Resumo – Sistemas Multimédia

Tema 1 - Introdução ao multimédia

1.1.1. Contextualização do conceito multimédia

- mercado multimédia
- produto multimédia
- aplicação multimédia
- serviço multimédia
- tecnologia multimédia
- plataforma multimédia
- placa multimédia
- dispositivo de armazenamento multimédia
- rede multimédia

O termo media está sempre relacionado com a manipulação da informação:

- armazenamento e processamento de informação no âmbito da informática
- produção de informação nas áreas de edição e publicação
- distribuição de informação no âmbito dos mass media
- transmissão de informação nas telecomunicações
- apresentação de informação nas disciplinas que estudam as interacções entre as pessoas com os sistemas
- percepção de informação na área que estuda a interacção das pessoas com o mundo exterior

1.1.2. Tipos de informação multimédia

NATUREZA ORIGEM	ESTÁTICOS	DINÂMICOS
CAPTURADOS	Imagem -	Vídeo Áudio
SINTETIZADOS	Texto Gráficos	- Animação

1.1.3. Definição de multimédia

Multimédia designa a combinação, controlada por computador, de texto, gráficos, imagens, vídeo, áudio, animação e qualquer outro meio pelo qual a informação possa ser representada, armazenada, transmitida e processada sob a forma digital, em que existe pelo menos um tipo de media estático (texto, gráficos ou imagens) e um tipo de media dinâmico (vídeo, áudio ou animação).

1.1.4. Características dos sistemas multimédia

- 1. representação digital da informação
- 2. combinação de pelo menos um media estático com um media dinâmico
- 3. controlo por computador
- 4. integração
- 5. interactividade (opcional)

1.2.1. Modelo de referência para as tecnologias multimédia

ÁREA TECNOLÓGICA	OBJECTIVO DAS TECNOLOGIAS	EXEMPLOS DE TECNOLOGIAS
1 Representação de informação multimedia	 Digitalização de informação Representação dos media Hardware para multimédia 	 Técnicas de digitalização Técnicas de compressão de informação Formatos de imagem, gráficos e texto Formatos de vídeo, áudio e animação Plataformas multimédia
2 Sistemas multimedia	 Processamento de informação multimédia Armazenamento de informação multimédia Apresentação de informação multimédia Transmissão de informação multimédia 	Sistemas de armazenamento óptico Sistemas de bases de dados multimédia Servidores de media Linguagens de programação Sistemas operativos Redes de comunicação de dados
3 Serviços multimedia	Utilizações específicas de funções fornecidas pelos sistemas multimédia	 Vídeo-a-pedido Videoconferência Análise de conteúdo Segurança Protocolos de transferência de informação
4 Aplicações e conteúdos multimédia	 Utiizações de multimédia Produção multimédia – criação de conteúdos e de aplicações multimédia Design de interfaces multimédia interactivas 	 Tipos de aplicações multimédia Projecto de aplicações Ferramentas de autoria Tecnologias interactivas para a criação de interfaces de navegação

1.2.2. Aplicações multimédia

- Aplicação multimédia designa o programa, ou a aplicação informática, que controla a apresentação dos conteúdos de vários tipos de media ao utilizador final, isto é, o software que realiza a reprodução das combinações de media (apresentação multimédia).
- A aplicação multimédia deve:
 - facilitar o acesso aos conteúdos
 - facilitar a compreensão da informação
 - minimizar a complexidade e a consequente desorientação do utilizador quando navega pelo espaço de informação
- modalidades: vários tipos de percepção
- multimodal: estimula vários sentidos e as respectivas percepções
- sistemas multimédia: computador ---- > utilizador
- sistemas multimodais: computador < ----- > utilizador

1.2.3. Autoria e projecto multimédia

- autoria: desenvolvimento de aplicações multimédia
- ferram. de aut. de cont.: programas que permitem editar e processar os media individuais
- ferram. de autoria multimédia: programas que permitem efectuar a combinação dos media
- Fases de um projecto multimédia:
 - 1. **Fase de planeamento**: Estabelecem-se objectivos e faz-se um planeamento cuidadoso do projecto.
 - 2. Fase de concepção (design): O plano é desenvolvido especificando ao pormenor quais os media a utilizar, como os combinar e quais as opções de navegação.
 - 3. Fase de produção: O guião é utilizado para criar os conteúdos e a aplicação através das ferramentas de autoria.
 - 4. Fase de testes: Corrigem-se os erros e verifica-se se os objectivos do projecto foram atingidos e se cumpre os requisitos impostos pelos utilizadores.

- 5. Fase de distribuição: A distribuição é efectuada por meios online (redes locais ou Internet) ou por meios offline (suportes de armazenamento).
- Distribuição das aplicações multimédia:
 - online
 - rede local (LAN)
 - conjunto de redes (Internet)
 - offline (aplicação local ou stand-alone)
 - suportes de armazenamento digital (CD, DVD)
- Exemplos de aplicações multimédia stand-alone:
 - > aplicações de formação profissional
 - > aplicações de educação interactiva
 - aplicações de autoria de conteúdos ou de autoria multimédia

Tema 2 - Informação Digital e Interactividade

2.1. Representação digital da informação

Conceitos essenciais associados aos sistemas de numeração:

No contexto dos sistemas de numeração, o zero (0) representa a ausência de unidade, a base representa o número de símbolos utilizados e a unidade é a diferença entre dois símbolos consecutivos. Uma quantidade é o resultado da representação da quantidade física de unidades correspondente por intermédio de um número, isto é, de um símbolo ou de um conjunto de símbolos. Para se atribuir um valor a um símbolo, este valor depende do valor absoluto do símbolo e da posição do símbolo no número.

O representa a ausência de tensão electrica 1 representa a existência de tensão electrica

Capacidades de memória:

1 Byte = 8 bits 1 KByte = 2^{10} Bytes 1 MByte = 2^{20} Bytes 1 GByte = 2^{30} Bytes 1 TByte = 2^{40} Bytes

bit: designação que se atribui a um digíto binário (0 ou 1) Byte: designação que se atribui a um grupo de 8 bits (octeto)

2.1.1. Sinais analógicos e sinais digitais

sinal analógico: valor físico que varia continuamente no tempo e/ou no espaço

Propriedades essenciais dos sinais analógicos:

- 1. são funções contínuas do tempo ou do espaço
- 2. são definidos em qualquer instante do tempo ou posição do espaço

2.1.2. Processo de digitalização (PCM: Pulse Code Modulation)

- amostragem: retenção de um conjunto de valores discretos (discretização no tempo e/ou no espaço)
- \triangleright periodo de amostragem (T_a) deve ser constante (periodicidade das amostras)
- \succ frequência de amostragem $\left(f_a = \frac{1}{T_a}\right)$ (número de amostras por segundo)
- Teorema da amostragem (Nyquist): A frequência da amostragem deve ser no mínimo o dobro da maior frequência contida no sinal.
- quantificação: processo de conversão de um sinal amostrado num outro sinal que apenas pode assumir um número limitado de valores (discretização da amplitude)
- quantificação linear: definem-se, sobre a gama de amplitude do sinal amostrado, tantos intervalos quanto o número de valores que se irá dispor para quantificar as amostras
- largura de cada intervalo (step size): $largura = \frac{amplitude \ m\'{a}xima}{n\'{u}mero \ de \ intervalos}$
- nível de quantificação: valor médio de cada intervalo
- codificação: a codificação consiste em associar um grupo de dígitos binários a cada nível de quantificação
- conversão D/A (sample and hold) → perda de informação

2.1.3. Vantagens da representação digital

1) universalidade da representação

- codificação/manipulação de forma única
- operações sem erros (sem ruídos/distorções)

2) armazenamento

utilização do mesmo dispositivo de armazenamento digital

3) transmissão de informação

 utilização de qualquer sistema de comunicações com capacidade de transportar informação digital (bits) → Internet, RDIS

4) outros benefícios

- menor sensibilidade ao ruído de transmisão
- processo de regeneração (fortalecer/amplificar sinal) torna-se mais simples
- detecção/correcção de erros mais simples
- cifragem da informação (para assegurar a segurança das trocas de informação) mais simples
- → A informação é manipulada, analisada, modificada, alterada e complementada por programas de computador.

2.1.4. Desvantagens da representação digital

maior desvantagem -> distorção introduzida durante a digitalização (perda de informação)

formas de reduzir a distorção introduzida durante a digitalização

- aumentar a taxa de amostragem
- aumentar o número de bits utilizados para codificar as amostras
- → maior débito binário (bit rate) → aumento do número de bits

2.2. Interactividade

- A interactividade permite que os utilizadores controlem o conteúdo e o fluxo de informação de uma aplicação multimédia. (Vaughan, 2001)
- interacção → forma de comunicação reciproca (acção-reacção)

2.2.1. Apresentações passivas e interactivas

- apresentação passiva (linear)
 - → formas de controlo:
 - 1) decisão se deseja ou não receber a informação
 - 2) ajustes locais (brilho da imagem, volume do som, etc)
- apresentação interactiva (não-linear)
 - → formas de controlo → "graus de personalização"
 - 1) início da apresentação
 - 2) ordem de apresentação dos vários itens de informação
 - 3) velocidade de visualização dos itens de informação
 - 4) forma de apresentação (apenas num sistema multimédia)

2.2.2. Personalização da apresentação

1º nível de interactividade: personalização da consulta dos conteúdos (ou da navegação)

2.2.3. Anotação e autoria multimédia

2º nível de interactividade: o conteúdo da informação pode ser alterado pelas interacções com o utilizador

- anotação electrónica
- complementação da informação (utilizador passa a ser co-autor) → Exemplo: Wikipédia
- modificação da informação (utilizador passa a ser autor) → autoria multimédia

2º nível de interactividade → possibilidade de integrar ou acrescentar na apresentação, o input fornecido pelo utilizador

2.2.4. Geração de respostas

3º nível de interactividade (o mais complexo dos 3): input é guardado "e" analisado/processsado (sistema adaptativo)

Exemplo: aplicação multimédia de formação profissional que proponha exercícios ao formando e um conjunto de correcções adaptadas às respostas do formando

2.2.5. Interfaces interactivas

botões, caixas de diálogo, menus → elementos convencionais → acções previsíveis → elementos conhecidos pelo utilizador

Tema 3 – Aplicações Multimédia Interactivas

Aplicação multimédia:

- programa que assiste o utilizador na consulta de informação multimédia
- > controla a combinação e apresentação dos conteúdos de vários tipos de media ao utilizador final
- software que reproduz as combinações de media

3.1. Classificação das aplicações multimédia interactivas

áreas de utilização:

- educação
- empresarial
- entretenimento e lazer
- informação ao público

3.2. Aplicações multimédia para a educação

3.2.1 Livros electrónicos

- Vantagens em relação aos livros convencionais
 - combinação de vários media
 - acesso à informação é mais simples (hiperligações, pesquisas rápidas)
 - maior capacidade de armazenamento
 - linearidade deixa de constituir uma restrição
- Forma: dicionários, enciclopédias, livros de ficção, poesia, manuais escolares, etc
- Suportes: CD-ROM, DVD-ROM, Internet, cartões SD/MMC
- Dispositivos de leitura: PC, leitor de e-books, PDA (Pocket PC)

3.2.2. Aplicações de ensino interactivo e ensino à distância

- A. Aplicações de ensino interactivo
 - Vantagens
 - combinação da teoria com a experiência
 - processo de aprendizagem torna-se divertido
 - realização de experiências num ambiente livre de riscos
 - proporciona respostas imediatas
 - incentiva os alunos a participar e a esforçarem-se
 - aluno envolvido de forma activa no processo educativo
 - Elementos adicionais que acompanham este tipo de aplicações:
 - guias de recursos (destinados aos professores)
 - testes e questionários
 - Suportes: suportes ópticos, Internet
- B. Aplicações de ensino à distância
 - Recursos oferecidos
 - versões interactivas dos manuais de estudo
 - listas bibliográficas anotadas
 - colecções de problemas práticos, laboratoriais, teórico-práticos
 - áreas de discussão e interacção com os outros alunos (e professores)
 - Exemplos de aplicações multimédia para o ensino à distância: WebCT, Moodle, Sakai

