

MANUAL DE INSTALAÇÃO, OPERAÇÃO E MANUTENÇÃO TURBOBOMBA tipo PELTON + BOMBA 160

BETTA HIDROTURBINAS IND. LTDA. RUA ALFREDO TOSI, 1600 - CAIXA POSTAL 278 CEP 14.400-970 - FRANCA - SP FONE/FAX: (16) 2104-5522 e-mail: betta@bettahidroturbinas.com.br www.bettahidroturbinas.com.br

ÍNDICE

1 - Caro cliente	. 02
2 - Condições para utilização do sistema	03
2.1- Desnível de acionamento.	03
2.1- Destriver de acionamento	
2.3- Comprimento do tubo de acionamento.	
2.4- Desnível de bombeamento.	
2.5- Comprimento da Tubulação de recalque	
2.5- Comprimento da Tabulação de recarque	
2.0• Diametro da labalação	. 04
3 - Instalação	
3.1- Captação de água e adução da Turbina	
3.2- Fixação do conjunto Turbo Bomba	
3.3- Esquema básico de instalação	07
3.4- Instalação dos tambores de decantação	
3.5- Erros mais graves de instalação e suas consequências	. 09
3.6- Peças de conexão para entrada e saída da bomba	
3.7- Instalação da tubulação de recalque da bomba	. 11
4 - Características do equipamento Turbo Bomba Betta	. 12
5 - Procedimentos preliminares	. 13
5.1- Alinhamento das polias e esticamento das correias	
5.2- Partida da Turbo Bomba	
5.3- Parada da Turbo Bomba	. 16
6 - Manutenção preventiva	. 17
6.1- Manutenção preventiva da Turbina	
6.2- Manutenção preventiva da bomba	. 18
6.3- Tabela preventiva.	
6.3.1- Lubrificantes para a bomba	
6.3.2- Lubrificantes para a Turbina	
6.4- Manutenção preventiva da instalação	. 19
6.4.1- Limpeza da represa	. 20
6.4.2- Limpeza das caixas de captação	. 20
7 - Manutenção corretiva	
7.1- Manutenção corretiva na Turbina	
7.1.1- Troca dos retentores / troca dos rolamentos	
7.1.2- Montagem dos rolamentos nos mancais	. 22
7.1.3- Desobstrução do bico de entrada de água	.23
7.2- Manutenção corretiva na bomba	
7.2.1- Troca do reparo de vedação	. 24
7.2.2- Limpeza e troca de molas das válvulas	. 28
7.2.3- Desmontagem da válvula	. 29
7.2.4- Montagem da válvula	. 30
7.2.5- Troca das bronzinas e inspeção no virabrequim e rolamentos	
7.2.6- Desmontagem da biela e pistão	. 32
7.2.7- Tabela retentores, rolamentos e bronzinas	
7.3- Anormalidades	. 34

1

1. CARO CLIENTE

Parabéns, você acaba de adquirir uma TURBO BOMBA Betta!

Este equipamento representa uma verdadeira revolução dos conceitos de bombeamento de água sem consumo de energia elétrica ou qualquer outro combustível.

Essa nova tecnologia é o feliz resultado da combinação de turbina hidráulica com bomba de recalque. O ponto alto desta tecnologia é associar equipamentos conhecidos e aprovados a décadas, reprojetados pela Betta, para trabalhar em regime contínuo (vinte e quatro horas por dia) sob as severas condições encontradas no campo.

À Betta oferece uma variada gama de modelos de Turbo Bomba, que permitem aproveitar os inúmeros potenciais hidráulicos disponíveis nas propriedades rurais, bombeando vazões de até 200.000 litros por hora e vencendo desníveis de até 300 metros.

A Turbo Bomba Betta, por sua simplicidade , facilidade de instalação , eficácia e excelente relação custo/beneficio, é uma inteligente opção para o bombeamento de água, permitindo reduzir consideravelmente os custos com transporte de água e irrigação.

2. CONDIÇÕES PARA UTILIZAÇÃO DO SISTEMA

Para determinar o aproveitamento hidráulico onde o equipamento será instalado é necessário o conhecimento das variáveis abaixo:

- Desnível de acionamento (diferença de nível em metros).
- Vazão de acionamento (litros por segundo).
- Comprimento do tubo de adução (metros).
- Desnível de bombeamento (metros).
- Comprimento da tubulação (metros).
- Diâmetro da tubulação (se existente).
- Consumo diário (litros/dia).
- Pressão de serviço para irrigação (m.c.a.).

Assim, com os dados acima disponíveis será possível identificar a vazão bombeada do equipamento conforme a tabela técnica. A seguir, veja como obter os dados acima: mencionados.

2.1. DESNÍVEL DE ACIONAMENTO

-Método da mangueira de nível

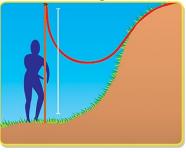


Fig. 01

- 1° **passo:** Amarrar uma das pontas de uma mangueira de plástico translucida cheia de água em uma vara, ficando a outra extremidade livre. (Fig. 01)
- 2° passo: Segurar a extremidade livre da mangueira no ponto superior do terreno (rente ao chão) com a extremidade levantada o suficiente para não verter a água.
- **3° passo:** Descer para o ponto inferior do terreno, suspendendo a vara para que a água não entorne.
- 4º passo: Quando os níveis da água se equilibrarem dentro da mangueira, proceder à medida de altura desde o nível de água na extremidade da mangueira presa na vara até o chão, conforme mostrado no desenho. (Fig. 01)
- 5º passo: Repetir a operação até atingir o ponto mais baixo do terreno onde se instalará o equipamento. Efetuar a soma das alturas anotadas para obter enfim o desnível de acionamento.

3

OBS: Por utilizar o princípio de turbina hidráulica, a Turbo Bomba possui eficiência proporcional ao desnível de acionamento, ou seja, quanto maior a queda para acionar a roda, maior será sua potência e consequentemente a vazão bombeada.

2.2. VAZÃO DE ACIONAMENTO

-Método do tambor

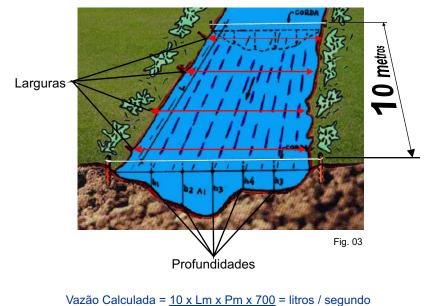
Este método é utilizado para pequenas vazões (menores que 20 litros/seg.).

Fig. 02

Fazer toda a água cair dentro de um tambor de volume conhecido. Medir o tempo gasto para enchê-lo (em segundos). Dividir o volume (em litros) do tambor pelo tempo . Teremos assim a vazão em litros por segundo, conforme exemplificado na figura acima. (Fig. 02)

-Método do flutuador

1° passo: Encontrar no curso d'água um trecho o mais reto possível, sem corredeiras e com um comprimento de 10 metros.


2° passo: Retirar galhos e entulhos desse trecho de modo a permitir que o flutuador transite livremente.

3° passo: Medir dentro do trecho de 10 metros, 10 profundidades em pontos diferentes. Somar as profundidades medidas, todas em metros e dividir por 10, encontrando assim, a profundidade média em metros.

