Contents

Revision History	0
Introduction	1
Radio Controls	2
Circuit Description	3
Description of Components	20
Tuning	22
Port Definition	22
Troubleshooting Flow Chart	26
Disassembly and Re-assembly for Repair	31
Exploded View	34
Packing	36
MD78X PCB View	36
MD78X Block Diagram	
Specifications	37

Revision History

Material No.	Date of Issue	Changes
	May 2010	Initial Release

Introduction

Manual Scope

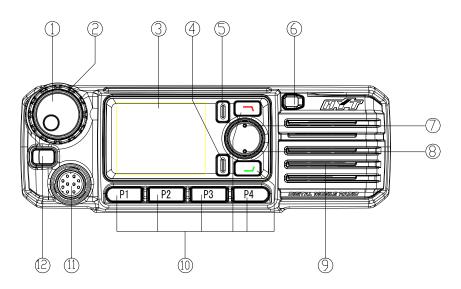
This manual is intended for use by experienced technicians familiar with similar types of communication equipment. It contains all service information required for the equipment and is current as of the publication date.

This mobile radio shall be serviced by qualified technicians only.

Copyright Information

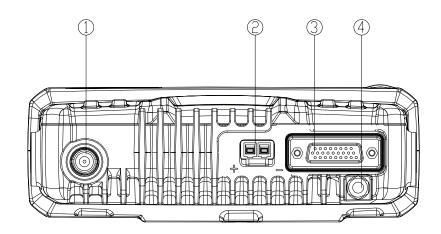
Hytera and HYT are the trademark or registered trademark of Hytera Communications Corporation Limited (hereinafter referred to as "Hytera") in PRC and other countries and/or areas. Hytera retains the ownership of its trademarks and product names. All other trademarks and/or product names that may be used in this manual are properties of their respective owners.

The Hytera product described in this manual may include Hytera computer programs stored in memory or other media. Laws in the PRC and/or other countries or areas preserve for Hytera exclusive rights for Hytera computer programs. The purchase of this product shall not be deemed to grant, either directly or by implication, any rights to the purchaser with respect to Hytera computer programs. Any Hytera computer programs may not be copied, modified, distributed, decompiled, or reverse-engineered in any manner without the prior written consent of Hytera.


Disclaimer

Hytera endeavors to achieve the accuracy and completeness of this manual, but no warranty of accuracy or reliability is given. All the specifications and designs are subject to change without prior notice due to continuous technology development. Changes which may occur after publication are highlighted by Revision History contained in Service Manual.

No part of this manual may be copied, modified, translated, or distributed in any manner without the express written permission of Hytera.


Radio Controls

Front Panel

No.	Part Name	No.	Part Name
1	① Volume Control / Channel ② Selector Knob		LED Indicator
3	LCD Display	OK/Menu Key	
5	Back Key	y (6) Power On/Off Key	
7	⑦ Up Key ⑧ Down Key		Down Key
9	Speaker	10	Programmable Keys
1	Microphone Jack	12	Emergency key (programmable)

Rear Panel

No. Part Name		No.	Part Name
1	Antenna Connector (BNC)	2	Power Inlet
3	Accessory Jack	4	GPS Antenna Connector

Circuit Description

1. Front Panel

The front panel provides parts including speaker, keys, power switch, volume control knob, LCD display

3

and etc. The block diagram is shown as the figure below:

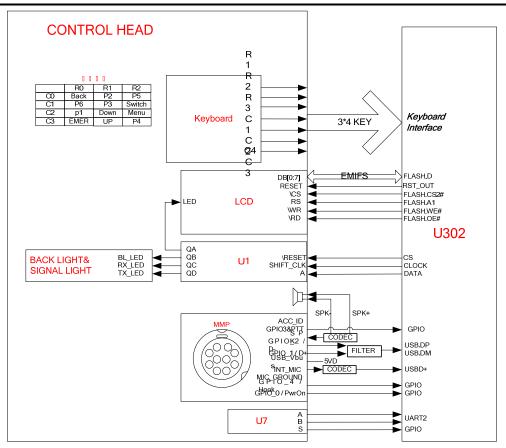


Figure 1 Front Panel Block Diagram

1.1 Power Supply

The main board supplies power to the front panel via 5VD, so that RX/TX LED, backlight and USB devices can be powered up. Power is further fed to U5 LDO, and then is supplied to LCD and serial-to-parallel converter IC.

1.2 Keys

The front panel provides as much as ten keys including the programmable keys (S2, S3, S8, S9, S10 and S12), Up/Down key (S5, S11), Menu key (S4), Back key (S6), Power On/Off key (S1) and Emergency key (S7).

A 3 row by 4 column matrix keyboard of the processor is used to identify operations of front panel keys. Each of the 3 row signal lines are connected with the pull-up resistors R488, R499 and R511, and the 4 column lines are monitored to detect if a button has been pressed.

