

Manual de Instruções WATTÍMETRO ALICATE DIGITAL ITAW-1000

www.instrutemp.com.br

WATTÍMETRO ALICATE DIGITAL ITAW-1000

PRECAUÇÕES

- Leia cuidadosamente todo este manual antes de operar o aparelho. Atenção especial para os AVISOS. As instruções nestes avisos DEVEM ser seguidas.
- Você deverá tomar cuidado quando estiver trabalhando com voltagens acima de 30V AC. Mantenha os dedos atrás das barreiras da sonda enquanto estiver realizando a medicão.
- Sempre inspecione o aparelho e as pontas de prova antes de cada uso. Caso alguma das condições anormais surgir: pontas de prova quebradas, estojo do aparelho quebrado, display apagado etc., não realize nenhuma medicão.
- Utilize este aparelho com as pontas de prova fornecidas e somente em conformidade com os requerimentos de segurança. Caso as pontas de prova estejam danificadas, você deverá trocá-las por pontas de prova do mesmo tipo e especificação elétrica.
- Nunca toque uma fonte de voltagem quando as pontas de teste estiverem plugadas na tomada corrente.
- Não exponha o aparelho à luz solar direta, extremas temperaturas ou umidade.

CUIDADO LEIA AS INTRUÇÕES ANTES DE USAR O APARELHO.

Informações de Segurança

Este medidor digital trifásico foi desenvolvido de acordo com os requerimentos de segurança para instrumentos

portáteis de medição elétrica de IEC1010-1 e IEC1010-2-032, nível de poluição 2, categoria de sobrecarga (600V CAT III).

Símbolos de Segurança

<u> </u>	Informação de segurança importante, ver o manual de instruções
É	Voltagem perigosa
Ţ	Terra
	Isolamento duplo (proteção classe II)
<u>=</u>	Bateria

Descrição Geral

Este medidor portátil digital trifásico é um aparelho medidor de força, e incorpora também a função de medidor de corrente. É composto de três canais: voltagem, corrente, força e chip simples Microcontroller. Possui alto poder de medição e processamento de dados, e é completo para medir, calcular e mostrar até oito parâmetros: Voltagem, Corrente, Força ativa, Fator de força, Força aparente, Força reativa, Energia ativa, Freqüência. Possui capacidade estável, fácil operação. É adequado para medição e revisão de equipamentos elétricos e circuitos de fornecimento de energia. Sua estrutura é em forma de alicate, pequeno, leve e portátil, e realiza medições de modo fácil e rápido. Para medições de força, este aparelho digital é usado completamente em sistema trifásico, para o qual é um dos melhores aparelhos

que existem.

Funções

- **1.** Medições de força para circuito trifásico de três fios, circuito trifásico de 4 fios, circuito monofásico.
- **2.** O instrumento pode completar o valor real de RMS. Se houver um sinal de entrada de corrente não sinusoidal AC, poderá medir precisamente a corrente ativa.
- **3.** Utilize a seleção automática de faixa e módulo transdutor que possui 8000 posições e alta resolução, este aparelho possui alta precisão e fácil operação.
- **4.** A corrente mínima de energia ativa de medição é 0.5ª, pode medir aumento de energia por hora de equipamentos elétricos gerais. Realiza medições e mostra os parâmetros de força: Força ativa, Força aparente, Fator de força, Força reativa, Energia ativa.
- **5.** Duplo display de dois parâmetros em cada menu e armazenamento de 28 grupos de parâmetros de medição.
- **6.** Mede cinco parâmetros de força de cada fase e valor de força total em medições trifásica respectivamente.
- **7.** Botões de controle multifuncionais há barra gráfica dupla de escalas analógicas para mostrar a flutuação de voltagem e corrente.
- **8.** Interface para PC RS 232 e software compatível com Windows.
- **9.** Mostra tempo de medição, e seleciona fornecimento de energia pelo sinal de voltagem para o aparelho no modo de energia ativa, economizando bateria.
- **10.** Este é um instrumento portátil, leve e fácil de carregar.

Layout do Aparelho

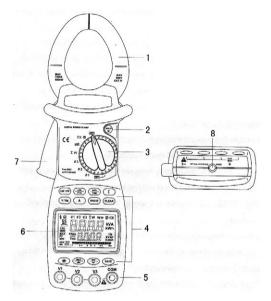


figura1

- **1.** Mandíbulas do aparelho Φ50mm
- **2.** Botão HOLD congela a leitura corrente no display. e o símbolo H é mostrado. Para retornar ao modo normal, pressione novamente este botão.
- **3.** Interruptor giratório gire este interruptor para selecionar as funções de medição.
- **4.** Botões selecionadores de função para selecionar os objetos de medição.
- 5. Terminais de entrada:

V1: terminal de entrada para primeira fase, use a ponta de

prova amarela.

