

Guia do Usuário Explorer16BR PIC24

Explorer16BR PIC24 02/03/2011

Sumário

٩p	resen	tação		
1.	Har	dware		6
	1.1.	Micro	ocontrolador PIC24FJ128GA010	6
	1.2.	Cone	ectores para LCD	6
	1.3.	Tecla	ado	8
	1.4.	LED'	s	9
	1.5.	Mem	ória Serial EEPROM 24WC256	9
	1.6.	Mem	ória Serial EEPROM 25LC256	10
	1.7.	Sens	or de temperatura	10
	1.8.	Com	unicação serial RS232	10
	1.9.	Com	unicação serial CAN	12
	1.10.	Со	municação Ethernet	12
	1.11.	Со	nversor A/D	13
	1.12.	Во	tão de reset manual	14
	1.13.	Gra	avação in-circuit	14
2.	Soft	tware		15
	2.1.	Softw	vares de exemplo	15
	2.1.	1. E	xemplo 1 – Leitura de Botões e acionamento de LED's	15
	2.1.	2. I	Exemplo 2 – Interrupção de timer(seqüencial c/ LED's)	15
	2.1.	3. I	Exemplo 3 – Comunicação com LCD alfanumérico (16 x 2);	15
	2.1.	4. I	Exemplo 4 – Comunicação com LCD gráfico (128 x 64)	15
	2.1.	5. I	xemplo 5 – Conversor analógico digital interno	15
	2.1.	6. I	Exemplo 6 – Comunicação Serial – Transmissão (TX) e Recepção (RX)	16
	2.1.	7. I	Exemplo 7 – Comunicação com memória EEPROM 24WC256	16
	2.1.	8. I	Exemplo 8 – Comunicação com memória EEPROM 25LC256	16
	2.1.	9. I	Exemplo 9 – Comunicação com sensor de temperatura MCP9700	16
	2.1.	10.	Exemplo 10 – Porta paralela mestre	16
	2.1.	11.	Exemplo 11 – Comunicação com Ethernet	16

	2.2.	Softw	are de Comunicação Serial	16
	2.3.	Softw	are de teste do hardware	17
3.	Gra	avação	in-circuit utilizando o ICD2 ^{BR} e MPLAB	18
4.	Co	nfiguraç	ção do computador para rodar os exemplos TCP-IP da Explorer 16 ^{BR} e McBoard dsPIC	19
	4.1.	Proce	dimento de configuração	19
5.	Api	êndice .	A – Disposição dos jumpers de configuração e conectores	23
6.	Api	êndice	B – Resumo dos conectores da Explorer 16 ^{BR}	24
7.	Api	êndice (C – Resumo dos jumpers da Explorer 16 ^{BR}	25
8.	Api	êndice	D – Resumo dos jumpers de solda da Explorer 16 ^{BR}	26
9.	Ape	êndice	E – Disposição conector ICSP Explorer 16 ^{BR}	27
10.	A	Apêndic	e F – Pinagem conector ICSP Explorer 16 ^{BR}	28
11	. <i>P</i>	Apêndic	e G - Resumo da pinagem do microcontrolador PIC24FJ128GA010	29
12	. C	Certifica	do de Garantia	35

Apresentação

Inicialmente a Mosaico gostaria de parabenizá-lo por ter adquirido a placa de desenvolvimento Explorer 16^{BR}. Acreditamos sinceramente, que você acaba de fazer uma ótima aquisição.

Lançada ao mercado com o objetivo de lançar os microcontroladores de 16 bits da Microchip ao mercado, a nova Explorer 16^{BR} aumentará os seus conhecimentos desta fantástica família de microcontroladores 16 bits Microchip.

A placa de desenvolvimento Explorer 16^{BR} é dotada de um microcontrolador PIC de 16 bits, que é o PIC24FJ128GA010 da Microchip. Veja todos os recursos que a placa oferece:

- Microcontrolador PIC24FJ128GA010 da Microchip;
- Teclas e LEDs (4 teclas e 8 LEDs);
- Memória serial EEPROM 24WC256 (protocolo I²C);
- Memória serial EEPROM 25LC256 (protocolo SPI);
- Sensor de temperatura MCP9700 (saída analógica);
- Comunicação serial RS232;
- Comunicação CAN;
- Comunicação Ethernet;
- Botão de reset manual;
- Possibilidade de trabalhar com LCD 16x2 (alfanumérico) e LCD 128 x 64 (gráfico). OBS.: LCDs não incluso;
- Compatível com os gravadores ICD2^{BR}, ICD2 Microchip, PICkit e Real ICE Microchip.
- Compatível com as PICtail Microchip.

