

Hidrômetro Série PFM

Manual de instalação e operação

Características

- Controle infravermelho para comando sem a necessidade de abrir o invólucro do conversor (opcional);
- Horímetro, Vazão instantânea, Vazão totalizada, Velocidade de fluxo, Percentual de escala, Razão de tubo vazio, Diferença entre volume direto e reverso e Alarme;

carbono, aço inox com selo sanitário, conexões TC, flangeados, com diâmetros de DN3 a DN600, alimentação VCC ou VCA, comunicação RS232, RS485, HART, saída em pulsos e saída em corrente.

Sumário

1. Ir	nformações Gerais	3
1.1.	. Apresentação do Produto	3
1.2.	. Características do Produto	3
1.3.	. Display, Botões e Conectores	3
1.4.	. Circuito do conversor	6
1.5.	. Saídas	7
1.6.	. Possíveis conexões	g
2. N	Modbus RTU	12
3. T	Fabela de seleção	14
4. Ir	nstalação	15
4.1.	. Local de instalação	15
4.2.	. Aterramento	18
4.3.	. Dimensões do produto	20
		22
5. C	Configuração	24
5.1.	. Função dos botões no modo auto-teste	24
5.2.	. Função dos botões para ajuste de parâmetros	24
5.3.	. Menu de seleção de funções	25
5.4.	. Ajuste de Parâmetros	25
5.5.	. Detalhamento dos Parâmetros	27
6. S	Solução de problemas	31

1. Informações Gerais

1.1. Apresentação do Produto

Os Hidrômetros da série PFM são produtos de alta performance e confiabilidade, amplamente utilizados nas mais diversas aplicações hídricas e industriais. A medição independe da densidade, viscosidade, humidade, temperatura, pressão e condutividade do fluido. Não existem obstáculos para o fluxo livre do fluido pelo medidor nem tampouco perda de carga.

1.2. Características do Produto

Os Hidrômetros da série PFM possuem inúmeros recursos para fornecer as mais variadas soluções para sistemas hídricos. Suas principais características são:

- Diâmetros de DN3 a DN600:
- Pressão máxima de 0,6 a 4Mpa;
- Acurácia de ±0,5%;
- Revestimentos de PFA, FEP, PTFE, Poliuretano ou Neoprene;
- Corpo em aço carbono (galvanizado / pintura epóxi) ou aço inox;
- Eletrodo comum, raspador ou substituível;
- Eletrodos em aço inox SUS316, hastelloy C, titânio ou tântalo-platina-irídio;
- Classe de proteção IP67 ou IP68;
- Saídas 4-20mA, 0-10mA, em frequência e pulso totalizador;
- Saída de pulso ativa com largura ajustável para pulso e frequência;
- Saídas de controle: fluxo direto, fluxo reverso, alarme de vazão alta / baixa, vazão totalizada, percentual de escala, razão de tubo vazio e diferença entra fluxo direto e reverso;
- Conexão com o cavalete flangeada ou tri-clamp com selo sanitário
- Correntes de excitação de 125mA, 187,5mA, 250mA e 500mA;
- Velocidades de fluxo medidas de 0,1m/s a 15m/s;
- Temperatura do fluido de -20°C a 160°C (dependendo do material de revestimento);
- Temperatura ambiente de -20° a 60°C;
- Comunicação RS232, RS485 ou HART (opcionais);
- Alimentação elétrica de 85 a 250Vac (45 a 63Hz) ou 20 a 36Vcc.

1.3. Display, Botões e Conectores

Na Parte frontal do Hidrômetro está localizado o Display, juntamente com os botões de operação, conforme mostrado na figura 1.

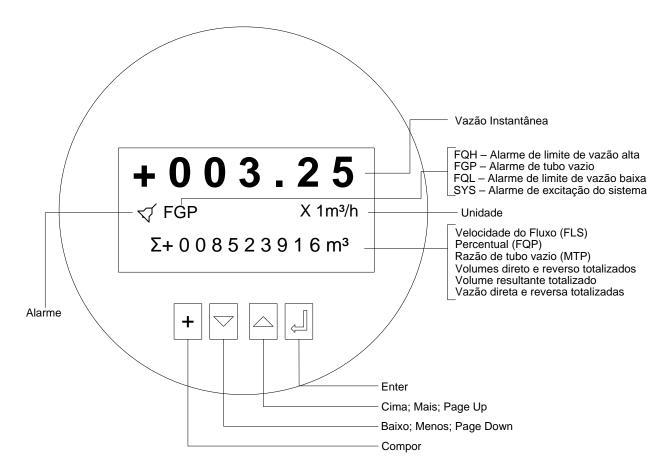


Figura 1 – Display e Botões do Hidrômetro

Na parte traseira do Hidrômetro estão os conectores elétricos e o fusível, Figura 2. A Tabela 1 traz a descrição dos conectores.

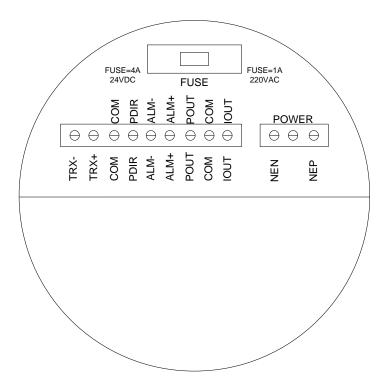


Figura 2 – Bayface com conectores do Hidrômetro

Símbolo	Descrição
TRX-	RS485 B
TRX+	RS485 A
СОМ	Comum das saídas de pulso, corrente e frequência
PDIR	Saída de pulso de sinalização de direção de fluxo
ALM-	Saída para alarme de limite inferior
ALM+	Saída para alarme de limite superior
POUT	Saída em frequência / pulso totalizador de vazão
СОМ	Comum das saídas de pulso, corrente e frequência
IOUT	Saída em corrente de vazão instantânea
NEN	Alimentação elétrica (para tensão vide etiqueta)
NEP	Alimentação elétrica (para tensão vide etiqueta)

Tabela 1 – Saídas do Hidrômetro

1.4. Circuito do conversor

O transdutor fornece a corrente de excitação para a bobina do sensor do medidor de vazão eletromagnético. O amplificador na cabeça de medição amplia a força eletromotriz do sensor e a converte em sinais padronizados de corrente e frequência, para que estas informações possam ser utilizadas na visualização e controle de processos. A Figura 3 mostra o diagrama do conversor.

