UNIVERSIDADE DO GRANDE ABC - ANHANGUERA

ENGENHARIA DE CONTROLES E AUTOMAÇÃO

Controle de Acesso por Senha

Amauri Roque Salvagnini RA: 29292384

Dhiego Antonio da Silva RA: 29491486

Renato Freitas Campos: 29291905

João Luiz Santos RA: 29493729

Controle de Acesso por Senha

Trabalho apresentado à disciplina Microprocessadores e Microcontroladores ATPS

Orientação: Vlamir Belfante

Santo André 2012

Índice de Figuras

Figura 01 Print-screen da tela do Protheus	9
Figura 02 Esquema elétrico do controle de acesso	10
Figura 03 Microcontrolador AT89	12
Figura 04 Pinagem do microcontrolador AT89 e Soquete	12
Figura 05 Resistor	13
Figura 06 Capacitor	14
Figura 07 Transistor	14
Figura 08 LED	15
Figura 09 Alarme Sonoro	16
Figura 10 Dispaly LCD 16x2	16
Figura 11 Ressonador	17
Figura 12 Teclado Matricial	18
Figura 13 Esquema do teclado matricial e pinagem	18
Figura 14 Chave de toque	19
Figura 15 Diodo 1N4148	19
Figura 16 Relè	20
Figura 17 Trimpot	20
Figura 18 CI 4N25	21
Figura 19 CI 7805	21
Figura 20 Fluxograma rotina le_tecla	23
Figura 21 Fluxograma rotina controle do acesso por senha	24

<u>Índice</u>

1.	Objetivo	6
2.	Introdução	7
3.	Hardware	8
3.1.	Esquemas Elétricos do Controle de Acesso e Contador de Acesso	9
3.2.	Listas de Materiais do Conjunto	11
3.3.	Microcontrolador	12
3.4.	Resistores	13
3.5.	Capacitores	13
3.6.	Transistor	14
3.7.	Diodo Emissor de Luz (LED)	15
3.8.	Alarme	15
3.9.	Display LCD	16
3.10	0. Ressonador Cristal	17
3.11	1. Teclado Matricial	17
3.12	2. Chave de Toque	18
3.13	3. Diodo IN41148	19
3.14	4. Relé	19
3.15	5. Trimpot	20
3.16	6. CI 4N25	21
3.17	7. CI 7805	21
4.	Software – Firmware	22
5.	Legislações de Segurança Eletrônica	45
6.	Manual de Instruções	47

6.1.	. Apresentação do Produto	47
6.2.	. Características	47
6.3.	. Recomendações	47
6.4.	. Instalação	48
6.5.	. Funcionamento	48
7.	Conclusão	49
8.	Referências Bibliográficas	50

1. Objetivo

O objetivo do projeto consiste em criar um controle de acesso por senha com baixo custo

produtivo visando atender a demanda do mercado de segurança e integração com sistemas

industriais já implantados.

Este controle pode ser utilizado em portas, máquinas, cercas elétricas e qualquer outro

equipamento onde se deseja controlar o acesso através de senha.

No desenvolvimento do projeto utilizamos o controle de acesso para atuar junto a uma

fechadura eletromagnética.

Através de uma senha pré-programada e inserida via IHM (interface homem máquina) a

liberação é concedida, ou não, e informada através de um display.

Palavras-chave: Senha, Acesso, Segurança, Microcontrolador.

6

2. Introdução

Na loucura do dia-a-dia as pessoas nem param para pensar em segurança, muito menos em riscos. Somente quando se dão conta de que precisam reforçar a segurança, as pessoas vão ao mercado buscar soluções para seus problemas.

Levando em conta que a insegurança nos ronda por todos os lados cresce a demanda por sistemas de segurança de baixo custo e menos dependentes da intervenção humana.

Com um faturamento de US\$ 1,5 bilhão em 2009, o mercado de segurança eletrônica nacional está otimista com o aquecimento do mercado e a retomada da economia e, especialmente, por estar próximo de contar com uma legislação específica que proporcione organização, profissionalização, transparência e desenvolvimento ao setor.

3. Hardware

O hardware pode ser definido como um termo geral para equipamentos como chaves, fechaduras, dobradiças, trincos, puxadores, fios, correntes, material de canalização, ferramentas, utensílios, talheres e peças de máquinas.

No âmbito eletrônico o termo hardware é bastante utilizado, principalmente na área de computação, e se aplica a unidade central de processamento, a memória e aos dispositivos de entrada e saída. O termo hardware é usado para fazer referência a detalhes específicos de uma dada máquina, incluindo-se seu projeto lógico pormenorizado bem como a tecnologia de embalagem da máquina.

