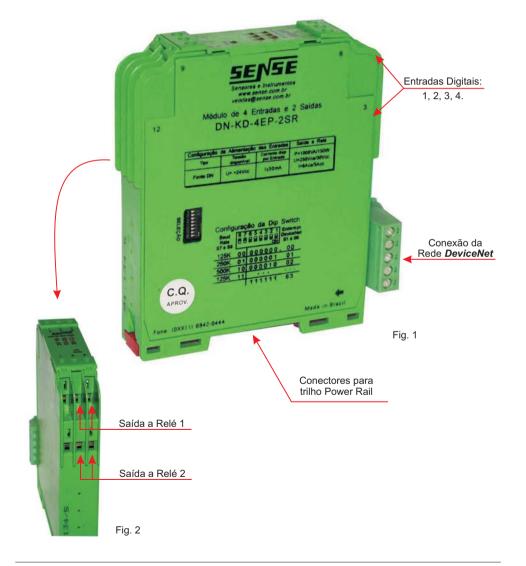


MANUAL DE INSTRUÇÕES


DeviceNet

Módulo I/O - Digital 4 Entradas e 2 Saídas a Relé

Entradas e Saída a Relé

Manual de Instruções

Sense

Módulo I/O DeviceNet - DN-KD-4EP-2SR

Configuração do Módulo na Rede DeviceNet:

O endereçamento e a velocidade de comunicação são configurados via chave dipswitch localizada na lateral do módulo, como standart as peças vem posicionadas em ON (S1 até S8).

Nota: Antes de configurar o endereçamento certifique-se que somente este módulo esteja com o endereço escolhido, caso o endereço ajustado coincidir com outro equipamento os dois módulos não irão funcionar. Para substituição de módulos, vide "Substituição do Módulo *DeviceNet*" neste manual.

Fig. 5

Tab. 6

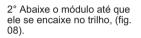
Endereçamento DeviceNet:

O endereçamento (chaves S1 à S6) e a taxa de velocidade de comunicação (chaves S7 e S8) do módulo na rede *DeviceNet* devem ser configurados, conforme:

Configuração da Dip Switch

Baud Rate S7 e S8	8 7	6 5 4 3 2 1 ON	Endereço DeviceNe S1 a S6
125K	00	000000	00
250K	01	000001	01
500K	10	000010	02
125K	11		
		111111	63

_													
	<u> </u>	8/6	3/0	\$/6	3/6.	$\sqrt{\epsilon}$			is/6.	3/0	\$/6	3/6	3/3
00	0	0	0	0	0	0	32	1	0	0	0	0	0 (
01	0	0	0	0	0	1	33	1	0	0	0	0	1
02	0	0	0	0	1	0	34	1	0	0	0	1	0
03	0	0	0	0	1	1	35	1	0	0	0	1	1
04	0	0	0	1	0	0	36	1	0	0	1	0	0
05	0	0	0	1	0	1	37	1	0	0	1	0	1
06	0	0	0	1	1	0	38	1	0	0	1	1	0
07	0	0	0	1	1	1	39	1	0	0	1	1	1
08	0	0	1	0	0	0	40	1	0	1	0	0	0
09	0	0	1	0	0	1	41	1	0	1	0	0	1
10	0	0	1	0	1	0	42	1	0	1	0	1	0
11	0	0	1	0	1	1	43	1	0	1	0	1	1
12	0	0	1	1	0	0	44	1	0	1	1	0	0
13	0	0	1	1	0	1	45	1	0	1	1	0	1
14	0	0	1	1	1	0	46	1	0	1	1	1	0
15	0	0	1	1	1	1	47	1	0	1	1	1	1
16	0	1	0	0	0	0	48	1	1	0	0	0	0
17	0	1	0	0	0	1	49	1	1	0	0	0	1
18	0	1	0	0	1	0	50	1	1	0	0	1	0
19	0	1	0	0	1	1	51	1	1	0	0	1	1
20	0	1	0	1	0	0	52	1	1	0	1	0	0
21	0	1	0	1	0	1	53	1	1	0	1	0	1
22	0	1	0	1	1	0	54	1	1	0	1	1	0
23	0	1	0	1	1	1	55	1	1	0	1	1	1
24	0	1	1	0	0	0	56	1	1	1	0	0	0
25	0	1	1	0	0	1	57	1	1	1	0	0	1
26	0	1	1	0	1	0	58	1	1	1	0	1	0
27	0	1	1	0	1	1	59	1	1	1	0	1	1
28	0	1	1	1	0	0	60	1	1	1	1	0	0
29	0	1	1	1	0	1	61	1	1	1	1	0	1
30	0	1	1	1	1	0	62	1	1	1	1	1	0
31	0	1	1	1	1	1	63	1	1	1	1	1	1

