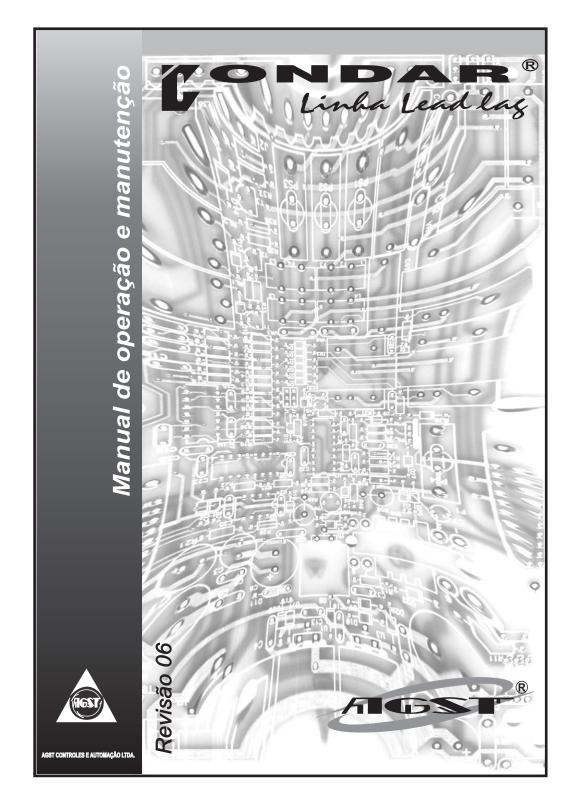


AGST Controles e Automação Itda.

AGST - Controles e Automação Ltda Av. Brino №:: 240 - Sta. Maria Goretti Porto Alegre - RS - CEP:: 91.030-280


Fones/Fax: (51)3343.0473 - E-Mail: agst@agst.com.br

Nossa página na WEB:

Nossos e-mail's vendas@agst.com.br assistencia@agst.com.br engenharia@agst.com.br www.agst.com.br

Responsável Sr. Odilon Garcia Christian Tiago

MTLLP2-06

Guia rápido do usuário

- 08. A presente garantia não abrange o desgaste normal dos produtos ou equipamentos, nem os danos decorrentes de operação indevida ou negligente. parametrização incorreta, manutenção ou armazenagem inadequada, operação anormal, em desarcordo com as especificações técnicas, instalações de má qualidade ou influência de natureza química, eletroquímica, elétrica, mecânica ou atmosférica. Assim como rompimento do lacre.
- 09. Ficam excluídas da responsabilidade por defeito as partes ou peças consideradas de consumo, tais como partes de borracha ou plásticas, bulbos, fusíveis, etc...
- 10. A garantia extinguir-se-á, independente de qualquer aviso, se a compradora sem prévia autorização por escrito da AGST, fizer ou mandar fazer por terceiros, eventuais modificações ou reparos no produto ou equipamento que vier a apresentar defeito.
- 11. O rompimento do lacre implicara na perda total da garantia.
- 12. Quaisquer reparos, modificações, substituições decorrentes de defeito de fabricação não interrompem nem prorrogam o prazo desta garantia.
- 13. Toda e qualquer solicitação, reclamação, comunicação, etc..., no que se refere a produtos em garantia, assistência técnica, start-up, deverão ser dirigidos por escrito, ao seguinte endereço:

AGST Controles e Automaçãio Ltda A/C Departamento de Assistência Técnica. Av Brino 240. CEP 91030-280 - Porto Alegre - RS - Brasil Fone/Fax (0XX51)343.0473, e-mail assistencia@agst.com.br.

13. A garantia oferecida pela AGST Controles e Automaçãio Ltda está condicionada à observância destas condições gerais, sendo este o único termo de garantia válido.

Guia rápido do usuário

INDICE

Sobre este manual	02
Teclas	02
Display	02
Sinalizações	02
Menu principal	02
Troca de aparelho	03
Senha	03
Parâmetros	04
Parâmetro 07 (Configuração modo de aquecimento)	04
Parâmetro 15 (Estado de atuação entradas digitais)	04
Parâmetro 25 (Modo de Emergência)	05
Tabela dos parâmetros	05
Entradas	06
Tabela de funções das entradas	07
Saídas	80
Tabela de funções das saídas	09
Programação parâmetros	10
Programação entradas	10
Programação saídas	10
Lay out interligação bornes	11
Lay out com vista explodida	12
Fixação e furação	13
Configuração de jumper's entradas digitais	14
Cabos de comunicação	15
Detalhes de Instalação	16
Descrição do Protocolo de comunicação	17
Tabela de comandos	18
Notas	19
Comandos	19
Rotina de Testes	21
Contrato de Garantia	23

Sobre este Manual

Este quia descreve de maneira sucinta como configurar os parâmetros e como setar as funções para as entradas e saídas.

