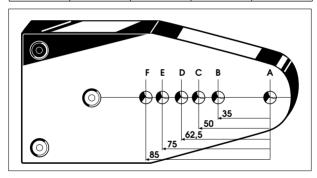


Informação geral sobre soldadores e matrizes de soldar fusiotherm®

Técnica da fusão Parte A: Montagem das matrizes

 Só devem ser utilizados soldadores e matrizes de soldar fusiotherm[®].

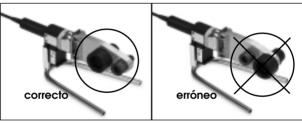

- 2. Armar manualmente as matrizes e a frio.
- Antes de soldar ao mesmo tempo 2 ligações dos blocos distribuidores, é preciso colocar as matrizes nos correspondentes furos da placa de aquecimento:

Informação geral sobre soldadores e matrizes de soldar fusiotherm®

Técnica da fusão Parte A: Montagem das matrizes

Art. N°	Passagem	Furo	Saídas	Furo
30115	Ø 25 mm	A + F	Ø 20 mm	A + C
85123	Ø 20 mm	A + B	Ø 16 mm	A + C
85124	Ø 20 mm	A + B	Ø 16 mm	A + C

 As matrizes para soldar devem estar livres de impurezas e verificada a sua limpeza antes da montagem. Em caso necessário, as matrizes devem ser limpas com papel grosso, sem fibra, e, se preciso, com álcool.



Informação geral sobre soldadores e matrizes de soldar fusiotherm®

Técnica da fusão Parte A: Montagem das matrizes

5. Montar as matrizes para soldar sempre de tal forma que a superfície não ultrapasse o bordo da placa de aquecimento. As matrizes de soldar superiores a Ø 40 mm de diâmetro têm de ser acopladas sempre na parte traseira da placa.

Técnica da Fusão Parte A: Fase de aquecimento

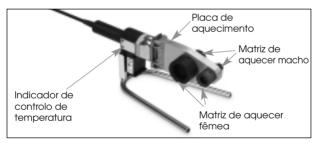
 Ligar o soldador e verificar se o indicador de serviço está aceso.

Dependendo da temperatura ambiente, o tempo de aquecimento da placa de soldar oscila entre 10 - 30 minutos (ver págs. 4.7 y 4.8).

O processo de aquecimento acabou:

- quando se apaga o indicador de controlo de temperatura (aparelho de soldar tipos 50136, 50137, 50141)
- quando se acende o indicador de controlo de temperatura (aparelho de soldar 50147)

aquatherm



Informação geral sobre soldadores e matrizes de soldar fusiotherm®

Técnica da Fusão Parte A: Fase de aquecimento

 Seguidamente apertam-se cuidadosamente as matrizes de soldar com a chave adequada para isso.

Ao fazê-lo, é preciso procurar que as peças fiquem completamente ajustadas à placa de aquecimento. Não se devem utilizar tenazes ou outras ferramentas não apropriadas, para não estragar a camada protectora das matrizes.

- 8. A temperatura requerida para soldar o sistema fusiotherm[®] é de 260° C.
 - De acordo com as directrizes de soldar DVS, a temperatura do soldador tem de ser controlada desde o início. O controlo da temperatura superficial é efectuado com um aparelho de medição de contacto ou, alternativamente, com o giz pirométrico fusiotherm® (ver "Técnica da Fusão Parte B. Ponto 2").

ATENÇÃO: Primeira soldadura <u>cinco</u> minutos depois de atingir a temperatura de soldar!