1.3 LCD Display

The TFT LCD can transfer data via the bus EMIFS of U302. Control signals include, write/read enable,

memory chip select, LCD chip select and reset signal, and the signals will be pulled up by R36, R35, R34,

R33 and R6 respectively. 5V voltage is converted to 3.3V by U5, and is then supplied to the LCD.

1.4 LED and Backlight

LED enable signal is fed to the serial-to-parallel converter IC, and then is output by U302. RX status is indicated by green LED, and TX is by red LED. Backlight will be illuminated once any key is pressed. The red and green LEDs in series are powered by 5V (U902) and controlled by Q2 and Q3. The backlight is powered by 5V and controlled by Q1. Control signals are output via U1.

1.5 MMP Interfaces

The MMP interfaces are defined as follows:

No. Definition & Description			on
	1	Accessory identifier	The pin together with pin 10 can form an accessory
		port 1	identification matrix.
	2	PTT input	Used to input PTT signal from microphone. The pin is at low level when PTT is hold down.
	3	Handset audio	Used to output audio received from accessories; the
		output	Handset option must be checked in the CPS.
	4	USB_D-	USB data line D-
MMP10	5	GND	Ground
	6	USB_VBUS	Provides +5V for USB accessories.
	7	Mic input	Used to input external microphone signal. Vrms=80mV
			@ 3K dev.
	8	USB_D+	USB data +
	9	НООК	Valid upon low level. The default is high level.
	10	Accessory identifier port 2	The pin together with pin 1 can form an accessory
			identification matrix, details of which are stated in the file
		ροπ 2	"Definition of External Interfaces".

Table 1 Definition of MMP Interfaces

1.6 Audio output

The front panel provides two paths of audio output Handset_audio and SPK±. Handset_audio is the output of received audio via MMP interface, and SPK± is the output by the PA U201 as audio signal for the front panel speaker.

1.7 Volume Control

The encoder switch U7 will generate volume adjustment signals, which will be routed to U302 by GPIO17 and GPIO18.

2. Working Principle of Baseband

Power System

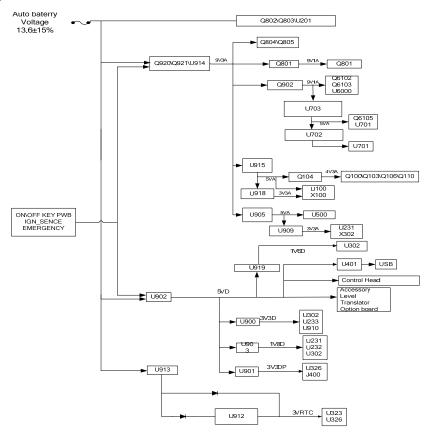


Figure 2 Diagram of Power Distribution

Both the baseband control IC and the RF section can convert the supplied voltage to the appropriate level via the voltage conversion IC.

- RF section: U914, Q920 and Q921 supply power for the RF section. High current PNP transistor and comparator can function as LDO (Low Dropout Regulator).
- FGU: U918 and U915 supply 3.3V and 5V respectively to U100.
- Baseband: the processor U302 is supplied by 3.3V (U900), 1.8V (U903) and 1.6V (U919); the memories are supplied by 3.3V (U900) and 1.8V (U903) respectively; the audio processor IC is supplied by 3.3V (U900&U909) and 1.8V (U903); the DAC is supplied by 5V (U905) and 3.3V (U900).
- EXT_SWB+: Q909.
- 2.1 Power On/Off

The mobile radio can be powered on/off through any of the following methods:

- 1) Power On/Off key
- 2) Ignition sense or Power On/Off key
- 3) Emergency

2.1.1 Power On/Off key

After the user presses the front panel **Power On/Off** key, R944 is grounded, and Q910 and Q905 are turned on, causing the power management IC U902 and Q920 to start working. Then the processor U302 will execute user routines, and can identify power on/off signals if low level is detected from Q914, using the level PWR_CTRL to maintain or cut off the connection with the power system.

2.1.2 Ignition Signal

When voltage of ignition signal exceeds 7V, Q1 will be turned on through charging by C933, R955 and R956, and the PNP transistor of Q905 will be further turned on to supply power. Q401 will also be turned on. If signal is detected from Q401, U302 can identify ignition signals and then will generate the level PWR CTRL.

2.1.3 Emergency Alarm

When the emergency alarm pin is at low level, R940 is grounded, and Q906 is turned on to supply power. Q908 is also turned on. When low level is detected from Q908 but the radio is powered off, U302 will output the level PWR_CTRL and send emergency signal. If the radio is powered on then, U302 will only output emergency signal.

2.1.4 Power-up Process

- Turn on the radio through any of the methods mentioned above, and ensure enough time for U900, U902, U903 and U919 to be turned on.
- U917 will generate reset signal and remain low level for 1.25 seconds. Then the processor starts to work.
- 3) Each method will generate and send a specific power-up signal to the processor.
- After the signal is received, the processor will generate the level PWR_CTRL, and finish power-up procedures.

