DUCATI energia

Manual de instruções do regulador automático de energia reativa

1 ESQUEMA SIMPLIFICADO DA PRIMEIRA LIGAÇÃO

- 1. Ligar o Regulador
- 2. Display mostra "IL" e "- - " alternadamente
- 3. Inserir parâmetro "**IL**" = relação T.A. da rede (ex. T.A. 200/5 inserir 40)
- 4. "▲" e "▼ " para mudar o parâmetro. Teclar "DATA" para confirmar.
- 5. O display mostra "FAS" alternado com "0" ou "1"
- Conecta desconecta por três vezes (auto-aquisição)
 Deste modo o Regulador registra as potências dos estágios dos capacitores, determinando automaticamente a lógica de conexão, segundo os valores de construção do banco (1:1:1 – 1:2:2 ou 1:2:4)
- 7. Display mostra alternadamente "C1" e o valor medido do primeiro estágio.
- 8. Pressionar a tecla "DATA" para visualizar o valor dos estágios seguintes.
- 9. Se as medidas estiverem **corretas**, pressione por três segundos a tecla "**DATA**" para sair e a instalação está completa.

- 10. Em caso **negativo** deverá ser feita nova auto-aquisição ou uma programação manual.
- 11. Para ativar uma nova auto-aquisição, pressionar as teclas "ALARM/RESET" + "▲"
- 12. Para efetuar uma programação manual, pressionar as teclas "ALARM/RESET"

+ "▼"

<u>SUMÁRIO</u>

1 ESQUEMA SIMPLIFICADO DA PRIMEIRA LIGAÇAO	02
2 SEGURANÇA2	
3 DESCRIÇÃO DAS CARACTERÍSTICAS GERAIS	04
4 MODALIDADES DE FUNCIONAMENTO	
5 MODALIDADES DE CONEXÃO COM A REDE	06
6 INSTRUÇÕES PARA INSTALAÇÃO DO TA	06
7 PRIMEIRA LIGAÇÃO	
8 PRÓXIMAS LIGAÇÕES	09
9 VERIFICAÇÃO DO FUNCIONAMENTO CORRETO DO EQUIPAMENTO	09
10 MENU DE PARÂMETROS	10
11 VISUALIZAÇÃO DE MEDIDAS	
12 FUNÇÕES ÁDICIONAIS	15
12.1 Modo de funcionamento manual	15
12.2 Visualização das potências de cada estágio	
12.3 Procedimento de controle de eficácia de cada estágio	16
12.4 Procedimento para habilitar/desabilitar os relés de saída durante	
o modo de funcionamento automático	16
12.5 Visualização do medidor das operações efetuadas por cada relé	17
12.6 Visualização do release do software	17
12.7 Procedimento de teste da conexão com os estágios dos capacitores	17
12.8 Modalidade de compensação reativa dos capacitores	
12.9 Operação de reinicialização total dos parâmetros de Setup	
13 SINALIZAÇÃO E ALARMES	
13.1 Sinalização de falta de compensação reativa	19
13.2 Sinalização de excesso de tensão	
13.3 Dispositivo para proteção contra excesso de temperatura	. 21
13.4 Dispositivo para proteção contra excessiva distorção harmônica	21
13.5 Dispositivos para proteção contra caídas de rede e caídas de tensão	. 22
13.6 Visualização do contador dos alarmes	
13.7 Modificação das modalidades de ativação dos alarmes	. 23
14 MENU OCULTO	23
15 LISTA DE PRINCIPAIS TECLAS E FUNÇÕES CORRESPONDENTES	. 26
16 RESOLUÇÕES DE PROBLEMAS	. 27
17 CARACTERÍSTICAS TÉCNICAS	29

1 SEGURANÇA

Este regulador automático para compensação reativa é fabricado e submetido a testes de funcionamento de acordo com as normas regulares vigentes e saiu de fábrica em perfeitas condições de segurança técnica.

A fim de manter as ditas condições e garantir seu funcionamento de modo seguro, o usuário deve respeitar e aplicar as presentes instruções de uso.

ATENÇÃO

Este equipamento deve ser instalado por **profissionais qualificados** e em conformidade com o disposto nas normas regulares vigentes sobre instalações, a fim de evitar lesões às pessoas e danos materiais.

As operações de manutenção e reparação deverão ser efetuadas e única e exclusivamente por profissionais autorizados. Antes de efetuar qualquer operação de manutenção ou reparação devem-se desconectar todas as fontes de energia.

A DUCATI energia S.p.a não se responsabiliza por eventuais lesões corporais ou danos materiais causados por uso impróprio ou incorreto dos seus próprios produtos.

Devido à contínua evolução de nossa tecnologia, nos reservamos ao direito de modificar, sem prévio aviso, as especificações aqui descritas. Portanto, as descrições e os dados do catálogo não têm nenhum valor contratual.

2 DESCRIÇÃO DAS CARACTERÍSTICAS GERAIS

O regulador de potência reativa REGO cumpre a função de controle e regulação das baterias dos capacitores. Seu funcionamento com tecnologia de microprocessador permite efetuar medições de fator de potência precisas e confiáveis.

A regulação do fator de potência se efetua mediante a troca das baterias dos capacitores em função da potência reativa requerida para a carga: se para obter o Cosf requerido é necessário mais um estágio, o REGO conecta todos os estágios que serão necessários com um atraso entre um e outro equivalente ao tempo "T2" pré-determinado. Portanto, se obtém uma redução do número de manobras e, no

caso das baterias dos capacitores serem de valores iguais, um uso homogêneo das mesmas.

O regulador dispõe de modalidades de funcionamento automática e manual. Por fim, é possível obter a aquisição automática das potências associadas às etapas graças a função de "auto-aquisição". Ao finalizar este procedimento, o regulador também escolhe a seqüência de conexão mais adequada. Alternativamente, é possível predispor manualmente qualquer um dos numerosos programas de usuário disponíveis. Graças a esta função o regulador estará em condições de interferir e corrigir com maior rapidez o PF do sistema: portanto, como já foi explicado, medindo a potência em tempo real e conhecendo as potências associadas em cada um dos estágios, poderá se calcular que potência reativa é necessária para situar o Cosf no valor desejado conectando de forma conjunta todos os estágios necessários (só com o retardo "T2" pré-selecionado entre um e outro).