Informação geral sobre soldadores e matrizes de soldar fusiotherm®

Técnica da Fusão Parte A: Fase de aquecimento

Técnica da Fusão Parte A: Utilização

- Ao trocar alguma matriz de um aparelho a quente e depois do pré-aquecimento, é necessário voltar a controlar a temperatura de trabalho.
- Se durante uma pausa longa o aparelho tiver sido desligado, tem de ser efectuado de novo o processo de aquecimento, como se indica a partir do ponto 7.
- Depois de concluir os trabalhos de soldar, desligar o aparelho e deixá-lo arrefecer. Não arrefecer nunca com água, dado que então se deterioram as resistências de aquecimento.
- 12. Os soldadores as e matrizes para soldar fusiotherm® têm de ser protegidos contra impurezas. As partículas queimadas coladas às matrizes podem levar a uma fusão deficiente. As matrizes devem ser limpas com um papel grosso, não fibroso, ou também com álcool. As matrizes têm de se manter sempre secas. Em caso necessário, enxugá-las com um pano que não solte pêlo.

Informação geral sobre soldadores e matrizes de soldar fusiotherm®

Técnica da Fusão Parte A: Utilização

- As matrizes de soldar avariadas ou sujas têm de ser necessariamente substituídas.
- Não se deve desmontar nem reparar nunca aparelhos defeituosos. Nestes casos, devolver o aparelho para que o reparem.
- Verificar regularmente a temperatura de trabalho dos soldadores fusiotherm[®] com aparelhos de medição apropriados (ver ponto 9 e "Técnica da Fusão Parte B, Ponto 2").

Técnica da Fusão Parte A: Directrizes

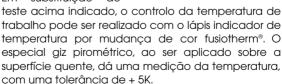
- 16. Para o uso dos soldadores, tem de se ter em conta as
 - Disposições Gerais sobre Protecção no Trabal ho e Prevenção de Acidentes

e em especial as

- Directrizes da Associação Profissional da Indústria Química para Máquinas de Elaboração e Mecanização de Materiais Plásticos, capítulo: "Máquinas e ferramentas para soldar".
- Para o uso de aparelhos, máquinas e matrizes de soldar fusiotherm[®] devem-se ter em conta as
 - Directrizes Gerais DVS 2208, Parte 1, da Associação Alemã de Técnica de Soldadura (Deutscher Verband für Schweißtechnik e. V.)

Técnica da Fusão

Técnica da Fusão: União do Material por fusão – Directrizes para Soldar


Técnica da Fusão Parte B: Controlo de aparelhos e matrizes

- Tem de se verificar se os soldadores e as matrizes fusiotherm[®] utilizadas respondem às directrizes da "Técnica da Fusão Parte A".
- Os soldadores e as matrizes utilizadas têm de ter atingido a temperatura requerida de 260° C. De acordo com "Técnica da Fusão Parte A, Ponto 9", requerem uma verificação especial, que é obrigatória e tem de ser concordante com as directrizes da DVS.

De acordo com as mesmas directrizes, o controlo da temperatura de trabalho requerida pode ser realizado com um aparelho de medida de contacto da temperatura de superfície.

Os aparelhos de medida apropriados devem permitir medir a temperatura até 350° C e com alta precisão.

Em substituição do

Técnica da Fusão: União do Material por fusão - Directrizes para Soldar

Técnica da Fusão Parte B: Controlo de aparelhos e matrizes

Utilização:

Uma vez que o indicador de controlo de temperatura do aparelho de soldar indicou o final do processo de aquecimento, tem de se fazer uma grossa linha sobre a superfície aquecida da placa com o lápis indicador de temperatura. A seguir, e em 1 - 2 segundos, tem que se produzir uma mudança de cor.

Se esta mudanca de cor for imediata, é devido ao facto de se ter ultrapassado a temperatura do aparelho de soldar. Se, pelo contrário, se produzir depois de 3 ou mais seaundos, é aue a temperatura está

por baixo dos 260° C e, em consequência, é demasiado baixa.