3.3. Aplicações multimédia para a área empresarial

3.3.1. Aplicações de formação profissional

- Vantagens
 - informação actualizada
 - transmissão rápida e eficiente a um grande número de pessoas
 - combinação de vários media
 - simulações
 - realização da aprendizagem à velocidade do utilizador
- Uma aplicação de formação profissional realiza três funções principais:
 - suporta as sessões de formação
 - fornece os materiais de estudo individual
 - facilita a formação imediata e a pedido
- Suportes: suportes ópticos, Internet, Intranet

3.3.2. Aplicações de vendas interactivas e marketing

- demonstrações
 - Objectivo: informar e educar o utilizador sobre um determinado produto
- anúncios multimédia
 - Objectivo: levar os clientes a conhecer e comprar um produto ou um serviço
 - Suportes: suportes ópticos (raramente), Internet (na grande maioria dos casos)
 - O anúncio multimédia deve ser eficaz em dois aspectos:
 - deve permitir au consumidor a compreensão imediata do conceito
 - permitir-lhe tomar a acção de comprar o produto ou o serviço (hiperligação)
- catálogos electrónicos interactivos
 - promovem e facilitam a realização de encomendas
 - mostram o produto da forma mais convincente (personalização a gosto do utilizador)
- → sítios de comércio electrónico: permitem a pesquisa de produtos, prestam informação e facilitam a compra

3.3.3. Apresentações e comunicações multimédia

- comunicações: ilustrar e transmitir ideias a um grupo de pessoas num auditório
- apresentações: demostrar um produto e as respectivas potencialidades a um (ou vários) cliente(s)
- modelo tradicional: conjunto de diapositivos que são apresentados passo a passo e que contém ecrãs constituídos por ícones, marcas, linhas de texto e paínéis gráficos (Microsoft PowerPoint)
- Vantagens em relação às apresentações convencionais:
 - combinação de vários media
 - interactividade (capta a atenção da audiência)
- Forma:
 - apresentações individuais
 - apresentações para várias pessoas
 - videoconferência
- Software de criação de apresentações multimédia: MS PowerPoint, Aldus Persuasion, etc

3.4. Aplicações multimédia para o entretenimento e lazer

3.4.1. Revistas electrónicas

- Vantagens em relação às revistas convencionais:
 - combinação de vários media
 - interactividade (nova experiência)
- Distribuição
 - discos ópticos
 - Internet
 - televisão interactiva
- formato consistente → estilo inconfundível → modelo (template)

3.4.2. Jogos interactivos

- Objectivo: entreter ou distrair
- Distribuição: discos ópticos (para PCs ou consolas)
- Edutainment: produtos que desprezam a violência e a competição; recompensam a imaginação e colaboração (SimCity)
- Desenvolvimento dos jogos interactivos (CD, DVD): +/- 9-12 meses

3.4.3. Aplicações musicais interactivas

- apresentação de peças musicais → outros media → informação adicional
- desenvolvimento da aplicação centrado nos títulos musicais
- Distribuição: discos ópticos (comércio de música)
- Utilizadores: adeptos de música, músicos, bandas musicais

3.4.4. Aplicações de realidade virtual

- Objectivo: induzir no utilizador os efeitos cognitivos associados à sensação de se sentir imerso num ambiente gerado pelo computador
- Conjunto de periféricos → fornece estimulos sensoriais & capta movimentos do utilizador
 - capacetes de realidade virtual
 - luvas
 - outro vestuário electrónico
- Desktop VR: clips de vídeo interactivos → controlar várias vistas/perspectivas

3.5. Aplicações multimédia para a informação ao público

3.5.1. Quiosques multimédia

- Definição de quiosques: instalações públicas concebidas para disseminar informação e disponibilizá-la ao maior número de pessoas possível.
- Definição de quiosques multimédia: computadores inseridos em caixas com designs atractivos
- Localizações: espaços públicos e semi-públicos (átrios de empresas, salas de espera de hospitais, etc)
- **Funções dos quiosques multimédia**: proporcionar/recolher informação, promover negócio, apresentar linhas de produtos, etc

- Os quiosques surgem para colmatar duas <u>necessidades principais</u>:
 - veiculam informação a um público generalizado de uma forma consistente
 - tornam o acesso e a consulta de informação em actividades úteis e interessantes
- sucesso dos guiosques \rightarrow interface apelativa, simples e compreensível
- quiosques ligados por rede (≠ stand-alone) → actualizados
- aspectos importantes na concepção de aplicações para quiosques multimédia
 - organização da informação
 - design da interface do utilizador
 - dispositivo(s) de interacção (ecrã táctil)
- outros dispositivos periféricos
 - leitores de cartões de crédito
 - impressoras
 - leitores de CD-ROM, de VideoCD e de DVD
- manutenção periódica para garantir um bom funcionamento

3.6. Sistemas e ferramentas de autoria multimédia

- Sistemas/ferramentas de autoria multimédia: facilitam e normalizam a criação de aplicações multimédia
- Modelo: combinação particular de vários tipos de media que permite a sua adição a uma aplicação em desenvolvimento
- Ferramentas de **autoria de conteúdos**: permitem digitalizar e criar os vários media individuais e realizar as tarefas necessárias à sua edição e produção
- Base de dados multimédia: conjunto organizado de informação
 Acquierto de facilita a companyamento de acquierto de la conjunto organizado de informação
 - ightarrow esquema lógico ightarrow facilita o armazenamento e o acesso a grandes volumes de informação
- Três tipos de bases de dados:

TIPOS DE BASES DE DADOS	VANTAGENS	UTILIZAÇÕES
Baseadas em ficheiros	Organizações simples	Armazenamento de informação para: Agendas Listas de distribuição Livros de endereços ou contactos Outras listas genéricas
Relacionais	Pesquisas sofisticadas Facilitam organização de informação complexa	 Gestão de encomendas Realização de inventários Gestão de stocks Outros tipos de process. de transacç.
Orientadas aos objectos	Tecnologia mais recente Vantagens das bases de dados relacionais Inclusão de tipos de informação multimédia	-

- Questões importantes na concepção de bases de dados:
 - exigências de armazenamento físico
 - integridade da informação
 - segurança

Tema 4 – Tipos de Media Estáticos

4.1. Texto

- texto → forma principal de comunicação assíncrona
- Formas
 - texto não-formatado (plain text)
 - texto formatado (rich text)
 - hipertexto
- Natureza dupla do texto
 - representação visual da linguagem (símbolo)
 - elemento gráfico (aspecto visual)

4.1.1. Representação de texto

- Natureza dupla do texto (distinção)
 - conteúdo léxico (caracter abstracto): "A"
 - aparência (representação gráfica): "A", "a", "A", etc

4.1.2. Representação do conteúdo textual

- representar o texto no formato digital → mapeamento entre caracteres abstractos e valores
- criação de conjunto de caracteres → mapeamento: caracteres abstratos → códigos
- reportório de caracteres: alfabeto sobre o qual o conjunto de caracteres opera
- conjunto de caracteres normalizado → evita incompatibilidades entre sistemas diferentes
- 1º conjunto de caracteres a ser normalizado: ASCII → 7 bits → mais tarde ampliado para 8 bits (256 códigos)
- surgiram variantes para os restantes idiomas
- 256 caracteres → insuficiente → não permite manipular vários idiomas em simultâneo
- ISO 10646: 32 bits; Unicode: 16 bits
- Unicode subconjunto de ISO 10646
- HTML e XML utilizam Unicode

4.1.3. Representação da aparência do texto

4.1.3.1. Forma dos caracteres

- glifo: representação visual da forma de um caracter
- um caracter → uma infinidade de glifos
- fontes: colecções de glifos
- fonte → mapeamento: caracteres abstratos → glifos
- Localização das fontes:
 - instaladas no sistema de apresentação do texto
 - embebidas directamente no ficheiro de texto

Classificação das fontes:

- fontes mono-espaçadas / proporcionais
- fontes com serifa / sem serifa
- fontes com forma vertical / forma itálica
- fontes pesadas / leves
- fontes para texto contínuo / para texto isolado

• Dimensões das fontes:

- pontos (pt) → dimensões dos caracteres
- picas (pc) → espaçamento entre linhas
- Tecnologias de fontes
 - fontes outline (gráficos vectoriais)
 - Adobe Type 1 (PostScript)
 - TrueType
 - OpenType → unifica Adobe Type 1 e TrueType
 - fontes bitmapped (imagens bitmap)

4.1.3.2. Disposição do conteúdo textual

- layout
- conjuntos de regras que descrevem estruturas de formatação → formatos para documentos
- formatos para documentos (de texto) → permitem escrever, armazenar, apresentar e imprimir documentos formatados com a aparência de texto de revistas, jornais ou livros
- Formatos para documentos de texto:
 - formatos de descrição de estrutura
 - definidos por meios de linguagens de markup
 - > exemplos: HTML, RTF, DOC, XML
 - inserir marcas (tags)
 - desvantagem: requer software adequado para descodificação
 - formatos de descrição de páginas
 - exemplos: PS (PostScript), PDF
 - documentos transportáveis e independentes da plataforma
 - descrevem as formas em termos vectoriais
 - representação com precisão

4.1.4. Hipertexto e hipermédia

- hipertexto: texto aumentado com ligações
- texto não-linear
- funcionalidades de navegação → browsers web
- hipermédia: rede de ligações entre conteúdos multimédia pertencentes a vários tipos de media
- multimédia > hipermédia > hipertexto
- inovação: rapidez em que se salta de um local para o outro

4.1.5. Operações de processamento de texto

- 1) operações sobre caracteres (ex.: ordenação alfabética)
- 2) operações sobre strings (ex.: comparação/adição de strings (sequências de caracteres))
- 3) edição de texto (ex.: insert/delete, cut/copy/paste)
- 4) formatação de texto (ex.: alteração do aspecto visual)
- 5) compressão de texto (redução do espaço de armazenamento; Huffman, LZW)
- 6) cifragem de texto (reforço da privacidade, segurança)
- 7) verificação ortográfica e gramatical do texto

4.2. Gráficos vectoriais

- representação: equações matemáticas
- conteúdos gráficos → corrigíveis → informação estrutural retida
- rendering: operação que toma dados gráficos e produz dados de imagem
- representação gráfica → compacta
- apresentação gráfica demorada > rendering

4.2.1. Representação gráfica

- conteúdos gráficos → modelos
- objectivo: modelar a realidade através de expressões matemáticas
- apresentação/visualização: gráfico → imagem
- conteúdo semântico preservado

4.2.2. Modelos gráficos

1) modelos geométricos

- ➤ primitivas gráficas → formas geométricas básicas
 - bibliotecas de primitivas gráficas normalizadas: OpenGL, Direct3D, GKS, PHIGS, PHIGS+, IGES

2) modelos sólidos

- ➤ CSG (Constructive Solid Geometry) → combinação de sólidos (união, intersecção, diferença)
- ➤ técnica das superfícies de revolução → criação de sólidos através da rotação de uma curva 2D em torno de um eixo no espaço 3D
- ➤ técnica da extrusão → criação de sólidos complexos através do prolongamento de um contorno 2D no espaço 3D ao longo de um caminho arbitrário

3) modelos físicos

- modelo físico produz uma imagem com muito realismo
- descrições das forças, tensões e esforços aplicados aos objectos
- propriedades físicas dos objectos (massa, velocidade, graus de liberdade, rigidez)
 permitem determinar a forma dos objectos através de métodos numéricos

4) modelos empíricos

- descrição dos fenómenos naturais complexos (nuvens, ondas, fogo, plantas)
- técnicas:
 - fractais (ex.: recortes de montanhas, formas das nuvens)
 - > sistemas de particulas (ex.: fogos, explosões)

5) modelos de desenho

- descrição de um objecto gráfico em termos de desenho
- formatos externos para modelos → formatos normalizados (ex.: CGM, PS, PDF, RIB)

4.2.3. Operações gráficas

1) edição de primitivas

- operações básicas → especificação/modificação dos parâmetros associados às primitivas
- especificação do tipo de primitiva a utilizar (linha, curva, polígono)
- especificação de informação geométrica (coordenadas dos vértices, perpendiculares a uma superfície, etc)

2) operações de edição estrutural

- operações de criação/modificação dos conjuntos de primitivas que constituem um modelo
- exempos: transformações como a translação e a rotação

