

Manual de Instalação e Operação

Ultrasonic Transducers Analyzer - TRZ

& TRZ - Interface

Copyright

Copyright © 2011, by ATCP Engenharia Física

Direitos Reservados.

As informações contidas neste manual têm caráter técnico e informativo e são de propriedade exclusiva da ATCP Engenharia Física não podendo ser reproduzida total ou parcialmente sem autorização por escrito da mesma.

A ATCP Engenharia Física reserva-se o direito de fazer as alterações neste manual e no produto sem qualquer aviso prévio.

Março/2011 Versão 2.0

ÍNDICE

1. Introdução	06
2. Definições	06
3. Aplicações	07
4. Características gerais	07
5. Especificações	09
6. Funções e comandos	09
6.1 Painel frontal	09
6.2 Painel traseiro	10
7. Acessórios	11
8. Itens Opcionais	11
9. Especificações Técnicas	11
10. Antes de Instalar o Equipamento	11
11. Instalação do Equipamento	11
11.1 Conectando a ponta de prova	11
11.2 Conectando o TRZ à rede elétrica	12
12. Operação do Equipamento	12
12.1 Fazendo uma medida via TRZ-Ultrasonic Transducer Analyser	12
12.2 Visualizando os resultados obtidos na tomada de uma medida	12
12.2.1 Linha superior do visor LCD	12
12.2.2 Linha inferior do visor LCD (Impedância)	13
12.2.3 Linha inferior do visor LCD (Corrente)	14
13. Teste da "Moeda"	14
14. Fluxograma do software embarcado	15
14.1 Fluxograma do menu de seleção	15
14.2 Fluxograma do tipos de transdutores	15
14.3 Fluxograma do tipos de transdutores	17
14.3.1 Aferição do TRZ	18
14.4 Comunicando com a TRZ Interface	18
15. TRZ-Interface	19
15.1 Instalação	19
15.2 Parâmetros	19
15.2.1 Frequência Inicial	20
15.2.2 Frequência Final	20

15.2.3 Tensão	20
15.2.4 Pontos	20
15.2.5 Média	20
15.3 Dados de Saída	21
15.3.1 Frequência da antirressonância	21
15.3.2 Impedância da antirressonância	21
15.3.2 Frequência da ressonância	21
15.3.3 Impedância da ressonância	21
15.3.4 AF	21
15.3.5 Δ Z	21
15.4 Barra de Ferramentas	21
15.4.1 Medir	21
15.4.2 Salvar	21
15.4.3 Abrir	22
15.4.4 Transdutor de referência padrão	22
15.4.4.1 Descrição	22
15.3.4.2 Parâmetros	22
15.3.4.3 Intervalo dos valores	22
15.3.4.4 Criando novo padrão de referência	23
15.4.5 Opções de curva	23
15.4.6 Escala Logarítmica	24
15.4.7 Escala Linear	24
15.4.8 Fator de Potência	24
15.4.9 Salva Tela	24
15.4.10 Relatório dos resultados	24
15.4.11 Sobre ATCP Engenharia Física	25
15.5 Tela Gráfica	25
15.6 Barra de leitura do gráfico	25
15.6.1 Menu Arquivo	26
15.6.1.1 Medir	26
15.6.1.2 Salvar Como	26
15.6.1.3 Abrir	26
15.6.2 Menu Operações	26
15.6.2.1 Transdutor	27
15.6.2.2 Curva amarela	27

15.6.2.3 Escala Log 27	7
15.6.2.4 Escala Linear 27	7
15.6.2.5 Curva Verde 27	7
15.6.2.6 Salva Tela 27	7
15.6.2.7 Carrega Tela 27	7
15.6.2.7 Carrega Tela 27	7
15.6.3 Menu Relatório 27	7
15.6.4 Menu Configurações 27	7
15.6.4.1 Seleção da Porta 27	7
15.6.4.2 Idioma 27	7
15.6.5 Sobre 27	7
16. Advertências 28	8
17. Manutenção do Equipamento 28	8
18. Solução de Problemas 28	8
19. Assistência Técnica 29	9
20. Termo de Garantia 29	9
21. Termo de Responsabilidade 29	9

1. Introdução

Os equipamentos e produtos da empresa ATCP ENGENHARIA FÍSICA são projetados e fabricados para oferecer uma maior vida útil e um ótimo desempenho durante sua utilização.

Este Manual de Instalação e Operação contém informações importantes e necessárias para a correta utilização e manutenção do equipamento.

Atenção! A utilização imprópria deste equipamento bem como a não observância das informações e recomendações contidas neste manual, pode ocasionar danos ao produto ou má qualidade nos resultados finais dos trabalhos. Leia atentamente este manual antes de começar a utilizar o equipamento.

2. Definições

Fator de Potência: É a razão entre a potência ativa e reativa. O fator de potência de uma carga puramente resistiva é um e o de uma carga puramente capacitiva é zero. Normalmente o comportamento dos transdutores ultrassônicos oscila entre estes extremos.

Ressonância: É o fenômeno que ocorre quando o transdutor é excitado em sua frequência natural de vibração (modo série do circuito equivalente); na ressonância o transdutor atinge a maior amplitude de vibração em termos de força. Nos transdutores ultrassônicos a ressonância apresenta baixa impedância e é um mínimo local na curva Z(f).