7

2.2 Clock

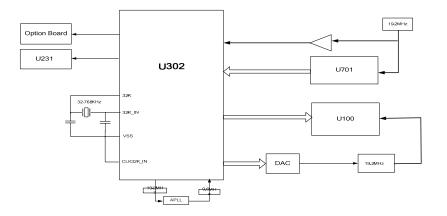


Figure 3 Diagram of Clock Distribution

2.2.1 Input Clock

32K clock is used for timing and sleep of the whole system. Frequency of this clock is 32.768kHz, which is subject to frequency division without error by U302 to finally get 1Hz, usually used for counting seconds. Frequency of system clock is 19.2MHz, generated by external crystal oscillator.

2.2.2 Output Clock

The baseband outputs 3 clock signals fed to U231, U100 and Option board respectively.

2.3 Interface Distribution

2.3.1 SPI Interface

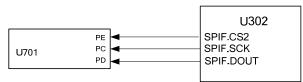


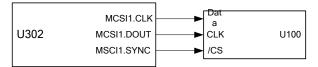
Figure 4 SPI Interface Block Diagram

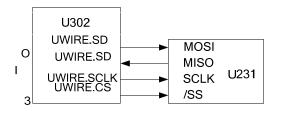
SPI interface of the processor U302 can operate in master mode, controlled by MPU or DMA. In master

mode, U302 can provide 4 chip select signals, with CS2 used to enable IF processor U701. In master

mode, the maximum data transfer rate is as high as system clock frequency.

2.3.2 MCSI Interface




Figure 5 MCSI Interface Block Diagram

During communication between U302 and U100, the former works in master mode with clock frequency

of up to 9.6MHz, and the latter uses MCSI frame synchronization as chip select signal. MCSI1.DOUT as

a data line is used to configure the memory U100.

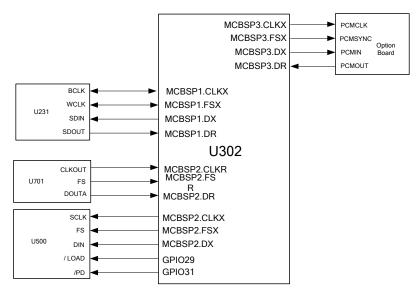

2.3.3 MICROWIRE Interface

Figure 6 MICROWIRE Interface Block Diagram

The MICROWIRE interface can accommodate 4 external devices at most, and is generally used for receiving control and status messages from external devices, and can also be used for reading data from ROM. Its maximum clock frequency is a quarter of system clock frequency. MICROWIRE is used for configuration of and reading from the audio processor, and requires chip select signal CS3.

2.3.4 SSI Interface

Figure 7 SSI Interface Block Diagram

U302 provides 3 McBSP interfaces McBSP1, McBSP2 and McBSP3, compatible with a variety of interfaces. McBSP1 is connected with interface I2C of audio processor, to realize two-way transmission of digital voice and data. McBSP2 uses independent clock and frame synchronization for transmitting and receiving. Interface SSI of the receiver processor is connected with RX end of McBSP2, and U500 is

connected with TX end of McBSP2. U302 works in master mode. McBSP3 is connected to the Option

Board interface for both voice and data transmission.

2.3.4 USB Interface

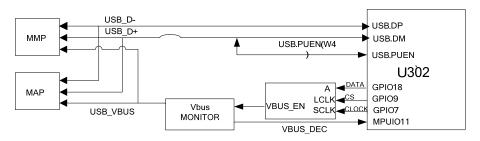


Figure 8 USB Interface Block Diagram

The radio has two USB interfaces, and both are connected to the USB signal port of the processor. REF CLOCK is the reference frequency in specified mode. It should be 12MHz in high rate mode or 1.5MHz in low rate mode.

2.3.5 UART Interface

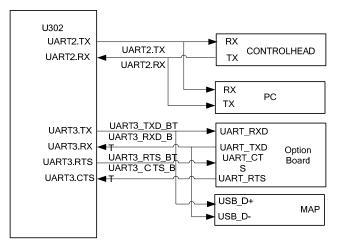


Figure 9 UART Interface Block Diagram

U302 provides three UART interfaces, which enables the processor to communicate with a variety of external devices. UART2 is used for communication with front panel and serial port on PC, and UART3 is used for communication with Option board and accessory jack (USB).

2.3.6 Further Development Port (MAP)

Further development port includes audio interface, programmable I/O, serial port, USB port, accessory identifier port and etc, used for further development by the user. The pins are defined as follows:

