SECRETARIA DE SANEAMENTO E RECURSOS HÍDRICOS DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA DIRETORIA DE PROCEDIMENTOS DE OUTORGA E FISCALIZAÇÃO

Elaboração de Material Didático e a Realização de Cursos de Capacitação nas Áreas de Outorga, Fiscalização e Cobrança Manual de Utilização do Modelo ABC-DAEE Fevereiro de 2012 Revisão 0

RP02-2012-R0

Recursos do Fundo Estadual de Recursos Hídricos – FEHIDRO Contrato FEHIDRO nº 188/2011

Relatório Parcial 2 – Andamento

São Paulo, Fevereiro de 2012

Projeto: Elaboração de Material Didático e a Realização de Cursos de Capacitação nas Áreas de Outorga, Fiscalização e Cobrança.

Contrato DAEE:nº 2011/21/00264.1 – autos nº 52.054Contratada:FCTH - FUNDAÇÃO CENTRO TECNOLÓGICO DE HIDRÁULICA

Recursos do Fundo Estadual de Recursos Hídricos – FEHIDRO Contrato FEHIDRO nº 188/2011

SECRETARIA DE SANEAMENTO E RECURSOS HÍDRICOS DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA DIRETORIA DE PROCEDIMENTOS DE OUTORGA E FISCALIZAÇÃO

SUMÁRIO

1. IN	NICIALIZAÇÃO DO MODELO	2
2. C	OMPONENTES DA INTERFACE	3
2.1 2.2 2.3 2.4	MENU PRINCIPAL BARRA DE BOTÕES ÁREA PARA DESENHO DA REDE (ÁREA DE TRABALHO) BARRA COM INFORMAÇÕES	5 5 6 7
3. M	IENU PRINCIPAL	8
3.1 3. 3. 3.2 3.2 3.3 3.3 3.3 4. E I	ARQUIVO	
4.1 4.2 4.3 4.4	CARACTERIZAÇÃO DA REDE — DESENHO MÉTODO DO HIDROGRAMA TRIANGULAR DO SCS MÉTODO RACIONAL MÉTODO DE I-PAI-WU MODIFICADO	15 16 36 41
5. S	AÍDA DE DADOS – MODELOS	
5.1 5.2 5.3	MÉTODO DO HIDROGRAMA TRIANGULAR DO SCS MÉTODO RACIONAL MÉTODO DE I-PAI-WU MODIFICADO	46 52 57
6. E	QUIPE TÉCNICA	62

1. INICIALIZAÇÃO DO MODELO

Este manual de utilização apresenta uma descrição do modelo ABC-DAEE, ou seja, da interface Windows "usuário – modelo" para a determinação das vazões de projeto.

Ao inicializar o modelo ABC-DAEE a tela que aparece traz informações sobre a versão e as parcerias no desenvolvimento do modelo, conforme figura.

2. COMPONENTES DA INTERFACE

A interface usuário-sistema ABC-DAEE é composta pelos seguintes itens (vide figura):

- Menu Principal;
- Barra de Botões;
- Barra de Status uma barra inferior de informações que informa o intervalo de tempo de cálculo, o período de retorno escolhido para a vazão de projeto e o método selecionado para o cálculo das vazões máximas;
- Área de trabalho espaço para desenhar a rede que caracteriza a área de projeto. A entrada dos dados necessários para o cálculo da vazão máxima ou de projeto é realizada pelos elementos da rede. O desenho da rede é apresentado em detalhes no item 2.3. No canto inferior direito há a letra G, ao clicar com o mouse sobre a letra ativa-se um grid (quadriculado) sobre a área de trabalho. Um novo clique e o grid é desativado.

2.1 MENU PRINCIPAL

Situado na parte superior da tela, disponibiliza as seguintes funções: Arquivo, Parâmetros e Ajuda. Uma descrição detalhada das suas funcionalidades encontra-se mais adiante, no item 3 - Menu Principal deste manual.

2.2 BARRA DE BOTÕES

A Barra de Botões (vide figura), localizada logo abaixo do Menu Principal, possui os botões necessários para as seguintes operações na área de trabalho:

- Botões para o desenho da rede (nó, reservatório, paralelo e bacia). Clicando-se com o mouse sobre o botão, o mesmo é ativado ou habilitado para a função, conforme a descrição a seguir:
 - Nó: representa um ponto de início, ponto fim ou confluência de bacias hidrográficas;
 - Reserv. Reservatório: representa uma represa no curso d´água com vertimento livre e/ou afogado;

R

0

0

 \cap

- Bacia Bacia: representa a bacia hidrográfica, trecho de canal natural e artificial;
- Seta Seta: deve-se ativar a seta na entrada de dados em cada elemento da rede;

Mover Mover: permite mover os elementos desenhados na rede;

Excluir Excluir: permite excluir um elemento desenhado;

0

0

Relatório Relatório: permite gerar um relatório com um resumo dos dados de entrada e os dados de saída do modelo escolhido. Este botão só pode ser ativado após o cálculo da vazão máxima;

Calcular: permite o cálculo da vazão máxima (só é habilitado após a entrada dos dados necessários para cada modelo).

O item 4 apresenta em maior detalhe o desenho da rede para caracterizar a bacia hidrográfica de interesse para o projeto.

2.3 ÁREA PARA DESENHO DA REDE (ÁREA DE TRABALHO)

A área de trabalho ou área para desenho da rede é o espaço reservado para representar as características principais da bacia hidrográfica de interesse (vide figura). A entrada dos dados da bacia hidrográfica é realizada através dos elementos da rede, conforme apresentado no item 4.1.

2.4 BARRA COM INFORMAÇÕES

A barra de Status ou barra de informações é uma barra inferior que informa o intervalo de tempo de cálculo, o período de retorno escolhido para a vazão de projeto e o método selecionado para o cálculo das vazões máximas.

Intervalo: 30 min. P.Retorno: 10 anos Cálculo de Vazões Máximas: Chuva excedente SCS e hidrograma triangular do SCS

•

3. MENU PRINCIPAL

Situado na parte superior da tela, disponibiliza as seguintes funções: Arquivo, Parâmetros, Janela e Ajuda.

3.1 ARQUIVO

A função "Arquivo" permite acessar as seguintes funcionalidades relacionadas aos arquivos(vide figura):

- Novo abre um arquivo novo via Menu ou através da função CTRL + N;
- Abrir permite abrir um arquivo existente via Menu ou através da função CTRL + O;
- Salvar permite salvar o arquivo aberto via Menu ou através da função CTRL + S;
- Salvar como permite fornecer/modificar um nome e salvar o arquivo;
- Na sequência são listados os nomes dos últimos arquivos salvos;
- Sair permite sair do programa.

3.1.1 NOVO

Acionando-se a função "Arquivo" e "Novo" via Menu, permite ir para um arquivo novo. Antes de ir para um arquivo vazio e novo é feita a pergunta (vide figura) se deseja salvar o arquivo existente.

3.1.2 ABRIR

A função "Abrir" no Menu "Arquivo" permite abrir um arquivo existente. Abre-se uma janela que permite escolher o arquivo a ser aberto (vide figura).

rganizar 💌 Nova pasta	a		· · ·
Favoritos Área de Trabalho Downloads	Biblioteca Documentos Exemplo de Aplicação ABC-DAEE	*	Organizar por: Pasta 🔻
 Bibliotecas Documentos Imagent 	🗋 Bacia Exemplo.prj		
Músicas Vídeos Grupo doméstico			
Computador			
DENIDER/EDGP (1)			

3.1.3 SALVAR

A função "Salvar" no Menu "Arquivo" permite salvar o arquivo. Caso o arquivo ainda não tenha sido salvo abre-se a janela com a opção "salvar como" que permite dar nome ao arquivo (vide figura).

