MANUAL DE PITOMETRIA

VOLUME I

(ADENDO DE NOVAS TECNOLOGIAS)

- MALETA DE MEDIÇÃO DE PARÂMETROS HIDRÁULICOS LAMON
- COLETOR E ARMAZENADOR DE DADOS (DATA-LOGGER) Logbox NOVUS

Nota: Documento reproduzido a partir de cópias dos manuais dos respectivos fabricantes.

MANUAL DE PITOMETRIA - VOLUME I ADENDO DE NOVAS TECNOLOGIAS

APRESENTAÇÃO DO ADENDO	3
APRESENTAÇÃO DA MALETA DE MEDIÇÃO DE PARÂMETROS HIDRÁULICOS	4
1. APLICAÇÃO DA MALETA	5
2. PRINCÍPIO DE OPERAÇÃO	5
2.1. AJUSTE DE ZERO DA PRESSÃO MANOMÉTRICA	6
3. USO NO CAMPO	6
4. OPERAÇÃO	7
 4.1. Medição de Pressão Manométrica 4.2. Medição de Δp/Velocidade	7 9 9
5. ESPECIFICAÇÕES - MALETA DE MEDIÇÃO DE PARÂMETROS HIDRÁULICOS	19
6. OPCIONAIS	19
6.1. Data-logger	20
7. MANUTENÇÃO	26
7.1. Orientações básicas	26
8. LISTA DE PEÇAS E ACESSÓRIOS 8.1. TERMO DE GARANTIA 8.2. PRECAUÇÕES	30
9. APRESENTAÇÃO DO REGISTRADOR ELETRÔNICO - LOGBOX NOVUS	31
10. APLICAÇÃO DO REGISTRADOR ELETRÔNICO	32
11. INSTALAÇÃO	32
11.1 CONECTANDO OS SENSORES AO LOGBOX	32
11.2 INSTALANDO O LOGCHART	
12. CONFIGURANDO O LOGBOX	
12.1 O QUE CONFIGURAR	33

13.	COLET	ANDO E VISUALIZANDO DADOS	35
]	13.1 Co	LETANDO DADOS	35
		Janela das Informações Gerais	
		Janela da Tabela de Aquisições	
		Janela do Gráfico	
14.	OUTRA	S CARACTERÍSTICAS	37
15.	CUIDAI	DOS	38
16.	GARAN	TIA	38
17.	ESPECI	FICAÇÕES - REGISTRADOR ELETRÔNICO – LOGBOX - NOVUS	39

Apresentação do Adendo

Este adendo ao Volume I do Manual de Pitometria tem por objetivo apresentar alguns equipamentos atualmente utilizados nas medições pitométricas, quais sejam:

- Maleta de medição de parâmetros hidráulicos;
- Registrador Eletrônico de dados data-logger.

Tais equipamentos, mais modernos, têm algumas características há muito desejadas pelas equipes de pitometria. No primeiro caso, a maleta de parâmetros hidráulicos incorpora no mesmo equipamento duas funções, já que possui sensores de pressões diferencial e manométrica, podendo assim disponibilizar medidas de vazão e pressão. A maleta substitui os líquidos manométricos com a vantagem da melhor precisão, de não necessitar da correção de densidade, etc. Dotado de saídas de sinal (4-20mA), que permitem o seu acoplamento a data-loggers, este aparelho substitui ainda os registradores de vazão e pressão, que dentre outras vantagens evita os demorados cálculos realizados a partir da interpretação e cálculo das cartas gráfica geradas pelos antigos registradores mecânicos.

No segundo caso, o uso dos registradores eletrônicos, ou data-loggers, destinados a coletar e armazenar dados, é uma consequência natural após o surgimento da maleta acima citada. Os data-loggers são equipamentos largamente utilizados em outras aplicações, bastando para isto o fornecimento de sinal elétrico proporcional à variável monitorada. Acoplado às saídas da maleta, os data-loggers coletam e armazenam os dados gerados, disponibilizando-os de forma digital, dispensando assim o manuseio de formulários para cálculos e linearização.

Estas duas novidades são fruto da modernização tecnológica pretendida para a hidrometria da COPASA, tendo por objetivo a melhoria dos dados a serem fornecidos às áreas operacionais.

Apresentação da Maleta de Medição de Parâmetros Hidráulicos

MALETA DE MEDIÇÃO DE PARÂMETROS HIDRÁULICOS Modelo: MDH 600-300

MANUAL DE INSTRUÇÕES

Leia atentamente as instruções contidas neste manual antes de iniciar testes, operação e manutenção do equipamento.

LAMON PRODUTOS LTDA

Rua Maquiné 585 - Jardim América 30.460-380 - Belo Horizonte - MG Tel/Fax: (31) 3373-1552 / 3373-2779

Site: www.lamon.com.br e-mail: produtos@lamon.com.br

1. Aplicação da Maleta

A Maleta de Medição de Parâmetros Hidráulicos, fabricada no Brasil pela LAMON PRODUTOS LTDA, destina-se à monitoração de variáveis tipo: velocidade, vazão, pressão diferencial, pressão manométrica em linhas adutoras, nível, sucção de bombas e recalques, ou outras aplicações semelhantes.

Permite a elaboração de testes de vazão e pressão em redes hidráulicas junto a tubulações que contenham elementos primários de vazão tipo: Venturi, Tubos Pitots ou Placas de Orifício; possibilitando tanto a medição instantânea, como também o armazenamento dos dados através de amostragem, quando utilizada em conjunto com data-loggers (opcional), em períodos previamente configurados.

A Lamon, além da maleta MDH600-300, também fabrica outros modelos de maletas para medições de parâmetros hidráulicos tais como:

- MDH1000-200 Maleta com tamanho reduzido para medições de ∆p até 5000 mmH₂O e pressão até 200 mmH₂O, com saídas de correntes de 4 a 20 mA.
- MDH-01-BSP Modelo para medições de baixa pressão ou vácuo, Faixa:
 -10 a 20 mH₂O e alta pressão faixa: 0 a 200 mmH₂O, Saída de corrente:
 4a 20 mA ou 0~50 mV.
- MDH-01-PBV Medições de pressão na faixa de 0 a 200 mmH₂O e saída de corrente de 4 a 20 mA e ou 0 ~ 50 mV.
- MD-01-DPM Data-logger de pressão, mede, indica e registra pressão nas mais variadas faixas.

2. Princípio de Operação

As maletas MDH 600-300, assim como a MDH 1000-200 possuem sensores e circuitos eletrônicos que possibilitam a medição precisa de:

- Pressão manométrica na faixa de 0 a 200 mmH₂O;
- Pressão diferencial cuja faixa nominal é de 0 a 600 mmH₂O e 0 a 1000 mmH₂O respectivamente, sendo ainda possível a reconfiguração desta faixa em qualquer valor entre os limites: mínimo de 0 a 42 mmH₂O e máximo de 0 a 5080 mmH₂O, assim como velocidades nas em m/s quando configuradas dentro da faixa equivalente a rangeabilidade do Δp especificado que é de 42 a 5080 mmH₂O. Quando nos referimos a faixa de Δp calibrada ou velocidade calibrada, significa que a corrente de saída está calibrada dentro dos valores de 4~20mA para aquela faixa de Δp ou velocidade, Ultrapassando a faixa especificada, a corrente de saída satura na faixa de 22mA, mas o display continua a indicar valores progressivos e corretos normalmente, O equipamento nos permite também programá-lo para ler diretamente a vazão em qualquer unidade, sendo, porém, a mais usada, l/s ou m³/h.

- Para a configuração da indicação, diretamente em unidade de velocidade (m/s), primeiramente devemos configurar, especificando a faixa de Δp em mmH₂O a ser utilizada. Posteriormente a essa configuração, entramos novamente no menu configuração buscando a opção unidade do usuário. Lembre-se de habilitar essa opção. Após habilitar a unidade do usuário, escolher a unidade correta, por exemplo m/s, em seguida configurar e confirmar o valor final do Span para aquela faixa desejada. No caso específico da programação original da maleta a qual é de 600 mmH₂O, significa uma velocidade a ser configurada de 2,956 m/s.

Os sinais medidos são indicados no painel através de displays LCD de 4 ½ dígitos e convertidos em sinais de corrente, nível 4 a 20 mA cc.

2.1. Ajuste de Zero da pressão manométrica.

O ajuste de zero da medição de pressão manométrica é feito por parafuso micrométrico no frontal do painel. O ajuste de zero da medição de pressão diferencial pode ser feito via software, através de Programador/Configurador Portátil, que é soberano na programação e ajuste, assim como, por meio dos dois botões ou chaves de contato liga/desliga, localizados no frontal do painel, doravante denominado chave "Z" (zero) e chave "S" (span). Essas duas chaves nos permitirá no campo ou em laboratório executar toda programação necessária de configuração da maleta, segundo as necessidades próprias de cada processo de medição. Vamos falar e mostrar em detalhes cada uma das particularidades mencionadas, sempre relembrado que o programador, ou mesmo o laptop com o programa "CONF – 301", próprio de configuração, são soberanos na tarefa de comunicação, parametrização ou reparametrização da maleta.

A Maleta Lamon possui uma saída de pulsos de 12 Vcc (0 a 200 ppm) que pode ser lido externamente por um contador obtendo-se, então, a vazão acumulada. Tanto o Programador/Configurador Portátil quanto o contador são itens de fornecimento opcional.

3. Uso no Campo

A maleta é acondicionada em caixa hermética, robusta, construída em plásticos ABS sendo o painel todo vedado à entrada de líquido. Possui alimentação externa através de entrada de 90~240 Vac - 60 Hz, alimentação interna por bateria de 12 Vcc recarregáveis, 4000 mA/h, com autonomia de ± 100 horas a plena carga, sem estar utilizando a saída de pulsos. Possui, ainda, um terminal de entrada de tensão externa de 12 Vcc. Caso a maleta tenha que ficar no campo, em lugar desatendido, em trabalho por período além de sua autonomia, basta conectar uma bateria externa de 12 Vdc através de plug **auxiliares e recarga** para mantê-la em operação por períodos longos. A maleta tem manifold externo para conexão das tomadas de impulso e pode conter o data-logger em seu interior, ficando assim toda a parte eletrônica hermeticamente fechada e protegida.

4. Operação

A maleta pode ser interligada ao elemento primário de vazão ou pressão através das tomadas de P1 (pressão montante) e P2 (pressão ajuzante).

Um conjunto de 5 válvulas, permite o fechamento, abertura, equalização, drenagem para retirada do ar do sistema de medição, teste de zero e colocação em operação de medição, são elas:

- V1 bloqueio ou abertura da pressão P1;
- V2 bloqueio ou abertura da pressão P2;
- V3 equalizadora;
- V4 dreno da pressão P2;
- V5 dreno da pressão P1.

4.1. Medição de Pressão Manométrica

A maleta mede pressão manométrica com leitura direta em uma escala de pressão de até 200 mmH₂O, com indicação digital e transmissão equivalente em sinal eletrônico de 0 a 50 mVcc, medindo também vácuo.

Para se medir ou monitorar apenas pressão manométrica de uma adutora ou outra pressão qualquer compatível faça os passos a seguir:

- 1. feche a válvula V1;
- 2. abra a válvula V3 (equalizadora) por segurança;
- 3. conecte a pressão da linha adequadamente na entrada P1;
- 4. havendo válvula de bloqueio na conexão da pressão P1, abra-o e leia a pressão no display da maleta.

4.2. Medição de ∆p/Velocidade

Antes de qualquer operação ou medição com a maleta, é muito importante estar sempre com a válvula V3 (equalizadora) totalmente aberta. Essa prevenção é para segurança e integridade da cápsula medidora de Δp.Antes de começar a operação para medição de Δp, feche as válvulas V1 e V2, equivalentes as entradas de pressão P1 (alta) e P2 (baixa). Conecte as respectivas entradas de pressão geradas pelo seu elemento deprimogênio nas conexões de P1 e P2 respectivamente. Abra vagarosamente a válvula V1. Esta operação permitirá a pressão P1 entrar na câmara de (alta) da cápsula e pela válvula V3 (equalizadora) entrar também na câmara de baixa da cápsula se equilibrando na mesma pressão ou equalizando-se.

No display, nesse caso, deve ser zero de Δp/Velocidade indicado ou lido. Se o valor lido for diferente de zero significa que existe ar ou bolhas de ar na tubulação ou na cápsula, Abra a válvula V2. Esta operação vai possibilitar circulação de fluído de P1 (alta) passando pela válvula V3 (equalizadora) retornando para o sistema ou tubulação através de P2 (baixa). Esta circulação só acontece se existir diferencial de pressão entre P1 e P2.

