TREINAMENTO

JACTO

SPRAYER

CONTROL

4100 - 5000

MÁQUINAS AGRÍCOLAS JACTOS.A.

Depto. MARKETING
COMUNICAÇÃO TÉCNICA-TREINAMENTO

TREINAMENTO -0163-01/01

JSC - 4100 e JSC-5000

Os computadores JSC-4100 e JSC-5000, tem o funcionamento idêntico ao JSC-4000. Segue abaixo, resumo dos novos computadores:

JSC-4100:

O JSC-4100, é um computador para funcionar com o comando de pulverização a cabo. O comando de pulverização a cabo, tem os segmentos e a função alívio rápido por cabo, com sensores para indicar ao computador a posição das alavancas, e o controle da pressão é elétrico.

O funcionamento do computador é idêntico ao JSC-4000, as diferenças são:

1.1 SENSOR DE NÍVEL MÍNIMO DO TANQUE

Para a maquina modelo ADVANCE, o sensor esta colocado no ponteiro do medidor de nível, para monitorar a posição do ponteiro.

Para as maquinas modelos: Columbia e Cruzador, o sensor de nível mínimo do tanque foi colocado no final da mangueira de nível da máquina.

Este sensor indica para o computador que a água está acabando, então grandes variações de vazão devem ser desprezadas (não controladas), para não

aumentar a pressão no final do tanque, causando transtornos quando abastece novamente o tanque e a bomba parte com pressão máxima.

O volume que o sensor vai comutar de "com água para sem água" é aprox. 150 litros.

As primeiras máquinas ADVANCE estão comutando com aprox. 250 litros, este valor será alterado.

Quando o computador recebe a informação que a água esta no final, indica no display a mensagem:

ÁGUA NÍVEL BAIXO.

Esta mensagem aparece intermitente (aprox. 2 segundos) na primeira linha do display, junto com a frase que já esta aparecendo na linha.

Após 1 minuto, o computador aciona um sinal sonóro por um breve período de tempo, cada vez que aparece a mensagem.

O objetivo é alertar o operador que a água está acabando, para possíveis providencias, tais como, não entrar em locais que o percurso pode ser muito longo.

O sensor que é utilizado no medidor de nível da Columbia e Cruzador é o mesmo sensor dos segmentos do JSC-4000.

Para o sensor da ADVANCE, foi utilizado um outro modelo de sensor, diferente dos sensores já utilizados no JSC-4000.

Com a intenção de não causar erros, o sensor do medidor de nível da ADVANCE, tem a borracha protetora na cor laranja e o conector é diferente do conector do sensor de segmentos do JSC-4000. Observar que, ao trocar o sensor, a peça será trocada inteira, para não haver necessidade de ajuste da distancia do sensor para leitura do ponteiro.

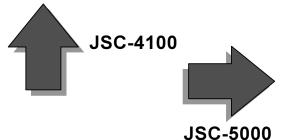
1.2 FUNÇÃO MÉDIA.

A função MÉDIA foi acrescentada no menu, para ser visualizada a qualquer momento, diferente do JSC-4000, que a media aparece somente quando a máquina para.

Podemos selecionar a função média e inclusive "zerar" a mesma.

O funcionamento da média permanece o mesmo do JSC-4000, ou seja, cada vez que começar uma nova pulverização, o computador limpa a média acumulada e começa uma nova média para ser calculada.

A média é uma amostragem de l/ha e velocidade a cada 5 segundos, com o valor que esta no visor no momento.


Quando a pulverização é interrompida, o computador soma os valores das amostras e divide pelo numero de amostras acumuladas no período.

No JSC-4000, a função média não pode ser selecionada pelo display. Esta função só aparece quando a máquina é parada.

No JSC-4100 e JSC-5000, a função média pode ser selecionada pelo display. Pode inclusive ser zerada.