O modelo de 7 ou 12 estágios também está equipado com uma interface Rs485 com protocolo de comunicação Standard "DUCATI", que permite conectar o equipamento com uma rede de instrumentos e ler à uma distância os dados medidos mediante a conexão de um PC.

REGO pode realizar outras interessantes funções como medir a temperatura do painel de controle do ventilador externo de esfriamento (nos modelos de 7 ou 12 etapas); por estar equipado com uma série de dispositivos de proteção e alarmes associados, permite preservar as baterias dos capacitores e garantir o perfeito funcionamento do sistema; por fim, permite contar o número de um determinado estágio a fim de prevenir eventuais paradas como conseqüência de problemas – aumentando desta maneira a confiabilidade do sistema – e muito mais.

NOTA: O regulador REGO está equipado com uma série de teclas no painel frontal que permitem acessar as funções e a programação. Algumas funções se ativam pressionando uma combinação de teclas (Ex: AUTO/MAN + ▲) significa pressionar a primeira tecla e, sem soltar, pressionar a segunda (ou seja, a função AUTO/MAN + ▲ ativa uma função diferente daquela ativada pela combinação ▲ + AUTO/MAN).

3 MODALIDADES DE FUNCIONAMENTO

A corrente medida pelo T.A. da rede é filtrada e confrontada com o fator de potência solicitado e com a zona de insensibilidade: se as condições predispostas pelo usuário exigem, o led ▲ (ou o ▼) acende e no menor espaço de tempo

possível (compatível com o tempo de descarga dos capacitores T1), os estágios necessários se conectam para obtenção do fator de potência.

O Regulador se adapta ao sentido de circulação da corrente medida pelo T.A.

Se a corrente do secundário do T.A. for **inferior a 200 mA**, o Regulador desconecta todos os estágios e aparece "COS" de forma alternada com "- - -" que ficam piscando.

COS ---

e permanece em estado de "stand-by" (espera) até que retorne uma corrente superior àquele valor.

4 MODALIDADES DE CONEXÃO COM A REDE

O regulador de potência reativa REGO permite três modalidades diferentes de conexão com a rede (fig. 3 – pág. 3 do manual):

"FF1" – Nesta modalidade (configuração padrão) o T.A./5A é posicionado na fase R (L1) e a tensão de referência se obtém da junção das fases S(I2) e T(L3). Esta é uma clássica conexão volti-amperimétrica.

"**FF2**" – Nesta modalidade o T.A./5A está na fase R(L1) enquanto que a tensão de referência é obtida da junção das fases R(L1) e S(L2).

<u>Atenção</u>

No caso do sentido cíclico ser ignorado das fases de alimentação, a conexão na modalidade FF2 pode ocasionar erro de medição do fator de potência.

"F-n" – Nesta modalidade o T.A./5A está na fase R(L1) enquanto que a tensão de referência está na fase neutra, entre a própria fase (R(L1) e o neutro N. É recomendado utilizar esta forma **apenas em sistemas monofásicos**.

5 INSTRUÇÕES PARA INSTALAÇÃO DO TA

O T.A. deve ter um valor:

- no primário, o T.A. é igual ou relativamente superior à corrente máxima consumida pela carga situada na posição sucessiva do próprio T.A.;
 - no secundário, de 5A.

MUITO IMPORTANTE:

- O T.A. deve ser conectado em posição previa ao sistema de compensação reativa e em posição sucessiva a da carga (ver Fig. 5, posições a e b na pág. 199).
- O T.A não deve jamais ser conectado diretamente com a alimentação da carga (ver Fig. 5, posição c na pág. 199) ou diretamente com a alimentação da compensação reativa (ver Fig. 5, posição d na pág. 199)
- Na modalidade de conexão FF1 o T.A deve ser conectado na fase que não se utiliza para a alimentação voltimétrica do regulador.

7 PRIMEIRA LIGAÇÃO

Na primeira ligação, o Regulador REGO funciona de forma diferente já que, neste caso, é necessária a inserção do parâmetro **IL** (relação do T.A. de rede) para que funcione. Se não houver essa inserção, o processo de ligação não poderá continuar. Por outro lado, nas próximas ligações utilizará o parâmetro previamente colocado, a menos que deseje modifica-lo.

Ao ligar o Regulador, imediatamente aparece no display durante alguns segundos **8.8.8.** e todos os leds se iluminam, para controlar seu completo funcionamento.

7.1 – Durante a primeira ligação, no led aparece alternadamente "IL" e "- - - " piscando até conseguir a relação de T.A. da rede.

IL ---

Pressionar a tecla ▲ ou ▼ para modificar o parâmetro e, em seguida, a tecla DATA para confirmar.

PARÂMETRO IL – Por exemplo: se a relação do T.A. é de 200/5 o parâmetro deverá ser IL = 40 (relação do T.A. de rede)

Outros exemplos: T.A. 300/5 – IL=60 ; T.A. 350/5 – IL=70 ; T.A. 400/5 – IL=80.

7.2 - Em seguida, no Regulador aparece "FAS" alternando com "0" ou "1";

FAS

nesta fase se conhece a medição e é possível visualizar o sentido da corrente de chegada, desde o T.A. (0 = direto / 1 = invertido). Trata-se de uma informação meramente orientativa.

NOTA: Se durante esta fase há falta de corrente (menor que 200 mA), o Regulador não pode determinar seu sentido e, portanto, **permanece bloqueado** até a chegada da corrente.

7.3 – Depois de aparecer o parâmetro "FAS", automaticamente efetua o procedimento de **leitura automática da potência de cada um dos estágios dos capacitores**. Os estágios dos capacitores serão conectados e medidos um após o outro, três vezes cada. No final desta leitura o Regulador mostra "C1", alternando com o valor da potência medida no primeiro estágio. Por ex: C1 50,0

Pressionando a tecla **DATA** é possível verificar a potência do próximo estágio.