4º passo: Utilizando um flutuador que poderá ser uma garrafa com água pela metade ou uma laranja e medir o tempo (em segundos) gastos para percorrer a distância entre as duas linhas esticadas (10 metros). Repetir 5 vezes a tomada de tempo. Somar os tempos medidos (em segundos) e dividir por cinco, encontrando assim o tempo médio em segundos.

4

Obs: Para utilizar esse método é necessário uma lâmina d'água de no mínimo 15cm)

Tm

Lm = Largura média (metros) Pm = Profundidade média (metros) Tm = Tempo médio (segundos)

2.3. COMPRIMENTO DO TUBO DE ACIONAMENTO

O comprimento do tubo de acionamento da turbina, será aproximadamente o mesmo que a distância percorrida do reservatório até o local de instalação do produto.

2.4. DESNÍVEL DE BOMBEAMENTO

O desnível de bombeamento é a diferença de níveis (altura de bombeamento) do local onde a água será bombeada e o local onde a Turbo Bomba será instalada.

2.5. COMPRIMENTO DA TUBULAÇÃO DE RECALQUE

O comprimento da tubulação de recalque é a distância percorrida da Turbo Bomba até o destino final da água bombeada.

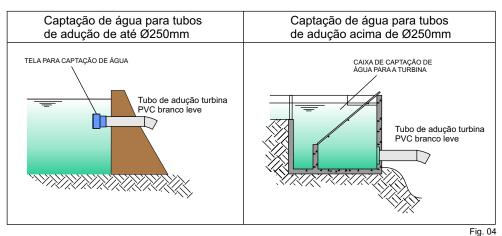
2.6. DIÂMETRO DA TUBULAÇÃO

Caso já exista uma tubulação de recalque lançada, este diâmetro deverá ser informado para obtenção da pressão de trabalho da bomba.

O uso do equipamento é possível, inclusive quando a água de acionamento da roda for poluída, a água a ser bombeada neste caso é tomada de uma fonte próxima

5

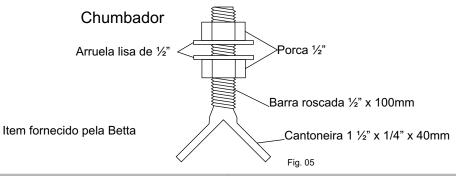
3. INSTALAÇÃO

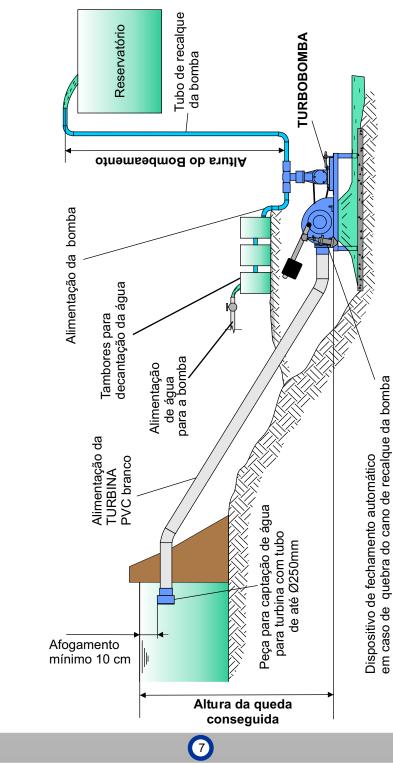

Uma das vantagens da Turbo Bomba é a sua facilidade de instalação, pois necessita de obra civil de fácil execução onde você mesmo instala!

3.1. CAPTAÇÃO DE ÁGUA E ADUÇÃO DA TURBINA

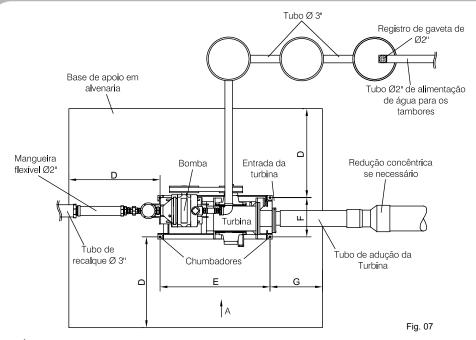
Primeiramente, deve-se lançar o tubo de adução da turbina conforme esquema de instalação (fig. 6). Nos casos onde o tubo de adução da turbina tem diâmetro até 250mm, atente-se para a instalação da tela de proteção, fornecida com o conjunto, pois esta peça minimiza a entrada de detritos que podem prejudicar o rendimento do equipamento.

Nos casos onde o tubo de adução da turbina tem diâmetro superior acima de 250mm, é necessário construir uma caixa de captação. As dimensões para a sua construção se alteram de acordo com o diâmetro do tubo de adução. O desenho com as medidas acompanham o equipamento.

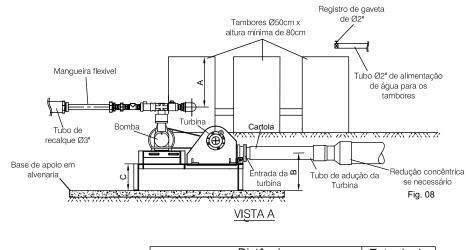

A tubulação de adução é encaixado na cartola (peça que conecta o cano com o equipamento), conforme exemplificado na figura 8.



3.2. FIXAÇÃO DO CONJUNTO TURBO BOMBA


A fixação do conjunto TURBO BOMBA é feita sobre uma base em concreto, conforme mostrado no esquema de instalação.(fig.8)

Para a fixação do equipamento no concreto, o chassi da Turbo Bomba possui 4 furos distanciados conforme figura 7. É necessário 4 chumbadores fornecidos pela Betta, utilizando barras roscadas de ½" e cantoneiras conforme especificação abaixo (fig.5).



3.3. ESQUEMA BÁSICO DE INSTALAÇÃO

É importante destacar que os recipientes devem estar acima do nível da bomba, para possibilitar a entrada de água por gravidade, otimizando assim o funcionamento do equipamento.

			Distância					Entrada da	
		A	B	С	D	E	F	G	Turbina
	P 300	50	29	20	70	91	30	50	Ø 100 mm
Mode	lo P 400	50	38	20	70	109	37	50	Ø 150mm
	P 450	50	38	21	70	116	40	50	Ø 150mm

8

Medidas em centímetros

Fig. 06

IMPORTANTE!

Jamais utilize reduções excêntricas na entrada da turbina. Utilize apenas reduções concêntricas para um pleno rendimento do equipamento.

CERTO

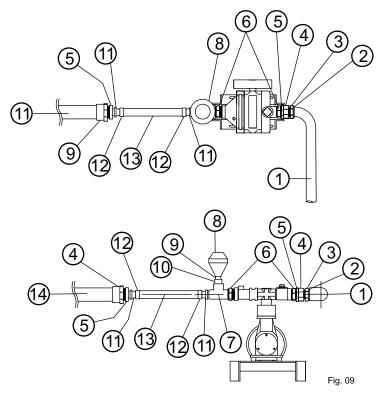
ERRADO

3.4. INSTALAÇÃO DOS TAMBORES DE DECANTAÇÃO

A instalação dos tambores de decantação é imprescindível para o bom funcionamento do equipamento, para evitar a entrada de impurezas na bomba. O sistema é composto por 3 recipientes interligados (tambores ou caixas de alvenaria) utilizados para a decantação da água que abastecerá a bomba. Para controlar o nível da água dos recipientes, é necessário a instalação de um registro, conforme figuras 7 e 8.

IMPORTANTE: Caso o recalque da bomba seja direcionado para o lado contrário do apresentado na figura 7, é possível girar o cabeçote 180°. Adequando o equipamento à situação encontrada no campo, evitando curvas na saída da bomba.