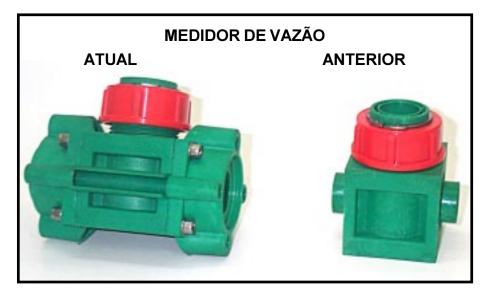
Tacto | TREINAMENTO JSC

1.3 O COMANDO DE PULVERIZAÇÃO.

O comando de pulverização é montado com sensores de posição das alavancas. Os sensores são eletricamente iguais aos sensores do JSC-4000, mas a fixação mecânica é diferente e o comprimento do cabo é diferente. Então o R.G. é diferente.

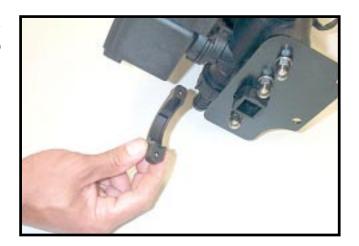


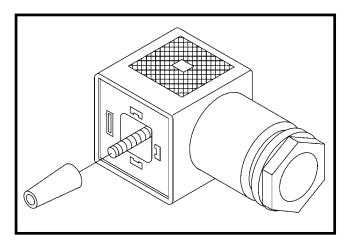
Dentro do conjunto, é montado uma peça de chapa de aço, para permitir a leitura do sensor.

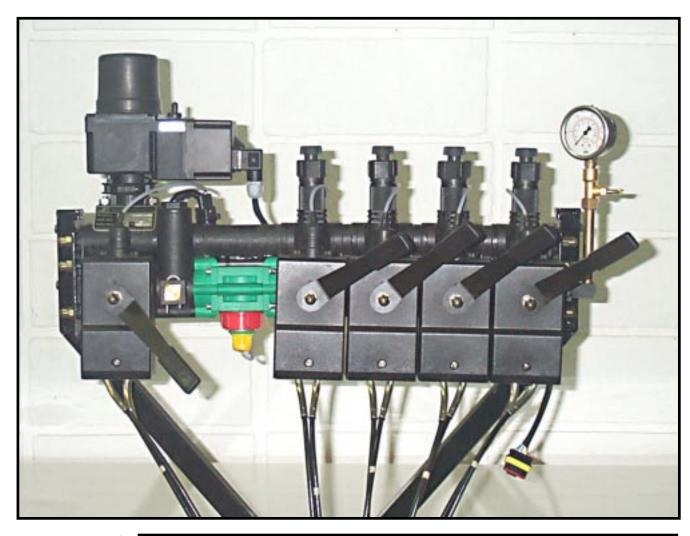

O ajuste de área calibrada deve ser feito normalmente (segmento por segmento).

O ajuste de pressão é elétrico. Para o modo emergência, podemos utilizar o modo manual elétrico ou manual mecânico, destravando a manopla.

Observe que, no modo manual mecânico, ao destravar a manopla temos o local de alojar as peças que foram removidas.


O medidor de vazão é o mesmo utilizado no JSC-4000, o corpo da base é diferente, inclusive as flanges de acoplamento.


Para desmontar o conjunto motor, observe a remoção dos fixadores de "plástico" tipo braçadeiras, através dos parafusos.


Ao montar o conjunto, observe que as braçadeiras tem lado certo para a montagem.

O conector elétrico é fixado com 1 parafuso, e no interior do conector, é montado um calço, para o parafuso ficar bem fixo (apertado).

O calço pode sair do parafuso, é fixo somente com interferência.

AJUSTE MANUAL DA PRESSÃO

Caso tenha ocorrido algum problema na parte eletrônica, é possível operar o comando mecanicamente.

Para que isto ocorra, passe a chave nº 1 para a posição manual.

Acione a chave (detalhe - A) para ajuste da pressão. Desta forma é possível dar continuidade ao trabalho.

ATENÇÃO: Operando mecanicamente, será necessário calibrar a máquina pelo sistema convencional, e este método esta descrito no manual de instruções da máquina. O monitoramento da pulverização também não poderá ser feito eletronicamente.