Teclas

O Condar Lead Lag possui quatro teclas de função.

Tecla up (incrementa parâmetro)

Tecla down (decrementa parâmetro)

Tecla enter (entrada e confirmação de parâmetros)

mostrará o valor da umidade relativa.

Tecla esc (saída e cancelamento dos parâmetros).

* Obs.: Quando houver um defeito memorizado esta tecla tem a função de reset (limpa defeito).

* Obs.:Pressionando a tecla enter no menu principal, o display

Display

O CONDAR Lead Lag possui um display Led de três dígitos

Sinalizações O Lead-Lag Plus II possui um led verde que indica se o controlador está alimentado e rodando seu programa (led aceso = Lead-Lag OK), cinco led's vermelhos de telesinalizações (led aceso = saída de telesinalização acionada), quatro led's amarelos que indicam status das entradas digitais (verificar observações sobre status das entradas digitais nas pags. 4 e 5,estes led's "piscando" indicam que houve uma memorização do defeito relacionado a esta entrada digital), e seis led's verdes que indicam status dos acionamentos (led aceso = saída acionada).

Menu Principal

O menu principal indica a temperatura ambiente, medida através de uma resistência termo-sensível em uma sonda ou transdutor de temperatura e umidade (termistor NTC).

Ex.: Trinta e dois graus e oito décimos.

Pode-se alternar a indicação no display para umidade, teclando enter. Assim permanecerá durante 3 mim ou até que seja teclado enter novamente.

Ex.: Sessenta e dois por cento.

Contrato de Garantia AGST Controles e Automação Ltda.

A AGST Controles e Automação Ltda. Estabelecida na Av.Brino 240, na cidade de Porto Alegre-RS, oferece garantia para defeitos de fabricação ou de materiais, nos Controladores Lead Lag Plus II conforme segue:

- 01. É condição essencial para a validade desta garantia que a compradora examine minuciosamente o Controlador Lead Lag Plus II imediatamente após a sua entrega, observando atentamente as suas características e as instruções de instalação, ajuste, operação e manutenção do mesmo. O controlador será considerado aceito e automaticamente aprovado pela compradora, quando não ocorrer a manifestação por escrito da compradora no prazo máximo de cinco dias úteis após a data da entrega.
- 02. O prazo desta garantia é de doze meses contados da data do fornecimento, comprovado através na Nota Fiscal de Compra do equipamento
- 03. Em caso de não funcionamento ou funcionamento inadeguado do controlador em garantia, os servicos poderão ser realizados, a critério da AGST, por empresa credenciada.
- 04. O produto, na ocorrência de uma anomalia, deverá estar disponível para o fornecedor pelo período necessário para a identificação da causa da anomalia e seus devidos reparos.
- **05.** A AGST, ou empresa por esta credenciada, examinará o controlador enviado e, caso comprove a existência de defeito coberto pela garantia, reparará, modificará, ou substituirá, o controlador defeituoso, a seu critério, sem custo para a compradora, exceto os mencionados no item 07.
- **06.** A responsabilidade da presente garantia se limita exclusivamente ao reparo, modificação ou substituição do Controlador fornecido, não se responsabilizando a AGST por danos pessoais, a terceiros, a outros equipamentos ou instalações, lucro cessante ou quaisquer outros danos emergentes ou consequentes.
- 07. Outras despezas como fretes, embalagens, custo de montagem/desmontagem e parametrização, correrão por conta exclusivamente da compradora, inclusive todos os honorários e despesas de locomoção/estadia do pessoal de assistência técnica, quando for necessário e/ou solicitado um atendimento nas instalações do usuário.

Vá até o menu LIBERAR digite a senha, logo após entre no menu SAÍDAS e vá até a entrada em questão modifique a função para F10 (Temperatura Alta), usaremos esta função pois a sua variação é mais acessível, por tanto agora para que esta saída seja operada necessitamos de uma temperatura alta, forçaremos esta situação fazendo um jumper nos pinos 14 e 15 (Entrada analógica de temperatura) e a saída será operada. Vejá bem vou lembra-lo que não será necessariamente fechado o contato pois isso dependerá da configuração do jumper tipo de contato (estado normal).

Para que possamos reverter esta situação, isto é desoperar o contato, devemos retirar o jumper deixando a entrada de temperatura flutuante, chegando a uma temperatura muito

Verifique se o contato e o led da saída mudam de estado, se o led acende ou apaga e se fecha ou abre o contato.

4. Teste de comunicação

Conectar um cabo configurado de acordo como está descrito na pag.:15 a um PC configurado como descrito na pag.:17. Com o terminal pronto para receber as informações ligamos o controle e ele enviara ATEOSO=02 (um comando de configuração interna), isto nos comprovará que o controle esta enviando dados. Enviando o comando de C? devemos obter o numero de série do controle, e assim comprovamos o funcionamento completo do controle.