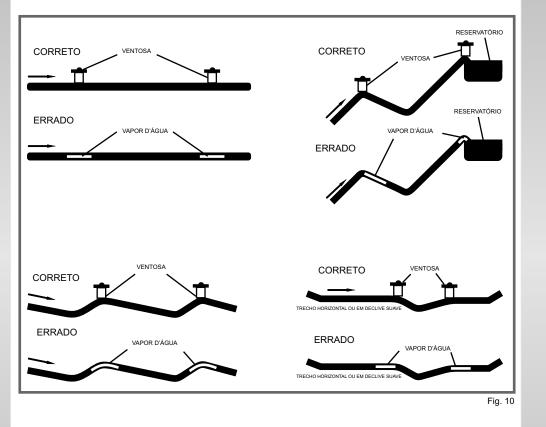
3.5. ERROS MAIS GRAVES DE INSTALAÇÃO E SUAS CONSEQUÊNCIAS


ERRO	PROBLEMAS RESULTANTES	CONSEQUÊNCIA
Canal de descarga da turbina com profundidade menor que a do projeto	Afogamento da turbina	
Curvas com raios curtos no tubo de adução da turbina.	Perda de potência da turbina.	Diminuição de usoão
Redução excentrica na entrada da turbina.	Acentuada perda de potência.	Diminuição da vazão bombeada
Caixa de captação construida diferente do projeto. Tubo de adução captando água diretamente da represa.	Diminuição da vazão da turbina. Formação de vórtices "redemoinhos" permitindo a entrada de ar no tubo de adução	
Captação da bomba direta, sem caixa de decantação.	Presença de areia em suspenção na água bombeada.	Desgaste prematuro do sistema de vedação
Polias desalinhadas ou correias "frouxas"	Atrito exagerado na transmissão	Desgaste precoce das correias e perda de potência do conjunto
Funcionamento da bomba sem a tubulação de recalque	Disparo da bomba	Desgaste prematuro do sistema de vedação. Travamento da bomba
Utilização de tubulação com resistência abaixo da especificada	Ruptura do tubo de recalque	Desgaste prematuro do sistema de vedação. Travamento da bomba.
Utilização de tubulação com diâmetro abaixo do especificado.	Aumento da pressão na saída da bomba. Ruptura da tubulação.	Diminuição da água bombeada.
Curvas acentuadas na tubulação de recalque	Aumento da pressão na saída da bomba.	Redução da vazão bombeada

9

3.6. PEÇAS DE CONEXÃO PARA ENTRADA E SAÍDA DA BOMBA

As conexões e demais peças necessárias para instalação da bomba de pistão seguem a figura e tabela abaixo.


A presença de mangueira de pressão na entrada e na saída é imprescindível, pois as mesmas amortecem a linha e permitem maior facilidade de manutenção.

ÍTEM	QUANTIDADE	DESCRIÇÃO	ITENS INCLUSOS
1	30cm	Mangueira flexível Ø3"	
2	1	Abraçadeira mangueira 79 x 87	
3	1	Espigão de ferro fundido Ø3"	
4	2	Luva - Ø3"	
5	2	Ampliação - Ø2"-> Ø3"	
6	2	Niple - Ø2"	×
7	1	TE Ø2"	×
8	1	Pulmão 160	×
9	2	Niple - Ø1"	×
10	1	Ampliação - Ø1" -> Ø2"	×
11	2	Espigão de ferro fundido Ø2"	
12	2	Abraçadeira mangueira 48 x 56	
13	30cm	Mangueira flexível de alta pressão Ø2"	
14		Tubo de recalque Ø3"	

3.7. INSTALAÇÃO DA TUBULAÇÃO DE RECALQUE DA BOMBA

Caso, na tubulação de recalque exista trechos conforme figura 10, é importante a instalação de ventosas para impedir a formação de bolhas de vapor de água, responsáveis pela redução da vazão bombeada e até a parada do conjunto TURBO BOMBA.

IMPORTANTE!

Sempre operar o conjunto Turbo Bomba com a bomba PRESURIZADA

NUNCA OPERAR o equipamento sem que a tubulação de recalque esteja conectada à saída da bomba, evitando operar a bomba em baixa pressão o que certamente causará danos ao conjunto devido o excesso de rotação.

11

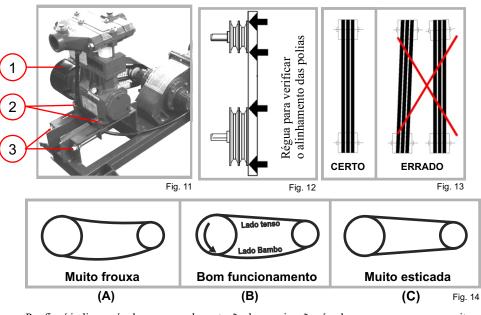
4. CARACTERÍSTICAS DO EQUIPAMENTO TURBO BOMBA BETTA

O conjunto Turbo Bomba é formado por uma família de turbinas hidráulicas que aproveitam quedas desde 1,5 a 150 metros e vazões até 200.000 litros/hora, acionando com polias e correias, bombas de deslocamento positivo de 3 pistões, ou bombas tipo centrífuga.

A instalação da Turbo Bomba necessita de obras civis de simples concepção, fácil construção e pequeno porte, que somado ao custo "zero" do combustível utilizado (água), permiterapidamente amortizaro investimento inicial.

No quesito meio ambiente, o emprego da Turbo Bomba Betta é muito interessante, pois trata-se de uma fonte de energia renovável que não causa qualquer dano à flora e fauna no local de implantação e a água utilizada como combustível é restituída ao manancial de origem oxigenada.

Uma importante particularidade desse equipamento é a possibilidade de movimentar a turbina com água ou barrenta e alimentar a bomba com água limpa de uma mina.


5. PROCEDIMENTOS PRELIMINARES

Após colocar a correia é necessário esticá-la, para isso o equipamento possui dois esticadores logo atrás da bomba. Estes esticadores servem tanto para esticar como para alinhar as polias. O procedimento de esticamento da correia e alinhamento das polias segue abaixo. Os dois procedimentos são imprescindíveis para durabilidade da correia e o bom desempenho do equipamento.

5.1. ALINHAMENTO DAS POLIAS E ESTICAMENTO DAS CORREIAS

Sequência para esticar as correias:

- a) Retire o protetor de polias (Pos. 1)
- b) Soltar os parafusos de fixação da bomba no chassi (Pos. 2)
- c) Solte os esticadores (Pos. 3)
- d) Apertar as porcas dos esticadores (Pos. 3), até que as correias se mostrem conforme figura 14 pos. B, verificando constantemente o alinhamento das polias (Figs. 12 e 13)
- e) -O alinhamento das polias é obtido apertando e soltando cada esticador, possibilitando assim girar a bomba.

Por fim é indispensável a presenca da proteção de correia, não só pela segurança, mas para evitar que a correia molhe, diminuindo sua vida útil e evitando que a mesma patine sobre a polia.

Ainda antes de dar a partida na máquina é indispensável verificar as condições das válvulas da rede de recalque, ou seja, deve analisar se não existe nenhum registro fechado e/ou se as válvulas de retenção não estão travadas, isto evitar acidentes tais como: danos na tubulação, camisas, cabecotes etc.