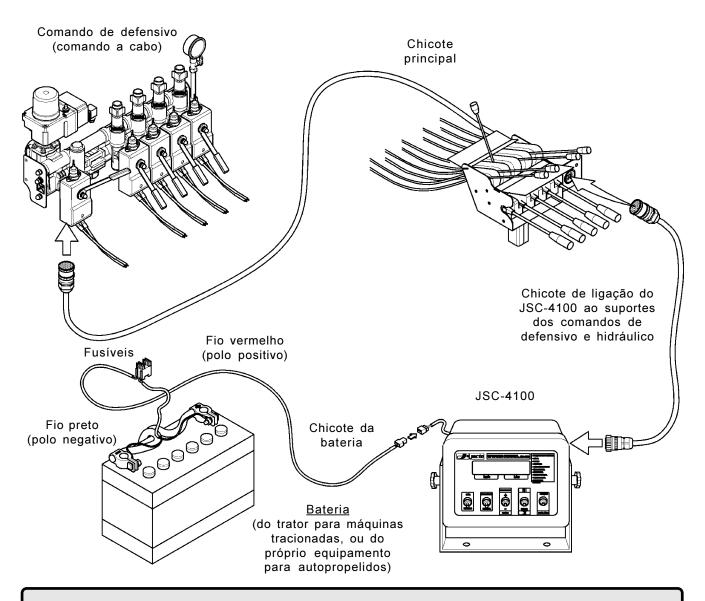
Caso o problema se estenda para a parte elétrica do controlador, proceda da seguinte forma: Passe a chave nº 1 para a posição "Manual".

Retire a capa de proteção do volante. Em seguida, retire o pino que trava o volante ao motor do regulador de pressão. Desta forma, o ajuste da pressão passa ser feito manualmente.

Para que o comando volte a operar eletrônicamente após solucionado o problema, monte o pino trava no comando. Primeiramente faça coincidir a seta que existe no volante do regulador de pressão com a seta da tampa da caixa de engrenagens. Em seguida encaixe o pino com a trava e aperte os parafusos.

1.4 ALIMENTAÇÃO ELÉTRICA POR BATERIA.

 $OJSC-4100, \'e\,montado\,em\,um\,gabinete, que permite\,a\,instala \c gao\,em\,tratores\,com\,e\,sem\,cabine.$


Com o computador montado no trator, não há necessidade de gerador de tensão na máquina, e um cabo com fusíveis de proteção é ligado na bateria do trator.

Observar que o cabo tem polaridade, ou seja, o VERMELHO É O POSITIVO e o PRETO É O NEGATIVO.

Podemos ter mais cabos de alimentação, instalados em mais tratores. O cabo é vendido separadamente.

Os fusíveis são do mesmo tipo utilizado nos carros, com corrente de 10 ou 15 ampères.

ESQUEMA DE INSTALAÇÃO DO JSC-4100 (Pulverizadores da linha Columbia)

<u>ATENÇÃO</u>

- Manusear baterias requer muita atenção, pois o liquido do seu interior é acido e provoca queimaduras na pele, nos olhos, roupas, etc; além de ser explosivo.
- Cuidado também para não ligar os pólos positivo e negativo invertidos, isto pode causar a explosão da mesma.

1.5 CALIBRAÇÃO DAS CONSTANTES (AZUIS).

O procedimento de calibração é o mesmo utilizado no JSC-4000.

Para o SETUP, após o teste do motor, temos no JSC-4100, o teste do sensor de nível.

Na primeira linha aparecerá a frase: SENSOR DE NÍVEL, e na segunda linha aparecerá a frase de condição do sensor de nível ligado ou desligado, e se estiver ligado, aparecerá a condição de leitura do nível, com a frase: COM ÁGUA ou SEM ÁGUA.

Caso acionarmos a chave dos dígitos (zerar), podemos desligar ou ligar o sensor de nível.

Esta condição foi criada para o caso de emergência, com a quebra do sensor de nível.

Podemos desativar o sensor, mesmo correndo o risco do aumento da pressão no final do tanque.

Com a troca da peça defeituosa, podemos ativar novamente o nível.

Atenção, com a perda de memória, o nível pode ficar desligado. Devemos ligar novamente.

Quando estamos testando o nível na Advance, podemos acionar manualmente o ponteiro do nível e verificar a leitura no computador.