Antirressonância: É o fenômeno que ocorre quando o transdutor é excitado em sua frequência natural de vibração (modo paralelo do circuito equivalente); na antirressonância o transdutor atinge a maior amplitude de vibração em termos de deslocamento. Nos transdutores ultrassônicos a antirressonância apresenta alta impedância e é um máximo local na curva Z(f).

Observamos o gráfico de caracterização do transdutor 20 kHz obtido através do equipamento TRZ + a TRZ-Interface.

3. Aplicação

O **<u>TRZ-Ultrasonic Transducers Analyzer</u>**, em conjunto com o Software <u>**TRZ-Interface**</u>, é um instrumento de alta tecnologia específico para o controle de qualidade, desenvolvimento e manutenção de transdutores ultrassônicos.

As funções e os modos de operação foram pensados para atender:

- Fabricantes de transdutores ultrassônicos; para a realização de controle de qualidade a partir de faixas de aceite para a frequência e impedância de operação.
- Usuários finais de máquinas de solda por ultrassom; para manutenção preventiva e/ou verticalização da manutenção corretiva de seus transdutores e conjuntos acústicos.
- Departamentos de P&D, empresas e Laboratórios de Pesquisas; para o desenvolvimento ou melhoria de transdutores ultrassônicos de potência.
- Laboratórios didáticos de engenharia elétrica; para demonstração dos conceitos relacionados a sistemas reativos, circuitos ressonantes e fator de potência.

4. Características gerais

TRZ - Ultrasonic Transducer Analyzer

Tecnicamente, o equipamento **TRZ - Ultrasonic Transducer Analyzer** (Analisador de Transdutores Ultra-sônicos) consiste em um impedâncimetro, que, por meio de uma varredura de frequência, extrai a frequência de ressonância e de antirressonância e os respectivos módulos das impedâncias. Além dessas informações o equipamento informa valores de corrente na frequência de interesse (ressonância ou antirressonância, dependendo do tipo de transdutor).

O software embarcado do equipamento oito opções tipos de transdutores de solda, oito de limpeza e oito de limpeza-tanque. Outros tipos e podem ser adicionados conforme a necessidade do cliente.

A medição ocorre aplicando um sinal com varredura de frequência ao longo de uma faixa que é discretizada em 104 pontos.

As faixas de varredura para cada tipo de transdutor foram determinadas através dos seguintes critérios: para transdutores de solda, 5% do valor da frequência central e um deslocamento superior da ordem de 20% da faixa estabelecida; para os transdutores de limpeza e limpeza-tanque, a faixa é de 25% do valor da frequência central e um deslocamento inferior da ordem de 20% da faixa estabelecida. Por exemplo, para transdutor de 20 kHz, sendo este de solda, a faixa é de 19,7 a 20,7 kHz (vide figura abaixo), já se este transdutor for um de limpeza e limpeza-tanque, a faixa é de 16,5 a 21,5 kHz.

Ilustração dos intervalos de freqüência analisados no caso de um transdutor de 20 kHz de solda (faixa cinza) e de um de 20 kHz de limpeza (faixa azul)

O software embarcado realiza um tratamento matemático (interpolação) que aumenta a precisão dos resultados; para transdutores de limpeza-tanque, o software realiza uma suavização da região onde estão concentradas as ressonâncias dos transdutores do tanque e reporta um valor médio.

TRZ-interface

O software **TRZ-interface** permite um maior aproveitamento dos recursos do equipamento **TRZ- Ultrasonic Transducer Analyzer** possibilitando o ajuste dos principais parâmetros:

- Frequência inicial e final da faixa de varredura
- Número de pontos de discretização
- Média do ponto.

No software **TRZ-Interface**, a faixa de varredura pode ser alterada modificando a frequência inicial e final. Quanto à discretização, esta pode ser alterada selecionando a quantidade de pontos que queremos para a realização da medida. Quanto mais estreita a faixa de varredura, maior o número de pontos e a média, mais precisa será a medição; contudo há um compromisso com o tempo de duração da medição.

No espaço de apresentação de resultados são listados os valores de frequência de ressonância e antirressonância assim como a frequência central do transdutor.

É importante destacar que o software é capaz de avaliar o transdutor em teste com relação a um padrão pré-estabelecido. Essa função é empregada para o controle da qualidade.

5. Especificações

Faixas de caracterização:

	Mínimo	Máximo	Unidade
Frequência	1	200	kHz
Impedância	0,1	200 k	Ohms
Tensão de excitação*	1,5	10	Vpp

Precisão para faixa de 10 a 100 kHz e de 10 ohms a 50k ohms (resistivos)

Frequência	± 0,02	-	%
Impedância*	± 3,9	-	%
Fase e (fator de potência)	Qualitativa	Qualitativa	-

*1,5 Vpp para a faixa de 0,1 a 100 ohm e 10 Vpp, para faixa de 10 a 200k ohms.

Atenção! O cabo das pontas de prova apresenta uma capacitância parasita de ≈ 120 pF que não é descontada pelo software embarcado ou pela Interface no cálculo da impedância.