V2: terminal de entrada para segunda fase, use a ponta de prova verde.

V3: terminal de entrada para terceira fase, use a ponta de teste vermelha.

COM: terminal common, terminal terra de entrada para todos os modos de medição, use a ponta de teste preta.

- **6.** Display LCD display 4 dígitos, 7 segmentos para mostrar os modos de função, valores de medição e símbolos.
- **7.** Gatilho pressione para abrir as mandíbulas do transformador, solte para fechá-las.
- **8.** Interface RS232 este medidor possui cabo para interface com PC, vejas as instruções completas na figura **Usando o Seletor**

Ligue o aparelho girando o seletor para qualquer uma das funções mostradas abaixo.

(Tabela 1: Introdução do seletor)

(Tabela 1. Introdução do Seretor)		
ITEM	DESCRIÇÃO	
OFF	POWER OFF: desliga o aparelho.	
EX P	EXTERNAL POWER SUPPLY: não utiliza bateria, seleciona o sinal de voltagem para fornecer a força para medições de energia ativa.	
MR	RECALL DATA: recupera dados salvos na memória.	
ΣW	TOTAL POWER: para mostrar o valor de força total trifásica	
Ф3	THIRD MEASUREMENT CHANNEL: Para medição de terminal V3	

Ф2	SECOND MEASUREMENT CHANNEL: Para medição de terminal V2
	FIRST MEASUREMENT CHANNEL: Para medição de terminal V1

Usando os Botões

(Tabela 2: Funções dos botões)

1	Força ativa, botão de medição de fator de força
2	Força aparente, botão de medição de força reativa
3	Energia ativa, botão de medição de tempo
4	E Botão de soma de força
5	V/Hz Voltagem, botão de medição de freqüência
6	A Botão de medição de corrente
7	RS232 Botão de transmissão de dados
8	GLEAR Botão para limpar memória
9	Botão para luz de fundo

10	Botão para valor máximo / Botão para gravação anterior
11	Botão para valor mínimo / Botão para próxima gravação
12	SAVE Botão Zpara salvar dados

- **1.** Força ativa, botão de medição de fator de força: Pressione o botão para medir força ativa e fator de medição de força. O display primário mostrará a força ativa enquanto o secundário o fator de força.
- **2.** Força aparente, botão de medição de força reativa: Pressione o botão para medir força aparente e força reativa. O display primário mostrará a força aparente e o secundário a força reativa.
- **3.** Energia ativa, medição de tempo: Pressione o botão para medir energia ativa no modo de medição. O display mostrará a leitura de energia ativa no display primário e medição de tempo de energia ativa no display secundário.
- **4.** \square Botão de soma de força: Pressione o botão \square para somar os valores medidos de corrente monofásica em modo de medição trifásico. então meça a segunda fase e pressione \square novamente parar somar mais uma vez. pressione \square para a terceira fase após obter o valor de medição da terceira fase no display. Então o aparelho calculará a soma destas três fases automaticamente, você deverá girar o interruptor parar \square uma vez, e então o display mostrará o valor total.
- **5.** VIHZ Botão de medição de voltagem: Pressione o botão VIHZ para medir voltagem de circuito e o valor

medido aparecerá no display.

- **6.** A Botão de medição de corrente: Pressione o botão para medir corrente de circuito e o valor medido aparecerá no display.
- 7. Ressas Botão de transmissão de dados: Pressione o botão Ressas para transmitir dados para um PC pelo cabo de interface, você pode gravar os dados correntes medidos e imprimir relatórios e curvas de dados. Antes de pressionar o botão Ressas para transmitir dados, você deve conectar o cabo de interface RS232 no medidor e no PC para que a comunicação seia ativada.
- **8.** ©LEAR por três segundos para apagar todos os dados de medição na memória do aparelho. no modo de medição.
- **9.** ** Botão para luz de fundo: Pressione o botão ** para ligar ou desligar a luz de fundo. Após ligada por cinco segundos a luz de fundo desligará automaticamente.
- **10.** Botão para valor máximo / Botão para gravação anterior: Pressione o botão para valor de medição máxima no modo de medição. O display mostrará o valor corrente máximo no display secundário.