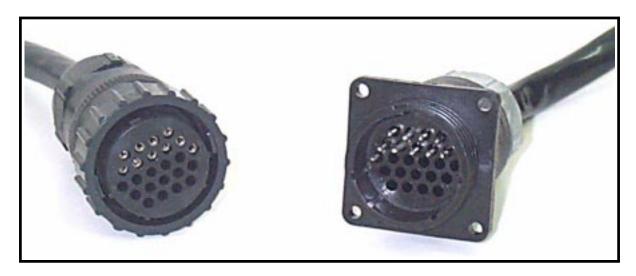
Quando comutamos o sensor de "com água para sem água" e vice-versa, a frase da segunda linha do display alterara e o computador aciona a buzina por um breve período de tempo.

O teste do sensor de nível nas máquinas Columbia ou Cruzador, deverá ser feito de 2 maneiras:

Com o computador no modo teste do sensor, colocar água na máquina e o computador deverá indicar quando o sensor detectar a passagem do nível "sem água para com água".

Quando não for possível colocar água no tanque, para teste do marcador de nível, a solução é retirar o sensor do medidor de nível, simulando o teste com a aproximação do sensor em alguma parte metálica, como por exemplo o chassi da maquina.

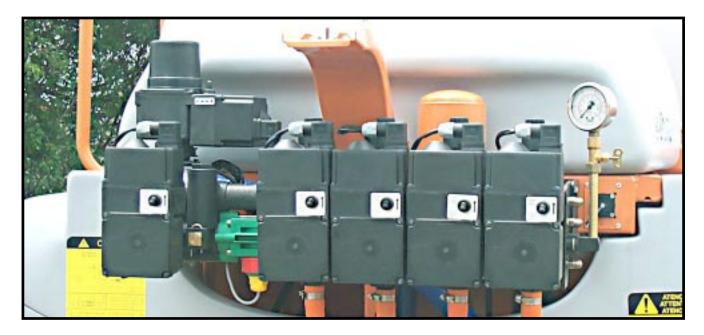
Também podemos colocar outro sensor, no conector do sensor de nível, para testar o chicote e o computador. Neste caso o sensor do marcador de nível, não será testado.


11

1.6 CONECTOR DO CHICOTE DA MAQUINA.

Observar que o conector tem uma polarização mecânica para o encaixe.

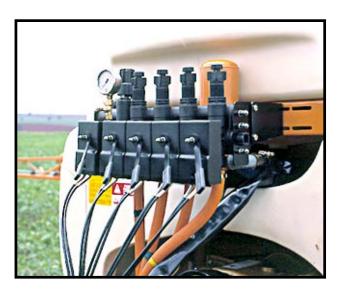
ATENÇÃO: O conector é do tipo macho/fêmea. Alinhe os pinos corretamente e não faça esforço para a união das peças.


2 - JSC - 5000.

Todas as informações que foram tratadas nesta apostila para o computador JSC-4100, são aplicadas diretamente para o computador JSC-5000.

A grande diferença do computador JSC-5000, comparando com o computador JSC-4000 e JSC-4100, é que o mesmo tem o recurso de operar o comando elétrico de pulverização, através de chaves instaladas no painel do computador, para ligar e desligar os segmentos das barras de pulverização.

Os itens 1.1 até 1.6 são os mesmos para o JSC-5000.

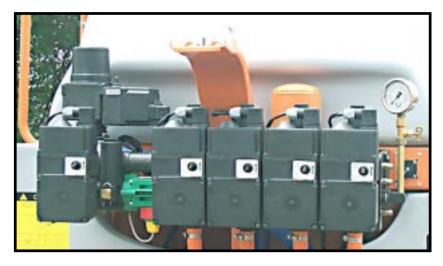


3 OS NOVOS COMANDOS DE PULVERIZAÇÃO.

Existe 4 novos modelos de comandos de pulverização:

3.1 - O comando de pulverização com acionamento por cabos. Este modelo de comando tem acionamento em todas as funções, inclusive alivio rápido.