3) operações de aplicação de materiais e mapeamento

- objectivo: tornar a cena tão real quanto possível → fotorrealismo
- a) propriedades de cor (componentes de luz)
 - ❖ difusão (diffuse) → própria cor
 - ❖ especular/reflexão (specular) → brilho (highlight)
 - parte do objecto perpendicular à fonte de luz
 - aspectos obtidos: vidro, metal, borracha, etc
 - ❖ ambiente (ambient) → luz circundante/ambiente
 - geralmente, parte do objecto que fica na sombra
- b) mapeamento de texturas → aplicação de uma imagem bitmap (ou clips de vídeo digital)
- c) mapeamento de colisões (bump mapping)
 - simula áreas elevadas/aprofundadas na superfície
 - bitmaps modificam a forma e não a cor
- d) mapeamento de deslocamentos → introduz alterações na posição de superfícies
- e) mapeamento de ambiente e de sombras -> reflexão da luz, transparência, etc
- → shader (procedimento programável)
 - Desvantagem: menos realista que bitmap
 - Vantagem: Zoom In mais realista que bitmap

4) operações de iluminação

- a) luz ambiente
 - luz de fundo
 - provém de todas as direccões
 - intensidade constante
- b) pontos de luz
 - provém de pontos específicos no espaço
 - − distância aumenta → intensidade diminui
- c) luzes direccionais
 - fontes de luz localizadas no infinito → raios de luz
 - intensidade constante
- d) spotlights
 - raio de luz cónico a partir de um dado ponto
 - pode gerar sombras

5) operações de visualização

- projecção: 3D para 2D
- volume de visualização: região do espaço do modelo que surge na imagem
- especificação da projecção pretendida (projecções paralelas ou em perspectiva)
- especificação da distância focal e profundidade de campo
- é possível colocar várias câmaras para obter várias perspectivas da mesma cena
- especificação do tipo de lente (numa dada câmara) → lentes sem defeitos

6) operações de sombreamento

- a) flat shading
 - objectos com uma cor uniforme → aspecto facetado
 - rendering rápido → útil no desenvolvimento de um modelo

b) smooth shading (gouraud shading)

- utiliza-se um gradiente de cores para cada face → aspecto mais suave
- c) phong shading
 - ainda mais realista que o smooth shading → adiciona reflexos especulares

7) operação de rendering

- conversão de um modelo gráfico numa imagem bitmap (incluindo toda a informação de sombreamento, mapeamento, iluminação, visualização)
- especificação da resolução e profundidade de cor da imagem bitmap resultante
- ➤ radiosidade & ray tracing → técnicas mais sofisticadas → maior realismo possível

4.3. Imagens Bitmap

- imagens capturadas
 - captura por meio de um scanner
 - captura de imagens por intermédio de máquinas fotográficas digitais
 - digitalização de imagens filmadas por meio de uma câmara de vídeo analógica (conversão A/D)
 - captura por intermédio de uma câmara de vídeo digital

imagens sintetizadas

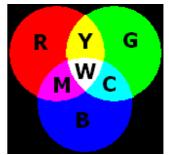
- criação manual através de uma ferramenta de edição de imagem
- conversão de um gráfico vectorial numa imagem bitmap por meio de uma operação de rendering
- captura de ecrã (screenshot)
- geração de uma imagem por intermédio de um programa de computador

4.3.1. Representação Bitmap

- representação conceptual de uma imagem digital: matriz → bitmap
- formatos de imagens bitmap mais comuns: TIFF, GIF
- Porque n\u00e3o se utilizam sempre modelos gr\u00e1ficos em vez de utilizar imagens bitmap?
 - porque a semântica de imagens capturadas é muito difícil de ser reconhecida
 - porque o realismo das fotografias é muito difícil de se imitar
 - porque o <u>processamento</u> necessário para apresentar uma imagem no ecrã é muito menor
- Factores principais que condicionam o espaço de armazenamento:
 - forma como a cor é representada
 - resolução

4.3.2. Modelos de Cor

- cor: experiência banal mas fenómeno complexo
- cor → sensação subjectiva, produzida no cérebro, em resposta à presença da luz
- luz → forma de radiação electromagnética
- região estreita no centro do espectro electromagnético → luz visível
- cor branca: combinação de todas as cores do espectro visível
- cor preta: ausência de qualquer cor do espectro visível
- boa utilização de cor → compreensão dos fenómenos de absorção, reflexão e transmissão da luz vísivel


- A forma pela qual a luz visível interage com os objectos depende de dois factores:
 - das frequências existentes na luz incidente
 - dos átomos que constituem o objecto
- Interacção Luz-Objecto
 - lacktriangle compara-se a frequência da luz f_{luz} com a frequência natural dos electrões de um objecto $f_{ob\,i}$
 - $ightharpoonup f_{luz} = f_{obj} \rightarrow absorção$
 - ► $f_{luz} \neq f_{obj} \rightarrow 2$ casos
 - objecto transparente → transmissão
 - objecto opaco → reflexão
- cor dos objectos → forma como os objectos interagem com a luz
- a cor de um objecto não existe no objecto em si, mas na luz que incide e que é reflectida ou transmitida por esse objecto

4.3.2.1. Modelo de Cor Aditivo - RGB

- bastonetes \rightarrow sensíveis à forma dos objectos
- cones → sensíveis à cor
- 3 tipos de cones: vermelho (R), verde (G) e azul (B)
- R, G e B → cores primárias aditivas
- qualquer cor pode ser definida através da especificação das quantidades de luz R, G e B que essa cor contém
- quando há emissão de luz → modelo RGB
- cores representadas por 3 valores → (r,g,b)

- sobreposição de 2 luzes de cor primária
 - Ciano (C = G + B = W R)
 - Magenta (M = R + B = W G)
 - Amarelo (Y = R + G = W B)
- Relevância da experiência de Thomas Young
 - base da teoria da estética da cor (influência na arte e design)
 - modelo de cor apropriado à utilização de tintas
- C, M e Y → cores primárias substractivas
- Pantone Matching System (PMS) → sistema que faz corresponder as cores CMYK às cores
- Modelos de cor
 - > RGB: modelo aditivo
 - CMYK: modelo subtractivo
 - HSB: a cor é produzida através da tonalidade (Hue), Saturação e Brilho
 - YUV: a cor é produzida através da especificação da luminância (Y) e das diferenças entre Y e azul (U) e entre Y e vermelho (V)

4.3.3. Profundidade de Cor

- profundidade de cor: número de bits utilizado para descrever um pixel
- imagem a preto e branco → 1 bit
- imagem com cor RGB → várias profundidades de cor
 - 8 bits → 256 cores diferentes → cor indexada (tabelas CLUT)
 - 16 bits → R e B -> 5 bits cada ; G -> 6 bits → milhares de cores
 - 24 bits (8 bits por cada componente) \rightarrow 256 valores diferentes (para cada componente) \rightarrow 2²⁴ = 256³ = 16.777.216 cores diferentes \rightarrow milhões de cores
 - outras profundidades de cor: 30, 36 e 48 bits

4.3.4. Canais e Correcção de Cor

- número de canais → soma de duas parcelas
 - número de componentes do modelo de cor (ex: RGB -> 3)
 - número de canais alpha (definem regiões da imagem transparentes)
- 24 bits de profundidade de cor RGB → 3 canais de 8 bits
- profundidade de canal: quantidade que representa o número de bits por pixel utilizado para codificar os valores de cada canal
- Vantagens associadas à divisão da imagem em canais:
 - facilita o processamento
 - facilita a correcção de cor

4.3.5. Resolução

- Formas de especificação da resolução:
 - por unidade de comprimento (impressora, scanner)
 - por pixéis (vídeo, fotografia)
- dimensão física de uma imagem: dimensão da imagem quando apresentada no ecrã ou impressa no papel (depende da resolução do dispositivo de apresentação)
- $dimensão física (polegadas) = \frac{dimensão em pixéis (pixéis)}{resolução do dispositivo (dpi)}$
- dimensão natural de uma imagem: dimensão que ela possui antes de ser digitalizada ou a dimensão da tela utilizada na criação
- dimensão natural (polegadas) = $\frac{\text{dimensão em pix\'eis (pix\'eis)}}{\text{resolução natural (ppi)}}$
- os formatos de representação de imagem registam também a resolução natural
- $factor\ de\ escala = \frac{resolução\ do\ dispositivo}{resolução\ natural}$
- resolução natural < resolução do dispositivo → tem que ser ampliada → interpolação de pixéis → perda de qualidade
- resolução natural > resolução do dispositivo → pixéis descartados → downsampling
- baixas resoluções → pontos mais espaçados entre si

4.3.6. Compressão e Formatos de Imagem

- Técnicas de compressão (codificação)
 - RLE → descrição de conjuntos de pixéis consecutivos (TIFF, BMP, PCX, Photoshop)
 - LZW
 - compressão predictiva ou diferencial
 - compressão baseada em transformadas (JPEG)

4.3.6.1. Tipos de Compressão de Imagem

Compressão sem perdas

- técnicas simples → RLE
- técnicas sofisticadas
 - codificação de comprimento de variável → técnica de codificação de Huffman
 - baseada em dicionários → LZ77, LZ78 (PNG, WinZip), LZW (TIFF, GIF, PDF)

Compressão com perdas

- eliminação de informação irrelevante do ponto de vista da percepção humana
- técnicas de compressão baseadas em transformadas (DCT) → JPEG
- rácios de compressão elevados

4.3.6.2. Formatos de Imagem

- Informação contida nos formatos de imagem:
 - identificador do tipo de ficheiro
 - dados sobre a codificação (tipo de compr., dimensões, resolução natural, prof. de cor)
 - tabela de cores, CLUT (quando necessário)
 - informação sobre a cor (aspecto) de cada pixel

4.3.7. Operações de Imagem

- 1) Operações de edição
 - alteração de pixéis individuais
 - select/cut/copy/paste, criação de máscaras

2) Operações sobre pontos

- operações que aplicam uma função a cada pixel da imagem
- operações baseadas no valor anterior de cada pixel
- correcção de cor, etc

3) Operações de filtragem

- operações que aplicam uma função a cada pixel da imagem
- operações baseadas no valor anterior de cada pixel e no valor dos seus pixéis vizinhos
- blur/sharpen/twirl

4) Operações de composição

- utilização de canais alpha
- soma de 2 ou mais imagens (ex: mudar o fundo de uma imagem)

5) Transformações geométricas

- deslocamento, rotação, inversão, skewing, warp
- 6) Operações de conversão entre formatos
 - conversão de um formato para o outro
- 7) Operações de conversão de imagem
 - compressão, descompressão, alteração do modelo/profundidade de cor, e da resolução

4.3.8. Imagens Bitmap versus Gráficos

	GRÁFICOS	IMAGENS
CORRIGÍVEIS	sim	não
INFORMAÇÃO ESTRUTURAL	retêm	não reconhece
CONTEÚDO SEMÂNTICO	preservado	não é preservado
DESCRIÇÃO EM TERMOS DE	objectos	pixéis

<u>Tema 5 – Tipos de Media Dinâmicos</u>

tipos de media dinâmicos → reprodução contínua → tempo faz parte da sua semântica

5.1. Vídeo

- persistência da visão: atraso natural que se verifica na resposta dos olhos humanos à presença de estímulos visuais
- frequência de fusão → 40 imagens por segundo
- Geração de vídeo digital para aplicações multimédia:
 - vídeo capturado
 - vídeo sintetizado por computador

5.1.1. Representação de Vídeo Analógico

- vídeo analógico → sinal eléctrico que varia no tempo
- informação visual → alterações na amplitude
- amplitude → brilho ; frequência → cor
- sinal de vídeo → tramas → linhas de varrimento horizontal
- Alguns conceitos:
 - frame rate: número de tramas por segundo
 - linhas de varrimento horizontal (scan lines) → apresentadas sucessivamente
 - scan rate: números de linhas que são apresentadas no ecrã por segundo
 - $\quad aspect \ ratio = \frac{largura}{altura}$
 - taxa de refrescamento: frequência com que o ecrã é actualizado com nova informação
 - entrelaçamento (interlacing): esquema de varrimento ou apresentação de informação visual no ecrã desenvolvido para permitir respeitar a freq. de fusão (divisão das tramas)
- Qualidade do sinal mede-se em termos de:
 - rácio sinal-ruído
 - resolução
- Tipos de sinal de vídeo
 - vídeo composto (sinais de crominância e luminância combinados)
 - vídeo por componentes (sinais de crominância e luminância independentes)
- Formas principais de vídeo por componentes:
 - YUV
 - S-Video
 - Y/C Video
 - RGB