3.1. Esquemas Elétricos do Controle de Acesso e Contador de Acesso

Para confeccionar os esquemas elétricos e testar a sua funcionalidade utilizamos o Software Labcenter Protheus ISIS.

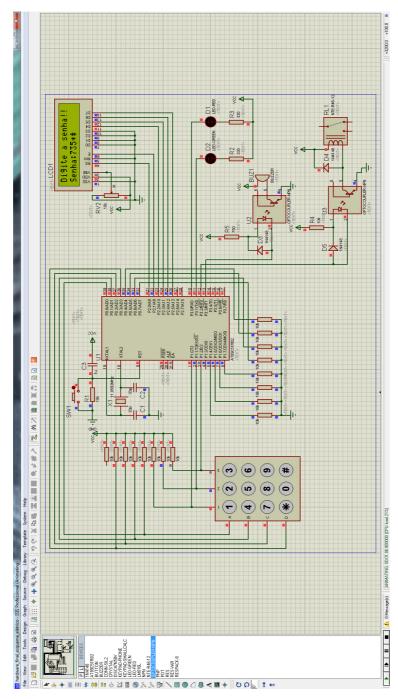


Figura 01- Print Screen da tela do Protheus

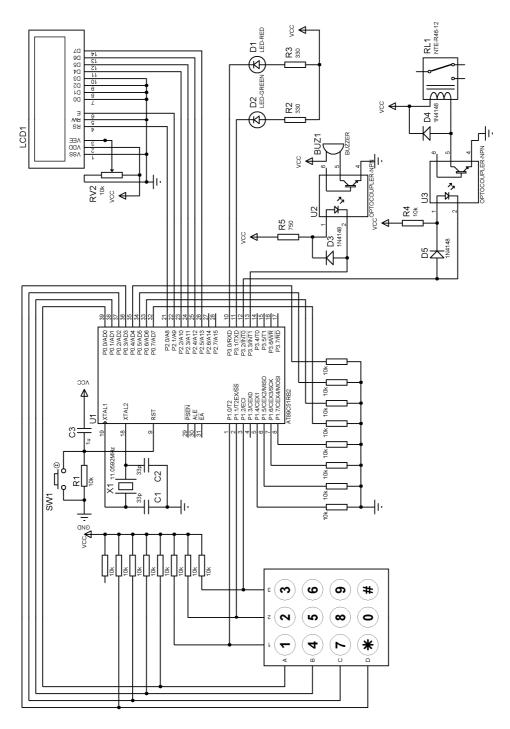


Figura 02- Esquema elétrico do Controle de Acesso

3.2. Listas de Materiais do Conjunto

LISTA DE MATERIAIS DO CONTROLE DE ACESSO				
Quantidade	Descrição	Valor / Part No / Especificação	Ref. Des	Custo
2	Rede resistiva	8 vias 10k	R7,R8	R\$ 1,40
1	CI	Microcontrolador 8051 AT89C51RB2	U1	R\$ 11,80
1	Soquete	PLCC 44		R\$ 4,00
1	Barra pinos	Macho passo de 2,54 cm		R\$ 2,00
1	Cristal oscilador	11.0592MHz	X1	R\$ 2,00
2	Capacitor	Plate 33pF / 25V	C1,C2	R\$ 0,30
1	Capacitor	Tântalo 1000pF / 16V	C4	R\$ 0,90
1	Led	3mm Vermelho	D1,D5	R\$ 0,30
2	Led	3mm Verde	D2	R\$ 0,60
1	Capacitor	1uF/16v Eletrolítico	C3	R\$ 0,10
1	Chave	Chave de toque (toggle) para PCB	SW1	R\$ 0,25
2	Diodo	1N4148	D3,D4	R\$ 0,10
1	Relè	12VDC para PCB	RL1	R\$ 1,80
2	Conector	KRE 2 vias (bitola 2,5mm²)	J1	R\$ 1,60
1	Trimpot	10k 90°	POT1	R\$ 2,20
2	CI	4N25	U2	R\$ 4,00
1	Soquete	Soquete DIP 6		R\$ 2,00
2	Resistor	10k 1/4W	R1,R6	R\$ 0,16
2	Resistor	550R	R2,R3	R\$ 0,16
2	Resistor	750R	R5	R\$ 0,16
1	Resistor	3k6	R4	R\$ 0,08
2	conector	2 vias para entrada de tensão		R\$ 2,00
4	Capacitor	100nF/25V poliester		R\$ 0,50
2	Capacitor	100uF/25V eletrolítico		R\$ 1,00
1	Capacitor	470uF/50v eletrolítico		R\$ 0,30
3	display	7 segmentos Anodo comum		R\$ 6,00
1	placa de fenolite perfurada	20x30 cm		R\$ 25,00
1	cabos flexiveis 0.5mm			R\$ 10,00
1	display lcd	16x2	LCD1	R\$ 30,00
1	teclado matricial			R\$ 24,00
1	alarme sonoro			R\$ 21,00
1	solda best 25g			R\$ 6,00
1	fechadura eletromagnética			R\$ 80,00
			TOTAL	R\$ 241,71