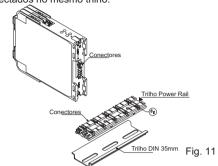

Sense

Tab. 4

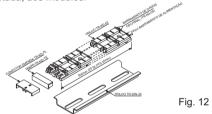
Fixação do Módulo:

A fixação do módulo KD internamente no painel deve ser feita utilizando-se de trilhos de 35 mm (DIN-46277), com opção de utilização de Power Rail. O cabo *DeviceNet* deve ser conectado na lateral do módulo e caso seja utilizada a opção com Power Rail este cabo deve ser conectado somente em um dos módulos, pois o Power Rail faz a distribuição do cabo *DeviceNet* para os outros módulos do mesmo trilho, para fixá-lo siga os procedimentos abaixo:

Cuidado: Na instalação dos módulos no trilho com um sistema Power Rail, os conectores não devem ser forçados demasiadamente para evitar quebra dos mesmos, interrompendo o seu funcionamento.


Montagem na Horizontal:

Recomendamos que os módulos, sejam montados na posição horizontal afim de que haja melhor circulação de ar e que o painel seja provido de um sistema de ventilação evitando o sobreaquecimento dos componentes internos.


Sistema Power Rail:

Consiste de um sistema onde as conexões de alimentação e comunicação são conduzidas e distribuídas no próprio trilho de fixação, através de conectores multipolares localizados na parte inferior do módulo. Este sistema visa reduzir o número de conexões externas entre os instrumentos da rede conectados no mesmo trilho.

Trilho Autoalimentado tipo "Power Rail":

O trilho power rail TR-KD-05 é um poderoso conector que fornece interligação dos instrumentos conectados ao tradicional trilho 35mm. Quando unidades do KD forem montadas no trilho automaticamente a alimentação, shield e comunicação da rede será conectada, aos módulos.

Sistema Plug-In:

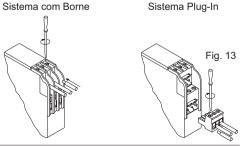
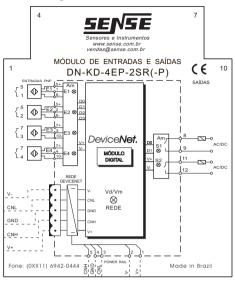

Fig. 8

Fig. 9

Fig. 10


Neste sistema as conexões dos cabos são feitas em conectores tripolares que de um lado possuem terminais de compressão, e de outro lado são conectados ao equipamento.

Este sistema tem por finalidade facilitar a instalação e o arranjo da fiação além de contribuir na manutenção possibilitando a rápida substituição do equipamento. Para que o instrumento seja fornecido com o sistema plug-in basta acrescentar no final do código "-P".

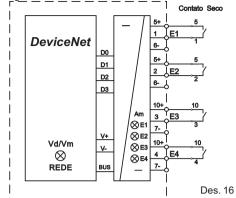
3 4 Sense

Módulo I/O DeviceNet - DN-KD-4EP-2SR **Entradas Digitais:**

Des 14

Conexão das Entradas:

As entradas digitais do módulo DN-KD-4EP-2SR podem ser acionadas por sensores de proximidade (indutivos, capacitivos, etc.) à 2 ou 3 fios, bem como contatos secos (botoeiras, botões de comando, comutadores, chaves fim-de-curso, etc.).


Fig. 15

Conexão Contato Seco:

O módulo admite a conexão de contatos secos como, botões de comando, comutadores, chaves fim-de-curso, etc.

A interconexão dos contatos secos é similar a ligação do sensor a 2 fios.

Diagrama de Conexão Contato Seco:

O que é Sensor de Corrente Contínua a 2 Fios:

São sensores em corrente contínua similares ao PNP e NPN, porém sem o terceiro fio que alimentaria o

Conexão Sensor 2 Fios:

O módulo permite a conexão de sensores de corrente contínua a dois fios, versão N4 (NA) e N5 (NF).