5.2. PARTIDA DA TURBO BOMBA

Antes de colocar o conjunto Turbo Bomba em funcionamento, é importante atender os itens abaixo: a) Limpar a caixa de captação, retirando sobras de materiais de construção, etc.

b) Liberar a entrada de água na caixa, aproveitando para, antes de conectar a tubulação de acionamento à turbina, fazer com que a água flua por ela livrando-a de sujeiras que poderiam chocar-se contra o rotor da turbina.

c) Observadas as precauções anteriores, conectar a tubulação de adução à turbina. d) Conferir o aperto dos parafusos de fixação do conjunto ao seu(s) suporte(s), e desses a base de concreto.

e) Observar o nível do óleo da bomba.

f) Girar manualmente o rotor da turbina, através da polia, observando se está girando livre e sem ruído. g) Certificar-se de que o registro da bomba esteja totalmente aberto; e o perfil regulador de vazão esteja fechado.

Obs: Não funcionar o equipamento sem instalar a tubulação de bombeamento para que não haja disparo da bomba e danos ao sistema de vedação.

Por suas características construtivas, o perfil regulador de vazão destina-se ao controle da vazão destina-se ao controle da vazão na turbina e não ao fechamento total da água. Mesmo estando o perfil totalmente fechado, sempre haverá um pequeno vazamento de água, o que é perfeitamente normal.

Tentar fechá-lo por completo poderá quebrar o braço de acionamento do perfil regulador de vazão ou o próprio perfil.

Esse sistema foi desenvolvido para evitar disparo da bomba caso ocorra ruptura do cano de recalque ou falta de água na sucção da bomba. Trata-se de um pistão hidráulico conectado com a saída da bomba que mantém o perfil regulador de vazão da turbina aberto enquanto a linha de recalque se mantém pressurizada.

Qualquer redução na pressão de recalque, faz com que o contra-peso instalado no braço de acionamento do perfil venca a forca exercida pelo pistão, fechando a água na turbina e paralisando o funcionamento do conjunto.

14

Sistema regulador de vazão

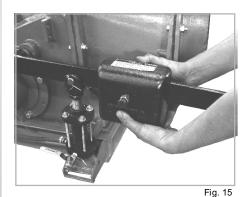
5.3. PARADA DA TURBO BOMBA

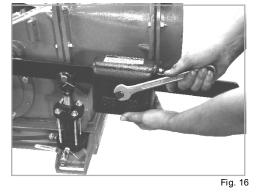
Procedimentos:

a) Posicionar o contrapeso na extremidade do braço de acionamento e travá-lo com o parafuso.
b) Levantar e sustentar a haste do perfil regulador de vazão durante o tempo necessário para a pressurização da tubulação de recalque. O registro de esfera da base do pistão de segurança deverá, obrigatoriamete, estar fechado.

Com a tubulação de recalque pressurizada o pistão terá força suficiente para manter a turbina hidráulica aberta e, consequentemente, a bomba operando.

Caso o perfil feche após a pressurização da tubulação de recalque, deslocar o contrapeso no sentido do pistão o suficiente para a turbina se manter operando.


c) Controle da vazão bombeada:


A regulagem da vazão bombeada é feita através de um parafuso localizado na parte inferior do pistão de segurança (fig. 18). O equipamento já sai de fábrica com a regulagem máxima de abertura.

Caso seja necessário diminuir a vazão bombeada, deve-se parar o conjunto, girar o parafuzo meia volta no sentido horário e dar novamente a partida na Turbo Bomba. Caso a vazão ainda esteja acima da desejada esse procedimento deverá ser repetido até que se obtenha a vazão bombeada desejada.

Note que quanto mais fechado o parafuso de regulagem menor é a rotação da bomba e assim a vazão bombeada.

Nunca realizar a regulagem do pistão de segurança com o conjunto turbobomba em funcionamento, pois isso poderá danificar o sistema de regulagem, comprometendo o bom funcionamento do conjunto. O que acarretará a perda da garantia do equipamento.

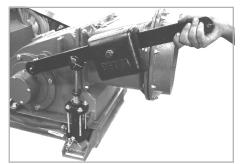


Fig. 17

15

A parada do conjunto deverá ser feita abrindo-se um registro de esfera situado na base do pistão de segurança.

A parada do conjunto Turbo Bomba deverá ser realizada 1 vez a cada 15 dias para manter o sistema destravado.

16

Fig. 19

Registro fechado (conjunto em funcionamento)

Registro aberto (parada do conjunto)

Fig. 18

6. MANUTENÇÂO PREVENTIVA 6.1. MANUTENÇÃO PREVENTIVA DA TURBINA

A manutenção preventiva da turbina se resume em:

a) Engraxar os pontos onde existe engraxadeiras (fig. 21), com a periodicidade indicada na tabela 4 Pagina 19.

b) Verificar a cada 30 dias a graxa dos mancais de rolamento, removendo as tampas laterais e constatando se existe presença de água na graxa, ou seja, manchas brancas. Caso existir, será necessária a troca dos retentores e da graxa. Para isso os mancais e os rolamentos deverão ser retirados, lavados com querosene, e os retentores substituídos.

c) A cada 60 dias os rolamentos deverão ser engraxados. Para isso a graxa velha acumulada nas laterais dos mancais deverá ser removida e a graxa nova aplicada lateralmente nos rolamentos com uma espátula, girando o eixo para melhor distribuição da graxa.

d) A cada seis meses a graxa dos rolamentos deverá ser totalmente substituída por graxa nova. Os rolamentos e os mancais serão lavados com querosene ou óleo diesel, sugerimos utilizar uma bisnaga para pulverizar o líquido lateralmente. Girar o eixo para promover a limpeza total dos rolamentos. A graxa velha misturada com o querosene ou óleo diesel depositada na parte inferior dos mancais deve ser removida com um pano.

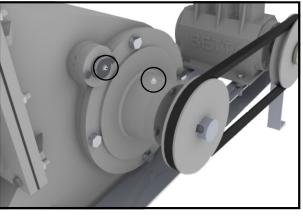
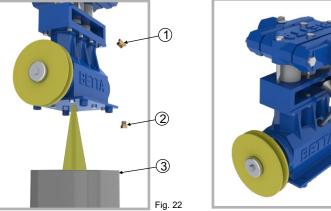


Fig. 21

Obs: Utilizar graxa azul para os rolamentos O excesso de graxa provoca o aquecimento dos rolamentos reduzindo sua vida útil!

17

6.2. MANUTENCÃO PREVENTIVA DA BOMBA


Troca de óleo

O óleo da bomba deverá ser trocado a cada dois meses (veja tabela na pág. 19), ou quando for constatada a presença de água no óleo (manchas brancas ou vazamento de óleo pelo pistão).

Caso a bomba permaneça parada por tempo superior a 30 dias, antes de colocá-la para operar, trocar o óleo.

O descumprimento deste procedimento acarretará desgastes dos casquilhos, bielas, pistões, pinos, rolamentos e no virabreguim.

A seguir veja como se procede a troca de óleo da bomba:

- 1 Pare a Turbo Bomba.
- 2 Coloque sob a tampa do cárter um recipiente (3) para a coleta do óleo usado.

3 - Retire o tampão de abastecimento do óleo (1) e o tampão de drenagem(2) localizado na parte inferior do cárter da bomba. Dentro do recipiente utilizado para a coleta, verifique se não ha indícios de presenca de água no óleo.

4 - Verificar se existe no interior do carter alguma peça danificada.

