

Checkpoint Service
Programmer’s Reference

6806800C47B

September 2007

2007 Motorola

All rights reserved.

Trademarks
Motorola and the stylized M logo are trademarks registered in the U.S. Patent and Trademark Office. All other product or service names
are the property of their respective owners.

Intel® is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Microsoft®, Windows® and Windows Me® are registered trademarks of Microsoft Corporation; and Windows XP™ is a trademark of
Microsoft Corporation.

PICMG®, CompactPCI®, AdvancedTCA™ and the PICMG, CompactPCI and AdvancedTCA logos are registered trademarks of the
PCI Industrial Computer Manufacturers Group.

UNIX® is a registered trademark of The Open Group in the United States and other countries.

Notice
While reasonable efforts have been made to assure the accuracy of this document, Motorola assumes no liability resulting from any
omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document
and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or
changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to
a Motorola website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered
without the permission of Motorola,

It is possible that this publication may contain reference to or information about Motorola products (machines and programs),
programming, or services that are not available in your country. Such references or information must not be construed to mean that
Motorola intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend
If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless
otherwise agreed to in writing by Motorola.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical
Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause
at DFARS 252.227-7014 (Jun. 1995).

Contact Address
Motorola GmbH

ECC Embedded Communications Computing

Lilienthalstr. 15

85579 Neubiberg-Munich/Germany

Checkpoint Service Programmer’s Reference (6806800C47B) 3

About this Manual . 9

1 Introduction . 13

1.1 Overview . 13
1.2 Models and Concepts . 14

1.2.1 Checkpoint Director . 14
1.2.2 Checkpoint Node Director . 14
1.2.3 Checkpoint Agent . 15

1.3 Compliance Report . 15
1.4 Related SAF Standard Documents . 16

2 API Description . 17

2.1 Service Extensions . 17
2.1.1 ncsCkptRegisterCkptArrivalCallback() . 17
2.1.2 (*ncsCkptCkptArrivalCallback)() . 18

2.2 Implementation Notes . 19
2.2.1 Usage of Non-Collocated Checkpoints . 19
2.2.2 Time-out Arguments for Checkpoint Service APIs . 20
2.2.3 Cancellation of Pending Callbacks. 20
2.2.4 Maximum Number of Replicas Per Node . 20
2.2.5 Handling of SA_AIS_ERR_TRY_AGAIN . 20

2.3 Configuration . 20
2.3.1 Shared Memory Configuration . 21
2.3.2 Maximum Data Size Per One write or Overwrite . 21

2.4 Service Dependencies . 21
2.5 Management Interface . 22

A Sample Application. 23

A.1 Overview . 23
A.2 Run the Checkpoint Service Demo . 23
A.3 Sample Application Output . 24

B Related Documentation . 25

B.1 Motorola Embedded Communications Computing Documents . 25
B.2 Related Specifications . 26

Contents

Checkpoint Service Programmer’s Reference (6806800C47B)

Contents

4

Checkpoint Service Programmer’s Reference (6806800C47B) 5

Table 1-1 Compliance Table - Checkpoint Service . 15
Table 2-1 ncsCkptRegisterCkptArrivalCallback() Parameters . 17
Table 2-2 ncsCkptRegisterCkptArrivalCallback() Return Values . 18
Table 2-3 (*ncsCkptCkptArrivalCallback)() Parameters . 18
Table 2-4 SAF-CHK-SVC-v7_5 MIB . 22
Table B-1 Motorola Publications . 25
Table B-2 Related Specifications . 26

List of Tables

Checkpoint Service Programmer’s Reference (6806800C47B)

List of Tables

6

Checkpoint Service Programmer’s Reference (6806800C47B) 7

Figure 1-1 Checkpoint Service -Subparts . 14

List of Figures

Checkpoint Service Programmer’s Reference (6806800C47B)

List of Figures

8

Checkpoint Service Programmer’s Reference (6806800C47B) 9

About this Manual

Overview of Contents
This manual is divided into the following chapters and appendices.