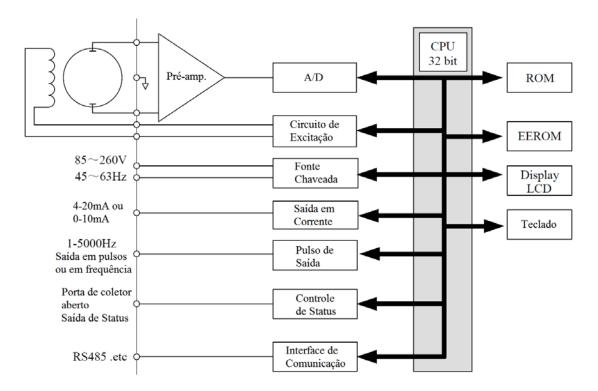


Figura 3 – Estrutura do conversor

1.5. Saídas

Saída em corrente:

Resistor de carga $0 - 1.5k\Omega$ (0 - 10mA); $0 - 750\Omega$ (4 - 20mA).

Erro: $0.1\% \pm 10\mu A$.

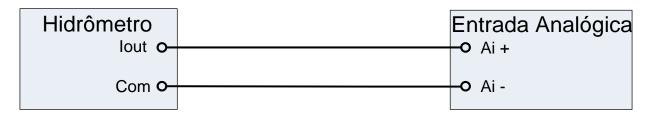


Figura 5 – Ligação da saída em corrente para vazão instantânea

Saída digital em frequência:

Range de frequência de saída: 1 – 5kHz.

Isolação de saída: 1000Vdc (fotoisolada).

Drive de saída: até 36Vdc / 250mA (mosfet).

Saída digital em pulsos:

Range de saída de pulsos: 0 – 100 pulsos por segundo.

Valores dos pulsos: 0,001 – 1,000 m³/pulso; 0,001 – 1,000 L/pulso.

Largura do pulso: 50ms.

Isolação de saída: 1000Vdc (fotoisolada).

Drive de saída: até 36Vdc / 250mA (mosfet).

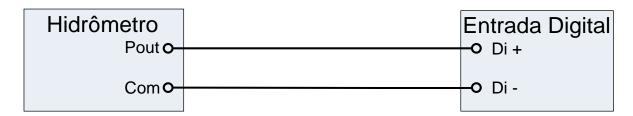


Figura 4 – Ligação da saída em pulsos/frequência para vazão totalizada

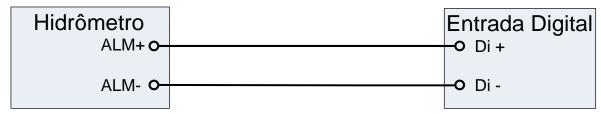
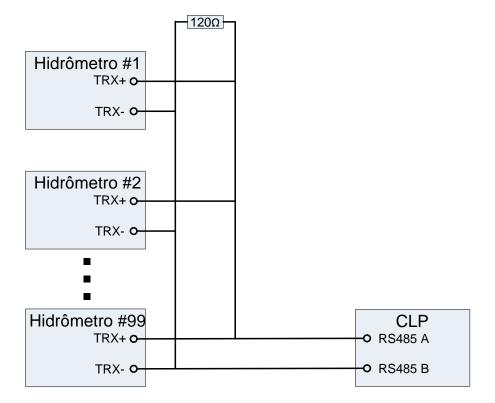
Saída de alarme:

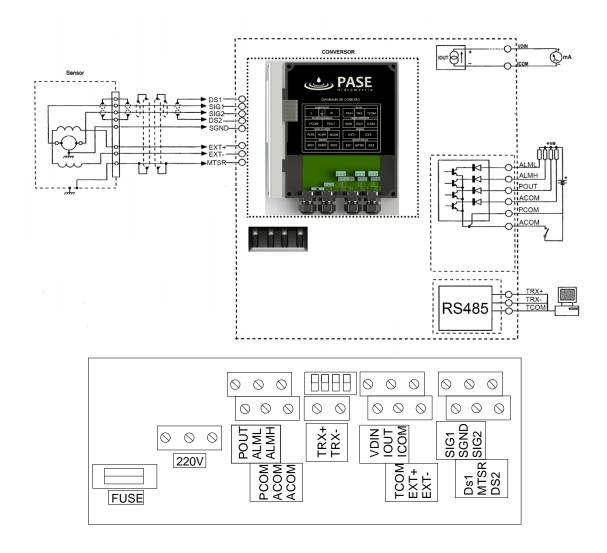
Uma saída de alarme de vazão baixa e uma de vazão alta.

Isolação de saída: 1000Vdc (fotoisolada).

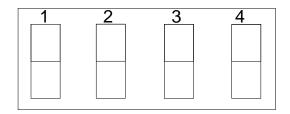
Drive de saída: até 36Vdc / 250mA (mosfet).