5 - Após o esgotamento total do óleo usado e constada a ausência de água, recolocar o tampão de drenagem(2).

- 6 Reabasteça o Carter com o óleo conforme indicado na tabela da página 19.
- 7 Verificar se não existe vazamento de óleo pelo tampão de drenagem.

8 - Recolocar o conjunto em funcionamento

IMPORTANTE

- O nível do óleo deverá, obrigatoriamente, ser verificado a cada 15 dias.
- O nível do óleo deve estar na altura do tampão; caso não esteja deverá ser completado. Estando com o nível alto ou vazando pelo guia dos pistões, provavelmente há presença de água no óleo (óleo com aspecto esbranquicado), trocar imediatamente o óleo da bomba e verificar o motivo da entrada de água no óleo.
- Uma vez ao ano, retirar a tampa do carter para a limpeza completa, utilizando como solvente querosene ou óleo diesel. Após a limpeza, esgotar o querosene ou diesel, trocar a junta de vedação e recolocar a tampa do carter.

Não jogue o óleo usado no solo e muito menos nos cursos de água. Proteja a natureza!

6.3. TABELA PREVENTIVA

PERÍODO	DIARIAMENTE	2 MESES	12 MESES OU QND. NECESSÁRIO	6 MESES
VERIFICAR FUNCIONAMENTO	×			
TROCAR ÓLEO		\times		
TROCAR REPAROS/ PISTÕES			Х	
REVISAR ROLAMENTOS				×
ENGRAXAR MANCAIS		×		
LIMPESA E TROCA DE GAXETAS DOS MANCAIS				\times
				Tab. 04

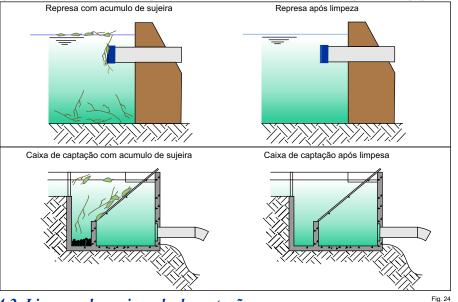
Obs: proceder a primeira troca de óleo do carter da bomba após o 1° mês de funcionamento. Em seguida, trocar regularmente a cada dois meses independente se a bomba trabalha ou não 24 horas.

6.3.1. Lubrificante para a bomba

	LUBRIFICANTE			TIPO		QTD.	COD. BETTA
BOMBA 160	ÓLEO		ISSO - VG 68		4 litros	OHL2654	
MARCAS SUGERIDAS	UBRAX INDUSTRIAL *ESS IR-68-EP NUT		-H-68	*SHELL TELLUS 68	*TEXA HD 6	ACO-RANDO 8	AW 68
							Tab. 05

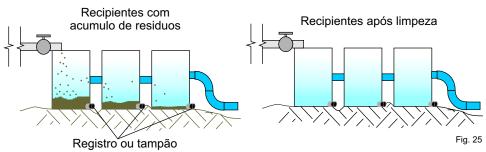
6.3.2. Lubrificante para a turbina

	LUBRIFICANTE	TIPO
MANCAL DO ROTOR	GRAXA BASILIT AZUL	P/ ROLAMENTO
MANCAL DO PERFIL REGULADOR DE VAZÃO	GRAXA BASILIT AZUL	P/ ROLAMENTO
		Tab. 06


6.4. MANUTENÇÃO PREVENTIVA DA INSTALAÇÃO

A manutenção preventiva da instalação é um dos pontos mais importantes para o bom funcionamento do equipamento e por mais limpa que seja a água, sempre ocorrerá acúmulos de sujeira tanto na adução da turbina quanto nas caixas de decantação da bomba.

6.4.1. Limpeza da represa


A represa é um ponto de acúmulo de detritos, pensando nisto a Betta fornece junto com o equipamento uma tela de retenção para ser encaixada na boca do tubo conforme figura 24.

Recomendamos a limpeza da tela com a periodicidade exigida para o local. Alertamos que o entupimento desta tela com detritos provoca a redução da vazão bombeada ou a parada do equipamento.

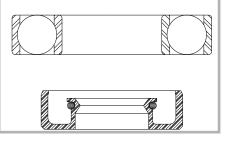
6.4.2. Limpeza das caixas de decantação

Como o próprio nome já diz, a caixa de decantação decanta a impureza da água para que somente água limpa entre na bomba, assim é fato que constantemente ocorra um acúmulo de areia, folhas, etc. no fundo dos recipientes, fazendo com que este acúmulo de sujeira suba gradativamente conforme a qualidade da água. Para que estes entulhos não dificultem a passagem de água de um recipiente para o outro é necessário realizar a limpeza dos recipientes sempre que o nível de impurezas estiver alto. Para limpar os recipientes é aconselhável que em sua parte inferior tenha um registro ou um tampão esgotar a água impura. (Fig. 25)

NUNCA realizar o esgotamento de água dos tambores sem que o equipamento esteja parado, pois se faltar água na bomba em funcionamento certamente danificará os reparos.

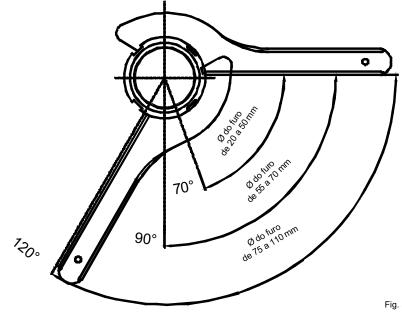
7. MANUTENÇÂO CORRETIVA

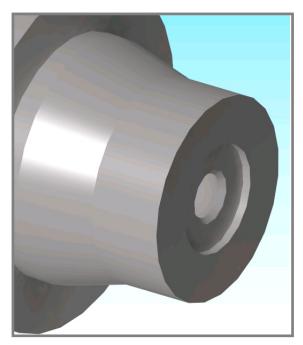
7.1. MANUTENÇÃO CORRETIVA NA TURBINA


7.1.1. Troca dos retentores / troca dos rolamentos

1- Fechar a água na turbina, girando o volante do registro no sentido horário até o fim do curso.

- 2- Com a turbina parada, fechar o registro da bomba e retirar as correias das polias.
- 3- Soltar o parafuso de trava da polia e retirá-la com o auxilio de um saca-polias.
- 4- Retirar as tampas dos mancais.
- 5- Soltar os parafusos que prendem o mancal à caixa da turbina, lado da polia.
- 6- Introduzir dois dos quatro parafusos retirados nos dois furos roscados para destacar o conjunto do mancal.
- 7- A retirada do mancal lado oposto da polia.
- 8- Retirar o rotor da turbina para limpeza e inspeção.


POSIÇÃO CORRETA DO RETENTOR EM RELAÇÃO AO ROLAMENTO (MOLA VOLTADA PARA O ROLAMENTO)


- Fig. 12
- 9- Apoiar o mancal com a sede do rolamento voltada para baixo. Retirar o rolamento utilizando instrumento adequado para removê-lo. (Fig. 12)
- **10**-Retirar os retentores. (Fig. 12)
- 11- Lavar os rolamentos e os mancais com querosene, secá-lo com ar comprimido ou com pano limpo
- 12- Montar os novos retentores com a "mola" voltada para o rolamento e com o cuidado de não dobar a "orelha".
- 13-Montar o rotor na caixa da turbina.
- 14- Fixar os mancais com os parafusos apertando-os gradativamente e na seqüência diametralmente oposta.
- 15-Preencher os alojamentos dos rolamentos até a metade com graxa nova.
- 16-Montar os rolamentos nos mancais.
- Obs. 1) Trocar os retentores uma vez por ano e sempre que os mancais forem desmontados para a troca e inspeção dos rolamentos.

