

INOVAR EVOLUIR TRANSFORMAR

Manual de Instruções

VERSATILE AF7

Índice

Introdução	4
História da eletroterapia	
Versatile AF7 Tone Derm	
Corrente Galvânica	6
Efeitos fisiológicos	6
Efeitos terapêuticos	7
Contra-indicações	7
Eletrolifting	8
Efeitos fisiológicos	8
Contra-indicações	g
Indicações	g
Desincruste	g
Efeitos produzidos	g
Contra-indicações	g
Indicações	g
Iontoforese	10
Efeitos fisiológicos e terapêuticos	10
Contra-indicações	10
Indicações	10
Microcorrente	11
Efeitos fisiológicos	
Efeitos terapêuticos	13
Contra-indicações	14
Indicações	
Alta Freqüência	15
Efeitos fisiológicos	15
Efeitos terapêuticos	16
Contra-indicações	16
Indicações	16
Instruções Importantes de Segurança e Instalação	17
Limpeza do equipamento	17
Instalação do equipamento	
Limpeza dos acessórios	
Reposição do material consumido	18
Eletrodos	18
Descrição do Painel	
Acessórios que Acompanham o Equipamento	19
Acessórios Opcionais	20
ILUSTRAÇÃO DOS ITENS QUE ACOMPANHAM O EQUIPAMENTO	
Tabela de Códigos	
Acessórios de Uso Exclusivo com o Equipamento Versatile AF7	
Peças de reposição e Materiais de Consumo – Família Eletroterapia	
Tabela de Programas	
Instruções para Utilização	25

Ajuste das Saídas	26
Seleção de Idioma	26
Limpeza da pele pré-tratamento	27
Técnica de aplicação	27
Dúvidas Operacionais	32
Substituição dos fusíveis	33
Especificações Técnicas	33
Características das saídas	33
Características da alimentação	34
Características adicionais:	35
Simbologia	35
Assistência Técnica Autorizada Tone Derm®	35
Referências Bibliográficas	39
Certificado de Garantia	40
Transporte	40
Informações do Fabricante	
Informações do Equipamento	41
· · ·	

Este símbolo está impresso no painel do seu equipamento e indica a necessidade de consulta ao manual de instruções do mesmo antes da utilização.

Introdução

História da eletroterapia

A eletroterapia consiste no uso de diferentes tipos de corrente elétrica com finalidade terapêutica. Embora seu desenvolvimento tenha se aperfeiçoado principalmente nas últimas décadas, já na antigüidade seu uso era empregado.

No Egito, em 2750 a.C., utilizavam-se peixes elétricos que proporcionavam descargas com fins terapêuticos. A tensão efetuada por estes choques era de 50-80 Volts com uma fregüência aproximada de 200Hz (AGNE, 2004).

O uso da corrente elétrica com a finalidade de administrar substâncias iniciou-se nos séculos XVIII e XIX com os trabalhos de Pivati e Fabre-Palaprat, mas o reconhecimento mundial da técnica se embasa nos trabalhos de LeDuc entre 1900 e 1908 que introduziu o termo iontoterapia e formulou hipóteses sobre esse processo. LeDuc demonstrou que íons eram transferidos para a pele pela ação da corrente elétrica contínua e comprovou que essa transferência dependia da polaridade do íon e do eletrodo sob o qual era colocado (PÉREZ, FERNANDÉZ E GONZÁLES, 2004; OLIVEIRA, GUARATINI E CASTRO, 2004).

Em 1791 Luigi Galvani publicou um trabalho de estimulação de nervos e músculos em rãs com cargas elétricas, iniciando um enorme impulso à experimentação científica nesta área. Como consequência, Humboldt definiu a corrente constante como galvanismo para distinguila das cargas estáticas geradas por fricção. Assim, as correntes galvânicas passaram a ser amplamente usadas terapeuticamente (LOW e REED, 2001; AGNE, 2004).

Um dos grandes estudiosos da estimulação elétrica foi Guillaume Benjamin Amand Duchenne que, em 1835, interessou-se pela aplicação da corrente farádica no tratamento de diversas patologias utilizando eletrodos implantados nos tecidos. Neste período, ele verificou que os eletrodos posicionados sobre a pele eram suficientes para a estimulação muscular, possibilitando, assim, a utilização deste instrumento como método de diagnóstico e tratamento. (GUIRRO e GUIRRO, 2002; AGNE, 2004).

Existe uma diversidade de correntes que podem ser utilizadas na eletroterapia, cada qual com particularidades próprias quanto às indicações e contra-indicações, mas todas elas têm um objetivo comum: produzir algum efeito no tecido a ser tratado, que é obtido através das reações físicas, biológicas e fisiológicas que o tecido desenvolve ao ser submetido à terapia.

Versatile AF7 Tone Derm

O **Versatile AF7** é um equipamento moderno, desenvolvido e testado de acordo com normas internacionais NBRIEC60601-1 e NBRIEC60601-2- 10, o que garante sua utilização segura. Trata-se de um eletroestimulador transcutâneo que utiliza dois tipos de corrente:

- Galvânica: corrente que apresenta sentido unidirecional. São utilizados dois eletrodos, positivo e negativo, havendo necessidade de ambos estarem em contato com o paciente fechando o circuito;
- Alternada: nesta corrente a alternância de fase (polaridade) ocorre em um tempo préestabelecido, suficiente para que o equilíbrio iônico através das membranas celulares excitáveis seja perturbado, estimulando o tecido nervoso e muscular. Se essa alternância de polaridade for muito rápida, ocorrerá aquecimento no tecido.

O equipamento apresenta 7 programas de utilização pré-definidos com possível interação nos parâmetros. Todos os programas contidos no equipamento são controlados por um microprocessador que comandado por teclas de acesso e controle de funções, acionadas apenas com um toque no painel, permitem rapidez na seleção e ajuste dos programas de utilização. Possui um canal de saída para a função alta freqüência e dois canais de saída para eletrolifting, desincruste, microcorrente e iontoforese. O controle é individual por canal.

O equipamento **Versatile AF7** possui os seguintes programas de estimulação:

- Alta Freqüência;
- Eletrolifting:
 - Linhas de Expressão
 - Estrias
- Desincruste
- lontoforese
- Microcorrente
 - Reparo Tecidual Superficial
 - Reparo Tecidual Profundo

Corrente Galvânica

Corrente galvânica é definida como uma corrente contínua que mantém intensidade e polaridade constantes no tempo. É caracterizada fundamentalmente porque, ao atravessar soluções eletrolíticas, produz uma série de alterações físicas e químicas que são a origem dos seus efeitos fisiológicos e, portanto, base da maior parte de suas aplicações clínicas e estéticas.

Ao introduzir em uma solução eletrolítica (que contém íons) dois eletrodos portadores de corrente galvânica, os íons existentes na solução começam a se mover através dela, de forma que os íons de carga positiva se dirigem até o pólo negativo (cátodo), enquanto os íons de carga negativa se dirigem ao pólo positivo (ânodo). Os íons, ao chegar aos pólos correspondentes, perdem seu caráter iônico e produzem reações químicas (SORIANO, PÉREZ e BAQUÉS, 2000),

Uma reação ácida é produzida no eletrodo positivo com liberação de oxigênio e uma reação alcalina com liberação de hidrogênio ocorrerá no eletrodo negativo. De acordo com Low e Reed (2001), é muito mais provável que ocorra queimadura química próximo ao terminal negativo como resultado das bases formadoras nesse local.

Efeitos fisiológicos

De acordo com Borges e Valentin (2006), os efeitos fisiológicos da corrente galvânica são:

- Produção de calor: o transporte da corrente elétrica através dos íons contidos nos líquidos orgânicos produz calor pelo efeito Joule. O calor produzido pela corrente não é suficiente para causar sensação térmica na pele, porém é capaz de produzir efeitos fisiológicos específicos nas microestruturas corporais;
- Eletrólise: é o uso da corrente elétrica para produzir reações químicas. Quando a corrente é aplicada sobre a superfície corporal, os íons positivos (cátions) e negativos (ânions) que estão dissolvidos nos fluidos corporais são movimentados segundo sua polaridade. Os ânions seguem em direção ao ânodo e os cátions ao cátodo. Este é o princípio da iontoforese. Com a concentração de íons ocorrerá reação química específica sob cada eletrodo, com formação de ácidos no ânodo (liberação de oxigênio) e de bases no cátodo (liberação de hidrogênio);
- Eletrotônus: a corrente contínua pode alterar a excitabilidade e condutibilidade do tecido tratado. Esse efeito divide-se em:
 - Aneletrotônus: ocorre no pólo positivo e se caracteriza por uma diminuição de excitabilidade nervosa e pode, por exemplo, causar analgesia;
 - Cateletrotônus: ocorre no pólo negativo e aumenta a excitabilidade nervosa.

Na prática, pode-se utilizar o fenômeno aneletrotônus no pólo ativo quando um paciente apresentar pele hipersensível ou irritada. Já o cateletrotônus pode ser utilizado para peles

desvitalizadas e que necessitam de algum tipo de estimulação.

- Vasodilatação: ocorre devido à ação sobre os nervos vasomotores, provocando hiperemia ativa que causa aumento na irrigação sangüínea, melhorando a nutrição celular. Esse efeito ocorre com maior intensidade no pólo negativo;
- Aumento da ação de defesa: com o aumento da irrigação sangüínea ocorre aumento dos elementos fagocitários e anticorpos que estão no sangue na área eletroestimulada, principalmente sobre o cátodo;
- Eletrosmose: é a transferência de líquido do pólo positivo para o negativo. Assim, o cátodo atrai líquido promovendo emoliência de cicatrizes e quelóides, irrigando uma área isquêmica e hidratando o tecido enquanto o ânodo repele os líquidos atuando como pólo drenante em edemas, disfunções linfáticas e em áreas hemorrágicas.