3.3. Microcontrolador

Microcontroladores são geralmente utilizados em automação e controle de produtos e periféricos, como sistemas de controle de motores automotivos, controles remotos, máquinas de escritório e residenciais, brinquedos, sistemas de supervisão, etc. Por reduzir o tamanho, custo e consumo de energia, e se comparados à forma de utilização de microprocessadores convencionais, aliados a facilidade de desenho de aplicações, juntamente com o seu baixo custo.

No projeto utilizaremos o microcontrolador AT89C51RB2 fabricado pela Atmel, o qual terá a função de comandar todo o sistema mediante a uma programação pré-definida.

Figura 03- Microcontrolador AT89

http://www.atmel.com/

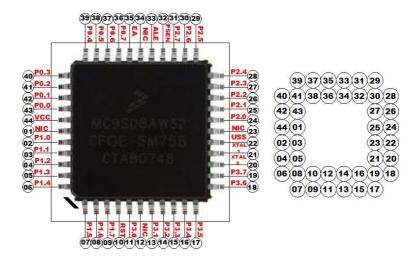


Figura 04- Pinagem do Microcontrolador AT89 e do Soquete

http://www.atmel.com/

3.4. Resistores

Um resistor pode ser definido como sendo um dispositivo eletrônico que tem duas funções básicas: ora transforma energia elétrica em energia térmica (efeito joule), ora limita a quantidade de corrente elétrica em um circuito, ou seja, oferece resistência à passagem de elétrons. No projeto ele terá como função limitar a tensão e corrente para os componentes acoplados a ele.

Figura 05- Resistor

http://www.brasilescola.com/fisica/resistores.htm

3.5. Capacitores

Também chamado de condensador, ele é um dispositivo de circuito elétrico que terá como função no projeto armazenar cargas elétricas e resetar o microcontrolador quando o sistema for energizado. Ele é constituído de duas peças condutoras que são chamadas de armaduras. Entre essas armaduras existe um material que é chamado de **dielétrico**.

Figura 06- Capacitor

http://www.brasilescola.com/fisica/capacitores.htm

3.6. Transistor

O principio do transístor é poder controlar a corrente. Ele é montado numa estrutura de cristais semicondutores, de modo a formar duas camadas de cristais do mesmo tipo intercaladas por uma camada de cristal do tipo oposto, que controla a passagem de corrente entre as outras duas.

Terá como função no sistema, aumentar a capacidade de corrente do microcontrolador.

Figura 07- Transistor

http://www.reuk.co.uk/What-is-a-Transistor.htm

3.7. Diodo Emissor de Luz (LED)

Diodo emissor de luz também é conhecido peal sigla em inglês LED (Light EmittingDiode). Sua funcionalidade básica é a emissão de luz em locais e instrumentos onde se torna mais conveniente a sua utilização no lugar de uma lâmpada.

No projeto utilizaremos dois Led's, um vermelho que será acionado quando a senha digitada estiver incorreta e outro verde que terá a função de sinalizar a digitação da senha correta.

Figura 08- Led's

http://pt.wikipedia.org/wiki/Diodo_emissor_de_luz

3.8. Alarme

Será utilizado com o objetivo de disparar um sinal sonoro quando a senha digitada estiver incorreta.

Figura 9- Alarme Sonoro

http://www.comtrel.com.br/cmd01.html

3.9. Display LCD

Um display de cristal líquido, acrônimo de LCD (em inglês *liquid crystal display*), é um painel fino usado para exibir informações por via eletrônica, como texto, imagens e vídeos.

Será utilizado um display LCD 16x2 com a finalidade de informar através de um texto se a senha digitada esta correta ou incorreta.

Caso a senha digitada esteja correta aparecerá escrito no display a frase seja bem vindo, se a senha estiver incorreta aparecerá a frase senha incorreta e soará o alarme.

Figura 10- Display LCD 16x2

http://loja.multcomercial.com.br

3.10. Ressonador Cristal

Ressonador cerâmico é um componente eletrônico que quando combinado com outros apropriados, pode produzir oscilações numa frequência específica.

No projeto será responsável por enviar o pulso de clock ao microcontrolador.