Organizar 🔻 Nova pasta	800
 Favoritos Área de Trabalho Downloads Locais Bibliotecas Documentos Imagens Músicas Vídeos Grupo doméstico 	E Bibliot Organizar por: Pasta - Exemplo de Nome Bacia Exemplo.prj
🖳 Computador	• • [<u>m</u>]
Nome: Tipo: Projetos ABC DAEE (*.prj)	

3.1.4 SALVAR COMO

A função "Salvar Como" no Menu "Arquivo" permite nomear e salvar o arquivo (vide figura).

Organizar 🔻 Nova pasta	
 ★ Favoritos ▲ Área de Trabalho Downloads Uccais Bibliotecas Documentos Imagens Músicas Vídeos Vídeos 	Bibliot Organizar por: Pasta Exemplo de Nome Bacia Exemplo.prj
19 Computador	✓ <

3.2 PARÂMETROS

A opção parâmetros do Menu (vide figura) permite fazer as seguintes escolhas:

- Intervalo: é o intervalo de discretização dos cálculos;
- Período de retorno: é o período de retorno da precipitação de projeto;
- Cálculo das Vazões Máximas: escolha do método para o cálculo da vazão máxima (Hidrograma Triangular do SCS, Racional ou o Método de I-Pai-Wu modificado).

Arquivo	Parâmetros Ajuda		
Nó	Intervalo	D	
	Período de Retorno		<u> </u>
	Cálculo de Vazões Máximas	Tielatono	Calcula

3.2.1 INTERVALO

Permite entrar com o intervalo de discretização dos cálculos, em minutos (vide figura). É recomendável que o intervalo seja da ordem de 1/10 do tempo médio de concentração das bacias hidrográficas, caso sejam consideradas mais de uma bacia.

Intervalo de Discretização Para obter uma melhor precisão nos resultados, é recome intervalo de discretização dos cálculos seja da ordem de médio de concentração das bacias.	endável que o 1/10 do tempo
Intervalo de Discretização dos Cálculos (min):	30
Período de Retorno	
Tempo de Retorno da Precipitação (anos):	10
Cálculo de Vazões Máximas	
Chuva excedente SCS e hidrograma triangular do SC	S
C Método Racional	
🕻 Método I-Pai-Wu	

3.2.2 PERÍODO DE RETORNO

Permite entrar com o período de retorno da precipitação, em anos (vide figura).

montalo do prisoroticação		
Para obter uma melhor precisão nos resultados, é intervalo de discretização dos cálculos seja da or médio de concentração das bacias.	recomendáve lem de 1/10 d	l que o o tempo
Intervalo de Discretização dos Cálculos (min):	Γ	30
Período de Retorno		
Tempo de Retorno da Precipitação (anos):	Γ	10
Cálculo de Vazões Máximas		
Cálculo de Vazões Máximas Chuva excedente SCS e hidrograma triangula	r do SCS	
Cálculo de Vazões Máximas C Chuva excedente SCS e hidrograma triangula C Método Racional	r do SCS	

3.2.3 ESCOLHA DA METODOLOGIA PARA A DETERMINAÇÃO DAS VAZÕES MÁXIMAS

O ABC-DAEE apresenta 3 métodos para a determinação das vazões máximas (vide figura), são eles:

- Chuva excedente do SCS e Hidrograma triangular do SCS;
- Método racional;
- Método I-Pai-Wu Modificado.

A seleção do método é feita clicando-se com o mouse sobre o nome. Esta ação ativa um ícone ao lado esquerdo do nome do método, definindo qual método foi selecionado (vide figura). A entrada de dados para cada método é apresentada no item 4.

3.3 AJUDA

A opção Ajuda do Menu (vide figura) permite fazer as seguintes escolhas:

- Acessar o Manual de utilização do ABC-DAEE, vide figura;
- Sobre o ABC-DAEE (Informações sobre a versão e sobre os autores do desenvolvimento do software.), vide figura.

4. ENTRADA DE DADOS - MODELOS

A entrada dos dados para cada um dos 3 modelos disponíveis no ABC-DAEE é apresentada a seguir.

4.1 CARACTERIZAÇÃO DA REDE – DESENHO

A caracterização de um sistema possível de ser modelado (bacia hidrográfica, canais, confluência de bacias ou reservatórios) foi concebida como uma rede de fluxos. A entrada de dados é feita em cada elemento, conforme apresentado em detalhe a seguir. Os elementos do sistema são representados por:

- Os elementos representados pelos botões Nó, Paralelo, Reserv na barra de botões: representam pontos de início, final, confluência de bacias ou reservatórios. Quando um nó representa um reservatório, ele contém todos os dados que caracterizam esse reservatório (cota da crista do vertedor, cota de fundo do reservatório, largura do vertedor, curvas cota x vazão e cota x volume, etc.);
- O elemento representado pelo botão Bacia: representa uma bacia hidrográfica e um trecho de canais naturais e artificiais. Para as bacias hidrográficas cada arco contém os dados que a caracteriza e uma função de transformação responsável pela produção de uma saída (vazão) a partir de uma entrada (chuva). Já para os canais, a função de transformação é o amortecimento do hidrograma de entrada no trecho e a saída é o hidrograma amortecido no final do mesmo.

O desenho da rede é feito na área de trabalho, conforme exemplo a seguir. O exemplo ilustra a caracterização de uma bacia hidrográfica única (vide figura). O desenho da rede é feito da seguinte forma:

Clica-se com o mouse no ícone na barra de botões. Em seguida clica-se na área de trabalho

desenhando o elemento Montante que caracteriza um nó de montante da bacia hidrográfica;

- Novamente clica-se com o mouse no ícone na barra de botões. Em seguida clica-se na área de trabalho desenhando o elemento usante que caracteriza um nó de jusante da bacia hidrográfica;
- A representação da bacia hidrográfica é feita clicando-se com o mouse no botão
 Bacia na barra de botões. Em seguida na área de trabalho clica-se com o botão do mouse primeiro no botão de montante e

depois no de jusante. Automaticamente é desenhado o ícone que representa a bacia hidrográfica desenho a seguir representa a caracterização de uma bacia hidrográfica.

Observação: é possível identificar os nós com os nomes desejados. No exemplo, conforme figura anterior, os nomes foram identificados como: montante, bacia exemplo e jusante. Este procedimento é feito clicando-se com o mouse no nome do nó. Após isso aparece um retângulo amarelo já pronto para a edição, conforme figura a seguir:

A entrada de dados é apresentada nos itens que seguem em função do método de determinação da vazão máxima.

4.2 MÉTODO DO HIDROGRAMA TRIANGULAR DO SCS

A entrada de dados do ABC-DAEE para o método do Hidrograma Triangular do SCS é feita através do seguinte roteiro (para a rede definida no item anterior):

• A entrada de dados é feita clicando-se com o mouse sobre o elemento da rede. Na barra de botões ativa-

se o botão com um clique do mouse, esta ação permite editar a entrada de dados nos elementos da rede. Inicialmente clica-se sobre o nó de montante (vide figura). Abre-se uma aba com as opções Hidrograma, Reservatório e Res. Paralelo;

A opção <u>"Hidrograma"</u> deve ser ativada caso o nó de montante represente um hidrograma de entrada na bacia hidrográfica de interesse. Caso haja interesse em entrar com um hidrograma, clica-se com o mouse sobre a opção "Hidrograma". Abre-se uma tela que permite entrar com os dados (vide figura). A discretização dos dados é definida conforme item 3.2. Os dados de vazão podem ser copiados, carregados ou digitados. Após a entrada dos dados, o gráfico do hidrograma pode ser visualizado (vide figura). Após a entrada dos dados basta clicar no botão OK, no canto inferior direito. Esta ação finaliza a entrada dos dados da opção;

 A opção <u>"Reservatório"</u> deve ser ativada caso o usuário deseje caracterizar como nó de montante um reservatório. Ao clicar sobre a opção <u>"Reservatório"</u> o desenho que caracteriza o nó é alterado para o

seguinte símbolo: Montante. Clicando-se com o mouse sobre o elemento que caracteriza o reservatório abre-se uma aba com as seguintes opções: Dados do Reservatório, Parâmetros do Vertedor e Curva Cota-Volume (vide figura). As demais opções alteram o elemento de entrada.

