN	

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir, quando o quadro das observações não tiver mensagens.

	Esforços actuantes
betarm (b)	Msd positivo = 19,36 + 32,93 = 52,29 kNm/
Apoios	Msd negativo = 38,72 + 8,23 = 46,95 kNm/
C Meio encastramento	Vsd (apoio A) = 55,31 + 5,36 = 60,67 kN/m
C Apoio em consola	Vsd (apoio B) = 55,31 + 4,64 = 59,95 kN/m
Encastrada	Armadura para Momento positivo Armadura para Momento negativo
C Simplesmente apoiada	μ= 0.143 Mpa μ= 0.128 Mpa
Deracter (aligan da viga	w'= 0,000 % w'= 0,000 %
	w= 0,163 % w= 0,144 %
Designação VI A's	? As= 4,64 cm2 ? As= 4,10 cm2
Vão de cálculo I = 4,20 m	
Base da secção b= 25 cm d h	
Altura mínima hmin= 13 cm	
	Estorço Transverso
	Esforço Transverso Máximo Vsd= 60,67 kN/m
Altura útil secção d= 37 cm + b +	Parcela absorvida pelo betão Vcd= 55,50 kN/m
Acçoes sobre a viga	Parccela a absorver por estribos VWd= 5,17 KN/m
Escolha laje à esquerda Escolha laje à direita	Armadura transversal
	Estribos Diâmetro 6 (de 2 ramos) 👻 Secção 0,57 cm2
Accões permanentes (G)	Afastamento Max, 185 cm Necess, 185 cm Adopt, 19 cm
	Eat Transverse about the stretches Virial Control Million
pp= 2,50 NN/III Laiel1= 2,24 kN/m Laiel1= 1,44 kN/m	Est. Hansversu ausurviua priestituus VWd= 36,70 KNVm
Laje L2= 7,19 kN/m Laje L2= 3,19 kN/m	Reacções dos apoios
? parede= 0,00 kN/m	Ha = 40,44 KN/M HD = 39,97 KN/M
Soma G = 12.93 kN/m Soma O = 4.63 kN/m	Observações
Cambing and Applies Sd -1 EC +1 ED - Construction	
uniumação de Acções 30 = 1.5 d + 1.5 d = 1 26,34 KN/M	
Carga Concentrada	
Carga concentrada F= 10.00 kN	
F	

A informação desta viga será adicionada ao ficheiro de resultados

📕 JL.TXT - Bloco de nota	5			
<u>Ficheiro Editar Fo</u> rmatar <u>V</u> e	r <u>Aj</u> uda			
ARMADURAS Positiva (perp. Y) Positiva (perp. Y) Negativa (perp. Y) ESFORÇO TRANSVERSO Apoio B Apoio B Apoio D REACÇÃO DOS APOIOS Apoio A Apoio B Apoio B Apoio D	As x+ = 1,75 cm2 realiz As y+ = 1,75 cm2 realiz As x- = 4,64 cm2 realiz Vsd (A)=15,58 kN Vsd (C)=15,58 kN Vsd (C)=15,58 kN Vsd (C)=7,03 kN Ra(G)=7,19 kN Ra(G)=3,25 kN Rc(G)=7,19 kN	ável com 6 Ø 8 pml ável com 6 Ø 8 pml ável com 6 Ø 10 pml Vcd=54,00 kN Vcd=54,00 kN Vcd=54,00 kN Vcd=54,00 kN Ra (Q)=3,20 kN Rb (Q)=1,44 kN Rc (Q)=3,20 kN Rc (Q)=3,20 kN	As(ef.)= 3,02 cm2 As(ef.)= 3,02 cm2 As(ef.)= 4,71 cm2 Vwd=0,00 kN Vwd=0,00 kN Vwd=0,00 kN Vwd=0,00 kN	
VIGA V1 CARACTERÍSTICAS GEOMÉTR Vão de Câlculo Dimensões da peça ACÇÕES PERMANENTES ACÇÕES VARIÁVEIS COMBINAÇÃO DE ACÇÕES MOM. FLECTOR POSITIVO MOM. FLECTOR NEGATIVO ARMADURA INFERIOR ESF.TRANSVERSO (Ap. A) ESF.TRANSVERSO (Ap. B) ARMADURA TRANSVERSAL REACÇÃO DOS APOIOS (**) - Esforços (**) - Esforços	ICAS 1= 4,20 m - Encastrame h= 40 cm pp =2,50 kN/m2 Laje 1 =1,44 kN/m2 Sd =26,34 kN/m2 Msd=52,29 kNm Msd=52,29 kNm Msd=46,95 kNm Msd=46,95 kNm Msd=46,95 kNm As= 4,64 cm2 realizável Vsd=60,67 kN Vsd (*)=55,31 kN Vsd (*)=40,44 kN devido a carga uniforme s devido a outras cargas	nto perfeito d= 37 cm Laje 1=3,24 kN/m2 Laje 2=3,19 kN/m2 μ = 0,143 MPa Msd (**)=32,93 kNm μ = 0,128 MPa Msd (**)=8,23 kNm com 5 Ø 12 vcd=55,50 kN vsd (*)=4,64 kN Afastamento s=18,00 cm R(B)=39,97 kN mente distribuída	b= 25 cm Laje 2=7,19 kN/m2 G=12,93 kN/m2 Q=4,63 kN/m2 w= 0,163 % w= 0,144 % As(ef.)= 5,65 cm2 As(ef.)= 4,52 cm2 Vwd=36,70 kN Vwd=36,70 kN	
				~
<				2 3

VIGA V1					
CARACTERÍSTICAS GEOMÉTR	ICAS				
Jão de cálculo l= 4,20 m - Encastramento perfeito					
Dimensões da peça	h= 40 cm	d= 37 cm	b= 25 cm		
ACÇÕES PERMANENTES	pp =2,50 kN/m2	Laje 1=3,24 kN/m2	Laje 2=7,19 kN/m2		
	par=0,00 kN/m2		G=12,93 kN/m2		
ACÇÕES VARIÁVEIS	Laje 1 =1,44 kN/m2	Laje 2=3,19 kN/m2	Q=4,63 kN/m2		
COMBINAÇÃO DE ACÇÕES	Sd =26,34 kN/m2				
MOM. FLECTOR POSITIVO	Msd=52,29 kNm	μ= 0,143 MPa	w= 0,163 %		
	Msd (*)=19,36 kNm	Msd (**)=32,93 kNm			
MOM. FLECTOR NEGATIVO	Msd=46,95 kNm	μ= 0,128 MPa	w= 0,144 %		
	Msd (*)=38,72 kNm	Msd (**)=8,23 kNm			
ARMADURA INFERIOR	As= 4,64 cm2 realizável	com 5 Ø 12	As(ef.)= 5,65 cm2		
ARMADURA SUPERIOR	As= 4,10 cm2 realizável	com 4 Ø 12	As(ef.)= 4,52 cm2		
ESF.TRANSVERSO (Ap. A)	Vsd=60,67 kN	Vcd=55,50 kN	Vwd=36,70 kN		
	Vsd (*)=55,31 kN	Vsd (**)=5,36 kN			
ESF.TRANSVERSO (Ap. B)	Vsd=59,95 kN	Vcd=55,50 kN	Vwd=36,70 kN		
	Vsd (*)=55,31 kN	Vsd (*)=4,64 kN			
ARMADURA TRANSVERSAL	Estribos Ø 6 (2 ramos)	Afastamento s=18,00 cm			
REACÇÃO DOS APOIOS	R(A) = 40, 44 kN	R(B)=39,97 kN			
(*) - Esforços	devido a carga uniformen	nente distribuída			
(**) - Esforço:	s devido a outras cargas				

VI . MÓDULO DE VIGAS CONTÍNUAS

As próximas imagens mostram os formulários para o cálculo das Vigas Contínuas, pelo Método de Cross. O método de cálculo é o indicado no Manual Técnico anexo.

- ° Comece por introduzir a designação da viga a calcular V1, V2, V3, V4 V....
- ° Introduza o número de tramos (de 1 a 6, não considerar as eventuais consolas nas extremidades).
- ° Dê entrada dos valores referentes à base da secção e da altura útil pretendida em cm.

[Características da viga
	Designação V2 A's
	Numero de tramos 3
	Base da secção b= 25 cm d h
	Altura mínima hmin= cm
	Alt. total adoptada h= 40 cm A s
	Altura útil secção d= 37 cm 井 b 🕂
	Peso próprio PP= 2,50 KN/m

beta ▲1	sd sd	с з 4 цз	Características d Designação Numero de trar Base da secçã Altura mínima Alt. total adopta Altura útil secç Peso próprio	la viga V2 3 0 b= 25 cm hmin= cm hmin= 40 cm 30 d= 37 cm PP= 2,50 KN.		Opções → As acções são Indas izuais → Existem consolas na extremidades → Existem consolas na extremidades → Existem consolas na
Tramo 1 Tramo 2 Tramo 3	Všo m 0.00 0.00	arga uniformemente dis Laje à esquerd Accão G ▼ 0,00 ▼ 0,00 ▼ 0,00	tribuida a Accão Q 0,00 0,00 0,00	LAJE à direita Acção 6 Ac ▼ 0.00 (▼ 0.00 (▼ 0.00 (Farede ? 250 0 ? ? 100 0.00 0.00 ? 000 0.00 0.00 ? 000 0.00 ? ?	Sd KN/m
Ibservações —						5.0

° No menu das opções faça a escolha de

- As acções são todas iguais
- o Existem cargas concentradas

Após introdução do número de tramos é mostrado o esquema da viga e o quadro para introdução dos vãos e acções – ver ilustração seguinte (neste exemplo de 3 tramos)

Neste quadro terá de introduzir sequencialmente os seguintes valores:

° Vão de calculo em metros. Ao introduzir o vão, o peso próprio é calculado automaticamente.

sd sd sd sd sd sd sd sd sd sd	Designação V2 Numero de tramos 3 Base da secção b= Altura mínima hmine Altura di el secção 40 Cm As Altura di el secção 57 Peso próprio PP= 250 KN/m	d h d h ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Introdução de dados Tramo 1 Tramo 2 Tramo 3 Tramo 3 Tramo 3 Carga uniformemente S.00 Laje à esq. Carga uniformemente Laje à esq. Acc2 U L1 L1 L2 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3	a distribuida erda LAJE à direita Parec o G Accão Q Acção G Acção Q ? 0 0.00 • 0.00 0.00 0.00	le Sd KN/m 3.75 3.75 3.75
Observações		Aceita

 No quadro das Acções sobre as vigas, aparecem duas "listas pendentes", que possuem as designações das lajes já calculadas no trabalho actual. Uma refere-se à laje que descarrega à esquerda e a outra à laje que descarrega à direita.

Clicando nas mesmas pode escolher a laje em questão e os valores das reacções dos apoios serão assumidos automaticamente, conforme se ilustra na imagem seguinte

 Os valores que agora estão assumidos (células amarelas) podem ser alterados, bastando para isso clicar na própria célula.

Caso não pretenda escolher da lista pendente pode introduzir as cargas sobre a viga devido às acções permanentes

(G1 – devido à acção da laje 1, G2 – devido à acção da laje 2), peso das paredes (Clicando no comando de obtém a tabela de pesos das paredes mais usuais), o peso das cargas variáveis (Q1 – devido à acção da laje 1, Q2 – devido à acção da laje 2), sendo actualizado o valor da combinação das acções (Sd).

Faz-se isso para cada tramo. Caso tenha a opção "As cargas são todas iguais" ligado, depois de introduzir os valores do primeiro tramo, apenas terá de indicar os vãos dos outros, sendo as restantes acções igualizadas.

Após a introdução destes valores carregue no comando "Aceita" (para aceitar e gravar os dados para o cálculo, calcular e verificar a altura mínima da viga); em seguida "Calcula", para calcular os esforços pelo método de Cross; seguidamente, carregue no comando "Avança" (para carregar os resultados do Método de Cross e prosseguir o cálculo).

Caso escolhesse a opção "Existem consolas nas extremidades" e "Existem cargas concentradas", apareciam células para introdução destes dados.

A introdução das cargas concentradas é feita sem majoração, e a distância da mesma carga é medida em relação ao apoio esquerdo.

Nas consolas a introdução das cargas é igual ao já definido para os tramos. A distância da carga concentrada da consola esquerda mede-se do apoio para a esquerda.

Aparece indicado o Apoio 1 e 4 (neste exemplo), com valores de Momento Flector igual a zero, mas introduza as armaduras mínimas (dois ferros de construção da viga). Os Momentos Flectores nos restantes tramos surgem com os valores necessários. Os restantes valores indicados no ecrã, além do Msd (Momento Flector), o valor do momento reduzido, w e w' (valores das percentagens das armaduras), As (secção de aço necessária) e após introdução das armaduras, aparece o As (ef.), (Armadura efectiva na secção em estudo – neste caso sobre o apoio).

Na escolha das armaduras, clicando no comando pode ter acesso à tabela das armaduras, coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

4	12			para 4ø12
4	12	2	10	para 4 ø 12 + 2 ø 10

Repete-se o procedimento para cada um dos tramos, e em seguida deve clicar no comando "Avança", seguindo para o seguinte ecrã:

Aparece indicado o Tramo 1 a 3 (neste exemplo), os valores de Momento Flector. Os restantes valores indicados no ecrã, além do Msd (Momento Flector), o valor do momento reduzido, w e w' (valores das percentagens das armaduras), As (secção de aço necessária) e após introdução das armaduras, aparece o As (ef.), (Armadura efectiva na secção em estudo – neste caso sobre o apoio).

Também, na escolha das armaduras, se clicar no comando pode ter acesso à tabela das armaduras, coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

3	16			para 3ø16
3	16	2	12	para 3 ø 16 + 2 ø 12

Repete-se o procedimento para cada um dos tramos, e em seguida deve clicar no comando "Avança", seguindo para o ecrã ilustrado pela imagem seguinte. Também pode aceder à vista anterior carregando o respectivo comando "Anterior". Durante a introdução de armaduras ou estribos, fica sem acesso aos dados iniciais.

Módulo de vigas contínuas	Características da vige Designação Numero de tramos Base da secção b= 25 cm Altura únima himin= Alt. total adoptada h= Altura útil secção d= Peso próprio PP= 2,50 KN/m Características da vige Copções A ' s d h d h Copções
Mindon's no ramos Msd (kNm) μ (MPa) Tramo 1 56,46 0,15 Tramo 2 -3,89 0,01 Tramo 3 56,46 0,15	w' w ARMADURA NOS TRAMOS 0.00 0.18 5.06 5 0 12 + 0 0 5.65 0.00 0.18 5.06 5 0 12 + 0 0 0 2.26 0.00 0.18 5.06 5 0 12 + 0 0 0 2.26 0.00 0.18 5.06 5 0 12 + 0 0 0 5.65
- Observações	Anterior Avança Sair

Nesta fase do cálculo, aparecem no ecrã, os valores dos Esforços Transversos à esquerda e à direita, ou seja dentro de cada tramo o Esforço Transverso à esquerda (positivos no apoio esquerdo) e à direita (negativo no apoio direito). Também aparece o valor do Vcd (parcela de ET absorvida pelo betão) e Vwd (parcela de esforço que será necessário absorver por armaduras transversais (estribos).

betar	Sd 2 L2	3 4 1 L3	Larac Desi Num Base Altur Altur Peso	terísticas da s gnação ero de tramos e da secção a mínima otal adoptada a útil secção o próprio	V2 3 b= 25 cm hmin= 15 cm d= 37 cm PP= 2.50 KN	A's As 	d h ++	Upções ✓ As acçõ todas igu Existem Existem Concent	es são Jais consolas nas ades cargas radas
Estolço Hansvelso	Vsd (k	N/m)	Vcd	Vwd	ARMADURA TR	ANSVERSAL	Afasta	mento Adopt.	Vwd
	Esquerda	Direita	[[Kn]	[[Kn]		• A	Max.	Nec. 0	[[Kn]
Tramo 1	- 54,54	.77.16	55,50	0,00			_		
Turno 0	52,68	1	55,50	0,00	1				
j i ramo 2	-	-52,68	55,50	0,00					
Tramo 3	- 77,16	-54.54	55,50	1 21,66					
Consola esquerda Consola direita							4	Interior	Avanç

Os estribos, são escolhidos numa lista pendente, para a generalidade da viga, em função do diâmetro e do número de ramos na secção. Após a selecção dos estribos, o computador questiona o afastamento pretendido. È indicado o At (área de estribos), afastamento máximo e o afastamento necessário para o caso em estudo.