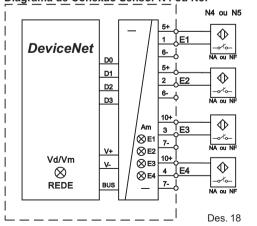

A alimentação do circuito interno é obtida através de uma pequena corrente que circula pela carga.

Tabela de Conexão do Sensor:

Entrada	Bornes
E 1	5 (+) e 1 (E1)
E 2	5 (+) e 2 (E2)
E 3	10 (+) e 3 (E3)
E 4	10 (+) e 4 (E4)

Tab.

Diagrama de Conexão Sensor N4 ou N5:

Conexão Sensor a 3 Fios:

O módulo permite a conexão de sensores de corrente contínua a 3 fios (PNP).

O que é Sensor de Corrente Contínua a 3 Fios:

Os sensores de proximidade em corrente contínua são alimentados em 24 Vcc através dos fios positivo marrom (+) e azul (-) do sensor. Possuem no estágio de saída um transistor que tem como função chavear (ligar ou desligar) a carga conectada ao sensor.

Tabela de Conexão do Sensor:

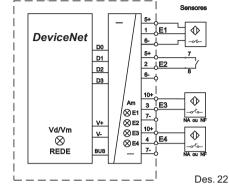
Entrada	Bornes
E 1	5 (+), 1 (E1) e 6 (-)
E 2	5 (+), 2 (E2) e 6 (-)
E 3	10 (+), 3 (E3) e 7 (-)
E 4	10 (+), 4 (E4) e 7 (-)

Diagrama de Conexão Sensor 3 Fios:

Cor de Fios dos Sensores:

As cores dos fios dos sensores são normalizadas internacionalmente e a sua função está indicada na tabela abaixo:

Cor	Função
Marrom	Positivo
Azul	Negativo
Preto	NA
Branco	NF


Tab.

Nota: Quando utilizar sensores a 4 fios, escolha a saída NA ou NF do sensor, configurando inclusive o relé para operar normalmente energizado com o sensor desacionado (saída NF) e lembre-se de isolar a saída não utilizada.

Entradas Simultâneas:

Cada entrada do módulo permite a conexão de um tipo de sensor diferente, portanto pode-se utilizar um sensor PNP na entrada E 1. um contato seco na entrada F 2 e assim sucessivamente

Diversos tipos de Sensores sendo Utilizados:

Alimentação das Entradas:

A alimentação das entradas digitais é provida pelo modulo DeviceNet DN-KD-4EP-2SR, utilizando o próprio 24 Vcc da rede.

Capacidade das Entradas:

A capacidade que o módulo fornece para as entradas é de 200 mA. sendo que individualmente o módulo fornece 50 mA para cada entrada.

As entradas possuem proteção contra curto-circuito quando em condições normais de opreação (sem curto-circuito) e inversão de polaridade tipo térmica interrompendo a circulação de corrente até que seja restituído a condição normal.

Nota 1: Quando ocorre curto circuito em uma das entradas, devido utilizarem a mesma fonte interna todas as outras três são desativadas.

Nota 2: Mesmo ocorrendo curto-circuito ou inversão de polaridade prolongado o módulo digital não desaloca e não compromete o funcionamento da rede basta restabelecer a condição normal de operação.

M1:1.15/3

Simulação das Entradas:

Com Sensor à 3 Fios:

Alimente o módulo, conecte o sensor na entrada desejada conforme seu diagrama de conexões e observe que ao acionar o sensor (NA) deve verificar o imediato acionamento do led que irá ascender.

Diagrama de Conexão:

Entrada Endereçamento M1:1.15/0 2 M1:1.15/1 3 M1:1.15/2

A tabela abaixo considera que o módulo foi mapeado

para o endereço M1:1.15, mas pode-se utilizar

qualquer endereco de memória M1 desde que este

não sobreponha algum endereco utilizado.

Tabela dos Bits de Entrada:

Tab. 25

Nota: Verifique a entrada que está sendo acionada corresponde corretamente ao led que está ascendendo.

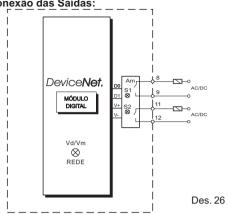
Com Jump:

Faça a alimentação do módulo de acordo com a alimentação das entradas, descrito no item a seguir, realize a ligação através de um "iump" na entrada em que desejar testar, em seguida, verifique o imediato acionamento do led que irá ascender.