Figura 11- Ressonador

http://loja.multcomercial.com.br

3.11. Teclado Matricial

Os teclados matriciais são muito utilizados hoje em dia. Sempre que é preciso coletar "dados" em um dispositivo a maneira mais fácil de fazê-lo é utilizar um teclado.

Figura 12- Teclado Matricial

http://www.arnerobotics.com.br/eletronica/teclado_matricial.htm

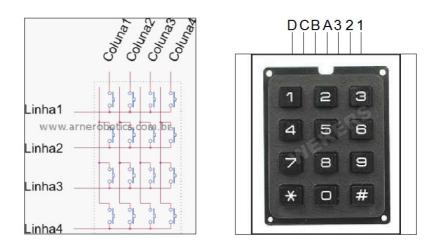


Figura 13- Esquema Teclado Matricial e Pinagem

http://www.arnerobotics.com.br/eletronica/teclado_matricial.htm

3.12. Chave de Toque

Será utilizado para resetar o sistema caso necessário.

Figura 14- Chave de Toque

http://loja.multcomercial.com.br

3.13. Diodo IN41148

O diodo 1n4148 é um dispositivo semicondutor capaz de trabalhar com tensões reversas de até 75V (100V em tensão pulsada). Esse diodo será para retificar pequenos sinais com frequência de até 1MHz e na proteção de Conversores Analógico Digital (AD), para grampear o sinais dentro da faixa de operação do AD.

Figura 15- Diodo IN41148

http://www.sucitech.com.br

3.14. Relé

Quando a corrente originada no circuito do Controle de Acesso passa pela bobina, um campo eletromagnético é gerado, acionando o relé e possibilitando o funcionamento do

segundo circuito, que no caso será a fechadura elétrica. Sendo assim, uma das aplicabilidades do relé é utilizar-se de baixas correntes para o comando no primeiro circuito, protegendo o operador das possíveis altas correntes que irão circular no segundo circuito.

Figura 16- Relé

http://www.geocities.ws/gedaepage/Doc/reles/reles.htm

3.15. Trimpot

Será utilizado para regular a luminosidade do Display LCD

Figura 17- Trimpot

http://loja.multcomercial.com.br

3.16. CI 4N25

A função deste CI no projeto é isolar o circuito de potência (buzina) do circuito de controle (placa de controle).

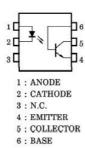


Figura 18- CI 4N25

http://www.blucolor.com.br

3.17. CI 7805

Será responsável por transformar os 12V contínuos em 5V contínuos.

Figura 19 - CI7805

4. Software – Firmware

O software foi desenvolvido em linguagem padrão C ANSI através da IDE MikroC ,versão gratuita, com limitações de compilação e memória de programas, uma vez que seria inviável comprar para este protótipo uma versão completa do software.

Ao ligar o equipamento, o mesmo realiza a apresentação do produto, com a mensagem "Controle Acesso", através de um Display LCD de 16 colunas x 2 linhas, o qual é acionado pelo microcontrolador da família 80C51 através do Port P2.

É então solicitada uma senha ao usuário que seja digitada e interpretada pelo uControlador através de um teclado matricial, ligado aos Ports P0 e P1, que é interpretado através da varredura constante das colunas do teclado (varredura com nível lógico 0) a uma frequência de aproximadamente 20Hz, e da resposta das linhas.

A cada caractere digitado, interpretado pelo uControlador, é realizado um teste de comparação dos valores digitados com os valores pré-estabelecidos da senha através do software de controle desenvolvido na linguagem C ANSI, compilado no software MikroC e pode ser programado no chip através do software ATMEL Flip.

Assim que a comparação dos 4 dígitos é finalizada, o software de controle toma uma decisão dependendo das informações digitadas no teclado. Se todos os caracteres digitados corresponderem, em ordem, aos caracteres pré – estabelecidos na senha, é acionado um LED na cor verde, o Relè que chaveia a Fechadura do controle de acesso é atracado durante um período de 3 segundos e então desatracado. No display LCD é mostrada a mensagem "Senha Correta" e "Bem-Vindo". Quando o relè é atracado, e consequentemente, a porta é aberta,

Se algum dos dígitos pressionados no teclado não corresponder, em ordem, a senha pré - estabelecida, é então acionado um LED na cor vermelha em conjunto com um sonalarme durante um período de 3 segundos, indicando a mensagem "Senha Errada!" no display LCD.