	84	3 4 4	Carac Des Num Bass Altu Altu Altu Pess	terísticas da ignação ero de tramo e da secção ra mínima total adoptac a útil secçã o próprio	Vija b= 25 cm hmin= 15 cm a h= 40 cm PP= 2.50 KN/m		++ d h +↓		As acçõe todas igu Existem c extremida Existem c concentra	s são ais onsolas nas des argas adas
storço i ransverso	Vsd (k	(N/m)	Ved	Vwd	ABMADLIBA TBANSVERS	AL.	Afast	amento	Adopt	Vwd
	Esquerda	Direita	(Kn)	(Kn)	·	At	Max.	Nec.	0	(Kn)
	- 54 54		55 50	0.00	Diâmetro 6 (de 2 ramos)		-	·	·	
Tramo 1	1 04,04	.77.16	55.50	21.66	Diâmetro 6 (de 3 ramos)		-	<u> </u>	<u> </u>	
	- 52,68		55,50	0,00	Diametro 6 (de 4 ramos)		-			
I ramo 2		-52,68	55,50	0,00	Diâmetro 8 (de 3 ramos)		[[
Tramo 3	- 77,16		55,50	21,66	Diâmetro 8 (de 4 ramos)					
		1 0001	1 00,00	1 0,00	Diâmetro 10 (de 3 ramos) 🞽					
Consola esquerda Consola direita bservações	5						1	Anterior	1	Avança
	ESCOLHA EST	RIBOS OU AI	FASTAMENT	os						

Terá de introduzir o espaçamento máximo pretendido pelo que o computador indica no fim da linha o Vwd – esforço absorvido pelo estribo com o afastamento escolhido.

	Sd	3 4 4 L3	Desi Num Base Altur Altur Altur Peso	ignação iero de tramo e da secção a mínima otal adoptad a útil secção o próprio	$ \begin{array}{c} V2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		++		As acçõe todas igu Existem c extremida Existem c concentre	s são ais onsolas na des argas adas
Esforço Transverso	Vedik	hl /ml	Ved	Mud		SAL	Afasta	manto	Adopt	Viad
	Esquerda	Direita	(Kn)	(Kn)	Diâmetro 6 (de 2 ramos)	At	Max.	Nec.	18	(Kn)
	54.54		55.50	0.00	Estribos @ 6 (2 ramos)	0.57	19.50	0.00	18	36.70
Tramo 1	1 34,54	-77.16	55.50	21.66	Estribos Ø 6 (2 ramos)	0.57	18.50	18.50	18	36.70
	52.68		55.50	0.00	Estribos Ø 6 (2 ramos)	0.57	18.50	0.00	18	36,70
Tramo 2		-52,68	55,50	0.00	Estribos Ø 6 (2 ramos)	0,57	18,50	0,00	18	36,70
Turne 3	- 77,16		55,50	21,66	Estribos Ø 6 (2 ramos)	0,57	18,50	18,50	18	36,70
Tramo 5		-54,54	55,50	0,00	Estribos Ø 6 (2 ramos)	0,57	18,50	0,00	18	36,70

No caso de algum dos afastamentos não cumprir , ou não resistir ao esforço transverso, aparece os valores a vermelho, como no exemplo seguinte.

betar	Sd 2 12	3 4 € L3	Carac Desi Num Base Altur Altur Peso	terísticas da ignação e da secção a mínima total adoptad a útil secção o próprio	Vige V2 S b= 25 cm b= 25 cm A's cm b= 25 cm A's cm A's cm A's cm A's cm A's cm cm A's cm cm cm cm cm cm cm cm cm cm		++ d h +		As acçõe todas igu Existem o extremida Existem o concentr	ss são lais consolas nas ades argas adas
Esforço Transverso	16.40	AL Juni	Ved	Mod		241			Advet	1 Mart
	Esquerda	Direita	(Kn)	(Kn)	Diâmetro 6 (de 2 ramos)		Max	Nec	Adopt.	(Kn)
		, prond	55.50	0.00		0.52	L 10.FC	0.00	1 10	01.77
Tramo 1	- 54,54	77.10	55,50	0,00	Estribos Ø 6 (2 ramos)	0.57	18,50	10,00	19	34,77
	52.69	1 .11,10	55.50	0.00	Estribus Ø 6 (2 ramos)	0,57	19,50	0.00	10	34,77
Tramo 2	1 32,00	-52.68	55 50	0.00	Estribos Ø 6 (2 ramos)	0,57	18.50	0,00	19	34.77
	77.16	1 02,00	55 50	21.66	Estribos Ø 6 (2 ramos)	0.57	18.50	18.50	19	34.77
Tramo 3		-54.54	55.50	0.00	Estribos Ø 6 (2 ramos)	0.57	18.50	0.00	19	34.77

Clique na célula amarela que tem o afastamento a vermelho e altere o afastamento, ou se pretender, clique sobre o tipo de estribos para alterar por exemplo o diâmetro ou o número de ramos. Esta operação terá de ser efectuada para cada caso que não esteja correcto.

Depois de tudo acertado e clicando em "Avança", aparecerá outra imagem, onde terá informação sobre as reacções dos apoios, distâncias dos momentos negativos e distâncias dos momentos máximos e um esquema da leitura dos valores.

betarm s s s s s s s s	Características da viga Designação Numero de tramos Base da secção Base da secção Altura mínima Altura mínima Altura útil secção Peso próprio PP=	V2 3 25 15 40 37 2,50 KN/m	Dpções d h d h b + b + C As acções são todas iguais ⊏ Existem cansolas nas extermidades ⊏ Existem cangas concentradas
Apoio 1 36,36 Apoio 4 36,36	Características construtivas Momentos negal metros m Tramo 1 0.00 C Tramo 2 0.00 C Tramo 3 0.86 C	vos a Momento máximo a etros metros 1,86 2.07 0,00 2.00 1,00 2.33	Direcção da medição dos momentos nulios e máximos Zeros a
Übservações			Anterior Ejectar Gravar Sair

Nesse esquema poder deduzir-se que

- os valores do primeiro zero (ponto de momento nulo) se mede do apoio esquerdo para o apoio direito (do respectivo tramo);
- ° do segundo zero (outro pondo de momento flector nulo) do apoio direito para o apoio esquerdo
- O Momento Flector máximo (no respectivo tramo) situa-se a distância indicada, medida do apoio esquerdo para o apoio direito.

Características constr	utivas		
	Momentos negativos a	Momento máximo a	Direcção da medição dos momentos nulos e máximos
	metros metros	metros	Zeros a
Tramo 1 Tramo 2 Tramo 3	0,00 0,86 0,00 0,00 0,86 0,00 0,86 0,00	2,07 2,00 2,93	Momentos máximos

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir , quando o quadro das observações não tiver mensagens.

A impressão será mais uma vez acrescentada ao ficheiro de resultados que juntará a seguinte informação:

VIGA V	72 - Contínu	a com 3	tramos											
Dimer	nsões da pec	a	h= 40	cm	d= 37 cm		b=	= 25 cm						
ACÇÕES	S NA VIGA											CARGAS	CONCEN	ITRADAS
Tramo	Vão	pp	G1	G2	Par Q	1		Q2 5	sd			CC(KN)	Braço(m)
1	5,00 m	2,50	7,19	3,24	0,00 3	,19		1,44	 26,34	KN/m				
2	4,00 m	2,50	7,19	3,24	0,00 3	,19		1,44	26,34	KN/m	L			
3	5,00 m	2,50	7,19	3,24	0,00 3	,19		1,44	26,34	KN/m	L			
ARMADU	JRAS NOS APO	IOS										REACÇÃ	O NOS A	APOIOS
Apoio	Msd	u	W	w'	As	A	R	MADU	RA	A ef	•	R (kN)		
1	0,00 KNm	0,00	0,00	0,00	1,39 cm2	2	ø	12		2,26	 cm2	R (1) = 36,	36 KN
2	-56,57 KNm	0,15	0,18	0,00	5,06 cm2	5	Ø	12		5,65	cm2	R (2) = 86,	56 KN
3	-56,57 KNm	0,15	0,18	0,00	5,06 cm2	5	Ø	12		5,65	cm2	R (3) = 86,	56 KN
4	0,00 KNm	0,00	0,00	0,00	1,39 cm2	2	Ø	12		2,26	cm2	R (4) = 36,	36 KN
ARMADI	JRAS NOS TRA	MOS										DISTÂN	CIA MOM	IENTOS
Tramo	Msd	u	 W	w'	As	A	R	MADU	R A	A ef	•	Nulos	a	Max. a
1	56,46 KNm	0,15	0,18	0,00	5,06 cm2		ø	12		5,65	 cm2	0,00	0,86	2,07
2	-3,89 KNm	0,01	0,01	0,00	1,39 cm2	2	Ø	12		2,26	cm2	0,00	0,00	2,00
3	56,46 KNm	0,15	0,18	0,00	5,06 cm2	5	Ø	12		5,65	cm2	0,86	0,00	2,93
ESFOR	ÇO TRANSVERS	0												
Tramo	Vsd esqª V	sd dirª	Vc	1 1	ARM. TRAN	SVEF	SA	L	Af	ast.	Vwd			
1	 54,54 KN/m		55	.50	Estribos	 Ø 6	(2	ramos)	 18		36,70			
1		77,16 KI	N/m 55	,50	Estribos	Ø 6	(2	2 ramos)	18	Cm	36,70			
2	52,68 KN/m		55	,50	Estribos	Øб	(2	2 ramos)	18	cm	36,70			
2	-	52,68 KI	N/m 55	,50	Estribos	Ø6	(2	2 ramos)	18	cm	36,70			
3	77,16 KN/m		55	,50	Estribos	Øб	(2	2 ramos)	18	CM	36,70			
3	-	54,54 KI	N/m 55	,50	Estribos	Øб	(2	2 ramos)	18	CM	36,70			

Interpretação de alguns valores de resultados

Apoio	Msd	u	w	w'	As	ARMADURA	A ef.	R (kN)	
1 2 3 4 ARMADU	0,00 KNm -56,57 KNm -56,57 KNm 0,00 KNm JRAS NOS TRAN	0,00 0,15 0,15 0,00 40S	0,00 0,18 0,18 0,00	0,00 0,00 0,00 0,00 0,00	1,39 cm2 5,06 cm2 5,06 cm2 1,39 cm2	2 Ø 12 5 Ø 12 5 Ø 12 2 Ø 12	2,26 cm2 5,65 cm2 5,65 cm2 2,26 cm2	R (1) = 36, R (2) = 86, R (3) = 86, R (4) = 36, DISTÂNCIA MOM	36 KN 56 KN 56 KN 36 KN ENTOS
Tramo	Msd	u	W	w'	As	ARMADURA	A ef.	Nulos a	Max. a
1 2 3	56,46 KNm -3,89 KNm 56,46 KNm	0,15 0,01 0,15	0,18 0,01 0,18	0,00 0,00 0,00	5,06 cm2 1,39 cm2 5,06 cm2	5 Ø 12 2 Ø 12 5 Ø 12	5,65 cm2 2,26 cm2 5,65 cm2	0,00 0,86 0,00 0,00 0,86 0,00	2,07 2,00 2,93

Os valores a vermelho são os momentos flectores sobre o apoio 2 e 3. Os momentos flectores sobre o apoio 1 e 4 são nulos, pois considera-se que nas extremidades a viga não tem momento (apoio simples). Caso tivéssemos consolas nas extremidades já haveria momentos negativos.

Os Valores a azul são os momentos positivos no tramo 1 e no tramo 3 (armaduras colocadas inferiormente). No caso do apoio 2 (a verde) o valor é negativo, aí a armadura dos tramos é necessária na parte superior da viga e os ferros de construção passam para a face inferior (invertem-se as situações)

Os valores seguintes são as reacções dos apoios, o apoio 1 é o da esquerda, e o apoio 4 é o da direita, o apoio 2 e apoio 3 são os intermédios

Apoio	Msd	u	w	w'	As	ARMADURA	A ef.	R (kN)
1	0,00 KNm	0,00	0,00	0,00	1,39 cm2	2 Ø 12	2,26 cm2	R (1) = 36,36 KN
2	-56,57 KNm	0,15	0,18	0,00	5,06 cm2	5 Ø 12	5,65 cm2	R (2) = 86,56 KN
3	-56,57 KNm	0,15	0,18	0,00	5,06 cm2	5 Ø 12	5,65 cm2	R(3) = 86,56 KN
4	0,00 KNm	0,00	0,00	0,00	1,39 cm2	2 Ø 12	2,26 cm2	R (4) = 36,36 KN

Os valores seguintes são as distâncias de momentos nulos e de momentos máximos.

ARMADU	JRAS NOS TH	RAMOS						DISTÂNCIA MON	IENTOS
Tramo	Msd	u	w	w '	As	ARMADURA	A ef.	Nulos a	Max. a
1 2 3	56,46 KNm -3,89 KNm 56,46 KNm	0,15 0,01 0,15	0,18 0,01 0,18	0,00 0,00 0,00	5,06 cm2 1,39 cm2 5,06 cm2	5 Ø 12 2 Ø 12 5 Ø 12	5,65 cm2 2,26 cm2 5,65 cm2	0,00 0,86 0,00 0,00 0,86 0,00	2,07 2,00 2,93

Assim no tramo 1 e partindo do apoio esquerdo os valores nulos são a distância de 0,00 m zero (sobre o apoio) e 0,86 m do apoio 2 para a esquerda.

No tramo 2 e partindo do apoio esquerdo os valores nulos são a distância de 0,00 m e 0,00 m do apoio 2 para a esquerda, querendo isto dizer que no presente exemplo o diagrama dos momentos para o tramo 2 não chega a passar a linha dos zeros.

Por sua vez, no tramo 31 e partindo do apoio esquerdo os valores nulos são a distância de 0,860 m zero e 0,86 m do apoio 2 para a esquerda (sobre o apoio).

Não esquecer de adicionar o comprimento de amarração às distâncias geradas pelo computador.

Para o esforço transverso temos a vermelho os Esforços Transversos de cada tramo à esquerda e a azul os Esforços Transversos de cada tramo para o lado direito.

ESFORÇO TRANSVERSO

Tramo	Vsd esqª Vsd dirª	Vcd	ARM. TRANSVERSAL	Afast.	Vwd
1 1 2 2 3	54,54 KN/m -77,16 KN/m 52,68 KN/m -52,68 KN/m 77,16 KN/m	55,50 55,50 55,50 55,50 55,50 55,50	Estribos Ø 6 (2 ramos) Estribos Ø 6 (2 ramos) Estribos Ø 6 (2 ramos) Estribos Ø 6 (2 ramos) Estribos Ø 6 (2 ramos)	18 cm 18 cm 18 cm 18 cm 18 cm 18 cm	36,70 36,70 36,70 36,70 36,70 36,70
3	-54,54 KN/m	55,50	Estribos Ø 6 (2 ramos)	18 cm	36,70

VI. MÓDULO DE PILARES (COMPRESSÃO SIMPLES)

A próxima imagem ilustra o formulário para o cálculo dos Pilares (compressão simples). O método de cálculo é o indicado no Manual Técnico anexo.

Faça as escolhas

° Quadrada / Rectangular e Circular

^o Designação do pilar P1, P2, P3, P4, P.....; no campo seguinte a indicação complementar (opcional), por exemplo rés-do-chão, ficando **P1 – rés-do-chão**.

° Introduza o vão de cálculo em metros.

Imagem do formulário para colunas (pilares redondos)

hetarma	Verificação do varejamento
borarmo	Tipo de estrutura
Seccio	
	Faster descudents servicites lineate allevice has
Circular	
Características do pilar	
Designação P1 ANDAR	Lomprimento efectivo de encurvadura lo=
Vão de cálculo	Esberteza do pilar L=
	Estados limites de compressão
Dimensão mínima 20 cm	Secção de betão que por si só, resiste ao Nsd A'c= 73.10 cm2
Diâmetro do pilar de la con	Armad long min % A'c= 0.44 cm2 % Ac= 1.99 cm2
	1 644 100 100
Socoše do pilor. Apr. [205.00] on?	Armadura principal
Secção do pilar Adel 625,00 ciliz	
Acçoes no pilar	realizavei.com 0 1/0 + 0 1/0 As(ef)= cm2
Peso próprio do pilar pp= 3,91 kN	Estorço Normal resistente do pilar Nrd= KN
Carga do pilar anterior	Armadura transversal
	Assão a traventir sela silar
	R = 44.34 kN
Acção das vigas	Observações
V1 - Apoio A 🚽 1ª viga 40,43 kN	
→ 2ª viga 0,00 kN	
→ 3ª viga 0,00 kN	
✓ 4º viga 0,00 kN	
carga totar (sem majoração) TOTAL = 44,34 KN	

Imagem do formulário para pilares rectangulares ou quadrados

hatarma	_ Verificação do varejamento	
	Tipo de estrutura	
		Ê
ecção		
📀 Quadrada / Rectangular 🛛 🤇 Circ	ular Factor dependente condições ligação pilar/estrutura n =	Γ.
bracterísticas do pilor	Raio de giração i =	2
aracteristicas do pilar	Comprimento efectivo de encurvadura lo=	4
Designação P1 ANDAR	Exhertena de altar	
Vãodecálculo I= 250 m		
	Estados limites de compressão	
Dimensão mínima 20 cm	Secção de betão que por si só, resiste ao Nsd A'c= 73,10 c	:m2
Base da seccão b= 25 cm	Armad. long. mín. % A'c= 0.44 cm2 % Ac= 1.88 c	:m2
Albura da seccião he los com la b		
	Armadura principal	
Secção do pilar Ac= 625,00 cm2	<u></u>	m2
cçoes no pilar	realizável com 0 0 0 + 0 0 0 As(ef)= c	m2
Peso próprio do pilar pp= 3	91 kN Esforço Normal resistente do pilar Nrd=	K١
	Armadura transversal	
Carga do pilar anterior	Cintas espaçadas cm	ĸ.
➡ P ant.= 0	00 kN Acção a transmitir pelo pilar	
Accão das vienas	R = 44,34 k	N
	Observações	
VI Apoio A Via Agoio A	.43 KN	
VI - Apoio A 2ª viga 0 VI - Apoio B	.00 KN	
V2_Apoio 1 3ª viga 0	00 kN	
V2_Apoio 3 4ª viga 0	00 kN	
V2_Apoio 4		
VI - Apoio B	.34 KN	

Introduza a secção do pilar, base e altura

^o Seguidamente teremos de introduzir as acções sobre os pilares a partir das listas pendentes que o programa apresenta, a primeira para acção carga do pilar anterior, as restantes quatro para as acções (reacções dos apoios) das vigas Ao escolher da lista pendente o valor da acção á assumido pelo computador, podendo sempre alterar, se pretender.