5. Programação

Sempre que formos testar ou reprogramar os controles devemos sempre anotar suas configurações iniciais, para que qualquer duvida possamos recorrer a ela. Dependendo da programação podemos obter respostas bastante distintas em relação ao seu funcionamento, por tanto se houver alguma duvida sobre a lógica de funcionamento do controle solicitamos que entre em contato com nossa assistência técnica que ira esclarece-la.

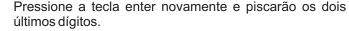
6. Conclusão

Retorne as configurações e ligações anteriores, e caso haja um problema que não foi detectado com os testes feitos aqui verifique sua instalação, o problema persistindo entre em contato com nossas assistência que lhe dará o suporte necessário.

Troca de aparelho

Menu que permite a troca entre os aparelhos.

(AP.1 para AP.2 ou vice versa)


SEL

Pressione a tecla down Aparecerá o menu "setar"

Pressione a tecla enter: Aparecerá o menu indicando o aparelho principal.

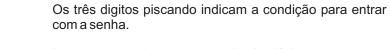
Escolha qual aparelho deve funcionar como principal.

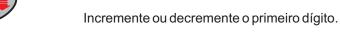
Confirme a alteração.

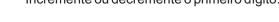
Ou saia do menu sem confirmar a alteração

Senha

Permite o acesso para ajustar parâmetros mais restritos e configurar entradas e saídas (a partir da versão 1.02).


Pressione a tecla down duas vezes Aparecerá o menu libera





Pressione a tecla enter

Confirme o número desejado, teclando "Enter".

Repita o procedimento até o terceiro digito se a senha estiver correta, estará liberada a alteração de parâmetros e funções.

Ou saia do menu sem confirmar a senha.

A AGST Controles e Automação I tda, reserva-se ao direito de alterar estas específicações sem aviso prévio ou comunicação

A AGST Controles e Automação I tda, reserva-se ao direito de alterar estas específicações sem aviso prévio ou comunicação

Parâmetros .

Permite a verificação e modificação dos parâmetros.

Pressione a tecla down três vezes Aparecerá o menu parâmetros

Pressione a tecla enter Indicará o parâmetro e, logo a seguir, o valor do mesmo.

Incremente ou decremente para acessar os parâmetros.

Confirme o parâmetro a ser modificado e aparecerá piscando no display o valor a ser alterado (se senha OK).

Incremente ou decremente o valor do parâmetro.

Confirme o novo valor do parâmetro.

Ou saia do menu sem confirmar a alteração no valor do parâmetro

Parâmetro P07

Este parâmetro define os modos de aquecimento e desumidificação.

Para altera-lo deve-se seguir o mesmo procedimento acima, observando as seguintes opções:

Modo de aquecimento por resistências e desumidificação sem compressor.

Modo de aquecimento por resistências e desumidificação com compressor.

Modo de aquecimento por ciclo reverso e sem desumidificação.

Sem aquecimento e sem desumidificação.

Parâmetro P15 Este parâmetro é programado como um bit mapeado. Ele define se as entradas digitais atuam em nível alto ou nível baixo. Caso a entrada estiver configurada como "Normal em Nível Alto", o Led aceso (entrada energizada) indica status normal, caso contrário, "Normal Nível Baixo", o Led aceso (entrada desenergizada) indica situação de falha.

A AGST Controles e Automação Ltda, reserva-se ao direito de alterar estas especificações sem aviso prévio ou comunicação.

Rotina de Teste LEAD-LAG AGST

1. Alimentação

Verifique a tensão da fonte de alimentação, que deverá chegar nos pinos 11 e 12 e estar na faixa de 20 a 60Vcc ou 24 Vca. Ainda verifique se não há nada colocando trilhas, fios e contatos em curto.

2. Teste Visual

Confira se o led de PLC OK do controle está devidamente ligado, se os conectores internos e externos estão bem conectados e seu parafusos bem apertados, se o display está com uma intensidade razoável e fixa.

3. Teste funcional

3.1. Teclas

Verifique se as teclas estão exercendo suas funções. Com o display exibindo a temperatura, pressione a tecla **Down** (decrementa) duas vezes e devera exibir no display o segundo menu (liberar) pressione a tecla ENTER e devera aparecer três dígitos zero sendo que o primeiro estará piscando pois aguarda que seja inserido um numero através das teclas, experimente pressionar UP (incrementar) e exibira o numero um e assim sucessivamente, pressione a tecla **ESC** e voltara ao menu anterior liberar.

Assim você tera testado todas as teclas.

3.2. Testando as entradas

3.2.1. Analógicas

Conferir se há referencia de temperatura e umidade conectados nas respectivas entradas. Pegue o seu sensor de temperatura que deve estar conectado nos pinos 14 e 15 do controle e varie aquecendo ou esfriando devemos obter uma resposta no display adequada. O mesmo deve ser feito com a entrada de umidade nos pinos 14 e 16 deve haver um sensor conectado o qual deve ser forcado sua variação e constatar a mesma no display (se o display estiver mostrando a temperatura deve-se pressionar a tecla ENTER para visualizar a umidade).