Efeitos terapêuticos

Conforme Borges e Valentin (2006), os seguintes efeitos terapêuticos são conseguidos com a corrente galvânica:

- Analgesia baseado no fenômeno aneletrotônus;
- Antiinflamatório por atração dos fluidos corporais no pólo negativo, particularmente o sangue com seus elementos de defesa natural;
- Estimulante circulatório através dos fenômenos de cataforese e anoforese;
- Características dos pólos:
 - Cátodo: possui características irritantes e estimulantes; é vasodilatador provocando hiperemia na pele; possui capacidade de hidratar os tecidos; pode causar sangramento por atrair líquidos corporais e é capaz de amolecer tecidos endurecidos por promover a liquefação destes;
 - Ânodo: possui características analgésicas e sedantes; é vasoconstritor causando menor hiperemia na pele; possui capacidade de drenar os tecidos e de reduzir sangramentos.

Contra-indicações

(SORIANO, PÉREZ e BAQUÉS, 2000; CICCONE, 2001; LOW e REED, 2001; PÉREZ, FERNÁNDEZ e GONZÁLEZ, 2004; BORGES e VALENTIN, 2006; ASSUMPÇÃO et al., 2006)

As contra-indicações da corrente galvânica devem ser consideradas em qualquer procedimento em que se utilize este tipo de corrente e compreendem:

- Alteração de sensibilidade na região de tratamento;
- Hipersensibilidade à corrente galvânica;
- Aplicações abdominais em gestantes;
- Procedimentos como peelings abrasivos, uso de ácidos, lesões cutâneas ou qualquer

outro fator que resulte em elevação da densidade da corrente podem aumentar a predisposição à queimaduras químicas;

- Portadores de implantes metálicos na região a ser tratada;
- Tratamento em tecido neoplásico;
- Alterações circulatórias como trombose venosa profunda;
- Pacientes renais crônicos;
- Utilização de medicamentos corticosteróides e anticoagulantes, pois poderiam ocorrer complicações em caso de sangramento;
- Sobre marca-passo cardíaco e portadores de transtorno cardíaco.

Eletrolifting

Esta função utiliza a corrente galvânica atuando em microamperagem com o objetivo de suavizar estrias e alterações das linhas de expressão que se formam na face devido à contração muscular. A corrente elétrica atua através da lesão induzida, provocando uma inflamação local e conseqüente reparação do tecido com estímulo da produção de colágeno e elastina (BORGES, 2006).

Efeitos fisiológicos

O estímulo físico da agulha desencadeia um processo de reparação complexo, cujo objetivo é restabelecer de forma satisfatória a integridade dos tecidos (LIMA e PRESSI, 2005).

Guirro e Guirro (2002) e Borges (2006) citam os efeitos envolvidos na aplicação do eletrolifting nos tecidos:

- A lesão causada pela corrente galvânica promove um processo inflamatório agudo, causando vasodilatação periférica e aumento da permeabilidade dos vasos, hiperemia, calor e edema. A região é preenchida por um exsudato inflamatório tornando-se rica em elementos como leucócitos, eritrócitos, proteínas plasmáticas e fibrinas. O processo inflamatório é localizado, não apresentando qualquer efeito sistêmico;
- Devido à lesão, ocorre necrose tecidual por liquefação que se limita a algumas células epidérmicas. Esta necrose é provocada pelas substâncias que se formam no pólo negativo pela ação da corrente galvânica sobre os líquidos da substância fundamental;
- Durante o processo de reparação tecidual, os fibroblastos ativados encontram-se em diferenciação em resposta aos fatores de crescimento. Eles se multiplicam e produzem fibras colágenas e elásticas, melhorando a qualidade do tecido.

Contra-indicações

Segundo Borges (2006) e Lima e Pressi (2005), são contra-indicações do eletrolifting:

- Cliente/paciente que apresenta níveis elevados de glicocorticóides como, por exemplo, na Síndrome de Cushing, sob pena de resultados pobres e riscos para o cliente/paciente;
- Não se deve expor a região tratada ao sol, pois há risco de surgimento de hipercromias;
- Deve-se evitar o estímulo da corrente sobre lesões recentes ou processo inflamatório ativo, sob risco de agravamento ou cronificação do processo.

Indicações

- Linhas de expressão;
- Estrias.

Desincruste

Trata-se de um método que utiliza corrente galvânica, atuando através do processo eletroquímico denominado eletrólise. Quando a corrente elétrica contínua é aplicada sobre a superfície corporal, os íons positivos (cátions) e negativos (ânions) que estão dissolvidos nos fluidos corporais são movimentados segundo sua polaridade. Os ânions seguem em direção ao pólo positivo (ânodo) e os cátions ao pólo negativo (cátodo). Com a concentração de íons ocorrerá reação química específica sob cada eletrodo, com formação de ácidos no ânodo (liberação de oxigênio) e de bases no cátodo (liberação de hidrogênio) (LOW e REED, 2001). A função desincrustação separa as substâncias lipídicas da pele com a ação do sódio, saponificando a oleosidade da epiderme (BORGES, 2006).

Efeitos produzidos

- Assepsia da pele seborréica;
- Destamponamento pilo-sebáceo;
- Eliminação dos incrustados na superfície epidérmica.

Contra-indicações

- Processo alérgico desencadeado pelo agente desincrustante;
- Peles alípicas.

Indicações

- Acnes e comedões:
- Peles seborréicas:
- Preparação da pele para a introdução de substâncias por iontoforese.

Iontoforese

A iontoforese é o método de administração através da pele, com o uso da corrente galvânica, de substâncias que serão utilizadas com propósito terapêutico. Ela determina o aumento da penetração de elementos polares sob um gradiente potencial constante. A finalidade terapêutica da ionização dependerá das características das substâncias utilizadas. Essas se encontram na forma de soluções ionizáveis e, diante do campo elétrico da corrente galvânica, são movimentadas de acordo com sua polaridade, assim como da polaridade do eletrodo ativo. Portanto, deve-se observar a polaridade do produto a ser ionizado, ou seja, se a substância possuir polaridade positiva, o eletrodo ativo também deverá possuir esta polaridade (BORGES e VALENTIN, 2006; CICCONE, 2001).

O uso da iontoforese apresenta cuidados que devem ser observados para que o transporte transdérmico ocorra, incluindo a necessidade de baixo peso molecular, baixa dose e adequado equilíbrio entre a lipossolubilidade e hidrossolubilidade (coeficiente de proporção água-lipídio), pois a substância deve ser igualmente solúvel em água e solventes orgânicos (COSTELLO e JESKE, 1995).

As principais vias de acesso dos íons transferidos por iontoforese são os poros de glândulas sudoríparas, enquanto o estrato córneo, os folículos pilosos e as glândulas sebáceas pouco contribuem para a penetração iônica, uma vez que apresentam elevada impedância elétrica relativa (LOW e REED, 2001; OLIVEIRA, GUARATINI E CASTRO, 2005).

Efeitos fisiológicos e terapêuticos

Low e Reed (2001) citam que os efeitos fisiológicos e terapêuticos da iontoforese estão associados às substâncias utilizadas no processo.

Contra-indicações

- Hipersensibilidade à substância a ser ionizada;
- Tratamento em áreas extensas para evitar efeitos sistêmicos da substância ionizada.

Pérez, Fernández e González (2004) afirmam ser contra-indicada a iontoforese em gestantes e mulheres que utilizam dispositivo contraceptivo intrauterino com parte metálica em aplicações lombares, pélvicas e abdominais baixas.

Indicações

Low e Reed (2001), Ciccone (2001) e Borges e Valentin (2006) relatam algumas indicações da iontoforese, dependendo da substância utilizada:

- Ação anestésica local;
- Tratamento da hiperidrose;
- Ação antibacteriana;

- Ação antiinflamatória;
- Alívio de dor crônica, especialmente neurogênica;
- Redução de edema;
- Cicatrização de feridas crônicas;
- Aumento da extensibilidade das cicatrizes:
- Tratamento do tecido cicatricial e aderências:
- Infecção fúngica da pele;
- Alívio da dor;
- Adiposidade localizada;
- Flacidez cutânea:
- Paniculopatia edemato fibro esclerótica (PEFE = FEG).

Soroko e colaboradores (2002) relatam estudo feito com iontoforese utilizando salicilato de sódio a 2% em 19 pacientes que apresentavam plantar verrucae. Foi demonstrado que a área acometida diminuiu em 78,9% dos pacientes.

Microcorrente

Trata-se de uma corrente contínua que utiliza parâmetros de baixa freqüência e intensidade na faixa dos microampéres. O plano de atuação da microcorrente é profundo, podendo atingir nível muscular, e apresenta-se com imediata atuação no plano cutâneo e subcutâneo. O modo normal de aplicação da microcorrente ocorre em níveis incapazes de ativar as fibras nervosas sensoriais subcutâneas, tendo como resultado a ausência da sensação de formigamento tão conhecida nos tratamentos eletroterapêuticos (BORGES e SANTOS, 2006).

Efeitos fisiológicos

Restabelecimento da bioeletricidade dos tecidos: todos os tecidos apresentam potenciais elétricos. Alguns tecidos eletricamente excitáveis, como nervos e músculos, geram pulsos elétricos que podem ser detectados na superfície do corpo, através do eletroencefalograma, eletrocardiograma e eletromiograma, por exemplo. Os tecidos não-excitáveis também apresentam potenciais elétricos que são mais ou menos estáticos e incluem potenciais de bateria de pele, potenciais relacionados ao crescimento e cicatrização do tecido, assim como potenciais gerados pela distensão do tecido conjuntivo (LOW e REED, 2001).