485


Figura 6 – Ligação da saída de alarme

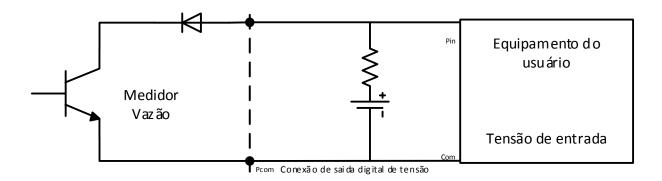
Protocolo de comunicação:

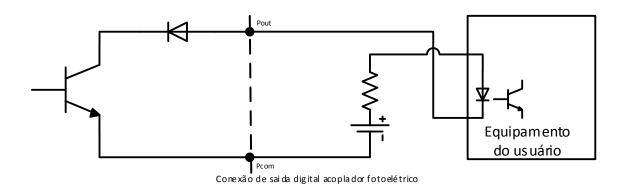

Modbus RTU ou HART.

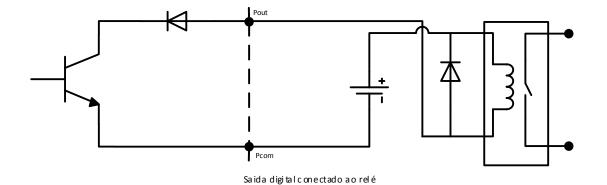
1.6. Possíveis conexões

Chave 1: ON: Alimentação (24V) na saída ALML / OFF: Sem conexão

Chave 2: ON: Saída de pulso PNP (ativa) / OFF: Saída de pulso NPN (passiva)


Chave 3: ON: Alimentação (24V) na saída ALMH / OFF: Sem conexão


Chave 4: ON: Alimentação (2.4V) na saída TRX+ TRX- (RS485) / OFF: Sem conexão


(Terminal usado apenas para comunicação a distância)

2. Modbus RTU

Os hidrômetros Pase série PFM possuem, como opcional, a interface padrão de comunicação Modbus RTU, suportando baud rates de 1200, 2400, 4800, 9600, e 19200 bauds/s. Através da comunicação Modbus, o usuário poderá adquirir vazão instantânea, vazão totalizada, velocidade da vazão e status de alarmes. Este equipamento utiliza os seguintes padrões seriais: 1 start bit, 8 bits de dados e 1 stop bit, sem paridade.

Endereço (Decimal)	Endereço (Hexadecimal)	Formato dos Dados	Definição do Registrador
4112	0x1010	Float Invertido	Representação float da vazão instantânea
4114	0x1012	Float Invertido	Representação float da velocidade de vazão instantânea
4116	0x1014	Float Invertido	Representação float do percentual de vazão
4118	0x1016	Float Invertido	Representação float da razão de condutividade do fluido
4120	0x1018	Long Invertido	Parte inteira da vazão acumulada positiva
4122	0x101A	Float Invertido	Parte decimal da vazão acumulada positiva
4124	0x101C	Long Invertido	Parte inteira da vazão acumulada negativa
4126	0x101E	Float Invertido	Parte decimal da vazão acumulada negativa
4128	0x1020	Unsigned Short	Unidade de vazão instantânea (ver tabela 3)
4129	0x1021	Unsigned Short	Unidade de vazão totalizada (ver tabela 4 ou 5)
4130	0x1022	Unsigned Short	Alarme de limite máximo (0: sem alarme; 1: em alarme)
4131	0x1023	Unsigned Short	Alarme de limite mínimo (0: sem alarme; 1: em alarme)
4132	0x1024	Unsigned Short	Alarme de tubo vazio (0: sem alarme; 1: em alarme)
4133	0x1025	Unsigned Short	Alarme do sistema (0: sem alarme; 1: em alarme)

Tabela 2 – Endereços Modbus do Hidrômetro

Código	Unidade	Código	Unidade	Código	Unidade	Código	Unidade
0	L/s	3	m³/s	6	Ton/s	9	Gal/s
1	L/min	4	m³/min	7	Ton/min	10	Gal/min
2	L/h	5	m³/h	8	Ton/h	11	Gal/h

Tabela 3 – Unidades de vazão instantânea

Código	0	1	2	3
Unidade	L	m³	Ton	Gal

Tabela 4 – Unidades de vazão totalizada para hidrômetros com final "B"

Código	0	1	2	3	4	5
Unidade	L	L	L	m³	m³	m³
Código	6	7	8	9	10	11
Unidade	Ton	Ton	Ton	Gal	Gal	Gal

Tabela 5 – Unidades de vazão totalizada para hidrômetros com final "C"

3. Tabela de seleção

PFM	XXX	Х	Х	Х	Х	Х	Х
Californ (acces)	Varia entre 003						
Calibre (mm)	(DN3) e 600 (DN600)						
	0,6 MPa	1					
~ ~	1,0 MPa	2					
Pressão Nominal	1,6 MPa	3					
	4,0 MPa	4					
Conexão e material	Flanges (aço carbon	0)	1				
do sensor	Tri-clamp sanitária (aço inox)	2				
	PTFE			1			
Material de	PFA			2			
Revestimento	F46	3					
Nevestimento	Neoprene	4					
	Poliuretano			5			
	Aço inox cromo-mol	ibidênio			1		
	Hastelloy B				2		
Material do	Hastelloy C				3		
Eletrodo	Titânio				5		
Lictions	Platina-irídio						
	Tântalo				6		
	Aço inox banhado e	m carbonet	o de tung	stênio	7		
Alimentação	220Vac					1	
/ iiiiiiciitação	24Vdc					2	
	4 - 20mA / RS485						1
Saída /	4 - 20mA / RS232						2
Comunicação	4 - 20mA / Pulso						3
	HART						4

Tabela 6 – Tabela de seleção do Hidrômetro

4. Instalação

4.1. Local de instalação

A correta instalação do equipamento é primordial para seu funcionamento. Para uma medição precisa, é necessário que o fluxo seja laminar. Para tanto, devem ser respeitadas as exigências de trecho de tubo reto antes e depois do hidrômetro, distância mínima e posição em relação à válvulas, bombas e curvas, bem como outras premissas demonstradas nas imagens a seguir.