7.1.2. Montagem dos rolamentos nos mancais

- 1- Limpar a bucha e o rolamento com solvente comum.
- 2- Passar uma fina camada de óleo sobre as superfícies interna e externa da bucha. Lubrificar com graxa a rosca e a face chanfrada da porca, que terá contato com o rolamento.
- Obs.:rolamentos novos não precisam ser lavados e devem ser retirados de sua embalagem somente na montagem para evitar contaminação.
- 3- Enroscar a porca na bucha (sem arruela de trava), até que o rolamento esteja bem assentado.
- 4- Com a chave de gancho apropriada (nunca com martelo e talhadeira) dar o aperto seguindo o ângulo indicado na figura abaixo.
- 5- Reposicionar a chave a 180° e apertar poucos graus a mais, batendo com um martelo no cabo da chave.
- 6- Desenroscar a porca, colocar a arruela de trava, apertando novamente a porca até a posição anterior. Com ajuda de um punção, travar uma das lingüetas da arruela no rasgo da porca.
- 7- Finalmente, certifique-se de que o rolamento pode ser girado facilmente com a mão, apresentando certa resistência quando desalinhado.

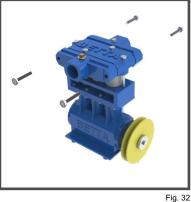
7.1.3. Desobstrução do bico de entrada de água

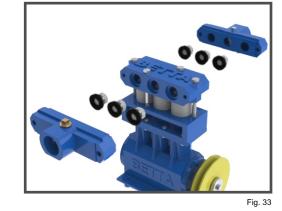
Caso sem motivo aparente o equipamento perca potência, dando a impressão de estar travado, reduzindo a vazão bombeada, a causa pode estar no acúmulo de folhas e detritos no bico de entrada de água da turbina. O procedimento para a limpeza é descrito a seguir:

- Interrompa o fluxo de água da turbina colocando uma tábua na boca do tubo de adução da caixa de captação.
- Deixe o registro da turbina aberto até que se esgote a água do tubo de adução.
- Desmonte o bico e verifique se há algun detrito entupindo o bico.
- Após a limpeza, remonte o bico e feche o registro da turbina.
- Libere o fluxo de água da turbina retirando a tábua da boca do tubo na caixa de captação e coloque o conjunto em funcionamento.

Uma tela de malha fina instalada na caixa de captção de água da turbina, evita este transtorno.

23


7.2. MANUTENCÃO CORRETIVA NA BOMBA


7.2.1. Troca do reparo de vedação

A troca de reparo é um procedimento simples e necessário para a manutenção da bomba. Esta troca deverá ser feita sempre que ocorrer vazamento de água (mesmo que seja apenas merejamento de água).

A seguir será descrito passo a passo o procedimento de troca de reparo.

- 1 Parar o conjunto Turbo Bomba.
- 2 Soltar os 4 parafusos de fixação dos cabeçotes laterais, horizontais (fig. 32), que fixam o cabeçote central aos cabeçotes de sucção e de recalque.
- 3 Afastar os respectivos cabecotes de forma a permitir a retiradas das válvulas. (Fig. 33)

- 4 Soltar o parafusos que prendem o cabeçote central ao corpo da bomba. (Fig. 34)
- 5 Suspender o cabecote central, tomando o cuidado com as camisas de cerâmica, elas normalmente ficam aderidas ao cabecote central e estas camisas são extremamente frágeis com relação a impacto. (Fig 35)

6 - Retirar as camisas de cerâmica. (Fig. 36)

Observar que existem juntas para vedação nas duas faces das camisas de cerâmica. Normalmente elas ficam aderidas ao cabeçote central e ao corpo da bomba. Sempre que ocorrer a troca de reparos elas devem ser substituídas e SEMPRE retirar as juntas antigas para colocar as novas.

7 - Retirar a porca e a arruela que prendem o reparo. (Fig. 37)

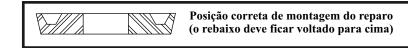
Fig. 36

Fig. 37

8 - Retirar os reparos. (Fig.38)

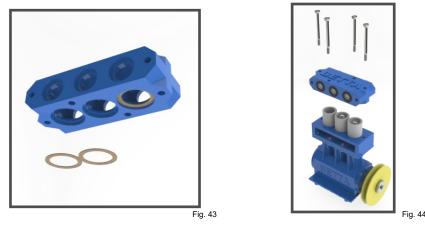
IMPORTANTE: sempre que realizar o processo de troca dos reparos, efetuar também a limpeza da Parte interna das camisas de cerâmica com um pano úmido e trocar as juntas.

25

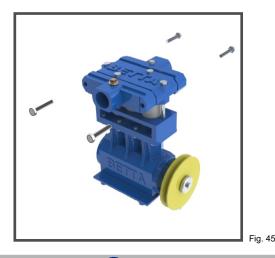

- Montagem dos reparos de vedação

- 1 Montar as juntas no carter da bomba. (Fig. 39)
- 2 Montar as camisas de cerâmica. (Fig. 40)

3- Montar os reparos com as camisas de cerâmica já colocadas na bomba. (Fig. 41)

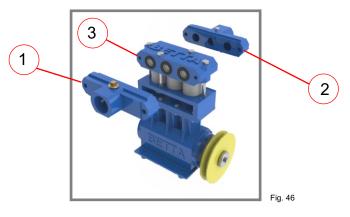


- 4- Fixar o reparo com a arruela e a porca de inox. (Fig. 42)
 - a) Apertar a porca de inox até a arruela de inox encostar no reparo
 - **b**) Girar mais ¹/₂ volta para a fixação final



- 5 Já com as válvulas revisadas e montadas, o cabeçote central recebe as novas juntas. Antes de montar as novas juntas, verificar se existem pedaços das juntas velhas aderidas ao corpo do cabeçote. Caso haja, utilizar uma espátula ou chave de fenda para removê-las. (Fig. 43)
- 6 Montar o cabeçote central sobre as camisas de cerâmica. Atenção para que as camisas se encaixem perfeitamente nos rebaixos existentes no bloco do carter e no cabeçote central. Se isso não ocorrer, provavelmente as camisas de cerâmica irão quebrar durante o aperto. O aperto dos parafusos deve ser efetuado igualmente para que não haja folga entre a camisa e o cabeçote. (Fig. 44)

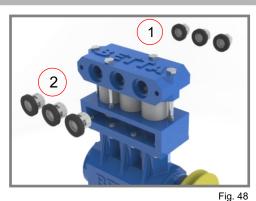
7 - Verificar o aperto dos parafusos de fixação dos cabeçotes de recalque e de sucção, principalmente o de sucção. A folga entre o cabeçote central e o cabeçote de sucção, permite a entrada de ar na tubulação, reduzindo consideravelmente a vazão bombeada. Lembrando que existe a presença de uma guarnição de borracha que trava as válvulas. Essas devem ser trocadas toda vez que ocorrer a retirada das válvulas dos cabeçotes. (Fig. 45)



7.2.2. Limpeza e troca de molas das válvulas

O principal sintoma de problemas com as válvulas é a vibração do cano de sucção e/ou, cano de recalque da bomba. Isso ocorre quando as válvulas estão impedidas de se movimentarem devido a sujeira ou a molas quebradas.