	Pin	Function	Description
--	-----	----------	-------------

1	Vbus USB power supply	+5V power supply	
2	Ground		
3	GP5_3 general purpose I/O port	General purpose I/O port with function defined	
	(Chan_Act)	through the CPS	
4	SW B+ sense power output	13V output voltage; output current ≤1.5A	
5	External Alarm	Programmable output pin (the default is External	
		Alarm)	
6	Power Ground		
7	Tx Audio input (audio from external	Used to input signal from external mic; audio	
	mic)	path is valid upon press of external PTT.	
8	RX Audio output	Used to output received audio signal.	
9	Spkr-	External speaker output -	
10	USB D+	USB data +	
11	USB_GROUDN	Ground line	
12	GP5_2 general purpose I/O port	General purpose I/O port with function defined	
	(Monitor)	through the CPS (the default is Monitor)	
13	ACC_IO2	Accessory identifier port; three kinds of	
		accessory identification status, and one default	
		status are provided by the pin together with pin	
		15 ACC_IO3.	
14	Emergency switch	When Emergency is active, this pin is at low	
		level.	
15	ACC_IO3	Accessory identifier port	
16	PRGM_IN_PTT	Programmable input pin (the default is PTT)	
		valid upon low level	
17	Audio Ground		
18	Speaker +	External speaker output +	
19	USB D-	USB data -	
20	GP5_8 general purpose I/O port / serial	general purpose I/O interface	
	port RX		
21	Ground		
22	GP5_7 general purpose I/O interface /	general purpose I/O interface	
	serial port TX		
23	GP5_6 general purpose I/O interface	General purpose I/O interface with function	
		defined through the CPS	
24	AUX Audio Output 1	External speaker audio output 1	
25	AUX Audio Output 2	External speaker audio output 2	
26	Ignition sense	Used to input ignition voltage	

Table 2 Definition of Further Development Port

2.4 Audio Path

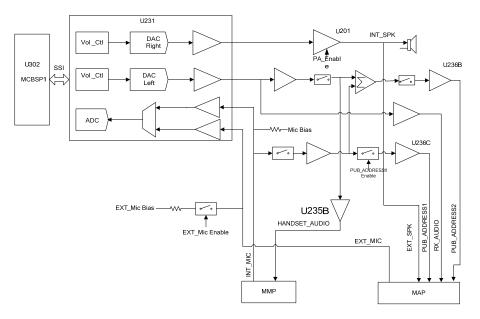


Figure 10 Block Diagram of Audio Path Connection

2.4.1 RX Audio Path

U302 sends digital audio to the audio processor codec via the SSI bus of interface MCBSP1. The bus is composed of CLKX, FSX, DX and DR. It sends the demodulated PCM audio signal to codec, and adjusts the signal to appropriate amplitude according to the volume (RMS should be 80mv when frequency is 1k and deviation is 3k). Then the codec converts PCM data into analog audio data via DAC. U231 provides two outputs SPK1 and SPK2. SPK1 is amplified by U238 and then is fed to the PA U201, to derive two outputs of received audio, which will be applied to the front panel speaker and further development interface respectively. SPK2 is amplified and divided into the four paths of signal HANDSET_AUDIO, RX_AUDIO, PUB_ADDESS1 and PUB_ADDESS2. The first two paths are amplified by U235, and the last two paths are amplified by U236. Output of HANDSET_AUDIO, PUB_ADDESS1 and PUB_ADDESS2 are controlled by Q231, Q235 and Q233 respectively.

2.4.2 TX Audio Path

There are two mic inputs applied to the audio processor U231. The internal mic is connected to the interface MICIN_HND of U231, and is combined with AUX1 to provide differential input. After 9.3V is divided by R255 and R264, a bias voltage of about 7V is provided to the front panel mic. The external mic is connected to the interface MIC_HED of codec, featured as single-ended input . Q232 controls switch between both mics. When internal mic is active, EXT_MIC_EN is at low level, bias voltage of external mic is disconnected, and the ADC in U231 senses voltage at pin MICIN_HND. When external

mic is active, EXT_MIC_EN is at high level, Q232 is turned on, bias voltage is connected, and the ADC in U231 senses only audio data at pin MICIN_HED.

Audio signals input from MMP interface or the accessory jack, are fed to the codec (gain of codec is programmable via the CPS) and then are converted by the ADC into 16-bit PCM digital audio, which will be fed to U302 via the interface SSI.

When the radio is set to operate in loudspeaker mode, audio signal is generated by the internal mic, and then is fed to U231, and finally is output via SPK2. The output audio signal is amplified, and then is output as the two paths of audio PUB_ADDRESS1 and PUB_ADDRESS2.

3. Working Principle of RF Section

3.1 UHF1 (400-470 MHz) Transmitter Circuit (5W-45W)

The transmitter section includes power amplifier circuit and power control circuit. The PA circuit is used for signal amplification, so as to amplify VCO signal to the required output power level. The power control circuit is used to maintain output power at the required level, and to protect the PA from heating, and protect the driver PA Q801 (RD07MUS2B), pre-driver PA Q805 (RD01MUS1) and final PA (PD85035S-E) from damage caused by antenna mismatch, or high/low voltage.