Para garantir a confiabilidade e a estabilidade operacional do hidrômetro, siga corretamente os requisitos abaixo ao escolher o local de instalação:

- Ao içar o equipamento, fazê-lo sempre pelas flanges ou pelo tubo. Nunca içar pela cabeça nem tampouco pelo interior do sensor;
- Evite instalar o equipamento próximo a objetos naturalmente magnéticos ou que emitam campo magnético em seu funcionamento (motores, transformadores, etc) para que o campo do hidrômetro não seja afetado;
- Instale o hidrômetro em local tão seco e ventilado quanto for possível;
- Não instale o hidrômetro exposto ao tempo, à luz solar direta, temperatura ambiente superior a 60°C e humidade relativa superior a 95%;
- Escolha um local de fácil acesso para operação e manutenção;
- O Hidrômetro deverá ser instalado sempre após a bomba, ou seja, em tubulação com pressão positiva;
- Instale a válvula de retenção antes do hidrômetro, mantendo sempre água na tubulação;
- As válvulas de restrição de fluxo (esférica, gaveta, globo, etc) deverão ser instaladas após o hidrômetro e a uma distância mínima de 10D.

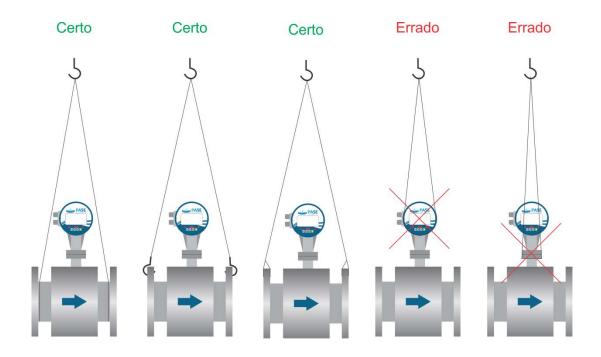


Figura 4 – Formas de içar o hidrômetro

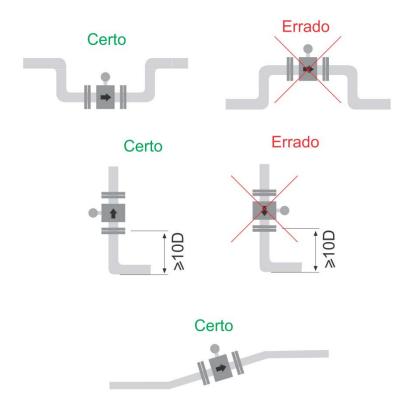


Figura 5 – A instalação deve garantir que sempre haja água no sensor

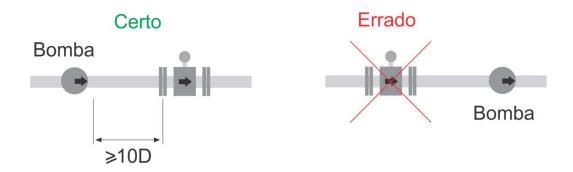


Figura 6 – O Hidrômetro deverá ser instalado sempre após a bomba

Para garantir fluxo laminar e consequente medição correta de vazão, é importante que as premissas de seção de tubo reto sejam respeitadas.

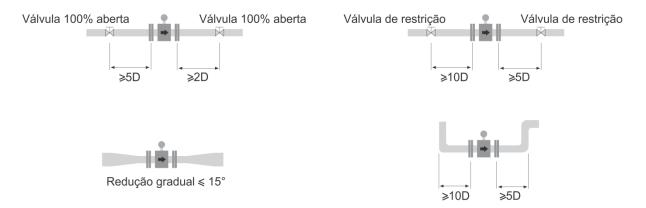


Figura 7 – Trecho de tubo reto mínimo

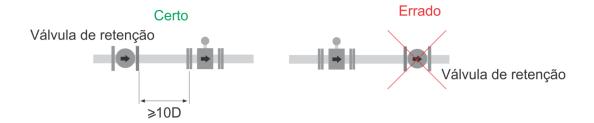


Figura 8 – A válvula de retenção deverá ser instalada antes do hidrômetro

4.2. Aterramento

No intuito de garantir um resultado de medição preciso, estável e confiável, é importante a correta realização do sistema de aterramento elétrico.

Caso o tubo seja de metal e a parte interna do tubo não tenha barreira de isolamento elétrico, basta conectar eletricamente os terminais de aterramento do Hidrômetro e dos flanges ao sistema de aterramento elétrico com medição inferior a 10Ω , conforme demonstrado na Figura 9.

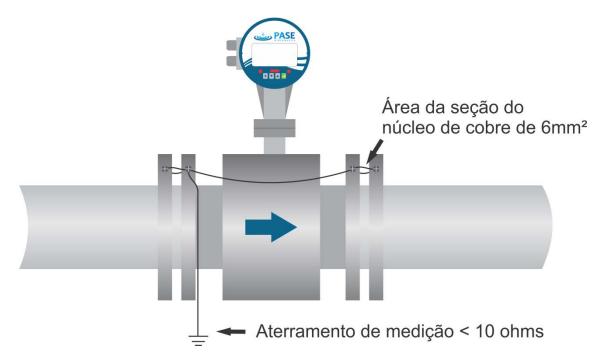


Figura 9 – Montagem do sensor em tubulação metálica

Se o sensor for montado em tubulação plástica, ou em tubo metálico com tinta de isolamento elétrico, é necessária a inserção de anéis de aterramento entre os flanges e o sensor, conforme demonstrado na Figura 10. Os terminais destes anéis devem ser conectados ao sistema de aterramento com medição inferior a 10Ω .