5.1.1.1. Formatos de Vídeo Analógico

FORMATO	COMPONENTES	FRAME RATE	SCAN LINES	ASPECT RATIO	ENTRELAÇAMENTO
PAL	1 (composto)	25	625	4:3	2:1
SECAM	1 (composto)	25	625	4:3	2:1
NTSC	1 (composto)	30	525	4:3	2:1
YUV 625/50	3	25	625	4:3	2:1
YUV 525/60	3	30	525	4:3	2:1
RGB	3	25 a 75	200 a 1000	variável	1:1
HDTV 1125/50	3	25	1250	16:9	2:1
HDTV - 1125/60	3	30	1125	16:9	2:1

5.1.2. Operações de Vídeo Analógico

- Fases de preparação de clips de vídeo analógico:
 - Pré-produção (escrita do guião, preparação)
 - Produção (filmagens)
 - Pós-produção (edição)

5.1.2.1. Equipamento de Pós-produção de Vídeo Analógico

- a) fontes de vídeo (câmaras, leitores de tapes/videodiscos)
- b) consumidores de vídeo (televisões, monitores, gravadores de tapes)
- c) comutador de vídeo (equipamento que faz a interligação entre fontes e consumidores)
- d) controlador de edição
- e) misturador de vídeo (combina vários sinais / transições)
- f) equipamento de sincronização de vídeo

5.1.2.2. Operações de Pós-produção de Vídeo Analógico

- 1) Armazenamento
 - tapes
 - videodiscos ópticos (LaserVision (LV)) → 2 tipos: CAV, CLV
- 2) Recuperação
 - recuperação → numeração de tramas
- 3) Sincronização
 - estabelecimento do instante do tempo em que as tramas e as linhas de varrimento se iniciam e terminam
- 4) Edição
 - designa sobretudo a cópia de segmentos de vídeo de uma tape para outra
- 5) Conversão
 - conversão entre vários formatos
- 6) Mistura
 - Transições (Cut, Fade, Dissolve, Wipe)
 - Efeitos (Keying)

5.1.3. Representação de Vídeo Digital

- As tramas de vídeo digital podem obter-se de duas formas:
 - síntese (rendering de animação)
 - digitalização
- Grandezas que determinam a qualidade final da sequência de vídeo digital:
 - taxa de amostragem
 - dimensão das amostras

5.1.3.1. Digitalização de Vídeo Analógico

- conversão: frame → bitmap
- sem entrelaçamento
- PAL: 768x576NTSC: 640x480
- Formatos de representação de vídeo digital:
 - Formatos de alto débito (HDR)
 - Formatos de baixo débito (LDR)

5.1.3.2. Formatos de alto débito para vídeo digital

	To matos de alto desito para video digital				
FORMATO	FORMATO ANAÓGICO AMOSTRADO	TAXA DE AMOSTRAGEM (MHz)	DIMENSÃO DA AMOSTRA (bits)	BIT RATE DO VÍDEO (MBit/s)	RESOLUÇÃO DAS FRAMES
PAL Digital Composto	PAL composto	17,7	8	109,6	768 x 576
NTSC Digital Composto	NTSC composto	14,3	8 (ou 10)	89,6	640 x 480
PAL Digital por Componentes CCIR 601	625/50 YUV	13,5 (componente Y – luminância)	8 (ou 10)	247,2 - 4:4:4 164,8 - 4:2:2 123,2 - 4:1:1	720 x 576
NTSC Digital por Componentes CCIR 601	525/60 YUV	13,5 (componente Y – luminância)	8 (ou 10)	247,2 - 4:4:4 164,8 - 4:2:2 123,2 - 4:1:1	720 x 480
CIF	vários	várias	8	36	360 x 288
QCIF	vários	várias	8	8,8	180 x 144
DTV HDTV 16:9	vários vários	MPEG High 1440 MPEG High	-	60 80	1440 x 1080 1920 x 1152

5.1.3.3. Formatos de baixo débito para vídeo digital

- codecs: técnicas de compressão de vídeo digital
- Tipos de compressão:
 - compressão sem perdas (lossless) → RLE
 - compressão com perdas (lossy) → perda de informação
 - compressão espacial (intraframe) → tramas comprimidas individualmente
 - compressão temporal (interframe) → tramas "chave", frame differencing
- Formatos de baixo débito:
 - ▶ DV
 - ➤ MPEG → desvantagem do interframe: edição e acesso aleatório difícil
 - > AV
 - QuickTime
 - ➤ H.261 → videoconferência
 - RealVideo

FORMATO	UTILIZAÇÃO	CODEC(S)	TIPO DE COMPRESSÃO	DATA RATE	QUALIDADE	RESOLUÇÃO
DV	câmaras de vídeo digitais	DV	lossy (DCT)	25 Mbit/s	-	-
MPEG-1	VCD, leitores de CD- ROM	MPEG-1	interframe / DCT	1 Mbit/s	VHS	352 x 288
MPEG-2	DVD	MPEG-2	interframe / DCT	2-15 Mbit/s	HDTV	
MPEG-4	telemóveis, PDAs, aplicações multimédia	MPEG-4	interframe / DCT	5-64 Kbit/s 1,5 Mbit/s	-	várias
AVI	MS Windows	Microsoft Video 1 RLE Radius Cinepak Intel Indeo R3.x (e 4.0) Motion JPEG	lossy, intraframe lossless, intraframe - - intraframe	-	-	até 240 x 180 - 320 x 240 até 320 x 240 640 x 480
QuickTime	aplicações multimédia	vários (incluido os codecs do AVI)	-	-	-	-
H.261	videoconferência videofone	-	interframe / DCT	64 Kbit/s	-	-
RealVideo	envio por rede	RealVideo	-	19-105 Kbit/s	-	-

5.1.4. Operações de Vídeo Digital

- Vantagens da representação digital do vídeo
 - aumenta leque das possibilidades para a manipulação de vídeo
 - possibilita o armazenamento em sistemas de ficheiros ou bases de dados
 - possibilita a transmissão em redes de computadores (Intranet, Internet, RDIS)
 - permite duplicação rápida e sem erros

1) Armazenamento

- tapes mágneticas → HDR
- sistemas de armazenamento mágneticos específicos → HDR curtos
- placas de memória de vídeo
- sistemas de armazenamento mágneticos ou ópticos → LDR → CD/DVD

2) Reprodução

- acesso aleatório → pontos de acesso (offsets)
- determinar key frame mais próxima
- 3) Sincronização
- 4) Edição
- 5) Aplicação de efeitos especiais
- 6) Conversão

5.1.5. Autoria de Vídeo Digital (5.1.5.1., 5.1.5.2., 5.1.5.3., 5.1.5.4.)

- ferramentas de autoria de vídeo digital: Adobe Premiére, Pinnacle Studio
- Autoria de Vídeo Digital → 3 fases
 - a) aquisição ou digitalização do vídeo
 - b) edição de vídeo digital: construção de uma sequência de vídeo final através de um conjunto de clips individuais (selecção, corte, transições, combinação de áudio, etc)
 - c) pós-produção de vídeo \rightarrow alteração dos clips originais (correcções de cor/brilho/contraste, filtros, composição), adição de novo material (legendas, títulos)
- Criação de sequências de vídeo digital → 8 actividades
 - 1) capturar ou digitalizar clips de vídeo digital e criar os ficheiros correspondentes
 - 2) seleccionar os ficheiros correspondentes aos conteúdos e adicioná-los ao projecto
 - 3) antever e marcar secções nos clips originais
 - 4) posicionar os clips na linha temporal (timeline)
 - 5) adicionar transições
 - 6) aplicar efeitos especiais e ajustar as paletes de cor
 - 7) antever a sequência de vídeo criada
 - 8) gerar a sequência final de vídeo digital
- Questões que devem ser respondidas antes de gerar a sequência de vídeo final:
 - Qual deve ser a profundidade de cor?
 - Quais devem ser as dimensões das janelas de vídeo e que qualidade é necessária?
 - Qual deve ser a qualidade do áudio?
 - Que quantidade de informação pode ser reproduzida pelo equipamento final?
 - Quais são as limitações em termos de espaço de armazenamento para a dimensão final do ficheiro de vídeo resultante?
- O tipo de compressão a escolher depende essencialmente dos seguintes factores:
 - a qualidade desejada envolve a aparência do vídeo e a suavidade da reprodução
 - as limitações em termos de espaço ocupado pelos ficheiros de vídeo
 - tempo exigido para processo de compressão/descompressão e reprodução

5.2. Animação

modelos → rendering → animação

5.2.1. Representação da Animação

1) Modelos celulóides

- sobreposição de várias folhas com partes de uma cena → cena completa
- folhas → imagens digitais que contêm um canal de transparência
- cenas visualizadas através da apresentação de folhas pela ordem inversa

2) Modelos baseados em cenas

- sequência de modelos estáticos em que cada um representa uma cena completa
- modelos muito redundantes → trabalho a nível dos instantes do tempo

3) Modelos baseados em eventos

- variante dos modelos baseados em cenas
- exprimem as diferenças entre cenas consecutivas sob a forma de eventos
- transformam uma determinada cena na seguinte

4) Modelos baseados em tramas-chave (keyframe animation)

- modelam-se apenas as frames inicial e final da seguência animada
- software de animação determina as cenas intermédias

5) Modelos hierárquicos e de objectos articulados

- permitem a construção de objectos articulados
- construções em que a configuração e movimentos se encontram <u>restringidos</u> por certas condições:
 - aplicam-se durante a interpolação
 - permitem obter um modelo mais próximo da realidade

6) Modelos procedimentais

- são linguagens de scripting que são uma característica adicional às ferramentas de modelação de animação
- características das linguagens de programação → parametrização, controlo de fluxo, etc
- inclusão de operações de alto nível (ex.: detecção de colisões)
- capacidade de exprimir sequências de uma forma mais concisa
- úteis para modelar movimento repetitivo e estruturado

7) Modelos empíricos

- consideração de forças físicas, e das interacções, aplicadas entre objectos de uma cena
- produção de sequências animadas que demonstram a evolução de sistemas físicos
- utilizam-se modelos matemáticos do sistema a modelar
- derivam de princípios físicos ou dados observados ao longo do tempo (empíricos)

5.2.2. Operações de Animação

1) Operações gráficas

 operações sobre os modelos de animação (modelos gráficos estáticos) → edição de primitivas, iluminação, etc

2) Operações de controlo de movimento

operações que adicionam movimento aos modelos de animação

3) Rendering da animação

- em tempo real
 - as tramas de sequência de vídeo digital produzidas vão sendo apresentadas ao utilizador à medida que o rendering vai sendo efectuado
 - aplicáveis apenas a modelos simples
 - frame rate depende da complexidade do modelo

pré-rendering

- pré-conversão em tramas de vídeo digital
- processo bastante demorado
- animações de elevada qualidade
- frame rate constante

4) Reprodução da animação

- previamente convertida para vídeo digital
 - reprodução de uma sequência de vídeo digital
 - controlar o frame rate e a direcção do movimento
- rendering em tempo real
 - permite modificar o modelo interactivamente à medida que a reprodução avança
 - exemplos: adicionar ou remover objectos, acender ou apagar luzes, etc

5.2.3. Autoria de Animação

- autoria de imagens vectoriais
- integração de modelos evolutivos → animação de keyframes
- Na animação de keyframes, o utilizador pode:
 - ajustar a suavidade do movimento
 - iniciar o movimento abrupta ou gradualmente
 - definir um caminho (path) pré-definido para o objecto se deslocar
 - animar luzes e câmaras nas keyframes
 - criar hierarquias de objectos

• Tipos fundamentais de movimento

- rotação em torno de o seu ponto de referência ou de outro ponto qualquer (o centro da rotação)
- aplicar factores de escala
- movimentar um objecto entre localizações
- fundir uma forma noutra forma (morphing)

O software de autoria de animação permite:

- programar o comportamento de objectos na sua totalidade
- simular a inclinação de aviões e carros nas curvas
- movimentos pré-definidos
- efeitos complexos como ondas do mar, ondulação mais suave, etc