Aliado a todos estes recursos, utilizamos o microcontrolador PIC24FJ128GA010. Suas principais características

são:

- Arquitetura Harvard modificado;
- 16 MIPS de operação a 32 MHz de operação;
- Oscilador interno de 8 MHz de operação, com divisor programável por software e possibilidade de uso do PLL;
- PLL que multiplica a fregüência do oscilador por 4;
- Hardware de multiplicação de 17 bits x 17 bits, com suporte para operações em inteiro e fracional;
- Hardware de divisão de 32 bits x 16 bits;
- Arquitetura otimizada para Linguagem C, com 76 instruções base e flexível modos de endereçamento;
- Endereçamento linear na memória de programa até 12 Mbytes;
- Endereçamento linear na memória de dados até 64 kbytes;
- Duas unidades de endereçamento para operações de leitura e escrita da memória de dados;
- Tensão de trabalho de 2,0V até 3,6V;
- Memória Flash com 1000 ciclos de escrita, retenção dos dados durante 20 anos;
- Reprogramável via software;
- Modos de gerenciamento de consumo selecionável (Modos Sleep e Idle, modos alternativos de clock);
- Monitor de falha do oscilador principal, com interrupção para mudança da fonte de oscilador;
- Regulador LDO embutido para CPU;
- Power on reset (POR), Power up timer (PWRT) e Oscillator start-up timer (OST);
- Flexível Wachdog timer com RC de baixa potência para operação confiável;
- Gravação via In-Circuit Serial Programming (ICSP) and In-Circuit Emulation (ICE) via 2 pinos;
- Conversor A/D de 10 bits, com 16 canais e 500 ksps;
- Dois comparadores de tensão com entradas e saídas programáveis:
- Dois módulos SPI (3-wire e 4-wire) com suporte a 4 modos de Frame e FIFO de 4 niveis;
- Dois módulos I2C com suporte a modo multi-master, slave e endereçamento de 7 bits ou 10 bits;
- Duas UARTS com suporte a RS-232, RS-485, LIN 1.2 e IrDA, auto wake-up no Start bit, detecção automática de baud rate e FIFO de 4 níveis;

Explorer16BR PIC24 4 Rev 5.0

- PMP/PSP (Parallel Master Port /Parallel Slave Port Porta paralela mestre / Porta paralela escrava) com suporte a dados de 8 bits ou 16 bits e 16 linhas de endereçamento;
- RTCC (Real-Time Clock/Calendar Relógio de tempo real e calendário) com relógio, calendário e função de alarme;
- Cinco timer ou contadores de 16 bits com prescaler programável;
- Cinco entradas de captura de 16 bits;
- Cinco saídas de comparação ou PWM de 16 bits;
- Capacidade de fornecer ou drenar 18mA por pino;
- Dreno aberto configurável no pinos de I/O digital;
- Cinco interrupções externas.

Fazem parte do kit de desenvolvimento Explorer 16^{BR};

- 1 placa Explorer 16 BR;
- 1 módulo Plug-in com PIC24FJ128GA010
- 1 fonte de alimentação 15Vdc, 500mA, full range;
- 1 CD-ROM com aplicativos (softwares auxiliares, C30, MPLAB), exercícios, datasheets, esquemas elétricos.

1. Hardware

Nesta seção será visto todos os recursos de hardware presente na placa Explorer 16 BR.

1.1. Microcontrolador PIC24FJ128GA010

É o elemento central de toda a placa. Está trabalhando com uma freqüência de clock de 8 MHz. Para maiores informações sobre o componente deve-se consultar o datasheet presente no CD-ROM que acompanha a placa Explorer 16^{BR}.

1.2. Conectores para LCD

A placa está preparada para módulo LCD alfanumérico ou gráfico sem backlight. A comunicação é paralela com 8 vias de dados. Além das 8 vias de dados, mais duas vias são utilizadas para controlar o LCD, uma denominada de EN (enable), RS(D/I) e a outra R/W, permitindo operações de leitura e escrita.

Conector CN4 (LCD 16 x 2)	PIC24FJ128GA010	LCD
1	-	-
2	-	-
3	-	VSS
4	-	VDD
5	-	VO
6	RB15/PMA0	RS
7	RD5/PMRD	RW
8	RD4/PMWR	Е

Conector CN4 (LCD 16 x 2)	PIC24FJ128GA010	LCD
9	RE0/PMD0	DB0
10	RE1/PMD1	DB1
11	RE2/PMD2	DB2
12	RE3/PMD3	DB3
13	RE4/PMD4	DB4
14	RE5/PMD5	DB5
15	RE6/PMD6	DB6
16	RE7/PMD7	DB7