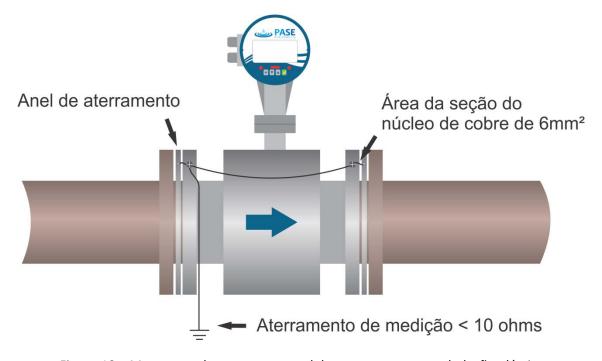


Figura 10 – Montagem do sensor com anel de aterramento em tubulação plástica

4.3. Dimensões do produto

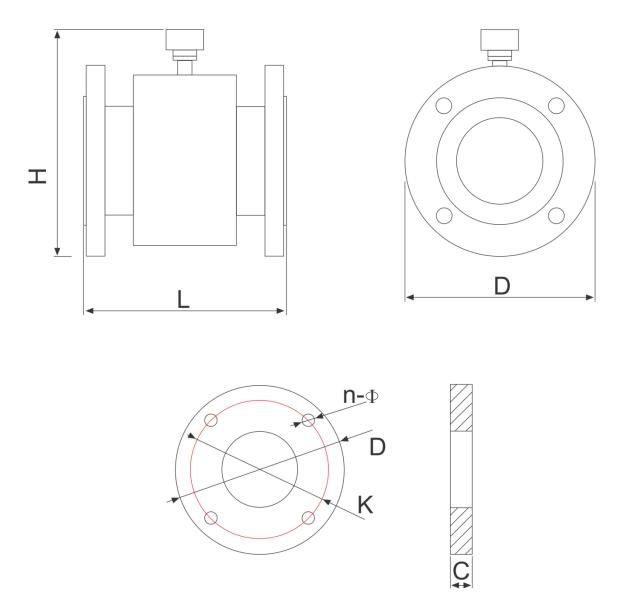


Figura 11 – Cotas de dimensões do sensor e da flange

Diâm atra manainal	Pressão nominal	Dimens	ões externa	as (mm)
Diâmetro nominal	(Mpa)	L	D	Н
DN3		200	90	220
DN6		200	90	220
DN10		200	90	220
DN15		200	95	220
DN20		200	105	220
DN25		200	115	223
DN32	4	200	140	240
DN40	4	200	150	250
DN50		200	165	263
DN65		250	185	283
DN80		250	200	290
DN100		250	235	318
DN125		250	270	350
DN150		300	300	380
DN200		350	340	430
DN250		450	405	495
DN300		500	460	547
DN350	1,6	550	520	602
DN400		600	580	665
DN450		600	640	720
DN500		600	715	783
DN600		600	840	897

Tabela 7 – Dimensões do sensor flangeado

Pressão Nominal (Mpa)	Calibre (mm)	D	K	Φ	n	С
	3	90	60	14	4	14
	6	90	60	14	4	14
	10	90	60	14	4	14
	15	95	65	14	4	14
	20	105	75	14	4	16
	25	115	85	14	4	16
4	32	140	100	18	4	18
4	40	150	110	18	4	18
	50	165	125	18	4	20
	65	185	145	18	8	22
	80	200	160	18	8	24
	100	235	190	22	8	26
	125	270	220	26	8	28
	150	300	250	26	8	30
	200	340	295	22	12	26
	250	405	355	26	12	28
	300	460	410	26	12	32
1.6	350	520	470	26	16	35
1,6	400	580	525	30	16	38
	450	640	585	30	20	42
	500	715	650	33	20	46
	600	840	770	36	20	52

Tabela 8 – Dimensões das flanges

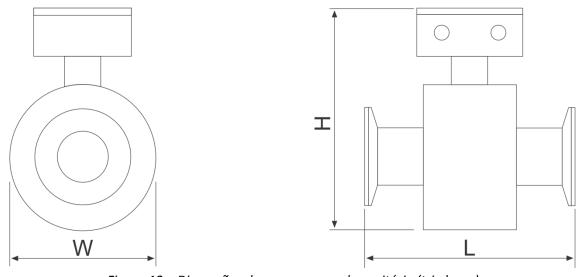


Figura 12 – Dimensões do sensor com selo sanitário (tri-clamp)

	Dimens	Dimensões externas (mm)				
Diâmetro nominal	Н	W	L			
DN10	179	70	172			
DN15	179	70	172			
DN20	179	70	172			
DN25	189	83	172			
DN40	196	95	172			
DN50	214	105	172			
DN65	220	115	172			
DN80	240	135	200			
DN100	252	146	200			
DN125	276	170	200			
DN150	310	204	256			
DN200	336	230	256			

Tabela 9 – Dimensões do sensor com selo sanitário (tri-clamp)

5. Configuração

Após a correta instalação do Hidrômetro no encanamento, as seguintes ações devem ser tomadas:

- Garantir o aterramento do instrumento;
- Garantir que o líquido esteja parado durante a configuração do zero do Hidrômetro;
- Manter o eletrodo em contato com o líquido por 48h, para estabilizar o processo de oxidação do sensor.

5.1. Função dos botões no modo auto-teste

Quando alimentado, o instrumento entra diretamente na tela de medição, onde podem ser vistas todas as informações demonstradas anteriormente na Figura 1. Toda a operação pode ser realizada utilizando os 4 botões frontais.

Botão "cima": Seleciona a informação mostrada na linha inferior da tela de medição.

Botão "compor" + botão "enter": Entra no menu de configuração de parâmetros.

Botão "compor" + botão "cima ou baixo": Aumenta/diminui o contraste da tela.

5.2. Função dos botões para ajuste de parâmetros

Botão "baixo": Subtrai 1 do número sobre o cursor.

Botão "cima": Soma 1 ao número sobre o cursor.

Botão "compor" + botão "baixo": Move o cursor para a esquerda.