Esse procedimento por si só já permite expurgar bolhas de ar existentes no sistema quando inicializado. Esse procedimento não sendo suficiente, pois, em muitos casos ele pode ser lento, expurgue as bolhas existentes no

sistema de medição, através dos drenos da válvula V5 para o lado P1 e a válvula V4 para o lado da pressão P2. Essa operação deve ser de abertura lenta para evitar dar sobrecarga na cápsula diferencial.

O processo de expurgo pelo dreno é muito eficiente, pois ele foi projetado para no momento de drenagem, sugar e renovar toda a água e bolhas existentes no interior da cápsula e da tubulação anterior. Após a drenagem, fechar as válvulas V4 e V5 correspondentes; fechar também a válvula V2. Verificar se a indicação foi para zero no display. Caso positivo, abrir novamente a válvula V2 fechando-se a válvula V3 (equalizadora). Após esse procedimento a maleta estará indicando o \Delta p/Velocidade correspondente a vazão de fluído naquele instante. Naquela estação, para monitorar o valor do Δp/Velocidade indicado no display, abra o jump nos bornes de saída de corrente, inserindo ali o seu data-logger, registrador ou outro sistema qualquer de aquisição de dados compatível, fazendo desta forma o registro do Δp/Velocidade pelo período desejado. Lembre-se; para operação do sistema de medição do Δp/Velocidade, a saída de corrente de 4 à 20 mA deve estar sempre fechada, seja através de jump ou através de seu equipamento de aquisição ou registro de dados, Com o processo de medição de simultaneamente a pressão amontante ou Δp/Velocidade em curso, manométrica da linha estará sendo indicada no display e registrada eletronicamente. É importante observar, que a indicação de ∆p, é em valor de coluna de água, relacionado com a vazão instantânea, porém, a saída de corrente, pode ou não, ter seu valor, relacionado com a raiz quadrada do Δp medido.

Para que valores de velocidade indicado no display em m/s seja verdadeiro ou correto, em relação ao Δp também indicado, é fundamental que o sistema eletrônico do microprocessador esteja operando no modo extração da raiz quadrada, ao invés de saída linear.

Os pulsos de saída estão diretamente relacionados com a corrente transmitida de 4 a 20 mA. Cada pulso representa um certo valor de unidade de volume. A sua determinação depende fundamentalmente do diâmetro da tubulação, tipo de elemento primário, Δp gerado, etc, A saída de pulso é de 12 Volts para acionamento de relé, podendo ser também de 5 Volts compatível com nível TTL.

4.2.1. Resumo para medição de ∆p

Siga os passos abaixo:

- Lique o medidor indicador de Δp .
- Se o display não ligar, verifique se está fechado a saída de corrente através de jump ou através do seu registrador ou coletor de dados.
- Abra a válvula equalizadora V3.
- Feche válvula de bloqueio V1 e V2.
- Conecte pressão P1 (alta) e P2 (baixa) nos seus respectivos engates.
- Abra válvula V1 vagarosamente.
- Abra válvula V2.
- Drene vagarosamente abrindo válvula V4 e depois a válvula V5.
- Feche os drenos, válvula V4 e V5.

- Feche a válvula V2 e verifique se o display indica zero de Δp , Se não indicar zero, drene mais um pouco.
- Após o display indicar zero, abra a válvula V2 e feche válvula V3 (equalizadora), Após esse procedimento a maleta está pronta para indicar com precisão o Δp gerado.

4.2.2. Retirando de Operação:

O processo de retirada da maleta de operação é um passo importante, alguns cuidados ou precauções devem ser salientados:

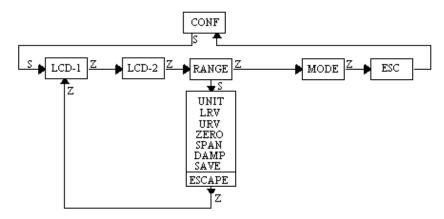
- Primeiramente, abra a válvula V3 (equalizadora) totalmente.
- Feche V1 e V2.
- Retire ou solte os plugs dos engates rápidos.
- Abra em seguida qualquer um dos drenos, V4 ou V5.
- Abra V1 e V2 para garantir que toda pressão interna seja drenada.

Se você for apenas medir ou monitorar a pressão P1 de um sistema qualquer, não esqueça de sempre fechar a válvula V1, e abrir a válvula V3 (equalizadora).

IMPORTANTE: Após vários procedimentos de operação, principalmente se em alguns desses casos, o operador ocasionar sobre carga em um dos lados da célula transdutora de Δp , pode ocorrer um leve desvio do zero. Nesse caso, deve-se proceder um novo ajuste de zero.

4.2.3. Procedimento para ajuste de zero

O ajuste de zero pode ser efetuado de duas maneiras: A) pela chave ou push botton "Z" e "S" localizado no painel frontal da maleta. B) pelo configurador portátil ou laptop.


4.2.3.1. Ajuste de zero no campo ou em laboratório

Esse novo tipo de ajuste é uma nova opção para a parametrização de sua maleta no campo, substituindo o programador PSION, ou mesmo o computador com o programa específico.

Função ajuste de zero

- 1. Aperte a chave "Z" (zero), até aparecer no display a palavra "CONF"
- 2. Continue apertando, aparecerá a palavra "TOTAL", continue apertando, aparecerá a palavra "TRIM". Solte a chave "Z"
 - OBS: A) TRIM é a função de ajuste de zero do display.
 - B) se você continuar apertando a chave "Z", o programa voltará na função inicial "CONF".
- 3. Confirme a função "TRIM" com a chave "S" apertando-a. O display indicará 0.0 e PSWD, que significa a solicitação de uma senha (PSWD = Pass Word ou senha)
- 4. Aperte a chave "S" e a indicação 0.0 passará para 1.0. Solte a chave "S" e pressione novamente para confirmar a senha digital.
- 5. Após a confirmação, aparecerá a palavra "zero" no display, indicando que o programa reconheceu a função ajuste de zero.

- 6. Aperte a chave "Z". Aparecerá a palavra LOWER com seta para cima e para baixo do lado esquerdo da palavra. Escolha a posição da seta se, o zero deve subir, seta para cima, ou, se o zero deve descer, seta para baixo. A escolha deve ser feita com a chave "Z".
- 7. Após a escolha do sentido da seta, com a chave "Z", desça ou suba a indicação do display com a chave "S" até ele atingir o valor de 0,00. OBS: Ao pressionar e ficar com a chave "S" pressionada, a velocidade de descida ou subida do zero vai acelerando, portanto, quando você estiver próximo do valor 0,00, solte a chave "S" e vai dando toques pausados e sucessivos.
- 8. Após zerar o display, solte a chave "S" pressionando "Z". Aparecerá no display a palavra "SALVE" (salvar).
- 9. Pressione a chave "S" para confirmar, salvando o ajuste de zero. Após esse procedimento, aparecerá a palavra "ESC" (sair do programa). Aperte a chave "S" para confirmar a saída, solte a chave "S". Após esse procedimento, o programa reconhecerá o zero do display e, a corrente de saída da célula, automaticamente será ajustada um 4000 mA. OBS: Se você não quiser a saída do programa por motivos extras, pressione "Z" que o programa voltará ao início conforme item 6.
- 10. Se você continuar apertando o "Z", após confirmar o "ESC" ou saída do programa, o mesmo confirmará a saída e continuará rodando a programação, voltando à função "CONF", "TOTAL" e "TRIM".

Função ajuste da faixa (span)

A maleta sai de fábrica calibrada de 0 a 600 mm H_2O . A sua saída de corrente também estará calibrada em 4.000 mA, correspondente a 0,00 mm H_2O e 20.000 mA, correspondente a 600 mm H_2O . Todavia, se você necessitar recalibrar a maleta em outro valor que não o de fábrica, você tem a opção de fazê-lo desde 0 a 42 mm H_2O até 5080 mm H_2O em qualquer do intervalos entre os limites acima. Uma vez definida o intervalo, a corrente de saída, se ajustará automaticamente em 4000 mA para o ponto inferior (0 mm H_2O) e 20.000 mA para o ponto superior da faixa.

Exemplo: 0 a 86 mm H_2O / 0 mm H_2O = 4.000 mA / 86 mm H_2O = 20.000 mA.

Por meio da chave "Z" pressionada, entre em "CONF". Soltar a chave "Z" e confirme "CONF" com a chave "S". Com isso, aparecerá em seguida LCD-1. Soltar a chave "S" pressionando "Z". Rolar a função para LCD-2 e em seguida para RANGE. Soltar a chave "Z" e confirmar o RANGE com a chave "S".

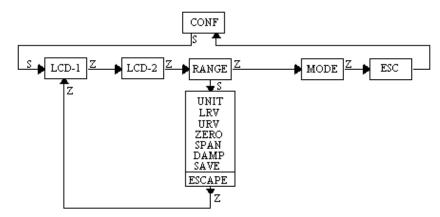
OBS: Lembre-se sempre que "Z" é o agente navegador e "S" é o agente de confirmação.

➤ Navegando dentro da célula RANGE, você vai encontrar UNIT, que se refere as unidades de pressão. No nosso caso, mmH₂O.

LRV: Ajuste **sem referência** do valor inferior da faixa, no nosso caso, esse valor é zero (0,00) (LRV= Low Range Value)

URV: Ajuste **sem referência** do valor superior da faixa escolhida (de fábrica é 600 mmH₂O) (URV= Up Range Value)

ZERO: Ajuste **com referência** do valor zero de pressão. Esse ajuste só deve ser feito em laboratório com a coluna padrão como referência da pressão de equilíbrio zero. Todavia, quando a maleta esta equalizada no campo, para verificação do zero, LRV e ZERO são a mesma coisa.


SPAN ou FAIXA: Ajuste **com referência** para o valor superior da FAIXA. Esse ajuste só deve ser feito em laboratório, com a coluna padrão como referência. Por exemplo: coluna padrão indicando 600 mmH₂O, portanto a maleta ligado em paralelo com a coluna deverá indicar também 600 mmH₂O. Caso contrário, ajusta-se a maleta com o incremento ou decremento de acordo com a seta do lado esquerdo da palavra SPAN que aparece no display. Os incrementos ou decrementos são dados com a chave "S" pressionada.

OBS: No campo o ajuste de SPAN com referência não pode ser feito. Portanto o display na função SPAN só indicará zero se equalizado.

- ➤ Pressione a chave "Z" selecionando LRV.Com a chave "S", ajustar o display para indicar o valor inferior da faixa que é 0,00 mmH₂O.
- Soltar a chave "S" pressionando a chave "Z", para o display mudar sua função para URV. Soltar a chave "Z" ajustando com a chave "S" o valor do ΔP desejado para seu trabalho. Atingindo o valor desejado, por exemplo 300 mmH₂O, soltar a chave "S".
- Com a chave "Z", mudar a função para o passo seguinte, que é DAMP. Ajusta-lo com a chave "S" dando-lhe incremento ou decremento segundo a natureza do processo em medição. Lembramos que ele pode variar desde 0 a 32 segundos de amortecimento.
- Com a chave "Z" mude para a função ESCAPE e com a chave "S", grave ou salve os valores anteriores na E2PROM da célula e confirme ESC. Se você quiser reciclar o programa para ver a gravação, aperte a chave "Z".

4.2.3.2. Ajuste de zero pelo configurador portátil

- Conecte o configurador a saída de corrente da maleta e ao terminal Conf.
- Ligue o configurador.

Desça com as informações na tela de configurador ate encontrar ou aparecer o seguinte quadro:

INF	CONF	MONIT
TRIM	MANUT	TOTAL
CAR	RET	

Com a movimentação de seta para baixa, entre em TRIN, em seguida aparecerá:

PRESSÃO CORRENTE RET

Entre em pressão. O sistema lhe pedirá para passar o loop para manual, aperte a tecla EXE. Em seguida aparecerá.

PRESSÃO SUPERIOR PRESSÃO INFERIOR PRESSÃO ZERO

Entre em pressão Zero.

O display indicará:

(TRIM DE PRESSÃO ZERO) P_(mmH2O) = VALOR INDICADO NA MALETA VALOR CORRETO: SIM/NÃO

Responda Não (Letra N do teclado)

Ao afirmar que o valor não esta correto com, pois o ΔP é zero, automaticamente o microprocessador fará o ajuste de zero do sistema. Após esse procedimento uma ou duas vezes, retorne a operação o início do processo e de OFF para desligar o configurador.