3.2.2. Digitais

Conferir como estão configuradas as entradas (observando os jumper pg.:14). Caso estiver configurada como ENERGIZADA devemos pegar os dois potenciais da fonte (pinos 11 e 12) e colocar nos pinos da entrada que iremos testar (Ex.: Entrada 1 pinos 23 e 24) e assim obter a virada da porta. Já se estiver configurada como PULL-UP devemos curtocircuitar os pinos da entrada (Ex.: 23 e 24).

Para conferirmos a virada da porta (fisicamente) devemos observar o led da entrada (acende ou apaga), e para conferir logicamente necessitamos de um PC conectado com o controle para darmos o comando PS e obter os status das entradas.

3.3. Teste das saídas

Para verificarmos se uma saída esta funcionando precisaremos alterar a função da mesma, por tanto aconselhamos a anotar a função que se encontrar programada.

AAGST Controles e Automação Ltda. reserva-se ao direito de alterar estas especificações sem aviso prévio ou comunicação

Comando "PS": Ao comando "PS" retornam os seguintes valores:

23.5,55.0:0011:01010101010, onde:

temperatura ambiente

0= status SD 01

23 5=

01010101010=

23.3-	temperatura ambiente				
55.0=	umidade relativa				
0011=	0= status ED 01	0= status ED 2	1=status ED3	1= status ED 4	

1= status SD 02 0= status SD 05 1= status SD 06 0= status SD 07 1= status SD 08 0= status SD 09 1= status SD 10 0= status SD 11

0= status SD 03

1= status SD 04

Comando "PE": Ao comando "PE" retornam os seguintes valores:

33.5,55.0:23.5,63.0:33.4,63.5:25.5,60.0:33.6,60.0:33.7,60.0:22.5,60.0:23.5,60.0: 23.4.60.0:23.5.60.0:23.6.73.0:23.7.73.0:22.3.73.0:24.5.73.0:22.5.73.0:26.5.73.0: 32.5,58.0:24.5,58.0:33.4,58.0:25.5,58.0:33.6,58.0:33.7,58.0:22.5,58.0:23.5,58.0: 23.4,58.0:23.5,58.0:23.6,58.0:23.7,58.0:22.3,58.0:24.5,58.0:22.5,58.0:26.5,58.0: 31.5,61.0:25.5,61.0:33.4,61.0:25.5,61.0:33.6,61.0:33.7,61.0:22.5,61.0:23.5,61.0: 23.4,61.0:23.5,61.0:23.6,61.0:23.7,61.0:22.3,61.0:24.5,61.0:22.5,61.0:27.5,61.0: 37.5,61.0:28.5,61.0:33.4,61.0:25.5,61.0:33.6,61.0:33.7,61.0:22.5,61.0:23.5,61.0: 23.4,72.0:23.5,72.0:23.6,72.0:23.7,72.0:22.3,72.0:24.5,72.0:22.5,72.0:28.5,72.0: 38.5,72.0:25.5,72.0:33.4,72.0:25.5,72.0:33.6,72.0:33.7,72.0:22.5,72.0:23.5,72.0: 23.4.72.0:23.5.72.0:23.6.72.0:23.7.72.0:22.3.72.0:24.5.72.0:22.5.72.0:28.5.72.0: 35.6,72.0:22.5,72.0:33.4,72.0:25.5,72.0:33.6,72.0:33.7,72.0:22.5,72.0:23.5,72.0: 23.4,74.0:23.5,73.0:23.6,75.0:23.7,74.6:22.3,72.0:24.5,72.0:22.5,65.0:24.5,62.0:

Registros de temperatura ambiente e umidade relativa são feitos de 15 em 15 minutos: 1º registro 33.5ºC,55.0Ur; 2º registro 23.5ºC,63.0Ur e último registro 24.5°C,62.0Ur.

Comando "PG": Ao comando "PG" retornam os seguintes valores:

123:23.0,00.5,01.0,02.0,27.0,025,000,168,010,010,003,030,025,003,000,240, 000,000,050,000,090,004,010,000,000:001,002,019,010:010,011,007,008,017,001,002,003,004,005,006, onde:

123= Senha

23.0,00.5,01.0,02.0,27.0,025,000,168,010,010,003,030,025,003,000,240,000, **000,050,000,090,004,010,000,000=** Valores dos parâmetros

001,002,019,010= Funções das entradas

010,011,007,008,017,001,002,003,004,005,006= Funções das saídas

"0" Normal nível baixo "1" Normal nível alto Entrada 01 = "2" Normal nível alto Entrada 02 = "0" Normal nível baixo Entrada 03 = "0" Normal nível baixo "4" Normal nível alto Entrada 04 = "0" Normal nível baixo "8" Normal nível alto