Botão "compor" + botão "cima": Move o cursor para a direita.

Botão "enter": Entra e sai de submenus.

Botão "enter": Se pressionado por 2 segundos irá retornar à tela de medição.

5.3. Menu de seleção de funções

Para definir ou corrigir parâmetros do funcionamento do Hidrômetro, na tela de medição, aperte "compor" + "enter" e, posteriormente, navegue entre as 3 opções mostradas na Tabela 10 utilizando os botões "cima" e "baixo".

Código	Opção	Função
1	Parameters Set	Entra na tela de ajuste de funções
2	Clr Total Rec	Zera a vazão totalizada do Hidrômetro
3	Fact Modif Rec	Consulta os registros de modificação dos fatores do Hidrômetro

Tabela 10 – Menu de seleção de Funções

Para entrar no "Parameters Set" pressione a tecla "enter", digite uma das senhas listadas e pressione "compor" + "enter".

Para zerar a vazão totalizada, pressione a tecla "enter" sobre a opção "Clr Total Rec", insira a senha programada no parâmetro "Clr Sum Key" (por padrão é "19818") e aperte "compor" + "enter". Após, segure o botão "enter" para retornar à tela de medição.

Para consultar os registros de modificação dos fatores do Hidrômetro, pressione "enter" sobre a opção "Fact Modif Rec".

5.4. Ajuste de Parâmetros

Existem 54 parâmetros que o usuário pode ajustar, conforme mostrado na Tabela 11. Cada parâmetro exige um grau de senha, desta forma, os ajustes mais importantes são protegidos entregando senhas de grau mais baixo para cada usuário, a critério do operador.

São 6 graus de senhas para configuração de parâmetros. Graus de 1 a 5 são para usuários, o grau 6 é de uso exclusivo do fabricante. Usuários podem resetar as senhas de 1 a 4 no grau 5.

Uma senha de qualquer grau pode ver os parâmetros do Hidrômetro, porém, para alterar os parâmetros, diferentes graus de senha serão necessários.

Com a senha de grau 1 (por padrão 00521) o usuário poderá apenas ler os parâmetros.

Com a senha de grau 2 (por padrão 03210) o usuário poderá alterar os parâmetros de 1 a 24.

Com a senha de grau 3 (por padrão 06108) o usuário poderá alterar os parâmetros de 1 a 25.

Com a senha de grau 4 (por padrão 07206) o usuário poderá alterar os parâmetros de 1 a 38.

Com a senha de grau 5 (fixa) o usuário poderá alterar os parâmetros de 1 a 52.

Código	Parâmetro	Forma de ajuste	Grau	Variedade
1	Language	Seleção	2	Inglês
2	Comm Addres	Definição de valor	2	0 99

3	Baud Rate	Seleção	2	300 38400
4	Snsr Size	Seleção	2	3 3000
5	Flow Unit	Seleção	2	L/h, L/m, L/s, m3/h, m3/m, m3/s
6	Flow Range	Definição de valor	2	0 99999
7	Flow Rspns	Seleção	2	150
8	Flow Direct	Seleção	2	Direta / Reversa
9	Flow Zero	Definição de valor	2	0 ±9999
10	Flow Cutoff	Definição de valor	2	0 599,99%
11	Cutoff Ena	Seleção	2	Habilitado / Desabilitado
12	Total Unit	Seleção	2	0,001m³ 1m³, 0,001L 1L
13	SegmaN Ena	Seleção	2	Habilitado / Desabilitado
14	Analog Type	Seleção	2	0 10mA / 4 20mA
15	Pulse Type	Seleção	2	Frequência / Pulso
16	Pulse Fact	Seleção	2	0,001m³ 1m³, 0,001L 1L
17	Freque Max	Seleção	2	1 5999Hz
18	Mtsnsr Ena	Seleção	2	Habilitado / Desabilitado
19	Mtsnsr Trip	Definição de valor	2	59999%
20	Alm Hi Ena	Seleção	2	Habilitado / Desabilitado
21	Alm Hi Val	Definição de valor	2	000,0 599,99%
22	Alm Lo Ena	Seleção	2	Habilitado / Desabilitado
23	Alm Lo Val	Definição de valor	2	000,0 599,99%
24	Sys Alm Ena	Seleção	2	Habilitado / Desabilitado
25	Clr Sum Key	Definição de valor	3	0 99999
26	Snsr Code1	Definido pelo Usuário	4	Ano e mês de fabricação
27	Snsr Code2	Definido pelo Usuário	4	Número do Produto
28	Field Type	Seleção	4	Tipo 1, 2 ou 3
29	Sensor Fact	Definição de valor	4	0,0000 5,9999
30	Line CRC Ena	Seleção	2	Habilitado / Desabilitado
31	Lineary CRC1	Definido pelo Usuário	4	Definir Velocidade
32	Lineary Fact 1	Definido pelo Usuário	4	0,0000 1,9999
33	Lineary CRC2	Definido pelo Usuário	4	Definir Velocidade
Código	Parâmetro	Forma de ajuste	Grau	Variedade
34	Lineary Fact 2	Definido pelo Usuário	4	0,0000 1,9999
35	Lineary CRC3	Definido pelo Usuário	4	Definir Velocidade
36	Lineary Fact 3	Definido pelo Usuário	4	0,0000 1,9999
37	Lineary CRC4	Definido pelo Usuário	4	Definir Velocidade
38	Lineary Fact4	Definido pelo Usuário	4	0,0000 1,9999
39	FwdTotal Lo	Correção	5	00000 99999