A ligação através de "jump" é similar a conexão por contato seco

Diagrama de Conexão:

Fig. 24


Nota 1: Tanto na opção com ou sem sensor deve-se testar cada entrada para verificar seu funcionamento.

Nota 2: Aconselha-se também, monitorar a tensão das cargas antes do equipamento entrar em operação, verificando-se desta forma se a carga foi ligada ao borne correto.

Saídas Digitais:

O sistema do módulo da saída a relé são formados pelo módulo DN-KD-4EP-2SR, com 2 saídas aptas a chavear cargas em CA ou CC.

Conexão das Saídas:

As saídas digitais do módulo DN-KD-4EP-2SR são utilizados para acionar lâmpadas, sinalizadores luminosos, sirenes, contatores, solenóides, etc.

O sinal aplicado a saída é comandado pelo PLC e chega ao módulo através da rede DeviceNet.

Verificação das Saídas:

Pode-se verificar o funcionamento da saída, utilizando o software de programação lógica de intertravamento (RS Logix), forçando em "1" o bit correspondente que comanda a saída que deseja-se verificar, com isso, acionará o led e a saída, sendo que a tensão pode ser verificada utilizando-se um voltímetro diretamente na saída, nos bornes conforme tabela abaixo.

Tabela de Conexão das Saídas:

Saída	Bornes
S 1	11 e 12
S 2	8 e 9

Obs: O procedimento de simulação das saídas irá operar somente se o módulo estiver corretamente mapeado na memória do scanner DeviceNet ("SCAN LIST") e se o software de programação da lógica de controle estiver ON LINE, sob o programa de comunicação do micro com a CPU (RS LINX).

Capacidade das Saídas:

Verifique se a carga não excede a capacidade máxima da saídas apresentada na tabela abaixo:

Relé	CA	СС
Potência	600 VA	90 W
Tensão	250 Vca	30 Vcc
Corrente	2 Aca	3 Acc

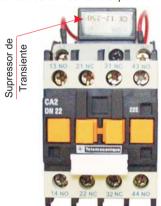
Tah 28

Alimentação para as Saídas:

A alimentação para as saídas é necessário a utilização de uma fonte externa conectado a carga podendo ser em CA ou CC, respeitando a capacidade de chaveamento das saídas.

Tabela dos Bits de Saída:

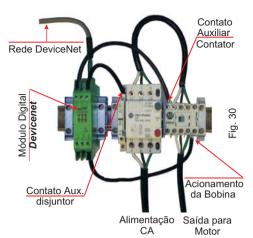
A tabela abaixo considera que o módulo foi mapeado para o endereço M0:1.15, mas pode-se utilizar qualquer endereco da memória M0 desde que este não sobreponha algum endereco já utilizado.


Saída	Endereçamento			
1	M0:1.15/0			
2	M0:1.15/1			

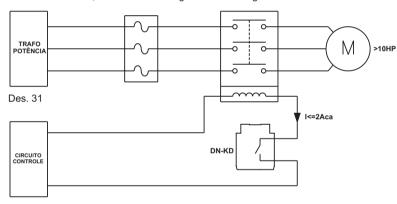
Tab. 29

Supressor de Transiente:

27

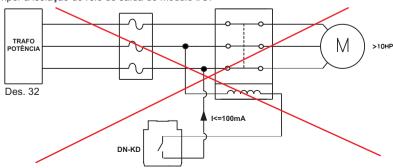

Aconselhamos a utilização de supressores de transiente nas cargas indutivas CA, principalmente em contatores com corrente superior a 100mA.

Aplicação em CCM:


Este módulo é ideal para automação em CCM, pois possue saídas a relé, que podem ligar diretamente os contatores dos motores além de suas entradas permitir a monitoração de:

- Colamento dos contatos do contator, através da monitoração do contato auxiliar.
- Detecção de desarme do disjuntor, através de seus contatos auxiliares.
- Monitoração do relé térmico, também pelo seu contato auxiliar.

Circuito Para Aplicação em CCM:


Recomendamos para o caso de grandes motores, utilizar contatores auxiliares ligados aos módulos KD e quando for necessário o chaveamento direto do contator principal, nunca utilize nenhuma das fases do motor para acionamento do contator, devido aos ruidos gerados no desligamento do motor.