Se as potência medidas não são corretas, permanecendo neste menu, pode-se pressionar;

- ALARM/RESET + ▲ para iniciar uma nova leitura
- ALARM/RESET + ▼ para inserir uma programação manual.

NOTA: PARA UM FUNCIONAMENTO CORRETO É NECESSÁRIO CONTROLAR QUE AS POTÊNCIAS MEDIDAS PELO REGULADOR ESTÃO CORRETAS.

Se as potências medidas são corretas, mantem-se pressionada a tecla **DATA** durante três segundos e troca-se o menu e o Regulador voltará a funcionar de forma automática, aparecendo no display a mensagem "**COS**", alternada com o valor de potência do sistema.

Por ex.: COS 0,95

8 PRÓXIMAS LIGAÇÕES

Ao ligar o regulador, imediatamente aparece durante alguns segundos **8.8.8** no monitor e todos os leds ficam acesos para controlar sua eficiência.

Após estes segundos, o monitor do regulador mostra 'FAS" alternado com "0" ou "1".

Ex:

FAS 1

Nesta fase se conhece a medição e é possível visualizar o sentido da corrente da chegada até o T.A. (0=direto / 1 = invertido). Se trata meramente de um dado para orientação.

NOTA: Se neste momento falta a corrente (menor que 200 mA), o regulador na pode determinar o sentido e, portanto, permanece bloqueado neste estado até que a corrente volte ao normal.

Após isto, o regulador não necessita de nenhum outro tipo de configuração e está pronto para seu funcionamento correto, alternando no monitor a mensagem "COS" com o valor do fator de potência do sistema.

Ex:

COS 0.95

9 VERIFICAÇÃO DO FUNCIONAMENTO CORRETO DO EQUIPAMENTO

Para constatar imediatamente o correto funcionamento do regulador é necessário saber que:

- ao aumentar a carga, o regulador deve acender o led ▲ e conectar as etapas dos capacitores.
- ao diminuir ou retirar a carga, o regulador deve acender o led ▼ e desconectar as etapas dos capacitores.
- Com os leds ▲ e ▼ apagados deve aparecer no monitor do regulador um valor de Cosf aproximado ao configurado (ver capítulo 10.2 Pág. 204)
- Ao aumentar o valor de Cosf indutivo até 1, a corrente que circula em posição previa à compensação reativa se reduz; ao contrário, em Cosf capacitivo aumenta.

10 MENU DE PARÂMETROS

Para acessar o menu de parâmetros pressione ▲+▼ e no monitor aparecerão os seguintes parâmetros:

10.1 "Fr": Freqüência de rede

Se visualiza o parâmetro "Fr" alternadamente com o valor medido. Se trata de um dado meramente orientador.

Pressionar **DATA** para ir ao próximo parâmetro.

10.2 "COS": Fator de potência desejado para o sistema

Se visualiza, como padrão, o parâmetro "COS" alternadamente com o valor "0.95".

O valor pode ser modificado pressionando as tecla ▲ ou ▼.

Pressionar **DATA** para ir ao próximo parâmetro.

10.3 "UFF": Tensão de rede

Se visualiza, como padrão, o parâmetro "UFF" alternadamente com o valor "400".

O valor pode ser modificado pressionando a tecla ▲ ou ▼.

NOTA: Em caso de utilizar um transformador auxiliar para alimentar o regulador, o parâmetro "UFF" que deve ser configurado deve ser igual ao valor nominal da tensão primária do transformador auxiliar. Para modificar este valor é necessário pressionar:

ALARM/RESET + ▲ para aumentar o valor. ALARM/RESET + ▼ para diminuir o valor.

Pressionar **DATA** para ir ao próximo parâmetro.

10.4 "IL": Relação de T.A. da rede

Se visualiza o parâmetro "IL" alternadamente com o valor anteriormente configurado pelo usuário.

O valor pode ser modificado pressionando a tecla ▲ ou ▼.

Exemplos de configuração:

T.A. 300/5, IL=60; 350/5, IL=70; 400/5, IL=80.

Pressionar **DATA** para ir ao próximo parâmetro.

10.5 "COn": Tipo de conexão do regulador com a rede.

Se visualiza, como padrão, "COn" alternadamente com o valor "FF1".

O valor pode ser modificado pressionando a tecla ▲ ou ▼. (seleções possíveis FF1, FF2, F-n – ver capítulo 5 – Pág. 197).

Pressionar **DATA** para ir ao próximo parâmetro.

10.6 "SUP": Predisposição do borne utilizado para alimentar o regulador.

Se visualiza, como padrão, "SUP" alternadamente "U2".

O valor pode ser modificado pressionando a tecla ▲ ou ▼. (seleções possíveis: U1/230V ou U2/400V).

Pressionar **DATA** para ir ao próximo parâmetro.

10.7 "FAS": Ativação ou desativação da auto-adequação do sentido de T.A. da rede.

Se visualiza, como padrão, "FAS" alternadamente com o valor "On" (auto-adequação ativada).

O valor pode ser modificado pressionando a tecla ▲ ou ▼. (seleções possíveis: On/auto-adequação e blo/bloqueio do sentido do T.A.).

Pressionar **DATA** para ir ao próximo parâmetro.

10.8 "**ACq**": Menu de seleção para efetuar a aquisição da potência da cada uma das etapas e para configurar sua lógica de conexão.

Se visualiza, como padrão, "ACq" alternandamente com o valor "no".

O valor pode ser modificado pressionando a tecla ▲ ou ▼ e confirmado pressionando a tecla DATA; as seleções possíveis são:

12

no: não efetua nenhuma aquisição.

ACq / AUt

AUt: se efetua automaticamente uma nova aquisição.

As etapas dos capacitores serão conectadas e medidas uma atrás da outra, três vezes cada. Ao final deste procedimento, se visualizará no monitor do regulador a mensagem "C1" alternadamente com o valor da potência medida no primeiro estágio; pressionando a tecla DATA é possível visualizar do estágio seguinte.