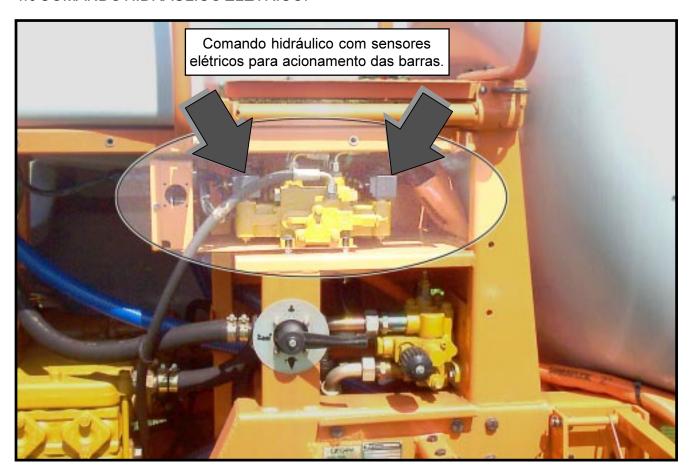
O ajuste de pressão pode ser mecânico (através de manopla) ou elétrico, com o computador.



3.2 - O comando somente elétrico, com acionamento elétrico nos segmentos das barras e no controle de alívio/pressão rápido, e o controle de pressão é mecânico.

Este modelo de comando é para o mercado de máquinas que utilizam tratores com cabine, sem o uso de cabos, e quando não há interesse do uso do computador de pulverização.

3.3 O comando elétrico eletrônico, com acionamento elétrico em todas as funções, medidor de vazão e computador para controle da vazão.



Segue abaixo alguns itens que devem ser comentados sobre o comando:

- -CONJUNTO MOTOR
- ACIONAMENTO MANUAL DA PRESSÃO
- ACIONAMENTO MANUAL DOS SEGMENTOS E ALIVIO RÁPIDO.
- CORRENTE DO MOTOR
- FORÇA DO MOTOR
- DIAGNÓSTICO DE DEFEITO

4.0 COMANDO HIDRÁULICO ELÉTRICO.

Quando a máquina esta montada com o comando de pulverização elétrico ou eletro-eletrônico, o comando hidráulico (movimentação do quadro e barras) é com acionamento elétrico.

O comando hidráulico elétrico montado nas máquinas ADVANCE, FALCON e CRUZADOR, é similar ao comando hidráulico que é montado no UNIPORT.

Uma pressão inicial (pré-carga inicial) de 6 a 8 kf/cm2 com o motor aprox. 540 rpm, é necessário para funcionar o comando.

O comando deve funcionar inclusive com rotação baixa no trator, então a válvula que gera a précarga está ajustada para funcionar inclusive em rotações baixas (ajuste feito pelo fabricante do comando).

Na prática, o comando não deve ser ajustado na Jacto ou no campo.

Atenção especial para problemas de funcionamento com sujeira.

No caso de defeitos, é necessário a troca do comando, não faça ajustes no campo.

Como testar o circuito elétrico:

Opção 1:

- Solte a porca do conjunto solenóide e ao acionar a chave elétrica do conjunto, podemos perceber o magnetismo na bobina.

- Quando for possível, devido a presença de mangueiras, podemos retirar a bobina do solenóide e verificar a presença do campo magnético com uma chave de fenda colocada dentro da bobina.

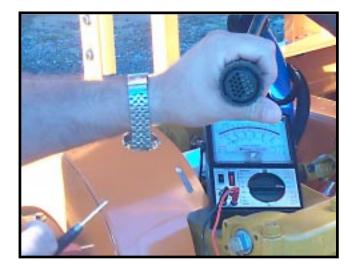
NOTA: Para fazer este teste, os chicotes elétricos (bateria e comando) devem estar devidamente instalados.

Percebe-se a falha na bobina ou chicotes elétricos quando, ao acionar a chave elétrica não ocorrer magnetismo entre a bobina e o eixo do comando hidráulico.

Opção 2:

- Para checar o funcionamento do circuito elétrico do comando hidráulico, podemos colocar um medidor de continuidade (multímetro ou "bip") nos terminais de alimentação do painel de controle do circuito hidráulico.