4.3. Tabela de Velocidades – Diferencial de Pressão - mmH₂O

	ela ue	7 0.00	luaue	3 - Dile		iai ue r					
mmH ₂ O	Vc (m/s)	mmH₂O	Vc (m/s)								
	0,126	51	0,877	101	1,228	151	1,498	201	1,724	251	1,924
2	0,178	52	0,885	102	1,234	152	1,502	202	1,729	252	1,928
;	0,217	53	0,894	103	1,240	153	1,507	203	1,733	253	1,932
4	0,250	54	0,902	104	1,246	154	1,512	204	1,737	254	1,935
	0,279	55	0,910	105	1,252	155	1,517	205	1,741	255	1,939
	0,305	56	0,918	106	1,258	156	1,522	206	1,745	256	1,943
	0,329	57	0,926	107	1,264	157	1,527	207	1,750	257	1,947
	0,352	58	0,934	108	1,269	158	1,531	208	1,754	258	1,950
	0,373	59	0,942	109	1,275	159	1,536	209	1,758	259	1,954
10	0,393	60	0,950	110	1,281	160	1,541	210	1,762	260	1,958
1	0,412	61	0,958	111	1,287	161	1,546	211	1,766	261	1,961
12	0,430	62	0,965	112	1,292	162	1,550	212	1,770	262	1,965
13	0,447	63	0,973	113	1,298	163	1,555	213	1,774	263	1,969
14	0,464	64	0,981	114	1,304	164	1,560	214	1,778	264	1,972
15	0,480	65	0,988	115	1,309	165	1,564	215	1,783	265	1,976
16	0,495	66	0,996	116	1,315	166	1,569	216	1,787	266	1,980
17	0,510	67	1,003	117	1,321	167	1,574	217	1,791	267	1,983
18	0,525	68	1,010	118	1,326	168	1,578	218	1,795	268	1,987
19	0,539	69	1,018	119	1,332	169	1,583	219	1,799	269	1,991
20	0,553	70	1,025	120	1,337	170	1,588	220	1,803	270	1,994
2	0,566	71	1,032	121	1,343	171	1,592	221	1,807	271	1,998
22	0,579	72	1,039	122	1,348	172	1,597	222	1,811	272	2,002
23	0,592	73	1,046	123	1,353	173	1,601	223	1,815	273	2,005
24	0,605	74	1,054	124	1,359	174	1,606	224	1,819	274	2,009
2	0,617	75	1,060	125	1,364	175	1,610	225	1,823	275	2,013
26	0,629	76	1,067	126	1,370	176	1,615	226	1,827	276	2,016
2	0,641	77	1,074	127	1,375	177	1,620	227	1,831	277	2,020
28	0,652	78	1,081	128	1,380	178	1,624	228	1,835	278	2,023
29	0,664	79	1,088	129	1,386	179	1,629	229	1,839	279	2,027
30	0,675	80	1,095	130	1,391	180	1,633	230	1,843	280	2,031
3.	0,686	81	1,102	131	1,396	181	1,637	231	1,847	281	2,034
32	0,697	82	1,108	132	1,401	182	1,642	232	1,851	282	2,038
33	0,707	83	1,115	133	1,407	183	1,646	233	1,855	283	2,041
34	0,718	84	1,121	134	1,412	184	1,651	234	1,859	284	2,045
35	0,728	85	1,128	135	1,417	185	1,655	235	1,862	285	2,048
36	0,738	86	1,135	136	1,422	186	1,660	236	1,866	286	2,052
37	0,749	87	1,141	137	1,427	187	1,664	237	1,870	287	2,055
38	0,758	88	1,147	138	1,432	188	1,668	238	1,874	288	2,059
39	0,768	89	1,154	139	1,438	189	1,673	239	1,878	289	2,062
40	0,778	90	1,160	140	1,443	190	1,677	240	1,882	290	2,066
4	0,787	91	1,167	141	1,448	191	1,681	241	1,886	291	2,069
42	0,797	92	1,173	142	1,453	192	1,686	242	1,890	292	2,073
43	0,806	93	1,179	143	1,458	193	1,690	243	1,893	293	2,076
44	0,815	94	1,185	144	1,463	194	1,694	244	1,897	294	2,080
45	0,824	95	1,192	145	1,468	195	1,699	245	1,901	295	2,083
46	-,,	96	1,198	146	1,473	196	1,703	246	1,905	296	2,087
47	0,842	97	1,204	147	1,478	197	1,707	247	1,909	297	2,090
48	0,851	98	1,210	148	1,483	198	1,712	248	1,913	298	2,094
49	0,860	99	1,216	149	1,488	199	1,716	249	1,916	299	2,097
50	0,868	100	1,222	150	1,493	200	1,720	250	1,920	300	2,101

	Vc		Vc		Vc		Vc		Vc		Vc
mmH ₂ O	(m/s)	mmH₂O	(m/s)	mmH₂O	(m/s)	mmH₂O	(m/s)	mmH₂O	(m/s)	mmH ₂ O	(m/s)
301	2,104	351	2,270	401	2,424	451	2,569	501	2,705	551	2,835
302	2,108	352	2,273	402	2,427	452	2,571	502	2,708	552	2,838
303	2,111	353	2,276	403	2,430	453	2,574	503	2,711	553	2,840
304	2,115	354	2,279	404	2,433	454	2,577	504	2,713	554	2,843
305	2,118	355	2,283	405	2,436	455	2,580	505	2,716	555	2,845
306	2,121	356	2,286	406	2,439	456	2,583	506	2,719	556	2,848
307	2,125	357	2,289	407	2,442	457	2,585	507	2,721	557	2,850
308	2,128	358	2,292	408	2,445	458	2,588	508	2,724	558	2,853
309	2,132	359	2,295	409	2,448	459	2,591	509	2,726	559	2,855
310	2,135	360	2,298	410	2,451	460	2,594	510	2,729	560	2,858
311	2,138	361	2,302	411	2,454	461	2,597	511	2,732	561	2,860
312	2,142	362	2,305	412	2,457	462	2,599	512	2,734	562	2,863
313	2,145	363	2,308	413	2,459	463	2,602	513	2,737	563	2,865
314	2,149	364	2,311	414	2,462	464	2,605	514	2,740	564	2,868
315	2,152	365	2,314	415	2,465	465	2,608	515	2,742	565	2,870
316	2,155	366	2,317	416	2,468	466	2,610	516	2,745	566	2,873
317	2,159	367	2,320	417	2,471	467	2,613	517	2,748	567	2,875
318	2,162	368	2,323	418	2,474	468	2,616	518	2,750	568	2,878
319	2,165	369	2,327	419	2,477	469	2,619	519	2,753	569	2,880
320	2,169	370	2,330	420	2,480	470	2,621	520	2,755	570	2,883
321	2,172	371	2,333	421	2,483	471	2,624	521	2,758	571	2,885
322	2,175	372	2,336	422	2,486	472	2,627	522	2,761	572	2,888
323	2,179	373	2,339	423	2,489	473	2,630	523	2,763	573	2,890
324	2,182	374	2,342	424	2,492	474	2,632	524	2,766	574	2,893
325	2,185	375	2,345	425	2,494	475	2,635	525	2,768	575	2,895
326	2,189	376	2,348	426	2,497	476	2,638	526	2,771	576	2,898
327	2,192	377	2,351	427	2,500	477	2,641	527	2,774	577	2,900
328	2,195	378	2,354	428	2,503	478	2,643	528	2,776	578	2,903
329	2,199	379	2,357	429	2,506	479	2,646	529	2,779	579	2,905
330	2,202	380	2,361	430	2,509	480	2,649	530	2,781	580	2,908
331	2,205 2,208	381	2,364	431 432	2,512	481	2,651 2,654	531		581 582	2,910
			2,367						2,787		
333	2,212 2,215	383 384	2,370	433	2,518 2,520	483 484	2,657 2,660		2,789	583 584	2,915 2,918
335	2,218	385	2,376	435	2,523	485	2,662		2,794	585	2,920
336	2,222	386	2,379	436	2,526	486	2,665		2,797	586	2,923
337	2,225	387	2,382	437	2,529	487	2,668	537	2,799	587	2,925
338	2,228	388	2,385	438	2,532	488	2,670	538		588	2,928
339	2,231	389	2,388	439	2,535	489	2,673	539	2,805	589	2,930
340	2,235	390	2,391	440	2,537	490	2,676	540	2,807	590	2,932
341	2,238	391	2,394	441	2,540	491	2,678		2,810	591	2,935
342	2,241	392	2,397	442	2,543	492	2,681	542		592	2,937
343	2,244	393	2,400	443	2,546	493	2,684	543		593	2,940
344	2,247	394	2,403	444	2,549	494	2,687	544		594	2,942
345	2,251	395	2,406	445	2,552	495	2,689		2,820	595	2,945
346	2,254	396	2,409	446	2,554	496	2,692		2,822	596	2,947
347	2,257	397	2,412	447	2,557	497	2,695	547	2,825	597	2,950
348	2,260	398	2,415	448	2,560	498	2,697	548	2,828	598	2,952
349	2,264	399	2,418	449	2,563	499	2,700	549	2,830	599	2,954
350	2,267	400	2,421	450	2,566	500	2,703	550	2,833	600	2,957

	Vc		Vc		Vc		Vc		Vc		Vc
mmH ₂ O	(m/s)	mmH ₂ O	(m/s)	mmH₂O	(m/s)	mmH ₂ O	(m/s)	mmH ₂ O	(m/s)	mmH ₂ O	(m/s)
601	2,959	651	3,078	701	3,193	751	3,303	801	3,410	851	3,513
602	2,962	652	3,081	702	3,195	752	3,305	802	3,412	852	3,515
603	2,964	653	3,083	703	3,197	753	3,307	803	3,414	853	3,517
604	2,967	654	3,085	704	3,199	754	3,309	804	3,416	854	3,519
605	2,969	655	3,087	705	3,202	755	3,312	805	3,418	855	3,521
606	2,971	656	3,090	706	3,204	756	3,314	806	3,420	856	3,523
607	2,974	657	3,092	707	3,206	757	3,316	807	3,422	857	3,525
608	2,976	658	3,094	708	3,208	758	3,318	808	3,424	858	3,527
609	2,979	659	3,097	709	3,210	759	3,320	809	3,426	859	3,529
610	2,981	660	3,099	710	3,213	760	3,322	810	3,428	860	3,531
611	2,983	661	3,101	711	3,215	761	3,325	811	3,430	861	3,533
612	2,986	662	3,104	712	3,217	762	3,327	812	3,433	862	3,535
613	2,988	663	3,106	713	3,219	763	3,329	813	3,435	863	3,537
614	2,991	664	3,108	714	3,222	764	3,331	814	3,437	864	3,539
615	2,993	665	3,111	715	3,224	765	3,333	815	3,439	865	3,541
616	2,995	666	3,113	716	3,226	766	3,335	816	3,441	866	3,543
617	2,998	667	3,115	717	3,228	767	3,337	817	3,443	867	3,545
618	3,000	668	3,118	718	3,231	768	3,340	818	3,445	868	3,547
619	3,003	669	3,120	719	3,233	769	3,342	819	3,447	869	3,549
620	3,005	670	3,122	720	3,235	770	3,344	820	3,449	870	3,551
621	3,007	671	3,124	721	3,237	771	3,346	821	3,451	871	3,553
622	3,010	672	3,127	722	3,239	772	3,348	822	3,453	872	3,555
623	3,012	673	3,129	723	3,242	773	3,350	823	3,455	873	3,557
624	3,015	674	3,131	724	3,244	774	3,352	824	3,457	874	3,559
625	3,017	675	3,134	725	3,246	775	3,355	825	3,460	875	3,561
626	3,019	676	3,136	726	3,248	776	3,357	826	3,462	876	3,563
627	3,022	677	3,138	727	3,250	777	3,359	827	3,464	877	3,565
628	3,024	678	3,140	728	3,253	778	3,361	828	3,466	878	3,567
629	3,026	679	3,143	729	3,255	779	3,363	829	3,468	879	3,569
630	3,029	680	3,145	730	3,257	780	3,365	830	3,470	880	3,571
631	3,031	681	3,147	731	3,259	781	3,367	831	3,472	881	3,573
	3,034		3,150	732		782		832		882	
633	3,036	683	3,152	733	3,264	783	3,372	833		883	3,577
634	3,038	684	3,154	734	3,266	784	3,374	834		884	3,579
635	3,041	685	3,156	735	3,268	785	3,376	835	3,480	885	3,581
636	3,043	686	3,159	736	3,270	786	3,378	836		886	3,583
637	3,045	687	3,161	737	3,272	787	3,380	837	3,484 3,486	887	3,585
638	3,048	688	3,163 3,166	738	3,275	788	3,382	838	<u> </u>	888	3,587
639	3,050	689	,	739	3,277	789	3,384	839	3,488	889	3,589
640	3,052	690	3,168	740	3,279	790	3,386	840	3,490 3,492	890	3,591
641 642	3,055	691 692	3,170 3,172	741	3,281 3,283	791 792	3,389	841	3,492	891	3,593 3,595
643	3,057	693	3,172	742 743	3,283	792 793	3,391	842 843		892 893	3,595
644	3,062	693	3,175	743	3,288	793	3,395	844	3,497	894	3,599
645	3,064	695	3,177	744	3,290	794	3,397	845	3,501	895	3,601
646	3,067	696	3,179	745	3,290	795	3,399		3,503	896	3,603
647	3,069	697	3,184	740	3,294	797	3,401	847	3,505	897	3,605
648	3,009	698	3,186	747	3,296	798	3,403	848	3,507	898	3,607
649	3,074	699	3,188	749	3,299	799	3,405	849	3,509	899	3,609
650	3,076	700	3,190	750	3,301	800	3,407	850	3,511	900	3,611
000	5,570	, , , ,	5, 100	, 00	5,551	555	٠, ٠٠٠	300	,	500	٠,٠،١