Manter pressionada a tecla DATA durante três segundos para ir ao próximo parâmetro.

ACq / Pr

Pr: se configura manualmente a lógica de conexão e a potência da cada uma dos estágios.

Aparece a mensagem "Pro": selecionar o programa escolhido (ver Tabela 1 − Pág. 210) pressionando a tecla ▲ ou ▼ e confirma pressionando a tecla DATA.

Pro. 0

A seguir, ao aparecer "PFC" configure em kVAr o valor da primeira bateria de compensação reativa (que está sempre conectada ao borne de saída "1") pressionando a tecla ▲ ou ▼.

PFC 0

Por exemplo: com um equipamento automático de 100 kVAr com estágios de potência 10-10-20-40, os parâmetros a configurar são:

Pro: 26 (ver tabela 1 – página 210)

PFC: 10.

Pressionar **DATA** para ir ao próximo parâmetro.

TIPOS DE LÓGICA DE CONEXÃO

A seguir, é mostrado os três tipos de lógica que o regulador pode conectar ou desconectar as baterias dos capacitores para obter e manter o Cosf configurado.

Lógica Linear

Esta lógica é identificada mediante a sigla 1:1:1 e indica que a potência alcançada pelas baterias dos capacitores é igual em todas. Da acordo com a situação ilustrada na tabela a seguir,

N⁰ Bat.	1	2	3	4	5	6
Estado	OFF	ON	ON	ON	OFF	OFF

quando se deve conectar uma bateria, o regulador conectará a número 5 e em caso que se deva desconectar uma bateria, desconectará a número 2. Deste modo, todas as baterias funcionarão e o desgaste dos componentes se distribuirá equivalente entre entre todas elas.

Lógica Geométrica

É identificada mediante a sigla 1:2:4 e indica que a potência alcançada por uma bateria corresponde a um determinado valor, de maneira que o valor da seguinte é igual ou, no máximo, o dobro da anterior. Por exemplo, se as potências das baterias são:

Nº Bat.	1	2	3	4	5	6
Potência	10	20	40	40	40	80

E necessita uma carga de 50 kVAr, o regulador conectará a 1ª, a 2ª e posteriormente a 3ª, obtendo portanto 70 kVAr. A seguir desconectará a 1ª e depois a 2ª, portanto alcançará uma potência de 40 kVAr; por fim, conectará novamente a 1ª para obter 50 kVAr. Em resumo, esta lógica permite obter um alto número de possibilidades com um número limitado de baterias, porém o número de manobras não se distribuem uniformemente sobre as baterias, com desvantagem para as primeiras.

Lógica Semi-geométrica

É identificada mediante a sigla 1:2:2. A potência da primeira bateria deve ser sempre igual à metade das demais, sendo que as potências destas devem ser iguais entre si. A primeira bateria é controlada geometricamente, enquanto as restantes são iguais entre si e controladas linearmente.

IMPORTANTE: O primeiro relé de saída deve estar sempre conectado com a unidade de capacitores de potência menor. Em caso de estágios com potências iguais, prestar atenção para não deixar a primeira etapa sem capacitores governados. Por fim, caso

se configure o programa do usuário (ver tabela 1; pág. 210) é necessário configurar o valor da primeira bateria.

10.9 "s.s.s": Visualização da lógica configurada.

Ao concluir a aquisição automática ou a configuração manual, se visualizará no monitor do regulador uma seqüência de conexão e começará a funcionar automaticamente. Se o regulador não consegue identificar uma seqüência adequada, configurará sempre a 1:1:1;

Pressionar a tecla DATA para retornar ao primeiro parâmetro do menu. Para sair do menu de parâmetros deve-se manter pressionada a tecla DATA durante três segundos.

11 VISUZALIZAÇÃO DAS MEDIDAS

Geralmente no monitor do regulador se visualiza o Cosf do sistema. Um eventual sinal de menos (-) indica um fator de potência capacitivo.

NOTA: Em caso de falta de corrente, o Cosf não pode ser calculado e no monitor aparece "C.O.S' de maneira alternada com "-.-.-".

Para visualizar as medidas pressione a tecla DATA: cada vez que esta tecla é pressionada se visualiza a medição seguinte.

A seguir, a sequência das medições a serem visualizadas:

- "COS" (fator de potência do sistema)
- "**UFF**" (tensão eficaz)
- "IL" (corrente de linha medida no primário do TA)
- "PA" (potência ativa consumida pela carga, em kw)
- "PL" (potência reativa consumida pela carga, em kw)
- "thd" (fator de distorção harmônica)

- "O C" (temperatura interna do painel no ponto de instalação do Regulador; o valor mostrado só deve ser considerado válido depois de aproximadamente 1 (uma) hora de funcionamento.

12 FUNÇÕES ADICIONAIS

12.1 Modalidade de funcionamento manual

Manter pressionada a tecla AUTO/MAN durante dois segundo até que se acenda o respectivo LED: o regulador está pronto para ser programado em modalidade manual.

Deve-se indicar o estado desejado para cada relé de saída: ao concluir a programação, o regulador deixará todos os estágios dos capacitores no estado desejado. Operacionalmente, no monitor do regulador aparecerá "r1" alternadamente com o estado ("On" ou "OFF");

Por ex.:

R1 On

Pressionando ▼ ou ▲ se seleciona o estado desejado do relé que deve operar em modalidade de funcionamento manual; pressionando a tecla DATA se visualiza o estado do próximo relé. Ao finalizar a visualização do último relé, pressione a tecla DATA para sair desta função.

12.2 Visualização das potências de cada estágio

Pressionando as teclas DATA+▲ se acessa ao respectivo menu (no monitor se visualiza "CP" e pisca o LED ▲);

Ao pressionar a tecla ▲, aparecerá a mensagem "C1" no monitor do regulador que diz respeito ao primeiro estágio alternadamente com o valor em kVAr.

Por Ex:

C1 50.0

Cada vez que pressionar a tecla DATA aparecerá no monitor as potências de cada estágio; depois de visualizado o último estágio pressione a tecla DATA para sair desta função.