Instalação Não Recomendada:

Caso seja impreterível utilizar as fases que alimentam o motor elétrico para acionar o contator do motor, opção que não recomendamos a corrente máxima de chaveamento da saída a relá do KD não deve exceder 100 mA.

O motivo de tal limite basea-se em restringir o tamanho do contator e por consequencia o tamanho do motor acionado, prevenindo contra os picos de tensão que o motor gera após seu desligamento, que inclusive podem romper a isolação do relé de saída do módulo I/O.

Configuração do PLC:

Mapeamento de Memória:

Os dados digitalizados do módulo utilizam a rede **DeviceNet**, para chegar ao PLC, e especificamente são trocados com o cartão SCANNER.

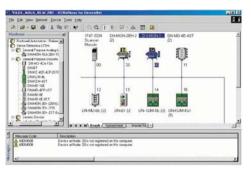


Fig. 33

Uma vez que os dados cheguem ao PLC devem ser armazenados em uma memória para poder ser acessado pelo programa com a lógica de intertravamento.

Inicialmente após a montagem física da rede com os módulos e outros componentes, deve-se instruir o SCANNER do PLC sobre os equipamento da rede, com a forma e quantidade de informações que devem ser trocadas.

O software de configuração da rede **DeviceNet** (RS NetWorx) tem como função básica armazenar no scanner as informações necessárias para a troca de dados com os equipamentos de campo.

Arquivo EDS:

Para que não seja necessário digitar as informações de configuração de cada equipamento, o software de configuração da rede utiliza um arquivo eletrônico chamado EDS "Electronic Data Sheet", este arquivo que utiliza o formato texto, traz informações do equipamento, tais como: fabricante, modelo, vendor ID, número de bytes de entrada e saída utilizados, tipos de comunicação suportados, códigos para configuração interna do instrumentos (ex.: tipo de entrada ou saída, condição sob defeito, etc).

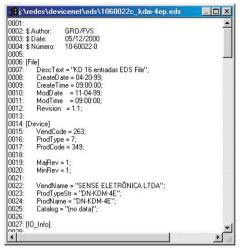


Fig. 34

A última versão do arquivo EDS do módulo digital está disponível para download em nosso site na Internet, e deve ser carregado no software de configuração antes de iniciar a configuração da rede.

Scan List:

O primeiro passo para a configuração do scanner para que o módulo analógico possa funcionar, deve ser executado incluindo-se o módulo no SCAN LIST do scanner.

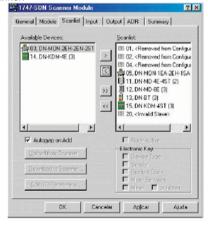
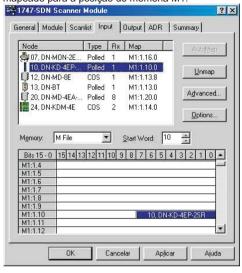



Fig. 35

Observe que somente os equipamentos apresentados na lista a direita estão sendo considerados para a troca de informações, os equipamentos apresentado na lista da esquerda foram encontrados na rede mas não estão mapeados.

Mapeamento das Entradas:

O módulo digital requer 1 word para todas as entradas digitais (totalizando: 1 word ou 2 bytes), conforme ilustra a figura seguinte para um módulo analógico mapeado para a posição de memória M1.

Mapeamento das Saídas:

A saída do módulo digital requer 1 word (2 bytes) de memória para armazenar o comando para a sua saída, conforme ilustrado na figura seguinte para um módulo digital mapeado para a posição de memória M0.



Fig. 36 Fig. 37

Lógica de Intertravamento:

A lógica de intertravamento desenvolvida para a aplicação pode utilizar diretamente os endereços M1 ou M0, ou pode ainda transferir os dados para memórias auxiliares do arquivo N. conforme o exemplo a sequir:

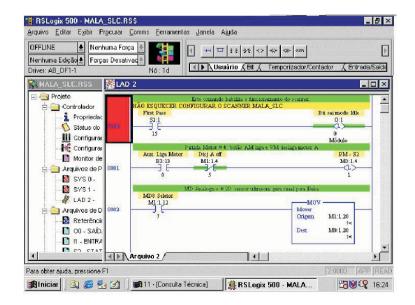
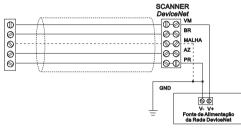


Fig. 38


Cuidados com a Rede DeviceNet:

Malha de Aterramento:

Um dos pontos mais importantes para o bom funcionamento da rede *DeviceNet* é a blindagem dos cabos, que tem como função básica impedir que fios de força possam gerar ruídos elétricos que interfiram no barramento de comunicação da rede.