40	FwdTotal Hi	Correção	5	00000 99999
41	RevTotal Lo	Correção	5	00000 99999
42	RevTotal Hi	Correção	5	00000 99999
43	PlsntLmtEna	Seleção	3	Habilitado / Desabilitado
44	PlsntLmtVal	Seleção	3	0,010 0,800m/s
45	Plsnt Delay	Seleção	3	400 2500ms
46	Pass Word 1	Definido pelo Usuário	5	00000 99999
47	Pass Word 2	Definido pelo Usuário	5	00000 99999
48	Pass Word 3	Definido pelo Usuário	5	00000 99999
49	Pass Word 4	Definido pelo Usuário	5	00000 99999
50	Analog Zero	Definição de valor	5	0,0000 1,9999
51	Anlg Range	Definição de valor	5	0,0000 3,9999
52	Meter Fact	Definição de valor	5	0,0000 5,9999
53	MeterCode 1	Definido de Fábrica	6	Ano e mês de fabricação
54	MeterCode 2	Definido de Fábrica	6	Número do Produto

Tabela 11 – Parâmetros para ajuste

5.5. Detalhamento dos Parâmetros

Language (Idioma): Alguns equipamentos acompanham idiomas complementares ao inglês (opcional).

Comm Adress (Endereço de comunicação): É o endereço do equipamento num barramento modbus. Varia de 00 a 99.

Baud Rate (Taxa de transmissão): 600, 1200, 2400, 4800, 9600 e 19200 bauds.

Snsr Size (Tamanho do sensor): Varia de 3 a 3000mm. É o diâmetro do medidor. Por ex.: Medidores DN50 possuem 50mm neste parâmetro.

Flow Unit (Unidade de vazão): Podem ser escolhidos L/s, L/min, L/h, m³/s, m³/min e m³/h. Esta é a unidade de medida que será mostrada na tela de medição.

Flow Range (Gama de vazão): Significa o limite máximo da medição de vazão. O mínimo é definido, por padrão, como zero. Baseados neste valor são calculadas a vazão percentual, saída em frequência e saída em corrente da seguinte forma:

$$vaz\~ao\ percentual = rac{vaz\~ao\ medida}{range\ de\ vaz\~ao}*100\%$$

Equação 1 - Vazão percentual

$$frequência\ de\ saída = rac{vazão\ medida}{range\ de\ vazão}*frequência\ máxima$$

Equação 2 – Frequência de saída

$$corrente\ de\ sa\'ida = rac{vaz\~ao\ medida}{range\ de\ vaz\~ao}*corrente\ escala + ponto\ base$$

Equação 3 - Corrente de saída

Observação: Para saída em corrente 4-20mA, corrente escala = 16mA e ponto base =4mA. Para saída em corrente 0-10mA, corrente escala = 10mA e ponto base = 0mA.

A saída de pulsos não é afetada por este parâmetro.

Flow Rspns (Responsividade da vazão): O valor ajustado é o período de amortecimento. Significa o valor de tempo do qual são utilizadas médias do valor medido pelo sensor. Um tempo curto traz rápida responsividade. Um tempo longo traz estabilidade no valor do display e no sinal de saída.

Flow Direct (Direção de fluxo): Este parâmetro altera o sentido de fluxo considerado positivo pelo equipamento. Se marcado "Forward" o sentido positivo é o mesmo da seta colada ao corpo do medidor. Se for marcado "Reverse" o sentido positivo de fluxo é o oposto do indicado pela seta no corpo do medidor.

Flow Zero (Zero da vazão): Esta função serve para informar ao equipamento o valor que deverá ser considerado como zero de vazão. Após a instalação do Hidrômetro, encha a tubulação e feche os registros. A água dentro do Hidrômetro deverá estar completamente parada. O valor mostrado em "FS" deverá ser zero. Se não for, insira a diferença para zero no campo, de modo a zerar o valor de "FS" e aguarde o "FS" zerar em tempo real. Esta operação terá que ser feita sempre que o equipamento dor instalado numa tubulação.

Flow Cutoff (Corte da vazão): O corte da vazão é proporcional, em percentual, ao limite máximo do range de vazão. Nele, será definido quais sinais pequenos deverão ser ignorados no valor da tela e da saída do equipamento. Usualmente é utilizado quando o Hidrômetro não está com as saídas ligadas, para que o valor na tela fique zerado quando a vazão estiver num valor irrisório para as proporções do sistema.

Cutoff Ena (Habilita o corte): Nesta opção é possivel habilitar ou desabilitar o funcionamento do parâmetro anterior "Flow Cutoff".

Total Unit (Unidade do vazão totalizada): É a unidade de medida que será mostrada na tela para a vazão totalizada. Podem ser escolhidos 0,001L, 0,010L, 0,100L, 1,000L, 0,001m³, 0,010 m³, 0,100 m³ e 1,000 m³.

SegmaN Ena (Habilita saídas): Habilita/desabilita os sinais de saída de pulsos e de corrente.

Analog Type (Tipo de analógica): Oferece a opção entre saída analógica de 0 a 10mA ou de 4 a 20mA.

Pulse Type (Tipo de Pulsos): A saída em frequência traz um sinal quadrado variando a frequência de acordo com a vazão medida, conforme foi mostrado na Equação 2. Sua aplicação se dá, principalmente, quando é necessário mostrar uma vazão instantânea com mais precisão e responsividade em outro instrumento. Na saída em pulsos, um pulso de saída tem um valor de vazão totalizada pré-determinado no parâmetro "Pulse Fact". Sua aplicação traz mais precisão à totalização de vazão que a saída em frequência, e é aplamente utilizada para este propósito.

Pulse Fact (Fator de pulso): Neste parâmetro é configurado o valor de volume representado por cada pulso. Ex.: Se o equipamento está configurado para um pulso a cada 1m³, será emitido um pulso quadrado positivo na saída do hidrômetro para cada m³ de vazão totalizada que passar pelo instrumento. Neste parâmetro é possível escolher entre 0,001L, 0,010L, 0,100L, 1,000L, 0,001m³, 0,010 m³, 0,100 m³ e 1,000 m³. Note que quanto mais rápida for a frequência dos pulsos, mais preciso o sistema fica. No momento da configuração, atente para que a frequência de pulsos não ultrapasse 100Hz (100 pulsos por segundo).