12.3 Procedimento de controle de eficácia da cada estado

Ao pressionar as teclas DATA+▼ se acessa ao menu de procedimento de controle das potências de cada estágio de capacitores (no monitor aparece "ChP" e pisca o LED ▼).

Pressionando a tecla ▼ o regulador desconecta todas as baterias e dá início ao procedimento de medição das potências da todos os estágios (o ciclo de conexão de medição se efetua três vezes a fim de obter em medição mais exata). Se o regulador encontra diferenças superiores a 25% da potência associada à etapa durante o último procedimento de auto-aquisição, começará a piscar o respectivo LED. Ao mesmo tempo aparecerá a mensagem "rSt" no monitor.

Este estágio deve ser inabilitado pressionando a tecla ALARM/RESET. No caso de não inabilitar este estágio pressionando a tecla dentro de poucos segundos, a operação termina sem nenhum efeito. Uma vez efetuado o controle, o regulador funcionará como antes, com exceção das etapas que foram detectados erros, cujos LEDS se mantém piscando, indicando o estado de não disponibilidade.

12.4 Procedimento para habilitar/desabilitar os relés de saída durante o funcionamento automático

É possível selecionar os relés que o regulador não deve utilizar durante o funcionamento automático.

Pressionando as teclas ▲+AUTO/MAN se acessa ao menu para habilitar/desabilitar os relés de saída (no monitor se visualiza "Abi" e pisca o LED ▲).

Pressionando a tecla ▲ piscarão os LEDS ▲ e ▼ e aparece no monitor aparece o estado do primeiro relé: se visualiza "r1" alternadamente com o seu estado ("On" ou "OFF").

Por ex.:

R1 On

A seguir, decidir o estado do relé pressionando a tecla ▲ para deixa-lo "On" ou a tecla ▼ para deixa-lo "OFF". Pressionando a tecla DATA se visualiza o estado do relé seguinte; uma vez visualizado o último relé pressione a tecla DATA para sair desta função.

17

12.5 Visualização do medidor de operações efetuadas por cada relé

É possível visualizar o número de manobras efetuadas por cada relé

controlado pelas baterias dos capacitores.

Pressionando a tecla ▼+AUTO/MAN se acessa ao respectivo menu (o

monitor mostra "Cnt" e pisca o LED ▼).

Pressionando a tecla ▼ piscam os LEDS ▲ e ▼ e no monitor se visualiza a

operação efetuada pelo primeiro relé de saída. Aparece a mensagem "C1" seguido

do número de manobras. O "." é o separador dos milhares.

Por ex.:

C1 30.4

Pressionando a tecla DATA se visualiza o número de manobras do próximo

relé; uma vez visualizado o último relé pressione DATA para sair desta função.

ATENÇÃO: Quando o medidor de um relé de saída supera 100.000

manobras, o LED relativo à etapa pisca indicando a necessidade de

revisão/substituição dos respectivos medidores. Se trata de uma mera sinalização

que não inabilita a saída.

12.6 Visualização do release do software

Para visualizar o release do software do regulador, pressione as teclas

ALARM/RESET+DATA: no monitor aparecerá alternadamente a mensagem "FIr"

com a versão 'x.xx' dor firmware.

Ex:

Flr 4.00

12.7 Procedimento de teste das conexões com os estágios dos capacitores

Para facilitar o controle da execução das conexões com os estágios dos

capacitores, independentemente do estado da rede e da presença de corrente nos

bornes "K" e "L", está previsto um procedimento automático. Este procedimento se

ativa pressionando as teclas DATA+AUTO/MAN indiferentemente da situação do regulador (no monitor se visualiza "tSt" e o LED AUTO/MAN pisca;

Se o procedimento se ativa durante o funcionamento normal, é necessário também pressionar a tecla AUTO/MAN durante aproximadamente dois segundos para confirmar a ativação do mesmo. O procedimento consiste na conexão em seqüência da cada estágio com intervalos de dois segundos entre cada um. O tempo de término de cada estágio é de cinco segundos.

12.8 Modalidade de compensação reativa dos geradores

Para corrigir o fator de potência dos geradores é necessário configurar esta modalidade de funcionamento, desativando a função de auto-adequação do sentido de TA da rede e elaborando adequadamente os sinais. Esta operação deve ser efetuada com a rede alimentada por um gerador.

Pressionando a tecla AUTO/MAN+▼ se acessa ao menu de bloqueio do sentido de TA da rede. Ao pressionar as teclas, o LED ▼ pisca e esta tecla deve ser pressionada. A seguir, os LEDS ▲ e ▼ piscam e simultaneamente se visualiza a mensagem "Inu" (INV) alternadamente com "On" ou "OFF".

Ex:

Inu OFF

Pressione a tecla ▲ se deseja configurar a modalidade de funcionamento adequada para a compensação reativa dos geradores: se visualizará a mensagem "On". Por outro lado, se deseja habilitar a função de auto-adequação do sentido do TA (em caso de compensação reativa do cargas), pressione a tecla ▼: se visualizará a mensagem de confirmação "OFF".

12.9 Operação de reinicialização total dos parâmetros de setup

Esta operação predispõe novamente todos os parâmetros ao padrão e coloca o Regulador novamente pronto para a primeira ligação.

Depois dessa operação, para reativar o Regulador é necessário observar as etapas do item 7, **primeira ligação** (depois de inserido o parâmetro **IL**, o Regulador sempre faz a leitura das potências – ver item 7.3 – pág. 201

Pressionando as teclas ▲+▼ se acessa o menu de parâmetros e pressionando várias vezes a tecla DATA se visualiza a lógica configurada (1:1:1; 1:2:4; 1:2:2). Para efetuar a reinicialização a tecla ALARM/RESET deverá se mantida pressionada durante cinco segundos: no monitor se visualizará a mensagem "CLr" alternadamente com o valor "No", por padrão.

Ex:

CLr No

O parâmetro pode ser modificado pressionando as teclas ▲ ou ▼ e confirmado pressionando a tecla DATA; as seleções possíveis são:

No: Não se efetua a reinicialização;

Yes: se efetua a reinicialização; durante esta fase o regulador desconectará todos os estágios e aparecerá durante alguns segundos 8.8.8. com todos os LEDS acessos.

13 SINALIZAÇÕES E ALARMES

O regulador REGO está provido de sinalização de excesso de tensão e sinalização de falta de compensação reativa. Também conta com dispositivos de alarme relativos a ativação das proteções de excesso de temperatura, excessiva distorção harmônica, baixas de tensão e caídas de rede. Quando os dispositivos de proteção estão ativados, se acende o LED ALARM e se abre o contato NC para a sinalização a distância do estado do alarme. Os dispositivos de proteção, com exceção do dispositivo associado à falta de compensação reativa e excesso de tensão, provocam a desconexão das baterias dos capacitores.

13.1 Sinalização de falta de compensação reativa

Esta sinalização interfere quando o fator de potência do sistema se mantém em um valor inferior ao configurado, durante mais de duas horas seguidas (se admite retornos de até um minuto) e estando todas as baterias dos capacitores conectadas. Na modalidade de funcionamento manual a sinalização de falta de compensação reativa não está ativada.

Quando ocorre a falta de compensação reativa:

- se visualiza a mensagem "A.L.A." no monitor alternadamente com "C.O.S." e com o último valor medido (também com ... entre as cifras);

Por ex.:

A.L.A. C.O.S. 0.4.4.

- O LED ALARM se acende no painel frontal do regulador;
- se abre o contato do relé do alarme;

Depois de trinta minutos todas as ações retornam ao ponto zero e o regulador recomeça a funcionar automaticamente (estado de auto-reinicialização "A.r"), com a diferença que no monitor permanecerá exposta a intervenção efetuada e aparecerá alternadamente as mensagem "A.L.A", "C.O.S" e o último valor medido.

Para sair desta situação a tecla ALARM/RESET deverá ser pressionada .

13.2 Sinalização de excesso de tensão

Esta sinalização interfere quando o regulador mede na alimentação e durante mais de 30 segundos um valor de tensão superior ao máximo permitido pelo transformador (230+19%; 400+19%).

Este dispositivo de proteção se ativa inclusive se as baterias dos capacitores não estão conectados com a rede. Quando ocorre este alarme:

- se visualiza a mensagem "A.L.A." no monitor alternadamente com "U.F.F." e com o último valor medido (também com os ... entre as cifras);

Por ex:

A.L.A. U.F.F. 4.9.0.

- O LED ALARM se acende no painel frontal do regulador;
- se abre o contato do relé do alarme;
- é incrementado uma unidade no medidor de alarme UFF

Depois de trinta minutos todas as ações retornam ao ponto zero e o regulador recomeça a funcionar automaticamente (estado de auto-reinicialização "A.r"), com a diferença que no monitor permanecerá exposta a intervenção efetuada e aparecerá alternadamente as mensagem "A.L.A", "U.F.F." e o último valor medido.

Para sair desta situação a tecla ALARM/RESET deverá ser pressionada .

13.3 Dispositivo de proteção contra excesso de temperatura

Este dispositivo de proteção se ativa quando a temperatura ao medida ao redor do regulador é maior do que 70°C durante pelo menos 15 segundos.

Quando ocorre este alarme:

- se visualiza a mensagem "A.L.A." alternadamente com "⁰.C.." e com o último valor medido (também com os ... entra as cifras);

Por ex.:

A.L.A °.C.. .8.0.

- O LED ALARM se acende no painel frontal do regulador;
- se abre o contato do relé do alarme;
- ativa o procedimento de desengate rápido de todos os estágios do regulador (neste estado o regulador não funciona).

Depois de trinta minutos todas as ações retornam ao ponto zero e o regulador recomeça a funcionar automaticamente (estado de auto-reinicialização "A.r"), com a diferença que no monitor permanecerá exposta a intervenção efetuada e aparecerá alternadamente as mensagem "A.L.A", "o.C.." e o último valor medido.

Para sair desta situação a tecla ALARM/RESET deverá ser pressionada .

Este dispositivo de proteção está ativado também na modalidade de funcionamento manual e inclusive quando os capacitores não estão conectados.

13.4 Dispositivo de proteção contra excessiva distorção harmônica

Este dispositivo de proteção se ativa quando o nível de distorção harmônica da corrente pode representar uma fonte de perigo para os capacitores de compensação reativa.

Quando ocorre este alarme:

- se visualiza a mensagem "A.L.A." alternadamente com "t.h.d." e com o último valor medido (também com os ... entra as cifras);

Por ex.:

A.L.A. t.h.d. 1.6.0.

- O LED ALARM se acende no painel frontal do regulador;
- se abre o contato do relé do alarme:
- é incrementado uma unidade no medidor de alarme t.h.d.

Depois de trinta minutos todas as ações retornam ao ponto zero e o regulador recomeça a funcionar automaticamente (estado de auto-reinicialização "A.r"), com a diferença que no monitor permanecerá exposta a intervenção efetuada e aparecerá alternadamente as mensagem "A.L.A", "t.h.d." e o último valor medido.

Para sair desta situação a tecla ALARM/RESET deverá ser pressionada .

Este dispositivo de proteção está ativado também na modalidade de funcionamento manual.

13.5 Dispositivos de proteção contra caídas de rede e baixas de tensão

Este dispositivo é ativado quando existem caídas de rede durante mais de dois períodos (40 ms com 50Hz, 33 ms com 60Hz). Nestes casos, inclusive na modalidade de funcionamento manual, o regulador desativa imediatamente todos os relés de saída para proteger os capacitores. A seguir, retorna à atividade normal de regulação, conectando eventuais estágios uma vez transcorrido o tempo T1.

O ciclo "power-fail" se ativa quando a caída de rede se mantém por um tempo superior à dois ciclos ou quando existe um baixa de tensão inferior ao valor mínimo estabelecido para alimentar corretamente o equipamento: a fim de evitar operações não desejadas nos bancos dos capacitores, o regulador REGO desativa imediatamente todos os relés de saída até que a tensão retorne ao seus valores normais ou desapareça totalmente.

13.6 Visualização dos contadores de alarmes

É possível visualizar o número de vezes que o regulador entrou em estado de alarme por excesso de tensão e excessiva distorção harmônica. Para visualizar, pressione as teclas ▲+DATA: aparece a mensagem "ALC" e o LED ▲ pisca.

Se a tecla ▲ for pressionada dá acesso ao menu de pré-configurações. Os LEDS ▲ e ▼ piscam e aparecerá alternadamente o primeiro alarme (t.h.d.) com o número de intervenções; para ir ao próximo alarme (UFF) pressione a tecla DATA; para sair desta função pressione novamente a tecla DATA.

Estes medidores não podem voltar ao ponto zero.

13.7 Modificação das modalidades de ativação dos alarmes

É possível modificar as modalidades de ativação dos alarmes que o regulador possui. No caso de alarmes de sinalização e proteção por falta de compensação reativa, excesso de tensão, excesso de temperatura e excessiva distorção harmônica é possível configurar:

- Estado **On**: Efetua as funções anteriormente descritas com exceção do estado de auto-reinicialização (A.r.) e o regulador permanece em estado de bloqueio até a tecla ALARM/RESET ser pressionada. Ao pressionar esta tecla o regulador retorna ao funcionamento normal.
- Estado **OFF**: A proteção e o alarme ou a respectiva sinalização e todas as ações derivadas se desativam completamente. A seleção do estado OFF deve ser efetuada com conhecimento de causa e, em princípio, se recomenda na efetua-la porque pode ocasionar situações potencialmente perigosas.
- estado **A.r** (auto-reinicialização- estado padrão): Efetua as funções anteriormente descritas.

Ao ligar o regulador pela primeira vez, todos os alarmes estão programados por padrão em A.r.

Para acessar este menu pressione as teclas AUTO/MAN+▲: Aparecerá a mensagem "ALP" e o LED ▲ piscará.

Ao pressionar a respectiva tecla se acessa às configurações. Os LEDS ▲ e ▼ piscam e aparece o primeiro alarme/sinalização; para modificar o estado do alarme pressione a tecla ▲ ou ▼ e a tecla DATA para ir ao próximo alarme (°C, UFF, thd, COS). Depois de ter visualizado o último parâmetro, pressione a tecla DATA para sair desta função.

14 MENU OCULTO

Alguns parâmetros do regulador REGO estão presentes no menu oculto. Estas regulagens somente são acessíveis ao usuário na fase de configuração da relação de TA. Pressionando a tecla ▲+▼ se acessa ao menu de parâmetros e ao visualizar o parâmetro "IL" deve-se manter pressionada a tecla ALARM/RESET+DATA até que apareça a mensagem a mensagem:

- "t1" no modelo de cinco estágios;

- "FAn" nos modelos de 7 e 12 estágios;

A seguir, se acessa o menu oculto. Todos os parâmetros deste sub-menu podem ser modificados pressionando as teclas ▲ e ▼; para ir ao próximo parâmetro pressione a tecla DATA. A seguir, se indica a seqüência dos parâmetros:

- "FAn" Temperatura linear para fechamento do relé NO que controla o ventilador externo. (Este parâmetro somente está presente em modelos de 7 e 12 estágios. Se aconselha não modifica-lo);
- "t1" visualização do tempo T1 de indisponibilidade de re-conexão de estágios (se recomenda não modifica-lo);
- "t2" visualização do tempo T2 de atraso entre o fechamento de dois relés que controlam estágios consecutivos (se recomenda não modifica-lo);
- "HU" configuração da relação de transformação da tensão. Se o regulador é alimentado por um TV (ver capítulo 10.3 parâmetro "UFF"); se recomenda operar com o parâmetro UFF e não modificar o HU;
- "StH" configuração do tempo de intervenção do alarme de distorção harmônica (t.h.d.). As seleções possíveis são 1,2 e 3. Configurando 1 se obtém um tempo de intervenção proporcional ao nível de distorção harmônica; configurando 2 o tempo se duplica e configurando 3 o tempo se quadruplica (se recomenda não modifica-lo):
- "Adr" direção do instrumento para a conexão de rede Rs485 com outros instrumentos e um PC (este parâmetro só está presente nos modelos de 7 e 12 estágios);
- "bdr" velocidade de transmissão dos dados (Baud Rate) na porta Rs485. A velocidade está expressada sem um zero final (por exemplo: 9600 bps se mostra como "960"; este parâmetro somente está presente nos modelos de 7 e 12 estágios).

Para sair deste menu, mater a tecla DATA apertada durante três segundos.

PARÂMETRO	DESCRIÇÃO	LIMITES	PADRÃO
Fan (7 e 12	Temperatura linear(°C) de intervenção	550	25
estágios)	para controle do ventilador.	550	
t1	Tempo (em segundos) de indisponibilidade para a re-conexão de um estágio. Esperar sempre que os capacitores estejam desconectados antes de conecta-los novamente.	5255	20
t2	Tempo (em unidades; cada unidade representa 500ms) de atraso entra a conexão de um estágio e a conexão do seguinte.	1600	2(=1S)
HU	Relação de transformação do TV da rede	11000	1
StH	Programação do tempo de intervenção do alarme relativo à distorção harmônica (t.h.d.)	1,2,3	-/-
Adr (7 e 12 estágios)	Direção do instrumento na conexão série Rs485 com unidades externas	199	1
bdr (7 e 12 estágios)	Velocidade de transmissão dos dados na porta Rs485. (Baud Rate)	12009600	9600

Tabela 3: Parâmetros do menu oculto.

15 LISTA DAS PRINCIPAIS TECLAS E FUNÇÕES ASSOCIADAS

TECLAS	SIGNIFICADO	CAP/SEÇÃO
▲ ou ▼	Modificar parâmetros visualizados	
DATA	Controlar medidas e confirmar parâmetros configurados	
▲ + ▼	Acesso ao menu de parâmetros	10
ALARM/RESET	Reinicializar alarme ativado	13
AUTO/MAN	Modalidades de funcionamento manual	12.1
DATA+▲	Visualizar potencias de cada estágio	12.2
DATA+▼	Procedimento de controle da eficácia de cada estágio.	12.3
▲+AUTO/MAN	Procedimento para habilitar/desabilitar relé de saída na modalidade de funcionamento automático	12.4
▼+AUTO/MAN	Visualizar o medidor de operações efetuadas por cada relé de saída	12.5
ALARM/RESET+DATA	Visualizar release do software	12.6
DATA+AUTO/MAN	Procedimento para teste das conexões dos medidores	12.7
AUTO/MAN+▼	Modalidades de compensação reativa de geradores	12.8
▲ +DATA	Visualizar medidor de alarmes	13.6
AUTO/MAN+ ▲	Modificar modalidades de intervenção de alarmes	13.7

16 RESOLUÇÃO DE PROBLEMAS

Se o regulador apresenta estas anomalias de funcionamento:

- Durante a ligação o regulador permanece bloqueado em "FAS"
- Com nenhuma bateria conectada, no monitor do regulador se visualiza um Cosf capacitivo (Cosf negativo).

Ex: COS -.98

- No regulador se visualiza um Cosf que não corresponde ao do sistema.
- O regulador mostra "C.O.S." alternadamente com "-.-.".

Ex: C.O.S. -.-.-.

- No regulador se visualiza um Cosf inferior àquele programado e não conecta nenhuma bateria.
- O regulador conecta todas as baterias, inclusive em caso de ausência de carga, e não as desconecta.

É recomendado efetuar os seguintes procedimentos:

- Verificar o posicionamento e a conexão do T.A. (ver cap. 6 pág 198 Instruções para instalação do T.A.).
- Verificar se no secundário do T.A. circule uma corrente superior à 200mA (a carga que se deve submeter à compensação reativa deve estar em funcionamento).
- Verificar se os parâmetros programados estão corretos (ver capítulo 10 página 203 – Menu de parâmetros).

Especificamente deve ser verificado:

- o parâmetro de IL (relação de TA por exemplo: se o TA = 200/5, IL=40);
- o parâmetro FAS deve estar programado em "On".

NOTA: Para configurar novamente todos os parâmetros para o padrão, a DUCATI energia recomenda efetuar a reinicialização do regulador (ver cap. 12.9 – Página 219 – Operação para reinicialização total dos parâmetros de setup) e começar novamente desde a primeira ligação (ver cap. 7 – Página 200 – Primeira Ligação).

 Verificar se a modalidade de compensação reativa dos geradores (Inu) está programada em Off (ver cap. 12.8 – Página 218 – Modalidade de compensação reativa geradores).

- Verificar se o regulador adquiriu corretamente as potências das baterias (ver cap. 12.2 – Página 214 – Visualização das potências de cada estágio).
- Verificar se os relés de saída não estão desabilitados (ver cap. 12.4 –
 Página 215 Procedimento para habilitar/desabilitar os relés de saída na modalidade de funcionamento automático).

Para problemas de troca excessiva de baterias (conexão e desconexão contínua das baterias) aconselhamos:

- Aumentar ou reduzir o parâmetro "COS" (ver cap. 10.2 Página 204 Fator de Potência requerido na instalação) até alcançar uma situação de equilíbrio.
- Aumentar o parâmetro "t2" (ver cap. 14 Página 255), atrasando desta forma a conexão das baterias.

17 CARACTERÍSTICAS TÉCNICAS

Circuito de alimentação dos modelos REGO 5/7/12 estágios

Tensão de alimentação

380 / 415V +/- 10%

Freqüência nominal

220 / 240V +/- 10%

50 ou 60 Hz (medida e programada automaticamente pelo

regulador)

Potencia Consumida

8 VA máx. (modelo REGO de 5 estágios 15 VA máx (modelos REGO de 7/12 estágios

Proteção

Fusible interno 250mA curva T.A para proteger o instrumento contra tensão excesiva permanentes é recomendado um fusível

externo (200mA)

Entrada de corrente

Corrente nominal Campo de funcionamento Sobrecarga Consumo amperimétrico

5 A

0.2...5 A

3 In durante 10s

0,5 VA máx. (mod. de 5 estágios) 1,5 VA máx. (mod. de 7/12 estágios)

Dados de medição e controle

Tipo de medição de tensão e corrente Regulação do fator de potência Tempo de atraso da reconexão do estágio

Valor real eficaz (true RMS) 0.80 indutivo / 0.80 capacitivo

5...255s

Saídas de relé

Número de saídas Estado dos contatos Capacidade nominal dos contatos Tensão nominal em uso

Relé de alarme

5/7/12 NA 5 A - 250 V 250 VCA

Tensão nominal de isolamento Potência máxima para manobra

3 kV/1 minuto

2200 W ou 1500 W - Cosf 0.5 250V

1 contato NC (3 A – 250V). Com o regulador desligado o contato é NA.

de relé Precisão de medição

> Fator de potência Tensão eficaz

Corrente da linha

+/- 2% +/- 2%

+/- 2% (valor lido se I>200mA [secundário de TA])

Interface para PC (7 e 12 estágios)

> Linha série Polaridade

1 linha RS485

Borne A = sem inversão (+)

Borne B = com inversão (-)

Protocolo "Ducati" (de caráter)

Tipo de protocolo

Condições ambientais de funcionamento

Temperatura de uso Temperatura limite Conexões Tipo de borne

0...+ 60°C - 20....+ 70°C

De parafuso (modelo REGO 5 estágios)

De mola (modelos REGO 7/12 estágios)

 $Máx = 2.5 \text{ mm}^2$

Tamanho dos condutores

Contenção Execução

Dimensões

96x96x75 mm (REGO 5 estágios) 144x144x65 mm (REGO 7/12 estágios)

Dimensões do furo

Montado ao painel 91x89 mm (REGO 5 estágios) Grau de proteção Fixação Peso 138x138 mm (REGO 7/12 estágios) IP 40 no painel frontal, IP 20 no borne Com quatro elementos de pressão 400 g (REGO 5 estágios) 800 g (REGO 7/12 estágios)