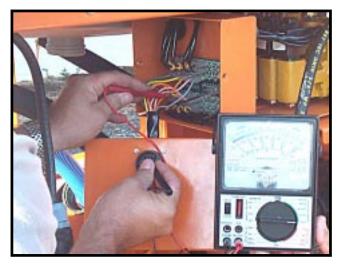
Quando é acionado uma função hidráulica através das chaves, o medidor de continuidade deverá indicar continuidade, através dos chicotes e da bobina do solenóide do comando.


Caso apresente falta de continuidade, deveremos utilizar o medidor de continuidade, e fazer o teste no comando e chicote, utilizando as informações dos esquemas elétrico da máquina. (explicações do esquema e testes práticos com a máquina e comando.

TESTE DO CHICOTE DE ALIMENTAÇÃO DA CAIXA DE PROTEÇÃO DOS TERMINAIS

- Solte o cabo de alimentação e retire a tampa da caixa de proteção dos terminais.
- Os conectores (lados macho e fêmea), são numeradas para identificar o posicionamento dos fios. Identifique-os e cheque a passagem de energia janpeando os conectores.

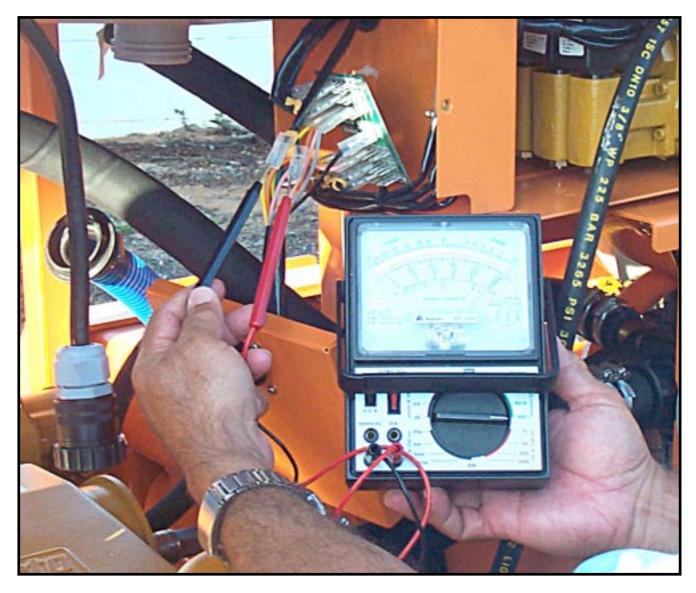
ATENÇÃO: Antes de iniciar os testes, verifique se os conectores não estão danificados.



TESTE DO CHICOTE DE LIGAÇÃO DA TAMPA DA CAIXA DE PROTEÇÃO AOS TERMINAIS

- Este teste deve ser feito nos conectores e terminais que possuem a mesma cor do fio. Identifique-os e cheque a passagem de energia janpeando os conectores e terminais.

ATENÇÃO: Antes de iniciar os testes, verifique se os conectores não estão danificados.



TESTE DO CHICOTE DE LIGAÇÃO DOS SOLENÓIDES

- Este teste deve ser feito nos conectores e Ex.: Fio nº 1. Identifique a que solenóide este fio esta ligado e teste a passagem de corrente.

Faça este procedimento nas demais ligações dos solenóides.

ATENÇÃO: Antes de iniciar os testes, verifique se os terminais não estão danificados.

NOTA: Será implantando sinalizadores tipo LED, na placa de ligações do comando, para checar o funcionamento elétrico do painel de controle (chaves) até a placa de ligações do comando. Terá LED sinalizador inclusive no solenóide do ventilador.

Os sinalizadores facilitarão o diagnóstico de defeitos elétrico.

Para cada função acionada, o respectivo LED deverá acender, indicando que a tensão elétrica está chegando até o comando.

17

INFORMAÇÕES DIVERSAS.

CIRCUITO PROTETOR DA MANIPULADORA DO UNIPORT.