Ex.: ED01=1; ED02=0; ED03=0; ED04=8. Então: 1 + 0 + 0 + 8 = 9

Parâmetro P25

Este parâmetro é programado como um bit mapeado. Ele irá definir o modo de funcionamento do ciclo economizador e da emergência. O bit é constituido: dcba

"a" =	"0" Desabilita	"1"	Habilita	Ventilação Total
"b" =	"0" Desabilita	"2"	Habilita	Somente Piloto
"c" =	"0" Desabilita	"4"	Habilita	Emergência
"d"=	"0" Máquinas	"8"	Dutos	Desumidificação
"e" =	"0" Desabilita	"16"	Habilita	Desliga Ventilador
"f" =	"0" Desabilita	"32"	Habilita	Revezamento
	"0" Desabilita	"64"	Habilita	Resfiador Evaporativo
"h"=	"0" Desabilita	"128"	Habilita	Desumid. com compressor
Evi	D25 - a+b+c+d+c	4 f4a4h	Então: 1	424440416404040 - 22

Ex.: P25 = a+b+c+d+e+f+q+h Então: 1+2+4+0+16+0+0+0 = 23

Tabela indicativa das funções de cada parâmetro

N°		Faixa		Descrição
	Mín.	Máx.	Int	
P01	20.0	30.0	00,5	Set point de temperatura.
P02	0,50	2,00	00,5	Histerese temperatura.
P03	00,0	08,0	00,5	Diferencial entre máquinas.
P04	01,0	08,0	00,5	Banda morta para aquecimento .
P05	25,0	35,0	00,5	Alarme Temperatura alta .
P06	10,0	20,0	00,5	Alarme Temperatura baixa.
P07	000	003	001	Modo de aquecimento e desumidificação.
P08	000	240	001	Tempo de revezamento em horas
P09	005	060	001	Retardo para ligar ventilador em segs.
P10	005	060	001	Retardo para ligar compressor em segs.
P11	002	010	001	Repouso do compressor em min.
P12	00,5	10,0	00,1	Taxa de variação máx. de temp. a cada 15 min.100=10°C.
P13	000	050	001	Off-Set de temperatura (calibração de leitura).
P14	001	010	001	N° de tentativas para memorizar defeito (após versão 1.01).
P15	000	015	001	Define se as entradas digitais são consideradas normais
				em Nível Alto ou Nível Baixo.
P16	010	240	001	Tempo de temperatura alta para troca máquina
P17	000	060	001	Tempo de By-pass ventilador (segundos)
P18	000	015	001	Tempo de By-pass compressor (minutos)
P19	030	070	001	Set point de umidade
P20	000	010	001	Histerese umidade
P21	040	099	001	Alarme umidade alta
P22	00,5	04,0	00,5	Diferencial entre estágios temperatura (Q1)
P23	001	015	001	Diferencial entre estágios umidade
P24	000	015	001	Tempo de espera entre tentativas
P25	000	007	001	Modo de funcionamento da ventilação e/ou Emergência
P26	001	050	001	Off-Set de umidade (sensor em tensão)
P27	001	040	001	Banda morta de umidade

PG.20 PG.05

Entradas

Permite a verificação e modificação das funções das entradas

entradas

Pressione a tecla down quatro vezes
Aparecerá o menu entradas

ENTER

Pressione a tecla enter

F [] /

Indicará o número da entrada e sua função, após alguns segundos

Incremente ou decremente para acessar as entradas.

Confirme a entrada a ser modificada e aparecerá piscando F 🛮 🖊 no display a sua função.

Confirme a nova função da entrada

Ou saia do menu sem confirmar a alteração na função da entrada

Notas:

* Q1 para obter o valor real programado dividir o valor por 2, para programar, pegar o valor desejado e multiplicar por 2

COMANDO DE INICIALIZAÇÃO

Devem ser precedidos de senha para a sua aceitação.

COMANDO	AÇÃO
C?	Pergunta número de série
Cxxxxxx	Envia número de série para conexão
PRR	Reset

COMANDO DE VERIFICAÇÃO

COMANDO	AÇÃO
PS	Status de Temperatura das entradas e saídas
PE	Registros de temperatura e umidade relativa das últimas 24 horas.
PG	Senhas, funções das entradas digitais, funções das saídas digitais e valores dos parâmetros.