A mudança de cor indicada tem que se produzir em 1 - 2 seg., caso contrário, é preciso fazer um novo teste.

evemente do original

Técnica da Fusão

Técnica da Fusão: União do Material por fusão – Directrizes para Soldar

Técnica da Fusão Parte B: Preparação para a fusão

 Cortar o tubo em ângulo recto com respeito ao eixo do mesmo.
 Só devem ser utilizados cortadores de tubagem fusiotherm®, ou também tenazes de cortar apropriadas.

Se necessário, limpar o tubo e tirar as rebarbas.

 Marcar no extremo do tubo a profundidade do soldadura, com o calibre e um lápis.

 Marcar a posição desejada da peça, fazendo uma marca no tubo e/ou no acessório (sem ilustração).

A marca feita sobre a peça e a linha contínua do tubo podem servir de ajuda no trabalho.

Técnica da Fusão: União do Material por fusão – Directrizes para Soldar

Técnica da Fusão Parte B: Preparação para a fusão

- Antes de soldar o tubo composto stabi é preciso descascar toda a camada de alumínio que recobre o polipropileno.
- 7. Apenas devem ser utilizadas fresa-tubos originais fusiotherm com lâminas em perfeito estado. As lâminas rombas devem ser substituídas por lâminas de reserva originais. Ao substituí-las, é necessário realizar algum corte para verificar a correcta colocação da nova lâmina. O tubo composto stabi não deve poder ser introduzido com mais facilidade que de costume na matriz por estar descascado.
- Introduzir o extremo do tubo composto stabi ou do tubo stabi PP na boca do fresa-tubos.

Pelar la capa de aluminio que recubre el PP hasta el tope del pelador.

O descasque até ao topo do cortador dá-nos a profundidade de soldadura; não é necessário marcar, como se indica no Ponto 4.

 Antes da fusão, tem de se verificar se a camada de alumínio que recobre o PP está totalmente eliminada.

••••

Técnica da Fusão

Técnica da Fusão: União do Material por fusão – Directrizes para Soldar

Técnica da Fusão Parte B: Aquecimento dos elementos

De acordo com as linhas directrizes gerais para soldadura de elementos a quente, de conformidade com DVS 2207 Parte 11.

Dados básicos para a fusão							
Ø-exterior do tubo	Profundiad e de soldadura	Tempo de aquecimento		Tempo de soldadura	Tiempo de arrefecimento		
mm	mm	seg. DVS	seg. AQE*	seg.	min.		
16	13.0	5	8	4	2		
20	14.0	5	8	4	2		
25	15.0	7	11	4	2		
32	16.5	8	12	6	4		
40	18.0	12	18	6	4		
50	20.0	18	27	6	4		
63	24.0	24	36	8	6		
75	26.0	30	45	8	8		
90	29.0	40	60	8	8		
110	32.5	50	75	10	8		
125	40.0	60	90	10	8		

Baseando-se em DVS 2207, Parte 11, o tempo de aquecimento a temperaturas por baixo de + 5° C deve elevar-se em 50%.

 Introduzir o extremo do tubo na matriz, sem rodar, até à linha de profundidade de soldadura marcada.

> Ao mesmo tempo, introduzir a peça, sem rodar, até ao topo da matriz.

^{*} tempo de aquecimento recomendado pela aquatherm

Técnica da Fusão

Técnica da Fusão: União do Material por fusão – Directrizes para Soldar

 É essencial cumprir o tempo de aquecimento conforme se indica na tabela.

CONSELHO: Para maior facilidade na fusão de tubos e de peças de grandes dimensões, é aconselhável introduzi-los na matriz lentamente e com vários impulsos.

Tubos e acessórios das dimensões Ø 90 mm, 110 mm + 125 mm só devem ser soldados com o soldador Art. N° 50141. Usando o equipamento fusiotherm® para soldar grandes secções Art. N° 50147, é preciso observar as instruções separadas (veja-se págs. 4.18 – 4.24).

ATENÇÃO: O tempo de aquecimento começa quando se chega à profundidade de soldadura da matriz.