A entrada de dados na opção <u>"Reservatório"</u> é feita clicando-se sobre "Dados do Reservatório". Abre-se uma janela (vide figura) e devem ser informadas as *características físicas*: cota da crista da barragem, cota da lâmina d'água e cota do fundo do reservatório, todas em metros. Em seguida deve-se entrar com os *parâmetros do vertedor* (vide figura). Há opção para vertedor de soleira livre ou vertedor de soleira afogada. A entrada de dados pode ser pela fórmula do vertedor ou via tabela cota x vazão. Após isso deve-se entrar com os dados cota x volume do reservatório, via fórmula ou via tabela (vide figura). Após a entrada dos dados, basta clicar no botão OK, no canto inferior direito. Esta ação finaliza a entrada dos dados da opção "Reservatório";

DADOS DO RESERVATÓRIO: CARACTERÍSTICAS FÍSICAS

PARÂMETROS DO VERTEDOR – DADOS DE ENTRADA

Dados do Reservatorio	Parâmetro	s do Vertedor	Ľ	Curva Cota-Volu	me
Vertedor de Soleira Livre	,				
🕫 Fórmula	1	-C Tabela			
C - Coeficiente de Descarga:	2,000	Cota	(m)	Vazão (m³/s)	•
L · Largura do Vertedor (m):	20.000	1 0,0	00	0,000	
H Coto do Vortodor (m):	20,000	2 0,0	טע חר	0,000	-
	100,000	4 0,0	00	0,000	
	231	5 0,0)0	0,000	
Q=C L (N-NU) (34	(2)	6 0,0	00	0,000	•
Vertedor de Soleira Afog	jada				
🕼 Fórmula —		-C Tabela -			
 Fórmula C - Coeficiente de Descarga: 	1,800	-C Tabela	(m)	Vazão (m³/s)	•
 ☞ Fórmula C - Coeficiente de Descarga: L - Largura do Vertedor (m): 	1,800	-C Tabela	<u>(m)</u>)0	Vazão (m³/s) 0,000 0.000	
Fórmula C - Coeficiente de Descarga: L - Largura do Vertedor (m): h - Altura do Vertedor (m):	1,800 2,000 1,000	C Tabela - Cota 1 0,0 2 0,0 3 0,0	(m) 30 30 30	<u>Vazão (m³/s)</u> 0,000 0,000 0,000	
Fórmula C - Coeficiente de Descarga: L - Largura do Vertedor (m): h - Altura do Vertedor (m): H - Cota Base do Vertedor (m):	1,800 2,000 1,000	C Tabela - Cota 1 0,0 2 0,0 3 0,0 4 0,0	<u>(m)</u> 00 00 00 00	<u>Vazão (m³/s)</u> 0,000 0,000 0,000 0,000 0,000	
Fórmula C - Coeficiente de Descarga: L - Largura do Vertedor (m): h - Altura do Vertedor (m): H - Cota Base do Vertedor (m): G	1,800 2,000 1,000 95,500	-C Tabela - Cota 1 0,0 2 0,0 3 0,0 4 0,0 5 0,0 6 0,0	<u>(m)</u> 00 00 00 00 00	Vazão (m²/s) 0,000 0,000 0,000 0,000 0,000 0,000	
Fórmula C · Coeficiente de Descarga: L · Largura do Vertedor (m): h · Altura do Vertedor (m): H · Cota Base do Vertedor (m): Q=C*L*[(H-H0]^(3/2)-(H-H	1,800 2,000 1,000 95,500 0-h)^(3/2)]	C Tabela 1 0,0 2 0,0 3 0,0 4 0,0 5 0,0 6 0,0	(m) 20 20 20 20 20 20 20	Vazão (m³/s) 0,000 0,000 0,000 0,000 0,000 0,000	

CURVA COTA X VOLUME – DADOS DE ENTRADA

• A opção <u>"Reservatório Paralelo"</u> será apresentada em item específico...

 A entrada de dados da <u>"bacia hidrográfica</u>" é feita clicando-se com o mouse no elemento de rede (vide figura). Após o clique abre-se uma aba com as opções: Dados da Bacia e Bacia Fictícia;

Escolhe-se a opção "Dados da Bacia" através de um clique do mouse. Abre-se uma janela (vide figura) com as abas: Dados da Bacia, Precipitação, SCS-CN. Em "Dados da Bacia" entra-se com as características físicas da bacia hidrográfica: área da bacia em km², porcentagem da área impermeável e

porcentagem da área diretamente conectada ao curso principal. Após entrar com o valor da área da bacia hidrográfica abre-se uma mensagem (vide figura) informando que a área da bacia foi alterada e se deseja que os demais parâmetros sejam recalculados (tempo de concentração e dados do canal). Ao clicar em "sim" os parâmetros são recalculados através de fórmulas "default";

BACIA HIDROGRÁFICA – DADOS DE ENTRADA – HIDROGRAMA TRIANGULAR DO SCS

Dados da Bacia 🏾 Precipitação	SCS - CN
Características Físicas	
Área (Km²):	259,000
Área Impermeável (%):	32.0
Área Diretamente Conectada (%):	$Aimp \ge Adir$
Tempo de Concentração	
Tempo de Concentração (h):	8,05
Calculado por:	Equações Empiricas
Dados do Canal	
Comprimento (m):	48700,0
Velocidade (m/s):	2,52
Tempo de Trânsito da Onda de Cheia (h):	5.37
Coeficiente de Amortecimento (0 <x<0.5):< td=""><td>0,25000</td></x<0.5):<>	0,25000

MENSAGEM DE ALTERAÇÃO DA ÁREA DA BACIA

O parâmetro <u>"tempo de concentração"</u>: após a entrada da área da bacia hidrográfica, o programa estima o tempo de concentração através de uma fórmula "default" (ver item 2.3 da teoria). Caso o usuário deseje entrar com o tempo de concentração obtido fora do programa, basta entrar com o dado. Caso contrário, clicando-se em "Equações Empíricas" há uma relação de equações disponíveis (vide figura). Para cada uma das equações listadas há um texto com a recomendação de uso das fórmulas.

DEFINIÇÃO DO TEMPO DE CONCENTRAÇÃO

- Além disso, há uma relação de todas as variáveis utilizadas nas fórmulas disponíveis (vide figura).
 Algumas observações devem ser feitas:
 - Deverão ser estimadas somente as variáveis a serem utilizadas na fórmula escolhida;
 - Para algumas variáveis há informações disponíveis que poderão ajudar na escolha. São elas: tabela de rugosidades, Manning composto, curvas IDF e curvas CN;
 - Caso a fórmula escolhida seja a de "Kerby", clicando-se em "tabela de rugosidades" abrese uma janela que apresenta algumas sugestões de coeficientes de retardo, conforme figura a seguir:

 Caso a fórmula escolhida seja "Onda Cinemática", clicando-se em "Manning Composto" abre-se uma janela que apresenta algumas opções que permitem fazer escolhas para que o programa determine um coeficiente de Manning composto (vide figura);

lúmero de Manning I	Composto		(
Envolvido por (nU)		Efeito das obstruço	es (n2)
 areia descoberta; 	0,013)0
C argila descoberta:	0,012	_ C pequeno: 0,01	IO <u> </u>
C asfalto:	0,012	- C regular: 0,02	20 /
C capim:	0,450	, C grande: 0,04	10 <u> </u>
C concreto:	0,011		=-
C gramínea:	0,150	- Tamanno da vegeta	içao (njj-
C pedras miúdas:	0,012)		
🔿 terra (sem resíduo):	0.050	Contentia: U,UI	D /
Grau de irregularida	de (n1)	C muito alta: 0,05	50
Iso:	0,000	– Interferências no pr	ercurso (m
C pequeno:	0,005	• pequeno: 1.00	
C regular:	0,010	C regular: 115	50
C grande:	0,020	C grande: 1,30)0
	N=(n0+n1+n	2+n3)*m=0,018	

Caso a fórmula escolhida seja "Onda Cinemática", clicando em "Curvas IDF" abre-se uma janela que apresenta algumas opções de curvas IDF para todo o Estado de São Paulo (vide figura a seguir). Escolhe-se a localidade, a duração da chuva e o coeficiente de redução espacial;

Curvas IDF	5			
Estado:	SP		-	
Localidade:	Andradina		•	
Fonte:	СТН			
Coeficient	es:			
A:	34,574			
B:	20,000			
C: 🗖	-0,881			
D:	2,691			
E:	10,000			
F:	-0,668			
G: 🗌	-0,477			
H:	-0,898			
Duração da Cl	nuva (min):	360		
Coeficiente de	Redução Espacial:	1,000		

Caso a fórmula escolhida seja a "SCS", clicando em "Curvas CN" abre-se uma janela que apresenta uma tabela que auxilia na determinação do valor de CN da bacia (vide figura). Esta opção será apresentada em detalhe em item específico adiante. Cabe observar que esta opção é utilizada caso o usuário não tenha previamente a estimativa do CN para a bacia hidrográfica de interesse.

Solo A: 100 %	Solo B: 0 % Solo C: 0 %	Solo D: 0	2%
Uso do Solo	Superfície	Ocorrência (%)	-
Residencial	Lote até 500m² (65% impermeável)	100	
	Lote até 1000m² (38% imperveável)		
	Lote até 1500m² (30% impermeável)		
Estacionamentos	Pavimentados		
	Cobertos (telhados)		
Ruas e Estradas	Pavimentadas, com guias e drenagens		
	Com cascalho		
	De terra		
Bacia Urbana	Bacia Rural Direta	mente Conectada	

Entrada de "Dados do canal": como dados do canal são relacionados:

- comprimento do talvegue, em metros. Este dado é estimado pelo ABC-DAEE através da fórmula $L(m) = 1.74 * A(km^2)^{0.6} * 1000;$
- velocidade no canal, em m/s. A velocidade é estimada pelo próprio programa ABC-DAEE dividindo-se o comprimento do talvegue pelo tempo de concentração;
- Tempo de trânsito da onda de cheia, em horas;
- Coeficiente de amortecimento da onda de cheia (x), deve estar entre 0 < x < 0.5;
- Para cada uma das equações listadas há um texto com a recomendação de uso das fórmulas. Além disso, há uma relação de todas as variáveis utilizadas nas fórmulas disponíveis (vide figura). Algumas observações devem ser feitas:

A entrada de dados de <u>"Precipitação"</u> (vide figura): o ABC-DAEE possui uma relação de equações IDF (Intensidade-Duração-Frequência) para várias cidades do Estado de São Paulo. Para acessar a relação das curvas clica-se em "Carregar Curvas IDF" (vide figura), abre-se uma janela. Nesta pode-se escolher a localidade mais próxima ao local do projeto. Escolhe-se a duração da chuva de projeto, igual ao tempo de concentração da bacia hidrográfica e o coeficiente de redução espacial da chuva (ver itens 2.3.3, 2.3.8 e 2.3.9 do material teórico). Após clicar em Ok;

ENTRADA DE DADOS - PRECIPITAÇÃO

Curvas IDF				
Estado:	SP		-	
Localidade:	Andradina		•	
Fonte:	СТН			
Coeficient	es:			
A:	34,574			
B:	20,000			
C: [-0,881			
D:	2,691			
E:	10,000			
F:	-0,668			
G: 🗌	-0,477			
H:	-0,898			
Duração da Cl	huva (min):	360	_	
Coeficiente de	Redução Espacial:	1,000		

ENTRADA DE DADOS - PRECIPITAÇÃO

Após a escolha da curva IDF volta-se para a tela de entrada da precipitação. Nesta é possível visualizar a distribuição temporal da chuva de projeto escolhida (tabela e gráfico) (vide figura);

Dados	da Bacia	Precipitação	
)istril	ouição Tem	poral	Dados da Chuva
	Tempo (hh:mm)	Precipitação 🔺 (mm)	letograma
1	0:30	1,98	40
2	1:00	2,42	35
3	1:30	3,14	
4	2:00	4,55	Ę
5	2:30	8,47	ig 25-
6	3:00	43,64	eg 20-
7	3:30	14,62	ig 15-
8	4:00	5,92	ā 10-
9	4:30	3,71	5
10	5:00	2,73	
11	5:30	2,18	0:30 1:30 2:30 3:30 4:30 5:30
12	6:00	1,82	Tempo (hh:mm)
13	6:30	0,00 🔻	L.
	Carregar	Curvas IDF	Localidade: Andradina (SP)
	Ajuste E	statístico	P.Retorno (anos): 10

Outra opção para a determinação da chuva de projeto é a utilização de dados de chuvas diárias máximas anuais. É importante que haja no mínimo 30 anos de observação. Escolhem-se os valores máximos anuais. Estes devem ser inseridos na tabela "Precipitação" (vide figura). Após a entrada dos dados o programa ajusta uma distribuição de probabilidade de Gumbel e gera distribuições de chuva com durações de 6 horas, 12 horas e 24 horas. A opção para a determinação da chuva de projeto utilizando dados de chuvas diárias máximas anuais só é possível quando o intervalo de cálculo é de 30 minutos;

A entrada de dados do <u>"CN-SCS"</u> (vide figura) é feita clicando-se sobre a aba "SCS – CN", abre-se uma janela com a indicação do CN da área permeável da bacia hidrográfica;

1	Precipitação	SCS - CN	1	
SCS				
Número da Curva da Á	rea Permeável:	59	Curvas CN	

ENTRADA DE DADOS – CN – JANELA PRINCIPAL

- Clicando-se sobre "Curvas CN" (vide figura anterior) abre-se uma tela com as seguintes opções para a definição do valor de CN:
 - Nesta tela é informada a área da bacia hidrográfica;
 - Logo a seguir é possível entrar com as porcentagens dos grupos hidrológicos de solo (A, B, C ou D) encontrados na bacia hidrográfica (a soma das porcentagens deve resultar em 100%). Para maiores detalhes consultar os itens 2.3.5 e 2.3.6 do material teórico;
 - Para cada grupo hidrológico de solo encontrado na bacia de interesse deve-se entrar com a porcentagem de ocorrência dos usos do solo da bacia (vide figura). Cabe observar que a soma das ocorrências para cada grupo de solo encontrado na bacia (A, B, C e D) deve totalizar 100%. Como pode ser observado na figura o programa ABC-DAEE fornece uma tabela de usos do solo, com suas respectivas superfícies. Para bacias urbanas os usos são apresentados na cor amarela, para bacias rurais, na cor verde e para áreas diretamente conectadas na cor azul;
 - O usuário deve escolher a condição de umidade do solo da bacia (Condição I, II ou III).
 Normalmente escolhe-se a condição do tipo II (condição intermediária). Cabe destacar que se os