Chapter 1, Introduction, on page 13
Provides an overview of the Cechpoint service functionilty and provides references to
standard SAF documents.

Chapter 2, API Description, on page 17
Provides information that is required when writing applications that make use of the
Checkpoint service. It also explains non-standard extensions that were added to the
service.

Appendix A, Sample Application, on page 23
Describes the sample application that is available for the Checkpoint service

Appendix B, Related Documentation, on page 25
Provides references to related user documentation and standard specifications.

Abbreviations
This document uses the following abbreviations:

Abbreviation Definition

AIS Application Interface Specification

AMF Availability Management Framework

API Application Programming Interface

AvSv Availability Service

CLI Command Line Interface

CLM Cluster membershipt Service

CPA Checkpoint Agent

CPD Checkpoint Director

CPND Checkpoint Node Director

CPSv Checkpoint service

DTSv Distributed Tracing Service

HPI Hardware Platform Interface

LEAP Layered Environment for Accelerated Portability

MBCSv Message-Based Checkpoint Service

Checkpoint Service Programmer’s Reference (6806800C47B)

About this Manual

10

Conventions
The following table describes the conventions used throughout this manual.

MDS Message Distribution Service

MIB Management Information Base

NCS Netplane Core Services

SAF Service Availability Forum

Abbreviation Definition

Notation Description

0x00000000 Typical notation for hexadecimal numbers
(digits are 0 through F), for example used for
addresses and offsets

0b0000 Same for binary numbers (digits are 0 and 1)

bold Used to emphasize a word

Screen Used for on-screen output and code related
elements or commands in body text

Courier + Bold Used to characterize user input and to
separate it from system output

Reference Used for references and for table and figure
descriptions

File > Exit Notation for selecting a submenu

<text> Notation for variables and keys

[text] Notation for software buttons to click on the
screen and parameter description

... Repeated item for example node 1, node 2,
..., node 12

.

.

.

Omission of information from
example/command that is necessary at the
time being

.. Ranges, for example: 0..4 means one of the
integers 0,1,2,3, and 4 (used in registers)

| Logical OR

No danger encountered. Pay attention to
important information

About this Manual

Checkpoint Service Programmer’s Reference (6806800C47B) 11

Summary of Changes
This manual has been revised and replaces all prior editions.

Comments and Suggestions
We welcome and appreciate your comments on our documentation. We want to know what you
think about our manuals and how we can make them better.

Mail comments to:

Motorola GmbH
Embedded Communications Computing
Lilienthalstrasse 15
85579 Neubiberg
Germany

eccrc@motorola.com

In all your correspondence, please list your name, position, and company. Be sure to include
the title, part number, and revision of the manual and tell how you used it.

Part Number Publication Date Description

6806800C47A February 2007 First edition

6806800C47B September 2007 Minor text updates for Avantellis Release
3.0.2

Checkpoint Service Programmer’s Reference (6806800C47B)

About this Manual

12

1

Checkpoint Service Programmer’s Reference (6806800C47B) 13

Introduction

1.1 Overview
The Checkpoint Service provides a facility for processes to record checkpoint data
incrementally, which can be used to protect an application against failures. When recovering
from fail-over or switch-over situations, or restart situations, the checkpoint data can be
retrieved, and execution can be resumed from the state recorded before the failure.

Checkpoints are cluster-wide entities that are designated by unique names. A copy of the data
stored in a checkpoint is called a checkpoint replica, which is stored in the main memory rather
than on disk for performance reasons. A given checkpoint may have several checkpoint replicas
stored on different nodes in the cluster to protect it against node failures.To avoid accumulation
of unused checkpoints in the system, checkpoints have a retention time. When a checkpoint has
not been opened by any process for the duration of the retention time, the Checkpoint Service
automatically deletes the checkpoint.

The CPSv service supports the following two types of update options:

Asynchronous update option

Synchronous update option

In the case of asynchronous update option, one of the replicas is designated as the active
replica. Data is always read from the active replica and there is no guarantee that all the other
replicas contain identical data. A write call returns after updating the active replica.