Técnica da Fusão Parte B: Acoplamento e alinhamento

 Depois do tempo de aquecimento indicado, extrair rapidamente o tubo e o acessório da matriz. Imediatamente, sem rodar, uni-los em linha recta até a profundidade de soldadura marcada ser cober-

ta pela anilha de polipropileno formada na peça.

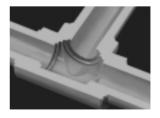
ATENÇÃO: Não se deve introduzir muito profundamente o tubo na peça, pois este poderia estreitar-se demasiado, e até chegar a tapar-se.

Técnica da Fusão: União do Material por fusão – Directrizes para Soldar

 Os elementos em causa têm de ser unidos durante o tempo de soldadura indicado.

> Durante este tempo, a união pode ser corrigida. Tal correcção, limita-se

exclusivamente a alinhar correctamente o tubo e a peça. Não se devem girar os elementos ou alinhar a conexão depois do tempo de processo.

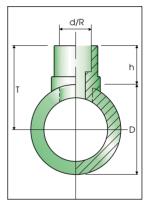

 Após o tempo de arrefecimento, a junta soldada está preparada para o seu uso.

União do material por

Fusion

O resultado da fusão entre o tubo e o acessório constitui uma união dos elementos impossível de desfazer.

¡Técnica de união sem precedentes com segurança perpétua!


Instalação de derivações em sede fusiotherm®

Técnica da Fusão Parte C: Derivações em sede

As derivações em sede fusiotherm® estão disponíveis para dimensões de tubo de 40, 50, 63, 75, 90, 110 e 125 mm.

Os sedes soldáveis são utilizados para

- derivações em instalações já existentes
- como substituição de um Te
- saídas em colunas ascendentes
- colocação de invólucros de imersão, etc.

O diâmetro máximo dos invólucros de imersão é especificado na tabela sequinte.

Técnica da Fusão

Instalação de derivações em sede fusiotherm®

Art. Nº	Dimensão	D	d	R	h	Invólucro	Furo	Fresa de chanfrar*	Matriz
,	Birneriode	mm	mm	RH	mm	Ømm	Art.Nº	Art. Nº	Art. Nº
15156	40 / 20 mm	40	20	-	27,0	_	50940	50910	50614
15158	40 / 25 mm	40	25	-	28,0	-	50940	50910	50614
15160	50 / 20 mm	50	20	-	27,0	-	50940	50910	50616
15162	50 / 25 mm	50	25	-	28,0	_	50940	50910	50616
15164	63 / 20 mm	63	20	-	27,0	-	50940	50910	50619
15166	63 / 25 mm	63	25	-	28.0	_	50940	50910	50619
15168	63 / 32 mm	63	32	-	30,0	-	50942	50912	50620
15170	75 / 20 mm	75	20	-	27.0	_	50940	50910	50623
15172	75 / 25 mm	75	25	-	28,0	-	50940	50910	50623
15174	75 / 32 mm	75	32	-	30,0	-	50942	50912	50624
15176	90 / 20 mm	90	20	-	27,0	-	50940	50910	50627
15178	90 / 25 mm	90	25	-	28,0	-	50940	50910	50627
15180	90 / 32 mm	90	32	-	30,0	-	50942	50912	50628
15181	90 / 40 mm	90	40	-	34,0	-	50944	50914	50629
15182	110 / 20 mm	110	20	-	27,0	-	50940	50910	50631
15184	110 / 25 mm	110	25	-	28,0	-	50940	50910	50631
15186	110 / 32 mm	110	32	-	30.0	-	50942	50912	50632
15188	110 / 40 mm	110	40	-	34,0	-	50944	50914	50634
15190	125 / 20 mm	125	20	-	27,0	-	50940	-	50636
15192	125 / 25 mm	125	25	-	28,0	-	50940	-	50636
15194	125 / 32 mm	125	32	-	30.0	-	50942	-	50638
15196	125 / 40 mm	125	40	-	34,0	-	50944	-	50640
28214	40/25 x 1/2" RH	40	-	1/2"	29,5	-	50940	50910	50614
28216	50/25 x 1/2" RH	50	-	1/2"	29,5	14	50940	50910	50616
28218	63/25 x 1/2" RH	63	-	1/2"	29,5	14	50940	50910	50619
28220	75/25 x 1/2" RH	75	-	1/2"	29,5	14	50940	50910	50623
28222	90/25 x 1/2" RH	90	-	1/2"	29,5	14	50940	50910	50627
28224	110/25 x 1/2" RH	110	-	1/2"	29,5	14	50940	-	50631
28226	125/25 x 1/2" RH	125	-	1/2"	29,5	14	50940	50910	50636
28234	40/25 x 3/ ₄ " RH	40	-	3/4"	29,5	16	50940	50910	50614
28236	50/25 x 3/ ₄ " RH	50	-	3/4"	29,5	16	50940	50910	50616
28238	63/25 x 3/ ₄ " RH	63	-	3/4"	29,5	16	50940	50910	50619
28240	75/25 x 3/ ₄ " RH	75	-	3/4"	29,5	16	50940	50910	50623
28242	90/25 x 3/ ₄ " RH	90	-	3/4"	29,5	16	50940	50910	50627
28244	110/25 x 3/ ₄ " RH	110	-	3/4"	29,5	16	50940	50910	50631
28246	125/25 x 3/4" RH	125	-	3/4"	29,5	16	50940	-	50636