Conector CN5 (LCD 128 x 64)	PIC24FJ128GA010	LCD
1	-	VSS
2	-	VDD
3	-	VO
4	RB15/PMA0	D/I
5	RD5/PMRD	RW
6	RD4/PMWR	Е
7	RE0/PMD0	DB0

Conector CN5 (LCD 128 x 64)	PIC24FJ128GA010	LCD
8	RE1/PMD1	DB1
9	RE2/PMD2	DB2
10	RE3/PMD3	DB3
11	RE4/PMD4	DB4
12	RE5/PMD5	DB5
13	RE6/PMD6	DB6
14	RE7/PMD7	DB7
15	RC1	CS1
16	RC2	CS2
17	RC3	RST

1.3. Teclado

Existem 4 teclas na placa. Todas elas com resistores de pull-up, ou seja, em estado normal (normalmente aberto), o microcontrolador deverá ler nível lógico 1 nas portas do teclado. Quando uma tecla é pressionada, o sinal é aterrado e conseqüentemente, o nível lógico presente na porta do microcontrolador passa a 0. A distribuição de pinagem segue a tabela abaixo:

PIC24FJ128GA010	Tecla
RD6	S1
RD7	S2
RA7	S3
RD13	S4

A placa possui oito LED's vermelhos, ativos em nível lógico 1, isto é, o microcontrolador envia 3,3V para o LED acender.

PIC24FJ128GA010	Led
RA0/TMS	LD1
RA1/TCK	LD2
RA2/SCL2	LD3
RA3/SDA2	LD4
RA4/TDI	LD5
RA5/TDO	LD6
RA6	LD7
RA7	LD8

1.5. Memória Serial EEPROM 24WC256

A placa está provida de uma memória serial EEPROM modelo 24WC256 com os pinos de clock (SCL) e data (SDA) ligados respectivamente aos pinos RG2 e RG3 do microcontrolador. O protocolo de comunicação com está memória é do tipo I²C, podendo este ser feito diretamente com os recursos do microcontrolador ou via software.

A capacidade de armazenamento da 24WC256 é de 32 kbytes, no entanto, modelos similares com maior ou menor capacidade de armazenamento podem ser utilizados.

PIC24FJ128GA010	Memória
RG2	Clock (SCL) – pino 6
RG3	Data (SDA) – pino 5

1.6. Memória Serial EEPROM 25LC256

A placa está provida de uma memória serial EEPROM modelo 25LC256 com os pinos de clock (SCK), entrada de dados (SDI), saída de dados (SDO) e Chip Select (CS) ligados respectivamente aos pinos RG6, RG7, RG8 e RD12 do microcontrolador. O protocolo de comunicação com está memória é do tipo SPI, podendo este ser feito diretamente com os recursos do microcontrolador ou via software.

A capacidade de armazenamento da 25LC256 é de 32 kbytes, no entanto, modelos similares com maior ou menor capacidade de armazenamento podem ser utilizados.

PIC24FJ128GA010	Memória
RG6	Clock (SCK) – pino 6
RG7	Entrada de dados (SDI) – pino 2
RG8	Saída de dados (SDO) – pino 5
RD12	Chip Select (CS) – pino 1

1.7. Sensor de temperatura

A placa possui um sensor digital de temperatura MCP9700. Este sensor mede temperaturas de –40°C até +125°C com resolução de 10mV /°C e desvio-padrão de ±2°C (p/ faixa de 0°C até +70°C).

PIC24FJ128GA010	Sensor
RB4/AN4	Saída (VOUT) – pino 2

1.8. Comunicação serial RS232

A placa possui um driver RS232 para adequar os níveis de tensão do microcontrolador (TTL) ao padrão RS232C (+12V e – 12V).

Explorer16BR PIC24 10 Rev 5.0

No conector RS232 a comunicação é feita com 4 vias, a via de TX1 está ligada ao pino RF5, a via de RX1 está ligada ao pino RF4, a via de RTS está ligada ao pino RB14 e a via de CTS está ligada ao pino RB8 do microcontrolador. Nesta serial é possível implementar uma comunicação serial com controle de fluxo por hardware.

A comunicação pode ser implementada utilizando os recursos do próprio microcontrolador (UART) ou via software.

► Pinagem RS232

PIC24FJ128GA010	RS232
RF4	RX2
RF5	TX2
RF12	CTS
RF13	RTS

Faz parte também do módulo de comunicação serial os conectores DB9 fêmea CN6. Segue abaixo a pinagem:

► Pinagem RS232 (conector CN6)

Pino	Função
1	
2	TX
3	RX
4	-
5	GND
6	-
7	RTS
8	CTS
9	-

1.9. Comunicação serial CAN

A placa possui um driver para barramento CAN para adequar os níveis de tensão do microcontrolador (TTL) ao padrão CAN.