- Access no pilor		
Acçues no pilar		
Peso próprio do pilar	pp= 3,91	kN
Carga do pilar anterior		
•	P ant.= 0,00	kN
Acção das vigas		
V1 - Apoio A	1ª viga 🚽 40,43	kN
V1 - Apoio A V1 - Apoio B	2ª viga 0,00	kN
V2_Ápoio 1 V2 Apoio 2	3º viga 0,00	kN
V2_Apoio_3 V2_Apoio_4	4ª viga 0,00	kΝ
Carg, V1 - Apoio A V1 - Apoio B	TOTAL = 44,34	kN
Combinação de Acções	66,51	kN

Caso não pretenda utilizar os valores da lista pendente, introduza os valores das reacções que nela descarregam.
 Esses valores, são os valores das vigas já calculadas, e poderão ser consultados nas impressões já realizadas ou no ficheiro de dados gerado pelo computador – ver mais num dos próximos capítulos como o fazer.

 Pode fazer a verificação do varejamento, seleccionando o tipo de estrutura, de uma tabela fornecida pelo computador, e baseada no método de Montoya.

/erificação do varejamento	
Tipo de estrutura	
	-
Pilares de estrutura de edifícios	~
Fac - Para pilares entre pisos	
 Pilar perfeitamente encastrado na sapata 	
Raj - Pilar parcialmente encastrado na sapata	
 Quando não há transmissão de momentos à sapata 	
Cor Pilares isolados	_
 Ambas as extremidades articuladas 	
Est - Ambas as extremidades encastradas	\sim

Verificação do varejamento	
Tipo de estrutura	
 Para pilares entre pisos 	-
Factor dependente condições ligação pilar/estrutura	n = 0,75
Raio de giração	i = 7,22
Comprimento efectivo de encurvadura	lo= 1,88
Esberteza do pilar	L= 25,97

° A tabela para introdução das armaduras é calculada de acordo com o REBAP.

• Na escolha das armaduras, clicando no comando 2 pode ter acesso à tabela das armaduras, e coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

	Armadura principal ? As= 2,64 realizável com 4 Ø 12 + 0 Ø As(ef)= 4,52 Esforço Normal resistente do pilar Nrd= 725,73						
46 6	12 12	6	10	para 46 ø 12 para 6 ø 12 + 6 ø 10			

 As cintas, são calculadas automaticamente sem intervenção do utilizador, uma vez que apenas são afectadas por questões regulamentares.

- Armadura transversal Cintas 6	espaçadas 14,00 cm
 Acção a transmitir pelo pilar 	R = 266,63 kN

hatarma	Verificação do varejamento
	Tipo de estrutura
	Para pilares entre pisos
(• Quadrada / Rectangular (* Urcular	Factor dependente condições ligação pilar/estrutura n = 0,75
aracterísticas do pilar	Haio de giração I= 7,22
Designação P1 ANDAR	Comprimento efectivo de encurvadura lo= 1,88
	Esberteza do pilar L= 25,97
vao de calculo 1 - 1 2,50 m	Estados limites de compressão
Dimensão mínima 20 cm	Secção de betão que por si só, resiste ao Nsd A'c= 215 90 cm2
Base da secção h= 25 cm	Armad long mín % A'c= 130 cm2 % Ac= 188 cm2
Seccio de pilar Aco COS 00 om?	Armadura principal
560ção do pilai - A04 623,00 - Ciliz	
cçoes no pilar	
Peso próprio do pilar pp= 3,91 kN	Estorço Normai resistente do pilar Nrd= 725,73 KN
Carga do pilar anterior	Armadura transversal Cintas 6 espacadas 14.00 cm
Pant= 0.00 kN	Accão a transmitir pelo pilar
1	R = 130,90 kN
Acção das vigas	Observações
V1 - Apoio A 🔹 1ª viga 40,43 kN	
V2_Apoio 2	
→ 3ª viga 0,00 kN	
✓ 4 ² viga 0,00 kN	
Carga total (sem maioração) TRTAL = 120.00 kN	
anither received and the receiver - 1 120'20 Ku	

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir , quando o quadro das observações não tiver mensagens.

Os resultados apresentados e adicionados ao ficheiro são os seguintes:

PILAR P1 - ANDAR CARACTERÍSTICAS GEOMÉTR	TCAS				
Vão de cálculo	l = 2.50 m				
Dimensões da peça ACÇÕES NO PILAR	b= 25 cm		h= 25	5 cm	Ac = 625, 00 cm2;
Peso próprio do pilar	pp =3,91 kN		Pilar	ant.=0,00 kN	
Acções das vigas	V1=40,43 kN	V2=86,56	kN	V3=0,00 kN	V4=0,00 kN
COMBINAÇÃO DE ACÇÕES	Sd =196,35 kN				
CÁLCULO DO VAREJAMENTO	n=0,75	i=7,22		lo=1,88	Lambda=25,97
ARMADURA MÍNIMA	A'c=215,90 cm2		% A'c	c=1,30 cm2	% Ac=1,88 cm2
ARMADURA PRINCIPAL	As= 1,88 cm2 r	ealizável	c/ 4	Ø 12	As(ef.)= 4,52 cm2
ESF. NORMAL RESISTENTE	Nrd=725,73 kN				
ARMADURA TRANSVERSAL	Cintas em Ø 6	espaçadas	s 14	Cm	
ACÇÃO TRANSM. PILAR	R=130,90kN				

VII. MÓDULO DE SAPATAS

A imagem seguinte, ilustra o formulário para o cálculo das Sapatas. O método de cálculo é o indicado no Manual Técnico anexo. Faça as escolhas entre

- Sapatas de Pilar concêntrica, excêntrica e de canto ou Sapatas de paredes concêntrica e excêntrica
- Designação da sapata S1, S2, S...
- Introduza os dados referentes ao pilar, ou sapata, nomeadamente secção do pilar (ou largura da parede),

 Para introdução da carga transmitida pela parede ou pelo pilar, abrimos a lista pendente e escolhemos a designação do pilar e piso e a acção é assumida automaticamente para a célula. Caso pretenda pode introduzir directamente os valores na caixa de texto.

 O computador pré-dimensiona a sapata e temos de escolher a geometria pretendida. Também é fornecida a altura mínima da sapata.

 É verificada a tensão efectiva do terreno, e calculada a armadura das sapatas pelo método das bielas excepto na de canto em que é utilizado o método das consolas.

• Na escolha das armaduras, clicando no comando pode ter acesso à tabela das armaduras, coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

6	12			para 6ø12
6	16	6	10	para 6 ø 16 + 6 ø 12

Conselho: Utilize armaduras mínimas de ø 12, uma vez que as armaduras são enterradas e podem ser mais facilmente "atacadas" pela corrosão.

 A resistência ao punçoamento também é verificada, podendo ser solicitada o aumento de altura da sapata, ou caso pretenda, pode sempre aumentar a secção do pilar que nela descarrega, fazendo um "encabeçamento" só ao nível das fundações.

Aparência dos dados enviados para o ficheiro de resultados ou impressão:

SAPATA S1 - Sapata isola	ada concêntrica		
TENSÃO DO TERRENO	Inicial=0,30 MPa	Efectiva=0,32 MPa	
CARACTERÍSTICAS PILAR			
Carga do pilar	N=130,89 kN	PP sap =4,80	Nsd=203,54 kN
Dimensões do pilar	a= 25 cm	b= 25 cm	
CARACTERÍSTICAS SAPATA			
Dimensões da sapata	A=B=80,00 cm		
Altura da sapata	H=30,00 cm	D=25,00 cm	
ESFORÇOS ACTUANTES	Fa=55,97 kN	Fb=55,97 kN	
ARMADURA (direcção A=B)	As(A=B)= 3,00 cm2 realized	ável c/ 6 Ø 12 (sap.)	As(ef.)= 6,79 cm2
VERIFICAÇÃO PUNÇOAMENTO			
Perímetro crítico	u=1,79 m		
Esforços de punçoamento	Vsd=49,35 kN	Vrd=234,00 kN	

Visualização do formulário de sapatas isoladas.:

bet arm 6	Esforços actuantes
Line de espate	Estorços Fa= 50,88 kN
	Fb= 50,88 kN
Isoladas Concêntrica	
C De canto	
Contínuas - C. Concêntrica	Armadura principal (direcção A)
C Excêntrica	As= 3,00 cm2
	? realizável com 6 0 12 + 0 0 0
Designação S1	Armadura efectiva As(ef)= 6,79 cm2
Tensão do terreno ? s= 0 on MPa	
Dados do pilar	
Larga do pilar (sem majoração)	
P1_ANDAR V= 130,89 kN a A	
Dimensões do pilar a= 30 cm b	
b= 30 cm	Resistência ao Punçoamento
Características da sanata	Perímetro crítico u= 1,99 m
Dimensões mínimas da sapata	Esforço de punçoamento actuante Vsd= 32,33 kN/m
Lados A=B= 69 cm A=B= 90 cm	Esforco de puncoamento resistente Vrd= 234.00 kN/m
Alline de serves	Observações
Alfura da sapata	
Alt. minima hmin= 22 cm h= 30 cm	
Altura útil d= 25 cm	
Combinação de acções	
Acção a actuar sobre a sapata N= 130,89 kN	
Peso da sapata (real) pp= 4,80 kN	VERIFICADO O PUNCOAMENTO
Combinação de acções Nsd= 203,54 kN	

Visualização do formulário sapatas excêntricas (de pilares), com mensagem de erro no punçoamento:

bet arm 6	Esforços actuantes
Tipo de sapata	Estorços Fa= 113,02 KN
Isoladas C Concêntrica	FD= 113,02 KN
C De canto	A 1 1 1 1 1 P AN
Contínuas C Concêntrica	Armadura principai (direcçao Aj
C Excêntrica	
Dulinue Te	$\frac{7}{12} \text{ realizaver com} = 6 \emptyset = 12 + 0 \emptyset = 0$
Tanta da harrar	Armadura erectiva Asterj= 6,79 cm2
Padas da silas	
Cause de pilar	
Carga do pilar (sem majoração)	
P1_ANDAR ▼ N= 130,89 KN a	
Dimensoes do pilar a= 25 cm b	Resistência ao Puncoamento
D= 25 cm	Perímetro crítico u= 0.20 m
Jaracteristicas da sapata Dimensões mínimas da sapata	Esforço de punçoamento actuante Vsd= 451.10 kN/m
Lados A=B= 69 cm A=B= 70 cm	Esforço de punçoamento resistente Vrd= 202.50 kN/m
Altura da sapata	Observações
Alt.mínima hmin= 21 cm h= 25 cm	
Altura útil d= 20 cm	
Combinação de acções	
Acção a actuar sobre a sapata N= 130,89 kN	
Peso da sapata (real) pp= 3,06 kN	NAO RESISTE AO PUNÇOAMENTO - AUMENTE A ALTURA DA SAPATA
Combinação de acções Nsd= 200,93 kN	

Visualização do formulário sapata de canto (de pilar) .:

hetarma	Armadura principal	
	Momento Flector	Msd= 15,60 kNm/m
ipo de sapata	Momento reduzido	μ= 0.023 Mpa
Isoladas C Concêntrica C Excêntrica	Percentagem de armadura	w= 0,024 %
re De canto	Armadura principal (direcção A)	
Contínuas C Concêntrica C Excêntrica		As= 3,00 cm2
	? realizável com	6 0 12 + 0 0 0
Designação S1	Armadura efectiva	As(ef)= 6,79 cm2
Tensão do terreno ? s= 0,30 MPa		
lados do pilar		
Carga do pilar (sem majoração) a		
PI ANDAB V N= 130.89 KN b		
Dimensões do pilar a= 20 cm		
b= 20 cm B	Resistência ao Punçoamento	
o j go on	Perímetro crítico	u= 0,99 m
Dimensões mínimas da sapata	Esforço de punçoamento actuante	Vsd= 84.37 kN/m
Lados A=B= 69 cm A=B= 60 cm	Esforco de puncoamento resistente	Vrd= 234.00 kN/m
		1 201,00
Aliura da capata	Observações	
Aic minima hmin= 22 cm h= 30 cm		
Altura útil d= 25 cm		
combinação de acções		
Acçao a actual sobre a sapata N= 130,89 KN		
Peso da sapata (real) pp= 4,80 kN	VERIFICADO O PUNÇO	DAMENTO

Visualização do quadro do formulário das sapatas contínuas, de parede concêntrica (à esquerda) e concêntrica à direita

┌─ Tipo de sapata		Tipo de sapata	
Isoladas	C Concêntrica C Excêntrica C De canto	Isoladas C Concêntrica C Excêntrica C De canto	
Contínuas	© Concêntrica © Excêntrica	Contínuas C Concêntrica	

VIII . MÓDULO DE MUROS DE SUPORTE

A próxima imagem, mostra o formulário para o cálculo de Muros de Suporte em consola. O método de cálculo é o indicado no Manual Técnico anexo. A opção é a indicada no esquema do programa. Faça as escolhas entre

- ° Muro de suporte concêntrica, excêntrica (com sapata para ambos os lados).
- Designação do Muro M1, M2, M3....
- ° Introduza os dados geométricos do muro e da sapata, nomeadamente com as nomenclaturas seguintes:
 - A Largura do muro na parte superior
 - B Largura do muro na parte inferior
 - C Comprimento da parte anterior da sapata
 - D Comprimento da parte posterior da sapata
 - E Espessura da sapata
 - F Largura total da sapata

 O computador pré-dimensiona a sapata e temos de escolher a geometria pretendida. Não é forçoso que se cumpram as dimensões, pois o programa fará as verificações necessárias – verificação ao escorregamento, ao derrube, e às tensões do terreno.

Também tem de indicar as características do solo, podendo recorrer a uma tabela de solos, inserida no módulo.

 No muro as armaduras são calculadas para várias partes do muro, embora só solicita a armadura para a parte mais elevada. Contudo em desenho pode suprimir alguns varões, respeitando as armaduras mínimas e outras prescrições regulamentares.

 No muro as secções de aço são calculadas para várias partes do muro, embora só solicite a armadura para a parte mais elevada. Contudo em desenho pode suprimir alguns varões, respeitando as armaduras mínimas e outras prescrições regulamentares.

° As sapatas são calculadas as dias, pese embora o facto de se introduzir a mais elevada.

• Na escolha das armaduras, clicando no comando 2 pode ter acesso à tabela das armaduras, e coloque no

primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

6

12

para 6ø12

Conselho: Utilize armaduras mínimas de ø 12, uma vez que as armaduras são enterradas e podem ser mais facilmente "atacadas" pela corrosão.