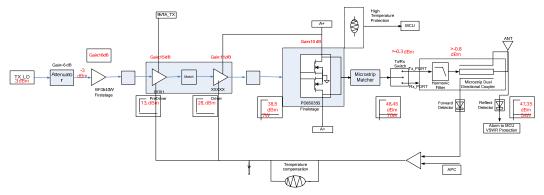


Figure 11 Block Diagram of Transmitter

3.1.1 Power Amplifier

The power amplifier comprises of four-stage amplifier circuits, to amplify VCO signal to the required output power level. The first is the buffer amplifier circuit (BFG540W) with fixed gain, the second is the pre-driver power amplifier circuit LDMOS (Lateral Double Diffuse MOS) (RD01MUS1) with variable gain, the third is the driver power amplifier circuit LDMOS (RD01MVS1) with variable gain, and the last is the final power amplifier circuit LDMOS (PD85035STR1-E) with fixed gain. The TX power amplifier circuit 13

also includes TX/RX switch and low pass filter.

3.1.2 TX Buffer Amplifier

The buffer amplifier BFG540W (Q801) provides about 16dB power gain, and adjusts the bias circuit to get quiescent bias current of 28mA for Q801. Power supply for the switching transistor Q810 is controlled by TX signal (antenna switch enable signal), so as to connect or cut off the power supply for the whole circuit.

3.1.3 Pre-driver Power Amplifier

The pre-driver power amplifier comprises of LDMOS RD01MUS1 (Q805), with gain controlled by voltage VGG. The input matching circuit is composed of C826, L826, L814, C843 and R824.

3.1.4 Driver Power Amplifier

The driver power amplifier comprises of LDMOS RD07MVS1 (Q804), with gain controlled by voltage VGG. The maximum output power is 38.5dBm, and the maximum gain is above 11dB.

3.1.5 Final Power Amplifier

The final power amplifier comprises of two LDMOS PD85035STR1-E (Q802 and Q803), with the maximum output power of 48.5dBm, and the maximum gain of above 10dB. The input matching circuit is composed of C815, C839, R804, R806, R807, R813, R818 and R861. And the power combining circuit comprises of C820, C8330, C831, C819, C812, C841 and C842.

3.1.6 Antenna Switch

The antenna switch is used to switch between the transmitter circuit and the receiver circuit. In TX mode, the switching transistor Q810 is controlled by TX signal, so as to supply 9V 3A to the PIN diodes D801 and D802. Quiescent bias current of the PIN diode is controlled by the resistors R821 and R825. In TX mode, D801 and D802 are turned on, and RF signals are applied to the low pass filter (C871, C816, C836, C837, C838, L809, L813, and L810) and then transmitted via the antenna port.

In RX mode, TX signal controls the switching transistor Q810, to further control the power supply for the PIN diodes D801 and D802, which has no DC bias current. When the two diodes are turned off, signals are fed into the low pass filter (L871, C852, C862) and then passed to the RX path.

3.1.7 Low Pass Filter

The low pass filter comprises of inductors L809, L813 and L810, and capacitors C836, C837, C830 and C838, and is used for attenuation of harmonic energy from the transmitter.

3.1.8 Directional Coupler

The directional coupler is comprised of the Microstrip Directional Coupler, D803, D804 and etc, and is

used for detecting forward power and reverse power of the transmitter. The forward power is coupled with the diode D803, and the voltage is applied to the power control circuit (U801). Then the output voltage VGG is applied to control the gate voltage of pre-driver and driver PA, for the purpose of stable power output.

The directional coupler is not only the TX power adjustment circuit, but also a part of the VSWR detection circuit. The reverse power is coupled with D804. The voltage is applied to U802 and then is fed into U302 for judgment.

3.1.9 Output Power Control

The TX power is controlled via the power control IC U801. The forward power is applied to the directional coupler, to output a voltage that can represent the forward power. The voltage together with the preset voltage are fed into U801 to output a voltage VGG, which can control both gate voltage and gain of Q804 and Q805, for the purpose of stable power output.

3.1.10 Heating and Over-voltage Protections

The circuit comprises of thermistor RT804 and resistor R884. The output voltage is proportional to the detected temperature. Both the voltage used for temperature detection and the threshold voltage are fed into the operational amplifier U803, to output a voltage signal that is in proportional to the detected temperature. The voltage is applied to software judgment, and then the preset voltage will be subsequently changed to lower TX power, and to protect the PA from over-heating.

3.1.11 Pressure Pad Switch

The power control circuit includes a pressure pad switch SW1, which is controlled by the conductive rubber part mounted on the top cover. When the switch is off, the power control voltage VGG is pulled low, and the PA gives no power output. When the top cover is secured to the base, the switch will be turned on and the PA will work normally. This mechanism will help to protect the PA from damage due to improper installation.

3.2 UHF1 (400-470 MHz) Receiver Circuit

The receiver utilizes double conversion superheterodyne techniques. The first IF is 73.35MHz and the second IF is 2.25MHz. The first local oscillator signal is supplied by the PLL circuit U100. And the second local oscillator signal (71.1MHz) is generated by the PLL circuit U701. The main units are BPF and LNA, mixer, IF filter, IF amplifier and IF processor.

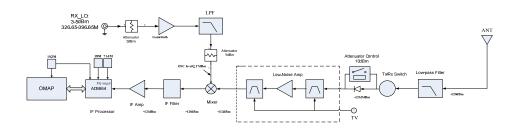


Figure 12 Block Diagram of Receiver

3.2.1 Front-end Circuit

RF signals are fed into the low pass filter to remove signals above 550MHz, and are applied to the two-stage band pass filter to select the wanted signal. TV can realize 400-470M bandwidth adjustment. After passing through the BPF and LNA (Q6102), the RF signals together with the first local oscillator signal are fed into the mixer for the first time frequency conversion, to generate the first IF signal (73.35MHz). The passive diode mixer provides good dynamic range and port isolation. The local oscillator signal (3-5dBm) supplied by the VCO is fed into Q6103, to get the required gain of 17dB. The first local oscillator signal (73.35MHz) is applied to the crystal filter (Z6100) to remove out-of-band spurious signal, and then is fed into the two-stage IF amplifier circuit composed of Q6133 and Q6134, and finally goes to the IF processor AD9864.

3.2.1 Rear-end Circuit

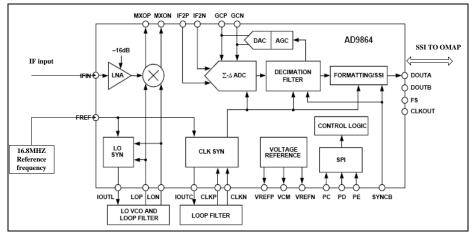


Figure 13 IF processor AD9864

The IF signal (73.35MHz) goes into AD9864 via pin 47 for the second time mixing, to generate the second IF signal (2.25MHz). Digital I/Q signal output from the SSI pin is fed into U302 (OMAP5912) to be demodulated. AD9864 employs reference frequency of 19.2MHz and shares the crystal with OMAP. The

second local oscillator VCO comprises of external transistor, varactor and some other components, to generate the second local oscillator signal. The 18MHz clock frequency is generated by LC resonance loop (D702, L715, C745).

The 16-bit 20K audio signal output from AD9864 (U701) is applied to the DSP pin (U302C), and then is applied to U302 to output 8K data signal, which will be fed into TLV320AIC29IRGZR (U231) and PIN44 (SSI_DI) for DAC. The output analog audio signal will be subject to gain control, and then will be output to the speaker.

3.3 FGU

3.3.1 PLL Circuit

The PLL circuit is used to supply excitation signal source for the transmitter, and to supply local oscillator signal for the receiver. It is composed of the reference crystal (X100), PLL IC (U100) and VCO.

3.3.2 Reference Crystal

X100 is a 19.2MHz TCXO, with frequency calibrated by the Digital to Analog (D/A) converter (U500).

3.3.3 PLL

The PLL IC (U100) is a fractional frequency divider. The logic IC U101 (MC74VHCS) and U102 (MC74VHCS) will work with the PLL IC to lock phase.

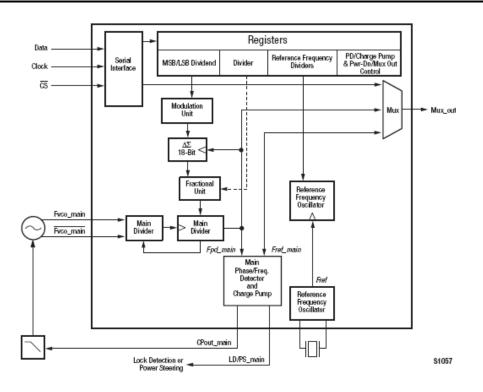


Figure 14 Block Diagram of PLL IC (U100)

The 19.2MHz frequency generated by the reference crystal (X100) is fed into the PLL IC (U100), to generate the reference frequency. Frequency obtained from the PLL IC (U100) is fed into the phase comparator, and is then converted to DC CV voltage via the loop filter, to control and lock the frequency.

3.3.4 VCO

VCO is comprised of transistors (Q100, Q103, Q106, Q110), varactors and four Colpitts Oscillators, with two transistors (Q100 and Q103) as the source of excitation signal for TX, and the other two (Q106 and Q110) as the source of local oscillator signal for RX. U302 controls the operating frequency of the VCO. Q102 and Q107 constitute the buffer amplifier for the transmitter section, and Q111 and Q109 constitute the buffer amplifier for the receiver section. The Digital to Analog (D/A) converter (U500) outputs demodulation signal to demodulate TX oscillator signal.