O mau funcionamento das válvulas reflete também na vazão bombeada, reduzindo-a substancialmente.


- A limpeza ou a desmontagem das válvulas será feita sempre que:
- a) A vazão bombeada diminuir sem motivo aparente.
- b) A bomba apresentar ruído anormal ou vibração intensa nas tubulações de sucção e recalque.

Para dar manutenção nas válvulas é necessário seguir a sequência:

- 1- Parar a bomba.
- 2- Caso não se tenha válvula de retenção instalada próxima a saída da bomba, fechar o registro instalado na saída da bomba para que não haja retorno de água da rede.
- **3-** Soltar os 4 parafusos laterais, horizontais, que fixam o cabeçote central (3) aos cabeçotes de sucção (1) e de recalque (2).
- 4- Afastar os respectivos cabeçotes de forma a permitir a retiradas das válvulas.
- 5- Para a retirada das válvulas seguir os critérios abaixo:
- a) Válvulas de recalque (1) são montadas com os corpos para fora do cabeçote central. Sua retirada é conseguida prendo-a com o polegar e o indicador e com movimentos para cima e para baixo deslocando-a do cabeçote. (Fig.48)
- b) Válvulas de admissão (2) são montadas com os corpos para dentro do cabeçote central. Sua retirada é conseguida utilizando uma chave de fenda que afasta o corpo da válvula e se aloja na parte de traz do assento da válvula, permitindo assim forçá-la para fora. (Fig.48)

Fig. 47 7.2.3. Desmontagem da válvula

A desmontagem da válvula utiliza como ferramenta uma pequena chave de fenda, e adota a sequência inversa da página 30.

29

7.2.4. Montagem da válvula

- 1 Encaixe a mola (Fig. 51 item 4) dentro da válvula (Fig. 51 item 3).
- 2 Introduza o conjunto válvula/ mola dentro da "gaiola" (Fig. 51 item 5)

Observar se a mola está bem posicionada no corpo da válvula e encaixada no fundo da "gaiola".

Observar se o guia traseiro da válvula está encaixado dentro do furo de traz da gaiola.

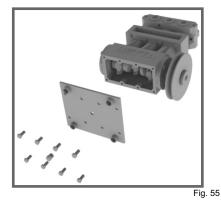
- **3** Colocar o assento da válvula (Fig. 51 item 2) sobre a parte da frente da gaiola. (Fig. 52) O chanfro de 45 no assento da válvula deve ser posicionado voltado para a válvula.
- 4 Acoplar o anel de vedação (Fig. 51 item 1) "fechando" o conjunto. (Fig. 53)

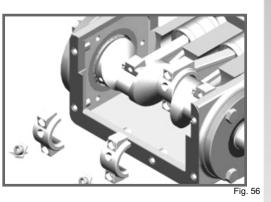
Esse anel possui furos com diâmetros diferentes nas suas faces. O lado com furo de diâmetro maior deve ser voltado para a gaiola.

A montagem do anel de vedação (guarnição) sobre o conjunto, lembra a operação para montar um pneu no aro da roda. Introduzir uma pequena chave de fenda, entre o anel de vedação e o assento da válvula. Com movimento circular em torno do assento da válvula, encaixar o anel de vedação sobre o conjunto. (Fig.54)

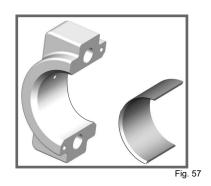
5 - Com o conjunto montado, com o auxilio do polegar, pressionar a válvula verificando se a abertura e o fechamento da válvula se faz suavemente, sem pontos de travamento ou dificuldade de movimento.

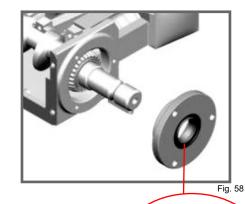
Fig. 52

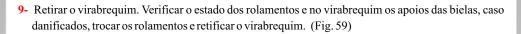


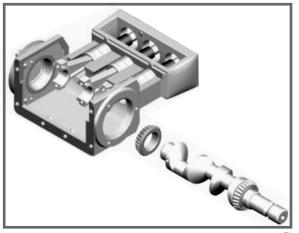


Obs. Ao encaixar novamente as válvulas nos cabeçotes, atentar-se ao sentido e forma de colocar as mesmas, seguindo orientação da página 29.


7.2.5. Troca das bronzinas e inspeção no virabrequim e rolamentos


- 1- Parar a bomba.
- **3-** Esgotar o óleo do Carter.
- 4- Retirar a bomba do chassi.
- 5- Retirar a tampa do Carter, tomando o cuidado de não danificar a junta de vedação. (Fig. 55)
- 6- Soltar os parafusos de fixação da parte inferior da biela e destacá-la do virabrequim. (Fig. 56)

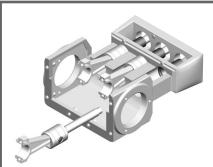

- 7- Retirar a parte superior e inferior da bronzina (Fig. 57)
- 8- Retirar o mancal aberto do carter (Fig. 58)



Obs. A capa do rolamento (2) e o retentor (3) saem juntamente com o mancal. Verificar as condições da junta (1) e analisar a quantidade de juntas em cada mancal, trocá-la mesmo se estiver com pequena avaria. Sempre que o mancal for retirado é aconselhado a troca do retentor e das juntas de vedação.

31

Obs.: A retifica de virabrequim é aconselhável até 0,75mm



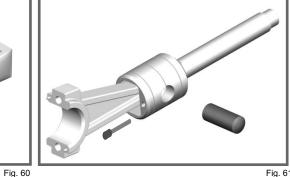

32

Fig. 59

7.2.6. Desmontagem da biela e do pistão

- 1- Retirar o conjunto biela/ pistão do carter da bomba. (Fig. 60)
- 2- Retirar o parafuso de aperto na extremidade do pistão. (Fig. 61)
- 3- Desmontar o pino de articulação Biela / Pistão.(Fig. 61)

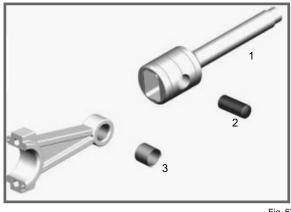


Fig. 62

- 4- Verificar o desgaste no pistão (1), pino de articulação (2) e bucha da biela (3) Qualquer indício de desgaste, substituir a peça.
- 5- A montagem do conjunto obedecerá a sequência inversa da desmontagem.

O óleo e o volume a ser utilizado para preencher o carter da bomba é indicado na tabela da página 19 deste manual.