Uma lesão afeta o potencial elétrico das células do tecido lesado, fazendo com que a resistência elétrica aumente, se comparada aos locais próximos à lesão. As membranas tornam-se menos permeáveis ao fluxo de íons e mais isoladas eletricamente. O fluxo elétrico intrínseco é forçado a levar o caminho de menor resistência, evitando a lesão

pela circulação sangüínea ao redor dela. O decréscimo do fluxo elétrico na região lesionada diminui a capacitância celular, gerando processo inflamatório. A microcorrente atua restabelecendo a bioeletricidade do tecido lesado, acelerando o processo de cicatrização (BORGES e SANTOS, 2006; WATSON, 2003);

Incremento da síntese de ATP: em uma lesão ocorre impedância elétrica, causando redução no suprimento sangüíneo, de oxigênio e nutrientes para o tecido. A circulação reduzida causa um acúmulo de resíduos metabólicos, resultando em hipóxia local, isquemia e metabólitos nocivos que causam dor. Esses eventos são sinais de que a produção de ATP está reduzida. A microcorrente incrementa a formação do gradiente de prótons, fornecendo à membrana externa íons positivos e à membrana interna, íons negativos. Este processo aumenta a diferença elétrica entre as duas membranas, gerando maior força próton motriz que leva a formação de ATP. Assim, o aumento da síntese de ATP faz com que o tecido lesado tenha energia necessária para aumentar o transporte de íons através das membranas, produzir novas proteínas, nutrir as células e eliminar os produtos metabólicos (BORGES e SANTOS, 2006; MERCOLA e KIRSCH, 1995);

Cheng e colaboradores, em 1982, (apud SILVA, 2006), demonstraram o aumento da concentração de ATP celular em cerca de três a cinco vezes na faixa de $50\mu A$ a $1000\mu A$, sendo que com correntes entre $100\mu A$ e $500\mu A$ o efeito foi similar e excedendo-se os $1000\mu A$, os valores retornavam aos níveis normais, sem eletroestimulação.

- Transporte ativo de aminoácidos: o transporte ativo é o meio de transporte das moléculas de aminoácidos para o interior da célula, pois essas são demasiadamente grandes para sofrerem difusão através das membranas celulares. Este mecanismo depende da energia liberada pelas moléculas de ATP (GUYTON e HALL, 1996).
 - O estudo de Cheng e colaboradores em 1982 (apud SILVA, 2006), mostra que o transporte ativo de aminoácidos aumentou de 30 a 40% com a utilização de microcorrente com intensidade entre 100μA e 500μA. Com a intensidade de corrente aumentada, excedendo 1000μA, houve redução no transporte de aminoácidos de 20 a 73%.
- Síntese de proteínas: o incremento na produção e ATP oferece a energia necessária para elevar a síntese de proteína e aumentar o transporte dos íons, fazendo com que ocorra o desenvolvimento tecidual (BORGES e SANTOS, 2006).
 - Conforme Cheng e colaboradores (apud SILVA, 2006), o aumento na síntese protéica iniciou-se com aplicação de microcorrente na intensidade de $10\mu A$ e atingiu o nível máximo com $100\mu A$. Contudo, correntes entre 1 e 5 mA provocaram diminuição desses níveis e, com intensidade de 5mA, a síntese de proteínas diminuiu em até 50% se

- comparado ao grupo controle, que não recebeu tratamento eletroterapêutico.
- Drenagem linfática: a terapia por microcorrente aumenta a mobilização de proteínas para o sistema linfático, pois quando são aplicadas em tecidos lesados, as proteínas são postas em movimento e sua migração para o interior dos vasos linfáticos é acelerada. A pressão osmótica dos vasos linfáticos é aumentada, absorvendo o fluido do espaço intersticial (MERCOLA e KIRSCH, 1995).

Efeitos terapêuticos

- Analgesia: existem alguns mecanismos que podem, possivelmente, ser afetados após a exposição a um campo elétrico. Estes são: a liberação de encefalinas, principalmente as endorfinas; a internalização da substância P; a teoria de controle da comporta da dor e a ativação dos receptores de diferentes opióides (ALLEN et al., 1999; NAM et al., 1995; SEEGERS et al., 2002; SLUKA et al, 1998);
- Aceleração do processo de reparação tecidual: alguns estudos relatam aceleração no processo de proliferação dos fibroblastos, maior concentração de fibras colágenas e intensa neovascularização (ALVAREZ et al., 1983; SANTOS et al., 2004; SILVA, 2006);
- Aumento da osteogênese: estudo feito por Bassett, Mitchell e Gaston (1982) demonstrou que correntes com intensidade abaixo de 5μA estão abaixo do limiar para osteogênese. Entre 5μA e 20μA parecem produzir osteogênese significativa e acima de 20μA lesam o tecido. Estudo de caso relatado por Borges e Santos (2006) observou fechamento parcial do foco de fratura e intensa calcificação utilizando tratamento eletroterapêutico por cerca de 30 dias ininterruptos, com aproximadamente 6 horas diárias, empregando corrente contínua com inversão de polaridade, 1000Hz de freqüência e intensidade de 60μA;
- Antiinflamatório: diminuição significante dos sinais inflamatórios, como retração da lesão, desenvolvimento precoce da crosta, diminuição do edema e ausência de exsudato inflamatório (SILVA, 2006).
 - Segundo Kirsch e Lerner (apud BORGES e SANTOS, 2006), microcorrente com freqüências de 80 a 100Hz, às vezes, produzem resultados mais rápidos ao tratar problemas articulares inflamatórios, mas estas freqüências não contribuem para resultados a longo prazo. Relatam ainda que a intensidade deve manter-se em torno de 500 a $600\mu\text{A}$, dependendo do tipo de eletrodo.
- Ação bactericida: a cicatrização de feridas pode ser impedida pela infecção. A estimulação elétrica com microcorrente utilizando o pólo negativo possui ação bactericida. Snyder-Mackler (2001) relata que alguns estudos foram feitos com feridas contaminadas por Escherichia coli e Pseudomonas aeruginosa. Eles aparecem estéreis após vários dias de eletroestimulação com microcorrente.

- Redução de edemas: a microcorrente aumenta a absorção do líquido intersticial, favorecendo a redução de edemas (MERCOLA e KIRSCH, 1995; SNYDER-MACKLER, 2001);
- Relaxamento muscular: o espasmo muscular pós-trauma pode provocar deficiência de fluxo sangüíneo com conseqüente hipóxia e acúmulo de metabólitos nocivos, levando a redução de ATP. Como já foi relatada, a microcorrente incrementando a síntese de ATP, pode auxiliar a cura nestes casos (BORGES e SANTOS, 2006).

Contra-indicações

- Osteomielite e dor idiopática (SUSSMAN e BYL, 2003);
- Sobre útero gravídico: alguns autores relatam que a estimulação poderia afetar os sistemas de controle endócrino, podendo provocar aborto, embora não tenham sustentado cientificamente esta informação (KIRSCH e MERCOLA, 1995);
- Ao aplicar microcorrente, devemos ter cuidado com as seguintes situações:
 - Pacientes desidratados podem apresentar náuseas, tonturas e/ou cefaléias;
 - Sensação de "choque" ao aplicar a terapia em um tecido cicatricial.

Indicações

São indicações da microcorrente (BORGES e SANTOS, 2006; GUIRRO e GUIRRO, 2002; SNYDER-MACKLER, 2001; SORIANO, PÈREZ e BAQUÈS, 2000):

- Cicatrizes em processo de reparação;
- Lesões de tecidos moles:
- Rupturas miotendinosas (visando o reparo tecidual);
- Edemas:
- Processos inflamatórios:
- Pós-operatórios (visando aceleração da cicatrização e redução do processo inflamatório);
- Ulcerações (ação de reparo e bactericida);
- Síndromes dolorosas;
- Estados de tensão muscular;
- Fraturas:
- Recuperação de queimaduras;
- Pós-peeling químico ou mecânico;
- Acne (ação antiinflamatória, bactericida e cicatrizante);
- Envelhecimento cutâneo (incremento da síntese de ATP, disponibilizando energia extra para os processos metabólicos celulares).

Alta Frequência

É uma função que utiliza corrente elétrica alternada de alta freqüência, gerando um campo eletromagnético. Campo eletromagnético é um espaço onde agem forças eletromagnéticas que se formam em torno de um condutor elétrico. O efeito eletromagnético aumenta proporcionalmente a intensidade da corrente elétrica no condutor.

Sempre que um campo eletromagnético ao redor de um condutor se desfaz, ele se desprende do condutor e parte em direção ao infinito. Por isso, enquanto há corrente alternada no condutor, ondas eletromagnéticas são formadas (BORGES e BORGES, 2006).

O principal efeito biológico da passagem das ondas eletromagnéticas nos tecidos é causar aquecimento. Os tecidos contêm um grande número de íons, que são os transportadores de carga quando uma corrente flui nos tecidos. Se um campo elétrico é aplicado primeiro em uma direção e depois em outra, os íons são acelerados primeiro de um modo e depois de modo oposto, colidindo com as moléculas adjacentes e liberando alguma energia, aumentado assim, o movimento aleatório total que resulta em calor.

Os tecidos são constituídos em grande parte de água. As moléculas de água se comportam de maneira um pouco diferente, pois embora sejam eletricamente neutras como moléculas totais, elas são polares. Por isso são chamadas de dipolos. Quando são aplicadas às moléculas polares cargas que se revertem rapidamente, elas rodam para um lado e para o outro. Essa energia rotacional perturba o movimento de moléculas adjacentes causando maior movimento aleatório total e, portanto mais calor. As moléculas das substâncias apolares (por exemplo, as gorduras) sofrem somente uma ligeira deformação quando expostas ao campo eletromagnético, sem, no entanto, entrarem em rotação (LOW e REED, 2001).

A passagem das ondas eletromagnéticas pelo ar ou outros gases rarefeitos provoca a formação de ozônio. Este gás é bastante instável e rapidamente produz reações com diferentes elementos provocando oxidação. O equipamento de alta freqüência consiste em um gerador de corrente elétrica e eletrodos de vidro. Dentro destes geralmente há vácuo parcial ou um gás. Nos eletrodos da função alta freqüência do equipamento **Versatile AF7** existem dois gases: argônio e neônio. A passagem da corrente provoca ionização das moléculas de gás, as quais, sob forte impacto energético, tornam-se fluorescentes. (SORIANO, PÉREZ e BAQUÉS, 2000; WINTER, 2001).

A seguir estão descritas os efeitos fisiológicos e terapêuticos, contra-indicações e indicações da função alta freqüência segundo Borges e Borges (2006):

Efeitos fisiológicos

 Efeito térmico: a alta frequência produz calor ao atravessar o organismo com consequente vasodilatação periférica local causando melhora do trofismo, da

- oxigenação e do metabolismo celular;
- Hiperemia: este efeito ocorre como conseqüência da vasodilatação causada pelo efeito térmico, gerando o aumento da circulação periférica local e hiperemia na pele;
- Aumento da oxigenação celular: resultante do efeito vasodilatador. O aumento do fluxo sangüíneo promove um aumento do aporte do oxigênio para as células.

Efeitos terapêuticos

- Bactericida e anti-séptico;
- Melhora do trofismo dérmico. Está relacionado ao efeito bactericida, pois muitas vezes,
 o trofismo da pele encontra-se prejudicado pela ação de germes e bactérias.
- Antiinflamatório. Justifica-se pelo aumento do fluxo sangüíneo com conseqüente aumento da presença de elementos de defesa do organismo no local da lesão. Ainda facilita a eliminação de germes e bactérias comuns em processos inflamatórios como, por exemplo, em lesões abertas.

Contra-indicações

- Portadores de marca-passo cardíaco;
- Gestantes:
- Alterações de sensibilidade;
- Aplicação em locais onde existam próteses metálicas;
- Neoplasias;
- Regiões que apresentem manchas ou névos de coloração e espessura alteradas;
- Utilização em regiões onde a pele esteja úmida e/ou com produtos que contenham substâncias inflamáveis.

Indicações

- Desinfecção pós-extração de comedões;
- Tratamentos capilares em casos onde se deseja um aumento da circulação local ou a redução da seborréia;
- Acne;
- Pós-depilação;
- Na cicatrização de lesões abertas;
- Como coadjuvante no tratamento da psoríase.

Instruções Importantes de Segurança e Instalação

Recomenda-se a utilização deste equipamento somente por profissionais habilitados.

É importante ler cuidadosamente estas instruções antes de utilizar o equipamento **Versatile AF7.** O fabricante não assume a responsabilidade por danos que possam ocorrer se o equipamento não for utilizado conforme a observação dos critérios abaixo:

Limpeza do equipamento

A limpeza do equipamento deverá ser realizada com um pano umedecido em água e detergente ou sabão neutro, tendo o cuidado para que a umidade não penetre no interior do equipamento.

Instalação do equipamento

- Instale-o sobre uma superfície firme e horizontal e em local com perfeita ventilação.
- Posicione o cabo de força, após ligar na rede, de modo que fique livre, fora de locais onde possa ser "pisoteado" e não coloque qualquer tipo de mobília sobre ele.
- A instalação elétrica deve estar de acordo com a norma NBR 13534 Instalações elétricas em estabelecimentos assistenciais de saúde – Requisitos para segurança
- Ao conectar o equipamento a rede elétrica através de extensões ou soquetes, certifique-se de que esses são apropriados, de acordo com o consumo e a tensão do equipamento. Também é necessário verificar a conexão de aterramento através do pino de terra, que não deve ser eliminado, pois pode colocar em risco o paciente.
- Certifique-se que o equipamento n\u00e3o esteja pr\u00f3ximo de fontes de calor (ex: estufa, fornos, etc.).
- Evite expor o equipamento e seus acessórios a luz solar direta, poeira, umidade ou a vibrações e choques excessivos.
- Não introduza objetos nos orifícios e não apóie recipientes com líquidos sobre o equipamento.
- Não utilizar o equipamento por ocasião de turbulências atmosféricas como raios, vendavais, etc.
- Sempre desligue o equipamento e desconecte-o da tomada quando ele n\u00e3o estiver em uso.
- Não abra o equipamento. A manutenção e os reparos devem ser realizados pelo fabricante ou empresa autorizada. O fabricante não assume responsabilidade sobre reparos ou manutenções efetuadas por pessoas não autorizadas.
- Este manual de instruções deverá ser mantido com o equipamento para futuras consultas. Caso o equipamento seja repassado, através de venda ou doação, o respectivo manual deverá acompanhá-lo.

- Conexões simultâneas de um paciente a um equipamento cirúrgico de AF, podem resultar em queimaduras no local de aplicação dos eletrodos do estimulador e possível dano ao estimulador.
- Operação a curta distância de um equipamento de terapia de ondas curtas ou microondas pode produzir instabilidade na saída do estimulador.

Limpeza dos acessórios

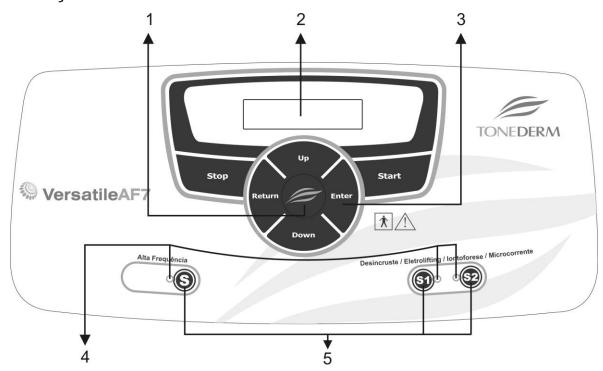
Os eletrodos de borracha e demais acessórios devem ser higienizados com água e detergente ou sabão neutro após cada aplicação.

Somente os eletrodos da função alta freqüência devem ser limpos com álcool etílico 70%.

As agulhas de eletrolifting devem ser descartadas após cada utilização.

Reposição do material consumido

Para reposição de gel de contato iônico, fusíveis (quando não encontrados conforme especificações do fabricante) e acessórios sujeitos ao desgaste por tempo de uso, entrar em contato com o distribuidor de sua região ou com o fabricante do equipamento.


Eletrodos

A densidade máxima de corrente recomendada para os eletrodos é de 2mA eficazes/cm².

A utilização de correntes acima deste valor, requer atenção especial do usuário.

Biocompatibilidade (ISO 10993-1) – O material dos eletrodos não causa reações alérgicas em contato com a pele do paciente, desde que a mesma esteja limpa e não seja utilizado por mais de 24h contínuas.

Descrição do Painel

1. Chave LIGA/DESLIGA

- 2. Tela do display alfanumérico guia para programação e mostrador de dados durante a aplicação.
- 3. Teclas de programação:
 - ►UP/DOWN para avançar ou retroceder o cursor, respectivamente e/ou ajustar parâmetros.
 - ►ENTER utilizada para selecionar e memorizar os programas.
 - ▶ RETURN utilizada para retroceder a seleção de um programa ou parâmetros.
 - ►START utilizada para executar uma programação.
 - ▶STOP utilizada para realizar uma pausa ou interromper a aplicação.
- 4. **Leds Indicadores** Indicam quando os estímulos são emitidos pelo canal correspondente.
- 5. Teclas **Select** para selecionar o canal que terá a potência de saída ajustada.

Acessórios que Acompanham o Equipamento

- 01 adesivo facial c/100 un;
- 02 cabos eletroestimulador pino banana 02;
- 01 cabo de força 2 P+T;
- 01 caneta eletrolifting c/10 un;
- 01 caneta esférica;

- 01 caneta gancho;
- 01 caneta ponteira;
- 01 caneta rolo liso 21mm;
- 01 eletrodo de vidro cauterizador;
- 01 eletrodo de vidro disco 37mm;
- 01 eletrodo de vidro pente;
- 01 eletrodo de vidro saturador;
- 01 fusível de 200ma FST;
- 01 manopla alta freqüência;
- 01 manual TD Versatile AF7;
- 04 placas faciais 18mm;
- 01 suporte eletrodos vidro AF;
- 01 vídeo manual Versatile AF7/AF9.

Acessórios Opcionais

- Caneta disco;
- Caneta rolo liso 41mm;
- Caneta rolo liso 76mm;
- Eletrodo de vidro disco 25mm;
- Eletrodo de vidro forquilha;
- Faixa elásticas de 40cm;
- Faixa elásticas de 60cm;
- Faixa elásticas de 80cm;
- Faixa elásticas de 110cm;
- Placa corporal 54mm;

^{*} Estes acessórios devem ser adquiridos separadamente, pois não acompanham o equipamento.

ILUSTRAÇÃO DOS ITENS QUE ACOMPANHAM O EQUIPAMENTO

Adesivo facial c/ 100 un.	
Cabo eletroestimulador pino banana 02	
Cabo de força (2P+T)	
Caneta eletrolifting c/ 10 agulhas ACESSÓRIO DE USO EXCLUSIVO	
Caneta esférica	
Caneta gancho ACESSÓRIO DE USO EXCLUSIVO	

Caneta ponteira ACESSÓRIO DE USO EXCLUSIVO	
Caneta rolo liso 21mm ACESSÓRIO DE USO EXCLUSIVO	
Eletrodo de vidro cauterizador ACESSÓRIO DE USO EXCLUSIVO	
Eletrodo de vidro disco 37mm ACESSÓRIO DE USO EXCLUSIVO	
Eletrodo de vidro pente ACESSÓRIO DE USO EXCLUSIVO	
Eletrodo de vidro saturador ACESSÓRIO DE USO EXCLUSIVO	(-₹\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Tabela de Códigos

Acessórios de Uso Exclusivo com o Equipamento Versatile AF7

Item	Descrição	Código
1	Caneta Eletrolifting c/10 agulhas	476.016
2	Caneta gancho	476.040
3	Caneta ponteira	476.008
4	Caneta rolo liso 21mm	476.005
5	Eletrodo de vidro cauterizador	638.025
6	Eletrodo de vidro disco 25mm	638.010
7	Eletrodo de vidro disco 37mm	638.005
8	Eletrodo de vidro forquilha	638.020
9	Eletrodo de vidro pente	638.015
10	Eletrodo de vidro saturador	638.030
11	Manopla alta freqüência	486.004
12	Manual TD Versatile AF7	165.121
13	Suporte acessórios Versatile	221.037
14	Vídeo manual Versatile AF7/AF9	165.136