Solo A: 100 %	Solo B: 0 % Solo C: 0 %	Solo D: 0
Uso do Solo	Superfície	Ocorrência (%)
Residencial	Lote até 500m² (65% impermeável)	
	Lote até 1000m² (38% imperveável)	40
	Lote até 1500m² (30% impermeável)	60
Estacionamentos	Pavimentados	
	Cobertos (telhados)	
Ruas e Estradas	Pavimentadas, com guias e drenagens	
	Com cascalho	
	De terra	
Bacia Urbana	Bacia Rural Diret	amente Conectad

dados forem fornecidos corretamente, o programa calcula automaticamente o CN médio da bacia hidrográfica, conforme figura;

Caso haja alguma inconsistência na entrada dos dados o programa ABC-DAEE gera uma mensagem, conforme exemplo ilustrado na figura a seguir. Observa-se no canto superior direito um alerta escrito na cor vermelha: "Atenção: Complete a ocorrência: Solo A (90%)". Esta mensagem alerta que há uma ocorrência de 90%, ou seja, deve-se completar 10% para atingir os 100%;

Área da Bacia (km²):	259,000 Atenção: Complete a ocorrência	Solo A (90%)	
Solo A: 100 %	Solo B: 0 % Solo C: 0 %	Solo D: 0	%
Uso do Solo	Superfície	Ocorrência (%)	-
Residencial	Lote até 500m² (65% impermeável)		
122300-1127-13 (February)	Lote até 1000m² (38% imperveável)	30	
	Lote até 1500m² (30% impermeável)	60	
Estacionamentos	Pavimentados		1
	Cobertos (telhados)		
Ruas e Estradas	Pavimentadas, com guias e drenagens	Â	
	Com cascalho		
	De terra		.
Bacia Urbana	Bacia Rural Diretan	iente Conectada	
CN Estimado para a Baci	ia: Condição de Umida	de: Condição II	•

- É possível observar no canto inferior esquerdo a opção "Ajuda". Clicando-se sobre a opção abre-se
 uma tela (vide figura a seguir) com duas abas. Uma apresenta o "Tipo Hidrológico do Solo" com a
 descrição dos grupos hidrológicos de solo (A, B, C e D). A outra apresenta um texto descritivo
 sobre a "Condição de Umidade Inicial" (I, II e III);
- Após a entrada de todos os dados necessários para a obtenção da vazão máxima pelo método do Hidrograma Triangular do SCS o próximo passo é ir para o módulo de "Calcular".

Tipo Hidrológico do Solo	Condição de Umidade Inicial
Grupo A	
Solos arenosos com baixo teor de argila total, argilosas e nem mesmo densificadas até a pro baixo, não atingindo 1,0%.	inferior a 8,0%, não há rocha nem camadas ofundidade de 1,0m. O teor de húmus, muito
Grupo B	
Solos arenosos menos profundos que os do (ainda inferior a 15%. No caso de terras roxas porosidade. Os dois teores de húmus podem podem haver pedras e nem camadas argiloss camada mais densificada do que a camada s	3rupo A e com maior teor de argila total, porém este limite pode subir a 20% graças à maior subir respectivamente a 1,2% e 1,5%. Não is até 1,0m mas é quase sempre presente uperficial.
Grupo C	
Solos barrentos com teor total de argila de 20 impermeáveis ou contendo pedras até a profi- estes dois limites máximos podem ser 40% e 1 camada mais densificada que no Grupo B ma impermeabilidade.	% a 30% mas sem camadas argilosas undidade de 1,2m. No caso de terras roxas .0m. Nota-se a cerca de 60cm de profundidade is ainda longe das condições de
Grupo D	
Solos argilosos (de 30% a 40% de argila total) de profundidade ou solos arenosos como o G impermeável ou horizonte de seixos rolados.	e ainda com camada densificada a uns 50cm rupo B mas com camada argilosa quase

Tipo Hidrológico do Solo	Condição de Umidade Inicial
Condição I	
Solos Secos: As chuvas nos últimos dias não	ultrapassam 1mm.
Condição II	
Solos Imtermediários: Situação muito freqüente 5 dias totalizam entre 1mm e 40mm.	e em épocas chuvosas, as chuvas nos últimos
Condição III	

Fundação Centro Tecnológico de Hidráulica RP02-2012-1096-R0

- - Calcular, na barra de botões. Após o

Para o cálculo da vazão máxima deve-se clicar com o mouse em clique abre-se uma tela com as informações sobre o processamento dos cálculos. Para finalizar clica-se em OK. O acesso aos resultados é apresentado no item 5.

/	Verificando a não dispersão dos elementos da rede
	Verificando unicidade da rede
/	Verificando inexistência de ciclos na rede
7	Definindo a seqüência de cálculo da rede
1	Calculando rede
	1002
Stat	us
) equ Cálcu	ência da rede definida com sucesso. Ilo encerrado.

4.3 MÉTODO RACIONAL

A entrada de dados do ABC-DAEE para o método racional é feita através do roteiro a seguir (para a rede definida conforme apresentado no item 4.1). É importante ressaltar que para este método a entrada de dados é feita apenas no elemento da rede que representa a bacia hidrográfica.

- O primeiro passo é acessar o Menu Principal, ir em "Parâmetros", "Cálculo de Vazões Máximas"e selecionar o "Método Racional", conforme apresentado no item 3.2.3;
- Na barra de botões ativa-se o botão seta com um clique do mouse, esta ação permite editar a entrada de dados nos elementos da rede.

 A entrada de dados da <u>"bacia hidrográfica"</u> é feita clicando-se com o mouse no elemento de rede (vide figura). Após o clique abre-se uma aba com as opções: Dados da Bacia e Bacia Fictícia;

Escolhe-se a opção "Dados da Bacia" através de um clique do mouse. Abre-se uma tela (vide figura) com as abas: Dados da Bacia e Método Racional. Em "Dados da Bacia" (vide figura) entra-se em características físicas da bacia hidrográfica apenas com a área da bacia hidrográfica (caso específico do Método Racional). Após entrar com o valor da área da bacia hidrográfica abre-se uma mensagem informando que a área da bacia foi alterada e se deseja que os demais parâmetros sejam recalculados (tempo de concentração e dados do canal). Ao clicar em "sim" os parâmetros são recalculados através de fórmulas "default", ao clicar em "não" os parâmetros não são recalculados;

Dados da Bacia Método Racional	1	
Características Físicas		_
Área (Km²):	2,000	
Área Impermeável (%):	0,0	
Área Diretamente Conectada (%):	$\begin{array}{c} & \\ \hline & 0,0 \end{array} \right\} \text{Aimp} \geq \text{Adir}$	
Tempo de Concentração		
Tempo de Concentração (h):	0.71	
Calculado por:	Estimado	
Dados do Canal		
Comprimento (m):	2637,3	
Velocidade (m/s):	1,55	
Tempo de Trânsito da Onda de Cheia (h):	0,47	
Coeficiente de Amortecimento (0 <x<0.5):< td=""><td>0.25000</td><td></td></x<0.5):<>	0.25000	

DADOS DE ENTRADA DA BACIA- MÉTODO RACIONAL

O próximo passo é acessar a aba "Método Racional" (vide figura). Nesta deve-se entrar com o valor do coeficiente de escoamento superficial (maiores detalhes sobre a escolha do coeficiente podem ser consultados no item 2.3.7 do material teórico);

Dados da Bacia Método Racional	۱ <u>۱</u>		
Coeficiente de Escoamento Superficia	al		
C - Coeficiente de Escoamento Superficial:	0,50		
Precipitação			
i - Intensidade da Chuva Crítica (mm/h):	60,00	Carregar Curvas ID	F