mmU O					1/-		\ / -		\ / -		\/-
mmH₂O (Vc (m/s)	mmH ₂ O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)
901 3	3,613	951	3,711	1001	3,806	1051	3,898	1101	3,989	1151	4,077
902 3	3,615	952	3,713	1002	3,808	1052	3,900	1102	3,990	1152	4,079
903 3	3,617	953	3,715	1003	3,809	1053	3,902	1103	3,992	1153	4,080
904 3	3,619	954	3,716	1004	3,811	1054	3,904	1104	3,994	1154	4,082
905 3	3,621	955	3,718	1005	3,813	1055	3,906	1105	3,996	1155	4,084
906 3	3,623	956	3,720	1006	3,815	1056	3,907	1106	3,998	1156	4,086
907 3	3,625	957	3,722	1007	3,817	1057	3,909	1107	3,999	1157	4,087
908 3	3,627	958	3,724	1008	3,819	1058	3,911	1108	4,001	1158	4,089
909 3	3,629	959	3,726	1009	3,821	1059	3,913	1109	4,003	1159	4,091
910 3	3,631	960	3,728	1010	3,823	1060	3,915	1110	4,005	1160	4,093
911 3	3,633	961	3,730	1011	3,824	1061	3,916	1111	4,006	1161	4,094
912 3	3,635	962	3,732	1012	3,826	1062	3,918	1112	4,008	1162	4,096
913 3	3,637	963	3,734	1013	3,828	1063	3,920	1113	4,010	1163	4,098
914 3	3,639	964	3,736	1014	3,830	1064	3,922	1114	4,012	1164	4,100
915 3	3,641	965	3,738	1015	3,832	1065	3,924	1115	4,014	1165	4,101
916 3	3,643	966	3,739	1016	3,834	1066	3,926	1116	4,015	1166	4,103
917 3	3,645	967	3,741	1017	3,836	1067	3,927	1117	4,017	1167	4,105
918 3	3,647	968	3,743	1018	3,837	1068	3,929	1118	4,019	1168	4,107
919 3	3,649	969	3,745	1019	3,839	1069	3,931	1119	4,021	1169	4,108
	3,651	970	3,747	1020	3,841	1070	3,933	1120	4,022	1170	4,110
	3,653	971	3,749	1021	3,843	1071	3,935	1121	4,024	1171	4,112
	3,654	972	3,751	1022	3,845	1072	3,936	1122	4,026	1172	4,113
	3,656	973	3,753	1023	3,847	1073	3,938	1123	4,028	1173	4,115
	3,658	974	3,755	1024	3,849	1074	3,940	1124	4,029	1174	4,117
	3,660	975	3,757	1025	3,850	1075	3,942	1125	4,031	1175	4,119
	3,662	976	3,759	1026	3,852	1076	3,944	1126	4,033	1176	4,120
	3,664	977	3,760	1027	3,854	1077	3,946	1127	4,035	1177	4,122
	3,666	978	3,762	1028	3,856	1078	3,947	1128	4.037	1178	4,124
	3,668	979	3,764	1029	3.858	1079	3,949	1129	4,038	1179	4,126
	3,670	980	3,766	1030	3,860	1080	3,951	1130	4,040	1180	4,127
	3,672	981	3,768	1031	3,861	1081	3,953	1131	4,042	1181	4,129
	3,674	982	3,770	1032	3,863	1082		1132	4,044	1182	4,131
	3,676	983	3,772	1033	3,865	1083	3,956	1133		1183	4,132
	3,678	984	3,774	1034	3,867	1084	3,958	1134	4,047	1184	4,134
	3,680	985	3,776	1035	3,869	1085	3,960		4,049	1185	4,136
936 3	3,682	986	3,777	1036	3,871	1086	3,962	1136	4,051	1186	4,138
	3,684	987	3,779	1037	3,873	1087	3,964	1137	4,052	1187	4,139
	3,686	988	3,781	1038	3,874	1088	3,965	1138	4,054	1188	4,141
	3,688	989	3,783	1039	3,876	1089	3,967	1139	4,056	1189	4,143
	3,689	990	3,785	1040	3,878	1090	3,969	1140	4,058	1190	4,144
	3,691	991	3,787	1041	3,880	1091	3,971	1141	4,059	1191	4,146
	3,693	992	3,789	1042	3,882	1092	3,973	1142	<u> </u>	1192	4,148
	3,695	993	3,791	1043	3,884	1093	3,974	1143		1193	4,150
	3,697	994	3,793	1044	3,885	1094	3,976	1144	4,065	1194	4,151
	3,699	995	3,794	1045	3,887	1095	3,978	1145		1195	4,153
	3,701	996	3,796	1046	3,889	1096	3,980	1146	4,068	1196	4,155
	3,703	997	3,798	1047	3,891	1097	3,981	1147	4,070	1197	4,156
	3,705	998	3,800	1048	3,893	1098	3,983	1148	4,072	1198	4,158
	3,707	999	3,802	1049	3,895	1099	3,985	1149	4,073	1199	4,160
	3,709	1000	3,804	1050	3,896	1100	3,987		4,075	1200	4,162

					.,		.,				
mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)	mmH₂O	Vc (m/s)
1201	4,163	1251	4,248	1301	4,331	1351	4,412	1401	4,492	1451	4,570
1202	4,165	1252	4,250	1302	4,332	1352	4,414	1402	4,493	1452	4,572
1203	4,167	1253	4,251	1303	4,334	1353	4,415	1403	4,495	1453	4,573
1204	4,168	1254	4,253	1304	4,336	1354	4,417	1404	4,497	1454	4,575
1205	4,170	1255	4,255	1305	4,337	1355	4,419	1405	4,498	1455	4,576
1206	4,172	1256	4,256	1306	4,339	1356	4,420	1406	4,500	1456	4,578
1207	4,174	1257	4,258	1307	4,341	1357	4,422	1407	4,501	1457	4,580
1208	4,175	1258	4,260	1308	4,342	1358	4,423	1408	4,503	1458	4,581
1209	4,177	1259	4,261	1309	4,344	1359	4,425	1409	4,504	1459	4,583
1210	4,179	1260	4,263	1310	4,346	1360	4,427	1410	4,506	1460	4,584
1211	4,180	1261	4,265	1311	4,347	1361	4,428	1411	4,508	1461	4,586
1212	4,182	1262	4,266	1312	4,349	1362	4,430	1412	4,509	1462	4,587
1213	4,184	1263	4,268	1313	4,350	1363	4.431	1413	4.511	1463	4,589
1214	4,185	1264	4,270	1314	4,352	1364	4,433	1414	4,512	1464	4,590
1215	4,187	1265	4,271	1315	4,354	1365	4,435		4,514	1465	4,592
1216	4,189	1266	4,273	1316	4,355	1366	4,436	1416	4,516	1466	4,593
1217	4,191	1267	4,275	1317	4,357	1367	4,438	1417	4,517	1467	4,595
1218	4,192	1268	4,276	1318	4,359	1368	4,439	1418	4,519	1468	4,597
1219	4,194	1269	4,278	1319	4.360	1369	4,441	1419	4,520	1469	4.598
1220	4,196	1270	4,280	1320	4,362	1370	4,443	1420	4,522	1470	4,600
1221	4,197	1271	4,281	1321	4,363	1371	4,444	1421	4,523	1471	4,601
1222	4,199	1272	4,283	1322	4,365	1372	4,446	1422	4,525	1472	4,603
1223	4,201	1273	4,285	1323	4,367	1373	4,447	1423	4,527	1473	4,604
1224	4,202	1273	4,286	1324	4,368	1374	4,449	1424	4,528	1474	4,606
1225	4,204	1275	4,288	1325	4,370	1375	4,451	1425	4,530	1475	4,607
1226	4,206	1276	4,290	1326	4,372	1376	4,452	1426	4,531	1476	4,609
1227	4,208	1277	4,291	1327	4,373	1377	4,454	1427	4,533	1477	4,610
1228	4,209	1277	4,293	1328	4,375	1378	4,455	1428	4,534	1477	4,612
1229	4,211	1279	4,295	1329	4,377	1379	4,457	1429	4,536	1479	4,613
1230	4,213	1280	4,296	1330	4,378	1380	4,459	1430	4,537	1480	4,615
1231	4,214	1280	4,298	1331	4,378	1381	4,460	1430	4,537	1480	4,617
									·		
	4,216	1282		1332		1382		1432	4,541	1482	4,618
1233 1234	4,218 4,219	1283 1284	4,301 4,303	1333 1334	4,383 4,385	1383 1384	4,463 4.465	1433	4,542 4,544	1483 1484	4,620 4,621
1234	4,219	1285	4,303	1335	4,386	1385	4,466				4,623
							,	1435		1485	
1236	4,223	1286	4,306	1336	4,388	1386	4,468	1436	4,547	1486	4,624
1237	4,224	1287	4,308	1337	4,389	1387	4,470	1437	4,548	1487	4,626
1238	4,226	1288	4,309	1338	4,391	1388	4,471	1438	4,550	1488	4,627
1239	4,228	1289	4,311	1339	4,393	1389	4,473	1439	4,552	1489	4,629
1240	4,229	1290	4,313	1340	4,394	1390	4,474		4,553	1490	4,630
1241	4,231	1291	4,314	1341	4,396	1391	4,476	1441	4,555	1491	4,632
1242	4,233	1292	4,316	1342	4,398	1392	4,478	1442		1492	4,633
1243	4,234	1293	4,318	1343	4,399	1393	4,479	1443		1493	4,635
1244	4,236	1294	4,319	1344	4,401	1394	4,481	1444	4,559	1494	4,636
1245	4,238	1295	4,321	1345	4,402	1395	4,482	1445	4,561	1495	4,638
1246	4,240	1296	4,323	1346	4,404	1396	4,484	1446	4,562	1496	4,640
1247	4,241	1297	4,324	1347	4,406	1397	4,486	1447	4,564	1497	4,641
1248	4,243	1298	4,326	1348	4,407	1398	4,487	1448	4,566	1498	4,643
1249	4,245	1299	4,328	1349	4,409	1399	4,489	1449	4,567	1499	4,644
1250	4,246	1300	4,329	1350	4,410	1400	4,490	1450	4,569	1500	4,646

