
MANUAL DE INSTRUÇÕES

NETWORK DeviceNet e Profibus DP

Expansion Module
4 Digital Inputs - KDC-4EP (-P)

Manual de Instruções

Descrição:

Os módulos expansores de I/O foram projetados para ampliar o número de entradas (e saídas) dos módulos de rede da Sense, aplicando-se tanto para rede DeviceNet como Profibus DP.

Modelos:

Os modelos de I/O estão disponíveis com entradas ou saídas digitais e acoplam-se aos módulos principais (node modules) que pussuem endereço na rede, conforme tabela abaixo:

Módulo Expansor I/O¹	Nº de	Nº de Tipo de	Módulo Principal (Node Module) ²	
Modulo Expansor I/O	Pontos	Ī/O	DeviceNet	Profibus DP
4 Entradas Digitais KDC-4EP	4	Entradas		DD (/DV 05D 000
4 Saídas Digitais KDC-4SC	4	Saídas	DN-KDN-2EP-2SC	DP-KDN-2EP-2SC

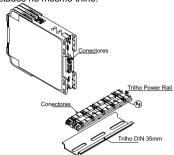
Fixação do Módulo:

ser feita utilizando-se de trilhos de 35 mm (DIN-46277), com opção de utilização de Power Rail. O cabo da rede deve ser conectado na lateral do módulo e caso seia utilizada a opcão com Power Rail este cabo deve ser conectado somente em um dos módulos, pois o Power Rail faz a distribuição do cabo da rede para os outros módulos do mesmo trilho, para fixá-lo siga os procedimentos abaixo:

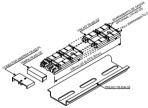
1° Com auxílio de uma chave de fenda, empurre a trava de fixação do módulo para fora,

3° Aperte a trava de fixação até o final e certifique que o módulo esteja bem fixado.

Cuidado: Na instalação dos módulos no trilho com um sistema Power Rail, os conectores não devem ser forçados demasiadamente para evitar quebra dos mesmos, interrompendo o seu funcionamento.

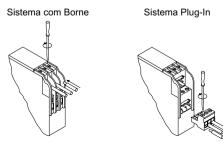

Montagem na Horizontal:

Recomendamos que os módulos, sejam montados na posição horizontal afim de que haia melhor circulação de ar e que o painel seia provido de um sistema de ventilação evitando o sobreaquecimento dos componentes internos

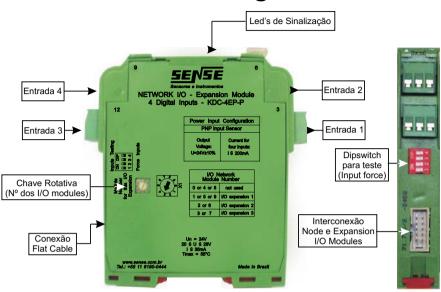

Sistema Power Rail:

A fixação do módulo KD internamente no painel deve Consiste de um sistema onde as conexões de alimentação e comunicação são conduzidas e distribuídas no próprio trilho de fixação, através de conectores multipolares localizados na parte inferior do módulo. Este sistema visa reduzir o número de conexões externas entre os instrumentos da rede conectados no mesmo trilho.

Trilho Autoalimentado tipo "Power Rail":

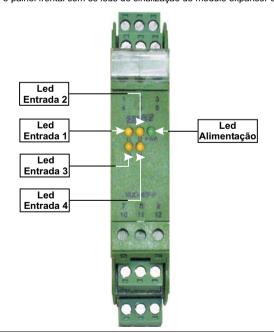

O trilho power rail TR-KD-05 é um poderoso conector que fornece interligação dos instrumentos conectados ao tradicional trilho 35mm. Quando unidades do KD forem montadas no trilho automaticamente a alimentação, shield e comunicação da rede será conectada, aos módulos.

Sistema Plug-In:


Neste sistema as conexões dos cabos são feitas em conectores tripolares que de um lado possuem terminais de compressão, e de outro lado são conectados ao equipamento.

Este sistema tem por finalidade facilitar a instalação e o arranjo da fiação além de contribuir na manutenção possibilitando a rápida substituição do equipamento. Para que o instrumento seja fornecido com o sistema plug-in basta acrescentar no final do código "-P".