6. Funções e Comandos

6.1 Painel Frontal e conector

1. Conector

Conector vermelho de 3 pinos com trava para ligação de um cabo de ponta de prova. O modelo do conector é MEDI SNAP, código comercial G1 1MA7-P03LPH9-0020 da empresa ODU. A ligação elétrica dos pinos do conector estão realizadas conforme figura a seguir:

NC (não conectado)

Sinal (ligado na garra jacaré vermelha)

GND (ligado na garra jacaré preta)

2. Display LCD (2 linhas / 16 caractéres)

Apresenta as informações necessárias para a utilização e configuração do equipamento. Pode possuir backlight verde ou azul ou cinza.

3. Tecla "SELECT"

Permite alterar entre as telas resultados transdutores e remoto.

6. Tecla "▲_(z/i)"

Na tela de resultados, a tecla $\blacktriangle_{(zi)}$ permite alterar entre a informação sobre impedância e corrente que são exibidas no display. Na tela de transdutores essa tecla permite alterar a lista de transdutores.

7. Tecla "▼^(OUT)"

Na tela de resultados, a tecla $\mathbf{\nabla}^{(\text{out})}$ permite a realização teste com amplitude de 10 V_{pp}. Na tela de transdutores, essa tecla permite alterar a lista de transdutores. Com o modo "Print" ligado (recurso opcional), esta tecla envia o resutado da medição para a impressora.

8. Tecla "START"

Inicia o processo para realização de uma medida.

6.2 Painel Traseiro

1. Porta Serial

Conector para comunicação serial, RS 232.

2. Switch

Liga e desliga o equipamento.

3. AC IN

Conector de entrada para cabo de alimentação elétrica 90-260VAC automática, 50~60Hz.

7. Acessórios

Cabo de alimentação AC. Ponta de Prova de 1 metro. Manual de Instalação e Operação.

8. Itens opcionais

Adaptador RS232/USB. Impressora térmica e recurso para impressão Interface TRZ.

9. Especificações Técnicas

Proteção contra choque elétrico	Classe I
Nível de proteção IP	IP40
Modo de operação	Operação contínua
Tensão de alimentação	90-260 VAC
Frequência	50/60 Hz
Potência máxima de consumo (repouso)	16 W
Potência máxima de consumo (operação)	50 W
Dimensões do equipamento (L x P x A)	255x380x130 mm
Dimensões da embalagem	390x110x280 mm
Peso do equipamento sem embalagem	2,3 kg
Peso do equipamento com embalagem	2,6 kg
Faixa de temperatura de trabalho	-25 a +70 °C

10. Antes de Instalar o Equipamento

Antes de instalar o equipamento verifique atentamente os seguintes itens:

- Próximo ao local onde será instalado o equipamento deve haver uma tomada de energia elétrica (AC) disponível com sistema de aterramento devidamente instalado.

- Deve haver uma bancada disponível para colocar o equipamento. Não instalar em locais com umidade e poeira excessivos, principalmente poeira com características abrasivas.

11. Instalação do Equipamento

Os procedimentos para instalação e configuração do **TRZ** são simples, podendo ser realizados pelo próprio usuário seguindo as informações descritas a seguir.

11.1 Conectando a ponta de prova

Passo 01 – Conecte a ponta de prova (fornecido junto com o equipamento) no conector vermelho **TRANSDUCER** localizado na parte frontal do equipamento.

11.2 Conectando o TRZ à rede elétrica

Passo 02 – Conecte o cabo de alimentação fornecido junto com o equipamento no conector [AC IN] localizado na parte de trás do equipamento, e em seguida conecte a outra extremidade a uma tomada devidamente instalada para essa finalidade.

Obs.: O equipamento possui seleção automática de tensão de 90-240 VAC 60Hz.

Passo 03 – Ligue o equipamento através do botão [Switch] localizado na parte de trás do equipamento. O equipamento apresentará rapidamente no visor LCD a tela sobre o endereço eletrônico da empresa ATCP Engenharia Física.

Em seguida o equipamento mostrará a tela da ultima operação.

12. Operação do Equipamento

Antes de começar a operar o equipamento, verifique se todos os passos descritos no item **11. Instalação do Equipamento** foram seguidos corretamente. Concluído este procedimento, o sistema estará pronto para realização das medidas.

O **TRZ** foi desenvolvido para possibilitar ao usuário uma maneira fácil, rápida e interativa de realizar os trabalhos de análise de transdutores ultrassônicos. A seguir serão apresentadas todas as informações para a correta operação e configuração do equipamento.

12.1 Fazendo uma medida via TRZ - Ultrasonic Transducer Analyzer

Passo 01 – Ligue o equipamento já previamente instalado através do botão [Switch] localizado na parte de trás do equipamento. Será apresentada por alguns instantes no visor LCD a seguinte tela:

Passo 02 – Para a escolha do tradutor pressione a tecla **[SELECT]** no painel frontal do equipamento. O primeiro tipo de transdutor (transducer type) que aparecerá na tela será o de solda (welding) de 15 kHz:

TRANSDU(CER TYPE
15 kHz	WELDI NG

Passo 03 – Selecione o transdutor em que será realizada a medida através das teclas $[▲_{(z/i)}]$ e $[▼^{(OUT)}]$, no painel frontal do equipamento.

Passo 04 – Para iniciar a caracterização do transdutor pressione a tecla [START]. Surgirá uma tela indicando que está ocorrendo a medição, "[MEASURING]"; através dos pontos pode-se observar a evolução da medição. O primeiro ponto indica o início, o segundo 50% concluído e o a conclusão.