	Vc		Vc		Vc		Vc		Vc		Vc
mmH ₂ O	(m/s)	mmH ₂ O	(m/s)	mmH₂O	(m/s)	mmH₂O	(m/s)	mmH ₂ O	(m/s)	mmH ₂ O	(m/s)
1501	4,647	1551	4,723	1601	4,797	1651	4,871	1701	4,943	1751	5,014
1502	4,649	1552	4,724	1602	4,799	1652	4,872	1702	4,944	1752	5,015
1503	4,650	1553	4,726	1603	4,800	1653	4,874	1703	4,946	1753	5,017
1504	4,652	1554	4,727	1604	4,802	1654	4,875	1704	4,947	1754	5,018
1505	4,653	1555	4,729	1605	4,803	1655	4,876	1705	4,949	1755	5,020
1506	4,655	1556	4,730	1606	4,805	1656	4,878	1706	4,950	1756	5,021
1507	4,656	1557	4,732	1607	4,806	1657	4,879	1707	4,951	1757	5,022
1508	4,658	1558	4,733	1608	4,808	1658	4,881	1708	4,953	1758	5,024
1509	4,659	1559	4,735	1609	4,809	1659	4,882	1709	4,954	1759	5,025
1510	4,661	1560	4,736	1610	4,811	1660	4,884	1710	4,956	1760	5,027
1511	4,662	1561	4,738	1611	4,812	1661	4,885	1711	4,957	1761	5,028
1512	4,664	1562	4,739	1612	4,814	1662	4,887	1712	4,959	1762	5,029
1513	4,665	1563	4,741	1613	4,815	1663	4,888	1713	4,960	1763	5,031
1514	4,667	1564	4,742	1614	4,817	1664	4,890	1714	4,961	1764	5,032
1515	4,669	1565	4,744	1615	4,818	1665	4,891	1715	4,963	1765	5,034
1516	4,670	1566	4,745	1616	4,819	1666	4,892	1716	4,964	1766	5,035
1517	4,672	1567	4,747	1617	4,821	1667	4,894	1717	4,966	1767	5,037
1518	4,673	1568	4,748	1618	4,822	1668	4,895	1718	4,967	1768	5,038
1519	4,675	1569	4,750	1619	4,824	1669	4,897	1719	4,969	1769	5,039
1520	4,676	1570	4,751	1620	4,825	1670	4,898	1720	4,970	1770	5,041
1521	4,678	1571	4,753	1621	4,827	1671	4,900	1721	4,971	1771	5,042
1522	4,679	1572	4,754	1622	4,828	1672	4,901	1722	4,973	1772	5,044
1523	4,681	1573	4,756	1623	4,830	1673	4,903	1723	4,974	1773	5,045
1524	4,682	1574	4,757	1624	4,831	1674	4,904	1724	4,976	1774	5,046
1525	4,684	1575	4,759	1625	4,833	1675	4,905	1725	4,977	1775	5,048
1526	4,685	1576	4,760	1626	4,834	1676	4,907	1726	4,979	1776	5,049
1527	4,687	1577	4,762	1627	4,836	1677	4,908	1727	4,980	1777	5,051
1528	4,688	1578	4,763	1628	4,837	1678	4,910	1728	4,981	1778	5,052
1529	4,690	1579	4,765	1629	4,839	1679	4,911	1729	4,983	1779	5,053
1530	4,691	1580	4,766	1630	4,840	1680	4,913	1730	4,984	1780	5,055
1531	4,693	1581	4,768	1631	4,841	1681	4,914	1731	4,986	1781	5,056
1532	4,694	1582	4,769	1632	4,843	1682	4,916	1732	4,987	1782	5,058
1533	4,696	1583	4,771	1633	4,844	1683	4,917	1733	4,988	1783	5,059
1534	4,697	1584	4,772	1634	4,846	1684	4,918	1734	4,990	1784	5,060
1535	4,699	1585	4,774	1635	4,847	1685	4,920	1735	4,991	1785	5,062
1536	4,700	1586	4,775	1636	4,849	1686	4,921	1736	4,993	1786	5,063
1537	4,702	1587	4,777	1637	4,850	1687	4,923	1737	4,994	1787	5,065
1538	4,703	1588	4,778	1638	4,852	1688	4,924	1738	4,996	1788	5,066
1539	4,705	1589	4,780	1639	4,853	1689	4,926	1739	4,997	1789	5,067
1540	4,706	1590	4,781	1640	4,855	1690	4,927	1740	4,998	1790	5,069
1541	4,708	1591	4,783	1641	4,856	1691	4,929	1741	5,000	1791	5,070
1542	4,709	1592	4,784	1642	4,858	1692	4,930	1742	5,001	1792	5,072
1543	4,711	1593	4,786	1643	4,859	1693	4,931	1743	5,003	1793	5,073
1544	4,712	1594	4,787	1644	4,860	1694	4,933	1744	5,004	1794	5,074
1545	4,714	1595	4,788	1645	4,862	1695	4,934	1745	5,005	1795	5,076
1546	4,715	1596	4,790	1646	4,863	1696	4,936	1746	5,007	1796	5,077
1547	4,717	1597	4,791	1647	4,865	1697	4,937	1747	5,008	1797	5,078
1548	4,718	1598	4,793	1648	4,866	1698	4,939	1748	5,010	1798	5,080
1549	4,720	1599	4,794	1649	4,868	1699	4,940	1749	5,011	1799	5,081
1550	4,721	1600	4,796	1650	4,869	1700	4,941	1750	5,013	1800	5,083

5. Especificações - Maleta de Medição de Parâmetros Hidráulicos

Caixa: Plástica ABS robusta e hermética;

Dimensões: 180 x 440 x 290mm;

Peso: ± 6 kg;

Autonomia da Bateria: ± 100 horas;

Grau de proteção: IP-68;

Alimentação Elétrica: 90~240 Vca, 60Hz ou bateria interna 12 Vcc

recarregável;

Temperatura de Operação: 0 a 45°C; Indicação da variável: Display 4 ½ dígitos;

Limite de sobrecarga da cápsula: 50% do valor nominal; Sensor de pressão manométrica: tipo piezo resistivo;

Pressão máxima de operação: 200mH₂O;

Sinal de saída: $0 \sim 50 \text{ mV}$ ($0 \sim 200 \text{ mCA}$) opcional $4 \sim 20 \text{ mA}$)

Linearidade: ± 0,02%; Repetibilidade: ± 0,01%; Precisão: 0,15% FS

Sensor de pressão diferencial: tipo célula capacitiva, Amplificador e processador de sinal microprocessado;

Pressão diferencial: 0 a 600 mmH₂O, Pode ser facilmente reconfigurada nos

limites de span de 43 a 5080 mmH₂O (precisão 0,15% FS);

Saída: 4 a 20 mA (linear ou quadrática);

Saída de pulso:

Pulsos de 12 Vcc ou 5Vcc para totalização externa; faixa de variação de 0 a 200 pulsos por minuto;

tensão de saída: 12 Vcc / 5 Vcc;

Configuração: Via display alfa numérico ou terminal portátil.

6. Opcionais

6.1. Data-logger

Item de fornecimento normal. Opcionalmente ele pode ser retirado do fornecimento. Por outro lado, poderá vir instalado internamento na Maleta, ou fornecido para ligação externa aos "Plugs" de saída de sinal, podendo ter um ou dois canais com entradas configuráveis para sinal de 4 a 20 mA e 0 a 50 mV para registro dos valores lidos no display.

Os intervalos de armazenamento do data-logger podem ser configurados a partir de 0,5 segundos até valores bem altos, Sua capacidade de memória para armazenamento pode ser de 8, 16 ou 32 kbyte. É alimentado por bateria de lítio com capacidade de carga para alimentação equivalente a ± 5 anos de operação.

Acompanha o data-logger software para configuração e visualização dos dados coletados e listados em planilhas com os gráficos dos respectivos resultados. Ainda no mesmo gráfico, é possível fazer uma integração para se conhecer o volume medido ao longo do tempo desejado, O "software" fornecido é para ambiente de "windows".

6.2. Roteiro de programação através do Programador/Configurador Portátil

O medidor de Δp sai de fabrica configurado e com a referência calibrada no valor de Δp igual a 0 a 600 mmH₂O e com saída de corrente de 4 a 20 mA. A cápsula com seu respectivo sistema eletrônico microprocessado, permite configuração de span a partir de 42 mm até 5,000 mmH₂O, portanto a alteração do valor original vai depender em alguns casos de particularidades especiais de seu dia a dia, Acreditamos que 600 mmH₂O atende a maioria dos casos de medição. A saída de corrente também está configurada para uma saída natural, ou seja, sem extração de raiz quadrada.

Usando o programador para configuração

O Programador/Configurador Portátil usado para alterações nos parâmetros de medição do Δp da maleta da Lamon modelo MDH 600-300 é a interface homem-máquina utilizado para estabelecer a comunicação entre o operador e o medidor de Δp utilizando os avanços da tecnologia digital. O frontal do programador é mostrado nas figuras a seguir.

O Software do Programador apresenta as seguintes características:

Obs.: Citaremos aqui apenas aquelas que nos interessam para a finalidade de medição de vazão:

- a) Identificação de célula do transmissor e dados de especificação.
- b) Mudança remota da calibração sem usar uma fonte de pressão padrão de referência.
- c) Mudança da faixa de calibração, usando uma pressão padrão de referência.
- d) Funções de transferência para vazão (Raiz de X, Raiz de X³, Raiz de X⁵).
- e) Função de linearização especial de acordo com uma curva de 16 pontos configuráveis.
- f) Ajuste de corrente constante de 3,9 a 21 mA para teste de loop.
- g) Etc, etc, etc,,,

Teclado

O programador possui teclas com dupla função. O nome das funções é indicado sob as teclas e acima delas.

ON

Usada para ligar o programador ou para retornar ao último nível de decisão do menu. Se você não consegue ler nada no visor, ou se algo está difícil de ser interpretado, ajuste o contraste, Para localizar o ajuste do contraste veja sua posição indicada na figura do programador.

SHIF

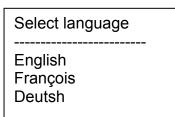
Utilizada para acessar os símbolos e números, que estão acima das teclas. Para obter a seleção, bastar pressionar simultaneamente SHIFT e o símbolo ou número desejado. Para entrada de dados que

Requerem somente números a tecla SHIFT não é necessária.

DEL

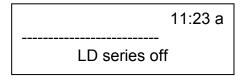
Para apagar caracteres erroneamente digitados,

SPACE


Usado para inserir um espaço entre caracteres.

EXE

Usada para confirmar a ação ou completar uma entrada.


Ligando e desligando o Programador

Quando o programador é ligado pela primeira vez ou após uma troca de bateria, a seguinte mensagem é apresentada:

- cursor estará piscando sob o English
- pressione a tecla EXE

- Movendo o cursor para a função OFF e pressionando a tecla <EXE> ou a tecla <O> o programador desliga. Se ele permanecer ligado por 5 (cinco) minutos sem que qualquer tecla seja pressionado, ele se auto desligará.
- Com o cursor sob LD SERIES, pressione a tecla <EXE>. O sistema operacional é transferido da memória Eprom (cartucho do slot B) para a memória RAM do programador e o display mostrará a seguinte mensagem:

Programador Modelo HTR -----Versão 5,xx Após alguns segundos, o menu seguinte mostrará as três opções para configuração:

```
ON-LINE – TRM ÚNICO
ON-LINE –MULTIDROP
OFF-LINE RET
```

*TRM = TRANSMISOR

- A tecla <ON-CLEAR> ou a opção RET, permitem ao usuário deixar o menu em uso e retornar ao menu superior da hierarquia. Estas teclas também são úteis para retornar a um menu familiar quando o usuário estiver em uma operação desconhecida.
- Ligue a Maleta e o Configurador

Aparecerá

```
LD Series e OFF
```

 Pressione a tecla <EXE> para continuar, Se você quiser desligar mova o cursor para OFF e pressione EXE.

Continuando a operação......

```
>>> <<
Transmissor de Pressão
Versão 5,xx
```

Selecione ON-LINE – TRM Único e pressione EXE.

```
ON LINE – TRM ÚNICO
ON-LINE – MDROP
OFF-LINE RET
```

Continuando pressione **EXE**

Aparecerá sequencialmente algumas informações fixando em seguida o quadro:

INFO	TAG	MONIT
TRIM	CONF	TOTAL
CAR	MANU	
$\downarrow \uparrow$	Τ	
	RET	

Nosso caso particular é CONF, Mova o cursor para CONF.

Após alguns segundos aparecerá:

Calibração,,,,,,

Função = Raiz Obs.: Se a função for linear não Corte = 4,00% S aparecerá a opção corte

Com o cursor em **CALIBRAÇÃO** pressione **EXE**, após alguns segundos aparecerá:

VI = $0,00 \text{ mmH}_2\text{O}$ VS = $600 \text{ mmH}_2\text{O}$ Unidade de Pressão = mmH_2O

Nessa apresentação você vai escolher o valor inicial VI de sua faixa de pressão diferencial, posteriormente o valor superior VS e a unidade de pressão.

Ao pressionar **EXE**, o display lhe mostrará o valor atual de VI e lhe perguntará, se você quer alterá-lo?