Quando ligar o seletor para MR, pressione o botão para recuperar locação de memória e mostrar no display. Uma vez pressionado este botão, o medidor recuperará uma locação de memória corrente anterior.

11. Botão para valor mínimo / Botão para próxima gravação: Pressione o botão para medir valor mínimo no modo de medição, o display mostrará o valor corrente mínimo no display secundário.

Quando ligar o seletor para MR, pressione o botão para recuperar locação de memória e mostrar no display. Uma vez pressionado este botão, o medidor recuperará uma locação de memória corrente posterior.

12. SAVE Botão para salvar dados: Pressione SAVE para

INSTRUTEMP instrumentos de medicão

salvar dados de medição correntes no medidor no modo de medição. O aparelho pode salvar 28 grupos de dados de medição.

Display LCD

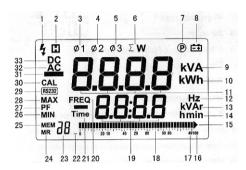
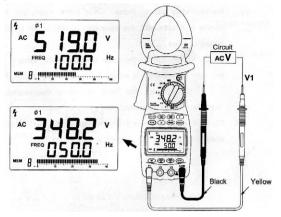


Figura 2

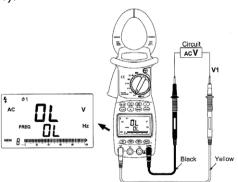
- 1. Símbolo de voltagem perigosa
- 2. Símbolo de função data holding
- 3. Símbolo de primeira fase
- 4. Símbolo de segunda fase
- 5. Símbolo de terceira fase
- 6. Símbolo de força total trifásica
- 7. Símbolo de fornecimento externo de energia
- 8. Símbolo de bateria
- **9.** Unidade de voltagem (V), unidade corrente (A), unidade de força aparente (kVA) (para display primário).
- Unidade de força ativa (kW), unidade de energia ativa (kWh)
- 11. Display 4 dígitos (para display primário)
- 12. Unidade de frequência
- 13. Unidade de voltagem (V), unidade corrente (A),


unidade de força aparente (kVA), unidade de força reativa (kVAr) – (para display secundário).

- 14. Unidade de tempo: hora (h), minuto (m)
- 15. Símbolo de superabundância
- 16. Escala graduada 100
- 17. Escala graduada 40
- 18. Barra gráfica
- 19. Display 4 dígitos (para display secundário)
- 20. Unidade de frequência
- 21. Símbolo de tempo
- 22. Sinal de escala negativa
- 23. Símbolo de número de locações de memória
- 24. Símbolo de recuperação de dados
- 25. Símbolo de salvar dados
- 26. Símbolo de valor mínimo
- 27. Símbolo de fator de força
- **28.** Símbolo de valor máximo
- 29. Símbolo de interface RS232
- 30. Símbolo de calibração
- 31. Símbolo negativo
- 32. Símbolo AC
- 33. Símbolo DC

FAZENDO MEDIÇÕES

MEDIÇÕES VOLTAGEM AC


(figura 3: medições de voltagem)

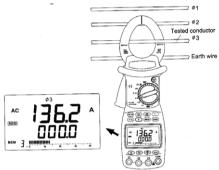
1. Ligue o seletor para $\Phi 1$, $\Phi 2$, $\Phi 3$, veja tabela 3 para conectar as pontas de prova aos terminais de entrada, insira a ponta de prova preta no terminal de entrada COM e uma ponta de prova de cor correspondente no terminal de entrada correspondente. (figura 3)

Tabela 3: Conexões com o terminal de entrada

Seletor	Terminal de Entrada (+)				Fase
Ф1	Tomada V1	P. amarela	Tomada COM	T. preta	primeira fase
Ф2	Tomada V2	P. verde	Tomada COM	T. preta	segunda fase
Ф3	Tomada V3	P. vermelha	Tomada COM	T. preta	terceira fase

- 2. Conecte as pontas de prova para a carga, pressione o botão (V/Hz), o valor de voltagem é mostrado no display primário e corrente e valor de freqüência de voltagem mostrados no display secundário.
- **3.** No modo de medição de voltagem, pressione o botão , o display mostrará o símbolo MAX, então o valor máximo (TRMS) é mostrado no display secundário. Pressione o botão novamente, o símbolo MAX desaparecerá do display, e o display secundário retornará para o valor corrente de freqüência.
- **4.** Pressione o botão , o display mostrará o símbolo MIN, então o valor mínimo (TRMS) é mostrado no display secundário. Pressione o botão novamente, o símbolo MIN desaparecerá e o display secundário retornará para o valor corrente de freqüência.
- **5.** Caso a voltagem de entrada exceder 600V, o display mostrará o símbolo "OL" e a barra gráfica estará cheia (figura 4).