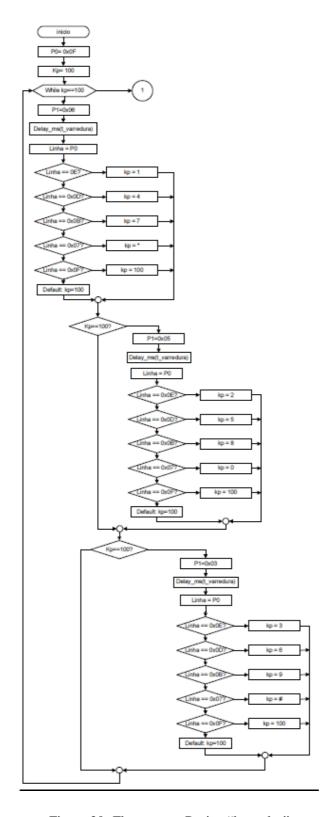


Figura 20- Fluxograma Rotina "le_teclas"

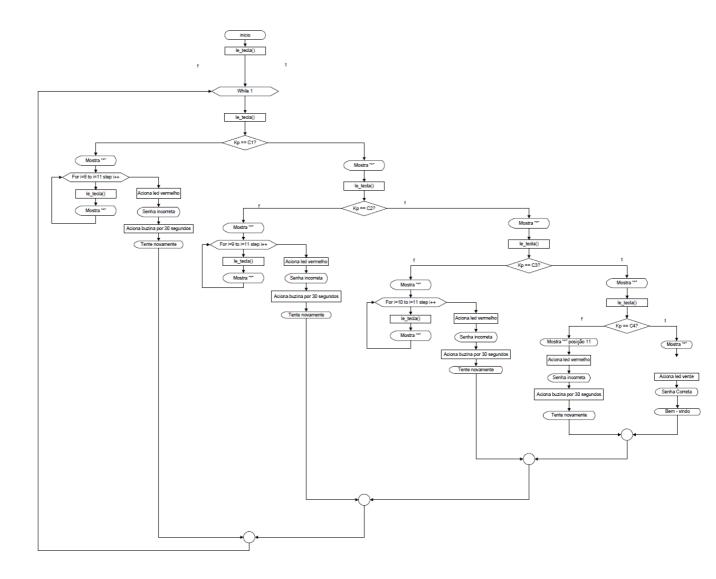


Figura 21- Fluxograma Rotina de controle do Acesso por Senha

/*

Universidade do Grande ABC - Anhanguera

Engenharia de Controles e Automação 7 NA

ATPS - Atividade Prática Supervisionada

O desafio consiste em implementar um programa para controle de acesso com senha baseado em microcontrolador, como por exemplo, para abrir uma porta ou para acessar a catraca de uma empresa ou escola.

Existem muitas situações em que podemos controlar o acesso por uma senha: no almoxarifado de uma empresa, na entrada de um laboratório de informática, em uma sala de máquinas, etc. É muito importante o trabalho em grupo nesta ATPS, para que o tempo disponível seja adequado. Trabalhar em grupo sem deixar atividades para a última hora consiste também em um desafio desta ATPS.

Objetivo do desafio:

O resultado final deve ser um programa de microcontrolador escrito em linguagem

C que permita o funcionamento do sistema em um kit didático que esteja

disponível na sua unidade de ensino.

Produção Acadêmica:

Descrição do que será produzido.

- Relatórios parciais, com os resultados das pesquisas realizadas nas etapas.
- Fluxograma e descrição do programa desenvolvido.
- Código fonte compilando corretamente e comentado em detalhes.

Participação:

Para a elaboração desta atividade, os alunos deverão previamente organizar-se em equipes de 04 a 08 participantes e entregar seus nomes, RAs e e-mails ao professor da disciplina.

Essas equipes serão mantidas durante todas as etapas.

Padronização

O material escrito solicitado nesta atividade deve ser produzido de acordo com as normas

da ABNT1, com o seguinte padrão:

- em papel branco, formato A4;
- com margens esquerda e superior de 3cm, direita e inferior de 2cm;
- fonte Times New Roman tamanho 12, cor preta;
- espaçamento de 1,5 entre linhas;
- se houver citações com mais de três linhas, devem ser em fonte tamanho 10,