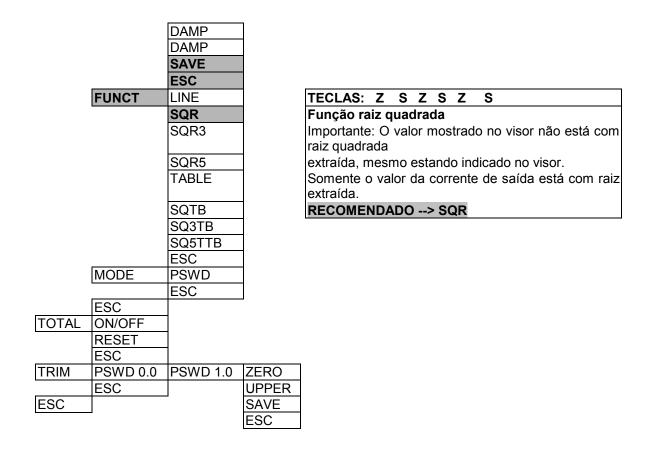
- Pressione a letra N.
- Em caso positivo aparecerá uma mensagem: *loop deve estar em manual*.
- Pressione EXE.

Aparecerá:

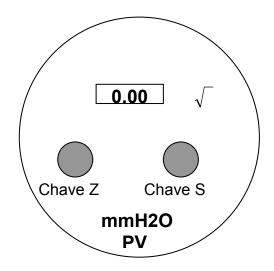
- Escolha a opção sem referência se você estiver no campo ou se você não dispor de um padrão de referência para calibração, Pressione EXE.
- No quadro seguinte o programa pedirá para você digitar o valor inferior ou inicial da calibração, Normalmente esse valor inicial da faixa é zero. Digite o zero e pressione EXE.
- Para o quadro seguinte da calibração o programa avisa que o sistema antes em manual deve ser passado para AUTO, Pressione EXE.
- O valor inicial foi aceito, Agora mova o cursor para o valor superior VS, O mesmo procedimento vai ocorrer, Digite o VS desejado completando assim a faixa com seu valor inicial e final de trabalho,.
- Mova o cursor para baixo e escolha a unidade de pressão desejada. Mais abaixo a palavra DAMP que significa amortecimento, ele é o filtro digital onde a constante de tempo pode ser ajustada entre os intervalos de 0 a 32 segundos. O DAMP dever ser aumentado quando o Δp estiver com muita oscilação em decorrência de bruscas variações da vazão. Movendo o cursor para baixo localize RET que significa retorno ao início da calibração.

A função = Raiz significa que o programa vai extrair a raiz quadrada do sinal de vazão, Se não lhe interessar essa raiz, mude a função para linear. A Raiz tem um ponto de corte ajustável, abaixo deste ponto de corte a saída é linear com a pressão diferencial, acima a relação é quadrática. Esse procedimento evita que retiremos a Raiz quadrada de um valor muito perto de zero.

Observação: Os recursos de programação para o sistema cápsula, transmissão e display do conjunto instalado na maleta MDH 600-300 são muito vastos, portanto se você quer avançar em detalhes de programação, sugerimos solicitar mais informações ao fabricante.


6.3. Roteiro de programação através dos botões "z" e "S"

A chave "Z" é o agente navegador e a chave "S" é o agente de confirmação Para iniciar a programação, segure a chave "Z". Ativa o nível de programação 1


Campos que devem ser ajustados

ESC Função para retornar para o nível anterior

	E PROGRA	MAÇÃO	_	Seqüência de Teclas / Observações
	2	3	4	
CONFIG	LCD-1	L1 - SP (%)		TECLAS: Z S S Z S
·		L1 - PV (%)		Display - Diferencial de pressão - (Saída 1)
		L1- MV (%)		RECOMENDADO> L1 - PV
		L1 - ER (%)		
		L1- CO		
		L1 - TE		
		L1 - PV		
		L1 - SP		
		L.1 - TO		
		ESC		
	LCD-2	L2 - SP (%)		TECLAS: Z S Z S S Z S
		L2 - PV (%)	1	Display - (Saída 2)
		L2- MV (%)		Pode-se utilizar a saída 2 para mostrar outro
		L2 - ER (%)		parâmetro, por exemplo, saída da corrente (L2 - CO)
		L2- CO		Neste caso, o display ficará piscando
				alternadamente
		L2 - TE	-	RECOMENDADO> L2
		L2 - PV		
		L2 - SP		
		L2 - TO		
		L2 -		
		ESC		
			<u> </u>	
	RANGE	UNIT	in H20	TECLAS: 7 S 7 S S 7 S
	RANGE	UNIT	in H20 IN HG	TECLAS: Z S Z S S Z S Display - Unidade de medida
	RANGE	UNIT	IN HG	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20	
	RANGE	UNIT	IN HG ft H20 mm H20	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR	Display - Unidade de medida
	RANGE	UNIT	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida
	RANGE		IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR	Display - Unidade de medida
	RANGE	LRV	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O
	RANGE	LRV LRV	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z Z S
	RANGE	LRV	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S S Definição dos valores INFERIORES E
	RANGE	LRV LRV URV	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S Definição dos valores INFERIORES E SUPERIORES
	RANGE	LRV LRV URV	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S Definição dos valores INFERIORES E SUPERIORES O valor inferior (LVR) normalmente é 0 (zero)
	RANGE	LRV LRV URV URV ZERO	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S Definição dos valores INFERIORES E SUPERIORES O valor inferior (LVR) normalmente é 0 (zero) O Valor superior (UVR) deve ser ajustado de acordo
	RANGE	LRV LRV URV	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S Definição dos valores INFERIORES E SUPERIORES O valor inferior (LVR) normalmente é 0 (zero) O Valor superior (UVR) deve ser ajustado de acordo com a necessidade e pode estar entre 50 e 5.000
	RANGE	LRV LRV URV URV ZERO ZERO	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S Definição dos valores INFERIORES E SUPERIORES O valor inferior (LVR) normalmente é 0 (zero) O Valor superior (UVR) deve ser ajustado de acordo com a necessidade e pode estar entre 50 e 5.000 mmH2O
	RANGE	LRV LRV URV URV ZERO	IN HG ft H20 mm H20 mm HG PSI bar mbar G /cm2 K / cm2 pa Kpa TORR ATM	Display - Unidade de medida RECOMENDADO> mmH2O TECLAS: Z S Z S Z S Definição dos valores INFERIORES E SUPERIORES O valor inferior (LVR) normalmente é 0 (zero) O Valor superior (UVR) deve ser ajustado de acordo com a necessidade e pode estar entre 50 e 5.000

Formato do visor da maleta após a programação:

6.4. Introdução ao programa LAMON - MDHidro

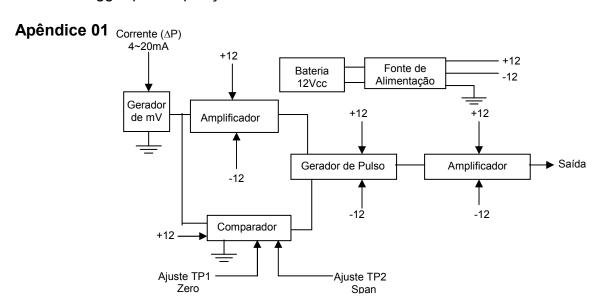
O gerenciamento de vazão de água das EPs é um sistema computadorizado, desenvolvido pela **LAMON**, tendo por finalidade o acompanhamento histórico das variações das constantes das EPs, assim como, as vazões ao longo dos períodos pesquisados com o objetivo de verificações, comparações e análise técnica posterior. O sistema permite a programação do Data-Logger e o seu respectivo "Download" dentro do programa "**LAMON - MDHidro**"

(Gerenciamento de Vazão das Eps), o que facilita e dinamiza a obtenção dos resultados procurados, fruto de cálculo automatizado dentro do programa, O programa também permite exportar todos os dados para a planilha Excel.

7. Manutenção

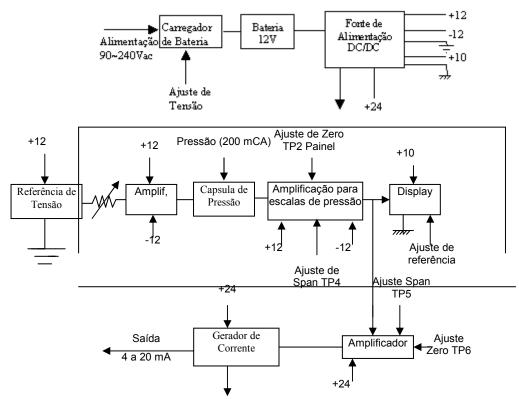
A Maleta MDH 600-300, assim como a MDH 1000-200, por ser um complexo de eletrônica e interligação pneumática/ hidráulica e mecânica, pode com o passar do tempo e uso, apresentar pequenos vazamentos em "oring's", anilhas, conexões, vazamentos por desgaste, etc. Ao primeiro sintoma, trocar os reparos. Inspeção interna após uso prolongado em pressões altas ou próximos do seu limite é prudente. Com a abertura do painel e uma simples observação pode-se verificar sintomas precoce de vazamentos internos. Quanto à parte eletrônica de processamento do sinal para indicação e saída de corrente, o projeto foi executado com o mínimo de possibilidade de falhas. Apesar disso, é possível reparos e calibração pelo usuário, desde que habilitado.

7.1. Orientações básicas


Ver diagrama no apêndice e seguir os passos:

- a) Faltando sinal de corrente de saída, investigar a alimentação de 24 Vdc, circuito integrado U8 que alimenta o integrado U5 e o transistor de saída O1
- b) Se o display apagar, investigar sua alimentação de + 10Vdc, verificar também tensão de alimentação da bateria de 12 Vdc.
- c) Não havendo valores bem definidos de pressão indicado no display, verificar a alimentação do cartão eletrônico principal, Sua alimentação é +12 e -12Vdc, pinos 7 e 4 dos operacionais U2 e U4.
- d) Cápsula de pressão, alimentada com tensão DC podendo variar de 4,7 a 5,5V, Essa tensão vai garantir uma precisa alimentação de 1,500 mA à capsula sensora de pressão.
- e) A saída de sinal será da ordem de 100 mV com pressão máxima de \pm zero mV com zero de pressão. Esses valores podem ser facilmente medidos no plug da cápsula.

- f) O cartão eletrônico para o processamento de sinal da pressão possui ajustes internos que só deve ser calibrados em laboratórios. São ajustes de off set, ganho, zero e span, As indicações dos ajustes com os respectivos trimpot estão indicados no esquema de bloco do apêndice.
- g) Quanto ao gerador de pulsos, temos apenas dois ajustes, zero e span. A corrente que passa por ele vem da saída do transmissor de ∆p cujo loop é fechado nos terminais de saída. Alimentação +12 a -12; Ajuste de zero: Trimpot TP1; Ajuste de Span: Trimpot TP2.
- h) Quanto ao medidor de Δp, recomendamos o mínimo na investigação de problema de hardware. Se você quiser se aprofundar mais na sua manutenção, programação, problemas de software solicite mais informações ao fabricante.


8. Lista de Peças e Acessórios

- Sensor de Pressão Lamon PN600-3001
- Sensor de ∆p Lamon PN600-3002
- Manifold para dreno e equalização Lamon PN600-3004
- Conjunto display completo para pressão Lamon PN600-3005
- Conjunto display completo para ∆p Lamon PN600-3006
- Bateria recarregável 12V Lamon PN600-3007
- Placa completa para geração de 24Vdc Lamon PN600-3008
- Manifold de entrada com engate rápido Lamon PN600-3009
- Placa montada para processamento de sinal de pressão Lamon PN600-3010
- Transformador com placa para carga e alimentação Lamon PN600-3011
- Placa completa para geração de pulsos Lamon PN600-3012
- Programador/Configurador Portátil Lamon PN600-3013
- Data-Logger para aquisição de dados PN600-3014

Esquema em bloco de cartão eletrônico para geração de pulso, (faixa de 0~200 p/min).

Apêndice 02

Esquema em bloco do cartão eletrônico do transmissor indicador de pressão manométrica.

Apêndice 03

CORRESPONDÊNCIA ENTRE AS UNIDADES DE MEDIDA DE PRESSÃO

	Ра	bar	psi	kgf/cm ²	mmHg (1)(2)	mmH ₂ O
1 Pa =	1	1,000 000 x 10 ⁻⁵	1,450 377 x 10 ⁻⁴	1,019 716 x 10 ⁻⁵	7,500 627 x 10 ⁻³	1,019 716 x 10 ⁻¹
1 bar =	100 000	1	14,503 77	1,019 716	750,062 7	10 197,16
1 psi =	6 894,757	6,894 757 x 10 ⁻²	1	7,030 696 x 10 ⁻²	51,715 00	703,069 6
1 kgf/cm ² =	98 066,50	9,806 650 x 10 ⁻¹	14,223 34	1	735,560 2	10 000,00
1 mmHg =	133,322 2	1,333 222 x 10 ⁻³	1,933 675 x 10 ⁻²	1,359 508 x 10 ⁻³	1	13,595 08
1 mmH ₂ O=	9,806 650	9,806 650 x 10 ⁻⁵	1,422 334 x 10 ⁻³	1,000 000 x 10 ⁻⁴	7,355 602 x 10 ⁻²	1

- (1) Gravidade terrestre Normal: gn=9,80665 m/s²
- (2) Massa específica do Mercúrio a 0°C e pressão atmosférica de 101325 Pa: ρHg=1,359508 x 10⁴kg/m³
- (3) Massa específica da água a 4° C e pressão atmosférica de 101325 Pa: $\rho H_2 O=1,000~000~x~10^3 kg/m^3$

$$Q = vazão (m3/s)$$
 $V = velocidade (m/s)$

Kp = constante do ponto pitométrico ou da estação pitométrica, essa constante é calculada e valida para o ponto único da estação, seu valor deve ser verificado a cada 12 ou 18 meses, Sua dimensional é expressa em m².

C = constante do "pitot cole", Seu valor típico é de 0,865, porem seu valor exato é determinado em laboratório de vazão, para cada Pitot cole.

g = aceleração da gravidade local, Esse valor é variável de local para local, dependendo de sua atitude, Portanto, para um cálculo mais exato ele deve ser determinado para a estação pitométrica.

Para efeito de exemplo, vamos expressar $g = 9,8065 \text{ m/s}^2$.

 Δp = leitura em milímetros de H₂O lido na maleta MDH-600-300.

$$V = C, \sqrt{\frac{2, g, \Delta p}{1000}}$$

$$V = 0,122196, \sqrt{\Delta p} \Rightarrow (m/s)$$

$$Q = Kc, V \Rightarrow (m^3/s)$$

Os valores encontrados em nossa tabela, calculados a partir das formulas anteriores, podem também ser facilmente tabelados a partir da fórmula de "Cristino", para "pitot cole", A formula é expressa por:

.Vc =
$$3,8038 [H (D-1)]^{0,4931}$$
 = velocidade central (m/s)

O termo H (D-1) antes determinado a partir do líquido manométrico, passa agora a ter leitura direta em milímetros e frações de milímetros, lidos no display de 4 $\frac{1}{2}$ dígitos da maleta.

Vc = 3,8038, (leitura da maleta / 1000)^{0,4931} leitura da maleta = milímetro lido no display 1000 = fator de conversão de milímetro para metro 3,8038 e 0,4931 = constantes da formula Vc = 3,8038, (leitura)^{0,4931}

Exemplo: Leitura no display = 49,68 mm = 0,04968 mVc = $3,8038, (0,04968)^{0,4931} = 0,8655 \text{ m/s}$

Para melhor aproximação do valor real de vazão, a velocidade central Vc, deve ser corrigida através de um fator de correção de velocidade Fv, esse fator é bem próximo da unidade.

Q = Kp, 0,8655 m/s

Tabela de ∆p x velocidade

Tabola do Ap A Tologiadao												
Leitura ∆p mmH₂O	0	1	2	3	4	5	6	7	8	9		
0	0	0	0	0	0	0	0	0	0	0		
10	0,393	0,412	0,430	0,447	0,447	0,480	0,495	0,510	0,525	0,539		
20	0,553	0,566	0,579	0,592	0,605	0,617	0,629	0,641	0,652	0,664		
30	0,675	0,686	0,697	0,707	0,718	0,728	0,738	0,749	0,758	0,768		
40	0,778	0,787	0,797	0,806	0,815	0,824	0,833	0,842	0,851	0,860		
50	0,868	0,877	0,885	0,894	0,902	0,910	0,918	0,926	0,934	0,942		
60	0,950	0,958	0,965	0,973	0,981	0,988	0,996	1,003	1,009	1,018		
70	1,025	1,032	1,039	1,046	1,054	1,060	1,067	1,074	1,081	1,088		
80	1,095	1,102	1,108	1,005	1,121	1,128	1,135	1,141	1,147	1,154		
90	1,160	1,167	1,173	1,179	1,185	1,192	1,198	1,204	1,210	1,216		
100	1,222	1,228	1,234	1,240	1,246	1,252	1,258	1,264	1,269	1,275		

8.1. Termo de Garantia

Os produtos fabricados pela Lamon Produtos Ltda são cobertos por garantia contra defeitos de material e mão de obra por um período de 12 meses a partir da emissão da nota fiscal. A Lamon garante que reparará ou substituíra, a seu critério, qualquer produto que lhe seja encaminhado dentro da validade conforme acima, desde que o comprador providencie a remessa do produto a fabrica da Lamon em Belo Horizonte, com frete pago e comprove estar o mesmo em garantia.

Estão excluídos da cobertura os casos de acidentes, manuseio indevido ou utilização fora das condições estabelecidas nas especificações, no manual de operação, manutenção, ou ainda modificação de qualquer circuito ou componente do equipamento sem a prévia avaliação, concordância e supervisão da Lamon.

Os custos da verificação de defeitos "in loco", alegados ou em qualquer outro lugar definido pelo comprador, fora da fabrica da Lamon, será mediante expensas do comprador.

Para os produtos fabricados por terceiros e revendidos juntamente com os produtos da Lamon, por questões de integração funcional, esta, repassará a garantia dada pelo próprio fabricante original do equipamento. Os produtos são fornecidos de fabrica com laudo de teste e poderão ser confirmados por ocasião dos testes de aceitação, Verificações posteriores ou calibrações estão fora da garantia e deverão ter seus encargos assumidos pelo comprador.

8.2. Precauções

A fim de evitar danos internos nas conexões, orings, tubos de interligação, observar as seguintes precauções:

- Pressões manométricas aplicadas na maleta não deve exceder aos 200 mmH₂O especificados.
- ➤ Definitivamente não aplicar ou medir pressões/ ∆p de fluídos quentes, que se introduzidos no interior da maleta certamente causarão problemas.
- Para medições de fluídos como oxigênio ou outros produtos que possam reagir com o óleo, não usar a maleta para medições de pressão ou vazão de óleo, de forma que o mesmo possa contaminar as partes molhadas das cápsulas e respectivas conexões.
- Não usar a maleta para medição de fluídos muito viscosos o que poderá ocasionar dificuldades de circulação interna ou até mesmo entupimento.
- Na hipótese de utilizar a maleta para medições de outros produtos que não seja água, após sua utilização, limpá-la com circulação de água internamente.

9. APRESENTAÇÃO DO REGISTRADOR ELETRÔNICO - LogBox NOVUS

10. Aplicação DO Registrador Eletrônico

O *LogBox* é um registrador eletrônico desenvolvido e fabricado pela NOVUS destinado ao registro de dados analógicos. É compatível com os principais sensores industriais (termopares, termorresistência Pt100) e com sinais lineares de corrente 4-20mA e tensão 0-50mV.

Apresenta várias possibilidades de seleção de intervalos de medida e modos de início ou fim de aquisições.

A alimentação do circuito dá-se por bateria de lítio interna, com autonomia de carga para mais de 2 anos, dependendo do regime de trabalho (freqüência das aquisições).

Opcionalmente, pode ser alimentado por fonte de tensão externa.

A configuração dos parâmetros internos (calibração da faixa, intervalo entre medidas, registro de valor máximo, mínimo ou média, etc) é realizada através do software LogChart, desenvolvido para plataformas Windows95 ou NT. O LogChart também faz o download dos dados armazenados no LogBox e permite a análise e a visualização das medidas em modo gráfico ou na forma de lista numérica.

A comunicação entre o PC e o LogBox dá-se através da interface IR-Link, sem contato elétrico com o LogBox, com a troca de informações sendo realizada através de sinal infra-vermelho.

11. Instalação

11.1 Conectando os sensores ao LogBox

Este modelo de LogBox está configurado para entrada 4-20mA. A entrada do sinal é feita através de um conector rosqueável e resistente à água. O fio azul do cabo de conexão representa o sinal positivo (por onde entra a corrente) enquanto que o preto é o retorno da corrente.

A indicação da variável medida pode ser configurada dentro de uma faixa linear de -2000 a 9999. Como a resolução é de 4000 níveis, uma faixa que exceda esse número poderá causar saltos na indicação da medida. Por exemplo, para uma faixa de indicação de zero a 8000, a indicação das medidas dar-se-á em múltiplos de 2, ou seja, 0, 2, 4, 6, ..., 8000.

11.2 Instalando o LogChart

Para instalar o software *LogChart* insira o disquete fornecido no seu *driver* e na barra de tarefas do Windows95 clique em *Iniciar* e em *Executar*. Digite após **a:\LC_Setup**, onde **a:** é a letra do *driver* de discos flexíveis. Pressione OK. A partir daí, o software instalador o guiará no processo de instalação.

Obs.: Certifique-se que a data em seu Windows esteja com o separador configurado como barra (ex: dd/mm/aa ou dd/mm/aaaa).

11.3 Executando o LogChart

Inicie o programa LogChart. A seguir indique qual porta serial será utilizada pelo IR-Link para a comunicação com o LogBox. Para tanto, clique em "Porta" e selecione uma dentre as disponíveis (normalmente a COM2, uma vez que a COM1 é utilizada pelo mouse). A porta selecionada será adotada como a padrão nas próximas vezes em que o programa for executado.

12. Configurando o Logbox

12.1 O que configurar

O software *LogChart*, além de ser um software de coleta e análise dos dados do LogBox, é também a ferramenta utilizada para configurá-lo.

O *LogChart* apresenta uma tela para a configuração dos seguintes itens:

- definição da faixa de indicação para a entrada 4-20mA
- intervalo entre leituras
- identificação (nome) da aplicação e do ponto de medida
- o número de aquisições a serem feitas
- a quantidade de leituras desejadas para que se gere um registro em memória (o registro em memória pode ser programado para refletir o valor máximo, o mínimo ou a média das leituras no período).

Os dados da tela de configuração, mostrados como exemplo na Figura 1, são transferidos ao LogBox para dar início à aquisição.

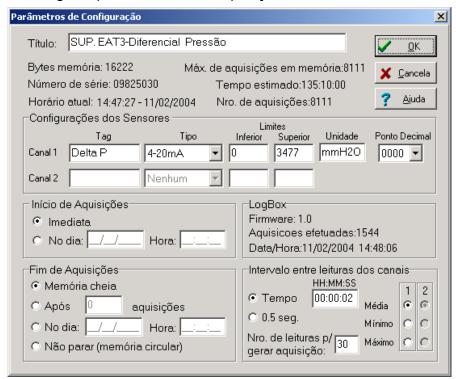


Figura 1 - Tela de configuração do LogBox

12.2 Como efetuar a configuração

Com o IR-Link conectado ao microcomputador e a ponteira apontada para a janela de comunicação do *LogBox*, clique no ícone "SIGA". O operador escutará uma série de sinais sonoros (bips), enquanto espera que a ponteira ótica seja orientada corretamente sobre a janela de comunicação do *LogBox*. Uma vez estabelecida a comunicação, o programa emite dois bips breves e inicia a troca de informações. Se esta conexão não conseguir ser efetuada em até cinco segundos, o processo é interrompido e um sinal sonoro longo é emitido alertando o encerramento das tentativas de comunicação. Pode ser feita nova tentativa clicando-se novamente no ícone "SIGA".

Uma vez efetuada a conexão ótica com o LogBox, o PC passa a ler os dados de configuração do aparelho. Ao final da comunicação, o LogChart emite quatro bips para indicar que o usuário já não precisa mais manter o IR-Link em posição de comunicação, abrindo então a janela de configuração para mostrar os parâmetros lidos do LogBox.

A configuração dos parâmetros lidos pode ser alterada para atender a necessidade da aplicação:

Identificação da aplicação: No alto da janela há um campo para descrever a aplicação.

Identificação do canal: Um campo à esquerda do tipo de entrada do canal permite ao usuário identificar o canal (tag).