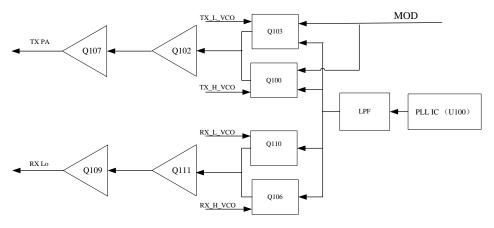


Figure 15 Block Diagram of VCO

System Test Plan

To help you test every unit circuits, we have designed test points on the key parts of the circuit. Test of

RF circuit is planned as follows:

1. PLL/VCO Section

Test	Definition
Points	
TP101	Feedback signal output from VCO
TP102	RF signal output from VCO
TP103	CV voltage/LPF output
TP104	Modulation signal MOD1 output from DAC
TP105	Control voltage terminal of crystal
TP106	Modulation signal MOD2
TP107	PLL-Data
TP108	PLL-CLK
TP109	PLL-LE
TP110	LD detection signal
TP111	3.3VA
TP112	5V charge pump

Table 3 PLL/VCO Test Plan

2. TX/RX Circuit

Test	Definition
Points	
TP601	9.3VA

TP602	TV	
TP603	RF signal input	
TP604	LNA input	
TP605	LNA output	
TP606	LO input	
TP607	Mixer input	
TP608	Mixer output	
TP609	Crystal filter output	
TP610	AD9864 input	
TP611	5VA	

Table 4 TX/RX Test Plan

Description of Components

1. Main Board

Ref No.	Part Name	Specifications	Description
U100	IC	SKY72310 2.1 GHz	PLL IC
U101	IC	FSA66P5X 1-channel 1.65-5.5V 0.3ns -65~+150°C 7Ω SC70-5	Switch IC
U102	IC	FSA66P5X 1-channel 1.65-5.5V 0.3ns -65~+150°C 7Ω SC70-6	Switch IC
U201	IC	TDA7297D 10	Audio amplifier
U231	IC	TLV320AIC29IRGZ	Baseband processor
U232	IC	K4M28163PN-BG75 SDRAM 128M 1.8 -25~+85°C FGBA-54	Memory
U233	IC	TV00570002CDGB NOR-FLASH+PSRAM	Memory
U235	IC	LM2902 Quad Operational Amplifier	Operational Amplifier
U236	IC	LM2902 Quad Operational Amplifier	Operational Amplifier
U237	IC	TS5A3159DCKR 1-channel	Switch IC
U238	IC	NJM2904V	Operational Amplifier
U302	IC	OMAP5912ZZG 32	MCU
U327	IC	74HC595DTR2G	Logic IC serial to parallel converter
U328	IC	74HC595DTR3G	Logic IC serial to parallel converter
U401	IC	AAT4618IGV	Current Limited Load Switch

U500	IC	TLV5614IPW	D/A converter
U6000	IC	TA75S01F	Operational
00000		TA/550TF	Amplifier
U701	IC	AD9864 10-300MH	IF processor
U702	IC	RP102N331B LDO	Power management
0702		RP 102N331B LDO	IC
U703	IC		Power management
0703		XC6209F502PR LDO	IC
U801	IC		Operational
0801		AD8566ARMZ 0.256	Amplifier
U802	IC	TA75W01FU	Operational
0002		TATSWOTFO	Amplifier
U803	IC	TA75S01F	Operational
0000			Amplifier
U900	IC	RP102N331B LDO	Power management
0900			IC
U901	IC	RP102N331B LDO	Power management
0301			IC
U902	IC	AAT1189IRN-0.6-T1	Power management
0902		AATTTOSIKN-0.0-11	IC
U903	IC	XC6209F182PR LDO	Power management
0903			IC
U905	IC	XC6209F502PR LDO	Power management
0903		XC02091 3021 1 EDO	IC
U909	IC	RP102N331B LDO	Power management
0909		RF 10210331B EDO	IC
U910	IC	TPS3808G33-Q1 3.3	Reset IC
U914	IC	NJM2904V	Operational
0914		11310123041	Amplifier
U915	IC	XC6209F502PR LDO	Power management
0915		AC0209F302FR EDO	IC
U917	IC	R3111N421A-TR-F 4	Reset IC
1010			Power management
U918	IC	XC6209F332PR LDO	IC
1010		TPS62050DGS Regulator 2.7~10Vin	Power management
U919	IC	1.5~5.5Vout 800mA -40~85℃ DGS	IC
X100	IC	DSA535SD-19.2MHz	ТСХО
X302	IC	DSB321SDA 19.2MHz	ТСХО
X375	IC	SSP-T7F 32.768KHz	Crystal
Z6100	IC	D73312GQ12 73.35	Crystal filter
F900	IC	046602.5NR 32V 2.	Fuse

2. Display Section

Ref No.	Part Name	Specifications	Description
---------	--------------	----------------	-------------

U1	IC	Serial to parallel converter 2~5.5V -40~125°C TSSOP16 NXP	Logic IC
U2	IC	CM1440-06CP low-pass EMI Filter 35dB@1GHz -40~+85 °C 30KV ESD CSP-16 CMD	EMI Filter
U3	IC	CM1440-06CP low-pass EMI Filter 35dB@1GHz -40~+85 °C 30KV ESD CSP-16 CMD	EMI Filter
U4	IC	CM1440-06CP low-pass EMI Filter 35dB@1GHz -40~+85 °C 30KV ESD CSP-16 CMD	EMI Filter
U5	IC	XC6209F332PR LDO 12V 3.3V 300mA -40℃-85℃ SOT89-5	Power management IC
U8	IC	PRTR5V0U2X ESD&EMI 5V -40~85 ℃ SOT143B NXP	USB port protection device

Tuning

For details about radio tuning, please refer to the help file of DMR Tuner Software supplied by Hytera.