com um recuo de 4cm da margem esquerda e espaçamento simples entre linhas;
• com capa, contendo:
• nome de sua Unidade de Ensino, Curso e Disciplina;
• nome e RA de cada participante;
• título da atividade;
• nome do professor da disciplina;
cidade e data da entrega, apresentação ou publicação.
Professor Orientador:
Vlamir
Integrantes do grupo:
Amauri Roque Salvagnini
João Luiz Santos
Renato Chiliquenta
Dhiego A. da Silva
*/
//

```
//
//
           Conexões de hardware do Display LCD 16x2
//
//-----
                          // Configura port P2.0 como RS
sbit LCD_RS at P2_0_bit;
sbit LCD_EN at P2_1_bit;
                          // Configura port P2.1 como EN
sbit LCD_D4 at P2_2_bit;
                         // configura port P2.2 como D4
sbit LCD_D5 at P2_3_bit;
                         // configura port P2.3 como D5
sbit LCD_D6 at P2_4_bit;
                         // configura port P2.4 como D6
                         // configura port P2.5 como D7
sbit LCD_D7 at P2_5_bit;
//
//
           Telas de software
//
//-----
char txt1[] = "Bem-Vindo" ;
char txt2[] = "Digite a senha!!" ;
char txt3[] = "Senha:";
```

```
char txt4[] = "*"
char txt5[] = "Senha Errada!" ;
char txt6[] = "Senha Certa!" ;
char txt19[] = "Acesso"
char txt20[] = "Controle"
//
//
  Variáveis Globais
//
           -----
char kp ;
char linha
```

//	
//	
//	Protótipos de Funções Auxiliares
//	
//	
void le_tecla()	;
//	
//	
//	Fim de Protótipos de Funções Auxiliares
//	
//	
//	
//	
//	Função Principal de Controle
//	
//	

void main()	
{	
//	
//	
//	Início da rotina de inicialização do display
//	
//	
Lcd_Init()	; // Inicia display
Lcd_Cmd(_L	CD_CLEAR) ; // Limpa display
Lcd_Cmd(_L	CD_CURSOR_OFF); // Desliga o cursor
//	
//	
//	Fim da rotina de inicialização do display
//	
//	
//	

```
//
          Início da rotina de apresentação
//
LCD_Out(1,5,txt20);
LCD_Out(2,6,txt19);
delay_ms(1500) ; // Acesso Anhanguera
Lcd_Cmd(_LCD_CLEAR);
LCD_Out(1,5,txt1);
delay_ms(1500) ; // Bem vindo
Lcd_Cmd(_LCD_CLEAR);
//
//
         Fim da rotina de apresentação
//
//-----
while (1)
{
```

```
P3 = 0xFF; // Estado inicial P3 = 0FF = 0
Lcd_Cmd(_LCD_CLEAR);
LCD_Out(1,1,txt2) ; // digite a senha
LCD_Out(2,1,txt3);
le_tecla() ;
if (kp == 0) // testa 1° caractere
{
 kp = 100;
 LCD_Out(2,7,txt4); //imprime * no display
                               // gera atraso para a leitura
 delay_ms(100);
 le_tecla();
 if(kp == 0) // testa 2° caractere
  {
  kp = 100;
  LCD_Out(2,8,txt4); //imprime * no display
```

```
delay_ms(100);
                                 // gera atraso para a leitura
le_tecla();
if(kp == 0)
                     // testa 3° caractere
{
 kp = 100;
 LCD_Out(2,9,txt4);
                         //imprime * no display
 delay_ms(100);
                         // gera atraso para a leitura
 le_tecla();
 if (kp == 0) // testa 4° caractere
 {
 LCD_Out(2,10,txt4); //imprime * no display
 delay_ms(1000);
                       // gera atraso para a leitura
 Lcd_Cmd(_LCD_CLEAR) ; //limpa display
 LCD_Out(1,3,txt6);
 LCD_Out(2,4,txt1);
 P3 = 0xE9;
                     // rele e led verde acesos
 delay_ms(1500);
```

```
}
 else
 {
 LCD_Out(2,10,txt4);
                        //imprime * no display
 Lcd_Cmd(_LCD_CLEAR) ; //limpa display
 LCD_Out(1,3,txt5);
 delay_ms(800);
 P3 = 0xFA;
                    // buzina e led vermelho acesos
 delay_ms(3000);
 }
}
else
{
                       //imprime * no display
 LCD_Out(2,9,txt4);
 kp = 100;
 delay_ms(100);
                         // gera atraso para a leitura
 le_tecla();
 LCD_Out(2,10,txt4);
                         //imprime * no display
 delay_ms(800);
                         // gera atraso para a leitura
```

```
Lcd_Cmd(_LCD_CLEAR) ; //limpa display
  LCD_Out(1,3,txt5);
  P3 = 0xFA;
                     // buzina e led vermelho acesos
  delay_ms(3000);
  }
}
else
{
                      //imprime * no display
 LCD_Out(2,8,txt4);
 kp = 100;
 delay_ms(100); // gera atraso para a leitura
 le_tecla();
 LCD_Out(2,9,txt4);
                      //imprime * no display
 kp = 100;
 delay_ms(100);
                 // gera atraso para a leitura
 le_tecla();
 LCD_Out(2,10,txt4); //imprime * no display
 delay_ms(800);
 Lcd_Cmd(_LCD_CLEAR) ; //limpa display
 LCD_Out(1,3,txt5);
 P3 = 0xFA;
                    // buzina e led vermelho acesos
```

```
delay_ms(3000);
                      // gera atraso para a leitura
  }
}
else
{
 LCD_Out(2,7,txt4);
                     //imprime * no display
 kp = 100;
                            // gera atraso para a leitura
 delay_ms(100);
 le_tecla();
 LCD_Out(2,8,txt4); //imprime * no display
 kp = 100;
 delay_ms(100);
                            // gera atraso para a leitura
 le_tecla();
 LCD_Out(2,9,txt4); //imprime * no display
 kp = 100;
                            // gera atraso para a leitura
 delay_ms(100);
 le_tecla();
 LCD_Out(2,10,txt4); //imprime * no display
 delay_ms(800);
 Lcd_Cmd(_LCD_CLEAR); //limpa display
 LCD_Out(1,3,txt5);
```

```
P3 = 0xFA; // buzina e led vermelho acesos
 delay_ms(3000);
 }
}
//
       Fim da Função Principal de Controle
//
//
//
         Funções Auxiliares
//
//
//-----
*****
```

```
* Nome da função : le_tecla
* Retorno
           : (0)
* Definição : Define o valor da variável kp
* Descrição : Esta função tem como objetivo ler o valor digitado em um
         teclado matricial 4x3 através do metodo de varredura
         de colunas e armazenálo na variavel kp como inteiro.
*************************
//-----
//
//
              Início le_tecla
//
void le_tecla()
{
  delay_ms(170);
  P0 = 0x0F;
                         // habilita P0 para a leitura
  kp = 100;
                        // define kp como teclado não lido
```

```
while (kp == 100)
   {
                        // inicio laço de leitura de teclado
    kp = 100 ;
    P1 = 0x06; // escreve coluna 1 em p1
    delay_ms(50);
                                      // gera atraso para a leitura
    linha = P0;
                                // armazena conteudo de P0 na variavel de linha
    switch (linha)
                                     //testa para cada coluna qual linha esta
apertada
     {
      case (0x0E):
      kp = 1;
      break;
      case (0x0D):
      kp = 4;
      break;
```

```
case (0x0B):
 kp = 7;
 break;
 case (0x07):
 kp = 101;
 break;
 case (0x0F):
 kp = 100;
 break;
}
if (kp == 100)
{
 P1 = 0x05;
                          // escreve coluna 2 em p1
 delay_ms(50);
 linha = P0;
 switch (linha)
```

```
{
 case (0x0E):
 kp = 2;
 break;
 case (0x0D):
 kp = 5;
 break;
 case (0x0B):
 kp = 8;
 break;
 case (0x07):
 kp = 0;
 break;
 case (0x0F):
 kp = 100;
 break;
```

```
}
if (kp == 100)
{
 P1 = 0x03; // escreve coluna 3 em p1
 delay_ms(50);
 linha = P0;
 switch (linha)
  {
   case (0x0E):
   kp = 3;
   break;
   case (0x0D):
   kp = 6;
   break;
   case (0x0B):
   kp = 9;
```

```
break;
         case (0x07):
         kp = 102;
         break;
         case (0x0F):
         kp = 100;
         break;
         default:
         kp = 100;
         break;
        }
    }
}
//
//
                  Fim le_tecla
```

5. Legislações de Segurança Eletrônica

O Projeto de Lei 1759/2007, criado pela Associação Brasileira das Empresas de Sistemas Eletrônicos de Segurança (Abese) para regularizar a atuação das empresas que integram este mercado, recebeu o apoio de um novo nome da esfera política.

Em um recente simpósio realizado no Espírito Santo para levar diversas informações aos empresários capixabas, o referido evento contou com a presença do Senador do Espírito Santo, Renato Casagrande (PSB-ES). Na ocasião, o político discursou sobre a importância do mercado de segurança eletrônica como forma de conter a proliferação da criminalidade e, além disso, garantiu o total apoio ao projeto assim que o mesmo chegar para votação no Senado Federal.

O projeto – O PL 1759/2007 criado pela Abese irá delimitar a atuação das empresas que integram o setor de segurança eletrônica. Se sancionado posicionará legalmente este mercado como atividade complementar à atuação das forças de segurança públicas e privadas e atualizará a Lei 7.102 de 1983, formalizando-a frente às demais modalidades de segurança já existentes.

Por mais estranho que pareça, o mercado da segurança eletrônica já oferece riscos. A moderna tecnologia já apresenta riscos virtuais e reais. Alguns riscos são muito sutis, quase imperceptíveis aos consumidores de segurança, leigos e desatentos no assunto. Outros são grosseiros, e chegam a violar a lei.

Como ainda não existe um Código de Ética para o setor, o que regula esta relação comercial é o Código de Defesa do Consumidor. De acordo com a lei vigente, empresas privadas de Vigilância Eletrônicadevem alertar os consumidores acerca dos riscos que seus produtos e serviços apresentam, de modo a cumprir o art. 6°, inc. III, e art. 31 da Lei 8.078/90:

Art. 6° - São direitos básicos do consumidor: Inc. III - a informação adequada e clara sobre os diferentes produtos e serviços, com especificação correta de quantidade, características, composição, qualidade e preço, bem como sobre os riscos que apresentam.

Art. 31° - A oferta e apresentação de produtos ou serviços devem assegurar informações corretas, claras, precisas, ostensivas e em língua portuguesa sobre suas características, qualidades, quantidade, composição, preço, garantia, prazos de validade e origem, entre outros dados, bem como sobre os riscos que apresentam à saúde e segurança dos consumidores.

6. Manual de Instruções

6.1. Apresentação do Produto

O conjunto básico é formado por um teclado e um circuito controlador. A saída á relé proporciona acionamento pulsante, possibilitando a integração com porteiros eletrônicos. Pode ser aplicado nas mais diversas circunstâncias, como em laboratórios, almoxarifados, portarias, arquivos confidenciais entre outras.

6.2. Características

- > Sistema microprocessado;
- > Teclado Matricial;
- > Display indicativo com regulagem de luminosidade
- Indicação sonora de erro de senha;
- ➤ Led's de status;
- > Saída a relé;
- Botão de reset;
- Alimentação 12V. (acompanha fonte de alimentação)

6.3. Recomendações

- Execute a instalação com a rede elétrica desligada;
- > Evite lugares com muita poeira ou sujeito a corrosão;
- ➤ Não instale o produto em locais sujeitos a umidade;
- ➤ Não instale o produto próximo a equipamentos que possam causar interferências;
- Proteja os fios de ligação do fecho ou fechadura elétrica.

6.4. Instalação

Atenção: danos causados por erro e instalação ou uso inadequado não são cobertos pela garantia.

Cuidado com a polaridade dos componentes.

6.5. Funcionamento

- -Proceda com a instalação do produto conforme indicado anteriormente;
- -Quando o sistema estiver energizado o Led verde ao lado da alimentação 12V ficará acionado.
- O display LCD exibira a frase "Digite a Senha"
- Se a senha inserida estiver correta, o Led verde ao lado do display ascenderá e o display
 LCD vai exibir a frase "Seja Bem Vindo", acionando assim a fechadura.
- -Se a senha estiver incorreta o Led vermelho ao lado do display ascenderá e o display LCD vai exibir a frase "Senha Incorreta" e o alarme sonoro será acionado.

7. Conclusão

Iniciando as pesquisas decidimos projetar um Controle e Contador de Acessos por senha que tentasse reproduzir mais fielmente um sistema físico real.

Terminadas as pesquisas, efetuamos a construção do hardware base no Software Labcenter Protheus ISIS, o qual no seu termino se demonstrou totalmente funcional atendendo aos nossos propósitos.

Posteriormente começamos a construção do Software juntamente com a elaboração da monografia.

A elaboração do Software foi executada no programa MikroC, devido a simplicidade das funções propostas no projeto foi bem simples desenvolver as rotinas de programação. Para efetuar a gravação do software para o microcontrolador utilizamos uma placa de gravação de um kit didático compatível com o microcontrolador utilizado no projeto, pois seria inviável construir um devido ao custo

conseguimos com um trabalho em grupo atingir o objetivo proposto inicialmente e principalmente adquirir conhecimento sobre programação e elaboração de um projeto eletrônico.

8. Referências Bibliográficas

http://www.embrasilseguranca.com.br/informativos/abese-discute-legislacao-no-mercado-de-seguranca-eletronica/

http://www.brasilescola.com/fisica/resistores.htm

http://www.atmel.com/devices/AT89C51ED2.aspx?tab=overview

http://www.datasheets.org.uk/at89-datasheet.html

http://www.sabereletronica.com.br/secoes/leitura_noticia/281

http://www.embrasilseguranca.com.br/informativos/abese-discute-legislacao-no-mercado-de-seguranca-eletronica

http://culturadaseguranca.blogspot.com.br/2009/10/vigilancia-eletronica-seguranca-ou.html

http://www.monografiaac.com.br/conclusao.html