5.3. Áudio Digital

- media que difere de todos os anteriormente referidos → estimula apenas a audição → os ouvidos detectam variações na pressão do ar
- Tipos de áudio mais utilizados:
 - sequências musicais
 - fala
- Assume uma relevância particular nas áreas
 - telecomunicações (transmissão de chamadas telefónicas, áudio na internet)
 - entretenimento (gravação de áudio com alta-fidelidade: CD-DA, DVD-Video, DVD-Audio)

5.3.1. Representação de Áudio Digital

- obtém-se através da digitalização de áudio analógico
- Factores que determinam a qualidade do áudio digitalizado:
 - a) taxa de amostragem
 - b) dimensão da amostra (número de bits utilizados na codificação)
 - c) número de canais (pistas)
 - d) intercalação
 - e) método de codificação

5.3.1.1. Taxa de Amostragem

- número de amostras de áudio analógico retidas por segundo
- largura de banda da audição humana: 20 Hz − 20 KHz → teorema da amostragem → taxa de amostragem: 44,1 KHz
- os instrumentos → contêm harmónios que ajudam a definir o seu timbre → permitem distinguir instrumentos diferentes
- Erros de Digitalização:

Aliasing	Clipping
 distorção que ocorre devido à digitalização o áudio digital não contém todos os sons existentes na onda original 	 erros de redução (quantificação) quando a amostragem de uma amplitude analógica de uma amostra se encontra fora dos limites da gama de valores válidos
aumentar a taxa de amostragem	reduzir o volume sonoro aumentar o tamanho da amostra
	 distorção que ocorre devido à digitalização o áudio digital não contém todos os sons existentes na onda original

5.3.1.2. Dimensão da Amostra

- dimensão da amostra: número de bits utilizados para representar cada amostra
- Limitações introduzidas pela quantificação:
 - gama dinâmica disponível (ex.: 16 bits → 96 dB)
 - rácio sinal-ruído: quantidade de distorção introduzida pela quantificação
- Número de canais
 - afecta a qualidade e espaço de armazenamento consumido pelo áudio
 - áudio mono (1 canal) → informação destinada apenas a um altifalante (AM radiofónico)
 - áudio estereofónico (2 canais) → altifalantes esquerdo e direito (FM radiofónico)
 - alguns equipamentos de áudio → 4 canais
 - equipamento profissional → 16, 32 ou mais canais

Intercalação

- processo de intercalação das amostras na codificação de áudio multi-canal → fornece fluxos separados para cada canal
- vantagens:
 - → facilidade de sincronização entre canais
 - → eficiência de armazenamento e transmissão
- desvantagens:
 - → perda de espaço de armazenamento quando não são necessários todos os canais

5.3.1.3. Métodos de Compressão de Áudio Digital

1) PCM (Pulse Code Modulation)

- constrói um sinal digital a partir de uma série de impulsos
- formato obtido após amostragem e quantificação do sinal áudio
- é simplesmente uma sequência de amostras descomprimidas
- vantagens → boa utilização da largura de banda; menos sensível a ruído
- desvantagens → débito binário muito elevado

2) ADPCM (Adaptative Delta PCM)

- permite reduzir o débito binário
- codifica as diferenças entre valores das amostras
- cada amostra é substituida por 1 bit que indica o sinal da diferença entre ela própria e a amostra anterior
- adapta a quantificação ao tipo de sinal
- utilizado: CD-i, AIFF, WAV

3) MP3 (MPEG-1 Layer III)

- método de compressão com perdas → codificação perceptiva
- baseia-se na teoria psico-acústica
- elimina informação auditiva irrelevante ou redundante, que o ouvido humano não consegue detectar
- utiliza a transformada MDCT
- rácios de compressão 1:12 sem perda aparente de qualidade

5.3.2. Formatos de Áudio Digital

- Formatos de alto débito → registos musicais de alta-fidelidade
 - CD-DA \rightarrow 44,1 KHz, 16 bits, 2 canais
 - DAT → 32 a 48 KHz, 12 a 16 bits
- Formatos de baixo débito
 - para aplicações multimédia → AIFF, AU, WAV, MP3, etc
 - para telefonia digital → G.721, A-law/μ-law

5.3.3. Operações de Áudio Digital

- 1) Armazenamento
- 2) Recuperação
 - procura dos dados e a sua leitura
 - assegurar fluxo continuo de amostras
- 3) Edição
 - cut/copy/insert

4) Filtragem e Aplicação de Efeitos

- a) atraso
- b) equalização
- c) normalização
- d) redução de ruído
- e) compressão e expansão temporal
- f) alteração da tonalidade sem modificação da duração
- g) conversão para estereofónico
- h) aplicação de ambientes acústicos

5) Conversão

- entre formatos
- alteração dos parâmetros de codificação dentro do mesmo formato

5.4. Música Sintetizada (5.4.1. e 5.4.2.)

- conjunto de instruções para reproduzir sons e não os sons propriamente ditos
- representação musical → partitura musical
- Tipos de representações
 - operacionais → durações exactas e descrições físicas dos sons a produzir
 - simbólicas → descrições altamente simbólicas, interpretação subjectiva
- Formatos para representação musical → SMDL, MIDI

5.4.2.1. SMDL

- norma para codificação de música e da informação que lhe está associada
- abrange a representação de música quer para a sua disseminação, quer para a sua produção
- aplicação da linguagem SGML
- introduz o tipo de documento para composições musicais
- Secções dos Documentos SMDL
 - a) núcleo (core)
 - constuída por eventos musicais
 - essencia da composição

b) gestual (gestural)

- desempenho das sequências do núcleo
- podem variar em termos de interpretação (mais ou menos intensidade)
- c) visual
 - usada para imprimir a sequência musical do núcleo
 - contém informação de formatação e adicional (letras da composição)
- d) analítica (analytical)
 - conjunto de análises teóricas em relação ao núcleo
 - partitura e respectivos desempenhos

5.4.2.2. MIDI e General MIDI

1) MIDI (1983)

- introduzida pela MMA (MIDI Manufacturers Association) em 1983
- protocolo de normalização de comunicação em série para o controlo de dispositivos musicais
- define um conjunto de mensagens que são trocadas entre equipamentos musicais
- Portas MIDI
 - MIDI OUT e MIDI IN permitem enviar e receber mensagens MIDI
 - MIDI THRU permite repetir mensagens recebidas de outros dispositivos
- a reprodução de uma peça MIDI produz uma sequência de áudio digital constituida por sons seleccionados de uma tabela de sons

2) General MIDI (1991)

- a) Voz
 - no mínimo 24 notas em simultâneo para os sons melódicos e de percussão
- b) Canais
 - todos os canais MIDI (16)
 - polifonia (nº variável de vozes por canal): reprodução simultânea de várias notas de um dado instrumento
 - multi-timbre: vários sons de instrumentos diferentes em cada canal
 - percussão baseada em teclas

c) Instrumentos

- 16 instrumentos diferentes
- 128 instrumentos pré-definidos

5.4.3. Operações Musicais

1) Temporização musical

- disponibilização de informação temporal
- permite a alteração de grupos de eventos musicais
- permite o ajuste da sincronização de eventos musicias com outros elementos

2) Edição e composição musical

- modificação de eventos primitivos e de notas
- manipulação de agregados musicais (acordes, compassos, etc.)
- repetição de frases musciais
- subsituição de melodias

3) Reprodução musical e síntese da música

- controlo do volume
- controlo dos agudos/baixos
- alteração da tonalidade (pitch) e do tempo de forma independente
- controlo de cada instrumento individual (aumentar/diminuir volumes, modificar sons)

Métodos de síntese musical

- síntese FM (modulação de frequência)
 - two-operator FM (qualidade baixa, jogos antigos)
 - four-operator FM (melhor qualidade, quase real)
- síntese baseada em tabelas wavetable
 - wavetable → amostras digitais
 - qualidade elevada

5.5. Fala

- forma de comunicação entre seres humanos
- Síntese de fala
 - conversão de uma mensagem textual em fala
 - aplicações que permitem que os computadores "falem" com as pessoas
- Reconhecimento de fala
 - reconhecimento do conteúdo semântico da fala (palavras, frases, etc)
 - aplicações que permitem que as pessoas falem com os computadores
- gama de frequências da fala: 500 Hz 10 KHz

5.6. Generalizações

Representação dos media

NATUREZA ESTRUTURA	ESTÁTICOS	DINÂMICOS	
ESTRUTURADOS	Texto (estruturado) Gráficos	Animação Música sintetizada	
NÃO-ESTRUTURADOS	Texto (não-estruturado) Imagem	Vídeo Áudio Fala	

- os tipos de media estruturados e não-estrurados relacionam-se por meio de operações de síntese e reconhecimento
- Operações sobre os media
 - 1) Operações de criação
 - 2) Operações de modificação
 - 3) Operações de transformação
 - 4) Operações de conversão
 - 5) Operações de temporização

<u>Tema 6 – Realidade Virtual e Televisão Interactiva</u>

realidade virtual: conjunto de tecnologias que proporcionam um conjunto alargado de sensações televisão interactiva: conjunto de tecnologias que convergem a televisão com a internet

10.1. Tecnologias de Aplicação de Realidade Virtual

- conceito de realidade virtual introduzido por Jaron Lanier no início da década de 80
- conjunto de tecnologias avançadas para o desenvolvimento de interfaces multimédia que permitem a imersão, a navegação a interacção do utilizador com um ambiente 3D gerado pelo computador, usando vários sentidos em simultâneo
- interface que permite iludir os sentidos do utilizador
- um ambiente de RV proporciona uma interface que permite visualizar, manipular e interagir
- Graus de liberdade / tipos de movimento
 - 1. para a frente / para trás
 - 2. acima / abaixo
 - 3. para a direita / para a esquerda
 - 4. inclinação para cima / inclinação para baixo
 - 5. rotação para a direita / rotação para a esquerda
 - 6. inclinação para a direita / inclinação para a esquerda

10.1.1. Características dos Sistemas de Realidade Virtual

1) Imersão

- sensação de se fazer parte do ambiente
- isolamento dos sentidos do utilizador de estímulos do mundo real
- relacionada com os sentidos da visão, audição e tacto

2) Interactividade

- detecção dos vários tipos de dados introduzidos pelo utilizador através de periféricos de entrada
- alteração do aspecto do ambiente virtual
- comportamento dos objectos de acordo com as acções realizadas pelo utilizador

3) Realismo

- obtido através de técnicas de modelação gráfica para aumentar o realismo do mundo virtual
- associação de efeitos sonoros ao ambiente e objectos

4) Envolvimento proporcionado ao utilizador

- envolvimento é tanto maior quanto a motivação para participar nas actividades proporcionadas
- participação activa: exploração do mundo virtual
- participação passiva: assiste ao desenrolar da acção sem interferência

10.1.2. Tipos de Sistemas de Realidade Virtual

1) Sistemas de simulação

- 1º tipo de sistemas de RV → década de 50 → simuladores de voo
- imitação do interior do veiculo (automóvel, avião, etc)
- exemplos: máquinas de jogos arcade, cinemas com assentos móveis
- olhar para dentro de um mundo virtual a partir de um assento no mundo real
- desvio do olhar → subtracção do mundo virtual

2) Sistemas de projecção

- colocam o utilizador fora do mundo virtual
- permitem a comunicação com personagens ou objectos do mundo virtual
- utiliza-se uma câmara para capturar a imagem do participante e inseri-la no mundo virtual
- permite-lhes a observação das próprias imagens interagindo com os objectos do mundo virtual
- inserção do participante → técnica chroma-key
- Efeitos secundários
 - auras brilhantes em torno da imagem do participante
 - diferenças de resolução entre a imagem do participante e o fundo
- demora a coordenar os movimentos com a acção que está a decorrer no ecrã

3) Sistemas de realidade aumentada

- utilizador nunca deixa de visualizar o mundo real, ficando a sua perspectiva aumentada pelo sistema
- sensação que o ambiente virtual coexiste com o ambiente real
- utilizam periféricos visuais transparentes designados por HUDs (Heads-up-Displays)
- ajustam-se à cabeça, para sobrepor a informação ao mundo real (texto, imagens, esquemas e animações)

4) Sistemas de telepresença

- objectivo principal: ampliar as capacidades motoras e sensoriais do utilizador
- permite a intervenção em ambientes remotos
- incluem um dispositivo robótico separado geograficamente do utilizador que realiza acções no ambiente remoto
- acções realizadas pelo utilizador traduzidas em acções do robô
- informação de retorno é transmitida sob a forma de estímulos
- recebe-se um conjunto de sensações idênticas às que receberia se estivesse fisicamente no ambiente remoto