7.2.7. Tabela retentores, rolamentos e bronzinas

Tipo da Bomba - 3Pistões

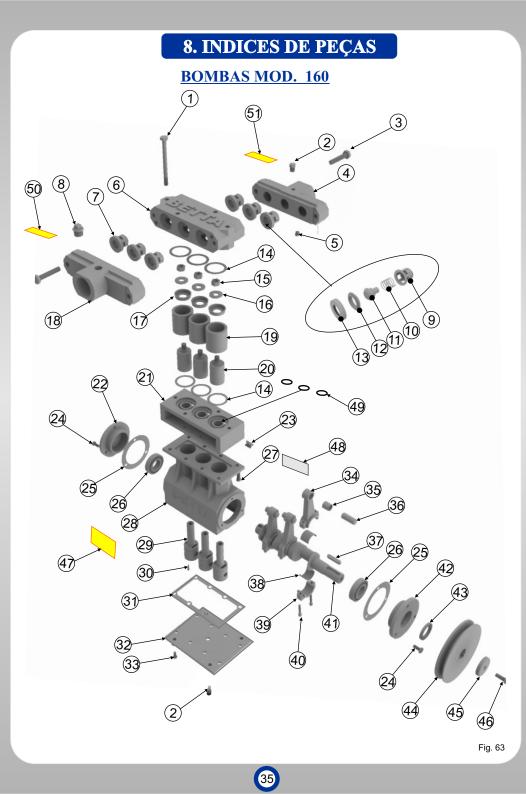
Modelo - Betta_160

MODELO	ROLAMENTO	RETENTOR	VIREBREQUIM	BRONZINAS	
			DIÂMETRO (mm)	BB009-J	
				CHEVROLET BRASIL VERANEIO	
160	30210 NSK, TIMKEM		Ø58,71►	STD	
			Ø58,45►	0,25	
					Ø58,20►
			Ø57,94►	0,75	
				Tab 0	

33

ANORMALIDADE **SOLUÇÃO CAUSA** *Escorvar a bomba, enchendo com água a *Presença de ar no cabeçote tubulação de sucção, por meio de um furo localizado no cabeçote de entrada. *Verificar se existe trincas no tubo, conexões *Entrada de ar no tubo de sucção da e cotovelos e se as conexões estão bem bomba. coladas (vedadas). 1 - Apesar de o conjunto *Válvula de pé da tubulação de sucção *Limpar completamente a válvula da estar movimentando: tubulação de sucção e verificar seu obstruída ou com deficiência de funcionamento. Se necessário, protegê-la fechamento. com uma malha flexível tipo mosqueteira a) A bomba não *Desmontar a parte superior da bomba e bombeia retirar as válvulas para limpeza completa. *Válvulas de entrada da bomba travadas Verificar se há molas quebradas ou travados. b) A vazão bombeada por sujeiras ou problemas mecânicos. (Veja páginas de 28 a 30) *Válvulas com molas quebradas provocam é reduzida intensa vibração na tubulação de bombeamento e sucção. c) O bombeamento é *Trocar os reparos dos pistões e o óleo. *Vazamento de óleo nos pistões. por "golfadas" (Veja páginas de 24 a 27) *Instalar válvulas do tipo "ventosa" para *Ar na tubulação de recalque da bomba retirar o ar retido na tubulação. (se houver na rede pontos de depressão). (Veja página 11) *Inversão das câmaras na montagem do *Soltar os quatro parafusos superiores que fixam o cabeçote ao cárter, e girá-lo 180º. cabeçote. *Abrir totalmente o registro da tubulação de *Registro de saída da bomba fechado. bombeamento. *Erro nos dados informados: *Verificar os dados confrontando-os com Oueda de acionamento da turbina aqueles indicados na hora da venda e sob os -Vazão de acionamento da turbina quais o equipamento foi produzido. -Desnível do bombeamento *Entrar em contato com o representante ou com o departamento de assistência técnica -Comprimento da tubulação de recalque da Betta. -Comprimento da tubulação de adução 2 - O conjunto turbina/ *Presenca de sujeira na tubulação de bomba gira lentamente *Realizar a limpeza da adução da roda aducão. ou não gira. *Obstrução da caixa de captação ou *Realizar a limpeza da tela protetora da captação direta captação de água *Obstrução da caixa de captação *Limpar a tela protetora da caixa de captação impedindo a chegada de água na turbina *Bico de entrada de água da turbina *Siga as intrucões da página 19. Entupido 3 - Vazamento de óleo *Entrada de água pelo guia de pistão Seguir procedimento de troca de óleo pelos pistões devido à desgaste do reparo. e troca de reparo das páginas 18 e 24 a 27 *Esticamento excessivo ou *Seguir procedimento de Esticamento e alinhamento de correias da página 13 . desalinhamento de polias. *Secar as correias com o equipamento *Correia patinando e/ou molhada. parado e não deixar de usar a proteção 4 - Desgaste de correia. de correias. *Adquirir duas novas polias (mesmo *Equipamento utilizado em número das polias que estão sendo aproveitamentos com potenciais utilizadas) e acoplar em conjunto com

7.3. ANORMALIDADES


Tab. 07

hidráulico maior do que o padrão.

as que já existem, transformando o

número de canais de 1B para 2B.

Tab. 08

Item	Qtd	Descrição
1	4	Parafuso sext. zinc. M14x150
2	1	Plug de óleo 1/4" NPT
3	4	Parafuso sext. Zinc. M16x80
4	1	Cabeçote de saída 160
5	1	Plug 1/8" NPT
6	1	Cabeçote central 160
7	6	Válvula montada 160
8	1	Tampão ½" FoFo NPT
9	6	Gaiola 160
10	6	Mola de inox 160
11	6	Válvula branca 160
12	6	Assento da válvula 160
13	6	Guarnição 160
14	6	Junta da camisa 160
15	3	Porca 3/4" inox
16	3	Arruela lisa de inox de 3/4"
17	3	Reparo lonado 160
18	1	Cabeçote de entrada 160
19	3	Camisa de cerâmica 160
20	3	Suporte do reparo 160
21	1	Guia dos pistões 160
22	1	Mancal fechado 160
23	1	Plug 1/2" latão com anel oring
24	6	Parafuso sext. polido M8x20
25	4	Junta do mancal 160
26	2	Rolamento 30210
27	8	Parafuso sext. polido M12x50
28	1	Carter 160
29	3	Pistão 160
30	6	Parafuso Allen c/ cabeça 3/16"x1/2"
31	1	Junta do carter 160
32	1	Base do carter 160
33	8	Parafuso sext. polido M8x15
34	3	Biela 160
35	3	Bucha da biela 160
36	3	Pino do pistão 160
37	1	Chaveta 5/16" x 35mm
38	3	Jogo de bronzinas BB202J-STD
39	3	Capa da biela 160
40	6	Parafuso Allen c/cabeça M10x50
40	-	Virabrequim 160
41	<u>1</u> 1	Mancal aberto 160
42	1	Retentor 01109 BR
	2	
44		Polias intercâbiaveis
45	1	Arruela de fixação Parafuso sext. zinc. 3/8"x1"
46	1	
47	1	Adesivo de lubrificação
48	1	Placa de identificação da bomba
49	3	Cordão O'ring 3x80mm
50	1	Adesivo de entrada
51	1	Adesivo de saída

<u>ANOTAÇÔES</u>

<u>ATENÇÃO</u>

Não utilize esse equipamento fora das especificações do projeto! Ele perderá rendimento ou simplesmente não funcionará!

Ao instalar o conjunto confira os dados abaixo, os quais devem estar exatamente iguais aos especificados nas condições de venda assinada pelo comprador ou representante.

- Desnível de acionamento
- Vazão de acionamento
- Diâmetro e comprimento da tubulação de adução
- Diâmetro e comprimento da tubulação de recalque
- Desnível geométrico

Mesmo que a instalação esteja em andamento, se forem detectados erros de medidas é fundamental interromper as obras e solucionar o problema nessa fase.

Deficiências ou danos ao equipamento causados por erros na coleta de dados ou na instalação serão de responsabilidade do comprador o qual arcará com os custos relativos à substituições, alterações, fretes, etc.

A BETTA RESERVA-SE O DIREITO DE ALTERAR, SEM AVISO PRÉVIO, AS INFORMAÇÕES CONTIDAS NESSE MANUAL