DADOS DE ENTRADA – MÉTODO RACIONAL

O próximo passo é entrar com a intensidade da precipitação. O ABC-DAEE possui uma relação de equações IDF (Intensidade-Duração-Frequência) para várias cidades do Estado de São Paulo. Para acessar a relação das curvas clica-se em "Carregar Curvas IDF" (vide figura), abre-se uma tela. Nesta pode-se escolher a localidade mais próxima à bacia do projeto e o programa carrega a equação para o local. Após a escolha, o ABC-DAEE adota automaticamente a duração da chuva igual ao tempo de concentração da bacia e o coeficiente de redução espacial da chuva. Após clicar em Ok;

Curvas IDF			
stado: SP		-	
ocalidade: Barretos	i.	•	
onte: Mero & M	1agni (Chuvas Intensas n	o ESP-DAEE	CTH-1982)
Coeficientes:			
a1: 19,180	p1: 20,000	g2:	0,000
b1: 20,000	q1: _0,849	m2:	4,980
c1: .0,849	a2: 17,780	p2:	20,000
d1: 0,000	b2: 20,000	q2:	-0,834
e1: 0,000	c2: _0,834	e3:	0,000
f1: 0,000	d2: 0,000	f3:	0,000
g1: 0,000	e2: 0,000	g3:	0,000
m1: 5,370	f2: 0,000		
luração da Chuva (min):	43		
oeficiente de Redução	Espacial: 0,879		

ENTRADA DE DADOS - PRECIPITAÇÃO

- Após a escolha da curva IDF volta-se para a tela de entrada da precipitação. Clica-se novamente em OK para finalizar a entrada de dados para o método racional.
 - Para o cálculo da vazão máxima deve-se clicar com o mouse em Calcular, na barra de botões. Após o clique abre-se uma tela com as informações sobre o processamento dos cálculos. Para finalizar clica-se em OK. O acesso aos resultados é apresentado no item 5.

√	Verificando a não dispersão dos elementos da rede
√	Verificando unicidade da rede
	Verificando inexistência de ciclos na rede
1	Definindo a seqüência de cálculo da rede
	Calculando rede
	100%
Stal	tus
Seqi Cálci	iência da rede definida com sucesso. ulo encerrado.
	Πk

4.4 MÉTODO DE I-PAI-WU MODIFICADO

A entrada de dados do ABC-DAEE para o método de I-Pai-Wu Modificado é feita através do roteiro a seguir (para a rede definida conforme apresentado no item 4.1). É importante ressaltar que para este método a entrada de dados é feita apenas no elemento da rede que representa a bacia hidrográfica.

- O primeiro passo é acessar o Menu Principal, ir em "Parâmetros", "Cálculo de Vazões Máximas" e selecionar o "Método I-Pai-Wu Modificado", conforme apresentado no item 3.2.3;
- Na barra de botões ativa-se o botão seta com um clique do mouse, esta ação permite editar a entrada de dados nos elementos da rede.

 A entrada de dados da <u>"bacia hidrográfica</u>" é feita clicando-se com o mouse no elemento de rede (vide figura). Após o clique abre-se uma aba com as opções: Dados da Bacia e Bacia Fictícia;

Escolhe-se a opção "Dados da Bacia" através de um clique do mouse. Abre-se uma tela (vide figura) com as abas: Dados da Bacia e Método I-Pai-Wu. Em "Dados da Bacia" (vide figura) entra-se em características físicas da bacia hidrográfica apenas com a área da bacia hidrográfica (caso específico do Método I-Pai-Wu). Após entrar com o valor da área da bacia hidrográfica abre-se uma mensagem informando que a área da bacia foi alterada e se deseja que os demais parâmetros sejam recalculados (tempo de concentração e dados do canal). Ao clicar em "sim" os parâmetros são recalculados através de fórmulas "default", ao clicar em "não" os parâmetros não são recalculados;

Características Físicas		_
Área (Km²):	2,000	
Área Impermeável (%):		
Área Diretamente Conectada (%):	Aimp \geq Adir	
Tempo de Concentração		
Tempo de Concentração (h):	0.71	
Calculado por	Equações Empíricas	
	E stimado	
Dados do Canal		_
Comprimento (m):	2637,3	
Velocidade (m/s):	1.55	
Tempo de Trânsito da Onda de Cheia (h):	0.47	
Coeficiente de Amortecimento (0 <x<0.5):< td=""><td>0.25000</td><td></td></x<0.5):<>	0.25000	
	1 0,2000	

DADOS DE ENTRADA DA BACIA – MÉTODO I-PAI-WU MODIFICADO

O próximo passo é acessar a aba "Método I-Pai-Wu" (vide figura). Nesta deve-se entrar com o valor do coeficiente de escoamento superficial volumétrico (C2) (maiores detalhes sobre a escolha do coeficiente podem ser consultados no item 2.7.2 do material teórico) e com o coeficiente K de dispersão da chuva. Os parâmetros fator de forma e coeficiente de escoamento corrigido (C) são calculados automaticamente pelo programa;

Dados da Bacia 🔰 Método I-Pai-Wu 🗎		
Parâmetros do Método I-Pai-Wu Modifica	do	
C2 - Coeficiente de Escoamento Superficial:	0,50	
F - Fator de Forma	1,33	
C - Coeficiente de Escoamento Corrigido	0,36	
K - Coeficiente de Dispersão da Chuva	0,83	

DADOS DE ENTRADA – MÉTODO I-PAI-WU MODIFICADO

O próximo passo é entrar com a intensidade da precipitação. O ABC-DAEE possui uma relação de equações IDF (Intensidade-Duração-Frequência) para várias cidades do Estado de São Paulo. Para acessar a relação das curvas clica-se em "Carregar Curvas IDF" (vide figura), abre-se uma tela. Nesta pode-se escolher a localidade mais próxima à bacia do projeto e o programa carrega a equação para o local. Após a escolha, o ABC-DAEE adota automaticamente a duração da chuva igual ao tempo de concentração da bacia e o coeficiente de redução espacial da chuva igual a 1. No caso de bacias "grandes", caso o usuário queira aplicar alguma redução na precipitação, basta utilizar o Coeficiente de Dispersão da Chuva (K) Após clicar em Ok;

Curvas IDF					
Estado:	SP			~	
Localidade:	Barretos			•	
Fonte:	Mero & Mag	gni (Chuva:	s Intensas no E	SP-DAEE	CTH-1982)
Coeficient	es:				
a1:	19,180	p1: [20,000	g2: [0,000
61: Г	20,000	q1: [-0,849	m2: [4,980
c1:	-0,849	a2: [17,780	p2: [20,000
d1: [0,000	b2: [20,000	q2: [-0,834
e1:	0,000	c2: [-0,834	e3: [0,000
f1:	0,000	d2: [0,000	f3: [0,000
g1:	0,000	e2: [0,000	g3: [0,000
m1:	5,370	f2: [0,000		
Duração da C	huva (min):	[43		
2 and a a	Reducão Er	nacial [0.879		

ENTRADA DE DADOS - PRECIPITAÇÃO

- Após a escolha da curva IDF volta-se para a tela de entrada da precipitação. Clica-se novamente em OK para finalizar a entrada de dados para o método I-Pai-Wu Modificado.
- Para o cálculo da vazão máxima deve-se clicar com o mouse em clique, abre-se uma tela com as informações sobre o processamento dos cálculos. Para finalizar clica-se em OK. O acesso aos resultados é apresentado no item 5.

√	Verificando a não dispersão dos elementos da rede
√	Verificando unicidade da rede
	Verificando inexistência de ciclos na rede
1	Definindo a seqüência de cálculo da rede
	Calculando rede
	100%
Stal	tus
Seqi Cálci	iência da rede definida com sucesso. ulo encerrado.
	Πk

5. SAÍDA DE DADOS – MODELOS

Este item apresenta os resultados da aplicação de cada modelo disponível no ABC-DAEE.