Visualização do formulário para muros de suporte excêntrico.:

Módulo de cálcu	lo de muros de s	uporte							
b et arristicas do m Características do m C Muro 1 Designação Altura do muro Espess, base muro Compr. anterior sap. Altura da sapata Base da sapata Tipo de terreno Peso específico d Angulo de atito in t Tensão admissíve Sobrecarga sobre	mode suporte Muro de suporte H= $\begin{bmatrix} 22\\ 20\\ 20\\ 20\\ 100\\ 125\\ 100\\ 125\\ 125\\ 125\\ 122\\ 125\\ 122\\ 122\\ 122$	Muro 3 0 m 0 cm 0 cm 0 cm 1	-C-B- F- graus mPa kN/m²	- G H - D=0 - Tabela de solos		Acçoes sobre o mu Peso do Muso Peso da Sapata Peso da Sapata Peso da tera so Sobrecarga no terre Impulso acbivo Impulso activo Morr. Estabilizador Morr. Derrubador Excentricidade Tensões no terreo Tensões no terreo 14 = 0.011 12 = 0.026	no bała no superior ro de suporte e exe Ka= 0,172 la= 8,83 Me= 22,56 Md= 7,24 ex = -0,08 altante cai dentro o de fundação t 3/4 = _0,0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(N (N (N/m2) m m
MURO de suporte	muro Msd μ (kNm) (MPa)	(%)	ARMA As (cm2)	ADURA PRIN	ICIPAL As(ef)	ARMADUR cm2 Ad (cm2)	A DISTRIBUIÇÃO Ad(ef)	Esforço Transv cm2 Vsd (kN) Vrd (k	erso (N)
0,66 1.33 2.00 SAPATA anterior	0,55 0,000 2,22 0,010 5,02 0,010 5,00 0,000	0,000 0,010 0,010	0,00 0,51 0,51	2 6 Ø 10) 4.7	1 0,94 6	? Ø 8 3.0:	2,43 91, 4,90 91, 2 7,36 91, 10,00 136	10 10 10 50
- Observações			1	6 10 112	2 6,7	a 11'39 16	Ejectar	a Imprimir Sa	ir

Visualização do formulário para muros de suporte concêntrico.:

Delan							Pes	o da Sapata			P2= 1	2,00 k	N
Características do m	iuro de supor	e		- - -A	4	G	Pesi	o da terra s/ saj	pata		P3= 2	5,50 k	N
Muro 1	C Muro 2	CM	uro 3		ÌIII	III i	50D	recarga no terre	no superio	e.	u= :	3,00 K	NI.
Designação		MI					Imp	ulso sobre o mu	ro de supoi	rte e exc	entricidades		
Altura do muro	He	= 2.00	m				Coe	f. impulso	Ka= []	0.172		0.516	1
-		1 2,00			1///	3 н	activ	/0	1	0,112	p2=	7 534	8
Esp. topo muro	A: D	25	cm		1///		Îme	dan antian	Jan D	0.00	- الم مالات	0.00	-
Compr. anterior can		25			V///	4 +	mpo	also activo	IG=]	9,66	KNIII UT=	0,85	
Compr. posterior sap.	75 D=	25	- cm			E	Mon	n. Estabilizador	Me= [36,00	kNm ce =	2,93	Ī
Altura da sapata	17 E	= 40	cm +	_CB		+ '	Mon	n. Derrubador	Md= [8.21	kNm cd =	4 38	-
Base da sapata	125 F=	125	cm 🕂	F	1	+	-				D.IC	1	
Tine de terrere	Street and the street of	St. 88398-	11 A.			<u>ی</u>	_ CXCI	entricidade	ex = 1	0,03	III D/0 =	0,21	
Peso específico da Ângulo de atrito int Tensão admissível Sobrecarga sobre t	erno erno erreno super	- sig	fi = 45 ma= 0,30 sc= 3,00	graus mPa kN/m²	Tab s	ela de blos	-Ten t1 t2	sões no terreno = 0,045 = 0,033	t 3/4 =	:ao • 0,0	60 < [C	,300 m	P
Peso específico da Ângulo de atrito intr Tensão admissível Sobrecarga sobre t Dimensionamento do MURO de suporte	erreno super erreno super muro Msd (kNm)	ior μ (MPa)	fi = 45 ma= 0,30 sc= 3,00 w (%)	graus mPa kN/m² ARI As (cm2)	Tab so MADUR	ela de blos A PRINCI A	PAL s(ef) cm2	sões no terrenc = 0.045 = 0.033 ARMADUR Ad (cm2)	t 3/4 = t 3/4 = A DISTRIE	ao 0,0 3UIÇÃO Ad(ef)	60 < C Esforço cm2 Vsd (kN	,300 m) Transve) Vrd (kl	(P (rs V)
Peso específico da Ângulo de atrito int Tensão admissível Sobrecarga sobre I Dimensionamento do MURO de suporte 0.66	erno erno muro Msd (kNm)	ior (MPa)	fi = 45 ma= 0,30 sc= 3,00 w (%)	graus mPa kN/m² As (cm2)	Tab sc	ela de olos A PRINCI A 2	PAL s(ef) cm2	sões no terrenc = 0.045 = 0.033 ARMADUR Ad (cm2)	t 3/4 = t 3/4 = A DISTRIE	ao 0,0 3UIÇÃO Ad(ef)	60 < C Estorço cm2 Vsd (kh	(300 m Transve) Vrd (ki	P rs V)
Peso específico da Ângulo de atrito int Tensão admissível Sobrecarga sobre I Dimensionamento do MURO de suporte 0,66 1,33	erreno superi erreno superi muro Msd (kNm) 0,62 2,53	sig μ (MPa)	fi = 45 sc= 3,00 (%) (%) 0,000 0,010	graus mPa kN/m² ARI As (cm2) 0,00 0,51	Tab MADUR.	ela de olos A PRINCI A ?	PAL s(ef) cm2	sões no terrenc = 0.045 = 0.033 ARMADUR Ad (cm2)	t 3/4 = A DISTRIE	ao I 0,0 SUIÇÃO Ad(ef)	60 < [C Estorço cm2 Vsd (kh 2,66 5,35	(300 m Transve) Vrd (k 91,1	
Peso específico da Ângulo de atito int Tensão admissível Sobrecarga sobre t Dimensionamento da MURO de suporte 0.66 1.33 2.00	erreno superi erreno superi muro Msd (kNm) 0,62 2,53 5,71	sig μ (MPa)	fi = 45 ma= 0,30 sc= 3,00 w (%) 0,000 0,010 0,010	graus mPa kN/m² ARI As (cm2) 0,00 0,51 0,51	Tab so MADUR	A PRINCI	-Ten t1 t2 PAL s(ef) cm2	sões no terrenc = 0.045 = 0.033 ARMADUR Ad (cm2) 0.94 6	t 3/4 = A DISTRIE	ao 0,0 3UIÇÃO Ad(ef) 4,71	60 < [C Esforço cm2 Vsd (kh 2,66 5,35 8,05	,300 m Transve) Vrd (k) 91,1 91,1 91,1	P (V) 000
Peso específico de Ângulo de atrito int Tensão admissível Sobrecarga sobre I Dimensionamento do MURO de suporte 0.66 1.33 2.00 SAPATA anterior	as terras erno prereno super muro Msd (kNm) 0,62 2,53 5,71 0,32	ior (MPa) 0.000 0.010 0.010	fi = 45 ma= 0,30 sc= 3,00 w (%) 0,000 0,010 0,010	graus mPa kN/m² ARI As (cm2) 0,00 0,51 0,51	Tab st MADUR	A PRINCI A PRINCI A 7	- Ten t1 t2 PAL s(ef) cm2	sões no terrenc = 0.045 = 0.033 ARMADUR Ad (cm2) 0.94 6	A DISTRIE	ao • 0,0 3UIÇĂO Ad(ef)	60 < [C Estorço cm2 Vsd (kN 2,66 5,35 8,05	,300 m) Transve) Vrd (ki 91,1 91,1 91,1	P
Pess especifico da Angulo de atrición Tensão admissível Sobrecarga sobre I Dimensionamento do MURO de suporte 0.66 1.33 2.00 SAPATA anterior SAPATA posterior Dibervações	s certras erroo muro Msd (kNm) 0,62 2,53 5,71 0,32 6,84	sic (MPa) 0.000 0.010 0.010 0.010	fi = 45 ma= 0.30 sc= 3.00 (%) (%) 0.000 0.010 0.010 0.010	graus mPa kN/m² As (cm2) 0.00 0.51 0.51 5.55 5.55	Tab sc MADUR.	ela de olos A PRINCI A ? 0 10 0 12	PAL s(ef) cm2	sões no terrenc = 0.045 0.033 ARMADUR Ad (cm2) 0.94 6 1.36 6	de fundaç t 3/4 = A DISTRIE 2 0 10 10	ao • 0,0 3UIÇÃO Ad(ef) 4.71 6.75	60 < C Estorço cm2 Vsd (kh 2.66 5.35 8.05 1 7.50	,300 m) Transve)) Vrd (k) 91,1 91,1 (91,1 (91,1 (91,1) (136, (136,	P (S)

Visualização do f	formulário para muros	s de suporte concê	ntrico com erros	s no derrube e	escorregamento.
			,		

	m6	rta				Acçoes sobre o mu Peso do Muro Peso da Sapata	0	P1= 7,2 P2= 9,6 P3= 20	0 kN 0 kN
C Muro 1	 Muro 2 	СМ	uro 3	-+	- G	Sobrecarga no terre	eno superior	G= [kN/m2
Designação Altura do muro Esp. topo muro Espess. base muro Compr. posterior sap Altura da sapata Base da sapata Tipo de terreno Peso específico d Ángulo de atrito int	+ 4 5 13 100 5 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	= M2 = 1,50 = 20 = 20 = 20 = 40 = 100 ga	m cm cm cm cm cm cm cm fi= n	C=0 +B-		Impulso sobre o mu Coef, impulso activo Impulso activo Mom. Estabilizador Mom. Derrubador Excentricidade Re Tensões no terrenc	ro de suporte e exc Ka= 1.000 Ia= 30.68 Me= 18,48 Md= 19,33 ex = 0,36 sultante cai fora do i de fundação	p1= p2= kNm d1= kNm ce = kNm cd = m B/6 = terço central	0,000 32,300 0,63 m 0,00 0,96 m 0,17 m
Tensão admissível Sobrecarga sobre Dimensionamento d	i terreno supe o muro Msd	rior μ (MPa)	ma= 0,00 sc= 0,00 w (%)	MPa kN/m² ARM/	Solos	$\begin{array}{c c} t1 = & 0.059 \\ t2 = & 0.000 \end{array}$ AL ARMADUR (ef) cm2 Ad (cm2)	t 3/4 = A DISTRIBUIÇÃO Adien	59 < [0,0 Esforço T cm2 Vsd (kN)	00 mPa ransverso Vrd (kN)
MURO de suporte	(kNm)	(m. a)		(onic)					
MURO de suporte 0.50 1.00 1.50	(kNm) 1,35 5,38 12,11	0.010	0,010 0,020 0,053	0,39 0,78 2.07	? 0 0 0	r ro	?	8.07 16,15 24,22	72,90 72,90 72,90 72,90
MURO de suporte 0.50 1.00 1.50 SAPATA posterior	(kNm) 1,35 5,38 12,11 4,96	0,010 0,020 0,050 0,000	0,010 0,020 0,053 0,000	0,39 0,78 2,07				8.07 16,15 24,22 8.00	72,90 72,90 72,90 72,90

Visualização do formulário para muros de suporte concêntrico com o cálculo já completo.:

Caracteristicas do muro de suporte $P2e$ 950	betarr	m 6			Acçoes sobre o mun Peso do Muro	0	P1= 7,20 kN
Calculation do line of subjects C Muro 1	Características do m	uro de suporte			Peso da bapata Peso da terra s/ san	ata	P2= 9,60 KN P3= 20.40 kN
C Muro 1 C Muro 2 C Muro 3 Designação Altura do muro H= M2 Altura do muro H= 150 m Espesto base muro B= 20 cm Espesto base muro B= 20 cm Compr. posterior sap. 75 D= 80 cm Compr. posterior sap. 75 D= 80 cm Attura do sapata 13 E= 40 cm C=0 Attura do sapata 13 E= 40 cm C=0 Top de terreno P2= 0.08 m B/6 = 0.17 Pose específico das terras gamas 17.00 KN/m² Tabela de Sobrecarga sobre terreno superior scolo 2 0.00 m B/6 = 0.17 Tensõe sobre terreno superior scolo 2 0.00 MM/m² M/m² N/m² M/m² N/m² N/m	Cdideterrations do m	uro de suporte		+A+ G	Sobrecarga no terrer	ata no superior	G= 200 kN/
Designação H= 1.50 m Altua do muro A= 20 cm H Esp. topo muro B= 20 cm F Compr. posterior sap. 75 D= 80 cm Cm Khura do sapata 13 E= 40 cm Cm Cm Base da sapata 100 F= 100 cm Cm Cm F Peso específico das terras gama= 17,00 kN/m² Mom. Derubador Md= 3,97 kNm cd = 4,85 Excentricidade exe = 0.08 m B/6 = 0,17 Resultante cai dentro do terço central Tensão admissível sigma= 0.30 mPa solos 12 = 0,013 t3/4 = 0,060 (0,000 mestonamento do muro MURO de suporte Mod Msd w ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO Estorço Transvers 0.50 0.27 0.000 0.000 0.000 7 1,36 6 12 6,79 4,68 72,90 0.50	C Muro 1	Muro 2 C	Muro 3				alialados
Altura do muro H= 1,50 m Esp. topo muro A= 20 cm cm Espest, base muro B= 20 cm p2= 5,300 Compr. posterior sap. 75 D= 90 cm Cm F Altura da sapata 13 E= 40 cm C=0 + + + + moulos activo Ia= 5,33 NNm d1= 0,67 Marca da sapata 130 F= 100 cm C=0 + + + + + + Nm destroad 4,85 Nm destroad 4,85 Excendicidade extendicidade extendicidade extendicidade extendicidade 20.08 m B/6 = 0,17 Tensão admissível sigman 0,30 mPa solos 11 = 0,055 13/4 = 0,060 0,300 mPa Sobre carga sobre terreno superior scd 2,00 N/m² As(ef) cm2 Ad(ef) Coef (mpUldo da final	Designação	M2	<u> </u>		- Impulse sobre e mun	o de suporte e excer	inicidades
Esp. topo muro Spess: base muro B = 20 cm B = 20 cm Compr. posterior sap. 75 D = 80 cm Altura da sapata B = 20 cm C = 0 + B + D + Tipo de terreno Peso especifico das terras Angulo de atrio interno Terrašo admissível Sobrecarga sobre terreno superior Sobrecarga sobre terreno superi	Altura do muro	H= 1,5	j m		Coef. impulso	Ka= 0,172	p1= 0,344
Espess: base muro B= 20 cm fmpulso activo Ia= 5,33 Nhm dl= 0,67 Compr. posterior sap. 75 D= 80 cm L L Mom. Estabilizador Mae= 3,37 Nhm dl= 5,33 Nhm dl= 0,67 Mom. Desterior sap. 75 D= 80 cm C=0 + + - Mom. Estabilizador Me= 18,48 Nhm ce = 3,59 Mom. Destubator 13 E= 40 cm C=0 + F + - - - 4,55 Base da sapata 100 F= 100 cm C=0 + F + - - - - 4,55 Pace aspectifico das terras gama= 17,00 kN/m² Tabela de solos - 1.45 - 0.000 - - - - - - - - - - -	Esp. topo muro	A= 20	cm	H	acuvo		p2= 5,900
Compr. posterior sap. 75 D = 80 cm C = 0 + B - D Mon. Estabilizador Me= 18,48 KNm ce = 3,59 Altura da sapata 100 F = 100 cm C = 0 + B + D - Mon. Estabilizador Me= 18,48 KNm ce = 3,59 Base da sapata 100 F = 100 cm C = 0 + B - D - Mon. Derubador Md= 3,59 Mon. Derubador Md = 4,65 Base da sapata 17,00 cm - H F = - D - H - D	Espess, base muro	B= 20	cm		Impulso activo	la= 5,93	kNm d1= 0,67
Compt. posterior sap. 75 De 80 cm Cm<				E	Mom. Estabilizador	Me= 18.48	kNm ce = 359
Altura da sapata 13 E= 40 cm C=U B= U Tipo de terreno 100 F= 100 cm F= 100 f= 100 f= 0.05 f= 0.05 f= 0.05 f= 0.05 f= 0.060 f= 0.060 f= 0.060 f= 0.000 f= <	Compr. posterior sap.	75 D= 80	Cm		Mar Dankada		
Base das space 1 100 r = 1 00 cm r = <thr =<="" th=""> r = <thr =<="" th=""></thr></thr>	Altura da sapata Paso da sapata	13 E= 40	Cm		Mom. Detrubador	Md= 3,97	KNm cd = 4,65
Tipo de terreno Peso específico das terras gaman 17.00 kN/m² Peso específico das terras gaman 17.00 kN/m² Tensões no terreno de fundação Tensões admisisível sigman 0.30 mPa solos 11 = 0.055 t3/4 = 0.060 0.300 mPa Sobrecarga sobre terreno superior sca 2.00 kN/m² solos 12 = 0.013 t3/4 = 0.060 0.300 mPa Dimensionamento do muro Msd µ w ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO Estorço Transvers MURO de suporte (INm) (MPa) 1/3 As (cm2) As(et) cm2 Ad(et) cm2 Vsd (kN) Vrd (kN) 0.50 0.27 0.000 0.000 7 7 1.56 72.90 1.50 2.47 0.010 0.000 0.000 7 9 4.68 72.90 SAPATA posterior 4.96 0.000 5.55 6 12 6.79 1.36 6 12 6.79 8.00 13.650	base ua sapara	1100 - 1 100			Excentricidade	ex = 0,08	m B/6 = 0,17
Peos especifico das terras gana 17.00 kN/m² Angulo de attinis interno in 45 graus Tabelà de solos Tensão admissível sigma 0.30 mPa solos Sobrecarga sobre terreno superior sce 2.00 kN/m² Instance do durdo for durd	Tipo de terreno		·		Besu	ltante cai dentro do l	erco central
Angulo de atrito interno III = 45 graus Tablela de solos France France Construction III = 0.000 Construction IIII = 0.000 Construction IIII = 0.000 Construction IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Peso específico da	as terras	gama= 17,00	kN/m²			
Temão admissível sigma 0.30 mPa solos t1 = 0.055 t3/4 = 0.060 < 0.30	Angulo de atrito int	emo	fi = 45	graus Tabela de	- Tensões no terreno	de fundação	
Sobrecarga sobre terreno superior sca 2,00 kN/m² 12 = 0,013 Colve + 0,000 C + 0,300 Min Dimensionamento do muro MuRO de suporte MuRO de suporte MuRO de suporte MuRO de suporte As(er) ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO Esforço Transvers MURO de suporte (kN/m) (MPa) (%) As(cm2) Ad(er) Ad(er) cm2 Vsd (kN) Vrd (kN) 0.50 0.277 0.000 0.000 0.000 ? ? 1.56 72.90 1.00 1.10 0.000 0.000 0.000 0.000 3.12 72.30 SAPATA posterior 4.36 0.000 0.000 5.55 6 0 12 6.79 8.00 136.50 Observações Diservações Estrut Estrut Estrut Estrut Estrut Estrut	Tensão admissível	l i i i i i i i i i i i i i i i i i i i	sigma= 0,30	mPa solos	t1 = 0,055	+ 3/4 - 0.000	< 10.000 mPs
Dimensionamento do muro Mad µ W ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO Estorço Transvers MURD de suporte (kNm) (MPa) (2) As (cm2) As(ef) cm2 Ad (cm2) Ad (ef) cm2 Vod (kN) Vid (kN) 0.50 0.27 0.000 0.000 7 7 1.56 72.90 1.00 1.10 0.000 0.000 0.000 72.97 7 3.12 72.93 1.50 2.47 0.010 0.000 5.55 6 0 12 6.79 8.00 136.50 0bservações 0bservações 5.55 6 12 6.79 1.36 6 12 6.79 8.00 136.50	Sobrecarga sobre t	terreno superior	sc= 2,00	kN/m²	12 = 0,019	(3/4 -] U,060	i v j 0,300 mile
MUR0 de suporte Mid μ w ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO Estorço Transvers 0.00 (Nm) (MPa) (%) As (cm2) As(ef) cm2 Ad (ef) cm2 Vsd (N) Vrd (N) 0.00 0.000 0.000 0.000 2 ? 1.56 72.90 1.00 1.10 0.000 0.000 0.000 10 4.71 0.94 6 112 6.79 4.68 72.90 SAPATA posterior 4.96 0.000 0.000 5.55 6 112 6.79 8.00 136.50	Dimensionamento do	o muro			1.1.1		
Montholde Subole (NM) (MPa) (%) As (cm2) As (ef) cm2 Ad (ef) cm2 Ved (kN) Vid (kN) 0.50 0.27 0.000 0.000 0.000 7 7 1.56 72.90 1.50 1.10 0.000 0.000 0.000 0.000 3.12 72.90 3APATA posterior 4.96 0.000 0.000 5.55 6 12 6.79 8.00 136.50 Observações 5.55 6 12 6.79 1.36 6 12 6.79 8.00 136.50		Msd u	W	ARMADURA PRINCIP	PAL ARMADURA	DISTRIBUIÇÃO	Enforce Transverse
0.50 0.27 0.000 0.000 7 7 1.56 72.30 1.00 1.10 0.000 0.000 0.000 0.00 3.12 72.30 1.50 2.47 0.010 0.000 5.55 6 0 12 6.79 8.00 136.50 SAPATA posterior 4.96 0.000 0.000 5.55 6 0 12 6.79 8.00 136.50 Observações 5.55 6 0 12 6.79 8.00 136.50		Contraction of the second s					Latorgo Hanaverac
0.50 0.27 0.000 0.000 ? ? 1.56 72.30 1.00 1.10 0.000 0.000 0.00 0.00 3.12 72.30 1.50 2.47 0.010 0.010 0.39 6 0 10 4.71 0.94 6 12 6.79 4.68 72.30 SAPATA posterior 4.96 0.000 0.000 5.55 6 0 12 6.79 4.68 72.30 Observações 0 0.000 0.000 5.55 6 0 12 6.79 8.00 136.50	MURO de suporte	(kNm) (MPa)	(%) A:	s (cm2) A	s(ef) cm2 Ad (cm2)	Ad(ef) cr	n2 Vsd (kN) Vrd (kN)
1.00 0.000 0.000 0.000 1.000 <	MURO de suporte	(kNm) (MPa)		s (cm2) A	s(ef) cm2 Ad (cm2)	Ad(ef) cr	n2 Vsd (kN) Vrd (kN)
1.50 2.47 0.010 0.010 0.33 6 0 10 4.71 0.94 6 0 12 6.79 4.68 72.30 SAPATA posterior 4.96 0.000 0.000 5.55 6 0 12 6.79 1.36 6 0 12 6.79 8.00 136.50 Observações 0	MURO de suporte	(KNm) (MPa)	(%) A:	s (cm2) A	s(ef) cm2 Ad (cm2)	Ad(ef) cr	2 Vsd (kN) Vrd (kN)
SAPATA posterior 4,96 0.000 0.000 5.55 6 0 12 6.79 1.36 6 0 12 6.79 8.00 136.50 Observações	MURO de suporte	(kNm) (MPa)	(%) A:	s (cm2) A	s(ef) cm2 Ad (cm2)	Ad(ef) or	2 Vsd (kN) Vrd (kN) 1.56 72,90 3.12 72.90
SAPATA posterior 4,96 0.000 0.000 5.55 6 0 12 6.79 1.36 6 0 12 6.79 8.00 136.50	MURO de suporte	(kNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010	(%) A: 0,000 0 0,000 0 0,000 0	s(cm2) A	s(ef) cm2 Ad (cm2)	Ad(el) or	2 stole fransvere n2 Vsd (kN) Vrd (kN) 1,56 72,90 3,12 72,90 4,68 72,90
Observações	MUR0 de suporte	(KNm) (MPa) 0.27 0.000 1,10 0.000 2,47 0.010	(%) A: 0,000 [0,000 [0,010]	s (cm2) A 0.00 ? 0.39 6 Ø 10	s(ef) cm2 Ad (cm2)	Ad(ef) or ? Ø 12 6.79	Listic Transition n2 Vsd (kN) Vrd (kN) 1.56 72,90 3.12 72,90 4.68 72,90
Observações	MUR0 de suporte	(KNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010	(%) A: 0,000 [0,000 [0,010 [s(cm2) A 0.00 ? 0.00 0.39 6 Ø 10 555 6 Ø 12	s(ef) cm2 Ad (cm2)	Ad(ef) or 2 0 12 6.79 0 12 6.79	Vsd (kN) Vd (kN) 1.56 72.90 3,12 72.90 4,68 72.90
	MURO de suporte 0.50 1.00 1.50 SAPATA posterior	(KNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010 4.96 0.000	(%) A: 0.000 [0.000 [0.010 [0.010 [0.000 [s(cm2) A 0.00 ? 0.00 0.39 6 Ø 10 5.55 6 Ø 12	s(ef) cm2 Ad (cm2) 4.71 0.94 6 6.79 1.36 6	Ad(ef) or 0 12 6,79 0 12 6,79	Vsd (kN) Vrd (kN) 1,56 72,90 3,12 72,90 4,68 72,90 8,00 136,50
	MURO de suporte 0.50 1.00 1.50 SAPATA posterior Observações	(KNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010 4.96 0.000	[%] Ai 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0	s(cm2) A 0.00 ? 0.00 0.39 6 Ø 10 5.55 6 Ø 12	s(ef) cm2 Ad (cm2)	Ad(ef) cr	n2 Vsd (kN) Vrd (kN) 1.56 72,90 3.12 72,90 4.68 72,90 8.00 136,50
	MURO de suporte 0,50 1,00 1,50 SAPATA posterior Observações	(kNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010 4.96 0.000	(%) A. 0.000 [0.000 [0.010]	s(cm2) A 0.00 ? 0.00 0.39 6 Ø 10 5.55 6 Ø 12	s(ef) cm2 Ad (cm2)	Ad(ef) or 0 12 6,79 0 12 6,79	n2 Vsd (kN) Vrd (kN) 1.56 72,90 3.12 72,90 4.68 72,90 8.00 136,50
	MURO de suporte 0.50 1.00 1.50 SAPATA posterior Observações	(KNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010 4.96 0.000		s (cm2) A 0.00 ? 0.039 6 Ø 10 5.55 6 Ø 12	s(ef) cm2 Ad (cm2)	Ad(ef) or 0 12 6,79 0 12 6,79	n2 Vsd (kN) Vrd (kN) 1.56 72.90 3.12 72.90 4.68 72.90 8.00 136.50
	MURO de suporte 0,50 1,00 1,50 SAPATA posterior Observações	(kNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010 4.96 0.000		s (cm2) A 0.00 ? 0.39 6 0 10 5.55 6 0 12	s(ef) cm2 Ad (cm2)	Ad(ef) cr	n2 Vsd (kN) Vrd (kN) 1.56 72,90 3,12 72,90 4,68 72,90 8,00 136,50
Fight Desired Parts	MURO de suporte 0,50 1,00 1,50 SAPATA posterior Observações	(kNm) (MPa) 0.27 0.000 1.10 0.000 2.47 0.010	(%) A: 0.000 F 0.000 F 0.010 F	s (cm2) A 0.00 ? 0.39 6 0 10 5.55 6 0 12	s(ef) cm2 Ad (cm2)	Adjel) cr	n2 Vsd (kN) Vrd (kN) 1.56 72.90 3.12 72.90 4.68 72.90 8.00 136.50
Electar I implimir Sair	MURO de suporte 0.50 1.00 1.50 SAPATA posterior Observações	(khim) (MPa) 0.27 0.000 1.10 0.000 2.47 0.000 4.96 0.000		s (cm2) A 0.00 ? 0.039 6 Ø 10 5.55 6 Ø 12	s(ef) cm2 Ad (cm2)	Adjei) cr	n2 Vsd [kN] Vrd [kN] 1.56 72.90 3.12 72.90 4.68 72.90 8.00 136.50
	APATA posterior	(khm) (M ^P a) 0.27 0.000 1.10 0.000 2.47 0.010		s (cm2) A 0.00 ? 0.039 6 0 10 5.55 6 0 12	s(ef) cm2 Ad (cm2)	Adjei) cr 9 12 6.79 9 12 6.79 Ejectar	n2 Vsd (kN) Vrd (kN) 1.56 72.90 3.12 72.90 4.68 72.90 8.00 136.50 mprimit Seit

Ao ficheiro de resultados acresce os seguintes valores:

MURO M1 CARACTERÍSTICAS GEOMÉTR:	ICAS DO	MURO D	E SUPOR	re e sae	PATA					
Altura total	H= 1,50	metro	S	_				~ ~ ~ ~		
Dimensoes	A= 20	CM		B=	20 CT	m		C= 80 c	zm	
	D= 40	Cm		E=	40 cr	n		F = 140	CM	
CARACTERISTICAS TERRENO	P. esp.	.= 17,0	0 kN	Ró=	= 45,00			Sigma = (),300 mPa	
ACÇÕES SOBRE O TERRENO	sc =3,()0 kN/m	2	Q=3	3,00 kN,	/m2				
PESOS DA ESTRUTURA	pp Murc	o P1 =7	,20 kN	pp	sapata	P2 =13	,44 kN	pp terras	s P3 =10,20	kN
	P total	L =30,8	4 kN							
COEF. IMPULSO ACTIVO	ka= 0,1	L7		p1=	= 0,52			p2 = 6,07	7	
IMPULSO ACTIVO	Ia =6,2	26 kN/m		d1	= 0,48	m				
ESTABILIDADE DO MURO	Mom. es	stabili	zador	Me = 28	3,85 kNr	m Mo	om. derru	ube Md =	= 4,26 kNm	
	Coef. d	lerrube	cd = (5,77	Coef	. escori	reg.ce =	2,82		
Tensões terreno fund.	tl =0,0)08 mPa		t2	= 0,03	5 mPa		t 3/4 = 0),030 mPa	
Excentricidade acção	e = -0	,14 m		Lin	nite B/0	6 =0,23	m Resu	ltante cai	i dentro do	terço
central										
Largura sapata em conta	cto com	solo =	1,40 m							
DIMENSIONAMENTO										
	Secção	Msd	n	w'	W	As	Vsd	Vrd		
	a (m)	kNm/m		00	olo	cm2	kN/m	kN/m		
MURO DE SUPORTE	0,50	0,30	0,000	0,000	0,000	0,00	1,65	87,50		
	1,00	1,18	0,000	0,000	0,000	0,00	3,29	87,50		
	1,50	2,66	0,010	0,000	0,010	0,52	4,94	87,50		
SAPATA anterior	C	3,20	0,000	0,000	0,000	5,55	8,00	163,80		
SAPATA posterior	D	1,24	0,000	0,000	0,000	5,55	4,00	163,80		
Arm principal (MURO)	Δα= 0 F		realizá:	vel com		 12 roml		Δς(ef)=	6 79 cm2	
Arm distr (MURO)	AG- 1 3	C = C = C = C = C = C = C = C = C = C =	roolizá	vel com	6 0	12 pml		AS(eI.) =	6 70 cm2	
Arm principal (SADATA)	AG- 5 5	50 Cm^2	roalizá	vel com	6 0	12 pml		AS(eI.) =	6 79 cm2	
Arm distr (SADATA)	As- 1 3	26 cm^2	roalizá	vel com	6 0	12 pml		AS(eI.) =	6 79 cm2	
OBSERVAÇÃO: O muro de su	norte r	ogguir	á compre		o w	drenage	em pere	AB(CL.)-	o, / j cliiz	
dier seja feita através	de orif	ficios	no próp	rio mure	de m	arenay	cada or	ifício dra	p_{\perp} u_{ν} $\perp a_{\perp} b$, p_{\perp} $n_{\mu} = 1$ 0.0	
mo do muro quor através	de UIII	LICIUB .	do um di	rand noi	sfurada	ligad	caua UI.	ativa rec		
pluviais.	s ua Illi	SEL ÇAU		Leno bei	Lurado	, iigau	J a resp	ECCIVA IEC	ie ue ayuas	

Ħ

IX . CÁLCULO SÍSMICO

A próxima imagem, ilustra o formulário para o cálculo Sísmico. O método de cálculo é o indicado no Manual Técnico anexo, ou seja o método do RSA.

Aódulo de Cálculo Sísmico			
bet arm <mark>(</mark>)	- Forças sísmicas nos pisos Força sísmica Distância piso ao solo		
Número de pisos	F(n) H	F (n)	
Altura do piso 0,00 m Piso 1		F (2)	++
Acção G Acção Q QxPsi2 KN KN KN	F (4)= KN m F (3)= KN m F (2)= KN m	F (1)	
Carga da cobertura 0,00 Carga das lajes 0,00	F(1)= kN m		Calcular
Sobrecarga das lajes 0,00 Carga das paredes 0,00 Carga das vigas 0,00	Introdução das características dos pi Piso 1	lares Numero grupos pila	ares diferentes 4
Carga dos pilares 0,00	Núm. Seccão pilar	Direcção xx	Direcção vv
	Grupo pilares Base Altura	Força Mom.	Força Mom.
TO THE GAT THE G	grupo cm cm	KN KNm	KN KNm
Continuar			
Tino de estrutura	2 0 0 0		
C Báttico	3 0 0 0		
Mista (pórtico · parede)	4 0 0 0		
C Parede n= 2,00 Frequência f= 4,00 Hz			
Natureza do solo C Tipo I C Tipo II Beta0= 0,34			_Calcular _ Seguinte
Zona sísmica C Zona A Alifa 1= 0,70 C Zona B Mapa C Zona C	- Observações		
C Zona D Beta= 0,12		Ejectar	Gravar Sair

Previamente determine as massas do edifício, podendo-se socorrer das folha de cálculo que anexamos no CD.