No conector CAN a comunicação é feita com 2 vias, a via H e a via L.

Para este modo de trabalho são utilizados os pinos RF0 e RF1 do microcontrolador.

Note que no PIC24FJ128GA010 não possui interface CAN, porem o plugin dsPIC33FJ256GP710 possui esta interface.

► Pinagem CAN (conector CN11)

Pino	Função
1	Н
2	L

1.10. Comunicação Ethernet

A placa possui um conector Ethernet para conexão em rede. Este conector já possui um transfomador isolador próprio para Ethernet.

A Explorer 16^{BR} possui um controlador Ethernet 10BASE-T Microchip ENC28J60, com MAC e PHY on board, buffer RAM de 8kbytes e interface SPI.

PIC24FJ128GA010	ENC28J60
RF7/SDI1	Data input (SI) – pino 7
RF8/SD01	Data output (SO) – pino 6
RF6/SCK1	Clock (SCK) – pino 8
RC4	Chip select (CS) – pino9

Segue abaixo a pinagem do RJ45:

► Pinagem Ethernet (conector RJ45)

ENC28J60	RJ45
Pino 17	TXD+
Pino 16	TXD-
Pino 13	RXD+
Pino 12	RXD-

1.11. Conversor A/D

O microcontrolador PIC24FJ128GA010 possui 16 canais analógicos, sendo que podemos usar o A/D com resolução de 10 bits com velocidade de conversão na faixa de 500ksps.

Na placa Explorer 16^{BR} é utilizado o canal analógico em um trimpot de $10k\Omega$.

► Canal analógico utilizados na placa Explorer 16 BR

PIC24FJ128GA010	Módulo
RB5/AN5	Trimpot – P3

1.12. Botão de reset manual

O reset do microcontrolador pode ser realizado manualmente através da chave S5. Ao pressionar a chave, o pino de MCLR do microcontrolador é aterrado e o PIC é resetado. Ao liberar a chave, o microcontrolador volta a operar normalmente.

PIC24FJ128GA010	Botâo
MCLR	S 5

1.13. Gravação in-circuit

A placa Explorer 16^{BR} é compatível com o gravador/depurador ICD2^{BR}, através de conectores RJ12. O procedimento de gravação do microcontrolador será visto no capítulo 3.

Explorer16BR PIC24 14 Rev 5.0

2. Software

A placa Explorer 16^{BR} é fornecida com 10 softwares de exemplo, 1 software de testes para validar o hardware e 1 software para comunicação serial.

2.1. Softwares de exemplo

Veja abaixo a relação dos softwares e uma breve descrição de cada um deles.

2.1.1. Exemplo 1 – Leitura de Botões e acionamento de LED's

Este software está preparado para efetuar a leitura de quatro botões e acionar o LED correspondente.

2.1.2. Exemplo 2 – Interrupção de timer(sequencial c/ LED's)

Este software demonstra a utilização de uma rotina de timer, cujo objetivo será piscar de maneira seqüencial os LED's da placa.

2.1.3. Exemplo 3 – Comunicação com LCD alfanumérico (16 x 2);

Este software inicializa um LCD e varre quatro teclas indicando no LCD a tecla pressionada.

2.1.4. Exemplo 4 – Comunicação com LCD gráfico (128 x 64)

Este software inicializa um LCD e mostra uma animação com o LCD (Bandeira do Brasil e uma mensagem).

2.1.5. Exemplo 5 – Conversor analógico digital interno

Este software está preparado para ler o canal 5 do conversor A/D e mostrar o valor da conversão no LCD. Deve-se variar o potenciômetro A/D para alterar o valor da leitura do A/D.

Explorer16BR PIC24 15 Rev 5.0

2.1.6. Exemplo 6 – Comunicação Serial – Transmissão (TX) e Recepção (RX)

Este software demonstra a utilização da UART do PIC24FJ128GA010. Este exemplo demonstra o uso da UART como um terminal. Todos os caracteres recebidos são mostrados no LCD. O caractere "perdido" é enviado novamente pela UART.

Pode ser utilizado o software M2COM para visualizar e enviar os dados pela serial do microcomputador para a Explorer 16^{BR}.

2.1.7. Exemplo 7 – Comunicação com memória EEPROM 24WC256

Este software demonstra a utilização da memória EEPROM 24WC256, utilizando a comunicação serial I2C.

2.1.8. Exemplo 8 – Comunicação com memória EEPROM 25LC256

Este software demonstra a utilização da memória EEPROM 25LC256, utilizando a comunicação serial SPI.

2.1.9. Exemplo 9 – Comunicação com sensor de temperatura MCP9700

Este software demonstra a utilização do sensor de temperatura MCP9700, utilizando o conversor A/D.