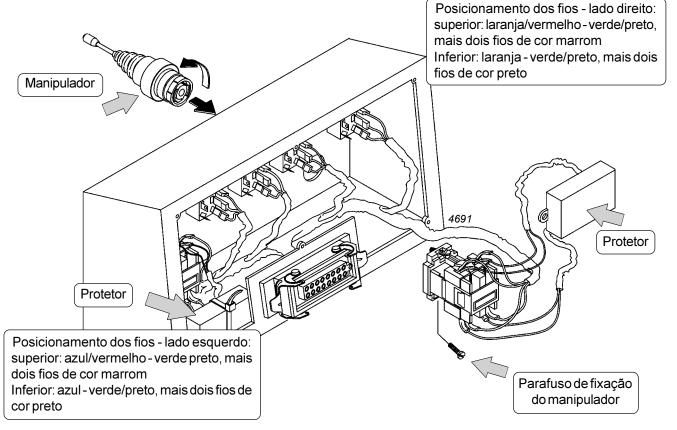
Foi introduzido um circuito protetor para os contatos elétrico das manipuladoras das barras do UNIPORT.

O circuito é de fácil instalação.

O protetor é duplo, atendendo os dois lados da manipuladora. Utiliza-se 2 protetores por máquina, um para cada manipulador.

A instalação é simples. Basta instalar os dois fios de uma mesma cor em cada contato, junto com os fios que estão ligados.

(Para as máquinas do campo, segue folheto explicativo).

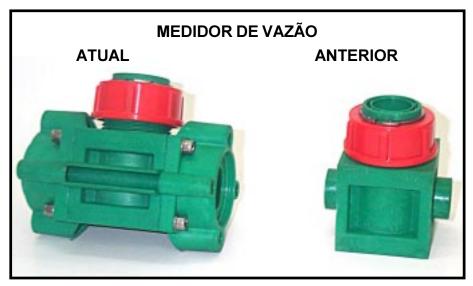


INSTRUÇÕES DE MONTAGEM DO PROTETOR DO MANIPULADOR

- Retire os parafusos de fixação do manipulador.

NOTA: Durante a desmontagem, esteja atento ao posicionamento correto dos fios.

- Instale o protetor do manipulador, ligando os fios de acordo com a figura abaixo.
- Prenda o protetor ao chicote.
- Instale novamente o manipulador ao painel



MEDIDOR DE VAZÃO.

O novo medidor de vazão possui os mancais da hélice na cor azul, e podem ser substiuidos separadamente.

COMENTÁRIOS DIVERSOS

VOLUME DO TANQUE DA ADVANCE.

Clientes no PARANÁ reclamaram que o volume do marcador da ADVANCE, estava diferente da marcação de volume do JSC-5000.

Colocando 2000 litros de água no tanque, no display do computador pode aparecer por exemplo, 2150 litros.

Foi constatado na máquina que o medidor de vazão estava descalibrado, com constante errada. O cliente estava trabalhando com aprox. 13 litros por minuto em toda a barra, com velocidade de 7 km/h e 60 litros/ha.

Então como a utilização estava próxima do limite do medidor de vazão, que é 10 litros por minuto, devemos calibrar o medidor para esta faixa.

Para que não haja problemas deste tipo é importante que o medidor de vazão seja calibrado nas trocas de bicos.

Esta diferença é normal porque estamos trabalhando bem próximo do limite mínimo do medidor.

ÁREA TRABALHADA

Reclamação que o UNIPORT registrou 20 km de distancia percorrida e se a faixa de trabalho é 21,5 metros, 20.000 x 21,5 = 43.000 m2 = 43 ha. E o UNIPORT registrou aprox. 41 ha.

Observe que se trabalhamos sempre com os 4 segmentos abertos a faixa será de 21,5 metros. Mas se trabalharmos algum trecho com algum segmento fechado, a distancia percorrida será a mesma e a área trabalhada será ,menor.

Podemos afirmar que para um percurso de 20.000 metros, a área trabalhada foi de 41 ha, então podemos conhecer o rendimento operacional da área.

FALHAS ELÉTRICAS DOS CHICOTES.

Tivemos um caso de uma máquina UNIPORT que não confirma o fim de curso, causado por um erro no chicote do comando.

No teste do motor, acionando a chave para mais o motor aumenta a pressão até o final do curso e não indica fim de curso no computador.

Diminuindo a pressão, o computador indica imediatamente a falta de pressão.

Esta faltando um fio verde com listra branca, no chicote do comando, que indica para o computador, a situação dos fim de curso.