5) Sistemas imersivos

Head Mounted Display (HMD)

- recorrem à representação de imagens por intermédio de pequenos ecrãs
- capacete de RV permite ao utilizador ficar imerso no mundo virtual
- utilizador pode olhar à sua volta sem ser subtraído ao ambiente virtual
- interactividade: deslocação; colisão com objectos do mundo virtual
- Componentes incluídas nos capacetes, que proporcionam sensação de imersão
 - LCDs com imagens estereoscópicas
 - altifalantes, que proporcionam efeitos sonoros estereofónicos
 - dispositivo que segue o rasto do utilizador e armazena os seus movimentos

Cave Automatic Virtual Environment (CAVE)

- sistema de RV que permite a imersão total do utilizador no ambiente virtual
- ambiente virtual é projectado em ecrãs que revestem as paredes e o chão da sala
- utilizador pode interagir com os objectos projectados nos ecrãs
- incluem sistemas de projecção acústica 3D
- câmaras capturam as coordenadas do utilizador → localização do utilizador

6) Sistemas de desktop VR

- exploram a modelação gráfica 3D em plataformas mais comuns e baratas
- substituem o uso de capacetes por monitores de computador de grandes dimensões
- proporcionam ambientes virtuais não imersivos
- por vezes: projecção de imagens estereoscópica → utilização de óculos especiais
- exemplos: norma VRML, Quicktime VR

7) Ambientes virtuais colaborativos

- integração de várias pessoas dispersas geograficamente no mesmo ambiente virtual
- os utilizadores são representados explicitamente no ambiente virtual partilhado
- sensação de que nos encontramos no espaço virtual comunitário onde é possível colaborar e competir para realizar tarefas

10.1.3. Tipos de Experiências proporcionadas pela Realidade Virtual

1) Experiências passivas

- aplicação conduz o utilizador através do mundo virtual de forma automática (visita guiada)
- utilizador não exerce controlo sobre a sua experiência
- navegação totalmente automatizada pela aplicação de RV

2) Experiências exploratórias

- utilizador controla a forma como o mundo virtual é explorado
- aplicação virtual permite que este defina o percurso e os pontos de observação
- ênfase situa-se na observação e não na manipulação
- interactividade limitada: controlo da navegação; interacção com alguns objectos
- envolve caminhar ou voar através de um dado modelo

3) Experiências interactivas

- utilizador controla a navegação, incluindo o percurso e os pontos de observação
- pode interagir com todos os objectos do mundo virtual, que reagem às suas acções
- são particularmente adequadas para permitir o treino de memória ou de situações de risco elevado
- aspecto mais importante do mundo virtual: interacção directa utilizador-objectos
- objectivo fundamental: praticar acções críticas repetidamente → reacções instintivas
- adequadas para permitir a observação e manipulação gráfica de dados dependentes do contexto
- permitem a apresentação dos dados e a sua manipulação directa

Métodos de movimentação

a) Teleporte

- utilizador aponta para um mapa → teleportado instantaneamente
- forma de transporte adequada, mas pode causar desorientação
- Formas de especificar o destino
 - apontar destino desejado num mapa
 - selecção de um destino numa lista pré-definida

b) Mundos em miniatura

- modelo em miniatura do mundo virtual colocado nas mãos do utilizador
- perrmite especificação do destino
- utilizador movimentado através de uma acção que simula o movimento através do mundo virtual
- permite visualização de pontos de referência -> evita sensação de desorientação

c) Scene-in-Hand

- provoca a sensação de que o mundo virtual se encontra associado à mão do utilizador
- rotação/translação com a mão → mundo virtual acompanha movimentos
- forma adequada para efectuar movimentos em torno de objectos pequenos
- pouco eficazes para movimentos dentro de edifícios
- podem causar cansaço quando usados em períodos de tempo longos

d) Eye-in-Hand

- semelhante à navegação utilizando mundos em miniatura
- utilizador deve imaginar que tem o modelo em miniatura à sua frente
- mão funciona como uma câmara
- mover no interior do modelo → modificação no ponto de observação → sensação de movimento
- exige um grande esforço cognitivo ao utilizador
- requer que se concentre na navegação

e) Veículo voador

- método de movimentação mais utilizado
- baseia-se na percepção de que o mundo virtual é estacionário
- navegação → movimentação do utilizador através do modelo virtual
- utilizador tem a sensação que conduz um veículo virtual (controlo da velocidade)
- periféricos usados: volante e pedais, joystick, rato, etc

10.1.4. Periféricos para Realidade Virtual

1) Periféricos audiovisuais

- a) capacetes de RV (HMD)
 - dispositivos RV mais conhecidos
 - permitem maior grau de isolamento
 - sensores → permitem detectar a posição e orientação da cabeça para ajustar o movimento e o ponto de observação

b) sistemas de projecção e monitores de computador

- grau inferior de imersão
- requerem a utilização de óculos especiais para ver as imagens estereoscópicas
- óculos especiais produzem cansaço nos olhos
- requerem outros periféricos para detectar o movimento e para controlar a navegação

c) periféricos de áudio

- placas de som compatíveis com MIDI
- placas que permitem a espacialização do som (impressão que o som provém de uma dada direcção)

d) periféricos de reacção táctil

estimulam as sensações associadas ao tacto, à tensão muscular e à temperatura

2) Periféricos de detecção de movimento e posição

- são usados para enviar coordenadas da cabeça, mãos ou corpo para ao sistema virtual
- baseiam-se na diferença de orientação e posição do utilização em relação a um ponto de referência
- 3 graus de liberdade associados à orientação
 - rotação no eixo dos X → roll
 - rotação no eixo dos Z → pitch
 - rotação no eixo dos Y → yaw

3) Periféricos de navegação/manipulação

a) luvas de dados

- para manipular objectos do mundo virtual
- contêm um sensor de posição e orientação
- contêm sensores de fibra óptica que permitem detectar movimento

b) dispositivos de interacção com 6 graus de liberdade

- ratos com giroscópios
- bolas isométricas
- joysticks
- bastões

c) sensores de dados biológicos

• EEG, ECG, etc

10.1.5. Sistemas de software para Realidade Virtual

1) Controladores de dispositivos

- componentes de software que estabelecem a ligação entre os vários dispositivos de hardware
- necessários para a navegação e interacção com os mundos virtuais e o código das aplicações de realidade virtual
 - sensores que detectam movimento/orientação do utilizador
 - bolas espaciais e ratos que permitem controlar o mundo através do mundo virtual
 - assentos baseados em movimentos que respondem ao movimento do utilizador no espaço virtual
 - placas de som que adicionam a componente sonora aos mundos virtuais

2) Sistemas de autoria de mundos virtuais

- permitem a construção de modelos estáticos 3D que podem ser percorridos, manipulados e animados (exemplos: AutoCAD, 3D Studio, etc)
- Fases do desenvolvimento de um mundo virtual
 - construção do modelo 3D estático
 - construção dos objectos dinâmicos com comportamento no mundo virtual
- bibliotecas de componentes para desenvolvimento VR em C, C++ e Java
 - VR Juggler
 - World Toolkit
 - Maverik
 - Virtools
- Níveis gráficos
 - a) primitivas geométricas → esferas, cubos, cones, etc
 - b) polígonos → faces de cubos, lados de pirâmides
 - c) voxels \rightarrow pixéis tridimensionais

3) Ferramentas de navegação dos mundos virtuais

- motor de navegação e rendering → player
- software utilizado para navegar/manipular (n)o mundo virtual
- aplicações de RV incluem sempre um player
- permitem tornar a RV uma realidade

10.1.6. Áreas de Aplicação da Realidade Virtual

- 1) Entretenimento → jogos
- 2) Medicina → corpo vivo virtual, vida artificial
- 3) Industria de telecomunicações e serviços → novas metáforas de lidar com grandes conjuntos de dados
- **4)** Arquitectura → prototipagem e teste de edifícios
- 5) Formação e educação

10.1.7. Aplicações de Realidade Virtual na Web: VRML e QuickTime VR

A) VRML (Virtual Reality Modeling Language)

- linguagem de markup para o desenvolvimento de RV na Web
- permite desenvolver um mundo 3D através de ficheiros de texto simples
- descrevem o seu aspecto, comportamento e a sua navegação
- requerem browsers de VRML ou browsers simples com plug-ins VRML
- rendering em tempo real → mundos VRML apresentam aspecto muito simples

- Vantagens em relação às páginas HTML:
 - liberdade
 - controlo
 - ocultação
 - visualização remota
 - realismo

B) QuickTime VR

1) Movies panorâmicos

- são filmes panorâmicos apresentados num ecrã a 360°
- para navegar o utilizador utiliza um rato convencional
- simula o movimento associado ao olhar em torno de um ponto de observação fixo
- permitem que o utilizador se aproxime ou se afaste

2) Movies de objectos

- são desenvolvidos a partir de composição fotográfica
- as fotos são tiradas em ângulos sucessivos em torno de um ponto até cumprir 360°
- a visualização panorâmica é composta a partir destas fotos usando sistema de autorias adequados: QuickTime VR Authoring Studio, VR Worx, etc
- utilizador desloca-se em torno do objecto
- ➤ permitem adição de hotspots → hiperligações para outros QuickTime VR
- > são parte integrante da norma QuickTime
- podem ser combinados com áudio e vídeo
- podem ser reproduzidos com o QuickTime player ou um plug-in compatível

10.2. Tecnologias e Aplicações de Televisão Interactiva

- convergência entre a TV digital e a internet
- permite aceder à internet no televisor por intermédio da STB
- proporciona níveis de interactividade mais elevados
- ultrapassam a mera alteração do canal, volume, contraste e brilho do televisor
- permite ao utilizador fazer <u>escolhas</u> e efectuar <u>acções</u> que estão relacionadas com um programa de TV ou canal temático
 - obter mais informação sobre um dado programa
 - votar em sondagens
 - enviar opiniões

STB (set-top-box)

- dispositivo receptor, fundamental para o acesso aos serviços de TV interactiva
- trata-se de um <u>computador que permite</u>:
 - interagir com os programas de TV
 - gravar programas de TV em formatos de vídeo digital
 - descodificar sinais codificados
- é controlada através de um telecomando idêntico aos convencionais
- suporta a ligação a PDAs, impressoras, etc
- recebe as aplicações interactivas e os conteúdos através de um <u>canal de comunicações</u> que pode ser:
 - ➤ unidireccional → recebe info. difundida → experiência televisiva uniformizada
 - bidireccional → recebe informações e permite enviar de volta dados associados à interacção com o utilizador → experiência televisiva interactiva

10.2.1. Características da Televisão Interactiva

- interactividade é independente do tipo de sinal de TV
- as STBs são diferentes dos receptores convencionais
- vídeo e áudio recepcionado é digital (MPEG)
- permitem a recepção de um <u>fluxo de dados adicional</u>:
 - recebido em simultâneo com o áudio e vídeo digital
 - transporta conteúdos e aplicações

Comparação entre TV convencional e TV interactiva

TIPO	TV CONVENCIONAL	TV INTERACTIVA	
TELESPECTADOR	passivo	activo	
OBJECTIVO	entretenimento	entretenimento, educação, comunicação, compras	
ÂMBITO	restrito	restrito e aberto à internet	
MODELO DE NEGÓCIO	baseado em publicidade	baseado em publicidade e e-commerce	
MODELO DE PROGRAMAÇÃO	baseado na difusão	baseado no modelo de biblioteca	
TIPO DE PROGRAMAÇÃO	linear	não linear e não determinística	
DISTRIBUIÇÃO DOS CONTEÚDOS	unidireccional	bidireccional	
RESOLUÇÃO DO VÍDEO	normal (SDTV)	alta (HDTV)	
TIPO DE SINAL	analógico	sinal combinado: analógico e digital	

Categorias de serviços da STB

- a) serviços de acesso à internet
 - navegação web
 - correio eléctronico
 - chat
- b) serviços interactivos de TV (Enhanced TV)
 - programação TV com interactividade
 - aplicações informativas associadas aos canais

• Classificação das aplicações de TV interactiva em relação ao tipo de conteúdos

- Entretenimento
 - guia de programação
 - vídeo-a-pedido
 - jogos multi-utilizador
 - programas e portais de TV interactiva
- Comércio electrónico
 - lojas, banca, anúncios, música
- Comunicações online
 - correio electrónico, chat, sites, etc