 $^{^{\}ast}$ usando tubería compuesta stabi, N $^{\rm a}$ Art. 70806 - 70824

Técnica da Fusão

Instalação de derivações em sede fusiotherm®

Técnica da Fusão Parte C: Derivações em sede soldáveis

- Verificar se os aparelhos de soldar e as matrizes utilizadas se ajustam às directrizes "Técnica da Fusão, Parte A" (4.1 - 4-6).
- Em primeiro lugar, perfurase o tubo com a broca fusiotherm[®].

- Saída 20/25 mm:
 Art. N° 50940
- Saída 32 mm:
 Art. Nº 50942
- Saída 32 mm:
 Art. Nº 50944
- Utilizando o tubo stabi, deverão retirar-se os restos de alumínio na perfuração com a fresa de chanfrar fusiotherm®.
 - Saída 20/25 mm: Art. Nº 50910
 - Saída 32 mm:
 Art. Nº 50912
 - Saída 40 mm:
 Art. Nº 50914

......Técnica da Fusão

Instalação de derivações em sede fusiotherm®

- 4. O soldador e a matriz para soldar derivações em sede têm de atingir a temperatura de trabalho exigida de 260° C (veja-se "Técnica da Fusão, Parte B, Ponto 2").
- As superfícies de soldar têm de estar limpas e secas.
- A matriz para o aquecimento da derivação em sede soldável tem que ser introduzida na perfuração do tubo até tocar

completamente a parede exterior do mesmo. Ao mesmo tempo, insere-se a sede na matriz de aquecimento até a superfície da mesma tingir a curvatura da ferramenta. O tempo de aquecimento dos elementos é, em geral, de 30 seg.

7. Uma vez retirado o equipamento de soldar, introduz-se rapidamente a sede soldável na perfuração aquecida; carregase exactamente e sem rodar sobre a superfície exterior pré-aquecida do

tubo. Fixa-se a sede sobre o tubo durante 15 seg. Decorrido um período de 10 min., a união pode ser submetida a qualquer carga. É preciso soldar o tubo correspondente na manga de derivação.

Mediante a fusão da sede com a superfície exterior do tubo e com a parede da perfuração consegue-se uma união com uma grande estabilidade - a alternativa para as reduções.

Técnica da Fusão

Máquina de soldar fusiotherm[®]: Instruções de utilização

Técnica da Fusão Parte D: Preparación de la máquina de soldar fusiotherm®

Caixa de madeira para transporte da máquina de soldar

- 1. Carro de máquina com base inferior, placa de soldar
- 2. Jogo de mordaças de fixação com 8 utensílios para tubos e acessórios de Ø 50, 63, 75, 90, 110, 125 mm
- Matrizes de soldar fusiotherm[®] de Ø 50, 63, 75, 90, 110 y 125 mm
- 4.: Chave e pinça para a mudança de matrizes
- 5.: Manual de instruções

A máquina de soldar fusiotherm® foi especialmentedesenvolvida para soldar, num lugar fixo, tubagens e acessórios com um diâmetro exterior entre 50 - 125 mm. Esta máquina é equipada com uma manivela que facilita uma pré-montagem precisa em peças complicadas.

Técnica da Fusão

Máquina de soldar fusiotherm®: Instruções de utilização

- 1. Tirar a máquina da caixa de madeira e colocá-la sobre uma plataforma apropriada.
- 2. Ligar o aparelho (acende-se a lâmpada de contro-lo do

interruptor, assim como as lâmpadas indicadoras verde e vermelha).

- 3. Levantar a placa de soldar com a alavanca de mão.
- 4. Em caso de dimensões até de 63 mm, colocar, no dispositivo preparado para este fim, as mordaças de fixação com menor raio interior Para dimensões de 75 - 125 mm. o de major rajo interior. !As mordaças de fixação estão marcadas lateralmentel

5. Determinar a profundidade de soldadura do

correspondente diâmetro exterior do tubo com o comando giratório que há na parte lateral da máquina. A profundidade deve estar, em todo o caso, correctamente determinada.

Técnica da Fusão

Máquina de soldar fusiotherm®: Instruções de utilização

6. Colocar o acessório a soldar na mordaça de fixação da direita e apertar o parafuso de bloqueio na empunhadura fixadora da direita. Se possível, segurar o acessório com as mordaças à frente e atrás (não é possível com todos acessórios).

Colocar o tubo cortado em ângulo recto, em relação ao seu próprio eixo, na mordaça de fixação da esquerda e empurrá-lo para a frente para o acessório.

7. Accionar o botão que há na parte dianteira da máquina e levar o carro da máquina até ao topo. Assim, o tubo ajusta-se automaticamente à profundidade de soldadura exacta. A seguir, apertar o tubo com o parafuso de bloqueio na empunhadura fixadora da esquerda, até o mesmo ficar imobilizado.

Atenção: Para evitar deformações, nunca apertar demasiado o tubo nem o acessório.

Máquina de soldar fusiotherm®: Instruções de utilização

 Retirar o carro da máquina e separar novamente a placa de soldar. Antes de começar a soldadura, é necessário verificar se o soldador está preparado. O indicador de controlo de temperatura verde acende-se que tiver sido

atingida a temperatura de soldadura.

Atenção:

Nunca realizar a primeira soldadura até 5 minutos depois de se ter atingido a temperatura correcta!

 A placa de aquecimento e as matrizes de soldar têm de ter atingido a temperatura de trabalho necessária de 260° C (ver págs. 4.7 e 4.8/ Controlo de aparelhos e matrizes).

Isto requer um teste especial, que é absolutamente obrigatório de acordo com as Directrizes Gerais de

Soldar da DVS: Verificálo, de acordo com a "Técnica da Fusão Parte B, Ponto 2 / Pág. 4.7", com aparelhos de medição de contacto da temperatura de superfície ou com o lápis indicador fusiotherm[®].

Máquina de soldar fusiotherm[®]: Instruções de utilização

São aplicáveis as seguintes directrizes gerais para a soldadura com elementos de aquecimento, de acordo com DVS 2207 Parte 11.

Dados básicos para a fusão								
Ø-exterior do tubo	Profundidade de soldadura	Tempo de aquecimento				Tempo de soldadura	Tiempo de arrefecimento	
mm	mm	seg.DVS seg.AQE*		seg.	min.			
50	20,0	18	27	6	4			
63	24,0	24	36	8	6			
75	26,0	30	45	8	8			
90	29,0	40	60	8	8			
110	32,5	50	75	10	8			
125	40,0	60	90	10	8			

Baseando-se em DVS 2207, Parte 11, o tempo de aquecimento a temperaturas por baixo de + 5° C deveria elevarse em 50% (ver pág. 4.11)

 Juntar lentamente o carro da máquina com a ajuda da manivela. Colocar a placa de soldar de forma que o tubo e a peça se acoplem exactamente na matriz.

Rodar lentamente a manivela até ao topo. O tempo de aquecimento, conforme se indica na tabela superior, começa uma vez atingido esse topo.

^{*} tempo de aquecimento recomendado pela aquatherm.

Técnica da Fusão

Máquina de soldar fusiotherm®: Instruções de utilização

 Depois de concluir o tempo de aquecimento, retirar o carro da máquina com a manívela.
 Separar a placa de soldar.
 No tubo deve-se ter formado uma anilha.

Técnica da Fusão Parte D: Montagem da tubagem e do acessório

12. Voltar a juntar o carro da máquina com a ajuda da manivela: o tubo e o acessório fundem- se agora numa única unidade. Todas as peças devem permanecer forte- mente seguras durante um minuto.

ATENÇÃO: A peça soldada não deve ser retirada do suporte, e também não se deve rodar a manivela até ter decorrido o tempo de arrefecimento.

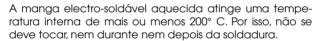
Máquina de soldar fusiotherm[®]: Instruções de utilização

Técnica da Fusão Parte D: Montagem da tubagem e do acessório

 Desbloquear as mordaças de fixação. Pode retirar-se a peça soldada.

Técnica da Fusão Parte D: Meios auxiliares

14. Para segurar tubos de maior comprimento, pode utilizar-se o tripé em cruz, com os prolongadores e os porta-tubos que sejam necessários.


Mangas electro-soldáveis fusiotherm®

Técnica da Fusão Parte E: Fusão

O soldador eléctrico fusiotherm® EMSG II foi concebido para a fusão de mangas electro-soldáveis fusiotherm® de Ø 20-110 mm.

- Corrente alterna:
 230 V (Tensão nominal)
- Potência nominal: ≤ 1.150 W
- Frequência nominal: 50 Hz
- Classe de protecção: Protecção 1

 O soldador eléctrico tem que ser ligado numa tomada de corrente para uma tensão nominal de 230 V/50Hz.

Cortar os extremos do tubo, que tem de ser unido com um corte limpo e regular no sentido perpendicular ao eixo do mesmo.

Mangas electro-soldáveis fusiotherm®

Técnica da Fusão Parte E: Fusão

 Nos tubos compostos stabi fusiotherm®, tem de se eliminar primeiro a camada de alumínio polipropileno. Para isso, só devem ser utilizados fresa-tubos fusiotherm®,

que podem ser adaptados a diferentes profundidades de descasque. Para aumentar a profundidade de descasque do fresa-tubo, basta desapertar os seus parafusos.

 Introduzir o extremo do tubo composto stabi na boca do fresa-tubos.
 Descascar a camada de alumínio PP até ao topo do fresa-tubos.

5. Ao soldar tubos fusiothermº sem alumínio com o soldador eléctrico, é preciso limpar os extremos do tubo com álcool puro e sem gordura, ou com panos de limpeza fusiothermº de acordo com o ponto 7 (Art. Nº 50193).

Ao unir tubos compostos stabi fusiotherm® com mangas eléctro-soldáveis, utilizar exclusivamente fresa-tubos fusiotherm® (Art. Nº 50506 - 50524) com regulação de profundidade variável.

Técnica da Fusão

Mangas electro-soldáveis fusiotherm®

Técnica da Fusão part E: Fusão

 Extrair a manga electrosoldável fusiotherm® da embalagem justamente antes de proceder à soldadura.

 Se, pelo facto de a ter desembalado antes, a manga se tiver impregnado de sujidade, também tem de se limpar a superfície inferior com álcool puro e sem gordura ou, alternativamente,

com panos de limpeza fusiotherm® (Art. N° 50193). Só devem ser usados panos de algodão limpos e sem pêlos (nunca panos de fibra sintética). Depois, não se deve tocar os extremos dos tubos nem a superfície interior da manga electro-soldável. Para assegurar que o tubo está introduzido suficiente na manga, recomenda-se marcar a profundidade (veja-se tabela).

mm									
Ø	20	25	32	40	50	63	75	90	110
P¹	26,5	26,5	25,0	25,0	25,0	30,0	33,0	36,0	41,0

Técnica da Fusão

Mangas electro-soldáveis fusiotherm®

Técnica da Fusão Parte E: Fusão

 Introduzir os dois extremos do tubo dentro da manga electro-soldável. Fixar os tubos de forma que, durante a soldadura, a manga não se incline nem saiam os extremos do tubo.

 Aplicar as pinças do aparelho à manga electro-soldável e premir o interruptor oscilante direito "Netz ein"; o indicador de controlo do interruptor oscilante estará aceso.

- A luz amarela confirma que o circuito de soldadura está fechado.
- 11. A intensidade de corrente do soldador regula-se automaticamente conforme a dimensão da manga electro-soldável. O processo de soldadura começa ao premir o botão "Start"; o indicador de controlo verde ilumina-se 7 vezes. A seguir acende-se o indicador de controlo amarelo.
- O indicador de controlo verde R confirma o final do processo.

Mangas electro-soldáveis fusiotherm®

Técnica da Fusão Parte E: Soldadura incorrecta

13. O indicador de controlo vermelho indica uma soldadura incorrecta ou interrompida. Neste caso, deve-se controlar de novo os requisitos para uma soldadura correcta. Para isso, é preciso tirar as pinças da manga e desligar e ligar o aparelho premindo o interruptor oscilante "Netz ein". Agora já se pode realizar uma nova soldadura.

Técnica da Fusão Parte E: Tempo de arrefecimento

14. Os tempos de arrefecimento têm de se cumprir necessariamente. Uma vez realizada a soldadura, deverá anotar-se a hora sobre a manga, a fim de cumprir e controlar o tempo de arrefecimento, que não deve ser acelerado com água, ar frio nem nada similar.

Classe trabalho	Pressão	Tempo mínimo de espera
Tracção, flexão, torção em tubagens sem pressão		20 minutos
Pressão de ensaio de ou de serviço de tubagens sob pressão	0,1 bar de 0,1 a 1 bar mas de 1 bar	20 minutos 20 minutos 120 minutos
Repetição do processo de soldadura		60 minutos

Mangas electro-soldáveis fusiotherm®

Técnica da Fusão Parte E: Pressão de serviço

15. As mangas electro-soldáveis fusiotherm® correspondem a uma pressão nominal PN 20. A relação entre temperatura, pressão de trabalho e tempo de serviço é indicada na tabela "Pressão de serviço admissível", na informação técnica "fusiotherm® - Sistema de Tuberías" N° de referência ESP 10111.

Reparações

Técnica da Fusão Parte F: Reparações

A reparação numa tubagem deteriorada pode ser realizada mediante

- soldadura por fusão (veja-se Parte B)
- soldadura por mangas electro-soldáveis (veja-se Parte E).

O programa fusiotherm® oferece adicionalmente a possibilidade da

reparação com tampão.

A matriz (Art. N° 50307/11) e os tampões correspondentes (Art. N° 60600) encontram-se na página 3.79.