Sense Sense


Entradas Digitais

Sinalização:

Módulo Expansor de I/O

A figura abaixo ilustra o painel frontal com os leds de sinalização do módulo expansor de I/O KDC-4EP:

Número de Módulos Expansores:

O número de módulos expansores limita-se a capacidade do módulo principal (node module), pode ser aplicado conforme a tabela abaixo:

Módulo Principal	Expansores de Entrada	Expansores de Saída
DeviceNet DN-KDN-2EP-2SC	Máximo 3	Máximo 3
Profibus DP DP-KDN-2EP-2SC	Máximo 3	Máximo 3

Nota: Os módulos principais (node modules) podem utilizar módulos de entrada independentemente dos de saída, ou seja, podemos aplicar 3 módulos expansores de entrada, mais 3 módulos expansores de saída.

Configuração dos Módulos Expansores:

Com finalidade de diferenciar um módulo expansor de outro, para sua integração com o módulo principal (node module) devemos configurar cada módulo expansor de I/O com o seu número exclusivo, conforme definido na tabela abaixo:

I/O Network Module Number		
0 or 4 or 8	Not used	
1 or 5 or 9	I/O Expansor 1	
2 or 6	I/O Expansor 2	
3 or 7	I/O Expansor 3	

Nota: Se dois módulos expansores forem configurados com o mesmo número nenhum deles irá funcionar e o led de status dos expansores irá ascender

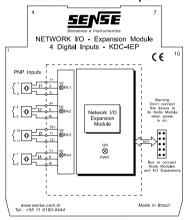
Interconexão dos Módulos:

Os módulos expansores de I/O devem ser interconectados entre si e ligados ao módulo principal (node module) e para tanto utilizar um cabo flat.

Cuidado! Se este cabo for removido durante a operação normal, o controlador da rede, receberá um sinal como se todas as entradas do módulo expansor estivessem desconectadas.

Alarme:

O módulo principal (node module) possui um led de sinalização que ira indicar a anomalia do módulo expansor.


Teste das Entradas:

A chave dipswitch montada na lateral do módulo permite "forçar" o acionamento da entrada, independente do elemento de campo, para facilitar o teste do equipamento no campo.

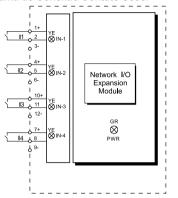
Cuidado! As chaves devem ser mantidas na posição OFF, para que o instrumento possa enviar corretamente os sinais do elemento de campo, em condicões normais de operação.

Conexão dos Elementos de Campo:

O Sistema com módulos de entrada são formados pelo módulo expansor de I/O KDC-4EP, com quatro entradas PNP que devem ser conectados a um módulo principal (node module) Profibus DP ou DeviceNet.

Conexão das Entradas:

As entradas digitiais do módulo expansor de I/O pode ser acionadas por sensores de proximidade (capacitivos, indutivos, etc.) 2 ou 3 fios, bem como por contato seco (botoeira, chaves-fim-de-curso, etc.)


Sense 4 5 Sense

Conexão Contato Seco:

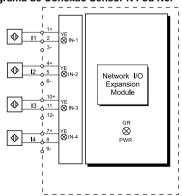
de comando. comultadores. botões chaves-fim-de-curso, etc.

A interconexão dos contatos secos é similar a ligação dos sensores a 2 fios.

Diagrama de Conexão Contato Seco:

O que é Sensor em Corrente Contínua a 2 Fios:

São sensores em corrente continua similar aos PNP e NPN, porém sem o terceiro fio que alimenta o sensor.


Conexão Sensor 2 Fios:

O módulo admite a conexão de sensores em corrente contínua a 2 fios nas versões N4 (NA) ou N5 (NF)

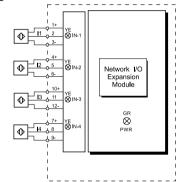
Tabela de Conexão do Sensor:

Entrada	Bornes
IN 1	1 (+) e 2 (E1)
IN 2	4 (+) e 5 (E2)
IN 3	10 (+) e 11 (E3)
IN 4	7 (+) e8(E4)

Diagrama de Conexão Sensor N4 ou N5:

O que é Sensor em Corrente Contínua a 3 Fios:

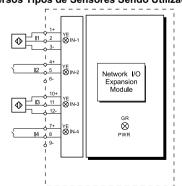
O módulo admite a conexão de contatos secos como: São sensores de proximidade em corrente contínua alimentados em 24Vcc através dos fios positivo marrom (+) e negativo azul (-) do sensor. Possuem em seu estágio de saída um transistor que tem a função de chavear (ligar e desligar) a carga conectada ao sensor.