Freque Max (Máxima frequência): É onde se define o valor da frequência máxima de saída do sinal de vazão totalizada em frequência. O valor pode ser configurado entre 1Hz e 5000Hz. A frequência de saída resultante poderá ser calculada utilizando a Equação 2.

Mtsnsr Ena (Habilita alarme de tubo vazio): Habilita o alarme de tubo vazio.

Mtsnsr Trip (Limite dos valores de alarme de tubo vazio): Define os limites do alarme de tubo vazio. O valor da linha superior deste parâmetro é a própria razão de tubo vazio. O valor da linha de baixo é o Mtsnsr Trip. Usualmente, o valor setado neste limite é em torno de 3 a 5 vezes o MTP (razão de tubo vazio) instantâneo com a tubulação completamente cheia.

Alm Hi Ena (): Habilita o alarme de vazão instantânea alta.

Alm Hi Val (): Define o valor do alarme de vazão instantânea alta. Pode ser setado entre 0% e 599% do valor do range de vazão.

Alm Lo Ena ():Habilita o alarme de vazão instantânea baixa.

Alm Lo Val ():Define o valor do alarme de vazão instantânea baixa. Pode ser setado entre 0% e 599% do valor do range de vazão.

Sys Alm Ena (): Habilita os alarmes de vazão instantânea.

Clr Sum Key (Zerar totalizador): Neste parâmetro é definida a senha que será utilizada para zerar o totalizador em Clr Total Rec.

Snsr Code 1 e 2 (Código do sensor): Grava a data de fabricação e o número serial do sensor.

Field Type (Tipo de campo): O Hidrômetro possui 3 diferentes frequências de excitação: 1/16 (Tipo 1), 1/20 (Tipo 2) e 1/25 da frequência da alimentação elétrica (Tipo 3). Em geral, equipamentos de diâmetro baixo funcionam no tipo 1 e equipamentos de diâmetro maior

funcionam no tipo 2 ou 3. Ao setar este parâmetro, sempre tentar operar com o tipo 1 inicialmente. Caso o "Flow Zero" não estabilize, será necessário utilizar o tipo 2 ou 3.

Sensor Fact (Fator do sensor): É o fator de calibração do medidor eletromagnético. Este fator é obtido pela calibração e é impresso na placa de identificação do sensor. Este valor vem definido da calibração de fábrica mas pode ser definido posteriormente também.

FwdTotal Lo (Totalizador Positivo Baixo): Byte menos significativo do valor positivo do totalizador.

FwdTotal Hi (Totalizador Positivo Alto): Byte mais significativo do valor positivo do totalizador.

RevTotal Lo (Totalizador Negativo Baixo): Byte menos significativo do valor negativo do totalizador.

RevTotal Hi (Totalizador Negativo Alto): Byte mais significativo do valor negativo do totalizador.

PlsntLmtEna (Habilita algoritmo de restrição da taxa de variação): Para mosto de papel, lodo e outras serosidades, a medição de vazão sofrerá distúrbio cuspidal dado pelo atrito sólido no eletrodo de medição. Para superar este problema o medidor utiliza algoritmo de restrição de taxa de variação. Esta opção habilita ou desabilita o algoritmo de restrição da taxa de variação.

PlsntLmtVal (Fator de restrição cuspidal): Este fator seleciona a taxa de variação para restringir a interferência do distúrbio cuspidal e o calcula como percentual de velocidade de vazão. São possíveis 0,010m/s, 0,020m/s, 0,030m/s, 0,050m/s, 0,080m/s, 0,100m/s, 0,200m/s, 0,300m/s, 0,500m/s, 0,500m/s. Quanto menor for o percentual, maior a sensibilidade da restrição da interferência cuspidal.

Plsnt Delay (Tempo de restrição cuspidal): Este parâmetro seleciona a largura de tempo para restringir a interferência cuspidal. Sua unidade é o milissegundo. Se a mudança da vazão no tempo de duração for menor que dentro do tempo selecionado neste parâmetro, ela é tratada como interferência cuspidal e rejeitada da medição de vazão. Caso seja maior, o contrário ocorre. Deve ser escolhido um valor apropriado que varia de acordo com a aplicação prática do produto.

Passwords 1 a 4 (Senhas de 1 a 4): O usuário poderá alterar as senhas de grau 1 até 4, utilizadndo a senha de grau 5.

Analog Zero (Zero analógico): Durante a fabricação, este parâmetro é utilizado para calibrar o zero da saída analógica em 0mA e em 4mA.

Anlg Range (Range analógico): Durante a fabricação, este parâmetro é utilizado para calibrar a escala máxima da saída analógica em 10mA e 20mA.

Meter Fact (Fator de calibração): Na fabricação, este fator é utilizado para normalizar o sensor para o transmissor, para que haja uma intercambialidade de até 0,1%.

Meter Code 1 e 2 (Código do medidor): Grava a data de fabricação e o número serial do medidor.

6. Solução de problemas

A tela não exibe informações:

Verifique se o equipamento está eletricamente alimentado;

Verifique o fusível;

Altere o contraste.

Alarme de tubo vazio:

Verifique se não há bolhas/bolsões de ar no interior da tubulação;

Verifique se EX1 e EX2 não estão conectados;

Se a resistência da bobina é menor que 150 Ω

Medição imprecisa de vazão:

Verifique se o tubo está completamente cheio do líquido medido;

Verifique se a conexão do cabo está correta;

Verifique se o fator do sensor e o zero do sensor estão definidos de acordo com o valor impresso na placa de identificação e no certificado de calibração.