O tempo de realização da aquisição é de aproximadamente 12 segundos. Após o término surgirá uma tela de apresentação dos resultados.

Após aquisição e análise da varredura, caso não seja detectada uma ressonância ou antiressonância, o equipamento apresenta a mensagem "*[ANTI-RESONANCE NOT FOUND]"* para os transdutores do tipo de solda (imagem abaixo),

ou a mensagem "*[RESONANCE NOT FOUND]"*, para os transdutores do tipo de limpeza (imagem abaixo).

12.2 Visualizando os resultados obtidos na tomada de uma medida

12.2.1 Linha superior do visor LCD

- Apresenta o valor da frequência da antirressonância para os transdutores de solda e a frequência da ressonância para os transdutores de limpeza e tanques.

12.2.2 Linha inferior do visor LCD (Impedância)

- Apresenta o valor da impedância referente à frequência de ressonância (transdutores de limpeza) ou da antirressonância (transdutores de solda). A unidade é Ohms (Ω). Para

valores de impedância maiores ou iguais a 1.000 Ω , é empregado o prefixo k do Sistema Internacional de Unidades.

12.2.3 Linha inferior do visor LCD (Corrente)

A linha inferior também apresenta o valor de corrente calculado no caso da aplicação de uma tensão de 1 V_{rms} sobre o uma carga resistiva com o valor de impedância indicado (I=1/V). A unidade é Ampères (A). Estes resultados são apresentados utilizando os prefixos do Sistema Internacional de Unidades. A faixa de valores possíveis é de 10 A a 5 μ A.

Para mudar a apresentação de impedância para corrente, deve-se pressionar a tecla
[▲_(z/i)] no painel frontal do equipamento.

Nota: A corrente é determinada pela equação I=1/V.

13. Teste da "Moeda"

O equipamento **TRZ - Ultrasonic Transducer Analyzer** é um instrumento inovador, que permite a realização de um teste bastante tradicional conhecido como teste da "moeda". Este é um teste para a avaliação qualitativa da amplitude de vibração em diferentes pontos da face do sonotrodo ou transdutor.

O teste é realizado com a aplicação durante 16 segundos de um sinal de 20 V_{pp} sobre o transdutor com a frequência indicada na tela da última caracterização.

Para realizar o teste da "moeda", deve-se pressionar a tecla $[V_{(OUT)}]$ no painel frontal do equipamento. O tempo do teste é de 16 segundos, entretanto se for desejado interromper o teste, deve-se pressionar qualquer botão no painel frontal do equipamento. A indicação deste teste em curso é apresentação intermitente (piscando) da mensagem **[TEST]** no display.

14. Fluxograma do software embarcado

14.1 Fluxograma do menu de seleção

- Apresentamos o fluxograma das telas do menu de seleção do hardware. As mudanças de tela ocorrem pressionando a tecla **[SELECT]** no painel frontal do equipamento.

14.2 Tabela sobre os modelos de transdutores

TRANSDUCER TYPE (TIPO TRANSDUTOR)	FAIXA DE MEDIÇÃO (kHz)	AJUSTE DE CURVA
15 kHz WELDING (solda)	14,0 - 16,0	Interpolação ¹
19 kHz WELDING (solda)	18,5 - 19,7	Interpolação ¹
20 kHz WELDING (solda)	19,6 - 20,8	Interpolação ¹
21 kHz WELDING (solda)	20,7 - 22,3	Interpolação ¹
30 kHz WELDING (solda)	29,4 - 32,1	Interpolação ¹
33 kHz WELDING (solda)	32,0 - 34,4	Interpolação ¹
35 kHz WELDING (solda)	34,3 - 37,0	Interpolação ¹
40 kHz WELDING (solda)	39,0 - 42,0	Interpolação ¹
50 kHz WELDING (solda)	48,0 - 53,0	Interpolação ¹

33 kHz D. SCALER	28,0 - 35,0	Interpolação ¹
37 kHz D. SCALER	34,9 - 43	Interpolação ¹
15 kHz CLEANING (limpeza)	11,5-16,5	Interpolação ¹
15 kHz CLEAN.T (limpeza-tanque)	11,5-16,5	Interpolação ¹ + Suavização ²
20 kHz CLEANING (limpeza)	16,5-21,5	Interpolação ¹
20 kHz CLEAN.T (limpeza-tanque)	16,5-21,5	Interpolação ¹ + Suavização ²
25 kHz CLEANING (limpeza)	21,2-27,7	Interpolação ¹
25 kHz CLEAN.T (limpeza-tanque)	18,0-28,0	Interpolação ¹ + Suavização ²
33 kHz CLEANING (limpeza)	27,3-35,8	Interpolação ¹
33 kHz CLEAN.T (limpeza-tanque)	26,0-36,0	Interpolação ¹ + Suavização ²
40 kHz CLEANING (limpeza)	33,0-43,0	Interpolação ¹
40 kHz CLEAN.T (limpeza-tanque)	30,2-44,2	Interpolação ¹ + Suavização ²
50 kHz CLEANING (limpeza)	44,0-54,0	Interpolação ¹
50 kHz CLEAN.T (limpeza-tanque)	36,0-56,0	Interpolação ¹ + Suavização ²
70 kHz CLEANING (limpeza)	56,0-76,0	Interpolação ¹
70 kHz CLEAN.T (limpeza-tanque)	56,0-76,0	Interpolação ¹ + Suavização ²
90 kHz CLEANING (limpeza)	76,0-96,0	Interpolação ¹
90 kHz CLEAN.T (limpeza-tanque)	76,0-96,0	Interpolação ¹ + Suavização ²

¹ Método empregado para determinar com maior precisão a freqüência e a impedância de ressonância ou antirressonância a partir de um ajuste da curva polinomial sobre os pontos discretos da medição.

² Método empregado para suavizar a curva resultante da medição com algoritmo de média móvel.

Nota: A ATCP Engenharia Física está disponível para criar novas configurações de faixas de medida e tipos de transdutores para atender necessidades específicas de seus clientes.

14.3 Fluxograma dos tipos de transdutores

Abaixo é mostrado o fluxograma de telas de seleção dos transdutores com o equipamento **TRZ-Ultrasonic Transducer Analyzer.**

14.3.1 Aferição do TRZ

- Tela para verificação da calibração do equipamento:

GAU	GI NG	
10	kHz	

- Para verificar a calibração do equipamento, deve-se medir um resistor de 4k7 no modo **[gauging]**. Bastar selecionar este modo e ordenar a medição.

14.4 Comunicando com a TRZ Interface

Passo 01 – Aperte a tecla [SELECT] no painel frontal do equipamento para selecionar a opção [REMOTE/STANDBY MODE] que indica que o equipamento está esperando ocorrer a comunicação com o PC.

REMOTE	-
STANDBY	MODE

Passo 02 – Conecte um Adaptador RS232/USB (fornecido como item opcional) na entrada **[Interface RS 232]** localizada na parte traseira do equipamento e a outra extremidade em uma entrada USB do computador. Ou, caso o computador tenha uma porta serial RS232, empregue um cabo com conectores tipo DB9.

Atenção! Para que o adaptador RS232-USB funcione corretamente é necessário que tenha sido instalado o driver do cabo.

Passo 03 - Inicie o Software TRZ-Interface.

Passo 04 – Selecione a porta de comunicação do PC com o Hardware através do menu "Configurações" – "Seleção da Porta F11"

🕑 TRZ-02 Port Setting 🔳 🗆 🗙	J
ESCOLHA DA PORTA SERIAL	
Porta serial COMM 10 💌	
OK	

Passo 05 – Conecte as pontas de prova do equipamento TRZ-Ultrasonic Transducer Analyzer nos conectores do transdutor a ser medido.

O testa da comunicação entre o Software TRZ-Interface e o TRZ-Ultrasonic
Transducer Analyzer pode ser realizada através do comando [Medir] do Software. A mensagem [REMOTE ON] no display indica que a medição está ocorrendo.

15. TRZ-Interface

O **TRZ-interface** foi desenvolvido para ser uma extensão intuitiva dos recursos do **TRZ-Ultrasonic Transducer Analyser,** através de uma interface gráfica amigável.

quivo Op	ierações Rela	itória Canfigu	rações So	bre											
Medir	Salvar J	Abrir T	iransdutor		- Log	Linear	Fp	• Salvor Tela	Relatório	Sobre					
PARA	ÂMETROS	5				LEIT	OR DE TE	LA							
1	Freq. inic	ial(Hz):	19700				į.	19700 Hz		130.7	ohms		2 m		
	Frea, fi	nal(Hz) :	20700	-								u Ag		-	11549tm
		loneño :	4	_	100 401										
		ensuo.	[1	_	neion con										
		Pontos :	200	-	10 60							\wedge			
		Média :	8	-	nonea	ane					/	- N			
	Tra	insdutor :	4		1 kO	hms								~	
APRO	OVADO							\backslash							
F	a:	20413,3	Hz		100 01	nms -									
Z	a :	23.01 kOł	nms				\sim								
	E	19790 21			10 01	nms									
	7r :	57.4 Ohr	ns											- /- N	
12	01.0				1 01	hms								1 4	
F	Fc :	20096,8	Hz			1									
Δ	F:	3,15 %				1			~~						- 0
Δ		4.009				19.7 k								20.7 k	

Tela principal do TRZ-interface caracterizando um transdutor de solda de 20 kHz

15.1 Instalação

Os procedimentos para instalação e configuração do **TRZ** são simples, podendo ser realizados pelo próprio usuário seguindo as informações descritas neste manual.

Passo 01 – Clique no ícone de Instalação do programa e siga as orientações para instalação do Software no computador.

Passo 02 – Copie os dois arquivos ".ocx" (que acompanham o arquivo de instalação ("TRZ-02 Interface.exe") para a pasta C:\WINDOWS\system32.

15.2 Parâmetros

15.2.1 Frequência Inicial

- É a frequência de partida para realização da caracterização. A unidade deste parâmetro é Hertz e a faixa de valores que pode assumir é de 1.000 a 200.000 Hz (1-200 kHz). O valor deste parâmetro deve ser necessariamente menor do que o do parâmetro seguinte "[Freq. final (Hz)]". Caso contrário, o software mostrará uma tela informando o erro.

Mensagem de erro por tentativa de inseri um Freq. Inicial.

15.2.2 Frequência Final

- É a frequência de parada para realização da caracterização. A unidade deste parâmetro é Hertz e a faixa de valores que pode assumir é de 1000 a 200.000 Hz (1-200 kHz). O valor deste parâmetro deve ser necessariamente maior do que o do parâmetro anterior "[Freq. inicial (Hz)]". Caso contrário, o software mostrará uma tela informando o erro (figura anterior).

15.2.3 Tensão

Através do ajuste deste parâmetro teórico é possível estimar o valor da corrente que o transdutor consumiria, caso fosse submetido àquele valor de tensão. Este recurso é útil para sistemas de solda por ultra-som.

15.2.4 Pontos

A faixa de varredura inicia-se pela frequência inicial e termina na frequência final. Esta faixa é discretizada em uma determinada quantidade de pontos. O software permite as seguintes opções para as quantidades de pontos: 50, 104, 200, 500, 1000. Conforme figura abaixo:

Seleção dos pontos de discretização

15.2.5 Média

É o número de vezes que o instrumento mede cada ponto da caracterização para cálcular a média. Por exemplo, se a média for um, a medida de Z e Fp será realizada apenas uma vez em cada um dos 104 pontos. Se a média for oito, cada ponto será medido oito vezes, ou seja, 832 no total (104 x 8). Para uma média de 128, o número total é de 15.312. **Em geral, o uso de média igual a quatro proporciona boa precisão e velocidade de medida** (quanto maior a média, maior o tempo de medição). O software oferece as seguintes opções de médias: 2, 4, 8, 16, 32, 64, 128. Conforme figura abaixo:

Seleção das médias

15.3 Dados de Saída

- Os **Dados de Saída** informam os principais valores para caracterização do transdutor medido nos pontos: ressonância, antirressonância e frequência central.

DADOS DE SAÍDA Fa : 0 Za: 0 Fr: 0 0 Zr: 0 Fc: ΔF: 0 ΔΖ: 0 Dados de Saída

15.3.1 [Fa]

- Apresenta a frequência de antirressonância.

15.3.2 *[Za]*

- Apresenta a impedância na antirressonância.

15.3.3 [Fr]

- Apresenta a frequência de ressonância.

15.3.4 *[Zr]*

- Apresenta a impedância na ressonância.

15.3.5 *[Fc]*

-Apresenta a frequência central ([Fa+Fr]/2).

15.3.6 [AF]

— .

- O ΔF é uma figura de mérito associada ao acoplamento eletromecânico do transdutor;

15.3.7 [\\Z]

- O ΔZ também é uma figura de mérito do fator de qualidade do acoplamento eletromecânico de um transdutor; _____.

15.4 Barra de Ferramentas

15.4.1 Medir

- Clicando no ícone **[Medir]** ou acionando a tecla F1 realizará a medida.

15.4.2 Salvar

- Clicando no ícone **[Salvar]** ou acionando a tecla F2, salvará os resultados no padrão ASCII. Aparecerá função nomear arquivo.

15.4.3 Abrir

-Clicando no ícone **[Abrir]** ou acionando a tecla F3, abrirá os arquivos salvos no padrão ASCII.

15.4.4 Transdutor de referência padrão

-Clicando no ícone **[Transdutor]** ou acionando a tecla F5, abrirá a tela de configuração do transdutor padrão.

ntervalo dos v	valores Mínimo	Máximo	Medido			
Fa (Hz):	0	0				
Za (Ohms) :	0	0				
Fr (Hz) :	0	0				
Zr (Ohms) :	0	0				
Fc (Hz):	0	0				
				1.5000		
No. D	escrição F	req inicial Fre	eq final Tensão	Ponto		
			<u>e</u>	- 9		

Figura 7: Configuração transdutor padrão

15.4.4.1 Descrição

- A descrição serve para identificar o transdutor de referência padrão.

15.4.4.2 Parâmetros

- A configuração dos parâmetros básicos (frequência inicial e final, pontos, tensão e média) está nesta caixa para facilitar o seu uso, pois clicando em "*[Selecionar]"* o usuário carregarão todos estes dados para a tela principal, conforme citado no item 15.1.

15.4.4.3 Intervalo dos valores

A faixa de tolerância determina os valores de mínimos e máximos que um determinado tipo de transdutor pode apresentar para seus dados de saída.

A **TRZ-interface** analisa os dados de saída (item 15.2) e os compara com os faixa de tolerância. Caso o transdutor medido tenha seus parâmetros dentro da tolerância, aparecerá na tela principal e na tela de configuração do transdutor de referência uma mensagem indicando que o transdutor está aprovado e os parâmetros ficam na cor verde, conforme figuras abaixo. Entretanto, se o transdutor estíver com algum parâmetro fora da tolerância, aparecerá uma mensagem indicando que está reprovado e o parâmetro que foi reprovado aparecerá em vermelho.