10.2.2. Tecnologias para a Televisão Interactiva

- Responsabilidades da STB
 - divisão do sinal
 - envio dos conteúdos: vídeo para o televisor / áudio para o subsistema som
 - execução da aplicação de TV interactiva
 - assegurar que o utilizador tem acesso aos canais que fazem parte da sua assinatura
 - execução do sistema operativo que controla a apresentação dos objectos no ecrã

Middleware

- plataformas de software sobre as quais as aplicações TV interactiva são desenvolvidas e com as quais comunicam
- permite ter STB com diferentes hardware
- exemplos: MicrosoftTV, OpenTV, PowerTV

Tipos de STB

- a) STBs Básicas (permitem acesso a ...)
 - serviços de video-a-pedido
 - jogos interactivos
 - portais de TV interactiva
 - guias de programação
- b) STBs Avançadas (acrescentam às STBs Básicas ...)
 - acesso a programas de televisão interactivos
 - serviços de acesso à Internet
- c) Centrais de Media (acrescentam às STBs Avançadas ...)
 - a reprodução de vídeo com qualidade HDTV/DVD
 - a gravação de vídeo digital
 - interfaces preparadas para a ligação de outros dispositivos domésticos

Classificação das tecnologias de TV interactiva

- 1) Tecnologias de transporte
 - a) protocolo IP
 - b) método baseado em MPEG
- 2) Tecnologias de apresentação
 - CRT, LCD, HDTV
 - codecs MPEG
 - ambientes de middleware
- 3) Tecnologia de suporte à adição de interactividade
 - a) interactividade local → apenas STB
 - b) interactividade remota → STB & Internet

10.2.3. Desenvolvimento de Aplicações de Televisão Interactiva

- Actividade de autoria de uma aplicação de TV interactiva
 - preparação
 - estruturação de cenas
 - adição de interactividade
 - inclusão de transições e de efeitos
 - teste
- Comparação TV/PC

	TV	PC	
ACTIVIDADE	menos exigente, mais social	envolvente, solitária	
NAVEGAÇÃO	controlo remoto	rato, teclado	
DISTÂNCIA DE VISUALIZAÇÃO	alguns metros	alguns centímetros	
RESOLUÇÃO	limitada pelo sinal de TV	limitada pelo hardware	

Tema 7 – Autoria Multimédia

6.1. Autoria e Ferramentas de Autoria

- processo pelo qual se desenvolve uma aplicação multimédia
- programa que controla a combinação de conteúdos dos vários tipos de media
- autoria de conteúdos multimédia → processo de desenvolvimento dos elementos dos vários tipos de media que irão integrar a aplicação

• Funcionalidades das ferramentas de autoria multimédia

- importação de conteúdos de todos os tipos de media (algumas permitem ainda criar e editar conteúdos)
- criação de composições de conteúdos
- organização da navegação
- utilização de linguagens de scripting para responder a eventos

6.2. Modelos e Paradigmas para a Autoria Multimédia

A) Modelo baseado em ecrãs

- inspira-se no modelo dos media tradicionais
- centram-se na organização dos conteúdos numa infraestrutura espacial
- exemplo: World Wide Web
- ecrãs → elemento atómico da composição
- elementos dinâmicos integrados nos ecrãs como se fossem imagens
- podem ser combinados utilizando mecanismos de hiperligação (hipertexto)
- assentam na composição espacial bidimensional (ou também 3D)
- exemplo: jogos, aplicações de realidade virtual, etc
- lidam com medias temporais e interactividade recorrendo a elementos tradicionais (botões, ícones e scripting)
- organização temporal adicionada através de linguagens de scripting
- pequenos programas despoletados pela ocorrência de eventos (fim de sequência de vídeo, botão pressionado, etc)

B) Modelo baseado na sincronização dos conteúdos

- inspira-se no modelo utilizado na produção de filmes
- tem o tempo como princípio fundamental para a organização dos conteúdos
- fazem a composição de conteúdos com base no tempo
- vários elementos dispostos ao longo de uma linha temporal
- sequência semelhante a uma apresentação de diapositivos
- permite:
 - adicionar transições
 - combinar conteúdos em paralelo
 - sincronizar elementos
 - adicionar interactividade através da utilização de scripts

6.3. Paradigmas associados ao Modelo baseado em Ecrãs

1) Paradigma baseado em páginas e linguagens de script

- centra o processo de autoria no desenvolvimento de ecrãs ou cartões
- os conteúdos são organizados em páginas de um livro ou pilha de cartões
- podem ser estabelecidas ligações entre as várias páginas
- utiliza linguagens de script para adicionar outros tipos de interactividade
- excelente para o desenvolvimento de aplicações hipermédia
- adequado ao desenvolvimento de aplicações que envolvem navegação intensiva
- adequado em situações em que os elementos são apresentados sequencialmente

2) Paradigma baseado em ícones e controlo de fluxo

- expressa os ecrãs e a interactividade através de:
 - ícones
 - representam acções e composições de conteúdos
 - elementos que podem ser utilizados para construir a aplicação e a sua interface (menus, bitmaps, clips de vídeo, etc)
 - > diagramas de interligação de ícones
 - representam o fluxo de apresentação da informação
- proporciona uma aproximação à autoria que assenta na programação visual
- constroi-se o fluxograma dos eventos, tarefas e pontos de decisão por drag&drop de ícones
- ilustra graficamente a lógica da aplicação
- posteriormente, adicionam-se conteúdos e edita-se a estrutura lógica da aplicação
- orientado à prototipagem rápida, mas a sua execução é lenta

3) Paradigma baseado em linguagens de marcas para hipermédia

- centra-se na especificação de hiperligações entre os vários ecrãs através de linguagens de markup (HTML)
- baseia-se na inserção de tags (marcas) em ficheiros de texto para estabelecer hiperligações entre páginas
- estas tags permitem proporcionar interactividade & integrar elementos multimédia
- as páginas podem ser desenvolvidas em: editores de texto simples, Macromedia Dreamweaver, MS Frontpage

4) Paradigma dos objectos hierárquicos

- utiliza uma metáfora de objectos semelhante às linguagens OO
- representa as aplicações visualmente através de hierarquias de objectos
 - embebidos uns nos outros
 - enviam mensagens entre si
 - herdam comportamentos de outros objectos para reutilizar funcionalidades
- utilização não trivial
- permite a construção de aplicações complexas
- útil para o desenvolvimento de jogos multimédia com múltiplas combinações

6.4. Paradigmas associados ao Modelo baseado na Sincronização de Conteúdos

1) Paradigma cast/score/scripting

- ferramentas: Macromedia Director, Macromedia Flash e MAEstro
- baseia o processo de autoria na metáfora da produção de um filme
- actores (cast) → conteúdos
- cenas ou palcos → ecrãs ou guiões
- utiliza uma linha temporal (score) para especificar os instantes de tempo em que os conteúdos entram em cena e por quanto tempo
- conteúdos são adicionados à aplicação mediante a sua disposição ao longo layers
- pistas horizontais que constinuem a linha temporal
- sincronização entre os vários conteúdos definida através das frames da linha temporal
- é possível associar scripts a cada conteúdo
- é possível adicionar controlo ao nível da navegação e interacção (através de scripts)

2) Paradigma baseado em linguagens de marcas para a sincronização temporal

- utiliza uma linguagem de marcas (tags) para especificar a estrutura temporal
- SMIL (Synchronized Multimedia Integration Language)
- permite especificar localização e disposição temporal dos conteúdos multimédia
- apresentações SMIL podem ser escritas utilizando editores de texto simples
- apresentações SMIL podem ser reproduzidas → RealPlayer ou QuickTime Player
- a linguagem SMIL caracteriza-se como um conjunto de elementos e atributos XML

6.5. Pârametros de Avaliação de um Sistema de Autoria

- 1. modelo e paradigma subjacentes à organização de conteúdos
- 2. ferramentas de edição de conteúdos fornecidas
- 3. tipo de programação permitida → ícones, scripts ou programas
- 4. mecânismos de inclusão de interactividade → desvios simples, condicionais ou estruturados
- 5. <u>desempenho</u> do sistema de autoria
 - exatidão da sincronização
 - velocidade da reprodução
- 6. modo de reprodução da aplicação final
- 7. modos de distribução permitidos
- 8. plataformas suportadas → Windows, MacOS, PalmOS, etc

Tema 8 - Projecto Multimédia

7.1. Gestão e Desenvolvimento de um Projecto Multimédia

- projecto multimédia: conjunto de actividades que permitem planear, conceber, produzir, testar e distribuir uma aplicação multimédia interactiva
- Factores de gestão de projectos multimédia:
 - 1) Tempo
 - quantidade de tempo dísponivel para realizar o projecto
 - planeamento das tarefas:
 - depende do tipo de tarefas a realizar
 - depende dos recursos dísponiveis
 - assegura que os resultados previstos são atingidos em tempo útil
 - assegura que os recursos estão disponíveis nas datas previstas
 - base para a previsão dos custos correspondentes à realização de cada actividade
 - permite estabelecer a data limite do projecto

2) Tarefa (âmbito)

- define o produto a desenvolver
 - âmbito do trabalho em termos de dimensão e complexidade
 - especificação dos requisitos da aplicação multimédia e das suas características principais
- determina a quantidade de recursos necessários
- quando planeada assegura que a quantidade de trabalho a executar é a adequada (sem trabalhos desnecessários)

3) Recursos

- meios financeiros dísponiveis para serem aplicados na realização do projecto (pessoas, equipamentos, etc)
- quanto maiores os meios financeiros
 - > maior a qualidade da tarefa
 - > menor o tempo necessário
- Fases de desenvolvimento de um projecto multimédia
 - 1) Análise e planeamento
 - 2) Design
 - 3) Produção
 - 4) Teste e validação
 - 5) Distribuição e manutenção

7.2. Análise e Planeamento (FASE 1)

- objectivo principal → produzir um plano de acção detalhado que explicite: o tempo, a tarefa, os recursos
- projecto bem sucedido → uma necessidade: existência de um mercado receptivo
- ideia genérica inicial → "chuva de ideias" → brainstorming
- Elementos importantes no planeamento
 - competências
 - exemplos: escrita, arte gráfica, edição musical, produção de vídeo e animação
 - produção de matriz de competências
 - > tarefas
 - planeamento das tarefas a realizar
 - estimativa do tempo necessário para a sua realização
 - produção de esquemas que ilustram
 - → as durações das tarefas
 - → os recursos necessários
 - → as dependências entre as tarefas
 - orçamento
 - grafismo creativo e método de navegação
 - protótipo
 - versão rudimentar e não totalmente funcional → útil para verificar ideias

• Componentes do plano detalhado

- descrição dos objectivos e mensagens a transmitir
- descrição detalhada do factor recursos: pessoas, competências, equipamentos e serviços indicando em que instantes estes são necessários
- descrição detalhada do factor tarefa: explicitação dos requisitos da aplicação em termos de funcionalidades, conteúdos, aspecto gráfico e características da interface
- descrição detalhada do factor tempo: estabelecendo um escalonamento das tarefas, competências e recursos para a realização do projecto → calendário global

7.3. Design (FASE 2)

- envolve a concepção da funcionalidade e do aspecto da aplicação
- deve ter em consideração os requisitos e as limitações tecnológicas
- envolve dar forma, aperfeiçoar, rever, testar e editar o guião da aplicação
- traduz as ideias e conceitos em elementos concretos e detalhados
 - presentes no plano produzido anteriormente
 - serão implementados na 3º fase
- pode-se recorrer ao desenvolvimento de protótipos para visualizar e testar o design (esboço, imagem, aplicação reduzida, etc)
- objectivo principal da fase de design → produção do guião
- Actividades da fase de design
 - 1) Design da estrutura da aplicação multimédia
 - 2) Design dos ecrãs da aplicação multimédia
 - 3) Design da interface do utilizador