In the case of synchronous update options the call invoked to write to the replicas returns only
when all replicas have been updated, i.e. either all replicas are updated or the call fails and no
changes are made to the replicas.

The CPSv supports both collocated and non-collocated checkpoints. In case of checkpoints
opened with collocated and asynchronous update option, it is up to the application to set a
checkpoint to the active state. In all other cases the CPSv itself handles which checkpoint is
currently active.

The CPSv defined by SAF does not support hot-standby. This means that the currently stand-
by component is not notified of any changes made to the checkpoint. When the stand-by
component gets active, it has to iterate through the respective checkpoint sections to get up-to-
date. To overcome this drawback, the CPSv provides additional, non-SAF APIs which help to
notify the stand-by component of changes and thus facilitate the implementation of a hot-stand-
by.

Checkpoint Service Programmer’s Reference (6806800C47B)

Introduction Models and Concepts

14

1.2 Models and Concepts
The Checkpoint service comprises three distributed subparts that maintain the cluster-wide
checkpoint database.

Checkpoint Director

Checkpoint Node Director

Checkpoint Agent

1.2.1 Checkpoint Director

Checkpoint Director (CPD) runs as a process on a system manager node. CPD maintains the
centralized repository of control information for all checkpoints created in the cluster. The CPD
also maintains the location information of active replicas for all the checkpoints opened in the
cluster. In case of non-collocated checkpoint, the CPD designates a particular node to manage
an active replica for that checkpoint and also decides on the number or replicas to be created
which depends on the policy (See section 8.1.5.1 Usage of Non-Collocated Checkpoints, for
policies). Two instances of CPD are configured, one on each system manager node, in order to
achieve high-availability. The two instances are configured to be part of a service group having
a 2N redundancy model.

1.2.2 Checkpoint Node Director

There is one instance of the Checkpoint Node Director (CPND) on each system manager and
payload nodes. It is modeled as a separate process. CPND maintains the detailed information
of the Checkpoints referred from that node and the corresponding updates and retrievals that
operate on those checkpoints. CPND also handles the requests issued by the CPA instances
on behalf of its client applications on the same node. In case of checkpoints that have been
created with the collocated attribute and the asynchronous update option, the application will

Figure 1-1 Checkpoint Service -Subparts

CPD
active

CPND

CPA

Application

CPD
standby

Payload Blade 1

Node SMH 1

CPND

CPA

CPND

CPA

CPND

CPA

Node SMH 2

Application Application Application

Payload Blade 2

 CPD - Checkpoint Director

 CPA - Checkpoint Agent
 SMH - System Manager Host

Communication path (MDS)

Communication path (MBCSv)
 CPND - Checkpoint Node Director

Checkpoint Agent Introduction

Checkpoint Service Programmer’s Reference (6806800C47B) 15

choose the CPND that oversees the active replica of a particular checkpoint via the invocation
of the saCkptActiveReplicaSet() API. In all other cases, the CPD will designate the
CPND that oversees the active replica. The CPND that oversees the active replica of a
particular checkpoint will control all the operations on that checkpoint and it is not constrained
to be present on the same node where the application resides. The CPND that manages the
active replica of a particular checkpoint serializes all the requests to that checkpoint from all the
applications present at different nodes in the cluster.

1.2.3 Checkpoint Agent

The Checkpoint Agent (CPA) is a linkable library, which conforms to the SAF APIs described in
the document SAF-AIS-CKPT-B.01.01. The CPA library runs in the context of the application
processes that initialize the CPA library. The SAF APIs are part of this library through which
different checkpoint requests can be issued by the application processes.

1.3 Compliance Report
Checkpoint Service conforms to the Checkpoint specification mentioned in SAF-AIS-CKPT-
B.01.01. The table given below provides the specification conformance report specific to this
release.