APROVAD	0		REPROVAL	DO			
Fa :	26556,9 Hz		Fa :	26556,9 Hz			
Za :	44.25 kOhms		Za :	44.25 kOhms			
Fr :	25381 Hz		Fr:	25381 Hz			
Zr :	21.3 Ohms		Zr :	21.3 Ohms			
Fc :	25968,95 Hz		Fc :	25968,95 Hz			
ΔF:	4,53 %		ΔF:	4,53 %			
ΔΖ:	20.77		ΔΖ:	20.77			
		transdutor foi			ue o	transdutor	foi

15.4.4.4 Criando novo padrão de referência

No.	Descrição	Freq. inicial	Freq. final	Tensão	Pontos
1	25 kHz limpeza	21200	27700		1
2					
4					•
4					<u>,</u>
Adicior	nar Alterar	Apag	a Selec	ionar C	<u>,</u> Cancela

Criando padrão de referência

Após realizar as configurações citadas nos itens 15.3.4.1, 15.3.4.2, 15.3.4.3. deve-se clicar em "**[Selecionar]**" para atualizar a tela principal com novos valores dos parâmetros. Para adicionar mais um tipo de padrão de referência, deve-se clicar em "**[Adicionar]**". Este novo padrão apresentará os valores dos parâmetros que estão selecionados. Após realizar nova parametrização, devemos valida-lá clicando na opção "**[Alterar]**". Para apagar algum tipo de padrão de referência, deve-se clicar na opção "**[Apagar]**".

Para cancelar qualquer opção, clique em "[Cancela]".

15.4.5 Opções de curva

	•	
Z	Ctrl + Z	
L	Ctrl + L	
С	Ctrl + C	
Ι	Ctrl + I	

Seleção da curva do Transdutor

Selecionando "*[*|*Z*|*]*" será apresentada a curva do módulo da impedância em função da frequência.

Selecionando "*[L]*" será apresentada a curva da indutância em função da frequência, calculada a partir da equação —. Esta opção faz sentido somente se o dispositivo em teste for indutivo.

Selecionando "**[C]**" será apresentada a curva da capacitância em função da frequência, calculada a partir da equação —. Esta opção faz sentido somente se o dispositivo em teste for capacitivo.

Selecionando "[I]" será apresentada a curva da corrente em função da frequência, considerando com V o valor informado no campo [Tensão] de acordo com a equação i —.

Para desabilitar a função **Tipos de curva**, deve-se clicar no respectivo ícone na barra de ferramenta, sendo que a palavra **OFF** escrita no ícone indicará que a função está desabilitada.

15.4.6 Escala Logarítmica

A escala logarítmica permite uma melhor visualização gráfica da curva de caracterização dos transdutores. A opção mono log está disponível para os seguintes gráficos: impedância em função da frequência e corrente em função da frequência. Essa escala logarítmica está na base 10.

15.4.7 Escala Linear

Todas as curvas geradas podem ser apresentadas na escala linear.

15.4.8 Fator de Potência

Figura 12: Seleção da curva do fator de potência

Selecionando "[**Fp**]" será apresentada a curva do fator de potência em função da frequência.

Selecionando "**[Fp%]**" será apresentada a curva do fator de potência x 100% em função da frequência.

Selecionando "[[T]]" será apresentada a curva do módulo da fase em função da frequência.

Selecionando "**[Pw]**" será apresentada o resultado da equação —, que corresponde a uma estimativa da potência que será absorvida pela carga quando submetida a uma tensão V (parâmetro **[Tensão]**).

Para desabilitar a função **Fator de Potência** deve-se clicar no ícone correspondente da barra de ferramenta, sendo que a palavra **OFF** escrita no ícone indicará que a função está desabilitada.

15.4.9 Salva Tela

Selecionando a opção "**[Salva Tela]**" mantém a curva da última medição em segundo plano. Essa opção somente está habilitada quando a escala for linear.

15.4.10 Relatório dos resultados

O software permite gerar um relatório de caracterização. O primeiro passo é clicar no botão relatório e na sequência preencher o formulário ilustrado a seguir.

DADOS ADICIONAI	S
Fabricante	ATCP Engenharia Física
Modelo	20 kHz de Solda
Número de série	100081
Operador	Thiago
Carga	Sem Carga
Observações	Demosntração para o manual
LIMPAR FORM	

Dados adicionais para a geração do relatório

A descrição dos parâmetros de medição (15.1), o gráfico (15.4) e os resultados (15.2) serão impressos no formado PDF.

15.4.11 Sobre ATCP

Na opção **[Sobre]** consta uma tela que informa a versão do software e os endereços de contato da empresa ATCP Engenharia Física.

15.5 Tela Gráfica

A tela gráfica permite analisar o comportamento gráfico do transdutor ultrassônico. A curva traçada na cor amarela indica a caracterização dos pontos de ressonância e antirressonância (15.3.5). Já a curva traçada na cor verde indica o rendimento do transdutor (15.3.8).

Acima da tela gráfica há três caixas de texto para a leitura da posição do curso. A caixa da direita informa o valor da frequência; a do meio informa valores de impedância, indutância, capacitância e corrente e a da esquerda informa o fator de potência, o fator de potência percentual e a potência absorvida estimada.

Figura 15: Tela gráfica

15.6 Barra de leitura do gráfico

Com a barra de leitura do gráfico podemos escolher e ler pontos específicos do gráfico.

15.6.1 Menu Arquivo

15.6.1.2 Medir

Função apresentada no item 15.3.1.

15.6.1.2 Salvar Como

Permite nomear e salvar os resultados em padrão ASC II.

