# Manual de Instalação da Plataforma Scorpion

1. Conectando a Scorpion com a Xilinx Starter-3E kit.

A conexão entre as plataformas é realizada por meio de um encaixe de pinos e a ligação de um Flat Controller.

**1.1** A Plataforma Scorpion é dotada de dois grupos de quatro pinos localizados em seu lado esquerdo, esses são os pinos de entrada e saída de dados. Eles devem ser encaixados a plataforma Xilinx Starter-3E por meio de seus conectores localizados na parte direita inferior, conforme Fig1.



Fig1.

**1.2** Em seguida deve ser conectado o Flat Controller. O Flat Controller possui quatro fios que devem ser ligados aos pinos ... ... ... conforme modelo descrito abaixo pela Fig2.



Fig2

### 2. Ativação da Plataforma Scorpion.

A plataforma Scorpion trabalha com transferência de dados via USB utilizando funções primitivas de uma biblioteca C++ chamada LIBHID. Para que a conexão entre o PC e a plataforma seja estabelecida corretamente é necessária a instalação dessa biblioteca. Após a instalação basta apenas fazer a conexão USB entre a plataforma e o PC conforme Fig3.

**2.1** Instalando LIBHID pelo gerenciador Synaptic.

Clicar em System  $\rightarrow$  Administration  $\rightarrow$  Synaptic Package Manager.

Em Quick Search, procurar por "libhid" e instalar os pacotes:

- a) libhid0
- b) libhid-dev

**2.2** Instalando LIBHID a partir do arquivo libhid-0.2.16.tar.gz disponibilizado juntamente com o Manual.

Para instalação a partir do arquivo libhid-0.2.16.tar.gz que estamos disponibilizando basta apenas fazer a instalação via terminal no Linux. Para o Linux Ubuntu, primeiramente é necessário descompactar o arquivo com o comando:

tar -zxvf libhid-0.2.16.tar.gz

em seguida navegar até a pasta criada e no diretório raiz executar:

sudo ./configure

sudo ./make

sudo ./make install

Após o termino, o sistema estará pronto para comunicar-se corretamente com a Scorpion.

#### 3. Rodando um aplicativo de teste (LCCV UFAL ADD-SUB).

Para fazermos um teste de conexão entre as plataformas, estamos disponibilizando um projeto de um somador-subtrator que já tem agregado em si um protocolo de comunicação preparado para a Scorpion (O princípio de funcionamento do Protocolo Está descrito no Anexo I). Após carregar o *bitstream* para o FPGA, o somador estará pronto para receber e enviar dados para a Scorpion.

**3.1** Carregando o Projeto ADD-SUB no FPGA.

Para carregar o projeto, abra o arquivo LCD.ise localizado em "InterfaceScorpion/Scorpion\_ADD\_LCD/ScorpionNovo/Scorpion\_20082009/LCD.is e" através da aba Open Project no menu File.

| Elle Edit View Pioject Source Brocess Window Help |                                    |                           |                         |          |                |                    |                            |            |
|---------------------------------------------------|------------------------------------|---------------------------|-------------------------|----------|----------------|--------------------|----------------------------|------------|
| 2 🚱 🕼 😓 🕼 🖄 🕲 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉           |                                    |                           |                         |          |                |                    |                            |            |
|                                                   | EPGA Design Summary                | LCD Project Status        |                         |          |                |                    |                            |            |
| Sources for: Implementation                       | E- Design Overview                 | Project File:             | LCD.ise                 |          | Current State: |                    | Programming File Generated |            |
| xc3s500e-4fg320                                   | - DB Properties                    | Module Name: Projeto_code |                         |          | • Errors:      |                    | No Errors                  |            |
| 🗄 🔣 👬 Projeto_code - Behav                        | - D Module Level Utilization       | Target Device:            | xc3s500e-4fg320         |          | • Warnings:    |                    | 23 Warnings                |            |
| 🗄 🔀 SomadorSub - addsu                            | - 📄 Timing Constraints             | Product Version:          | ISE 10.1 - Foundation S | imulator | • R            | outing Results:    | All Signals Complete       | ely Routed |
| Constraints.ucf (cons                             | Pinout Report                      | Open Project              |                         |          |                | iming Constraints: | X 1 Failing Constrain      | nt         |
|                                                   | E- Errors and Warnings             |                           |                         |          | • F            | inal Timing Score: | 744 (Timing Report)        |            |
|                                                   |                                    |                           |                         |          |                |                    |                            |            |
|                                                   | - Translation Met                  |                           |                         |          | Y              |                    |                            | Ð          |
|                                                   | Blace and Pout                     |                           |                         |          |                |                    |                            |            |
| ×                                                 | - Timing Messag                    |                           |                         |          |                |                    |                            |            |
| rocesses for: Projeto_code -                      | Project Properties                 |                           |                         |          | ary            |                    |                            | Ð          |
| Create New Source                                 | Enable Enhanced                    |                           |                         |          |                | Available          | Utilization                | Note(s)    |
| <ul> <li>View Design Summary</li> </ul>           | Enable Message F                   |                           |                         |          | 99             | 9,312              | 2%                         |            |
| 🎲 Design Utilities                                | Enhanced Decign Summi              | ).ise                     |                         | Open     | 32             |                    |                            |            |
| User Constraints                                  | . Show Partition Da File type: ISE | Project Files (*.ise)     |                         | Cancel   | 17             |                    |                            |            |
| Synthesize - XST                                  | - Show Errors                      | ,                         |                         |          | 92             | 9,312              | 3%                         |            |
|                                                   | Show Warnings                      | Logic Distribution        |                         |          |                |                    |                            |            |
|                                                   |                                    | Number of occupied Slices |                         | 22       | 28             | 4,656              | 4%                         |            |
| L PIOCESSES                                       | 🔀 Design Summary                   |                           |                         |          |                |                    |                            |            |

Na toolbar "Process for:" Localizar Manage Configuration Project e Clicar duas vezes.



Agora basta carregar o *bitstream* para o FPGA. Selecione o dispositivo FPGA e clique com o botão direito e em seguida program.

#### **3.2** Preparando a Scorpion.

Para preparar a Scorpion corretamente, basta fazer as ligações dos pinos e do Flat Controller com a Starter-3E e conecta-lá ao PC por meio de um cabo USB, após esta etapa e confirmando a instalação da biblioteca LIBHID podemos rodar nosso aplicativo no terminal.

**3.3** Rodando o aplicativo.

Abra o Terminal do seu Linux e navegue até a pasta ScorpionTerminal e execute o ADDSUB com a seguinte linha de comando:

sudo ./addsub

Você irá se deparar com a seguinte tela:



O Terminal tem sua funcionalidade bem simplificada, basta primeiramente entrar com a operação que se deseja efetuar, 0 para soma, ou 1 para subtração.

Em seguida o software solicitará a entrada dos operandos (lembramos que essa versão suporta operações com palavras de até 8 bits). A entrada dos operandos é feita por meio de caracteres ASCII. Cada caractere ASCII possui seu binário correspondente, por exemplo, a soma de "3" com "<" resultaria em "o" porque 00110011 + 00111100 = 01101111.

Após a entrada do segundo operando, o software enviará as informações para a Scorpion via USB que aguardará o retorno do FPGA.

O FPGA respondendo, o resultado é mostrado na tela conforme Fig4 e estará pronto para uma nova operação.

## Anexo I

#### Princípio de Funcionamento do Protocolo FPGA-Scorpion-PC

A Plataforma Scorpion é dotada de dois grupos de pinos compostos por 4 pinos cada, onde o grupo superior é reservado para envio de dados, e o segundo para captura de dados. Temos então uma comunicação que se dá por 4 bits por vez.

A Scorpion está configurada para comunicar-se com a porta USB enviando e recebendo apenas 1 byte por vez, sendo necessário então dividir o byte em dois grupos de 4 bits, por motivo da limitação de Interface de comunicação.

Além da divisão do byte, também se faz necessário o controle de envio e recebimento de dados para manter a integridade da informação, é necessária uma verificação feita por cada plataforma para saber se está apta a enviar ou receber algum dado, desta forma garantimos que não haverá perda de dados já que a transferência só ocorre se o dispositivo que vai receber o dado estiver pronto. Este controle de tráfego é feito por nosso Flat Controller.

O Flat Controller é composto de 4 fios.