Table 1-1 Compliance Table - Checkpoint Service

Section Description Supported

3.1.1 Checkpoints Yes

3.1.2 Sections Yes

3.1.3 Checkpoint Replica Yes

3.1.4 Checkpoint Data Access Yes

3.1.5 Synchronous Update Yes

3.1.6 Asynchronous Update Yes

3.1.7 Collocated and Non-Collocated
Checkpoint

Yes

3.1.8 Active Replica Yes

3.1.9 Persistence of Checkpoints Yes

3.2 Include File and Library Names Yes

3.3 Type Definitions Yes

3.4 Library Life Cycle Yes

3.5 Checkpoint Management Yes

3.6 Section Management Yes

3.7 Data Access Yes

Checkpoint Service Programmer’s Reference (6806800C47B)

Introduction Related SAF Standard Documents

16

1.4 Related SAF Standard Documents
The document SAF-AIS-CKPT-B.01.01 is an SAF standard document. It provides the service
definition of the Checkpoint service and can be found at the following location:
http://www.saforum.org/apps/org/workgroup/twg/ais/download.php/1445/aisCkpt.B0101.pdf

The following information can be found in the document:

Service concept definitions and descriptions

Functional behaviors and relationships

A complete set of service data types exposed to the service user

The set of service APIs available to the service user

2

Checkpoint Service Programmer’s Reference (6806800C47B) 17

API Description

2.1 Service Extensions
The current release of NCS Checkpoint Service provides one API and a callback function in
addition to the APIs defined in the SAF-AIS Checkpoint Service document SAF-AIS-CKPT-
B.01.01. These APIs are defined as 'stand-alone' APIs so that other SAF-defined APIs are not
disturbed, and compliance to SAF is not compromised. These extensions are defined to provide
the hot-standby support to the Checkpoint Service user applications.

2.1.1 ncsCkptRegisterCkptArrivalCallback()

Prototype

SaAisErrorTncsCkptRegisterCkptArrivalCallback(

 SaCkptHandleT ckptHandle,

 ncsCkptCkptArrivalCallbackT ckptArrivalCallback

);

Parameters

The following table describes the possible parameters.

Description

This call registers the function callback that will be invoked whenever a opened checkpoint
scoped to ckptHandle is updated. Though it can be invoked any time, the most likely time to
invoke is just after saCkptInitialize() has been invoked. A client will not invoke this call
at all if it does not wish to be notified in real-time about checkpoint updates.

Return Values

Table 2-1 ncsCkptRegisterCkptArrivalCallback() Parameters

Parameter Description

ckptHandle - [in] The handle obtained through the
saCkptInitialize() function,
designating this particular initialization of
the Checkpoint Service.

ckptArrivalCallback - [in] The function pointer that the CKPT
service shall invoke whenever an opened
checkpoint scoped to ckptHandle is
updated.

Checkpoint Service Programmer’s Reference (6806800C47B)

API Description (*ncsCkptCkptArrivalCallback)()

18

The following table lists possible return values of this call.

2.1.2 (*ncsCkptCkptArrivalCallback)()

Prototype

typedef void(*ncsCkptCkptArrivalCallbackT)(

 Const SaCkptCheckpointHandleT checkpointHandle,

 SaCkptIOVectorElementT *ioVector,

 SaUnit32T numberOfElements

);

Parameters

The following table lists possible parameters.

Description

Table 2-2 ncsCkptRegisterCkptArrivalCallback() Return Values

Return Value Description

SA_AIS_OK The function completed successfully

SA_AIS_ERR_LIBRARY An unexpected problem

SA_AIS_ERR_BAD_HANDLE the handle ckptHandle is invalid

SA_AIS_ERR_INVALID_PARAM the callback function pointer is wrong

SA_AIS_ERR_NO_MEMORY out of memory

Table 2-3 (*ncsCkptCkptArrivalCallback)() Parameters

Parameter Description

checkpointHandle - [in] Handle to the checkpoint that is available for reading.

ioVector - [in] Pointer to a vector that contains elements
ioVector[0],…,ioVector[numberOfElements - 1].