Função de Entrada:

Para obter-se os valores de função de entrada , basta digitar-se o comando:

Enn? => xxx

Obtendo-se os valores xxx, (onde nn é o número da entrada)

Função de Saída:

Para obter-se os valores de função de saída , basta digitar-se o comando:

Snn? \Rightarrow xxx

Obtendo-se os valores xxx, (onde nn é o número da saída)

Parâmetro:

Para obter-se os valores do parâmetro , basta digitar-se o comando :

Pnn? \Rightarrow xxx,

Obtendo-se os valores xxx, (onde nn é o número do parâmetro)

Tabela de Comandos

Comando	Faixa			Passo	Descrição
	Mín.	Máx.	Padrão		
CPA XXXX	0000	9999		1	Envia número de série para conexão
L0	000	999	123		Envia senha para conexão
L1 XXX	000	999	XXX	1	Reprograma senha do usuário
L2					Desabilita senha de acesso
P01 XXX	40,0	60,0	46,0	00,5	Set point de temperatura em Q1
P02 XXX	0,50	2,00	01,0	00,5	histereze em Q1
P03 XXX	00,0	08,0	02,0	00,5	Diferencial entre máquinas.
P04 XXX	01,0	08,0	04,0	00,5	Banda morta para aquecimento emQ1
P05 XXX	50,0	70,0	54,0	00,5	Temperatura alta em Q1
P06 XXX	020	040	030	00,5	Temperatura baixa em Q1
P07 XXX	000	003	000	001	Modo de aquecimento
P08 XXX	000	240	168	001	Tempo de revezamento em horas
P09 XXX	005	060	010	001	Retardo para ligar ventilador em seg´s.
P10 XXX	005	060	010	001	Retardo para ligar compressor em seg´s.
P11 XXX	002	010	003	001	Repouso do compressor em minutos
P12 XXX	00,5	10,0	030	00,1	Taxa de variação de temperatura máxima
					por 15 minutos 100=10°C
P13 XXX	000	050	025	001	Off-set temperatura
P14 XXX	001	010	003	001	Número de tentativas para memorizar defeito
P15 XXX	000	015	000	001	Este parâmetro define se as entradas digitais atuam energizadas ou desenergizadas.
P16 XXX	010	240	240	001	Tempo em temperatua alta para troca de maq. por rendimento cond. (Min.)
P17 XXX	000	060	000	001	Tempo by-pass ventilador (Seg.)
P18 XXX	000	015	000	001	Tempo by-pass compressor (Min.)
P19 XXX	030	070	050	001	Set point de umidade
P20 XXX	000	010	000	001	Histerese de umidade
P21 XXX	040	099	090	001	Alarme de umidade alta
P22 XXX	001	008	004	0.05	Diferencial entre estágio de temp. Q1.
P23 XXX	001	015	010	001	Diferencial entre estágio de umidade
P24 XXX	000	015	000	001	Tempo de espera entre tentativas
P25 XXX	000	015	000	001	Modo de funcionamento de ciclo
23 777					economizador e emergência
P26 XXX	001	050	010	001	Off-set de umidade
P27 XXX	001	040	020	001	Banda morta de umidificação
PA088059^M PA085001^M PA093001^M	1				Vira minuto Zera Retardo Zera Retardo Ventilador

Tabela de funções das entradas

Funções	Descrição da função
FE00	Sem função (desabilitada)
FE01	Defeito CA_1
FE02	Defeito CA_ 2
FE03	Alarme de incêndio
FE04	Rede anormal
FE05	Umidade alta
FE06	Falha no inversor
FE07	Manutenção ou falha de alimentação CA_ 1
FE08	Manutenção ou falha de alimentação CA_ 2
FE09	Manutenção geral
FE10	Bloqueio geral
FE11	Rede anormal ou defeito CA_ 1
FE12	Rede anormal ou defeito CA_ 2
FE13	Manutenção ou defeito CA_ 1
FE14	Manutenção ou defeito CA_ 2
FE15	Gerador acionado desliga ambas as máquinas
FE16	Gerador acionado desliga Lag (máquina reserva)
FE17	Falha de Alimentação AC no CA_1
FE18	Falha de Alimentação AC no CA_2
FE19	Temperatura externa OK (ciclo economizador)
FE20	Resumo defeito CA_1
FE21	Resumo defeito CA_2
FE22	Repetidor de Alarme1
FE23	Repetidor de Alarme2

PG.18 PG.07

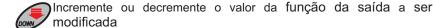
Saída

Permite a verificação e modificação das funções das saídas

Pressione a tecla down cinco vezes
Aparecerá o menu saídas

5 ∏ ⊆ Pressione a tecla enter

O display mostrará o número da saída e sua função, após alguns segundos



Incremente ou decremente para acessar as saídas.

F 🛭 🛘 Confirme a saída a ser modificada e a função da mesma

Confirme a alteração da função da saída

Ou saia do menu sem confirmar a alteração no valor da saída.

Descrição do Protocolo de Comunicação do LEAD-LAG

Os comandos de alteração por interface serial só serão aceitos se precedidos pelo envio da senha e numero de série. Após esta ter sido aceita, o usuário tem cerca de 2 minutos para enviar os comandos, ao final dos quais, a senha é automaticamente cancelada. Para enviar novo comando para alteração, o usuário deve enviar novamente a senha.