NOTA: Aconselhamos que o cabo da rede **DeviceNet** seja conduzido separadamente dos cabos de potência, e não utilizem o mesmo bandejamento ou eletrodutos.

Para que a blindagem possa cumprir sua missão **é de extrema importância** que o fio dreno esteja aterrado **somente em um único ponto**.

Des. 39

O cabo **DeviceNet** possui uma blindagem externa em forma de malha, que deve ser sempre cortada e isolada com fita isolante ou tubo plástico isolador em todas as extremidades em que o cabo for cortado, conforme ilustra a figura 51.

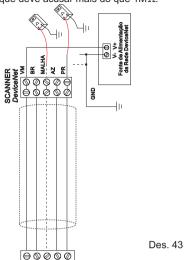
Deve-se tomar este cuidado na entrada de cabos de todos os equipamentos, principalmente em invólucros metálicos, pois a malha externa do cabo não deve estar ligada a nenhum ponto e nem encostar em superfícies aterradas.

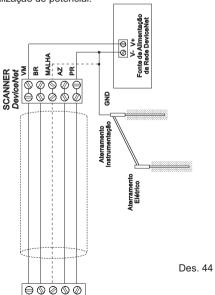
Fig. 40

Existe ainda um fio de dreno no cabo **DeviceNet**, que eletricamente está interligado a malha externa do cabo, e tem como função básica permitir a conexão da malha a bornes terminais.

Inclusive todos os equipamentos *DeviceNet* possuem um borne para conexão do fio de dreno, que internamente não está conectado a nenhuma parte do circuito eletrônico, e normalmente forma uma blindagem em volta do circuito através de pistas da placa de circuito impresso.

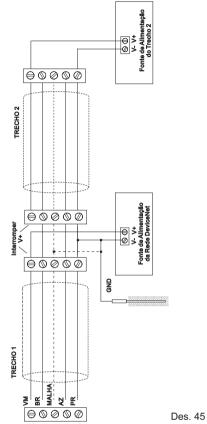
Fig. 41


Da mesma forma que a blindagem externa, aconselhamos isolar o fio de dreno em todas as suas extremidades com tubos plásticos isoladores, conforme ilustra a figura 51, a fim de evitar seu contato com partes metálicas aterradas nos instrumentos. Todos estes cuidados na instalação devem ser tomados para evitar que a malha ou o fio de dreno sejam aterrados no campo.


Fig. 42

Sense 11 12 Sense

Ao final da instalação deve-se conferir a isolação da malha e dreno em relação ao aterramento, e com um multímetro que deve acusar mais do que $1M\Omega$.



Após este teste o fio dreno deve ser interligado ao negativo "V-" da rede no borne "-" da fonte de alimentação que energizara a rede. Então ambos "V-" e "-" devem ser ligados ao sistema de aterramento de instrumentação da planta em uma haste independente do aterramento elétrico, mas diferentes hastes podemser interconectadas por barramento de equalização de potencial.

Blindagem de Redes com Múltiplas Fontes:

Outro detalhe muito importante é quando a rede **DeviceNet** utiliza duas ou mais fontes de alimentação e somente uma delas deve estar com o negativo da fonte aterrado em uma haste junto com o fio de dreno da rede.

Observe que neste caso as fontes de alimentação não devem ser ligadas em paralelo, e para tanto deve-se interromper o positivo, para que em um mesmo trecho não exista duas fontes.

CUIDADO!

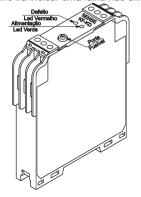
Repetimos: é de extrema importância que a malha de aterramento esteja aterrada somente em um único ponto junto a fonte de alimentação da rede. Aconselhamos que toda vez que houver manobras no cabo da rede ou manutenção nos instrumentos, se desligue a conexão do dreno com o negativo da fonte para se verificar a isolação do fio dreno, que não pode está aterrado em qualquer outro ponto da rede, pois as manobras dos cabos muitas vezes podem romper a isolação do cabo conectando a malha a eletrodutos ou calhas aterradas.