Unidade: Para os sinais lineares (4-20mA) existe a possibilidade de se definir a unidade de engenharia da grandeza a ser medida.

Intervalo entre leituras: Indica o tempo entre duas leituras consecutivas.

Número de leituras para gerar aquisição: Programa quantas leituras são realizadas para cada registro na memória. Como a memória tem tamanho limitado, esse parâmetro proporciona que essa memória seja utilizada de forma mais eficiente, sendo registrados, por exemplo, o valor máximo, o mínimo ou a média das leituras realizadas.

Valor máximo, mínimo ou média: Parâmetro que determina qual o tipo de processamento que o LogBox deve realizar antes de escrever o dado na memória. Se for selecionado um número maior que 1 no parâmetro número de leituras para gerar aquisição, o LogBox vai realizar esse número de leituras antes de registrar o dado na memória. Esse dado será o valor máximo, o valor mínimo ou a média das leituras realizadas. Assim, se o intervalo entre leituras for de 6s e o número de leituras para gerar aquisição for igual a 10, o LogBox fará 10 leituras espaçadas de 6 segundos e realizará a escrita na memória ao final das 10 leituras (1 minuto), registrando o dado conforme escolhido na configuração (máximo, mínimo ou média).

OBS: Quando o intervalo entre aquisições for de 0,5s, cada leitura produz um registro na memória, ou seja, o número de leituras para gerar aquisição é sempre igual a 1.

Início das aquisições: as aquisições podem ter início:

- Imediato, ou seja, assim que for enviada a nova configuração ao LogBox.
- Em horário determinado, onde deve-se definir um horário (data e hora) para o início do processo de aquisições.

Fim das aquisições: As opções são:

- No horário definido: data e hora escolhidas para o término das aquisições, limitado à capacidade de memória do LogBox.
- Após determinado número de aquisições.
- Limite de memória: as aquisições são realizadas até preencher a memória disponível.
- Sobrescrita: a aquisição se dá de forma contínua, sobrescrevendo dados mais antigos quando a memória chega ao final de sua capacidade.

Na parte superior da janela de configuração estão as estimativas do tempo total das aquisições (desde a primeira até a última leitura) e do número total de aquisições a serem efetuadas. Estas informações são atualizadas sempre que os parâmetros de tempo entre leituras, número de leituras para gerar aquisição, habilitação/inibição do canal, tipos de entrada do canal e modo de início e fim das aquisições for alterado.

Uma vez que tudo esteja configurado, clique em "OK" para transferir a configuração ao LogBox e confirme a opção. Para tanto, deve-se novamente aproximar o IR-Link da janela ótica do aparelho e esperar o sinal sonoro ou a mensagem de final de configuração. A mensagem informará que houve sucesso na configuração, o que significa que o LogBox já está trabalhando com a nova configuração de aquisição de dados.

13. Coletando e Visualizando Dados

Os dados adquiridos podem ser transferidos para um PC utilizando o software LogChart, que os apresenta em forma gráfica ou tabela. Os dados podem ser salvos em arquivos para futuras análises e comparações.

13.1 Coletando dados

A coleta dos dados adquiridos é efetuada clicando-se no ícone correspondente ou através do menu *LogBox* e aproximando-se a ponteira ótica do aparelho. Durante o processo de transferência de dados, uma barra de progresso é mostrada, indicando quanto falta para ser transferido. O tempo de transferência de dados é proporcional ao número de aquisições efetuadas.

Ao acabar a transferência das aquisições, um sinal sonoro (quatro bips) é produzido e são abertas três janelas no LogChart: a janela do *Gráfico*, a janela da *Tabela de Aquisições* e a janela das *Informações Gerais*.

O comando de coleta de aquisições interrompe o processo de medida e registro dos dados. Assim, se a coleta dos dados é realizada antes do instante programado para o final das aquisições, o *LogBox* deverá ser reconfigurado para continuar a aquisição.

13.1.1 Janela das Informações Gerais

Essa janela mostra algumas informações do *LogBox* cujos dados foram recém lidos. São apresentadas algumas de suas características internas, sua configuração atual e dados sobre as aquisições efetuadas, que podem ser visualizadas nas outras duas janelas.

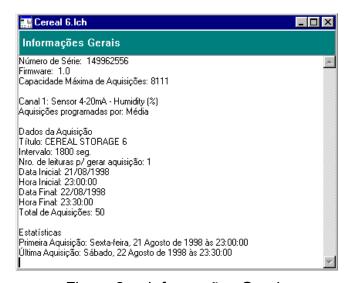


Figura 2 - Informações Gerais

13.1.2 Janela da Tabela de Aquisições

Apresenta os valores adquiridos em formato de tabela, relacionando o instante (hora) da medida com o seu valor.

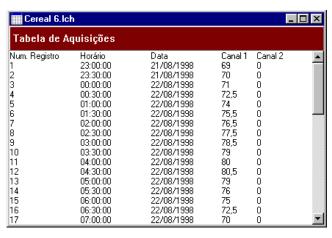


Figura 3 - Tabela de Aquisições

13.1.3 Janela do Gráfico

Permite a visualização no modo gráfico do(s) canal(is). Ao percorrer o ponteiro do mouse sobre a área do gráfico, são apresentadas na posição inferior da janela o tempo e o valor da medida correspondentes à posição do mouse.

É possível selecionar uma região do gráfico para ser visualizada em detalhe (zoom). Os comandos de zoom podem ser acessados através do menu Visualizar ou através dos ícones relativos ao zoom na barra de ferramentas. Pode-se, também, selecionar a área do gráfico a ser ampliada através do clique e arrasto do mouse, criando-se uma região de zoom a partir do canto superior esquerdo da área de gráfico desejada.

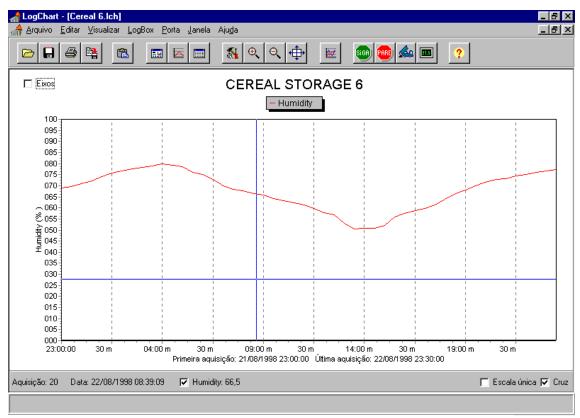


Figura 4 - Tela de visualização gráfica dos dados coletados

14. Outras Características

Um LED externo no LogBox é usado para indicar o estado de funcionamento do aparelho. Em stand by, esse LED pisca uma vez a cada quatro segundos.

Em modo de aquisição, a partir da primeira leitura dos canais, essas piscadas passam a ser duplas. Ao final das aquisições (se não for selecionado modo contínuo), esse led volta a piscar apenas uma vez.

O LogBox possui também uma projeção de consumo para baterias de 0,95Ah. Esta projeção está disponível no menu *LogBox* no item *Bateria*, sendo

requisitada uma comunicação com o aparelho cuja bateria deve ser analisada. Note que sempre que se retirar a bateria do soquete, este indicador de consumo considerará que a próxima bateria a ser colocada é nova. Este recurso é orientativo apenas e não deve ser utilizado de forma a se tentar utilizar a bateria até o final da carga. A Novus não se responsabiliza pela perda de dados adquiridos devido à descarga precoce da bateria. É recomendável que se substitua a bateria sempre que a carga restante chegue na casa dos 20%.

O software LogChart possui um sistema de ajuda sobre seu uso e operação. Vários aspectos de software estão explicados nesse help, como a junção de gráficos ou a maneira de utilizar funções matemáticas pré-definidas para trabalhar os dados adquiridos.

15. Cuidados

O LogBox é um aparelho eletrônico e, como tal, necessita de alguns cuidados básicos.

Ao abrir o aparelho para troca de bateria, deve-se evitar ao máximo o contato com o circuito devido ao risco de danos causados pela eletricidade estática. Com o aparelho aberto, deve-se ter o cuidado de não deixar entrar qualquer espécie de líquido e/ou sujeira. Deve-se prestar a máxima atenção quanto à polaridade da bateria: esta deve ser colocada com o terminal positivo em direção ao centro do aparelho. As baterias usadas não devem ser recarregadas, desmontadas ou incineradas. Após o uso, elas devem ser recolhidas segundo a legislação local ou enviadas de volta à Novus. Ao fechar o LogBox, certifique-se que a sua tampa esteja orientada com o apoio de borracha pressionando a bateria.

Recomenda-se que o LogBox seja mantido em um ambiente livre da exposição direta ao sol. Recomenda-se também um certo cuidado no manuseio deste aparelho. Dessa forma, ele terá uma vida útil maior para continuar prestando os serviços desejados.

16. Garantia

O fabricante assegura ao proprietário de seus equipamentos, identificados pela nota fiscal de compra, uma garantia de 1 (um) ano, nos seguintes termos:

- O período de garantia inicia na data de emissão da Nota Fiscal.
- Dentro do período de garantia, a mão de obra e componentes aplicados em reparos de defeitos ocorridos em uso normal, serão gratuitos.
- Para os eventuais reparos, enviar o equipamento, juntamente com as notas fiscais de remessa para conserto, para o endereço de nossa fábrica.
- Despesas e riscos de transporte correrão por conta do proprietário.
- Mesmo no período de garantia serão cobrados os consertos de defeitos causados por choques mecânicos ou exposição do equipamento a condições impróprias para o uso.

17. Especificações - Registrador Eletrônico - LogBox - Novus

Entrada de sinal 4-20mA, com escala de medida ajustável

> Opcionalmente pode ser fornecido com entrada universal, que permite a medida direta de sensores (termopares J, K, T, N, E, R, S, B e termoresistência

Pt100, além de tensão 0-50mV)

12 bits (4096 níveis) Resolução

Precisão 0.15%

Impedância de

 aproximadamente 100Ω para entrada 4-20mA entrada • 10M para entrada de termopares ou milivolts.

Capacidade da memória

 standard: 8.111 medidas opcional: 16.303 medidas 8 segundos para 8.000 bytes

Tempo de leitura dos dados Interface com

ponteira ótica sem contato

computador

0,5s a 30 dias

Intervalo entre medidas

Início da aquisição • imediata

• em data e hora programados pelo usuário (o início pode ser retardado em até 60 dias)

Forma de registro

- valor instantâneo
- média de até 127 medidas realizadas num intervalo
- valor mínimo ou máximo de até 127 medidas. amostradas segundo o intervalo entre medidas definido na configuração

Fim da aquisição

- quando completar a memória disponível
- após um número de medidas definido pelo usuário
- não termina (sobrescreve valores mais antigos)

Relógio de tempo real

interno, com calendário até o ano 2080

Ambiente de Software

- LOGCHART, para Windows95
- Menus em português
- Configura, lê e apresenta dados na tela em vários formatos (lista, gráfico, arquivos texto para exportação para outros programas)
- Permite superposição de gráficos
- Possui funções matemáticas pré-definidas (por ex.: cálculo de volume)

Alimentação

bateria de lítio de 3,6V (1/2 AA)

• fonte externa opcional (na presença da fonte externa. bateria fica desconectada automaticamente)

informação da vida útil estimada para a bateria

Autonomia estimada

• 1245 dias (intervalo entre medidas de 30s)

• 1110 dias (intervalo de 20s) 840 dias (intervalo de 10s)

(baseada em valores nominais de • 700 dias (intervalo de 7s) carga da bateria, de • 560 dias (intervalo de 5s) 950mAh)

• 390 dias (intervalo de 3s) • 280 dias (intervalo de 2s) • 150 dias (intervalo de 1s)

• 80 dias (intervalo de 0,5s)

Indicação de uso da bateria

(0-100%)

Temperatura de trabalho

Caixa em ABS, grau de proteção IP68.

de 0 a 70°C

58x64x35mm Dimensões

FÁBRICA Porto Aleg

Rua: Álvaro Chaves, 155 - Floresta

TEL: 51-3323 3600 FAX: 51-33233644

E-Mail: info@novus.com.br

FILIAL São Paulo:

Rua: José Augusto Penteado, 107 - V. Madalena

TEL: 11-3675 0366 FAX: 11-3675 0377 E-Mail: sp@novus.com.br

FILIAL Curitiba:

Rua: Vereador Toaldo Túlio, 2235 – sala: 4

TEL/FAX: 41-372 5476 Cel.: 41-99964524 E-Mail: pr@novus.com.br