Se a senha estiver desativada, o CONDAR Lead-Lag permite apenas a visualização dos parâmetros e as funções das entradas e saídas e status.

Configuração do terminal para comunicação:

Taxa de transmissão: 2400 BPS

Bits de dados: 8 Bits de parada: 1

Paridade: Nenhum
Controle de fluxo: Nenhum
Verificar paridade: sim
Detectar portadora: sim

Emulação do Terminal: TTY Genérico Transferencia binaria: Xmodem/CRC

PARÂMETROS PROGRAMÁVEIS

Na coluna "COMANDO", as indicações "X" dizem respeito aos valores que devem ser preenchidos no envio do comando.

A coluna "FAIXA" descreve a faixa de valores "X" que podem ser enviados no comando.

A coluna "PASSO" especifica de quanto é a variação do valor de programação dentro da FAIXA.

A coluna "DESCRIÇÃO" dá explicações sobre a utilidade do comando.

O CONDAR Lead-Lag responde ao comando com *OK!* , se o valor enviado é correto e com *ERRO!* se o valor é incorreto.

Detalhes da Instalação

Alimentação

O Lead-Lag AGST pode ser alimentado em corrente continua de 20 a 60VCC ou em corrente alternada com 24VAC.

Obs.: De 20 à 60VCC somente os modelos equipados com step down.

Não devemos instalar o Lead Lag em: - Locais onde existam grandes vibrações

- Locais com exposição a água e pó

- Umidade relativa superior à 85%,

- Em locais onde existam interferências magnéticas e atmosféricas.

Devemos separar os cabos dos sinais de entrada dos cabos de acionamentos, ou seja, não passa-los pela mesma tubulação. Se isto não for possível, utilizar cabos blindados para as "entradas".

Nota:

Quando os acionamentos forem em 220V utilizar filtros de linha **TIPO RC'S** em paralelo com as bobinas das contatoras (nas máquinas de ar condicionado).

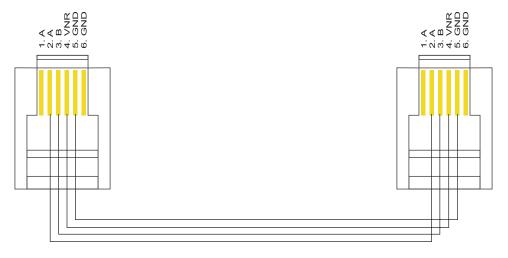
Fixar os cabos nos bornes e verificar se as conexões estão corretas e firmes antes de ligar o equipamento.

O Sensor de temperatura deve ficar sempre próximo ao retorno das maquinas de ar condicionado.

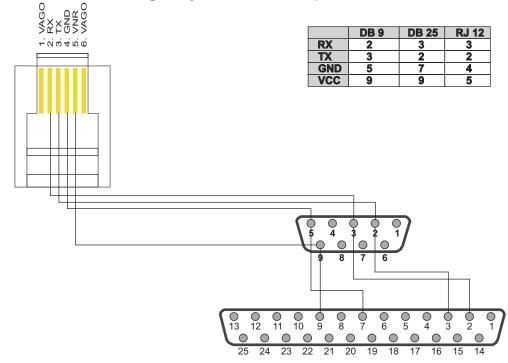
Aterramento:

Ligar o borne de aterramento do Lead-Lag ao " terra eletrônico" das estações.

Tabela de funções das saídas


Funções Parada de funções da fara a				
Funções FS00	Descrição da função			
	Sem função (desabilitada)			
FS01	Liga ventilador CA1			
FS02	Liga compressor CA1			
FS03	Liga aquecimento CA1			
FS04	Liga ventilador CA 2			
FS05	Liga compressor CA 2			
FS06	Liga aquecimento CA 2			
FS07	Alarme defeito CA 1			
FS08	Alarme defeito CA 2			
FS09	Alarme defeito condicionador (geral)			
FS10	Alarme temperatura alta			
FS11	Alarme umidade alta			
FS12	Manutenção ou falha de alimentação CA 1			
FS13	Manutenção ou falha de alimentação CA 2			
FS14	Manutenção condionador de ar (geral)			
FS15	Alarme falha de rede			
FS16	Alarme de incêndio			
FS17	Bloqueio geral			
FS18	Alarme de temperatura baixa			
FS19	Alarme falha de inversor			
FS20	Alarme defeito ou falha de alimentação CA 1			
FS21	Alarme defeito ou falha de alimentação CA 2			
FS22	Gerador acionado			
FS23	Falha de Alimentação CA1			
FS24	Falha de Alimentação CA2			
FS25	Controle Damper CA1			
FS26	Controle Damper CA2			
FS27	By-pass CA1			
FS28	By-pass CA2			
FS29	Segundo estágio compressor CA 1			
FS30	Segundo estágio compressor CA2			
FS31	Banco de resistência 1º estágio			
FS32	Banco de resistência 2º estágio			
FS33	Liga umidificação CA 1			
FS34	Liga umidificação CA 2			
FS35	Repetidor de Alarme 1 **			
FS36	Repetidor de Alarme 2 **			
	** Somente na versão de Software 3 22\/			