2.1.10. Exemplo 10 - Porta paralela mestre

Este software demonstra a utilização da porta paralela mestre. Como dispositivo escravo será utilizado o LCD alfanumérico.

2.1.11. Exemplo 11 - Comunicação com Ethernet

Este software demonstra a utilização de um Web-Server embarcado utilizando o ENC28J60.

2.2. Software de Comunicação Serial

Para o exemplo 6 que utiliza comunicação serial, foi desenvolvido pela equipe da Mosaico um software (plataforma Windows) que pode ser utilizado para testar a comunicação serial entre a placa Explorer 16^{BR} e o microcomputador.

Explorer16BR PIC24 16 Rev 5.0

Inicialmente, para testar a comunicação, deve-se instalar no microcomputador o software M2COM disponível no CD-ROM. Após a instalação do M2COM, deve-se gravar na placa Explorer 16^{BR} o exemplo 6. O exemplo 6 utiliza o conversor analógico digital do PIC24FJ128GA010 (lê a tensão do potenciômetro A/D) e envia ao PC o valor da conversão e aguarda que algum dado esteja presente na entrada da UART para mostrar este valor no LCD.

Obs.: O software M2COM exige que uma porta de comunicação válida (COM1 ou COM2) seja selecionada para liberar as janelas de TX e RX.

2.3. Software de teste do hardware

A fim de validar o hardware da placa, servindo como uma giga de testes, é fornecido também um software que pode ser utilizado para testar a funcionalidade de quase todos os recursos da placa Explorer 16 BR.

Para este software não é fornecido o código fonte, apenas o arquivo .HEX está disponível no CD-ROM. Como padrão, este software já vem gravado no microcontrolador, porém a qualquer momento o usuário pode testar o funcionamento do hardware da placa regravando o arquivo .HEX. O software de teste pode ser executado sem interação com o usuário, porém recomendamos que o usuário faça a interação com o software a fim comprovar o correto funcionamento de todos os componentes da placa.

Todos os softwares são de autoria da Mosaico. Todos eles foram desenvolvidos levando-se em conta que seriam utilizados para fins didáticos. Desta forma acreditamos que não seria ético a utilização de qualquer um destes softwares com objetivos comerciais. A Mosaico pede gentilmente aos usuários destes softwares que levem isto em consideração.

Explorer16BR PIC24 17 Rev 5.0

3. Gravação in-circuit utilizando o ICD2^{BR} e MPLAB

Estamos assumindo que o MPLAB e o ICD2^{BR} foram instalados corretamante.

Para usar o ICD2^{BR} como gravador, proceda da seguinte maneira:

Clique em *Programmer* > *Select Programmer* > *MPLAB ICD2* para habilitar o ICD2^{BR} como gravador;

O menu do gravador e o MPLAB mudarão para opções de gravação sempre que a ferramenta for selecionada. Também, a janela de saída (*output*) abrirá mensagens sobre o status de comunicação e aceitação do ICD2.

O projeto recompilado com os bits de configuração (*Configurations Bits*) inseridos no código fonte podem ser gravados no componente. Verifique como a sua fonte está habilitada. Para gravar a aplicação do projeto no componente siga os passos:

- Selecione *Programmer > Settings* e clique na orelha *Program* para setar a opção de programação para sua aplicação
- Configuração de bits para gravação estará inserida conforme escrita em seu código fonte;
- Selecione Configure > Configuration Bits e acerte o oscilador e outras configurações apropriadas para o componente escolhido (se necessário);
- Se desejar, configure o bits de identificação (ID) selecionando Configure > ID Memory;
- Selecione Programmer > Blank Check para checar se o componente esta apagado. Se não estiver, é
 obrigatório o processo de apagar (Programmer > Erase Flash Device);
- Selecione Programmer > Program para inserir seu código no componente ou placa de aplicação ou placa de demonstração que está conectada no seu ICD2^{BR}.

Maiores informações sobre o ICD2^{BR} consulte o manual de instruções do mesmo.

Explorer16BR PIC24 18 Rev 5.0

4. Configuração do computador para rodar os exemplos TCP-IP da Explorer 16^{BR} e McBoard dsPIC

4.1. Procedimento de configuração

Assumindo que o arquivo com o exemplo está devidamente programado na placa de aplicação, vamos ao procedimento de configuração do computador para rodar os exemplos TCP-IP. Note que este procedimento é somente para máquinas com o Windows XP.

1. Clique em Iniciar > Todos os programas > Acessórios > Comunicações > Conexões de rede. Irá aparecer uma janela com as conexões de rede disponíveis em sua máquina, como mostrado na figura seguinte.