- ^o Inicie o cálculo com a introdução de número de pisos
- Para cada piso introduza
 - > a altura do piso
 - > Cargas da cobertura
 - Cargas das lajes
 - Sobrecarga das lajes
 - > Carga das paredes
 - Carga das vigas
 - Carga dos pilares

 Escolha o tipo de estrutura (pórtico, mista – pórtico parede ou parede, introduzindo neste último caso o comprimento da parede (considerar apenas as paredes em betão armado). O computador calcula o valor de coeficiente de comportamento e a frequência)

- ° Seguidamente escolha a natureza do solo, entre
 - Tipo I Rochas e solos coerentes rijos
 - Tipo II Solos coerentes muito duros, duros e de consistência média; solos incoerentes compactos
 - > Tipo III Solos coerentes moles e muito moles; solos incoerentes soltos.

O computador calcula o valor do coeficiente sísmico de referência

 Em seguida escola a zona sísmica, conforme a localização do prédio em estudo, no país. Existe um botão de comando "Mostrar Mapa", que mostra o mapa do continente com a delimitação das zonas sísmicas.

- ° O programa avança e carregando em "Calcular" faça o cálculo das Forças sísmicas.
 - No próximo quadro para cada piso, introduza
 - Número de grupos de pilares (cada grupo possui as mesmas características geométricas, nomeadamente a base e a secção transversal do pilar.
- ^o Listagem de um exemplo calculado (ficheiro de gravação)

CÁLCULO SÍSMICO

0

QUANTIFICAÇÃO DA ACÇÃO SÍSMICA

	-	-							
Piso Al	tura m	Cobert KN	Lajes KN	Paredes KN	Vigas KN	Pilares KN	Sobrec. KN	SC x Psi KN	1 TOTAL
2 2, 1 3,	60 m 00 m	151,84 4,70	327,25 345,51	294,39 438,50	173,21 121,73	42,25 71,94	66,45 147,89	0,00 29,58	988,94 KN 1011,96 KN
CARGA TO Tipo de Tipo de Zona sís CÁLCULO	TAL D estru terre mica: DAS F) EDIFÍCI tura: Est no de fun Zona A DRÇAS SÍS	CO 2000,90 KN crutura em po dação: Terre Alfa SMICAS E MOMI	ALTURA TOTAL DO EDIFÍCIO H=5,60 metros Eta=2,50 Frequencia f=6,00 Hz Beta0=0,40 Beta=0,16					
PISO 2	A.	ltura pis	so n=2,60 m	Altura a	o solo H=5,6	50 m	F.sisn	n.piso FK(2)=206,79 KN
	(Grupo N	I⁰ pilares	Base	Altura	Inércia	ι F.	. sísmica	Mom. sísm.
Direcção	XX	1 2	1 11	60 cm 25 cm	25 cm 25 cm	78125 c 32552 c	2m4 37 2m4 15	7,04 KN 5,43 KN	48,15 KNm 20,06 KNm
Direcção	YY	1 2	1 11	25 cm 25 cm	60 cm 25 cm	450000 32552 c	cm4 11 cm4 8,	L5,16 KN ,33 KN	149,70 KNm 10,83 KNm
PISO 1	A	ltura pis	so h=3,00 m	Altura a	o solo H=3,(0 m	F.sísn	n.piso Fk(1)=113,36 KN
	(Grupo N	I⁰ pilares	Base	Altura	Inércia	т. F.	. sísmica	Mom. sísm.
Direcção	XX	1 2 3 4	2 1 2 11	25 cm 60 cm 20 cm 25 cm	55 cm 25 cm 20 cm 25 cm	346615 78125 c 13333 c 32552 c	cm4 95 cm4 21 cm4 3, cm4 9,	5,98 KN L,63 KN ,69 KN ,01 KN	143,98 KNm 32,45 KNm 5,54 KNm 13,52 KNm
Direcção	YY	1 2 3 4	2 1 2 11	55 cm 25 cm 20 cm 25 cm	25 cm 60 cm 20 cm 25 cm	71615 c 450000 13333 c 32552 c	cm4 23 cm4 14 cm4 4, cm4 4,	3,44 KN 47,31 KN ,36 KN),66 KN	35,17 KNm 220,97 KNm 6,55 KNm 15,98 KNm

O modelo de cálculo em que o programa se baseia é uma estrutura rotulada.

]	\sim	
	•	

X. CÁLCULO DAS EXCENTRICIDADES

A próxima imagem, ilustra o formulário para o cálculo dos Momentos devidos às excentricidades. O método de cálculo é o indicado no Manual Técnico anexo, ou seja o método do REBAP.

wortho de carcino da womentos devidos as excentincidades		
betarm6 Designação do pilar	Listagem de cálculos das Excentricidades e Momentos Flectores	×
Tipo de estrutura		
Características do Nó Número de pisos 2		
Nó 3 Vigas e pilares que Vão Base Altura Apoios que se Acção concorrem no nó m cm cm referem ao pilar kN		
Pilar inferior ao nó 3,00 0 0 0 0,00		
▼ 0.00 0 0 ▼ 0.00 ▼ 0.00 0 0 ▼ 0.00 ▼ 0.00 0 0 ▼ 0.00 ▼ 0.00 0 ▼ 0.00 ▼ 0.00 0 ▼ 0.00		
Continuar		
1 2 3 Calcular		13
NOTA: As células amarelas podem ser alteradas se clicar sobre elas Esquemas de orientação do nó e dos eixos Esquema do nó em estudo	Excentrididade de fluência	
12 Viga Nó 12 Viga Nó 22 Viga Edifício	- Observações	
et viga 34 viga +	Sair	

Inicia-se por introduzir a referência do pilar

° P1, P2 ...

с

- Pode introduzir uma referência no espaço em branco ao lado da designação
- ° Escolha o tipo de estrutura
 - Nós móveis
 - Nós fixos

De referir que o modelo de cálculo utilizado no ponto anterior pressupõe que se considere a estrutura como de nós móveis.

- Introduza para cada nó os seguintes elementos
 - Vão do pilar inferior ao nó
 - > Base da secção transversal do pilar inferior ao nó
 - > Altura da secção transversal do pilar inferior ao nó
 - No último nó introduza a acção do pilar anterior (nos restantes nós a acção é calculada automaticamente) A Inércia do pilar é apresentada, ao escrever estes dados
 - > Vão da primeira viga que concorre no nó
 - Base da secção da primeira viga que concorre no nó
 - > Altura da secção da primeira viga que concorre no nó
 - Acção da primeira viga que concorre no nó. A Inércia da viga é apresentada, ao escrever estes dados

Este módulo possui listas pendentes com dados relativos ao pilar superior, e vigas que concorrem no nó, dados provenientes dos cálculos já efectuados anteriormente (no mesmo trabalho). Após escolher na lista a designação das vigas os valores colocam-se nas respectivas células. Após este passo pode editá-las e alterar os valores, caso haja necessidade.

Características do Nó Número de pisos	2	-				
Nó 3						
Vigas e pilares que concorrem no nó	Vão m	Base cm	Altura cm	Apoios que referem ao	se pilar	Acção kN
Pilar inferior ao nó	3,00	20	20			0,00
V2 · Tramo 1 · 💌	5,00	25	40	V2_Apoio 3	-	86,56
V1 V2 · Tramo 1	0,00	0				0,00
V2 · Tramo 2 · V2 · Tramo 3 ·	0,00	0			•	0,00
						Continuar
1 2 3						Calcular
Características do Nó Número de pisos				· ·	•	-
Características do Nó Número de pisos	2			1 P		
Características do Nó Número de pisos Nó 3 Vigas e pilares que concorrem no nó	2 Vão m	Base cm	Altura cm	Apoios que referem ao	se pilar	- Acção kN
Características do Nó Número de pisos Nó 3 Vigas e pilares que concorrem no nó Pilar inferior ao nó	2 Vão m 3,00	Base cm	Altura cm	Apoios que referem ao	se pilar	Acção kN
Características do Nó Número de pisos Nó 3 Vigas e pilares que concorrem no nó Pilar inferior ao nó V2 - Tramo 1 -	2 Vão m 3,00 5,00	Base cm 20	Altura cm 20	Apoios que referem ao	se pilar	Acção kN 0,00 86,56
Características do Nó Número de pisos Nó 3 Vigas e pilares que concorrem no nó Pilar inferior ao nó V2 · Tramo 1 · •	2 Vão m 3,00 5,00 0,00	Base cm 20 25 0	Altura cm 20 40	Apoios que referem ao V2_Apoio 3 V1 - Apoio 4	se pilar	Acção kN 0,00 86,56 0,00
Características do Nó Número de pisos Nó 3 Vigas e pilares que concorrem no nó Pilar inferior ao nó V2 - Tramo 1 - •	2 Vão m 3,00 5,00 0,00 0,00	Base cm 20 25 0 0 0	Altura cm 20 40 0 0	Apoios que referem ao V2_Apoio 3 V1 - Apoio A V1 - Apoio A V2_Apoio 1	se pilar	Acção kN 0,00 86,56 0,00 0,00 0,00
Características do Nó Número de pisos Nó 3 Vigas e pilares que concorrem no nó Pilar inferior ao nó V2 - Tramo 1 - •	2 Vão m 3,00 5,00 0,00 0,00	Base cm 20 25 0 0	Altura cm 20 40 0 0	Apoios que referem ao V1 - Apoio 3 V1 - Apoio 3 V2 _ Apoio 1 V2 _ Apoio 3 V2 _ Apoio 3 V2 _ Apoio 4 V2 _ Apoio 4 V2 _ Apoio 4	e se pilar	Acção kN 0,00 86,56 0,00 0,00 0,00 0,00 Continuar

° Pode colocar mais três vigas concorrentes no nó, fazendo de igual modo.

° No nó 1 (fundação) o ecrã apresenta-se do modo que ilustra a figura seguinte. Pode optar por escolher as seguintes opções (conforme art. 59º do REBAP).

- Encastramento parcial
- Encastramento perfeito
- > Sem transmissão de momentos

Características do Nó Número de pisos	
Nó 1	
 Confere ao pilar encastramento parcial Confere ao pilar encastramento perfeito 	
C Sem transmissão de momentos	
1 2 3	Calcular

Ao clicar "Calcular" os resultados aparecem na caixa de texto à direita, conforme figura seguinte. São listados os valores correspondentes ao cálculo da encurvadura, se verifica as condições de dispensa do cálculo, cálculos das excentricidades (adicional, 2ª ordem), condições de dispensa do calculo da excentricidade adicional. Também são listados os momentos flectores devido às excentricidades, para cada uma das direcções – XX e YY.

hetarma	Listagem de cálculos das Excentricidades e Momentos FI	ectores
o er ar mo	_CÁLCULO DOS ALFAS	2
Designação do pilar	Nó 3 Alfa(x)=0,08 Alfa(y)=0,08	
P1	Nó 2 Alfa(x)=0,46 Alfa(y)=0,46	
ipo de estrutura	Nó 1 Alfa(x)=1.00 Alfa(y)=1.00	
 Nós móveis Nós fixos 	_VERIFICAÇÃO DA ENCURVADURA	
Características do Nó Número de pisos 2	Piso 2 Eta (x)=1.08 Eta (y)=1.08 Lzero (x)=3.24 m Lzero (y)=3.24 m Lambda (x)=56,14 Lambda (y)=56,14 Dispensa NÃO Dispensa NÃO	
Nó 1	Piso 1 Eta (x)=1.22 Eta (y)=1.22 Lzero (x)=3.66 m Lzero (y)=3.66 m Lambda (x)=42.18 Lambda (y)=42.18 Dispensa: NÃO	
	_EXCENTRICIDADES	
 Contere ao pliar encastramento perfetito Sem transmissão de momentos 	Piso 2 Ea (x)=0.020 cm Ea (y)=0.020 cm E2 (x)=0.002 cm E2 (y)=0.002 cm Disp. exc.: SIM Disp. Fluência: SIM	
1 2 3 Calcular	Piso 1 Ea (x)=0,020 cm Ea (y)=0,020 cm E2 (x)=0,003 cm E2 (y)=0,003 cm Disp. exc.; SIM Disp. Fluência: SIM	
NOTA: As células amarelas podem ser alteradas se clicar sobre elas	Excentrididade de fluência	
Esquemas de orientação do nó e dos eixos squema do 1º nó (sapata)		
N61 P Edificio	Observações	

No final só terá de "Gravar" ou "Imprimir" e repetir a operação para cada pilar. Os resultados exportados para o ficheiro, ou para a impressora são os seguintes:

CÁLCULO DAS E PILAR P1 - Tipo de estrut Característica	XCENTRI tura: E as das	ICIDADES 1 Estrutura vigas e j	E MOMENTOS de nós móv pilares de	eis cada nó					
	ـــــــــــــــــــــــــــــــــــــ	Vão Ba (m) (e	ase Altura cm) (cm)	рр (КN)	Acção (KN)	In.pila (cm4)	ar(x) In.	pilar(y) cm4)	Inércia viga (cm4)
Nó 3 Pilar Viga 2 Viga 2 Nó 2 Pilar Viga 2 Viga 2 Nó 1 Fundac	inf. 3 1 5 2 5 inf. 3 1 4 2 5 2 5	3,00 2 5,00 2 5,00 2 3,00 3 4,19 2 5,00 2	0 20 5 40 5 40 0 30 5 40 5 40 5 40	3,00	0,00 86,56 86,56 176,12 40,43 36,36 259,60	1333: 2 6750(3 1 0 6	7500	133333 133333 133333 133333 133333
Encurvadura, I	Excenti	ricidades	e Momentos						
	Alfa	Eta	Comp.ef. Lo(m)	Lambda	Disp.	Adic. ea (m)	2ª ordem e2 (m)	Fluência ec (m)	M. FLECTOR (KNm)
Direcção XX Nó 3 - Piso 2 Nó 2 - Piso 1 Nó 1	0,08 0,46 1,00	1,08	3,24 3,66	56,14 42,18	NÃO NÃO	0,020 0,020	0,002 0,003	Dispensa Dispensa	5,80 KNm 8,77 KNm
Direcção YY Nó 3 - Piso 2 Nó 2 - Piso 1 Nó 1	0,08 0,46 1,00	1,08	3,24 3,66	56,14 42,18	NÃO NÃO	0,020 0,020	0,002	Dispensa Dispensa	5,80 KNm 8,77 KNm

Indicam-se a vermelhos os dados dos Momentos Flectores devido às excentricidades

XI . FLEXÃO COMPOSTA

A próxima imagem, mostra o formulário para o cálculo de peças à flexão composta.

- ° Designação do pilar P1, P2 P...
- ° Pode colocar uma referência, por exemplo RÉS-DO-CHÃO, ANDAR, etc, na caixa de entrada ao lado da designação.
- [°] Introduza os dados geométricos do pilar, nomeadamente
 - > Vão de cálculo em metros. O computador indica a dimensão mínima regulamentar
 - > Base da secção e Altura da secção . O computador indica a área da secção do pilar.
 - > Carga axial a que o pilar está sujeito.
 - Momento sísmico e Momento devido às excentricidades para cada uma das direcções XX e YY.

bet arm 6	Armadura p/ resistir a M xx
Características do pilar	A(xx)= 1.33 cm2 ? A(xx)
Designação P1 ANDAR	varies dos cantos varies das faces 2 Ø 12 + 0 Ø 0 A (xx)
Vão de cálculo I = 3,00 m	Ax(ef)= 2,26 cm2 d
Dimensão mínima 20 cm	Armadura p/ resistir a M yy
Base da secção b= 25 cm h	varões cantos
Altura da secção h= 25 cm	Alyyj= 1,49 cm2 ? varies dos cartos varies das faces
Secção do pilar Ac= 625,00 cm2 + b +	A (w)
Accões no pilar	Ay(ef)= 2,26 cm2 12
zstorço Normal de compressão pilar	Armadura total do pilar
Vomente Elector devide Sizma	Secção de betão que por si só, resiste ao Nsd A'c= 293,00 cm2
	Armad. long. mín. % A'c= 176 cm2 % Ac= 188 cm2
Piso 2 · Grupo 1 (B x H 25 x 25) · M(xx)= 12,51 KNM	
Miyyj= 12,51 kNm Momento Elector devido Excentricidades	Ármaduta total do pilar
	4 Ø 12 A ef = 4,52 cm2
Pilar P1 - Piso 2	Armadura transversal
M(UV)= 5,79 KNM	Cintas 6 espaçadas 14,00 cm
VUTA: As células amarelas podem ser alteradas se clicar sobre elas	Acção a transmitir pelo pilar
	R = 176,11 kN
Nsd = 266,51 kN Msd(yy)= 27,45 kNm	Observações
Dimensionamento	
Direcção XX Direcção YY	
Raio giração ix = 7,23 Raio giração iy= 7,23	
nercia secção Ix = 32552 Inércia secção Iy= 32552	
- 0.333	

 As acções podem ser escolhidas das listas pendentes que possuem os dados dos cálculos já realizados no presente trabalho

Dados do Esforço normal de compressão (carga do pilar)