Each element is of the type saCktptIOVectorElementT,
defined in Section 3.3.4.1 of the document SAF-AIS-
CKPT-B.01.01, which contains the following fields:

sectionId - [in] the identifier of the section
available for reading.

dataBuffer - [in] Always set to NULL.

dataSize - [in] size of data available for reading.

dataOffset - [in] offset in the section that marks
the start of the data that is available for reading.

readSize - [in] Always set to 0.

numberOfElements - [in] the size of the ioVector.

Implementation Notes API Description

Checkpoint Service Programmer’s Reference (6806800C47B) 19

If a callback of this form has been registered with the Checkpoint service via
ncsCkptRegisterCkptArrivalCallback(), then it will be invoked whenever new or
updated checkpoint replica data arrives for the checkpoint identified by checkpointHandle. The
checkpoint writer is never called back. Also, applications that have not opened the checkpoint
with the SA_CKPT_CHECKPOINT_READ flag are not called back. This callback is invoked in
the context of a thread issuing saCkptDispatch() call.

The expected behavior for the client application is to take these very same arguments and use
them as-is to invoke saCkptCheckpointRead(), thus fetching the section data that has been
modified in the checkpoint.

For the NCS implementation, this callback function shall report that the data available for
reading is exactly the same set of data that was described and written by the checkpoint writer
that invoked one of saCkptCheckpointWrite(), saCkptSectionOverwrite() or
saCkptSectionCreate(). This means/implies that our NCS implementation shall deliver
checkpoint data in exactly the same units as was written. However, note that this callback is not
invoked when a section is deleted by a writer using the saCkptSectionDelete() API.
Therefore this service extension can only be used if sections created are expected to exist
through the lifetime of the distributed application, i.e. sections that are created by the service
are never deleted.

This function does not conflict or affect the behavior of any other SAF Checkpoint function.

Return Values

n.a.

2.2 Implementation Notes
This section summarizes important information that should be kept in mind when writing
applications that make use of the Checkpoint service.

2.2.1 Usage of Non-Collocated Checkpoints

Checkpoints created without the collocated attribute are called non-collocated checkpoints. The
management of replicas of non-collocated checkpoints and whether they are active or not is the
responsibility of the Checkpoint Service.

For the non-collocated Checkpoints, NCS06A Checkpoint Service will specify the location of the
checkpoint replicas as per the following policy:

If a non-collocated checkpoint is opened for the first time by an application residing on a
payload blade, the replicas will be created on the local payload blade and both the system
manager nodes. In this case, the replica residing on the payload blade is designated as
active replica.

If a non-collocated checkpoint is opened for the first time by an application residing on the
system manager nodes, the replica will be created only on the system manager blade. In
this case, this replica on a system manager node will act as the active replica.

If another application opens the same checkpoint from a payload node, the checkpoint
service will not create the replica on that node.

Checkpoint Service Programmer’s Reference (6806800C47B)

API Description Time-out Arguments for Checkpoint Service APIs

20

Creating extra replicas on the system manager node for non-collated checkpoints is an
overhead. The advantage of a non-collocated checkpoint is that replica will be created in two
places, no matter from how many nodes it is opened.

2.2.2 Time-out Arguments for Checkpoint Service APIs

For all synchronous API calls, the application will provide the “timeout” argument. The
application will consider invocation of the particular API failed in case it did not complete the call
by the specified time. CPSv requires that the value passed in the timeout argument is greater
than 100000000 nano seconds (100 milliseconds).

2.2.3 Cancellation of Pending Callbacks

According to the SAF-AIS-CKPT-B.01.01 specification, whenever a checkpoint is closed, all the
pending callbacks corresponding to this checkpoint should be cancelled. In CPSv,
implementation does cancel the pending callbacks related to closed checkpoints. However, the
selection object already raised and related to cancelled pending callbacks, will not be cleared
or reset. Due to this, saCkptDispatch API may return without invoking callback routine.

2.2.4 Maximum Number of Replicas Per Node

CPSv applications can create upto 1,000 replicas per node at a given instance. This includes
the replicas created by CPSv for non-collocated checkpoints as per the “replica creation policy.”

In the case of collocated checkpoints, CPSv returns SA_AIS_ERR_NO_RESOURCES if an
application attempts to create a new checkpoint and the current number of replicas on the local
node is already the maximum that CPSv can support per node.

In the case of non-collocated checkpoints, CPSv returns an SA_AIS_ERR_NO_RESOURCES
if the number of checkpoint replicas on the node on which CPSv decides to create a replica is
already the maximum that CPSv can support per node. In all other cases, the checkpoint open
does not return an error but the replicas will not be created on the backup nodes as decided by
the “replica creation policy”.

2.2.5 Handling of SA_AIS_ERR_TRY_AGAIN

If the Checkpoint service API returns SA_AIS_ERR_TRY_AGAIN, the application should
attempt the API call only after a couple of milliseconds. The suggested wait time is 3 seconds
and the number of retries are 12.

Note that the Checkpoint write,overwrite, and read operations may sometime return
SA_AIS_ERR_TRY_AGAIN if called simultaneously. This is to avoid any inconsistencies in the
checkpoint database.

2.3 Configuration
This section describes how the Checkpoint service is preconfigured regarding shared memory
and the maximum write data size.

Shared Memory Configuration API Description

Checkpoint Service Programmer’s Reference (6806800C47B) 21

2.3.1 Shared Memory Configuration

NCS3.0 Checkpoint service uses the shared memory for storing the checkpoint replicas.
Checkpoint service will manage the shared memory segments created by it for storing the
checkpoint replicas. The shared memory requirements for storing the checkpoint replica can be
derived from the checkpoint creation attributes supplied at the time of saCkptCheckpointOpen(
) or saCkptCheckpointOpenAsync() call using the formula. maxSections *
maxSectionSize

The maximum size of the shared memory segment is limited by the operating system. In most
of the cases, the maximum value is 31MB. This can be found by executing the command: cat
/proc/sys/kernel/shmmax

To increase the shared memory size to the desired value, one can use the following command:
echo 134217728 >/proc/sys/kernel/shmmax

The above example command will set the maximum shared memory segment value to 27MB.

2.3.2 Maximum Data Size Per One write or Overwrite

The maximum data size per one write or over write is 40MB. Applications that try to write more
than 40MB data in one saCkptSectionWrite() or saCkptSectionOverwrite() call
will get the error SA_AIS_ERR_NO_RESOURCES.

2.4 Service Dependencies
The internal interfaces of the Checkpoint service are given below:

Layered Environment for Accelerated Portability (LEAP) - for Shared Memory: Checkpoint
Service uses LEAP for portability. The service uses the memory manager, timers, encode-
decode utility and handle manager services provided by the LEAP.

Message Distribution Service (MDS) - for Messaging: All the interaction between the
different subparts of the Checkpoint service will take place using MDS messaging. The
MDS is also used to register the service up and down events to handle the failure cases.

Distributed Tracing Service (DTSv) - for Logging messages: Checkpoint service uses DTSv
to log debug messages, which are stored in a file and could be used for debugging and to
report informational events.

Availability Service (AvSv) - for High Availability: CPD and CPND are modelled as AMF
components.

Message based Checkpoint Service (MBCSv) - for checkpointing information: CPD uses
the MBCSv to checkpoint the state information with the standby CPD.

Cluster Membership Service (CLM) - for Node names: CPD uses Cluster membership
service to get the node name for a given node ID. Node names are required to implement
Checkpoint service MIBs.

The Checkpoint library libSaCkpt.so depends on functions found in the following library:
libncs_core.so

Checkpoint Service Programmer’s Reference (6806800C47B)

API Description Management Interface

22

2.5 Management Interface
SAF-CHK-SVC-MIB is defined by SA forum’s systems management WG. This MIB provides the
manageable objects to access the cluster wide created checkpoint properties, location of the
checkpoint replicas, version supported etc. This MIB also defines the traps to notify the errors
like no more sections, sections available now etc.

NCS Checkpoint Service implements a draft version of SAF-CKPT-SVC-MIB, which aligns with
B.01.01 version of CKPT. Checkpoint Service does not support the Notifications and Traps
defined in SAF-CKPT-SVC-MIB.

The following table describes the MIB objects and traps supported by NCS Checkpoint Service:

Command Line Interface (CLI) is not supported by Checkpoint Service

Table 2-4 SAF-CHK-SVC-v7_5 MIB

MIB table id \ trap id Description

safSpecVersion Supported

safAgentVendor Supported

safAgentVendorProductRev Supported

safServiceStartEnabled Supported. Always set to FALSE

saCkptCheckpointTable Supported

saCkptNodeReplicaLocTable Supported

saCkptAlarmServiceImpaired Not Supported

saCkptStateChgNoMoreSections Not Supported

saCkptStateChgSectionsAvailable Not Supported

A

Checkpoint Service Programmer’s Reference (6806800C47B) 23

A Sample Application

A.1 Overview
The sample application provided here consists of two application processes that use the
Checkpoint service APIs to ‘write’ to a checkpoint, and ‘read’ the checkpoint data written by the
first application process.

A.2 Run the Checkpoint Service Demo
This sample application assumes that the NCS software is installed and running on the target
system. Refer to the Avantellis 3000 Series Rel. 3.0 User’ s Guide for information on how to
install the NCS software.

Running the demo application:

To run the checkpoint service demo, follow the steps given here:

1. Build the sample program to create the executable file cpsv_demo.out. (Refer to
section - A.4.2 "Make" Commands of the NetPlane Core Services Overview User’s
Guide, Part Number: 6806800C08 for more details)

2. Copy the executable file to the target. (Refer to section - A.4.2 "Make" Commands
of the NetPlane Core Services Overview User’s Guide, Part Number: 6806800C08
for more details)

3. Open two terminals, and change to the directory where the executable
cpsv_demo.out is copied.

4. Execute the following command in the first terminal. This application process will act
as “MESSAGE-WRITER”../cpsv_demo.out 1

5. Execute the following command in the second terminal. This application process will
act as “MESSAGE-READER”. ./cpsv_demo.out 0.
The output will be displayed on both the terminals. Refer "Appendix A, Sample
Application Output" of this document.

Ensure the cpsv_demo.out has executable permission. To give executable
permission, use the following command:

chmod +x cpsv_demo.out

Checkpoint Service Programmer’s Reference (6806800C47B)

Sample Application Sample Application Output

24

A.3 Sample Application Output
MESSAGE_ WRITER

Ckpt Initialising being called PASSED

Ckpt Open being called PASSED

Ckpt Active Replica Set being called PASSED

Ckpt Section Create being called PASSED

Ckpt Write being called with data: The Checkpoint Service provides a
facility for processes to record checkpoint data
PASSED

Ckpt Synchronize being called PASSED

Ckpt Unlink being called PASSED

Ckpt Close being called PASSED

Ckpt Finalize being called PASSED

MESSAGE_READER

Ckpt Initialising being called PASSED

Ckpt Open being called PASSED

Ckpt Read being called, data in the read buffer is: The Checkpoint
Service provides a facility for processes to record checkpoint data
.... PASSED

Ckpt Synchronize being called PASSED

Ckpt Close being called PASSED

Ckpt Finalize being called PASSED

B

Checkpoint Service Programmer’s Reference (6806800C47B) 25

B Related Documentation

B.1 Motorola Embedded Communications
Computing Documents
The Motorola publications listed below are referenced in this manual. You can obtain electronic
copies of Embedded Communications Computing (ECC) publications by contacting your local
Motorola sales office or by visiting ECC’s World Wide Web literature site:
http://www.motorola.com/computer/literature. This site provides the most up-to-date copies of
ECC product documentation.

Table B-1 Motorola Publications

Document Title Publication Number

Availability Service Programmer’s Reference 6806800C44

Avantellis 3000 Series Rel. 3.0 User’ s Guide 6806800B91

Checkpoint Service Programmer’s Reference 6806800C47

Command Line Interface Programmer's Reference 6806800C11

Distributed Tracing Service Programmer's Reference 6806800B40

Event Distribution Service Programmer’s Reference 6806800C48

Global Lock Service Programmer’s Reference 6806800C49

HPI Integration Service Programmer’s Reference 6806800C51

Interface Service Programmer’s Reference 6806800B50

LEAP Programmer's Reference 6806800B56

Management Access Service Programmer's Reference 6806800B55

Message Based Checkpointing Service Programmer's
Reference

6806800B41

Message Distribution Service Programmer's Reference 6806800B89

Message Queue Service Programmer’s Reference 6806800C50

NetPlane Core Services Overview User’s Guide 6806800B08

Persistent Store Restore Service Programmer's Reference 6806800B54

Simple Software Upgrade Programmer's Reference 6806800B19

SMIDUMP Tool Programmer's Reference 6806800B37

SNMP SubAgent Programmer's Reference 6806800B38

System Description Programmer's Reference 6806800B90

System Resource Monitoring Service Programmer's
Reference

6806800B39

http://www.motorola.com/computer/literature

Checkpoint Service Programmer’s Reference (6806800C47B)

Related Documentation Related Specifications

26

B.2 Related Specifications
For additional information, refer to the following table for related specifications. As an additional
help, a source for the listed document is provided. Please note that, while these sources have
been verified, the information is subject to change without notice.

Table B-2 Related Specifications

Document Title Version/Source

Service Availability Forum Application Interface
Specification, Volume 1, Overview and Models

SAF-AIS-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface
Specification, Volume 2, Availability Management
Framework

SAF-AIS-AMF-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface
Specification, Volume 3, Cluster Membership
Service

SAF-AIS-CLM-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface
Specification, Volume 4, Checkpoint Service

SAF-AIS-CKPT-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface
Specification, Volume 5, Event Service

SAF-AIS-EVT-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface
Specification, Volume 6, Message Service

SAF-AIS-MSG-B.01.01/

http://www.saforum.org

Service Availability Forum Application Interface
Specification, Volume 7, Lock Service

SAF-AIS-LCK-B.01.01/

http://www.saforum.org

	Checkpoint Service
	Contents
	List of Tables
	List of Figures
	About this Manual
	Overview of Contents
	Abbreviations
	Conventions
	Summary of Changes
	Comments and Suggestions

	Introduction
	1.1 Overview
	1.2 Models and Concepts
	1.2.1 Checkpoint Director
	1.2.2 Checkpoint Node Director
	1.2.3 Checkpoint Agent

	1.3 Compliance Report
	1.4 Related SAF Standard Documents

	API Description
	2.1 Service Extensions
	2.1.1 ncsCkptRegisterCkptArrivalCallback()
	2.1.2 (*ncsCkptCkptArrivalCallback)()

	2.2 Implementation Notes
	2.2.1 Usage of Non-Collocated Checkpoints
	2.2.2 Time-out Arguments for Checkpoint Service APIs
	2.2.3 Cancellation of Pending Callbacks
	2.2.4 Maximum Number of Replicas Per Node
	2.2.5 Handling of SA_AIS_ERR_TRY_AGAIN

	2.3 Configuration
	2.3.1 Shared Memory Configuration
	2.3.2 Maximum Data Size Per One write or Overwrite

	2.4 Service Dependencies
	2.5 Management Interface

	A Sample Application
	A.1 Overview
	A.2 Run the Checkpoint Service Demo
	A.3 Sample Application Output

	B Related Documentation
	B.1 Motorola Embedded Communications Computing Documents
	B.2 Related Specifications