Peças de reposição e Materiais de Consumo – Família Eletroterapia

Item	Descrição	Código
1	Adesivo facial c/100un	055.035
2	Cabo de força 2 P+T	203.007
3	Cabo eletroestimulador pino banana 02	203.026
4	Caneta D37	476.001
5	Caneta esférica	476.007
6	Caneta rolo liso 41mm	476.010
7	Faixa elástica de 40cm	141.010
8	Faixa elástica de 60cm	141.015
9	Faixa elástica de 80cm	141.005
10	Faixa elástica de 110cm	141.001
11	Fusível de 200mA FST	149.007
12	Placa corporal 54mm	177.009
13	Placa corporal 75mm	177.012
14	Placa facial 18mm	177.011

Tabela de Programas

Programa	Freqüência (Hz)	Freqüência Modulada (Hz)	Tempo Tratamento (min)
Alta Freqüência	150 a 1500	-	60*
Desincruste	-	-	60*
Estrias	-	-	60*
Linhas de Expressão	-	-	60*
Iontoforese	-	-	60*
Reparo Tecidual Superficial	100	2500	60*
Reparo Tecidual Profundo	600	2500	60*

^{*} Pode ser ajustado durante a programação

Para obter sugestões de tratamentos utilizando os equipamentos Tone Derm, acesse nosso site: www.tonederm.com.br.

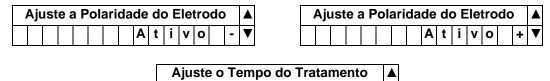
Instruções para Utilização

Conectar o cabo de alimentação à parte traseira do equipamento e à rede elétrica, podendo esta possuir 127 ou 220V, pois o equipamento é dotado de seletor automático de voltagem.

Ligar o equipamento acionando a chave **LIGA/DESLIGA**. A seguir a tela do display mostrará as seguintes informações:

Ī			T	0	Ν	Е		D	Е	R	M			
Ī	٧	Ε	R	S	Α	T	I	L	Е		Α	F	7	

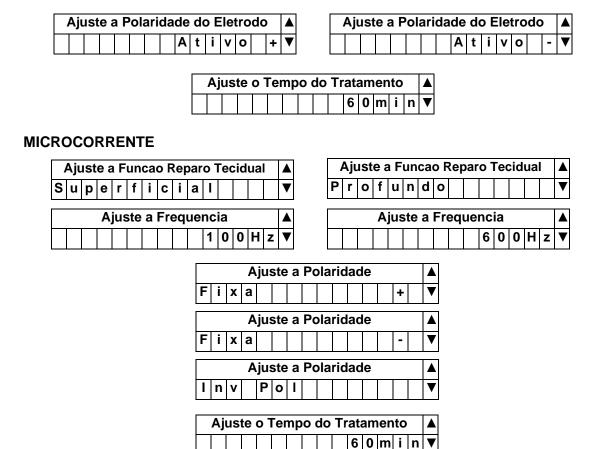
Após 3s aparecerá a tela inicial de programação.


Durante a programação, as teclas UP/DOWN têm a função de selecionar o tratamento e os parâmetros desejados. A tecla ENTER confirma a seleção.

ALTA FREQÜÊNCIA

Αj	us	te	о Т	Гer	np	0	do	Tr	ata	am	en	to		▲
										5	m	i	n	•

DESINCRUSTE



6 0 m i

ELETROLIFTING

IONTOFORESE

Ajuste das Saídas

Para ajustar as saídas do equipamento, pressione a tecla correspondente ao canal da aplicação, neste momento o display mostrará o canal habilitado. Através das teclas UP e DOWN ajuste a intensidade desejada.

Seleção de Idioma

Se você desejar mudar a linguagem das telas para "PORTUGUES", "ESPANHOL" ou "ENGLISH" prossiga da seguinte forma:

Ligar o equipamento com as teclas UP e STOP pressionadas. Uma das seguintes telas irá aparecer:

Selecione o Idioma
PORTUGUES

Select the Language
ENGLISH

Selecione la Lengua
ESPANOL

Selecione a linguagem através das teclas DOWN e UP.

Pressione a tecla START para confirmar a seleção. A linguagem escolhida será mantida até a próxima vez que você proceder com os passos acima informados.

Limpeza da pele pré-tratamento

A higienização da pele deve ser realizada antes de qualquer procedimento, utilizando Loção Calmante e Aromática para tratamentos corporais e Emulsão de Limpeza para tratamentos faciais. O local deve estar livre de cremes, géis ou outras substâncias que possam alterar a eficácia do tratamento.

Na função eletrolifting, se a técnica utilizada for a subcutânea, recomendamos a higienização da epiderme com Loção Antisséptica Clorexidine 0,5% Relicatte.

Técnica de aplicação

A seguir estão descritas as técnicas de aplicação do equipamento **Versatile AF7**. Os cabos deste equipamento possuem duas cores distintas que caracterizam sua polaridade: o cabo azul corresponde à polaridade positiva e o cabo cinza à polaridade negativa. As cores dos cabos são especialmente importantes quando o tratamento for realizado com corrente galvânica, devido aos efeitos químicos provocados pelos pólos nos tecidos.

Observar a necessidade de reposição de gel de contato iônico ou substância iontoforética, dependendo do tratamento, evitando assim possível desconforto ao cliente/paciente.

Quando o tratamento for realizado com eletrodos móveis, atentar para que estes não entrem em contato um com o outro.

A aplicação dos eletrodos próxima ao tórax pode aumentar o risco de fibrilação cardíaca.

Função Alta Freqüência

- A função alta freqüência deve ser aplicada à pele por um tempo máximo de 5 minutos e somente quando houver necessidade, pois o uso em excesso pode ser prejudicial à saúde;
- Os eletrodos disco, forquilha e pente são utilizados com o método de aplicação direto/efluviação. O eletrodo cauterizador pode ser aplicado diretamente ou por faiscamento. Já o eletrodo saturador deve ser utilizado através do método indireto/saturador;
- O eletrodo cauterizador é geralmente usado em lesões localizadas e de pequena extensão como na podologia ou no tratamento da acne;
- Os eletrodos disco podem ser adaptados para a maioria dos tratamentos, pois seu formato permite inúmeras aplicações;
- O eletrodo forquilha deve ser adaptado à região corporal mais adequada anatomicamente como mamas, braços, antebraços e pescoço;
- O eletrodo pente é utilizado no escalpo já lavado, penteado em todos os sentidos e seco. Recomendado para tratamentos de seborréia, alopecia, etc.
- O eletrodo saturador é o único indicado para a utilização com cosméticos. O paciente

deve segurar o eletrodo e a manopla com as duas mãos, enquanto o profissional atua fazendo pequenas e suaves percussões de tamborilamento ou pinçamentos.

Função Desincruste

- Utiliza-se a caneta gancho como eletrodo ativo envolvido em algodão e umedecido em uma solução desincrustante. Esta deve ser movimentada lentamente por toda extensão da área seborréica. Deve-se ter o cuidado para que nenhuma parte metálica do eletrodo ativo entre em contato com a pele, pois pode causar queimadura química;
- A placa de borracha condutiva torna-se o eletrodo passivo. Esta deve conter, em toda sua extensão, quantidade suficiente de gel de contato para facilitar a condução do estímulo elétrico. Deve-se acoplar a placa em uma região próxima ao local de tratamento, como por exemplo, sob a região escapular se a aplicação for facial;
- Como a solução desincrustante freqüentemente apresenta sódio em sua composição, ela possui polaridade positiva. O Fluido Desincrustante Relicatte apresenta polaridade negativa. Segundo Borges (2006), a partir da eletrólise da solução promovida pela corrente elétrica, existem duas técnicas que podem ser utilizadas no processo de desincrustação da pele:
 - Eletrodo ativo e solução com polaridade inversa: Neste caso, o sódio presente no algodão do eletrodo ativo entra em contato com o sebo da pele. Pelo fato dos íons de sódio apresentarem polaridade positiva, são atraídos pelo eletrodo ativo, que é negativo, fixando-se ao algodão;
 - Eletrodo ativo e solução com polaridade igual: Neste caso, inicialmente a eletrólise isola o sódio que entra em contato com a pele seborréica, produzindo o processo denominado de "saponificação". Em seguida, inverte-se a polaridade. Dessa forma, a corrente elétrica atrairá a solução desincrustante que foi agregada ao sebo da pele.
- De acordo com Borges (2006), a intensidade de corrente deve ser compatível com o limiar de sensibilidade confortável e s'egura para o paciente com um tempo de tratamento sugerido entre 4 a 5 minutos.

Função Eletrolifting

- Para ambos os tratamentos, epicutâneo e subcutâneo, deve-se ter o cuidado de utilizar quantidade suficiente de gel de contato na placa de borracha condutiva (eletrodo passivo) para facilitar a condução da corrente elétrica e evitar queimaduras químicas pela ação da corrente galvânica;
- Para melhor fixação da placa, pode-se utilizar faixas elásticas;
- A polaridade negativa da corrente elétrica já está fixada pelo equipamento;

Estudos divergem quanto à intensidade de corrente que deve ser aplicada. Borges (2006) recomenda o uso da máxima intensidade tolerada pelo paciente, pois quanto maior a intensidade de corrente, maior o grau de lesão provocada com conseqüente aumento de tempo do processo inflamatório, intensificando o processo de reparo. Porém, deve-se ter o cuidado de não ultrapassar 400 μA, a fim de evitar manchas e/ou lesões no local pela ação da corrente galvânica. Profissionais de fisioterapia utilizam normalmente parâmetros entre 70 a 100μA para estrias e 150 a 200μA para sinais de expressão em aplicações subcutâneas.

<u>Técnica epicutânea:</u>

- Esta técnica utiliza a caneta ponteira como eletrodo ativo;
- Acoplar o eletrodo passivo próximo à região de tratamento com gel de contato;
- Deve-se realizar diversas varreduras (20 a 25) no sulco da linha de expressão ou da estria. Posteriormente, deve-se realizar varreduras no sentido transversal (em ziguezague);
- As varreduras devem ser suaves e lentas até que a pele se torne hiperêmica;

Técnica subcutânea:

- Esta técnica utiliza a caneta eletrolifting como eletrodo ativo;
- Utilizando gel de contato, acoplar o eletrodo passivo próximo à região de tratamento;
- A agulha deve ser descartável;
- A sensibilidade à corrente é diferente nas distintas regiões;
- A punturação deverá ser feita de maneira rápida e precisa, pois a técnica tende a ser um pouco desagradável;
- A penetração da agulha deve ser feita entre as camadas da epiderme, não atingindo a derme, pois o estrato basal não deve ser lesado. Como a epiderme não é vascularizada, o procedimento não deve provocar sangramento;
- A agulha também não deve ser introduzida muito superficialmente, pois a lesão das células totalmente corneificadas não trará o efeito desejado;
- Todo o trajeto da linha de expressão ou da estria deve ser trabalhado, não deixando espaço entre as punturações;
- Winter (2001) relata que a inserção da agulha deve ser feita em um ângulo de 15° em relação à superfície da pele e, num ângulo de 45° em relação à direção da linha de expressão. A agulha deve ser introduzida por baixo da ruga, sem que sua ponta saia do outro lado. Com a agulha inserida na epiderme, levantar a pele ligeiramente por meio desta. Deixar a agulha nesta posição de 3 a 5 segundos, até que a pele comece a esbranquiçar. Retirar a agulha paralelamente em relação à pele;

- Para Guirro e Guirro (2002), as técnicas de aplicação do eletrolifting podem ser divididas em 3 grupos:
 - Deslizamento da agulha, paralelamente, no sulco da linha de expressão ou da estria (igualmente à técnica epicutânea);
 - Penetração da agulha em pontos adjacentes e no sulco da linha ou da estria;
 - Escarificação que é um método de deslizamento da agulha posicionada à 90° pelo sulco da linha ou da estria.
- As técnicas de deslizamento da agulha devem ser feitas lenta e suavemente para reduzir o risco de corte.

Função Iontoforese

- Realizada através dos modos fixo e móvel;
- Na aplicação móvel, o eletrodo passivo é a placa de borracha condutiva e o eletrodo ativo, a caneta rolo. Utiliza-se gel de contato na placa de borracha e acopla-se a mesma próximo ao local de tratamento. No eletrodo ativo (rolo) utiliza-se uma substância ionizável;
- Na aplicação fixa com os eletrodos de borracha condutiva, deve-se utilizar gel ou outra substância com princípios ativos ionizáveis, fixando os eletrodos com adesivos em tratamentos faciais;
- O eletrodo ativo deve ser colocado sobre o local de aplicação desejado. O eletrodo passivo é colocado em um local próximo no mesmo membro ou em um segmento corporal adjacente. Os eletrodos devem manter certa distância entre si, pois estando muito próximos, o risco de irritação e de queimadura química aumenta consideravelmente, devido ao fato da corrente galvânica tender a transpor a superfície da pele ao invés de penetrar nos tecidos subjacentes (CICCONE, 2001);
- Conforme estudos realizados, a ação da iontoforese ocorre em nível superficial variando de 6 a 20mm de profundidade (STARKEY apud BORGES e VALENTIN, 2006); Segundo Pérez, Fernández e González (2004), a penetração estimada da iontoforese é de 1 a 5mm, alcançando maior profundidade no organismo graças a circulação capilar e ao transporte de membrana. Relatam ainda que alguns autores defendem a idéia de que a penetração da substância alcança até 5cm;
- De acordo com Winter (2001), para introduzir o produto ionizável a um nível mais profundo, o eletrodo passivo, quando utilizado em tratamentos faciais, deve ser posicionado sob o ombro direito ou fixado no braço direito; nos tratamentos corporais, ele deve ser acoplado em uma área oposta àquela que será tratada;
- A intensidade de corrente a ser utilizada deve ser calculada de acordo com área do eletrodo a ser utilizado (em cm²) e conforme a tolerância da pele do paciente. Borges e

Valentin (2006) relatam diversos estudos feitos para a dosagem ideal da iontoforese entre 0,1 a 0,3 mA/cm². Estes valores, dependendo da área física do eletrodo, podem ser utilizados sem risco algum;

Soriano, Pérez e Baqués (2000) orientam intensidade máxima de 0,05 mA para cada cm^2 de área do eletrodo. Por exemplo, se o eletrodo tiver $100cm^2$, a intensidade máxima será de 5 mA ($100 \times 0,05 = 5$ mA), concordando com Ciccone (2001), porém este autor relata esta intensidade se o cátodo for utilizado como eletrodo ativo e sugere 1 mA/cm2 se o ânodo for utilizado para aplicar a substância;

- A intensidade indicada nunca deverá ultrapassar o limiar doloroso do paciente. Para reduzir os riscos de queimadura química, pode-se diminui a intensidade de corrente e aumentar o tempo de tratamento, proporcionalmente;
- O tempo de duração da técnica varia conforme o modo de aplicação: fixo ou móvel.
 Ferreira e colaboradores (2007) compararam a infusão de medicamento utilizando iontoforese com eletrodos fixos e móveis e verificaram que com eletrodos móveis o tempo de aplicação necessita ser 3 vezes maior para que ocorra o mesmo efeito;
- Observar sempre a polaridade do produto a ser ionizado;
- O estrato córneo, correspondente a 10-20μm da epiderme, é conhecido como a principal barreira à transferência transdérmica de substâncias. Durante a iontoforese, a concentração de íons no estrato córneo aumenta e a resistência da pele diminui, aumentando sua permeabilidade durante a passagem do campo elétrico (OLIVEIRA, GUARATINI e CASTRO, 2005).

Segundo Winter (2001), a pele deve ser adequadamente preparada para a realização da técnica de iontoforese. Este procedimento dependerá do tipo de pele a ser submetida ao tratamento. Para peles lipídicas, pode ser realizado desincruste e esfoliação para minimizar as barreiras físicas que a gordura determina à penetração do produto. Em peles alípicas pode-se utilizar aquecimento para facilitar o processo de absorção da substância ionizável, como vapor não-ozonizado, compressas quentes e úmidas e massagem.

Função Microcorrente

- A função da microcorrente pode ser aplicada de dois modos: fixo, utilizando placas de borracha condutiva e adesivos (tratamento facial) para fixá-las e aplicação móvel, fazendo uso da caneta esférica facial.
- Ambos os modos de aplicação necessitam de gel de contato em seus eletrodos para facilitar a condução da corrente elétrica;
- Os dois modos podem ser aplicados em tratamentos faciais e corporais, porém o móvel
 é mais comum para tratamentos faciais realizando movimentos sincronizados, de

maneira a percorrer toda a face, ora com estímulos seguindo o fluxo linfático, ora estimulando a epiderme, a derme e até os músculos;

- Os valores de frequência variam conforme o objetivo a ser alcançado:
 - Se o tratamento for em áreas mais superficiais como pele, músculos superficiais e tendões, recomenda-se o uso de fregüências em torno de 100 a 200Hz;
 - Se o tratamento visa estruturas mais profundas, a freqüência deve ser ajustada entre 600 e 1000Hz com os eletrodos posicionados transversalmente ao local de tratamento:
- A intensidade de corrente recomendada situa-se entre 80 e 100μA na maioria das afecções dermato-funcionais (BORGES e SANTOS, 2006).

Dúvidas Operacionais

QUANDO O EQUIPAMENTO NÃO FUNCIONA ADEQUADAMENTE:

1. O equipamento não liga:

1.1 <u>O cabo de força pode não estar conectado na rede elétrica ou ao equipamento, podendo ainda estar com ruptura ou mau contato.</u>

Verificar as conexões do cabo de força, que devem ser firmes. Em caso de ruptura entrar em contato com o distribuidor de sua região ou com o fabricante para providenciar a manutenção.

1.2 <u>A tomada de alimentação onde o cabo de força do equipamento foi ligado pode estar com mau contato interno, desconexão de algum dos fios ou ainda estar desenergizada.</u>

Testar a tomada com outro equipamento. Verificar se a chave geral que alimenta a tomada está atuando corretamente e, se necessário, entrar em contato com um profissional da área elétrica para que sejam feitos os reparos necessários.

2. O paciente não sente estímulo elétrico:

2.1 A corrente de saída pode não ter sido selecionada.

Verificar as Instruções de Utilização.

2.2 <u>Os eletrodos de borracha condutiva podem estar mau colocados ou com pouco gel de contato.</u>

Posicionar os eletrodos corretamente, procurando o ponto motor no local a ser tratado, utilizando quantidade suficiente de gel de contato iônico para que o contato do estímulo elétrico seja favorecido.

2.3 O plug do cabo que conduz os estímulos pode estar desconectado.

Verificar as conexões de maneira que figuem bem firmes, impedindo possível mau contato.

2.4 Os cabos que conduzem os estímulos podem estar danificados.

Entrar em contato com o fabricante ou com o distribuidor de sua região para que seja feita

manutenção ou substituição dos cabos.

2.5 Não foi pressionada a tecla START.

Pressionar a tecla START.

2.6 Os eletrodos de borracha condutivas podem estar com pouca ou sem condutividade.

Entrar em contato com o fabricante ou com o distribuidor de sua região para adquirir eletrodos de borracha condutiva em perfeitas condições de uso.

Substituição dos fusíveis

Fazendo uso de uma chave de fenda, girar em sentido anti-horário a tampa do porta-fusível, que está localizada na parte traseira do equipamento. Retirar o fusível e efetuar a devida substituição, observando as especificações técnicas do componente fornecidas pelo fabricante.