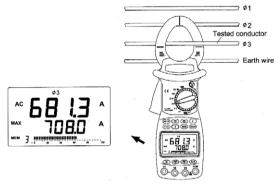
(figura 4 - voltagem 600V excedida)

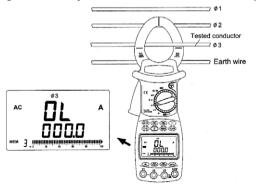

6. Caso a voltagem de entrada exceder 30V, o display

TINSTRUTEMPinstrumentos de medição

mostrará "4" para segurança.

7. Há dois modos de mostrar a barra gráfica no display. Você pode observar a flutuação da faixa de voltagem medida. O primeiro modo é 0-20-40-60-80-100, o segundo é 0-10-20-30-40.

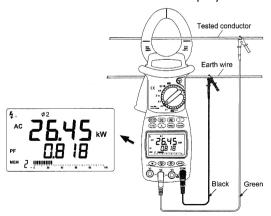

Medições Corrente AC


(figura 5: Medição de corrente)

- 1. Ligue o seletor para Φ1, Φ2, Φ3.
- **2.** Pressione o gatilho para enganchar a mandíbula em volta do condutor a ser medido. Pressione o botão , o display primário mostrará o valor corrente (RMS) do condutor (figura 5).
- **3.** Para medir o valor máximo de corrente, pressione o botão (o valor máximo é mostrado no display secundário. Pressione o botão (novamente para cancelar a medição do valor máximo (figura 6).
- **4.** Para medir o valor mínimo de corrente, pressione o botão , o valor mínimo é mostrado no display secundário. Pressione o botão novamente para cancelar a medição do valor mínimo.

- **5.** Caso a corrente exceder 1000^a (RMS) o display mostrará o símbolo "OL". (figura 7).
- **6.** Há dois modos de mostrar a barra gráfica no display. Você pode observar a flutuação da faixa de voltagem medida. O primeiro modo é 0-20-40-60-80-100, o segundo é 0-10-20-30-40 (figuras 5 e 6).

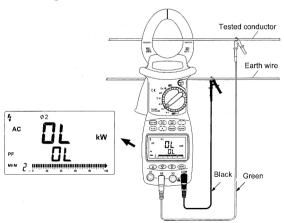
(figura 6: medição do valor máximo de corrente)



(figura 7: corrente excedendo 1000a)

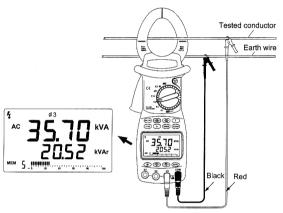
TINSTRUTEMP Instrumentos de medicão

MEDIÇÕES DE CIRCUITO MONOFÁSICO

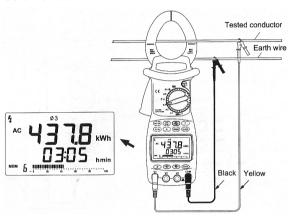

- 1. Pressione o gatilho para enganchar a mandíbula em volta do condutor a ser medido. O condutor pinçado é uma fase que você queira testar no circuito trifásico.
- **2.** Gire o seletor para uma das opções Φ 1, Φ 2, Φ 3 e veja a tabela 3 para conectar as pontas de prova nos terminais de entrada correspondentes à posição do seletor (figura 8).
- **3.** Após conectar corretamente, você poderá medir cinco parâmetros de força de circuito monofásico (força ativa, fator de força, força aparente, força reativa, energia ativa).
- (1) força ativa (kW) e fator de força (PF) (figura 8):
 - a) pressione o botão (KWIPP), o valor de força ativa é mostrado no display primário e o valor de fator de força e o símbolo PF são mostrados no display secundário.

(figura 8: medição de circuito monofásico)

Quando o valor de fator de força é negativo, a carga é capacitiva.