15.6.3 Abrir

Função apresentada no item 15.3.3.

15.6.1.3 Sair

Fecha o programa.

15.6.2 Menu Operações

Operações	
Transdutor	F5
Curva amarela	►
Escala Log	F6
Escala Linear	F7
Curva verde	►
Salva Tela	F8
Carregar Tabela	
Menu Operações	

15.6.2.1 Transdutor

Função apresentada no item 15.3.4.

15.6.2.2 Curva amarela

Função apresentada no item 15.3.5.

15.6.2.3 Escala Log

Função apresentada no item 15.3.6.

15.6.2.4 Escala Linear

Função apresentada no item 15.3.7.

15.6.2.5 Curva Verde

Função apresentada no item 15.3.8.

15.6.2.6 Salva Tela

Função apresentada no item 15.3.9.

15.6.2.7 Carrega Tabela

Carrega para o **TRZ-Interface** os dados das medidas obtidos com os parâmetros do **TRZ-Ultrasonic Transducer Analyzer**.

15.6.3 Relatório

Função apresentada no item 15.3.10.

15.6.4 Menu Configurações

Figura 18: Meu de Configurações

15.6.4.1 Seleção da Porta

Permite a seleção da porta de comunicação do PC com o hardware.

15.6.4.2 Idioma

O TRZ-Interface oferece as seguintes opções de idiomas inglês, português e espanhol.

15.6.5 Sobre

Função apresentada no item 15.3.11.

16. Advertências

- ▲ A leitura de todas as informações contidas neste manual de instalação e operação é indispensável para a correta utilização do equipamento.
- ▲ A rede de energia elétrica onde será conectado o PC que executa o software **TRZ-Interface,** também deverá possuir obrigatoriamente um sistema de aterramento conforme especificado pela concessionária responsável pelo fornecimento de energia local.
- ▲ Não utilizar o equipamento para outra finalidade que não sejam as indicadas pelo próprio fabricante.
- ▲ O não cumprimento das instruções descritas neste manual durante a utilização do equipamento poderá fazer com que o período de garantia estabelecido pelo fabricante seja reduzido ou cancelado.

17. Manutenção do Equipamento

Para evitar uma possível deterioração do equipamento e mantê-lo sempre em condições satisfatórias de uso, faça frequentemente uma limpeza geral utilizando apenas um pano ligeiramente umedecido em água e sabão neutro.

Os acessórios e opcionais utilizados junto com o equipamento também deverão ser mantidos sempre limpos e em boas condições de uso.

Problema	Possível Causa	Solução	
	Tomada utilizada para ligar o equipamento está sem energia elétrica.	Utilize uma tomada que esteja em condições adequadas para uso.	
O equipamento não liga.	Cabo de alimentação danificado	Substitua o cabo de alimentação danificado por outro do mesmo tipo e em boas condições.	
	Chave I/O (Switch) está na posição "desligada".	Coloque a chave para a posição "ligada".	
O equipamento não recebe o	A ponta de prova está desconectada do equipamento.	Conecte a ponta de prova na entrada correspondente conforme descrito no item 11.1 deste manual	
sinal para processamento.	A ponta de prova está conectada na entrada errada.	Verifique se a ponta de prova está ligada no transdutor que será medido.	
Os resultados das medições parecem não estar condizentes com o objetivo	Realize o teste de aferição do equipamento, conforme descrito no item 15.2.1.	Caso o equipamento esteja descalibrado entre em contato com a ATCP Engenharia Física para análise e realização dos reparos.	

18. Solução de Problemas

O equipamento mede mesmo sem nada conectado na ponta	O cabo da ponta de prova apresenta uma capacitância parasita em torno de 120 pF que não é descontada pelo software embarcado ou pela Interface.	Contabilizar a capacitância parasita do valor medido, se o valor de impedância absoluto for necessário.
---	---	--

19. Assistência Técnica

Caso o equipamento apresente alguma manifestação fora do normal, verifique se o problema está relacionado com algum dos problemas relacionados no quadro do item **18. Solução de Problemas**. Se mesmo assim não for possível solucionar o problema, entre em contato com a ATCP Engenharia Física para análise e realização dos reparos.

20. Termo de Garantia

A ATCP Engenharia Física oferece para este equipamento a garantia de 06 meses, a partir da data de compra, contra defeitos de material e/ou fabricação que nele se apresentar.

Fatores que implicam na perda da garantia:

1- Inobservância dos cuidados recomendados neste manual com relação à instalação e operação do equipamento;

2- Acidente, queda, instalação inadequada ou qualquer outro dano provocado por uso incorreto ou ação de agentes naturais.

3- Violação, conserto ou qualquer outra modificação ou alteração executadas no equipamento ou em suas partes por pessoal não autorizado pela ATCP Engenharia Física;

Após o vencimento do período de garantia, todos os serviços, peças e despesas serão cobrados conforme norma vigente da empresa.

21. Termo de Responsabilidade

A empresa ATCP Engenharia Física assume a total responsabilidade técnica e legal pelo produto **TRZ-Ultrasonic Transducers Analyzer** e do software **TRZ-Interface** e afirma que todas as informações aqui prestadas referentes ao produto contidas neste Manual de Instalação e Operação são verdadeiras.

<u>ANOTAÇÕES:</u>