Conexão Sensor 3 Fios:

O módulo permite a conexão de sensores em corrente contínua a 3 fios (PNP).

Tabela de Conexão do Sensor:

Entrada	Bornes
IN 1	1 (+), 2 (E1) e 3 (-)
IN 2	4 (+), 5 (E2) e 6 (-)
IN 3	10 (+), 11 (E3) e 12 (-)
IN 4	7 (+), 8 (E4) e 9 (-)


Diagrama de Conexão Sensor 3 Fios:

Entradas Simultâneas:

Cada entrada do módulo permite a conexão de um tipo de sensor diferente, portanto pode-se utilizar um sensor PNP na entrada IN 1 e contato seco na entrada IN 2 e assim sucessivamente.

Diversos Tipos de Sensores Sendo Utilizados:

6

Alimentação dos Módulos:

A alimentação 24 Vcc dos módulos expansores de I/O O Node Module requer que a configuração do número é obtida através do flat cable de interconexão dos expansores, para tanto o flat cable deve ser ligado ao módulo principal (node module) que deve estar conectado a rede.

Capacidade de Alimentação:

Verifique na tabela abaixo a capacidade de alimentação dos módulos expansores de KDC-4EP:

Power Input Configuration		
PNP Input Sensor		
Output	Current for	
Voltage:	four Inputs:	
U = 24V ±10%	I ≤ 200mA	

Nota: Observe que os 200mA estão disponíveis para as quatro entradas, onde podemos ter 4 de 50mA ou 2 de 80mA e mais 2 de 20mA.

Curto Circuito nas Entradas:

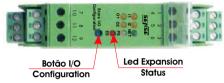
Em caso de curto-circuito do elemento de campo, o funcionamento de todas as entradas do módulo será interrompido e o bit correspondente ao alarme será ativo sendo indicado através do led vermelho de status dos expansores (localizado no frontal do módulo principal).

Mana dos Rits

napa dos Bits:		
Módulo	Entrada	Bit
Expansor 1	IN - 1	0
	IN - 2	1
	IN - 3	2
	IN - 4	3
Expansor 2	IN - 1	4
	IN - 2	5
	IN - 3	6
	IN - 4	7
Expasor 3	IN - 1	8
	IN - 2	9
	IN - 3	10
	IN - 4	11
Node	IN - 1	12
	IN - 2	13
	PWR STATUS	14
	EXPANSION STATUS	15

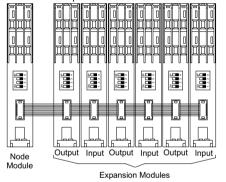
PWR STATUS: bit ativo quando houver falta de alimentação nos módulos expansores de I/O.

EXPANSION STATUS: bit ativo quando houver alteração da configuração dos módulos expansores


Nota: Os bits 14 e 15 são alto ativos e quando acionados vão para o estado "0".

Configuração dos Expansores:

de módulos expansores tanto de entrada como de saída seiam armazenados, afim de informar a rede se houver qualquer problema com os módulos expansores, através do bit Expansion Status.


Armazenando a Configuração:

O Node Module, tanto na versão Profibus como DeviceNet, possui um botão de configuração junto com o led de estatus.

Procedimento Inicial:

Antes de energizar os módulos, interconecte o flat cable entre os Expansores de I/O e o Node Module.

Nota 1: nunca lique o flat cable com os módulos energizados.

Nota 2: respeite o número máximo de módulos que o Node Module admite.

Nota 3: caso não utilize o número máximo de módulos, pode-se cortar o flat cable ou então mante-lo para expansão futura.

- · Energize os módulos.
- · Observe que o led de Expansion Status irá piscar em vermelho.
- · Precionar o botão I/O Configuration por 5 segundos para armazenar a configuração atualmente instalada.
- Se durante a operação normal do sistema a inteligação de algum módulo expansor for perdida. o led irá ascender indicando a anomalia.

Nota: caso algum módulo seja removido ou acrescentado, deve-se refazer a configuração, precionando o botão I/O Configuration por 5 segundos.

Rua Tuiuti, 1237 - CEP: 03081-000 - São Paulo -Tel.: 11 6190-0444 - vendas@sense.com.br - http://www.sense.com.br