5.1 MÉTODO DO HIDROGRAMA TRIANGULAR DO SCS

Após a entrada dos dados de entrada específicos para o Método do Hidrograma Triangular do SCS e do processamento dos cálculos, a consulta aos resultados é realizada através dos seguintes passos:

 Após o cálculo do modelo, os resultados ficam disponíveis e podem ser acessados clicando-se com o mouse no elemento da rede que representa a bacia hidrográfica e depois em "Resultados" (vide figura);

 Ao acessar "Resultados" abre-se uma tela. Nesta há 2 abas, uma com os dados do hidrograma gerado (em tabela e na forma gráfica), com um resumo dos dados (volumes, vazão de pico e dados da bacia hidrográfica). Na figura a seguir é possível visualizar os resultados relativos ao hidrograma obtido pelo método do Hidrograma Triangular do SCS;

		Hidrogram	nas		Precipitação					
Tempo (hh:mm)	Montante (m³/s)	Amortecido (m³/s)	Contribuição (m³/s)	Total (m³/s)			A	Hidrogramas		
0:30	0.000	0.000	0.000	0,000		100-		<u>}</u>		
1:00	0,000	0,000	0,000	0,000				N		
1:30	0,000	0,000	0,000	0,000	1	90-		N-44-		
2:00	0,000	0,000	0,000	0,000	1	20		N 1 1	1	
2:30	0,000	0,000	0,000	0,000	1	001		H		
3:00	0,000	0,000	2,250	2,250	1	70-		N	1	
3:30	0,000	0,000	4,767	4,767						1 1
4:00	0,000	0,000	11,236	11,236	S/EU	60-	-			
4:30	0,000	0,000	18,810	18,810		50			1	
5:00	0,000	0,000	30,052	30,052	azā			N N		1 1
5:30	0,000	0,000	43,302	43,302		40	and freedo			
6:00	0,000	0,000	57,138	57,138		20			1	
6:30	0,000	0,000	71,738	71,738		50	h- fii-	·····	and an art	
7:00	0,000	0,000	83,993	83,993		20-				1
7:30	0,000	0,000	93,652	93,652						1 1
8:00	0,000	0,000	100,428	100,428		10-			ALL TOTAL	
8:30	0,000	0,000	102,078	102,078		0	100 / /			
9:00	0,000	0,000	101,919	101,919		0:3	0 4:00 7:00 1	1:30 16:00 20	:00 24:30	29:00 33:30
9:30	0,000	0,000	97,072	97,072				Tempo (hh:r	mm)	
10:00	0,000	0,000	91,588	91,588		Mant	anta 📕 Ama	tacida 🔲 Cast	ribuiaão 🔳 T	atal
10:30	0,000	0,000	83,130	83,130		mont	ante Anto			otai
Volumes					Vaz	ões d	e Pico			
lidrogra	na Montan	te (m³):	0		Hidr	ogran	na Montante (m³/s):	0:00	0,000
Hidrogra	na Contribu	uição (m³):	2.886.803	Ніс 3 ні		Hidrograma Amortecido (m³/s): Hidrograma Contribuição (m³/s):		50 (m²/s): 50 (m²/s):	0:00 0,0	0,000
Hidrogra	na Jusante	(m³):	2.886.803		Hidr	ogran	na Jusante (m	³/s):	8:30	102,078
a da ba	cia (Km²):		259,000	Com	orimento	o do c	anal (m):	48.700	.0	
			2015/15/12/17/14				9929533255555555			0.000

Ao acessar "Resultados" e a aba "Precipitação" abre-se uma tela. Nesta é apresentado uma tabela com a distribuição temporal crítica da precipitação adotada, um gráfico com a distribuição temporal e um resumo dos dados utilizados (vide figura). A tabela com a distribuição temporal da precipitação apresenta as seguintes informações: chuva excedente ou efetiva, parcela da chuva que infiltra e a chuva total (a teoria é apresentada em detalhe nos itens 2.3.8 e 2.3.9 do material teórico). A apresentação gráfica da distribuição temporal mostra em destaque com cores diferentes a precipitação infiltrada e a excedente, responsável pelo escoamento superficial;

 O programa ABC-DAEE gera um relatório com um resumo dos resultados obtidos. Este procedimento é possível após o cálculo das vazões pela metodologia escolhida. Na barra de botões deve-se clicar com o

mouse no botão Relatório. Esta ação abre uma tela (vide figura a seguir). Nesta tela deve-se escolher os elementos para os quais se deseja gerar o relatório. A seleção é feita via clique no quadrado á esquerda do nome do elemento e depois clica-se em "Imprimir". No caso deste exemplo ativou-se "Bacia Exemplo":

acias	Nós
o pacia exempio	Montante
leservatórios	Reservatórios Paralelos

Após selecionar "Imprimir", abre-se uma tela (vide figura) que permite selecionar a impressora;

Selecionar Impressora					
🔚 Adicionar Impressora	HP Photosmart C4200 series				
Adobe PDF	Microsoft XPS Document Writer				
Fax Fax					
•	•				
Status: Pronta	Preferências				
Local:					
Comentário:	Localizar Impressora				
Intervalo de Páginas					
Tudo	Número de cópias: 1 🕂				
C Seleção C Página Atual					
C Páginas:					
	M Agrupar				
	1-1-				

- No caso deste exemplo foi selecionado "imprimir em arquivo pdf", mas pode-se enviar o relatório gerado diretamente para a impressora;
- A seguir é apresentado o conteúdo do relatório gerado em pdf. Como pode ser observado é apresentado um resumo dos dados de entrada e dos resultados obtidos utilizando-se a metodologia do Hidrograma Triangular do SCS.

RELATÓRIO GERADO – MÉTODO DO HIDROGRAMA TRIANGULAR DO SCS

Fundação Centro Tecnológico de Hidráulica RP02-2012-1096-R0

5.2 MÉTODO RACIONAL

Após a entrada dos dados de entrada específicos para o Método Racional e do processamento dos cálculos, a consulta aos resultados é realizada através dos seguintes passos:

 Após o cálculo do modelo, os resultados ficam disponíveis e podem ser acessados clicando-se com o mouse no elemento da rede que representa a bacia hidrográfica e depois em "Resultados" (vide figura);

 Ao acessar "Resultados" abre-se uma tela com os resultados da aplicação do Método Racional com um resumo dos dados obtidos e de entrada (volumes, vazão de pico e dados da bacia hidrográfica). Na figura a seguir é possível visualizar os resultados para o Método Racional;

		Hidrogram	nas		
Tempo (hh:mm)	Montante (m³/s)	Amortecido (m³/s)	Contribuição (m³/s)	Total (m³/s)	Hidrogramas
0:30	0,000	0,000	4,356	4,356	
1:00	0,000	0,000	3,659	3,659	4
1:30	0,000	0,000	0,000	0,000	
2:00	0,000	0,000	0,000	0,000	
2:30	0,000	0,000	0,000	0,000	
3:00	0,000	0,000	0,000	0,000	3-
3:30	0,000	0,000	0,000	0,000	
4:00	0,000	0,000	0,000	0,000	No.
4:30	0,000	0,000	0,000	0,000	5.
5:00	0,000	0,000	0,000	0,000	N 2-
5:30	0,000	0,000	0,000	0,000	5
6:00	0,000	0,000	0,000	0,000	
6:30	0,000	0,000	0,000	0,000	
7:00	0,000	0,000	0,000	0,000	
7:30	0,000	0,000	0,000	0,000	
8:00	0,000	0,000	0,000	0,000	
8:30	0,000	0,000	0,000	0,000	0
9:00	0,000	0,000	0,000	0,000	0:30 1:00
9:30	0,000	0,000	0,000	0,000	Tempo (hh:mm)
10:00	0,000	0,000	0,000	0,000	Montante Amortecido Contribuição Total
10:30	0,000	0,000	0,000	0,000	
olumes/					Vazões de Pico
lidrogran	na Montan	te (m³):	0		Hidrograma Montante (m³/s): 0:00 0,000
lidrograr	na Contribu	uição (m³):	14.427		Hidrograma Amortecido (m²/s): U:UO 0,000 Hidrograma Contribuição (m²/s): 0:30 4.250
lidrogran	na Jusante	(m³):	14.427		Hidrograma Jusante (m³/s): 0.30 4,356
				7	