O fabricante não se responsabiliza pela utilização de fusíveis com especificações diferentes das fornecidas.

Especificações Técnicas

Características das saídas

ALTA FREQÜÊNCIA

Freqüência: 150Hz à 1500Hz

Tensão saída: 12KV

Tempo: 5min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

DESINCRUSTE

Polaridade: negativa ou positiva

Tensão de pico*: 11Vp

Corrente de saída*: 0 a 5mA, com incrementos de 0,5mA

Tempo: 60min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

ELETROLIFTING ESTRIAS

Polaridade: negativa

Tensão de pico*: 400mVp

Corrente de saída*: 50, 100, 150, 160, 170, 180,, 270, 280, 290 e 300µA

Tempo: 60min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

ELETROLIFTING LINHAS DE EXPRESSÃO

Polaridade: negativa

Tensão de pico*: 650mVp

Corrente de saída*: 50 a 200µA, com incrementos de 10µA

Tempo: 60min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

IONTOFORESE

Polaridade: positiva ou negativa

Tensão de pico*: 11Vp

Corrente de saída*: 0,1 a 5mA, com incrementos de 0,1mA

Tempo: 60min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

MICROCORRENTE REPARO TECIDUAL SUPERFICIAL

Freqüência: 100Hz, com possibilidade de ajuste de 1, 3, 5, 10, 20, 30... 100, 150 ou 200Hz

Freqüência modulada: 2500Hz

Polaridade: Positiva, Negativa ou Inversão a cada 2,5s

Tensão de pico*: 2Vp

Corrente de saída*: 0 a 900µA, com incrementos de 50µA

Tempo: 60min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

MICROCORRENTE REPARO TECIDUAL PROFUNDO

Freqüência: 300, com possibilidade de ajuste de 350, 400, 450... 900, 950 ou 1000Hz

Freqüência modulada: 2500Hz

Polaridade: Positiva, Negativa ou Inversão a cada 2,5s

Tensão de pico*: 2Vp

Corrente de saída*: 0 a 900µA, com incrementos de 50µA

Tempo: 60min, com possibilidade de ajuste de 1 a 60min, com incrementos de 1min

*Valores medidos utilizando uma carga resistiva de 2200Ω.

Características da alimentação

Utilizado cabo de força (com 2P+T) para conexão em rede elétrica com tensão alternada

Seleção automática de tensão 127V e 220V

Freqüência de alimentação: 60Hz

Potência de entrada: 18VA

Fusíveis: 200mA FST

Características adicionais:

Consumo máximo: 0,018 kWh.

Peso sem acessórios: 2,8 kg.

Peso com acessórios: 4,0 kg.

Dimensões: 40 cm de largura, 36 cm de profundidade e 17 cm de altura.

Simbologia

Equipamento Classe I

Equipamento de tipo BF

Indica equipamento desligado (sem tensão elétrica de alimentação)

Indica equipamento ligado (com tensão elétrica de alimentação)

Atenção! Consulte DOCUMENTOS ACOMPANHANTES

Diretrizes e declaração do fabricante – emissões eletromagnéticas								
TD Versatile AF7 é um equipamento destinado ao uso no ambiente eletromagnético especificado abaixo. Convém que o								
comprador ou o usuário do TI	comprador ou o usuário do TD Versatile AF7 garanta que este seja utilizado em tal ambiente.							
Ensaio de emissões	Ensaio de emissões Conformidade Ambiente eletromagnético – Diretrizes							
Emissões RF		O TD Versatile AF7 utiliza energia de RF apenas para suas funções internas. Portanto, suas emissões de RF são muito baixas e						

Ensaio de emissões	Conformidade	Ambiente eletromagnético – Diretrizes
Emissões RF CISPR 11	Grupo 1	O TD Versatile AF7 utiliza energia de RF apenas para suas funções internas. Portanto, suas emissões de RF são muito baixas e provavelmente não causarão qualquer interferência em equipamentos eletrônicos nas proximidades.
Emissões RF CISPR 11	Classe B	O TD Versatile AF7 é adequado para uso em estabelecimentos domiciliares e em estabelecimentos diretamente ligados a uma rede elétrica de baixa tensão que alimenta edifícios utilizados para fins domiciliares
Emissões RF CISPR 14-1	Em Conformidade	O TD Versatile AF7 não é apropriado para interconexão com outro equipamento
Emissões RF CISPR 15	Em Conformidade	O TD Versatile AF7 não é apropriado para interconexão com outro equipamento

Diretrizes e declaração do fabricante – emissões eletromagnéticas

O TD Ultra Derm Contrl é um equipamento destinado ao uso no ambiente eletromagnético especificado abaixo. Convém que o comprador ou o usuário do TD Versatile AF7 garanta que este seja utilizado em tal ambiente.

Ensaio de IMUNIDADE	Nível de ensaio da IEC 60601	Nível de conformidade	Ambiente eletromagnético - diretrizes
Descarga eletrostática (DES)	± 6 kV contato ± 8 kV ar	"NIVEL DE CONFORMIDADE" maior que o "NIVEL DE	Convém que os pisos seiam de madeira, concreto ou cerâmica. Se os pisos estiverem recobertos por material sintético, convém que a umidade relativa
IEC 61000-4-2		ENSAIO"	seja de pelo menos 30%
Transitórios elétricos rápidos/salva	± 2 kV para linhas de alimentacão elétrica ± 1 kV para linhas de entrada/saída	"NIVEL DE CONFORMIDADE" maior que o "NIVEL DE ENSAIO"	Convém que a qualidade da alimentação da rede elétrica seja típica de um ambiente hospitalar ou comercial.
IEC 61000-4-4	entrada/salda	"NIVEL DE	
Surtos IEC 61000-4-5	± 2 kV linha(s) a linha(s) ± 1 kV linha(s) ao solo	CONFORMIDADE" maior que o "NIVEL DE	Convém que a qualidade da alimentação da rede elétrica seia típica de um ambiente hospitalar ou comercial.
		ENSAIO"	
Quedas de tensão interrupções curtas e variações de tensão nas	< 5% UT (queda > 95 % na UT) Por 0,5 ciclo 40 % UT (queda de 60 % na UT) por 5 ciclos	"NIVEL DE CONFORMIDADE"	Convém que a qualidade da alimentação da rede elétrica seja típica de um ambiente hospitalar ou comercial. Se o usuário do TD Versatile AF7 precisar de
linhas de entrada da alimentação elétrica IEC 61000-4-11	70 % UT (queda de 30 % na UT) por 25 ciclos < 5% UT (queda > 95 % na UT) Por 5 s	maior que o "NIVEL DE ENSAIO"	funcionamento continuo durante interrupções da alimentação da rede elétrica, é recomendável que o TD Versatile AF7 seja alimentado por uma fonte continua ou uma bateria.
Campo magnético gerado pela frequência da rede elétrica (50/60 Hz) IEC 61000-4-8	3 A/m ede c.a. anterior à aplicação d	"NIVEL DE CONFORMIDADE" maior que o "NIVEL DE ENSAIO"	Convém que campos magnéticos na frequência da rede de alimentacão tenham níveis característicos de um local típico em um ambiente típico hospitalar ou comercial

Diretrizes e declaração do fabricante - imunidade eletromagnética

O TD Versatile AF7 é destinado ao uso no ambiente eletromagnético especificado abaixo. Convém que o comprador ou o usuário do TD Versatile AF7 garanta que este seja utilizado em tal ambiente.

IMUNIDADE IEC 60601 conformidade Ambiente eletromagnético - diretrizes	
RF conduzida RF conduzida RF irradiada IEC 61000-4-3 RF irradiada IEC 61000-4-3 RF irradiada IEC 61000-4-3 RF irradiada IEC 61000-6-3 RF irradiada IE	

NOTA 1 A 80 MHz e 800 MHz, a maior faixa de frequência é aplicável.

NOTA 2 Estas diretrizes podem não ser aplicáveis a todas as situações. A propagação eletromagnética é afetada pela absorção e reflexão de estruturas, objetos e pessoas.

A intensidade de campo proveniente de transmissores fixos, tais como estações base de rádio para telefones (celulares ou sem fio) e rádios móveis de solo, radioamador, transmissões de rádio AM e FM e transmissões de TV não pode ser prevista teoricamente com precisão. Para avaliar o ambiente eletromagnético gerado pelos transmissores fixos de RF, convém que seja considerada uma vistoria eletromagnética do campo. Se a intensidade de campo medida no local no qual o TD Versatile AF7 será utilizado exceder o NíVEL DE CONFORMIDADE aplicável para RF definido acima, convém que o TD Versatile AF7 seja observado para que se verifique se está funcionando normalmente. Se um desempenho anormal for detectado, med idas adicionais podem ser necessárias, tais como reorientação ou realocação do TD Versatile AF7.

Acima da faixa de freqüência de 150 kHz a 80 MHz, convém que a intensidade de campo seja menor que [3] V/m

Distâncias de separação recomendadas entre equipamentos de comunicação por RF móveis ou portáteis e o [EQUIPAMENTO EM ou SISTEMA EM]

O TD Versatile AF7 é destinado para uso em um ambiente eletromagnético no qual as perturbações por irradiação por RF são controlados. O comprador ou usuário do TD Versatile AF7 pode ajudar a prevenir interferências eletromagnéticas mantendo a distância mínima entre os equipamentos de comunicação por RF moveis ou portáteis (transmissores) e o TD Versatile AF7 como recomendado abaixo, de acordo com a potência máxima de saída do equipamento de comunicação.

Nível máximo declarado da potência de saída do transmissor W	Distância de separação recomendada de acordo com a frequência do transmissor		
	150 kHz a 80 MHz $d = \left[\frac{3,5}{V_1}\right]\sqrt{P}$	80 MHz a 800 MHz $d = \left[\frac{3.5}{E_1}\right] \sqrt{P}$	800 MHz a 2,5 GHz $d = \left[\frac{7}{E_1}\right] \sqrt{P}$
0,01	0,12	0,12	0,24
0,1	0,37	0,37	0,74
1	1,17	1,17	2,34
10	3,7	3,7	7,38
100	11,7	11,7	23,34

Para transmissores com um nível máximo declarado de potencia de saída não listado acima, a distancia de separação recomendada *d* em metros (m) pode ser determinada utilizando-se a equação aplicável à frequência do transmissor, onde P é a potencia máxima declarada de saída do transmissor em watts (W), de acordo com o fabricante do transmissor.

NOTA 1 A 80 MHz e 800 MHz, a distância de separação para a maior faixa de frequência é aplicável.

NOTA 2 Estas diretrizes podem não ser aplicáveis a todas as situações. A propagação eletromagnética é afetada pela absorção e reflexão de estruturas, objetos e pessoas.

Assistência Técnica Autorizada Tone Derm®

Em caso de problemas técnicos em seu equipamento procure a ASSISTÊNCIA TÉCNICA AUTORIZADA Tone Derm[®], entrando em contato com o distribuidor de sua região ou com o próprio fabricante. Os acessórios devem ser enviados juntamente com o equipamento, para melhor diagnosticar e sanar os defeitos declarados.

A Tone Derm[®] mantém a disposição da sua ASSISTÊNCIA TÉCNICA AUTORIZADA, esquemas, listagem de componentes, descrição das instruções para calibração, aferição e demais informações necessárias ao técnico para o reparo do equipamento.

A Tone Derm[®] tem por filosofia a MELHORIA CONTINUA de seus equipamentos, por esse motivo se reserva o direito de fazer alterações no projeto e nas especificações técnicas, sem incorrer em obrigações de fazê-lo em produtos já fabricados.

Referências Bibliográficas

- 1. Agne JE. Eletrotermoterapia teoria e prática. Santa Maria: Orium, 2004.
- 2. Allen BJ et al. Primaty afferent fibers that contribute to increase substance P receptor internalization in the spinal cord after injury. J. Neurophysiol. 1999; 81: 1379-90.
- 3. Alvarez OM. et al. The healing of superficial skin wounds is stimulated by external electrical current. J. Investi. Dermatol. 1983; 81(2): 144-8.
- 4. Bassett CA, Mitchell SN, Gaston SR. Pulsin electromagnetic filed treatment in ununited fractures and failed arthrodeses. JAMA. 1982; 247(5): 623-8.
- 5. Borges FS, Santos VNS. Microcorrentes. In: Borges FS. Dermato-funcional: modalidades terapêuticas nas disfunções estéticas. São Paulo: Phorte, 2006.
- 6. Borges FS. Desincruste. In: Borges FS. Dermato-funcional: modalidades terapêuticas nas disfunções estéticas. São Paulo: Phorte, 2006.
- 7. Borges FS. Eletrolifting. In: Borges FS. Dermato-funcional: modalidades terapêuticas nas disfunções estéticas. São Paulo: Phorte, 2006.
- 8. Borges FS, Borges FBS. Alta freqüência. In: Borges FS. Dermato-funcional: modalidades terapêuticas nas disfunções estéticas. São Paulo: Phorte, 2006.
- 9. Borges FS, Valentin EK. Iontoforese. In: Borges FS. Dermato-funcional: modalidades terapêuticas nas disfunções estéticas. São Paulo: Phorte, 2006.
- 10. Ciccone CD. Iontoforese. In: Robinson AJ, Snyder-Mackler L. Eletrofisiologia clínica: eletroterapia e teste eletrofisiológico. 2. ed. Artmed: Porto Alegre 2001.
- 11. Costello CT, Jeske AH. Iontophoresis: applications in transdermal medication delivery. Phys. Ther. 1995; 75(6): 554-63.
- 12. Ferreira AS et al. Estudo da viabilidade da iontoforese na infusão de medicamentos utilizando eletrodos móveis. Fisioterapia Brasil. 2007; 8(6): 392-5.
- 13. Guirro E, Guirro R. Fisioterapia dermato-funcional: fundamentos, recursos e patologias. 3. ed. São Paulo: Manole, 2002.
- 14. Guyton AC, Hall JE. Tratado de fisiologia médica. 9. ed. Rio de Janeiro: Guanabara Koogan, 1997.
- 15. Kirsch D, Mercola JM. The basis for microcurrent electrical therapy in conentional medical pratice. Journal of Advancement in Medicine. 1995; 8(2).
- 16. Lima KS, Pressi L. O uso da microgalvanopuntura no tratamento de estrias atróficas: análise comparativa do tauma mecânico e da microcorrente (monografia). Passo Fundo: Universidade de Paso Fundo, 2005.
- 17. Low J, Reed A. Eletroterapia explicada: princípios e prática. 3. ed. São Paulo: Manole, 2001.
- 18. Nam TS, Baik EJ, Shin YU, Jeong Y, Paik KS. Mechanism of transmission and modulation of renal pain in cats: effects of transcutaneous electrical nerve stimulation on renal pain. Yonsei Medical Journal. 1995; 36(2): 187-201.
- 19. Oliveira AS, Guaratini MI, Castro CES. Fundamentação teórica para iontoforese. Rev. Bras. Fisioter. 2005; 9(1): 1-7.
- 20. Pérez JG, Fernández PG, González EMR. Iontoforesis, dosis y tratamientos. Revista de la Facultad de Ciencias de la Salud. 2004; 2: 1-14.
- 21. Santos VNS, Ferreira LM, Horibe EK, Duarte IS. Electric microcurrent in the restoration of the skin undregone a trichloroacetic acid peeling in rats. Acta Cir Bras. 2004; 19(5): 466-70.
- 22. Seegers JC et al. A pulsed DC electric field affects P2-purinergic receptor functions by altering the ATP levels in *in vitro* an *in vivo* systems. Medical Hypoteses. 2002; 58(2): 171-6.
- 23. Silva CR. Efeito da corrente elétrica de baixa intensidade em feridas cutâneas de ratos [dissertação]. São José dos Campos: Universidade do Vale do Paraíba; 2006;
- 24. Sluka KA, Deacon M, Stibal A, Strissel S, Terpstra A. Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritics rats. J. Pharm. Exp. Therap. 1999;

- 289(2): 840-6.
- 25. Snyder-Mackler L. Estimulação elétrica para reparo do tecido. In: Robinson AJ, Snyder-Mackler L. Eletrofisiologia clínica: eletroterapia e teste eletrofisiológico. 2. ed. Artmed: Porto Alegre 2001.
- 26. Soriano MCD, Pèrez SC, Baquès MIC. Electroestética profesional aplicada.: teoria, y práctica para la utilización de corrientes en estética. Madrid: Sorisa, 2000.
- 27. Soroko YT, Repking MC, Clemment JA, Mitchell PL, Berg RL. Treatment of plantar verrucae using 2% sodium salicylate iontophoresis. Phys Ther. 2002; 82(12): 1184 –1191.
- 28. Sussman C, Byl NN. Corrente elétrica aplicada externamente para reparo tecidual. In: Nelson RM, Hayes KW, Currier DP. Eletroterapia Clínica. 3.ed. São Paulo: Manole, 2003.
- 29. Watson T. Estimulação elétrica para regeneração de feridas: uma revisão do conhecimento atual. In: Kitchen S, Bazin S. Eletroterapia prática baseada em evidências. 10. ed. São Paulo: Manole, 2003.
- 30. Winter WR. Eletrocosmética. 3. ed. Rio de Janeiro: Vida Estética Ltda, 2001.

Certificado de Garantia

A PAGANIN & Cia LTDA fornece ao comprador de seus produtos uma garantia de 21 meses além dos 3 meses legais, totalizando portanto <u>2 ANOS</u> de garantia assegurada pelo número de série do produto.

A garantia fornecida compreende a substituição de peças e a mão-de-obra necessária para o reparo, quando o defeito for devidamente constatado como sendo de responsabilidade do fabricante.

O frete de ida e de volta para a assistência técnica é por conta do comprador.

O Fabricante declara a garantia <u>nula</u> nos casos em que o equipamento:

- For utilizado indevidamente ou em desacordo com o manual de instruções;
- Sofrer acidentes tais como queda ou incêndio;
- For submetido à ação de agentes da natureza tais como sol, chuva ou raios;
- For instalado em locais em que a rede elétrica possua flutuações excessivas;
- Sofrer avarias no transporte;
- Sofrer alterações ou manutenções por pessoas ou empresas não autorizadas pelo fabricante.

Obs: Os acessórios não possuem garantia.

Transporte

Quando for necessário o transporte do equipamento via transportadora, correio ou pelo próprio usuário é indispensável a utilização da embalagem original, a qual foi projetada para resistir a possíveis impactos.

A Tone Derm[®] não se responsabiliza por eventuais danos ocorridos pelo transporte fora de sua embalagem original.

Informações do Fabricante

Paganin & Cia Ltda

Rua Ângelo Michelin, 510 – Bairro Universitário

Cep: 95041-050 - Caxias do Sul /RS

Fone: 55 (54) 3209-5600 / Fax: 55 (54) 3209-5602

e-mail: tonederm@tonederm.com.br

site: www.tonederm.com.br

Autorização de Funcionamento na ANVISA nº: 1.04.115-2 Responsável Técnico: Gustavo Zolet CREA RS 087396-D

Informações do Equipamento

Registro do equipamento na ANVISA nº: 10411520017

Validade: Indeterminada

Lote: Vide etiqueta indelével fixada no equipamento

O equipamento não possui proteção contra penetração de liquido.

Modo de operação: OPERAÇÃO CONTÍNUA

Quanto à interferência eletromagnética, o equipamento atende as normas NBRIEC 60601-1 e NBRIEC 60601-2-10.

O equipamento e suas partes não devem ser descartados no meio ambiente e sim devolvidos ao fabricante.

Manual RE