- Accões no pilar									
Esforço Normal de compressão pilar									
Pilar P1 - Piso 2	N 🚽 176,11	kN							
Mo Pilar P1 - Piso 2									
Piso 2 - Grupo 1 (B x H 25 x 25)	M(xx)= 12,51	kNm							
	M(yy)= 12,51	kNm							
Momento Flector devido Excentricidades									
Pilar P1 - Piso 2	M(xx)= 5,00	kNm							
	M(yy)= 5,79	kNm							
NOTA: As células amarelas podem ser alteradas se clicar sobre elas									
Esforços finais majo	rados								
Nsd = 266,51 kN	Msd(xx)= 26,27 Msd(yy)= 27,45	kNm kNm							

Buddo doo morrienteo biorridoo do pilar ou grapo de pilare	Dados dos M	Momentos	sísmicos	do pilar	ou grupo	de pilares
--	-------------	----------	----------	----------	----------	------------

- Accões no pilar-		
Esforço Normal de compressão pilar		
Estorço Normal de compressão pilar	N - 70.11	LM
Pilar P1 - Piso 2	N = 176,11	KN
Momento Flector devido Sismo		
Piso 2 - Grupo 1 (B x H 25 x 25) 💌	M(xx)= 12,51	kNm
Piso 2 - Grupo 1 (B x H 25 x 25)	Muy- 12.51	kNm
Mo Piso 1 · Grupo 1 (B x H 25 x 25)		
Pilar P1 - Piso 2	M(xx)= 5,00	KNM
	M(yy)= 5,79	kNm
NOTA: As células amarelas podem ser altera	adas se clicar sobre elas	
Esforços finais maj	orados	
	Msd(xx) = 26.27	kNm
Nsd = 266,51 kN	Msd(uu)= 27.45	kNm
	1199097- j 27,40	is our

Dados dos Momentos devido às excentricidades do pilr ou grupo de pilares

- Accões no pilar	
Esforço Normal de compressão pilar	
Pilar P1 - Piso 2	N = 176,11 KN
Momento Flector devido Sismo	
Piso 2 - Grupo 1 (B x H 25 x 25) 💌	M(xx)= 12,51 kNm
	M(yy)= 12,51 kNm
Momento Flector devido Excentricidades	
Pilar P1 - Piso 2	M(xx)= 5 ,00 kNm
Pilar P1 - Piso 2	M(yy)- 5,79 kNm
NOTA: As células amarelas podem ser altera	das se clicar sobre elas
Esforços finais majo	orados
Nsd = 266,51 kN	Msd(xx)= 26,27 kNm Msd(yy)= 27,45 kNm

Após escolher na lista a designação das vigas e/ou pilares, os valores colocam-se nas respectivas células. Pode sempre editá-las e alterar os valores, caso haja necessidade.

- É feito o dimensionamento raio de giração e demais valores para cálculo da percentagem das armaduras
- É calculada a secção de aço para cada direcção

2

2

- A tabela para introdução das armaduras é calculada de acordo com o REBAP.
- Na escolha das armaduras, clicando no comando 2 pode ter acesso à tabela das armaduras, e coloque no primeiro campo o número de varões, no segundo o diâmetro dos varões, referentes a um diâmetro, por exemplo

^o Terá de introduzir as armaduras, tendo em conta que o valor do 1º número de varões, são os varões de canto, podendo agrupar varões nos cantos (e que contam como armadura da outra face), colocando-os automaticamente na outra face. Os segundos valores são os complementares – armadura só nas faces

- O computador apresenta no quadro seguinte os valores para a totalidade do pilar e compara com a armadura mínima.
- As cintas, são calculadas automaticamente sem intervenção do utilizador, uma vez que apenas são afectadas por questões regulamentares.

Enquanto houver Mensagens de erro dentro da caixa de Observações o cálculo não está correcto. Só estará pronto a imprimir , quando o quadro das observações não tiver mensagens.

Resultado da Gravação para o ficheiro de resultados:

PILAR P1 - ANDAR					
CARACTERÍSTICAS GEOMÉT	RICAS				
Vão de cálculo	l= 3,00 m				
Dimensões da peça	b= 25 cm		h= 25 cm	Ac = (525,00cm2;
ESFORÇOS NO PILAR	Nsd =266,51 k	N	Msd(x) = 26, 27 KNm	Msd(y)=27,45 KNm
DIMENSIONAMENTO					
Direcção XX	v=0,40	n=0,16	vc=-0,45	L=0,42	w=0,14
Direcção YY	v=0,40	n=0,16	vc=-0,45	L=0,42	w=0,16
ARMADURAS					
Nas faces do eixo YY	As= 1,33 cm2	realizável d	c/ 2 Ø 12	As(e	ef.) = 2,26 cm2
Nas faces do eixo XX	As= 1,49 cm2	realizável d	c/ 2 Ø 12	As(e	ef.)= 2,26 cm2
Total do pilar	A ef.= 4,52 c	m2 realizada	ac/4Ø12		
ARMADURA TRANSVERSAL	Cintas em Ø 6	espaçadas	14 cm		
ACÇÃO TRANSM. PILAR	R=176,11 kN				

XII . EDITOR DE FICHEIROS

O editor de ficheiros, que é o **Editor do Windows**, permite em qualquer momento, aceder ao ficheiro de resultados. Para o fazer clique sobre o Ícone nº 8. Para correcta visualização pode ter necessidade de aumentar a largura da janela e de mudar o tamanho de letra para 8. A partir deste ficheiro, pode exportar para Word, fazendo a manipulação dos dados, inserindo-os na memória descritiva, ou gravando o ficheiro na directoria de trabalho do projecto, por exemplo.

TESTE, TXT - Bloco de r	iotas						
MURO M3 CARACTERÍSTICAS GEOMÉTR Altura total Dimensões CARACTERÍSTICAS TERRENO PESOS DA ESTRUTURA COEF. IMPULSO ACTIVO IMPULSO ACTIVO ESTABILIDADE DO MURO Tensões terreno fund. Excentricidade acção	ICAS DO MURO I H= 2,00 metro A= 25 cm P, esp = 17, ($sc = 1,00 kN/rpt Muro P1 = 24, (ka= 0, 17 Ia = 8, 83 kN/rMom. estabili Coef. derrube t1 = 0, 031 mPe = -0, 08 m$	E SUPORTE E SA 5 E 10 KN R K 12 C R R 12 C R R R R 12 C R R R R R R R R R R R R R R R R R R	APATA = 25 cm = 40 cm = 45,00 =1,00 kN/m2 5 sapata P2 =1 = 0,17 t = 0,62 m Coef. esco = 0,026 mPa mite B/6 =0,2	2,00 kN Mom. derru rreg.ce = 1 m Resul	C= 100 cm F= 125 cm Sigma = 0,300 mPa pp terras P3 =0,00 kN p2 = 7,19 be Md = 7,24 kNm 1,56 = 0,030 mPa tante cai dentro do t	erço central	
MURO DE SUPORTE	Secção Msd a (m) kNm/m 0,66 0,55 1,33 2,22 2,00 5,02 5 00	n w' %	w As % cm2 0,000 0,00 0,010 0,51 0,010 0,51 0,000 5,55	Vsd kN/m 2,43 4,90 7,36 10.00	Vrd KN/m 91,10 91,10 91,10 136.50		
Arm. principal (MURO) Arm. distr. (MURO) Arm. principal (SAPATA) Arm. distr. (SAPATA) OBSERVAÇÃO: O muro se s quer seja feita através m2 de muro, quer atravé pluviais.	As= 0,51 cm2 As= 0,94 cm2 As= 5,55 cm2 As= 1,36 cm2 uporte possuir de orifícios s da inserção	realizável con realizável con realizável con realizável con résempre que p no próprio mur de um dreno pe	n 6 Ø 10 pm 1 6 Ø 8 pm1 1 6 Ø 12 pm 1 6 Ø 12 pm 0 6 Ø 12 pm 0 de modo qu erfurado, liga]] gem para a e cada ori do à respe	As(ef.)= 4,71 cm2 As(ef.)= 3,02 cm2 As(ef.)= 6,79 cm2 As(ef.)= 6,79 cm2 s águas pluviais, fício drene 1.00 ctiva rede de águas		
S	_	_	_	_			

XIII. CALCULADORA

Também pode utilizar a calculadora do sistema do Windows, para efectuar qualquer cálculo extra programa.

BETARM 6 - CÁLCULO DE ESTRUTURAS EM Escolha Materiais Calcular Calculo de Esforços Memor	BETÃO ARMADO (Versão 2.0) dise descritivas Instruçõe Autor Ejectar IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	npressão DOS Ser	bet arm	6		
TIPO DE AÇO: A 400	TIPO DE BETÃO: B 15	FICHEIRO DADOS:	TESTE	11:31	17-09-2006	CAPS
	* 📁 BETARM 6.20	BETARM 6 - CALCUL 1 19 B	tarm 28.JPG - Paint 🛛 📓 Calculado	ra		ARREN

XIV . EJECTAR FOLHA DE IMPRESSÃO

Ao imprimir os dados, a impressora assume os valores e só no fim do cálculo é que "despeja" os valores – isto é característica do Windows e do método utilizado pelas impressoras.

O método que se pretende implementar é o seguinte:

- Faça dois cálculos (lajes pré-esforçadas, lajes maciças, vigas, pilares e sapatas) ou um (nos muros de suporte), e em seguida carregue no ícone nº 10, para Ejectar a folha, Mais dois cálculos e novamente no Ejectar. É uma questão de hábito. Pode sempre verificar os dados no ficheiro como foi dito no capítulo XII.

- Caso não faça o ejectar quando terminar a utilização do programa os cálculos completos saem seguidos, mas com a desvantagem das quebras de página.

XV . MENUS DE APOIO (Várias Tabelas)

Durante o manuseamento do programa existem várias opções para visualização de tabelas para o ajudar nos cálculos. A seguir mostramos algumas dessas tabelas.

Tabelas das características dos solos:

via seca ou húmida vão molhado	(kNa V	m3)	atrito i	interno	
na seca ou húmida são molhado					
eão molhado	13,00	16,00	30	35	Access sobre o muro
	15,00	17,00	25	30	
ela fina seca	13,00	15,00	25	30	Pero da Salpada F2= KN
ela fina húmida	14,50	16,00	30	40	+A+ G Solvateria a stapad
eia fina molhada	15,00	17,00	20	30	Julie again teleno superior di j Kivina
eia muito fina (de estuque) seca	13,00	15,00	20	30	Impulso sobre o muro de suporte e excentricidades
eia muito fina (de estuque) húmida	14,50	16,00	25	35	Cost impulso Kar p1
eia muito fina (de estuque) molhada	15,00	18,00	15	25	H activo na-
ela fina argilosa (seca ou húmida	14,00	15,00	30	40	p2- 1
eia fina argilosa molhada	16,00	18,00	15	25	Impulso activo Ia= kNm d1= m
eia ou marga seca	15,00	17,00	40	50	F Mon Ethbärador Mar William a -
eia ou marga húmida	15,00	18,00	30	40	
eia ou marga molhada	16,50	19,00	15	30	C B D Mom. Derrubador Md= kNm cd =
irro seco	14,00		35	Escuer	a do muro de suporte Excenticidade ex = m B/6 = m
rro húmido	16,00		45	(Lodgool	
ta, cascalho seco	13,00	16,00	45	50	kN/m²
ta, cascalho humido	13,50	16,50	40	45	rraus Tabata Densões no terreno de fundação
ta, cascalho molhado	15,00	18,00	35	40	mPa desolos II =
rgau, calhau rolado seco	13,00	16,00	35	45	kN/m² 12 = t3/4 = < mPa
rgau, calhau rolado humido	13,50	16,00	30	40	
rgau, cainau rolado moinado	14,50	17,00	25	35	
rras tortes - argila misturada com arela	i e burgau	40.00			ARMADURA PRINCIPAL ARMADURA DISTRIBUIÇÃO Estorço Transverso
secas	16,00	18,00	45	55	As [cm2] As [ef] cm2 Ad [cm2] Ad[ef] cm2 Vsd [kN] Vrd [kN]
numidas	17,00	19,00	35	45	
molhadas	18,00	20,00	25	35	
na vegetal, seca	14,00	10,00	35	40	
na vegetal, numita	15,00	17,00	35	40	
na vegetar, munada	16,00	18,00	20	30	
valores retirados das Tabelas T	ecinicas de	prazau nan	inia		
			Sa	air	
					Ejectar Imprimir Sair

Tabelas dos pesos de paredes:

耳 BETARM 6 - CÁLCULO DE ESTRUTURAS EM BETÃO AR	MADO (Versão_2.0)	
Escolha Materiais Calcular Calculo de Esforços Memórias descriti	vas Instruções Autor Ejectar Impressão DOS Sair	
	1777 🗸 🤍 🗐 🖗 🖪 bet	arm 6
Módulo de Lajes Maciça		X
Peso das paredes	Esforços actuantes	
	PESO DE PAREDES	0.00 = KNm/m
Esp	m kN/m2 kN/m2 Armadura principal	0.00 1
Parede em tijolo cerâmico vasado	10 1,40 3,50 15 1,70 4,25 Momento reduzido	µ= Mpa
	20 2,80 7,00 Percentagem de armadura	w= 🚺 %
Parede em bloco de cimento	20 2,20 5,50	As= cm2
Parede em pedra - granito	30 3,20 8,00 ? realizável com 0 28 7,30 18,25	
	Sair - Armadura de distribuição	Asjerj= Cm2
Aitura minima		realizável com 0 0 0
Altura total adoptada	h= 0 cm 2 Armadura efectiva	Adjef)=cm2
Altura útil da secção	d= cm Resistência ao Esforço Transverso	
Base da secção	b= cm Absorvido pelo betão	Vcd= kN/m
	Absorvida pelas armaduras	Vwd= kN/m
Access sobre a laie	BIG) sem majoração BIG)= +	0.00 = kN/m
Acções permanentes	Faça as escolhas indicadas R(Q) sem majoração	R(Q)= kN/m
Peso próprio da laje Peso dos revestimento	pp= kN/m2 Observações	
Peso dos Degraus	deg= 0.00 kN/m2	
1 650 Divisoilles	IOTAL G= KN/m2	
Acções variáveis Sobrecarca	see 0.00 kN/m2 21	
Sourceage.	TOTAL Q= KN/m2	
Combinação de Acções Sd = 1.5	6+150 = kN/m2	1
	Ejec	star Imprimir Sair
		TE 11/35 17-09-2006 CADS
	PBETARM 6.20	to das paredes 🛛 👸 Betarm_33.JPG 🔇 🎉 🖉 🚮 11:35

Tabelas das secções de armadura:

D. Tak	la da se	- Modulo	de Laje	o Maciças	8					1						
	ria de se	ações de	TAR	ELA DE SE	CCÔES ((201			<u> </u>	actuantes					-	
1705		16		Diâme	tros com	erciais				nto Flector	Msd=	+ 0	0,00 =	kNm/r	n	
<u>N°</u>	6	:	10	12	16	20	25	32	40	o Transver	rso Vsd=	+ 0),00 =	kN/m		
2	0,26	1.00	1.58	2.26	4.02	6,28	9,82	16,04	25.14	a principal					=	
3	0,84	1,50	2,37	3,39	6,03	9,42	14,73	24,12	37,71	o reduzido			u= [Mpa		
4	1,12	2,00	3,16	4,52	8,04	12,56	19,64	32,16	67.85	agem de a	madura		w= [- *		
6	1,68	3,00	4,74	6,78	12,06	18,84	29,46	48,24	75,42		11100010		Arm [cm2		
7	1,96	3,50	5,53	7,91	14,07	21,98	34,37	56,28	87,99		realizável com	- a				
8	2,24	4,00	7.11	9,04	18,09	25,12	44,19	72.36	113,13		America ver com	10 0	+ U + 10			
10	2,80	5,00	7,90	11,30	20,10	31,40	49,10	80,40	125,70		Armadura efectiv	a	As(er)=	cm2		
11	3,08	5,50	8,69	12,43	22,11	34,54	54,01	88,44	138,27	a de distrib	uição					
12	3,50	6.50	10.27	14.69	24,12	40.82	63.83	104.52	163.41		Ad=	cm2 realiz	zável com			
14	3,92	7,00	11,06	15,82	28,14	43,96	68,74	112,56	175,98		Armadura efect	iva	Ad(ef)=	cm2		
15	4,20	7,50	11,85	10,95	30,15	47,10	/ 3,05	120,60	188,55	sia ao Esfo	rço Transverso					
								1	Sair	A	bsorvido pelo betão	b	Vcd=	kN/m		
								13		A	bsorvida pelas arm	aduras	Vwd=	kN/m		
		T Atri	buir acçõe:	automátic	amente				Reacçi	ões dos apoid	26				=	
		- Acçoes	obre a laje						R(G)	sem majoraç	ão R(G)=	+ 0	0,00 =	kN/m		
		Acçõe	permanen	tes			-		R(Q)	sem majoraç	ão		R(Q)=	kN/m		
		Pi Pi	eso proprio eso dos rev	da laje estimentos	pp= rev=	0.00	kN/m2		- Observ	ações					=	
		P	eso dos De	graus	deg=	0,00	kN/m2									
		P	eso Divisóri	as	div=	0,00	kN/m2	2								
		Annão		TC)TAL G=	1	kN/m2									
		Acçue: Si	brecarga		sc=	0.00	kN/m2	2								
			-	Ţ	OTAL Q=		- kN/m2	_								
		Combin	ação de A	cções			-									
				Sd = 1.5 G	+1.50 =		kN/m2					Ejectar	Imprimir	Sair		
														_		