 O programa ABC-DAEE gera um relatório com um resumo dos resultados obtidos. Este procedimento é possível após o cálculo das vazões pela metodologia escolhida. Na barra de botões deve-se clicar com o

mouse no botão Relatório. Esta ação abre uma tela (vide figura a seguir). Nesta tela deve-se escolher os elementos para os quais se deseja gerar o relatório. A seleção é feita via clique no quadrado á esquerda do nome do elemento e depois clica-se em "Imprimir". No caso deste exemplo ativou-se "Bacia Exemplo":

acias VIRacia Evemplo	Nós
	Montante
leservalórios ————	Reservatórios Paralelos

Após selecionar "Imprimir", abre-se uma tela (vide figura) que permite selecionar a impressora;

🐏 Adicionar Impressora	🔜 HP Photosmart C4200 series				
Adobe PDF	Microsoft XPS Document Writer				
🚔 Fax					
• []	•				
Status: Pronta	Preferências				
.ocal:					
Comentário:	Localizar Impressora				
ntervalo de Páginas	51 6				
Tudo	Número de cópias: 1 🕂				
🗅 Seleção 💦 Página Atual					
C Páginas:					

- No caso deste exemplo foi selecionado "imprimir em arquivo pdf", mas pode-se enviar o relatório gerado diretamente para a impressora;
- A seguir é apresentado o conteúdo do relatório gerado em pdf. Como pode ser observado é apresentado um resumo dos dados de entrada e dos resultados obtidos utilizando-se o Método Racional.

RELATÓRIO GERADO – MÉTODO RACIONAL

5.3 MÉTODO DE I-PAI-WU MODIFICADO

Após a entrada dos dados de entrada específicos para o Método de I-Pai-Wu Modificado e do processamento dos cálculos, a consulta aos resultados é realizada através dos seguintes passos:

 Após o cálculo do modelo, os resultados ficam disponíveis e podem ser acessados clicando-se com o mouse no elemento da rede que representa a bacia hidrográfica e depois em "Resultados" (vide figura);

 Ao acessar "Resultados" abre-se uma tela com os resultados da aplicação do Método I-Pai-Wu Modificado com um resumo dos dados obtidos e de entrada (volumes, vazão de pico e dados da bacia hidrográfica). Na figura a seguir é possível visualizar os resultados para o Método I-Pai-Wu Modificado;

		Hidrogram	nas							
Tempo (hh:mm)	Montante (m³/s)	Amortecido (m³/s)	Contribuição (m³/s)	Total (m³/s)				Hidrogram	as	
0.30	0.000	0 000	0.638	0.638	1					
1:00	0.000	0.000	0.721	0.721	0,6	10				
1:30	0.000	0.000	0.402	0.402	0,0					
2:00	0,000	0,000	0,083	0,083	0,5	3			X	
2:30	0,000	0,000	0,000	0,000	0.5	2			\	
3:00	0,000	0,000	0,000	0,000	0,4	2				
3:30	0,000	0,000	0,000	0,000	0,4	51			···· / ····	
4:00	0,000	0,000	0,000	0,000	Sie 0,	11			·····	
4:30	0,000	0,000	0,000	0,000	5 0,3	i9			/	
5:00	0,000	0,000	0,000	0,000	10,3	28	1			·····
5:30	0,000	0,000	0,000	0,000	> 0,2	37		1	1	
6:00	0,000	0,000	0,000	0,000	0,2	46				
6:30	0,000	0,000	0,000	0,000	0,2	05-	a parte per en erte			
7:00	0,000	0,000	0,000	0,000	0,1	14	Larrenter			
7:30	0,000	0,000	0,000	0,000	0,1	5				>
8:00	0,000	0,000	0,000	0,000	0,0	4				
8:30	0,000	0,000	0,000	0,000	0,0					/
9:00	0,000	0,000	0,000	0,000	1	0:30		1:00	1:30	2:00
9:30	0,000	0,000	0,000	0,000				Tempo (hh:mm)	
10:00	0,000	0,000	0,000	0,000						
10:30	0,000	0,000	0,000	0,000	- Mo	ntante	Am	ortecido 📙 Co	ntribuiçao 📘 i	otal
Volumes	÷				Vazões	de Pic	0		.94	
Hidrogram	na Montani	in (m3)-	0	- 1	Hidrogr	ama Mo	ontante	(m³/s):	0:00	0,000
maroyrai	na munitari	ie (m j.	U		Hidroor	ama An	ortecid	lo (m³/s):	0.00	0.000
Hidrogran	na Contribu	uição (m³):	3.319		Hidrogr	ama Co	ntribuiç	;ão (m³/s):	1:00	0,721
Hidrogran	na Jusante	(m³):	3.319		Hidrogr	ama Ju	sante (i	m³/s):	1:00	0,721
				-	1.1					
ea da bao	;ia (Km²):		2,000	Соп	primento do	canal	(m):	2.63	7,3	
mno de f	oncentrac	So (b):	0.71	1 Male	aidada (m)	1 .		1.0	e	Ok

 O programa ABC-DAEE gera um relatório com um resumo dos resultados obtidos. Este procedimento é possível após o cálculo das vazões pela metodologia escolhida. Na barra de botões

deve-se clicar com o mouse no botão Relatório. Esta ação abre uma tela (vide figura a seguir). Nesta tela deve-se escolher os elementos para os quais se deseja gerar o relatório. A seleção é feita via clique no quadrado á esquerda do nome do elemento e depois clica-se em "Imprimir". No caso deste exemplo ativou-se "Bacia Exemplo":

lacias	Nós
o acia Exempio	☐ Jusante ☐ Montante
leservatórios	Reservatórios Paralelos

Após selecionar "Imprimir", abre-se uma tela (vide figura) que permite selecionar a impressora;

Selecionar Impressora	
🐏 Adicionar Impressora	HP Photosmart C4200 series
Adobe PDF	Hicrosoft XPS Document Writer
Fax	
	•
Status: Pronta	Preferências
Local:	
Comentário:	Localizar Impressora
Intervalo de Páginas	
Tudo	Número de cópias: 1 📫
C Seleção C Página Atual	
C Páginas:	Agrupar

- No caso deste exemplo foi selecionado "imprimir em arquivo pdf", mas pode-se enviar o relatório gerado diretamente para a impressora;
- A seguir é apresentado o conteúdo do relatório gerado em pdf. Como pode ser observado é apresentado um resumo dos dados de entrada e dos resultados obtidos utilizando-se o Método I-Pai-Wu Modificado.

RELATÓRIO GERADO – MÉTODO I-PAI-WU MODIFICADO

6. EQUIPE TÉCNICA

EngºLuiz Fernando Orsini de Lima Yazaki	Responsável pelo projeto
Eng ^a Silvana Susko Marcellini	Coordenação Geral
Eng ^o Alexandre Nunes Roberto	Desenvolvimento Software
Prof. Dr. Rubem La Laina Porto	Consultor

Emissão: São Paulo, Fevereiro de 2012	Documento N°: RP02-1096-2012-R0
Elaborado por: Eng ^a Silvana Susko Marcellini	Assinatura:
Verificado por: EngºLuiz Fernando Orsini de Lima Yazaki	Assinatura:
Aprovado por: Eng ^a Monica Ferreira do Amaral Porto Presidente da FCTH	Assinatura: