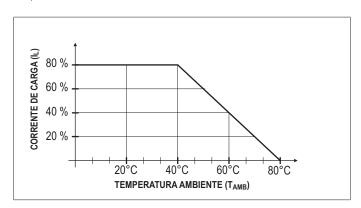
ESPECIFICAÇÕES

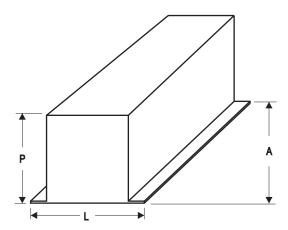

		Modelo	
Parâmetro	Unidade	Chave 4840	Chave 4880
Corrente de carga (I _L)	A rms	40	80
Tensão de Chaveamento	V rms	40 a 480	
Queda de tensão (V _{ssr})	V rms	< 1,5	
Corrente de fuga	mA rms	< 1,0	
Freqüência	Hz	47 a 63	
dv/dt	V/µs	300	
Tensão de controle	Vcc	4 a 32	
Corrente de controle	mAcc	15 a 20	
Tempo comutação	ms	< 10	
Disparo		cruzamento por zero	
Isolamento	V rms	2000	
Temperatura Ambiente*	°C	-20 a 40	
Temperatura de atuação	°C		
da proteção		80	

DISSIPAÇÃO DE CALOR

Com a corrente de carga circulando, há geração de intenso calor sobre a chave. Este calor deve ser rapidamente transferido (dissipado) para o ambiente para evitar a queima da chave por sobreaquecimento. Os valores nominais de corrente de carga (IL) definidos para cada modelo de chave levam em conta o uso de um dissipador adequadamente calculado.

A chave estática SSR já incorpora o dissipador na dimensão adequada para a corrente nominal especificada e também o ventilador necessário.

Como medida de segurança das instalações, a corrente nominal da carga não deve ultrapassar a 80 % da corrente nominal da chave.



PROTEÇÃO DE SOBREAQUECIMENTO

A chave estática SSR possui um relé térmico NF (normalmente fechado) que está em série com os terminais de comando. Este relé térmico interrompe o sinal de comando, desligando a chave, quando a temperatura do dissipador ultrapassar a 80 °C. Isto impede danos aos relé eletrônicos da chave.

DIMENSÕES

As dimensões predominantes são as do dissipador utilizado pela chave estática...

Modelo de 40 A	Modelo de 80 A	
165 x 165 x 160 mm (P x L x A)	165 x 165 x 220 mm (P x L x A)	

Figura 05 - Dimensões da chave estática SSR

SOLUÇÃO DE PROBLEMAS

- 1-A chave estática não liga. Algumas possibilidades são:
- Sinal de comando invertido;
- Sinal de comando sem tensão suficiente (mínima);
- Corrente de carga mínima não atingida;
- Tensão de carga mínima não atingida;
- Equipamento sobreaquecido;
- Relé de proteção com defeito, acusando sobreaquecimento;

2-A chave estática desliga indevidamente. Algumas possibilidades são:

- Sobreaquecimento causado por corrente de carga excessiva;
- Sobreaquecimento causado por ventilador apresentando defeito;
- Sobreaquecimento causado por ambiente excessivamente quente;
- Sobreaquecimento causado por conexões da carga mal feitas; parafusos mal apertados;

O usuário deve identificar a causa do defeito e providenciar a correção, sempre com a chave desligada.

CHAVE ESTÁTICA SSR TRI-FÁSICA

40 E 80 A

MANUAL DE INSTRUÇÕES

GARANTIA

O fabricante assegura ao proprietário de seus equipamentos, identificados pela nota fiscal de compra, uma garantia de 1 (um) ano nos seguintes termos:

- O período de garantia inicia na data de emissão da Nota Fiscal.
- Dentro do período de garantia, a mão de obra e os componentes aplicados em reparos de defeitos ocorridos em uso normal, serão gratuitos.
- Para os eventuais reparos, enviar o equipamento, juntamente com as notas fiscais de remessa para conserto, para o endereço de nossa fábrica.
- Despesas e riscos de transporte correrão por conta do proprietário.
- Mesmo no período de garantia serão cobrados os consertos de defeitos causados por choques mecânicos ou exposição do equipamento a condições impróprias para o uso.

CARACTERÍSTICAS PRINCIPAIS

A Chaves Estáticas SSR é um dispositivo eletrônico usado no acionamento de cargas resistivas e indutivas com inúmeras vantagens sobre os convencionais relés eletromecânicos (contactoras). Um sinal de COMANDO determina o acionamento da carga conectada aos terminais de potência do dispositivo.

- Sem ruído elétrico, faiscamento ou desgaste mecânico.
- Sinalizador luminoso (LED) indicador de estado ligado ou desligado.
- Circuito interno de proteção (Snubber) da saída.
- Zero Crossing, liga em zero Volt, desliga em zero Ampére.
- Isolação ótica entre comando e potência.

FUNCIONAMENTO

Ao receber um sinal de **comando** em seus terminais, a chave estática conduz (liga) e alimenta a carga. A condução acontece efetivamente na próxima passagem por zero da tensão de rede. No desligamento acontece o mesmo. O sinal de **comando** é retirado, porém a chave somente bloqueia efetivamente (desliga) na próxima passagem por zero da corrente elétrica.

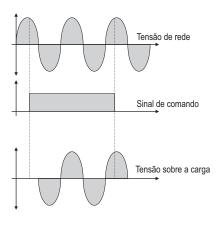


Fig 1 - Tensão elétrica sobre uma carga resistiva

Isto implica em atrasos **nunca** superiores a 8,3 milisegundos entre o instante de disparo do comando LIGA/DESLIGA e a efetiva alimentação/desalimentação da carga.

O fato de ligar e desligar a alimentação da carga sempre em um cruzamento por zero, trás vantagens importante para instalação. Praticamente não são geradas interferências elétricas na instalação e a chave não é submetida a condições severas de chaveamento.

Outra implicação é a impossibilidade de chavear tensão contínua (DC), **somente tensão** alternada (AC).

INSTALAÇÃO

- Fixar na posição vertical, com o ventilador soprando para cima.
- Abaixo e acima do equipamento deve haver área livre, com distância de 15 cm de outros dispositivos ou parede, para permitir uma boa circulação de ar.
- Dispositivos de proteção e seccionamento devem ser providenciados.
- Nestes valores de corrente nominal, terminais bem fixados, condutores adequados e ambientes com ventilação adequada ajudam na eficiência de instalação.
- Os cabos recomendados são: 10, 16, 25 e 35 mm² para as correntes de 40, 60, 80 e 100 A, respectivamente.
- Para as conexões, utilizar terminais compatíveis.
- Os cabos de potência são conectados diretamente sobre os SSRs e para evitar danos, não devem exercer trações excessivas sobre o equipamento.
- O aterramento adequado é indispensável para evitar descargas e interferências elétricas

IMPORTANTE

Sob corrente nominal, a temperatura do ambiente não pode ultrapassar a 40 °C.

CONEXÕES ELÉTRICAS

Na instalação da chave são necessárias as ligações de **Sinal de Comando**, **Ventilador** e **Carga**.

- 1- O sinal de comando deve ser conectado aos terminais 1 e 2 do conector lateral. Um relé térmico de proteção já está inserido neste circuito. Ele interrompe o circuito de comando quando a temperatura do dissipador ultrapassa o valor de 80 °C.
- 2- Na ligação com a carga, os barramentos de potência (ou cabos) são conectados diretamente sobre os barramentos da chave. Um fusível ultra-rápido deve ser utilizado para proteger a instalação.
- 3- O ventilador está disponível nos terminais 3, 4, 5 e 6 do conector lateral. O instalador deve observar a tensão de alimentação do ventilador e conectá-lo de acordo com as respectiva figuras.

Fig 3 - Conexão do ventilador em 127 Vac

Fig 4 - Conexão do ventilador em 220 Vac

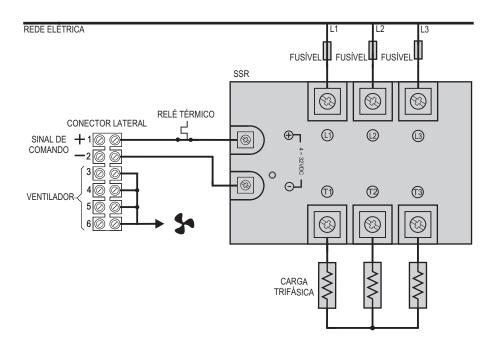


Fig 2 - Conexões Elétricas - Sinal de comando e Carga na Chave Estática SSR