

Manual de Instruções

Sensfil

AW-241R

Página 1 de 5 Manual do AW241R

Manual de Instruções

Medidor de Vácuo Sensfil AW-241R

Caro Cliente:

O Sr. tem em mãos um produto de alta tecnologia no campo da medição eletrônica de vácuo. O aparelho Sensfil AW-241RS foi desenvolvido especificamente para aplicações na área de refrigeração, podendo, no entanto, ser usado em quaisquer serviços que requeiram uma medida confiável de vácuo. É um aparelho resistente, preciso, portátil, de baixo custo, com o sensor ligado ao medidor por meio de um cabo com 3,0 m de comprimento, para maior facilidade de conexão e transporte.

Descrevemos a seguir as principais características do aparelho e como ele deve ser manipulado para melhor desempenho.

1) Conexão do Sensor à Tubulação de Vácuo:

O sensor do aparelho Sensfil AW-241RS deve ser conectado à linha de vácuo por meio de um flange padrão 1/8 NPT. Usar fita de *teflon* para vedação enrolada na rosca.

2) Conexão do Sensor ao Medidor:

O sensor deve ser conectado ao medidor pelo cabo apropriado que acompanha o aparelho. O conector do sensor encontra-se na sua parte superior e o do medidor na sua face posterior.

3) Alimentação do Medidor:

O Sensfil AW-241RS foi projetado para operar tanto em voltagem 110V ou 220V, sem necessidade de mudar uma chave. Isto torna-o imune à queima por esquecimento do valor selecionado para a voltagem de alimentação.

Uma vez conectado o sensor à tubulação de vácuo e conectado o medidor à tomada, basta acionar a chave liga-desliga que encontra-se do lado esquerdo do aparelho para o perfeito funcionamento do aparelho.

4). Características especiais:

Este aparelho tem algumas características especiais em atendimento a sua solicitação, que passamos a descrever:

Página 2 de 5 Manual do AW241R

No lado esquerdo e superior do painel frontal pode-se ver um *led* vermelho que irá acender se o sensor estiver desconectado ou com o filamento interrompido, indicando falha no sistema.

No centro deste mesmo lado (esquerdo) temos uma chave de alavanca com 3 posições possíveis, ou seja:

- <u>Para baixo</u> a chave liga o aparelho e o coloca para ler o vácuo sentido no instante pelo sensor.
- 2. **No centro** que é a posição que desliga o aparelho.
- 3. **Para cima** a chave liga o aparelho e o coloca na posição de verificar o valor ajustado para o vacuostato selecionado pela chave tipo HH de 4 posições existente no painel traseiro do aparelho.

Abaixo dela temos 4 leds vermelhos que irão se acender se o vácuo estiver melhor do que o valor setado para o set-point (vacuostato) correspondente, apagando-se se o vácuo ficar pior.

O restante do painel frontal é ocupado pelo galvanômetro.

No painel traseiro temos, quando se vê o aparelho por trás:

- 1. O cordão de força à direita.
- 2. Abaixo dele dois bornes para os contatos do relê do vacuostato, sendo o da direita para o vacuostato 4 e o da esquerda para o vacuostato 3.
- 3. No centro, na parte superior, 4 potenciômetros de ajuste do vacuostato, que podem ser ajustados em qualquer ponto da faixa de leitura. O da direita é para ajuste do vacuostato 4 e o da esquerda é para o ajuste do vacuostato 1. O mais próximo do potenciômetro 4 é para o vacuostato 3 e o restante é para o vacuostato 2.
- 4. Logo abaixo deles há uma chave HH de 4 posições. À esquerda esta chave possibilita que o galvanômetro mostre o valor ajustado para o vacuostato 1. Se for desejado podemos atuar no potenciômetro 1 e ajustar o novo valor requerido, sempre acompanhando a posição do ponteiro do galvanômetro. O mesmo vale para as outros 3 posições da chave, sendo que, quando for colocada à totalmente à direita, o galvanômetro irá mostrar o valor ajustado para o vacuostato 4. Esta chave estará ativa se a chave tipo alavanca do painel frontal for colocada para cima.
- 5. Abaixo dela temos mais dois bornes para os contatos do relê dos vacuostatos 1 e 2. O da direita é para o vacuostato 2 e o da esquerda é para o vacuostato 1.
- 6. À esquerda temos a tomada para o cabo do sensor.
- 7. Disposição dos terminais dos relês nos bornes:

C	Comum	C	Comum
A	Aberto	A	Aberto
F	Fechado	F	Fechado
Esquerda	Vacuostato 1 (3)	Direita	Vacuostato 2 (4)

5). Uso do Aparelho:

Página 3 de 5 Manual do AW241R

Após ajustar os *set-points* para os vacuostatos 1, 2, 3 e 4, colocar a chave tipo alavanca do painel frontal para baixo. Isto ligará a fonte do aparelho e ele estará pronto para uso e/ou controle. Deve ser feito vácuo no sistema sob teste e, quando o vácuo passar pelo *set-point* ajustado, o relê mudará de estado. Quando isto acontecer, o *led* correspondente a este vacuostato irá se acender para indicação visual deste estado. Os contatos deste relê estão presentes nos bornes correspondentes do painel posterior.

6). Relação Entre Escalas

Para maior conveniência do usuário, o Sensfil AW-241RS vem calibrado com duas escalas de vácuo, uma em mícron (μ) e outra em milibar (mBar). Ambas as escalas servem para medida de vácuo, sendo a escolha de uma delas questão de preferência ou costume do usuário. Para tirar quaisquer dúvidas, a relação entre essas escalas é:

1 000 microns	1,333 mBar
750,2 microns	1 mBar
760 000 microns	1 013 mBar
760 000 microns	1 atm

7). Recalibração do Equipamento:

O Sensfil AW-241RS vem calibrado de fábrica. Não se deve em hipótese alguma alterar os valores dos componentes do circuito eletrônico do medidor, pois isto retira o aparelho de sua calibração original. Qualquer suspeita de que o medidor esteja fora de calibração (o que deve ser verificado com um sensor novo ou com o simulador de célula), este deve ser encaminhado à CONSENSUM para recalibração.

No caso de recalibração do sensor, ver manual da Célula Sensora que acompanha este manual.

8). Garantia:

A CONSENSUM garante os medidores Sensfil AW-241RS contra defeitos de fabricação por dois (2) anos, e o sensor por um (1) ano, a partir da data de compra. As obrigações da CONSENSUM em relação a esta garantia são limitadas a reparar e/ou ajustar qualquer equipamento a ela retornado pelo comprador original, com frete de ida e volta pago pelo cliente, após ser sido satisfatoriamente constatado pela Consensum ser o defeito proveniente de fabricação e não de manuseio incorreto. Cessa a garantia se o instrumento for modificado ou consertado por terceiros não autorizados pela CONSENSUM. O conserto realizado pela CONSENSUM não implica em prolongamento do prazo de garantia.

Página 4 de 5 Manual do AW241R

9) Características Técnicas:

- Mostrador analógico com duas escalas gravadas, sendo uma em mBar com a curva do sensor usado, e outra de 0 a 10 para referência.
- Compensação automática de temperatura ambiente no intervalo 10°C a 60°C.
- Tensão de alimentação 110 VAC e 220 VAC, com comutação manual por chave no painel trazeiro.
- Freqüência da tensão de alimentação 50/60 Hz.
- Consumo menor que 10 W.
- Caixa de plástico preto com painel de plástico cinza.

10) Acessórios:

- Célula sensora CMW-1.
- Cabo de ligação célula-medidor CS-1 (3 m de comprimento padrão, outros tamanhos sob consulta).
- Simulador de célula sensora (Opcional).
- Abraçadeira de Alumínio NW 10 (opcional).
- Flange de solda NW 10 (opcional).
- Manual de instrução e manutenção.

11) Dimensões:

- Comprimento: 160 mm.

- Largura : 150 mm. - Altura : 100 mm.

12) Marca Registrada:

- Sensum e Consensum são Marcas Registradas da Consensum

Página 5 de 5 Manual do AW241R