- b) a faixa de medição máxima da força ativa é 600kW. Caso exceder o valor máximo, o símbolo "OL" aparecerá no display. Caso o teste de voltagem exceder 600V ou o teste de corrente exceder 1000A, o símbolo OL também aparecerá no display, e a barra gráfica estará cheia (figura 9). A voltagem mínima de entrada é 20V e a voltagem mínima de entrada corrente é 5A, caso seja menor que a voltagem de entrada ou voltagem de entrada corrente, o valor de força ativa será "0.00kW".
- c) Pressione o botão (), o valor máximo de força ativa é mostrado no display secundário.
- **d)** Pressione o botão , o valor mínimo de força ativa é mostrado no display secundário.
- e) A barra gráfica 0-20-40-60-80-100 é mostrada.

(figura 9: corrente excedendo 1000A ou voltagem excedendo 600V)


- (2) força aparente (kVA) e força reativa (kVAr):
 - a)Pressione o botão , o valor de força aparente é mostrado no display primário, o valor de força reativa e a barra gráfica 0-20-40-60-80-100 são mostrados no display secundário (figura 10).

(figura 10: medições de força aparente)

- **b)**para voltagens de entrada menores que 20V e correntes de entrada menor que 5A, o valor de força aparente será de "0.00kVA".
- c) Pressione o botão (), o valor máximo de força aparente é mostrado no display secundário.
- **d)** Pressione o botão , o valor mínimo de força aparente é mostrado no display secundário.
- **e)** força reativa não é parâmetro de medição direta de força, a fórmula para cálculo de força reativa é kVAr2=kVA2-kW2. O valor é calculado e mostrado de acordo com a voltagem medida, corrente e força ativa

- no software.
- (3) energia ativa (kWh) e tempo hmin:
 - a) no modo de medição de energia ativa, o sinal de voltagem deve ser entrado nos terminais V1 e COM do medidor (figura 11) e o seletor deve ser posicionado para Φ1. Somente assim o modo de medição de energia ativa será válido.

(figura 11: medição de energia ativa)

b) Pressione o botão , o valor inicial de energia ativa é "0.000kWh" e será mostrado no display primário, a energia ativa é medida e a barra gráfica 0-20-40-60-80-100 é mostrada no display secundário. Quando maior o tempo, maior o valor de energia ativa medido. Caso necessite ler o valor de energia ativa medido, pressione o botão HOLD, então o valor medido é congelado no display, mas a medição de energia ativa continuará no medidor. Após a leitura, pressione o botão HOLD novamente para sair do modo data hold e

continuar a medição, o valor de energia ativa continuará somando. A medição de energia ativa não parará até que seja selecionada outra função.

- c) Os botões estão inabilitados para o modo de medição de energia ativa.
- **d)** O valor máximo de energia ativa é de "9999kWh". Caso o valor medido exceder este valor máximo, o display mostrará o símbolo "OL".
- **e)** A medição de energia ativa é viável em circuitos monofásicos, pois você só pode medir correntes de uma fase a cada uma vez, portanto você não poderá medir energia ativa trifásica. Caso necessite medir energia ativa por longo período, sugerimos que utilize a função EX- P , o medidor irá trabalhar sem utilizar a energia das baterias mas utilizando a voltagem que virá do teste para fornecer sua energia.

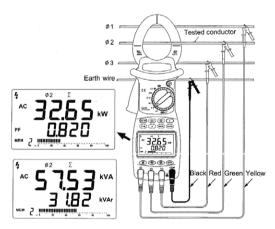
NOTA: Quando girar o seletor para a função EX- para medir voltagem ou parâmetro de força, a voltagem de entrada da tomada V1 deverá ser menor qe 250V, caso contrário poderá queimar o fusível.

MEDIÇÕES DE CIRCUITO TRIFÁSICO QUATRO FIOS

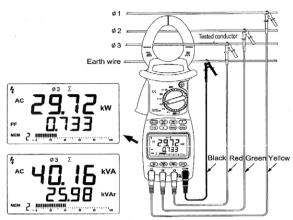
Parâmetros de força trifásica significam Força Ativa, total de Força Reativa, total de Força Aparente, total de Fator de Força. O medidor não pode medir energia ativa trifásica. O método de medição de força trifásica é primeiro a medição do parâmetro de força de cada condutor de fase respectivamente, e então calcular a força trifásica do parâmetro no medidor. Para uma carga balanceada, o dado de medição é preciso, caso a flutuação do parâmetro de força seja grande. então o erro do total do parâmetro de força aumentará.

1. Veja a tabela 3, conecte a ponta de prova amarela, a

verde e a vermelha para cada fase do circuito trifásico, e a tomada V1, V2 e V3 do medidor, respectivamente, conectar a ponta de prova preta ao condutor zero do circuito e a tomada COM do medidor.

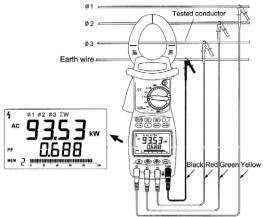

2. Gire o seletor para a posição Φ1 primeiro, (para medição da primeira fase), enganche a mandíbula em volta do condutor da primeira fase do circuito testado, pressione o botão were para medir força ativa (kW) e fator de força (PF), os valores medidos são mostrados no display, então pressione o botão para somar os parâmetros de força desta fase; pressione o botão novamente para medir força aparente e força reativa, o resultado será mostrado no display, pressione o botão para somar os parâmetros de força desta fase. então o parâmetro de medição de força estará completo na primeira fase. Caso necessite salvar o resultado, pressione o botão para fazê-lo (figura 12).

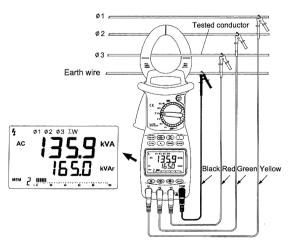
(figura 12: medição de força da primeira fase)


TINSTRUTEMP instrumentos de medicão

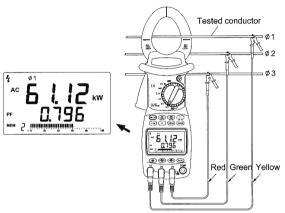
3. Gire o seletor para a posição Φ2 (para medição da segunda fase), enganche a mandíbula em volta do circuito de força da segunda fase do circuito testado, pressione o botão (e o botão (para medir parâmetro de força respectivamente, quando o resultado da medição é mostrado todo tempo, você deverá pressionar (para somá-lo. A operação é a mesma da medição da primeira fase (figura 13).

(figura 13: medição de força da segunda fase)


4. Gire o seletor para a posição Φ3 (para medição da terceira fase), enganche a mandíbula em volta do circuito de força da terceira fase do circuito testado, pressione o botão wwpp e o botão para medir parâmetro de força respectivamente, quando o resultado da medição é mostrado todo tempo, você deverá pressionar "" para somá-lo. A operação é a mesma da medição da primeira fase (figura 14).


(figura 14: medição de força da terceira fase)

5. Após a medição de cada fase acima, gire o seletor para Σ W, então o display mostrará o total de força ativa e fator de força da carga trifásica (figura 15). Após mostrar por três segundos, o display alterna a mostrar o valor total de força aparente e o valor total de força reativa automaticamente (figura 16). O valor total de força aparente está no display primário e p valor total de força reativa no display secundário. O display alterna automaticamente a cada três segundos até que você alterne para outra função o medidor.


(figura 15: total de força ativa trifásica)

(figura 16: total de força aparente trifásica)

MEDIÇÕES DE CIRCUITO TRIFÁSICO TRÊS FIOS

Em medições de circuito trifásico três fios, a operação do seletor e funções dos botões é a mesma da operação de medição do circuito trifásico quatro fios, exceto pela conexão das pontas de prova (figura 17).

(figura 17: Medições de força trifásica três fios)

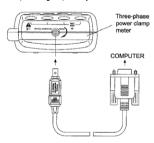
SALVANDO MEDIÇÕES

No modo de medição, você pode pressionar o botão para salvar o valor presente no display para uma locação de memória. O medidor pode armazenar 28 grupos de medição de dados.

Quando o medidor tiver salvo 28 grupos de dados, e você pressionar o botão (SAVE) novamente, o display mostrará o símbolo "FUL", de memória cheia. Você deve pressionar para limpar a memória e continuar salvando novos dados.

INSTRUTEMPinstrumentos de medicão

RECUPERANDO MEMÓRIA


Caso tenha salvo dados no medidor, use os procedimentos a seguir para mostrar no display os dados salvos:

- 1. Gire o seletor para MR.
- **2.** O display mostrará os símbolos MR e HOLD. número de locação e dados correntes na locação de memória.
- **3.** Pressione os botões e para selecionar a locação de memória desejada.

INTERFACE RS232

Conecte o cabo RS232 no medidor como mostrado na figura 18, então gire o cabo até travar no medidor. Conecte o outro plug na porta serial do PC. O medidor pode transmitir dados de medição para o PC por eletricidade infravermelha RS232C em tempo real. Caso deseje retirar o cabo serial do medidor, deverá primeiro girar o cabo para destravá-lo e então puxá-lo.

Você instalará o software de gravação de dados em seu PC de acordo com o arquivo READ.ME SETUP. Quando o medidor estiver no modo de medição, pressione o botão RS232, você poderá gravar e imprimir os dados de medição do medidor em tempo real no WINDOWS. Este software pode gravar, traçar, imprimir dados e curvas.

(figura 18: conexão cabo interface RS232)

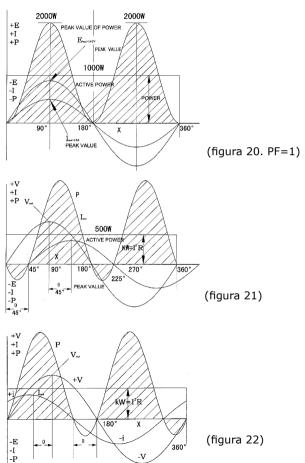
ENTRADA DE VOLTAGEM E CORRENTE

Quando o medidor estiver no modo de medição, caso a voltagem de entrada exceder 600V (TRMS) ou a corrente exceder 1000A (TRMS), o medidor mostrará "OL", e a barra gráfica estará cheia. Quando a voltagem de entrada exceder 30V, o símbolo "4" será mostrado no display por seguranca.

LUZ DE FUNDO

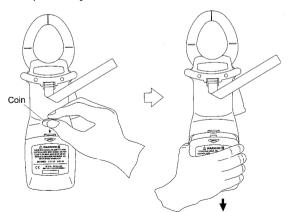
Pressione o botão 🏵 para ativar a luz de fundo. Após 4 segundos a luz desligará automaticamente.

ESQUEMA PARA SEGURANÇA


Utilize a correia de pulso para prevenir queda acidental do aparelho como mostrado na figura 19.

(figura 19)

CURVA DO DIAGRAMA DE FORÇA (PF=KW / KVA)



INDICAÇÃO DE VOLTAGEM BAIXA

Quando a bateria estiver fraca o símbolo será mostrado no display. Será necessária a troca da bateria, ou a utilização da função EX- P do medidor. Gire o seletor para EX- P, o medidor utilizará o sinal da voltagem medida como fornecedor de energia para trabalhar. Mas o medidor somente medirá circuito monofásico e não poderá medir circuito trifásico neste modo. Para esta função, a voltagem de entrada da tomada V1 DEVE ser menor que 250V.

TROCANDO AS BATERIAS

CUIDADO: Para evitar choque elétrico, o aparelho deve ser desligado e todas as pontas de prova devem ser desconectadas de todos terminais de entrada antes de trocar as baterias. Nunca utilize o instrumento a menos que o compartimento de baterias esteja devidamente fechado. Substitua as baterias somente por baterias das mesmas especificações.

(figura 23: abrindo a capa do compartimento)

Quando a bateria estiver fraca o símbolo será mostrado no display. Será necessária a troca da bateria, siga os procedimentos a seguir para trocá-la:

- 1. Desconecte as pontas de prova de qualquer sinal, gire o interruptor para a posição OFF e remova as pontas de prova dos terminais de entrada.
- **2.** Abra o compartimento e remova a capa do compartimento de bateria. Há um encaixe designado, não force o compartimento. Veja a figura 23 para maiores detalhes. Insira uma moeda no encaixe, pressione-a para baixo e então abra o compartimento.
- **3.** Remova as baterias e substitua por baterias novas do mesmo tipo e especificação.
- 4. Reinstale o compartimento de baterias.

ESPECIFICAÇÕES

VOI TAGEM AC

RMS

FAIXA	PRECISÃO	RESOLUÇÃO	IMPEDÂNCIA ENTRADA
100V	±(1.2%+5)	0.1V	10 ΜΩ
300V	±(1.2%+5)	0.1V	(10Pf desvio)
600V	±(1.2%+5)	0.1V	

voltagem máxima sobrecarga: 750V (RMS)

CORRENTE AC

RMS

FAIXA	PRECISÃO	RESOLUÇÃO
40A	±(2%+5)	0.1A
100A	±(2%+5)	0.1A
400A	±(2%+5)	0.1A
1000A	±(2%+5)	0.1A

corrente máxima sobrecarga: 1500A

FORÇA ATIVA

(W)

FAIXA	PRECISÃO	RESOLUÇÃO
4kW	±(3%+5)	0.01kW
10kW	±(3%+5)	0.01kW
40kW	±(3%+5)	0.01kW
100kW	±(3%+5)	0.01kW
600kW	±(3%+5)	0.1kW

medição corrente mínima: 5A medição voltagem mínima: 20V

FORÇA APARENTE

(VA)

	J	. ,
FAIXA	PRECISÃO	RESOLUÇÃO
4kVA	±(3%+5)	0.01kVA
10kVA	±(3%+5)	0.01kVA
40kVA	±(3%+5)	0.01kVA
100kVA	±(3%+5)	0.01kVA
600kVA	±(3%+5)	0.1kVA

medição corrente mínima: 5A medição voltagem mínima: 20V

FATOR DE FORÇA

(PF)

FAIXA	PRECISÃO	RESOLUÇÃO
0.3~1 capacitividade	±(0.02+2)	0.001
0.3~1 indutividade	±(0.02+2)	0.001

medição corrente mínima: 5A medição voltagem mínima: 20V

FORÇA REATIVA

(Var)2=(VA)2+w2

FAIXA	PRECISÃO	RESOLUÇÃO
4kVAr	±(4%+5)	0.01kVAr
10kVAr	±(4%+5)	0.01kVAr
40kVAr	±(4%+5)	0.01kVAr
100kVAr	±(4%+5)	0.01kVAr
600kVAr	±(4%+5)	0.1kVAr

medição corrente mínima: 5A medição voltagem mínima: 20V

Gravação valor voltagem, valor corrente, valor de força ativa para cálculo, Valor força reativa, precisão do cálculo é 0.01% da faixa.

ENERGIA ATIVA

(kWh)

FAIXA	PRECISÃO	RESOLUÇÃO
1~9999KWH	±(3%+2)	0.001kWh

medição corrente mínima: 0.5A medição voltagem mínima: 10V

FREQÜÊNCIA

(Hz)

FAIXA	PRECISÃO	RESOLUÇÃO
20Hz~1kHz	0.5%	0.1Hz

medição voltagem mínima: 20V

• Precisão: % da leitura + número de dígitos. A especificação dada assume uma operação de temperatura de 18°C~28°C, umidade até 80%, freqüência de voltagem e corrente 45Hz~65Hz.

- Voltagem máxima comum: 600V AC RMS
- Display LCD 9999 posições
- Faixa automática
- Indicação de sobrecarga "OL"
- Função holding "H"
- Fornecimento de energia: 4 pilhas AA 1.5V
- Consumo de energia: 250mW
- Temperatura de armazenamento: -20°C~70°C
- Temperatura de operação: 0°C~40°C
- Dimensões: 300mmx103mmx51mm
- Preso: aproximadamente 500 gramas

ACESSÓRIOS

- 1 Manual de instruções
- 4 Baterias 1.5V AA
- 1 Pontas de prova (MS3000)
- 1 Pontas jacaré (MS3102)
- 1 Cabo RS232
- 1 Software para PC
- 1 Maleta para transporte

TERMOS DE GARANTIA

Este aparelho é garantido contra possíveis defeitos de fabricação ou danos que se verificar por uso correto do equipamento, no período de 06 meses após a data da compra.

Exlui-se da garantia:

- 1. Uso incorreto, contrariando as instruções.
- 2. Aparelho violado por técnicos não autorizados.
- 3. Quedas e exposição a locais inadequados.

Recomendamos que a bateria seja retirada do instrumento após o uso.

Ao enviar o equipamento para a assistência técnica favor atentar-se a:

- I. No caso de empresa deverá ser enviada uma nota fiscal de simples remessa ou de remessa para conserto.
- II. No caso de pessoa física deverá ser enviada uma carta informando que o aparelho foi enviado para a assistência e os possíveis problemas.

Ao solicitar qualquer informação técnica sobre este equipamento tenha em mãos o número da nota fiscal de compra e número de série do equipamento.

Todas as despesas de frete(dentro ou fora do período de garantia) e riscos, correm por conta do comprador.

INSTRUTEMP - Instumentos de Medicão

Rua Fernandes Vieira, 156 - Belenzinho - 03059-023 - São Paulo, SP - Brasil Tel: (55 11) 3488-0200 | Fax: (55 11) 3488-0208 vendas@instrutemp.com.br | www.instutemp.com.br