^{**} Somente na versão de Software 3.22V



Guia rapido de	o usua:	rio Alexandria	
Programação geral Parâmetros	Senha P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13	P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27	
Programação geral Entradas	E01 - E02 - E03 - E04 -		
Programação geral Saída	S01 _	_Lead-Lag OK (Não Configurável	_)

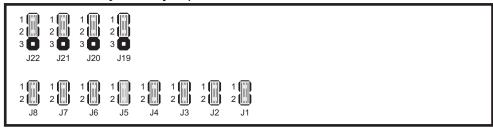
Configuração de Cabos para RS 485

Configuração de Cabos para RS 232

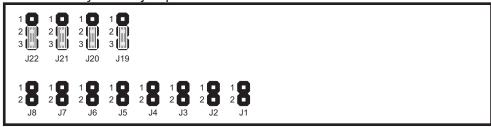
Configurações de Jumper's:

No lado inferior da circuito impresso (Lado de solda) se encontram os jumper's de solda para configuração das entradas e saídas.

Configuração dos jumper's para o tipo de contao (NA ou NF)

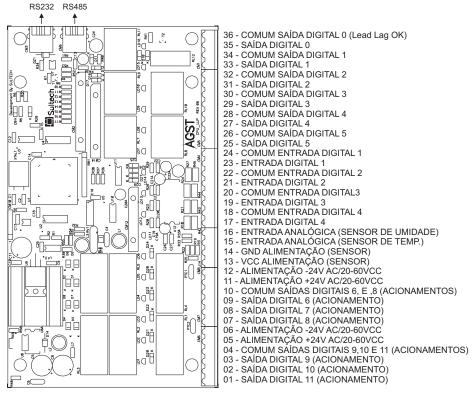

Contato em NA	Contatos em NF
1	NF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

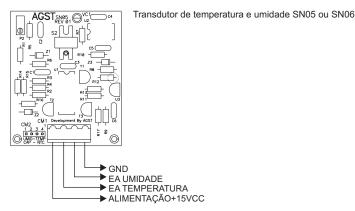
ENTRADAS	24V	PULL-UP	ENERGIZADAS
01	J18	J22 (1-2) + J7 + J8	J22 (2-3)
02	J17	J21 (1-2) + J5 + J6	J21 (2-3)
03	J16	J20 (1-2) + J3 + J4	J20 (2-3)
04	J15	J19 (1-2) + J1 + J2	J19 (2-3)


Posição dos jumper's seleção de tensão entradas

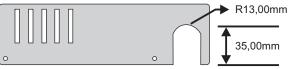
Em 24V		Em 24V ou 48V	
1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1	1 2 J15	1	

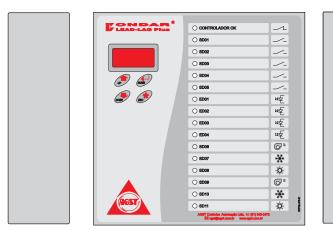
Posição dos jumper's em PULL-UP




Posição dos jumper's em ENERGIZADAS

Fechado ¹₂ Aberto

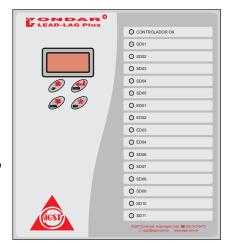

Indentificação dos bornes de interligação CONDAR Lead Lag Plus II



AAGST Controles e Automação Ltda. reserva-se ao direito de alterar estas especificações sem aviso prévio ou comunicação

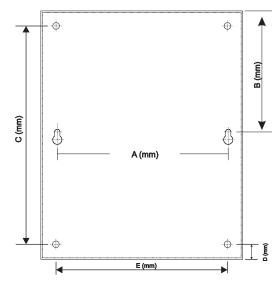
Lead Lag Plus II

Largura= 190mm Altura= 190mm Profundidade= 55mm Peso= 1100g



Lead Lag Plus II R

Largura= 482mm Altura= 44mm Profundidade= 180mm Peso= 1500g



Lead Lag Plus II P Largura= 180mm

Altura= 200mm Profundidade= 37mm Peso= 1300g

Modelos	Α	В	С	D	Е
Lead Lag	135,0	081,0			
Lead Lag Plus	135,0	092,0			
Lead Lag Plus II	130,0	83,5			
Lead Lag Plus II P			190,0	005,0	170,0

Leadl Lag Plus II R, conforme padrão Rack19, com altura de 1U. AAGST Controles e Automação Ltda. reserva-se ao direito de alterar estas especificações sem aviso prévio ou comunicação.