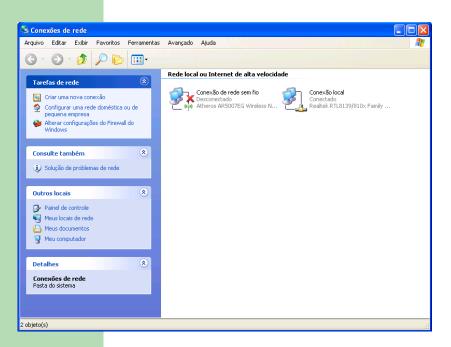


Figura 1.1 - Janela Conexões de rede

2. Clique duas vezes em Conexão local. Irá aparecer a janela Status de Conexão local. Clique em Propriedades.

Explorer16BR PIC24 19 Rev 5.0



Figura 1.2 - Janela Status de Conexão Local

3. Irá aparecer a janela Propriedades de Conexão local. Selecione Protocolo TCP/IP e depois clique no botão Propriedadades.

Figura 1.3 - Janela Propriedades de Conexão local

3. A próxima janela que deverá aparecer é a Propriedades de Protocolo TCP/IP. Recomendamos que anote todas as configurações antes de proseguirmos com a configuração da rede para as placas Explorer 16^{BR} e McBoard dsPIC, pois com as configurações que você anotou servirá para a reconfiguração de sua máquina para sua rede local. A janela em questão é mostrada na figura seguinte.

Explorer16BR PIC24 20 Rev 5.0

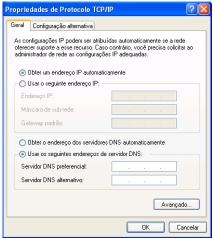


Figura 1.4 - Janela Propriedades de Protocolo TCP/IP

4. Marque o item Usar o seguinte endereço IP e configure:

Endereço IP: 169.254.158.0

Máscara de sub-rede: 255.255.0.0

Gateway padrão: 169.254.158.1

Esta configuração é mostrada na figura seguinte.

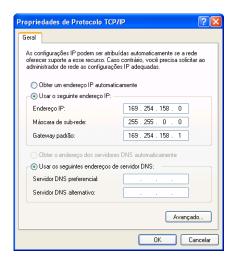
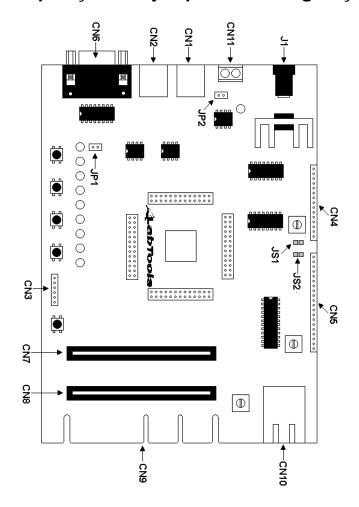
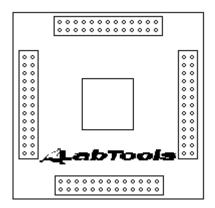


Figura 1.5 - Janela Propriedades de Protocolo TCP/IP


5. Depois clique em OK na janela Propriedades de Protocolo TCP/IP, clique em OK na janela Propriedades de Conexão e clique em Fechar na janela Status de Conexão local. Depois feche a janela Mostrar todas as conexões.

6. Abra o Browser. A página deverá ser acessada na barra de endereço pelo IP 169.254.158.224 ou digitando http://mchpboard/.


OBS.: Para o teste o cabo RJ45 deverá ser cross.

5. Apêndice A – Disposição dos jumpers de configuração e conectores

Mainboard

Módulo Plug-In

Explorer16BR PIC24 23 Rev 5.0

Apêndice B – Resumo dos conectores da Explorer 16^{BR}

Conector	Descrição	
CN1	Conector ICSP Padrão Microchip	
CN2	Conector ICSP Padrão Mosaico	
CN3	Conector Padrão PICKIT	
CN4	Conector LCD 16x2 Alfanumérico	
CN5	Conector LCD 128x64 Gráfico	
CN6	Comunicação RS232	
CN7	Conector Edge 120 pinos (PICTail)	
CN8	Conector Edge 120 pinos (PICTail)	
CN9	Conector Placa 120 pinos (PICTail)	
CN10	Conector Ethernet RJ45	
CN11	Comunicação CAN	

7. Apêndice C – Resumo dos jumpers da Explorer 16^{BR}

Jumper	Descrição		Configuração	
JP1	Hab	ilitação dos leds	<u>Fechado</u> : habilita leds <u>Aberto</u> : desabilita leds	
JP2	tern	oilitação da ninação da nunicação CAN	Fechado: habilita terminação para comunicação CAN. Aberto: desabilita terminação para comunicação CAN.	

Explorer16BR PIC24 25 Rev 5.0

8. Apêndice D – Resumo dos jumpers de solda da Explorer 16^{BR}

Os jumpers de solda JS1 e JS2 determinam a tensão de alimentação dos displays alfanumérico e gráfico nas opções 5V ou 3,3V. Para esta configuração use um ferro de solda para fechar ou abrir os jumpers.

▶ IMPORTANTE : Os jumpers de solda não devem estar ligados simultâneamente

Jumper	Descrição	Configuração	
JS1	Displays alimentados com 5V	Fechado: sem alimentação Aberto: com alimentação 5V	
JS2	Displays alimentados com 3,3V	Fechado: sem alimentação Aberto: com alimentação 3,3V	

Explorer16BR PIC24 26 Rev 5.0

9. Apêndice E – Disposição conector ICSP Explorer 16^{BR}

Explorer16BR PIC24 27 Rev 5.0

^{10.} Apêndice F – Pinagem conector ICSP Explorer 16^{BR}

CN2 – RJ12 (Padrão Mosaico)		
Pino	Função	
1	Vpp/MCLR	
2	PGD	
3	PGC	
4	Vdd	
5	Vss	
6	Não usado	

CN1 – RJ12 (Padrão Microchip)		
Pino	Função	
1	Vpp/MCLR	
2	Vdd	
3	Vss	
4	PGD	
5	PGC	
6	Não usado	

11. Apêndice G - Resumo da pinagem do microcontrolador PIC24FJ128GA010

Pino	Nome	Placa Explorer 16 BR	Observações
1	RG15	Conectores PICTail	-
2	VDD	3,3V	-
3	RE5	LCD 16x2 – sinal DB5	LCD 128x64 – sinal DB5
4	RE6	LCD 16x2 – sinal DB6	LCD 128x64 – sinal DB6
5	RE7	LCD 16x2 – sinal DB7	LCD 128x64 – sinal DB7
6	RC1	LCD 128x64 – sinal CS1	-
7	RC2	LCD 128x64 – sinal CS2	-
8	RC3	LCD 128x64 – sinal RST	-
9	RC4	ENC28J60 – sinal CS	-
10	RG6	25LC256 – sinal SCK	Módulo SPI2
11	RG7	25LC256 – sinal SO	Módulo SPI2
12	RG8	25LC256 – sinal SI	Módulo SPI2
13	MCLR	Tecla Reset	Também utilizado na conexão ICSP
14	RG9		
15	VSS	Terra	-
16	VDD	3,3V	-
17	RA0	Led 1	-

	4		
Pino	Nome	Placa Explorer 16 BR	Observações
18	RE8	Conectores PICTail	-
19	RE9	Conectores PICTail	-
20	RB5	Trimpot 10K - (P3)	Canal analógico AN5
21	RB4	MCP9700 – sinal VOUT	Canal analógico AN4
22	RB3	Conectores PICTail	-
23	RB2	Conectores PICTail	-
24	RB1	Conectores PICTail	-
25	RB0	Conectores PICTail	-
26	RB6	Conexão ICSP	-
27	RB7	Conexão ICSP	-
28	RA9	Conectores PICTail	-
29	RA10	Conectores PICTail	-
30	AVDD	3,3V	-
31	AVSS	Terra	-
32	RB8	Conectores PICTail	-
33	RB9	Conectores PICTail	-
34	RB10	Conectores PICTail	-
35	RB11	Conectores PICTail	-
36	VSS	Terra	-
37	VDD	3,3V	-

Pino	Nome	Placa Explorer 16 BR	Observações
38	RA1	Led 2	-
39	RF13	RTS RS-232	-
40	RF12	CTS RS-232	-
41	RB12	Conectores PICTail	-
42	RB13	Conectores PICTail	-
43	RB14	Conectores PICTail	-
44	RB15	LCD 16x2 - sinal RS	LCD 128x64 – sinal D/I
45	VSS	Terra	-
46	VDD	3,3V	-
47	RD14	Conectores PICTail	-
48	RD15	Conectores PICTail	-
49	RF4	RX RS-232	-
50	RF5	TX RS-232	-
51	RF3	Conectores PICTail	-
52	RF2	Conectores PICTail	-
53	RF8	ENC28J60 – sinal SI	Módulo SPI1
54	RF7	ENC28J60 – sinal SO	Módulo SPI1
55	RF6	ENC28J60 – sinal SCK	Módulo SPI1
56	RG3	24WC256 – sinal SDA	Módulo I2C1
57	RG2	24WC256 – sinal SCK	Módulo I2C1