Fonte de Alimentação da Rede:

Outro ponto muito importante é a fonte de alimentação da rede *DeviceNet*, e aconselhamos a utilização da fonte Sense modelo: DN-KF-2410J/110-220Vca, que possui as características:

- tensão de saída ajustável de 24 a 28Vcc.
- capacidade de saída suporta pico de mais de 10A
- equipada com proteção de surte até 1000Vpp

Sendo que a proteção de picos de surge (certificação CE categoria 3 para pulsos de surge), transitórios gerados na rede elétrica que alimenta a fonte de alimentação possam passar para a rede **DeviceNet** e causar a queima dos módulos de I/O.


Monitor de Alimentação:

O monitor de Alimentação KF-KD é um instrumento que tem a função de receber a alimentação de 24 Vcc e distribui-la para o trilho autoalimentado (TR-KD-05).

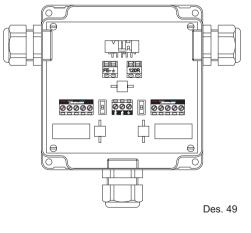
Monitoração de Defeitos:

O monitor possui um led verde que indica a presença de alimentação 24 Vcc na entrada, caso a tensão de alimentação caia abaixo do mínimo permitido (20 Vcc) ou a corrente consumida seja maior que 4A o circuito de sinalização de defeitos irá sinalizar a anomalia através de um led vermelho montado no painel frontal.

Nota: Para que o sistema de monitoração de defeitos possa operar corretamente o módulo deve estar alimentando pelo menos uma unidade do módulo KD, caso contrário irá indicar uma falha não existente.

Distribuidor de Alimentação:

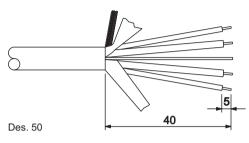
Também aconselhamos a utilização do módulo de distribuição de alimentação Sense modelo: DN-MD-2-DA-VT para a conexão da fonte de alimentação na rede, oferecendo as seguintes vantagens:


- bornes aparafusáveis para conexão de dois trechos de rede e para a fonte de alimentação
- borne para conexão do fio de aterramento da rede,
- · leds de sinalização de alimentação nos trechos,
- sinalização dos trechos alimentados pela fonte.
- sinalização de irregularidades no trecho não alimentado pela fonte local,
- chave dipswitch para comandar a desenergização dos trechos para verificações e manutenção,

proteção para picos de surge na entradas da fonte local e nos trechos de entrada e saída da rede.

Diagrama do Distribuidor de Alimentação:

Vide manual.


Des. 47

Sense 13 14 Sense

Conexões do Cabo de Rede:

Fazer a pontas dos fios conforme desenho:

A malha de blindagem geral do cabo e as fitas de alumínio do par de alimentação (VM e PR) e do par de sinal (BR e AZ) devem ser cortados bem rente a capa cinza do cabo. Para evitar que a malha geral do cabo encoste em partes metálicas, aplicar fita isolante ou o tubo isolante termo-contratil (fornecido com o kit de terminais). Para fixar o tubo termo encolhível ao cabo utilizar uma pistola de ar quente.


Terminais:

Sense

Para evitar mau contato e problemas de curto circuito aconselhamos utilizar terminais pré-isolados (ponteiras) cravados nos fios.

Os produtos Sense são fornecidos com 5 terminais branco que devem ser utilizados no cabo *DeviceNet* fino.

Já para o cabo grosso indicamos utilizar o terminal preto nos fios vermelho (VM) e preto (PR); no fio de malha (Dreno); nos fios branco (BR) e azul (AZ) devem ser utilizados os terminais branco duplo.

Nota: aconselhamos também utilizar o tubo isolante verde, fornecido com o kit para isolar o fio dreno.

Instalação do Cabo:

Siga corretamente o procedimento abaixo:

Fig. 55

1 - Faça a ponta do cabo conforme o item anterior e aplique os terminais fornecidos no kit.

Fig. 56

2 - Introduza os terminais do cabo na conexão de entrada e saída da rede através de borne plug-in.

Fig. 57

Nota: Utilize uma chave de fenda adequada e não aperte demasiadamente para não destruir o borne.

ig. 58

3 - Confira se a conexão está firme, puxando levemente os fios, verificando se estão bem presos ao borne.

CUIDADO!

Os fios sem terminais (ponteiras) podem causar curto-circuito, interrompendo ou danificando componentes de toda a rede.

Display do Scanner DeviceNet:

O display do scanner irá piscar o endereço do nó com problema e o código de erro (vide manual do scanner com a lista de erros completa).

Fig. 59

Erro	Descrição Tab. 60		
00	funcionando perfeitamente		
72	escravo que parou de se comunicar		
73	EDS trocado		
78	escravo configurado no scan list mas não encontrado na rede		
79	scanner sem comunicação (vide fonte de alimentação)		
80	CPU no mode IDLE (passar para RUN)		
91	erro de comunicação grave, resetar o PLC		
92	falta de alimentação 24Vcc na rede		

Nota: outros problemas vide a lista de *Troubleshooting* em nosso site na internet.

CUIDADO!:

Prestar muita atenção ao manipular o cabo da rede pois um leve curto-circuito pode causar sérios danos e interromper o funcionamento da rede.

Curto-circuito nos fios de alimentação VM e PR

Interrompe o funcionamento de toda a rede e pode danificar algum equipamento.

Curto-circuito nos fios de comunicação AZ e PR

Interrompe o funcionamento da rede, e de DIFÍCIL localização, pois deve-se secionar a rede em partes para se localizar o defeito.

Curto-circuito na alimentação e comunicação

Interrompe o funcionamento e pode queimar o chip de comunicação **DeviceNet** do equipamento.

Tenha muito cuidado com os módulos de distribuição, pois vários equipamentos podem ser queimados simultaneamente.

Substituição do Módulo DeviceNet:

Caso haja alguma dúvida com relação ao funcionamento de algum equipamento ligado na rede, e deseja-se substitui-lo, proceda:

- 1 retirar o equipamento sob suspeita da rede
- 2 programar o endereço DN no novo módulo (dipswitch)
- 3 Insere-se a nova peça que deverá estar com o led verde piscando inicialmente, e ficará aceso constantemente.
- 4 Caso o led não pare de piscar, repita os passos anteriores.

<u>CUIDADO!</u>: caso o endereço ajustado erroneamente coincidir com algum outro equipamento que esteja funcionando na rede, o led da rede do último equipamento colocado irá piscar e ao se reinicializar o sistema, os dois equipamentos com o mesmo endereço não irá funcionar.

5 - Verifique se o módulo requer configuração do tipo de entrada, consultando os documentos do projeto do rede, e caso necessário utilize o software de configuração da rede para efetuar a programação no verso do módulo.

Adição de Novo Equipamento na Rede:

Quando um novo equipamento é conectado o seu led de rede fica piscando em verde significando que não existe configuração no scanner para este endereço.

Watch Dog:

Com a perda da comunicação da rede todas as saídas serão desenergizadas, portanto verifique se a conexão da cargas utilizadas nas saídas passarão para a condição de segurança e desenergizando-se.

Projeto da Rede DeviceNet:

O perfeito funcionamento da rede depende de um projeto prévio, que verifica o números de nós, comprimento dos cabos grosso e fino, corrente em cada trecho e queda de tensão ao longo da linha.

Um dos pontos mais importantes do projeto é o cálculo de queda de tensão e a distribuição de fontes de alimentação que devem garantir no mínimo 20V em qualquer ponto da rede **DeviceNet**.

Nota 1: apesar do módulo funcionar com 20V a maioria das cargas (transmissores, indicadores, posicionadores, etc) possuem uma tensão mínima, e as tensão mínima oferecida pelo módulo analógico pre-supõem que ele esteja alimentado com a tensão nominal de 24Vcc.

Vide nosso site o Manual de Instalação da Rede **DeviceNet**.

Led's de Sinalização:

Entrada 1 a 4 - Este led acende quando a sua entrada correspondente for acionada, através de um sinal positivo.

<u>Saída 1 a 4</u> - O led irá acender quando o módulo **DeviceNet** receber um comando do PLC para acionar sua saída correspondente.

<u>Led de Rede:</u> O led de Rede é bicolor e indica as seguintes funções:

<u>Verde Piscando:</u> tentando fazer uma conexão na rede **DeviceNet**.

<u>Verde Aceso:</u> alocado (presente na lista de devices do scanner).

<u>Vermelho Aceso:</u> o endereço foi alterado (desligar e ligar a peca) ou endereco duplicado.

Vermelho Piscando: erro de comunicação.

Rua Tuiuti, 1237 - CEP: 03081-000 - São Paulo -Tel.: 11 6190-0444 - vendas@sense.com.br - http://www.sense.com.br