7.3.1. Design da Estrutura da Aplicação Multimédia (FASE 2, ACTIVIDADE 1)

- criação de uma estrutura para apresentação da informação ao longo do tempo
- impacto profundo na facilidade de consulta
- depende dos objectivos e das mensagens
- concepção dos percursos que podem ser seguidos pelo utilizador na consulta
- desenvolvimento do mapa de navegação ou arquitectura de navegação
- Objectivos do mapa de navegação:
 - fornece um índice gráfico do fluxo lógico da interface interactiva
 - descreve as ligações que existem entre os ecrãs
 - ilustra o que acontece quando o utilizador interage com a aplicação
- Estruturas fundamentais de navegação:
 - ▶ linear → navegação sequencial
 - ➤ hierárquica → ramos de arvore, organização lógica
 - ➤ não-linear → navegação livre, sem restrições
 - ➤ composta → navegação livre, algumas restrições
- Organização da estrutura de uma apl. multimédia. interactiva realizado de acordo com:
 - um conjunto discreto de temas associados a um tópico principal
 - uma cronologia de eventos que ocorrem ao longo do tempo

7.3.2. Design dos Ecrãs da Aplicação Multimédia (FASE 2, ACTIVIDADE 2)

- criação de storyboards → esboços gráficos associados a cada modelo de ecrã
- descrevem com grande detalhe a combinação de conteúdos
- Os storyboards descrevem os modelos de ecrã do seguinte modo:
 - utilizam descrições textuais e esquemas detalhados
 - especificam cada elemento (imagem, bloco de texto, etc) que surge
 - detalham a localização dos elementos interactivos
 - especificam os atributos (ex.: cores) e os formatos dos conteúdos (ex.: JPEG)

7.3.4. Design da Interface do Utilizador (FASE 2, ACTIVIDADE 3)

- interface da aplicação → mistura
 - conteúdos multimédia
 - sistema de navegação
- projecto pode falhar se:
 - as mensagens e conteúdo forem dificeis de encontrar
 - os utilizadores ficarem desorientados ou aborrecidos

7.3.4.1. Interfaces Simples e Acessíveis

- objectivo principal: conceber uma interface → aumento do desempenho do utilizador
- interface simples
 - pouco esforço de aprendizagem
 - uso de metáforas conhecidas
- interface acessível
 - acessível a todos (ex.: portadores de deficiências)
 - sem necessidade de hardware especial
- Ergonomia (IHM)
 - estilos de interacção e elementos interactivos
 - disposição dos controlos no ecrã e as suas características

7.3.4.2. Estilos de Interacção e Elementos Interactivos

- → interacção: diálogo entre computador e utilizador
- 1) Linha de comando (1º estilo de diálogo)
 - fornece instruções ao computador directamente através das teclas de funções, caracteres, abreviaturas ou comandos completos
 - fornece acesso directo às funcionalidades do sistema e pode ser combinada de forma seguêncial
 - flexível → permite ajustar o seu comportamento através de parâmetros
 - grau de flexibilidade → dificuldades de aprendizagem → comandos variam de sistema para sistema

2) Menus

- opções seleccionadas através do rato ou teclado
- opções estão visíveis → agrupadas logicamente → menos exigente para a memória do utilizador
- baseados em texto ou podem possuir um componente gráfico
- forma restrita de um interface do tipo WIMP
- utilizadores podem perder-se

3) Linguagem natural

- comunicação através de linguagem natural (escrita, discurso)
- problemas graves
 - > falta de clareza
 - ambiguidade (requer contexto)
 - utilização de pronomes acrescenta ambiguidades

4) Diálogo baseado em pergunta/resposta

- mecanismo simplificado para proprocionar a introdução de dados para uma aplicação num domínio específico
- utilizador conduzido passo a passo pelo processo de interacção
- utilizador confrontado com uma série de perguntas
- aprendizagem e utilização simplificadas
- apropriado para utilizadores inexperientes

5) Preenchimento de formulários

- utilizador tem à sua disposição um ecrã cuja concepção se assemelha a um formulário em papel
- interface intuitiva e fácil de usar
- apropriados para aplicações de introdução de dados
- úteis para aplicações que exijam recuperação de dados

6) Diálogo baseado em janelas, ícones, menus e apontadores

- ambiente gráfico mais comum e é constituido por:
 - janelas → áreas do ecrã que se comportam como terminais independentes

 - menus
 - menus pull-down
 - menus fall-down
 - menus pin-up
 - menus pop-up
 - ➤ apontadores → cursor do rato ou focus
 - botões
 - botões de texto
 - → botões de rádio
 - → caixas de verificação
 - → botões de pressão
 - botões gráficos
 - botões íconicos

7.3.4.3. Design de Elementos Interactivos

- botões → sentido → acções compreendidas de forma intuitiva
- concepção dos botões deve fornecer pistas para a sua funcionalidade
- associar respectivo aspecto gráfico ou etiqueta de texto
- Botões/ícones que desempenham funções essenciais de navegação:
 - sair da aplicação em qualquer altura
 - cancelar uma actividade ou anular uma escolha
 - aceder a um <u>mapa</u> de navegação global da aplicação multimédia interactiva

7.3.4.4. Disposição de Controlos e Utilização de Cor

- Tipos de organização de controlos
 - ➤ funcional → organização em termos funcionais
 - > sequencial -> organização em termos de interacção típica
 - ➤ frequência → organização de acordo com a sua a frequência de utilização
- Recomendações sobre a utilização de cor
 - a) as cores utilizadas nas interfaces devem ser tão distintas quanto possível
 - b) a cor azul não deve ser utilizada para apresentar informação crítica
 - c) caso se use a cor como um <u>indicador</u>, deve-se incluir informação adicional (daltónicos)
 - d) a utilização da cor deve obedecer às convenções aceites e às expectativas do utilizador
- Recomendações sobre a disposição dos controlos e a sua cor
 - 1. apresentar contrastes → pequeno/grande, pesado/leve, etc
 - 2. construir ecrãs simples e leves com bastante espaço em branco; pouco texto por ecrã
 - 3. incluir objectos que chamem à atenção para os aspectos mais importantes
 - 4. usar sombras para objectos gráficos e texto
 - 5. usar cores suaves em tonalidades pastel
- Erros mais comuns (a ser evitados)
 - 1. cores berrantes e mistura de muitas cores
 - 2. ecrãs completos de informação textual e gráfica (confusos)
 - 3. humor vulgar ou animações repetitivas
 - 4. sons retumbantes que ocorrem sempre que o utilizador clica num botão
 - 5. molduras grossas e preenchidas com vários padrões
 - 6. citações famosas ou citações de filmes e/ou best-sellers
 - 7. estruturas de navegação que exigem mais de dois cliques para sair da aplicação

7.3.5. Design Técnico

- a) definir a plataforma de desenvolvimento em termos de hardware
- b) especificar com exactidão:
 - as ferramentas de autoria de conteúdos a usar durante a produção
 - os formatos
 - os conteúdos que se pretendem criar, editar e gerar
- c) especificar de forma detalhada o ambiente de desenvolvimento a usar
- d) descrever os módulos de software que constituem a aplicação (arquitectura)
 - como é que estes integram e comunicam entre si
 - os formatos trocados

7.4. Produção (FASE 3)

→ Actividades de autoria

Desenvolvimento dos conteúdos

- criação e aquisição de todos os conteúdos
- respectiva conversão para os formatos que foi decidido utilizar
- edição ou alteração dos conteúdos usando ferramentas de autoria de conteúdos

Desenvolvimento do código da aplicação (autoria/programação)

- construção da estrutura da aplicação
- elaboração de ecrãs
- importação de todos os conteúdos
- escrita de scripts para as acções associadas aos elementos interactivos
- verificação da interface

→ Ciclos de desenvolvimento da produção

A) Ciclo Alfa

> Começa-se por:

- verificação da quantidade de PCs disponíveis para desenvolvimento e testes
- revisão das características dos computadores face às actividades de desenvolvimento
- implementação de um sistema de backup
- desenvolvimento de um sistema de organização de ficheiros
- verificação das escolhas de formatos
- escolha e verificação das ferramentas de software para autoria de conteúdos
- escolha e verificação do sistema de autoria

Ciclo Alfa consiste:

- desenvolvimento incremental da aplicação
- adição gradual de novas funcionalidades
- desenvolvimento e integração dos conteúdos nos ecrãs
- deve conter alguns conteúdos para permitir a verificação do projecto
- integração da totalidade da interface do utilizador que foi definida no guião
- deve permitir usar todas as funcionalidades
- dividir o desenvolvimento da aplicação em várias versões → desenvolvimento modular

Vantagens do desenvolvimento modular

- possibilidade de desenvolver vários módulos em paralelo
- possibilidade de restringir a ocorrência de erros de programação/autoria a cada módulo
- possibilidade de iniciar a realização de testes à aplicação logo no início do desenvolvimento
- possibilidade de avaliar e identificar desde o início a qualidade do código da aplicação multimédia

> Dá-se início ao desenvolvimento de:

- manual do utilizador
- tipo de suporte em que a aplicação multimédia será distribuída
- métodos de avaliação que serão aplicados nos testes

> Implicações adicionais da versão alfa que são críticas para o sucesso do projecto

- 1º oprtunidade dos autores para ver a aplicação multimédia a funcionar
- permite identificar potencialidades e fraquezas do sistema de desenvolvimento

B) Ciclo Beta

- usa a versão alfa
- revisão e obtenção da versão final do design
- revisão completa do design da aplicação
- realização das ultimas modificações no design da aplicação
- deve conter a quase totalidade dos conteúdos multimédia

C) Ciclo Gama: finaliza-se a implementação

- encerra a fase de produção
- inicia-se com a versão beta e completa-se
 - a autoria de conteúdos e da aplicação
 - manual do utilizador e outros documentos de apoio
- inicio ao conjunto de testes
- eliminação de todos os erros observáveis de software, funcionalidade e de conteúdo
- atenção a todos os pormenores funcionais → período mais extenuante do projecto

7.5. Teste e Validação (FASE 4)

- → testes permitem verificar:
 - se a aplicação final corresponde aos objectivos traçados
 - se funciona correctamente nas plataformas a que se destina

1) Caracteríticas e prioridades dos erros

• importante: noção de prioridade e severidade do erro

Categorias de erros/problemas

- falhas de design e sugestões
- erros de conteúdo
- defeitos de software

Factores de prioridade

- severidade do erro: 1 (pouco severo) 10 (muito severo)
- <u>obscuridade</u> do erro: 1 (muito obscuro) 10 (muito óbvio)
- <u>dificuldade</u> de correcção: 1 (difícil) 10 (fácil)

Lista de prioridades

- prioridade baixa
 - muito obscuro
 - pouco severo
 - muito difícil de corrigir
- prioridade <u>alta</u>
 - muito óbvio
 - muito severo
 - muito fácil de corrigir
- data limite para a finalização da fase de testes
- 1º → correcção dos erros com prioridade alta
- tempo restante → erros com prioridade baixa

2) Tipos de testes

- testes dos módulos de software
- testes da integração do software
- testes de compatibilidade
- testes de facilidade de uso da interface do utilizador

3) Realização dos testes

- testes devem ser realizados por:
 - membros da equipa de desenvolvimento
 - pessoal especializado nos vários tipos de testes
- deve assegurar-se a identificação de um número máximo de defeitos
- testes devem ser realizados por várias pessoas → cada indivíduo seguirá um percurso diferente → permite detectar e isolar uma maior variedade de erros
- utilização repetitiva da aplicação
- testes também devem ser realizados por pessoas que nunca utilizaram a aplicação multimédia → comportamentos inesperados → apoximação da realidade
- aplicações muito complexas → organização especializada em teste e validação
- realizar testes em várias plataformas
- testar o funcionamento correcto mediante os requisitos mínimos

7.6. Distribuição (FASE 5)

- criação de uma versão executável da aplicação multimédia
- criação de uma aplicação de instalação e a cópia para o suporte de distribuição
- CD-ROM, DVD-ROM, suporte telemático (servidor Web)
- 1º passo da fase de distribuição
 - pode ser necessário software adicional para executar a aplicação multimédia
 - utilização de um instalador (InstallAnywhere, Setup Factory, InstallShield)
 - também deve incluir um desinstalador
- 2º passo da fase de distribuição
 - incluir documentação (em PDF) → manuais de utilização
 - mencionar requisitos mínimos
 - incluir um "readme.txt" que complementa o manual
 - pode ser necessário efectuar a compressão dos ficheiros (ex.: ZIP, RAR, etc)
- <u>3º</u> (e último) passo da fase de distribuição
 - cópia para o suporte óptico ou suporte telemático