Tabelas das sobrecargas em edifícios:

BETARM 6 - CÁLCULO DE ESTRUTURAS EM BETÃO ARMADO (Versão_2.0)	
	k la betarm 6
Sobrecarges Sobrecarg	
Acções sobre a laje Acções permanente Acções permanentes Peso dois revestmentos TOTAL G= KN/m2 Acções variáveis Sobrecarga so= 0.00 KN/m2 TOTAL 0= KN/m2 Combinação de Acções Sd = 1.5 G + 1.5 Q = KN/m2 KN/m2	Ricij sem najcrapšio Ricij= + 0.00 = kN/m RiQi sem najcrapšio Ricij= + 0.00 = kN/m Observapšes RiQi= kN/m kN/m Ejectar toprimir Sair
TIPO DE AÇO: A 400 TIPO DE BETAO: B 15 Iniciar Ø (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	FICHEIRO DADOS: TESTE 11:34 17-09-2006 CAPS CAL Módulo de Lajes 🔍 Sobrecargas 🦉 Betarm_32.3PG 🔦 🚴 🕅 11:34

Tabelas das tensões de resistência dos solos:

monono de cancaro de saparas	
betarm 6	Estorpos actuantes
- Tipo de sapata	
Isoladas 🕞 Concêntrica	ru= j KN
C Excêntrica	
C De canto	Amadura principal (direcção A)
Contínuas 🔿 Concêntrica	Ang and
C Excêntrica	
	7 realizavel.com 0 0 0 + 0 0 0
Designação	Armadura efectiva As(ef)= cm2
Tensão do terreno ? s= 0,00 mPa	- Amadura principal (direccão B)
Dados do pilar	
Carna do nilar (sem maioração)	As= Cm2
	🖻 Tabela de dados referentes a solos 🛛 🔀
	Tensões de segurança à roptura (profundidade de fundação de 0,50 m)
Dimensões do pilar a= 0 cm b	Solos
b= 0 cm	Secos Submersos
Características da sapata	Rochas duras sãs 10
Dimensões mínimas da sapata	E Rochas pouco duras médiamente alteradas 3
Lado maior A= CI A= O cm	E Rochas brandas ou muito alteradas 1
Lado menor B= cm B= cm	Solos incoerentes Areias a misturas areia seivo, hen martiratas e connactadas 0.4,0.6,0.2,0.3
Altura da sapata	Ob Areias e misturas areia-seixo, bem graduadas mas soltas 0.2 - 0.4 0.1 - 0.2
	Areias uniformes e compactadas 0.2 - 0.4 0.1 - 0.2
	Areias uniformes sotas 0.1 - 0.2 0.05 - 0.1
Altura util d= j cm	Solos operentes rilos 0.4 - 0.6
- Combinação de acções	Solos coerentes muito duros 0.2 - 0.4
Acção a actuar sobre a sapata Nsd= KN	Solos coerentes duros 0.1 - 0.2
Peso da sapata (real) Nsd= kN	Solos coerentes de consistência média 0,05 - 0,1
Combinação de acções Nsd= kN	valures retiracius das ratinicas de brazau ratinica
Tensão efectiva no terreno s= mPa	Sair

XVI. PORMENORES

Existe uma directoria, no programa com os pormenores em DWG e DXF. Insira o pormenor desejado no seu desenho e com o comando STRETCH faca o acerto "esticando" os pormenores para as dimensões pretendidas, sendo actualizadas as cotas automaticamente..

Na directoria também encontra dois exemplos de cálculos já efectuados, no nosso gabinete.

XVII. MEMÓRIA DESCRITIVA

Juntamos ao programa uma Memória descritiva em formato WORD para utilizar nos seus trabalhos. Acerte a mesma actualizando-a ou eliminando o que não se ajustar ao seu projecto. Também pelo programa pode aceder á mesma (caso os atalhos estejam correctos).

Caminho assumido para leitura do Microsoft Word

"C:\Programas\MicroSoft Office\OFFICE11\WINWORD.EXE"

Este caminho pode ser alterado, mas atenção às aspas e ao nome correcto do caminho, caso contrário o programa poderá não abrir o Word. Também pode aceder à memória descritiva, caso clique sobre ela (dentro da directoria) e possua o Word instalado.

Forma de introduzir o ficheiro de texto na Memória descritiva

1 - Abra a memória descritiva, através do programa ou através do Word.

Memoria	_descrittiva.doi	c - Microso	ft Word									EE
Eicheiro	🚽 Guardar como	. <u>E</u> ditar ⊻	er <u>I</u> nserir	Formatar	Ferramentas	Iabela	<u>J</u> anela	Ajuda 州 Arial	- 10	 Título 5 + Arial, 1 - 1009 	% Es	creva uma pergunta 👻
N		3 '	1 + 2 + 1 +	1 + 1 + 🖉 + 1	+ 1 - 1 + 2 + 1	1311	4 + 1 + 5	* 1 * 6 ; 1 * 7 * 1 *	8 • • • 9 • • • 10 • • •	11 1 12 12 13 14 14	15 • 1 • 16 • 🛆 • 17 • 1	N.
- 		-										<u>.</u>
s												
	N											
19	1.											
	1											
a IE	11					MEI	MORIA	DESCRITIVA	E JUSTIFICA	TIVA		
6 III	2						ESTABI	LIDADE E CONTEI	IÇÃO PERIFÉRICA	6		
δ √α	1											
×												
7 - 107 -	1			Rec	querente:	F						
- <u>A</u> -				Loc	al da obra:	R	t					
	÷											
4	ب ب											
	1.5			1 -	MEMÓRIA DI	ESCRITI	VA					
8	£.											
					Dadas as	s caracter	h senitsìr	lesta obra, consider	ou-se o empredo di	o hetão da classe B15 e aco	A400 ER e	
	1			A50	JŪ (malhasol)	em toda	a obra. T	fodos os materiais :	erão, pelo menos a	as características mínimas exi	didas pelas	
2	- 6			disp	posições regula	amentare	s aplicáve	eis que aqui se con	sideram transcritas.			
41	÷											
11 21	9.				Os betőe	s a empr	egar na r	obra serão prepara	dos e vibrados mec	ânicamente e terão dosagem	1 mínima de	
ε H	1			350	l Kg de ciment	o por me	tro cúbic	o de betão. A sua	resistência será del	terminada em cubos de 15 o	u 20 cm de	
87	1			are	sta para ensaio	o em Lab	oratório (Oficial. Ao betão de	todos os elemento	s enterrados e até 50 cm aci	ma do solo,	
0	- 21			adio	cionar-se-à hid	rófugo de	massa.	O cimento a empre	igar em toda a obra	a será do tipo Portland Norma	il, recente e	
1	12			aco	ndicionado em	ı obra cor	n protecç	ção da humidade e	calor. A água e os i	inertes para betão, deverão s	atisfazer as	
å				con	dições imposta	is pelo Re	agulamer	nto de Betões e Lig	antes Hidráulicos.			
×	1.											
×.	- 1				A concer	ição da	estrutura	i visou o emprego	de técnicas tradio	cionais de execução usadas	; em obras	
				sim	ilares. Devera,	porem, a	itender-s	e a condições parti	culares de faseame	ento na petonagem de alguns	elementos,	
December *		náticac v 🔪			- 6 3 L	A _ //	- 4 -	====	a 🗋			
Zesennar •	kg ⊨otmas auto	naucas •			E.,2 1381 1388	ו 🗳	• •		P 2			
'agina 1	Secção 1	1/3 E	im 2,9 cm	Ln 1 Col	1 GRA F	LA EXP	SUB					

2 - Altere o que pretender e posicione-se no final da mesma

3 – Vá a Inserir → Ficheiro

👜 Me	moria	_de	scritiva.doc	- Micro	soft \	Vord		
Eich	eiro 🤮	🧃 Gu	ıardar <u>c</u> omo	<u>E</u> ditar	<u>V</u> er	Inserir	F <u>o</u> rmatar	Ferra <u>m</u> entas
	 N	L			3 • 1 •	Īm	agem 🕨	1 + 1 + 2 +
	7	6				Eid	heiro	
	1	-					*	
	2	9						
	E	-						Os prese
ABC	=	÷					pág	inas seguinte:

4 - Escolher Tipo de ficheiros para Todos os ficheiros (*.*)

5 - Escolher a Directoria \Trabalhos no disco onde tem o programa instalado

6 – Escolher a Directoria com nome do trabalho

Inserir ficheir	0									?	X
Procurar em:	🛅 Trabalhos		*	٩	- 🔰	0	×	1	• <u>E</u> erra	mentas ·	•
Os meus document Ambiente de Trabalho Os meus documentos O meu computador	OEIRAS- SALV.	ATERRA									
	Nome de ficheiro:			~		nterv	alo		I	ingerir	
Os meus locais na rede	Fic <u>h</u> eiros do tipo:	Todos os ficheiros (*.*)		~					C	ancelar	

7 - Clicar sobre Ficheiro com NOME_DO_TRABALHO.TXT e em Seguida Inserir no comando em baixo à direita

Inserir ficheir	0								?	<
P <u>r</u> ocurar em:	ر 🛅 از		*	<u>ج</u>		Q X	1	• Eerrame	ntas +	
Os meus document Ambiente de Trabalho Os meus documentos	E JL.EXC JL.TXT JL.LAJ J.L.PIL J.L.SIS J.L.VIG J.L.VIG TIP Da Ta	o: Ficheiro PIL ta da modificação: 10- nanho: 68 bytes	-11-2007 14	.44						
Os meus locais	Nome de ficheiro:			- 0	In	i <u>t</u> ervalo.		Ing	erir	-
na rede	FICTIEILOS do cibo:	Todos os ficheiros (*	(,*)	*				Cano	elar	

8 – Seleccione todo o texto – parte de resultados

9 - Escolha letra Courier New e tamanho 8. Coloque Margem direita nos 17 e está pronto a imprimir.

10 - Resultado Final

$\frac{1}{1}$	eiro 👍 Guardar cono Editar	Ver Inserir Formatar Ferramentas Iabela	Janela Algda - H Times New	Roman • 10 • N	lormal + Direita: 🔹 100% 🔹	Escreva una pergunta
Image: Section of the section of th	N -	3 . 1 . 2 . 1 . 1 . 1 . 4 . 4 . 1 . 1 . 2 . 1 . 3 . 1 .	4 - 1 - 5 - 1 - 6 - 1 - 7 - 1 - 8 -	1 - 2 - 1 - 10 - 1 - 11 - 1 - 1	12 13 14 15 16	10.000
 		LATE 171 - Love de Fas Cacitor de San Acquir I Desamation Construction de San Acquir I Desamation Construction de San Acquir Response de	2 - 1,21 - 1,2 - 1	22 24 (30) 24 (30) 25 (30) (25) 25 (30)	2 10 14 152,01 16 1 dr 21 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36 36/1/22 36/1/22 36 36/1/22 <td></td>	
1 - LAT EGA (4) Apolada as duta brefor sporter / Berattanda as duta brefor sporter / Berattanda as duta brefor sporter / Berattanda as duta brefor sporter 0 - - Topo of substratuta brefor sporter / Berattanda as duta brefor sporter 0 - - Topo of substratuta brefor sporter 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - - 0 - - - - 0 - - - - 0 - - - - 0 - - - -	1.00-1-18 24	ESF. TRANSVERSO (tótal) REACÇAD DOS APOTOS (*) - Esforços devido a (**) - Esforços devido a	Vsdr23,25 MN 1 Vsd (*)=15,75 MN 1 R(D)=7,50 (*) + 5 (**) * a carga uniformemente distri a outras cargas	lcd=54,00 1dN /sd (**)=7,50 kN = 12,50 kN ibuids	Ved=0,00 kd¥ R(Q)=3,00 kd¥	
ID Type of calculate Type of	21 C	LAJE LX1 Tipo de apolos: CARACT, GEOMETRICAS	(4) Apoiada em dois boro	ios opostos / incastr	ada em doix bordos opostos	
0 1 Access transformation 6-1,00 Mar/A 0 - - 0.00 Mar/A 0 - 0.00 Mar/A - 0 - - 0.00 Mar/A 0 - <td>Ω Ω</td> <td>Vãos de cálculo Dimensões da peça ACÇÕES PERMANENTES</td> <td>ly= 4,00 n 1 h=12 cm 0 pp =3,00 kH/m2 n G=4,50 kN/m2</td> <td>.x=5,00 m \$=10 cm rev=0,50 kM/m2</td> <td>ly/1s=0,8 b=100 cm div=1,00 kN/m2</td> <td></td>	Ω Ω	Vãos de cálculo Dimensões da peça ACÇÕES PERMANENTES	ly= 4,00 n 1 h=12 cm 0 pp =3,00 kH/m2 n G=4,50 kN/m2	.x=5,00 m \$=10 cm rev=0,50 kM/m2	ly/1s=0,8 b=100 cm div=1,00 kN/m2	
X* 14 Positive (Y) Nik of y = 5,77 Mila. 10 0,064 MBs. 00.007 No. Positive (Y) Nik of y = 2,77 Mila. 10 0,064 MBs. 00.0057 No. Positive (Y) Nik of y = 2,77 Mila. 10 0,064 MBs. 00.0057 No. Positive (Y) Nik of y = 2,133 MBs. 10 0,054 MBs. 10 0,051	0 ±	ACCOES VARIAVEIS COMBINAÇÃO DE ACCÕES HOMENTOS FLECTORÊS	sc =2,00 kH/m2 (Sd =9,75 kH/m2	j=2,00 kH/m2		
	x' =	Positivo (Y) Negativo (X) AMMADURAS	Hsd y+ = 5,77 klm 1 Hsd y+ = 5,77 klm 1 Hsd x= = 14,20 klm 1	2-0,034 MPa 2-0,133 MPa	- 0,057 - 0,151	
Positiva (pero. Y) As x+ = 1.75 cm2 realizável com 6 @ 8 bal As(ef.)= 3.02 cm2		Positiva (perp. Y)	As x+ = 1.75 cm2 realizáve	al con 6 Ø 8 mal	As(ef.)= 3.02 cm2	

XVIII . MANUAL TÉCNICO

Juntamos ao programa um Manual Técnico, com os ficheiros em PDF para sua consulta. Nela está descrito o método de cálculo efectuado. Este manual também está acessível através do menu do programa (necessita do Adobe Reader instalado) e se estiver instalado com os caminhos correctos. Caso não possua o Adobe Reader pode obtê-lo gratuitamente na Internet no site da Adobe: www.adobe.com

Caminho assumido para leitura do Acrobat Reader

"C:\Programas\Adobe\Acrobat 8.0\Reader\AcroRd32.exe"

Este caminho pode ser alterado, mas atenção às aspas e ao nome correcto do caminho, caso contrário o programa poderá não abrir o Acrobat Reader. Também pode aceder ao Manual, caso clique sobre ele (dentro da directoria) e possua o Acrobat Reader instalado. Aqui as alterações geralmente são o número da versão. Adobe\Acrobat 8.0\Reader..., Adobe\Acrobat 7.0\Reader...., etc.

സ്പ

XIX . BIBLIOGRAFIA

A bibliografia utilizada foi a seguinte:

- BETÃO ARMADO Esforços Normais e de Flexão J. D' Arga e Lima
- HORMIGÓN ARMADO Pedro Jimenez Montoya
- REBAP Regulamento de Betão Armado e Pré-esforçado
- RSA Regulamento de Segurança e Acções
- TABELAS TÉCNICAS de Brasão Farinha
- Documentos de Homologação das lajes pré-esforçadas do LNEC
- Apontamentos do Curso
- Programa desenvolvido em Visual Basic 6.00 da Microsoft
- Na elaboração do programa utilizei a "Input32X Edit Control" versão 1.6.38 de www.eoliv.com

Bom Trabalho, e como a versão é nova, embora tenha sido testado, existem sempre a possibilidade de encontrar algum "bug", pelo que pedimos o favor de nos informar, pois tentaremos a sua correcção o mais breve possível.

José Luís da Silva Marques Rua da Gandra 291 4445-122 ALFENA Telefone e Fax **22 967 2207** E-mail: <u>lil.lda@gmail.com</u> <u>jolu.silmar@gmail.com</u> Web: www.ljlprojectos.com