Pino	Nome	Placa Explorer 16 BR	Observações
58	RA2	Led 3	-
59	RA3	Led 4	-
60	RA4	Led 5	-
61	RA5	Led 6	-
62	VDD	3,3V	-
63	OSC1	Cristal 8MHz	-
64	OSC2	Cristal 8MHz	-
65	VSS	Terra	-
66	RA14	Conectores PICTail	-
67	RA15	Conectores PICTail	-
68	RD8	Conectores PICTail	-
69	RD9	Conectores PICTail	-
70	RD10	Conectores PICTail	-
71	RD11	Conectores PICTail	-
72	RD0	Conectores PICTail	-
73	RC13	Cristal 32.768KHz	Utilizado no modulo RTCC
74	RC14	Cristal 32.768KHz	Utilizado no modulo RTCC
75	VSS	Terra	-
76	RD1	Conectores PICTail	-
77	RD2	Conectores PICTail	-

Pino	Nome	Placa Explorer 16 BR	Observações
78	RD3	Conectores PICTail	-
79	RD12	25LC256 – sinal CS	Módulo SPI2
80	RD13	Tecla 4	-
81	RD4	LCD 16x2 – sinal E	LCD 128x64 – sinal RW
82	RD5	LCD 16x2 – sinal RW	LCD 128x64 – sinal RW
83	RD6	Tecla 1	-
84	RD7	Tecla 2	-
85	VDDCORE	-	Tensão CPU
86	ENVREG	-	Config. regulador CPU
87	RF0	TX CAN	-
88	RF1	RX CAN	-
89	RG1	Conectores PICTail	-
90	RG0	Conectores PICTail	-
91	RA6	Led 7	-
92	RA7	Tecla 3 / Led 8	Função definida pelo TRISA
93	RE0	LCD 16x2 – sinal DB0	LCD 128x64 – sinal DB0
94	RE1	LCD 16x2 – sinal DB1	LCD 128x64 – sinal DB1
95	RG14	Conectores PICTail	-
96	RG12	Conectores PICTail	-
97	RG13	Conectores PICTail	-

Pino	Nome	Placa Explorer 16 BR	Observações
98	RE2	LCD 16x2 – sinal DB2	LCD 128x64 – sinal DB2
99	RE3	LCD 16x2 – sinal DB3	LCD 128x64 – sinal DB3
100	RE4	LCD 16x2 – sinal DB4	LCD 128x64 – sinal DB4

12. Certificado de Garantia

"PARABÉNS; VOCÊ ACABA DE ADQUIRIR A PLACA EXPLORER 16^{BR} COM O MÓDULO PLUG-IN (MICROCHIP) PIC24FJ128GA010 DA MOSAICO"

1. Tempo de Garantia

A Mosaico garante contra defeitos de fabricação durante 4 meses para mão de obra de conserto.

O prazo de garantia começa a ser contado a partir da data de emissão da Nota Fiscal de compra.

2. Condições de Garantia

Durante o prazo coberto pela garantia, a Mosaico fará o reparo do defeito apresentado, ou substituirá o produto, se isso for necessário.

Os produtos deverão ser encaminhados a Mosaico, devidamente embalados por conta e risco do comprador, e acompanhados deste Certificado de Garantia "sem emendas ou rasuras" e da respectiva Nota Fiscal de aquisição.

O atendimento para reparos dos defeitos nos produtos cobertos por este Certificado de Garantia será feito somente na Mosaico, ficando, portanto, excluído o atendimento domiciliar.

3. Exclusões de Garantia

Estão excluídos da garantia os defeitos provenientes de:

- Alterações do produto ou dos equipamentos.
- Utilização incorreta do produto ou dos equipamentos.
- Queda, raio, incêndio ou descarga elétrica.
- Manutenção efetuada por pessoal não credenciado pela Mosaico.

Obs.: Todas as características de funcionamento dos produtos Mosaico estão em seus respectivos manuais.

Explorer16BR PIC24 35 Rev 5.0

4. Limitação de Responsabilidade

A presente garantia limita-se apenas ao reparo do defeito apresentado, a substituição do produto ou equipamento defeituoso.Nenhuma outra garantia, implícita ou explícita, é dada ao comprador.

A Mosaico não se responsabiliza por qualquer dano, perda, inconveniência ou prejuízo direto ou indireto que possa advir de uso ou inabilidade de se usarem os produtos cobertos por esta garantia.

A Mosaico estabelece o prazo de 30 dias (a ser contado a partir da data da nota Fiscal de Venda) para que seja reclamado qualquer eventual falta de componentes.

Importante: Todas as despesas de frete e seguro são de responsabilidade do usuário, ou seja, em caso de necessidade o Cliente é responsável pelo encaminhamento do equipamento até a Mosaico.

Explorer16BR PIC24 36 Rev 5.0