Port Definition

1.1 Main Unit

Pin No.	Name	Description			
	J404 (to front panel socket)				
1	INT_MIC	Audio input			
2	MIC_GROUND	Mic ground			
3	ACC_IO1	Accessory identifier port 1			
4	USB_VBUS	USB power supply			
5	HOOK	НООК			
6	PTT	PTT			
7	USB_D-	USB data -			
8	USB_D+	USB data +			
9	ACC_IO2	Accessory identifier port 2			
10	UART2_RXD_A	Volume control port			
11	UART2_TXD_B				
12	HANDSET_AUDI	Audio signal output by appagant			
12	0	Audio signal output by accessory			
13	SPKR1+	Speaker audio signal+			
14	SPKR1-	Speaker audio signal-			
15	5VD	Power supply			
16	PRST	Reset signal			

17	KB_C0	
18	KB_C1	
19	KB_C2	
20	KB_C3	Matrix keyboard
21	KB_R0	
22	KB_R1	
23	KB_R2	
24	CSLED	Backlight control IC chip select
25	CLOCK	Backlight control IC clock
26	DATA	Backlight control IC chip data
27	OE_LCD	LCD read enable
28	WE_LCD	LCD write enable
29	CS2_LCD	LCD chip select
30	F_A1_LCD	LCD memory select enable
31	F_D7	
32	F_D6	
33	F_D5	LCD data bus
34	F_D4	
35	F_D3	
36	F_D2	
37	F_D1	LCD data bus
38	F_D0	
39	GND	Ground
40	PWB_IN	Power on/off signal

1.2 Main Unit

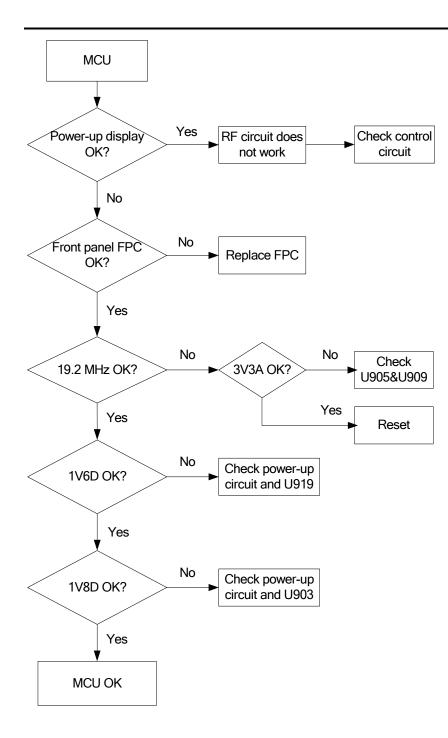
Pin No.	Name	I/O	Description
	J	socket)	
			+5V, 500mA. 5V is output when
1	Vbus USB	Power supply	accessory identification code is
1	VDUS USB	Fower suppry	00 01 10, and low level is output when
			the code is 11.
2	Ground	Ground line	
3	GP5_3	Digital	General purpose I/O interface with
	GF5_5	input/output	function defined through the CPS
4	SW B+ sense	Power supply	13V output voltage; output current
4	SW B+ sense		≤1.5A
5	External Alarm	Analog voltage	Programmable output pin with function
		output	defined through the CPS (the default
			is External Alarm)
6	Power Ground	Power supply	
0	Fower Ground	ground	
7	Tx Audio	Analog input	Used to input signal from external mic;
			audio path is valid upon press of
			external PTT.

8	RX Audio	Analog output	Used to output received audio signal.
9	Spkr-	Analog output	External speaker output -
10	D+ USB	USB data +	
11	USB GROUDN	Ground line	
12		Digital	General purpose I/O interface with
	GP5_2	input/output	function defined through the CPS (the default is Monitor)
13	ACC_IO2	Digital input	Accessory identifier port; three kinds of accessory identification status, and one default status are provided by the pin together with pin 15 ACC_IO3.
14	Emerg Sw	Digital input	When Emergency is active, this pin is at low level.
15	ACC_IO3	Digital input	Accessory identifier port
16	PRGM_IN_PTT	Digital input	Programmable input pin (the default is PTT) valid upon low level
17	Audio Ground	Audio ground	
18	Spkr+	Analog output	External speaker output +
19	D- USB	USB data -	
20	GP5_8	Input/output	This pin is used as UART RX for TETRA mobile radio, and is used as general purpose I/O interface for DMR mobile radio.
21	Ground	Ground line	
22	GP5_7	Input/output	General purpose I/O interface
23	GP5_6	Digital input/output	General purpose I/O interface with function defined through the CPS
24	AUX Audio Out 1	Analog output	Aux audio (external speaker) output 1
25	AUX Audio Out 2	Analog output	Aux audio (external speaker) output 2
26	Ign Sense	Analog voltage input	Ignition sense pin

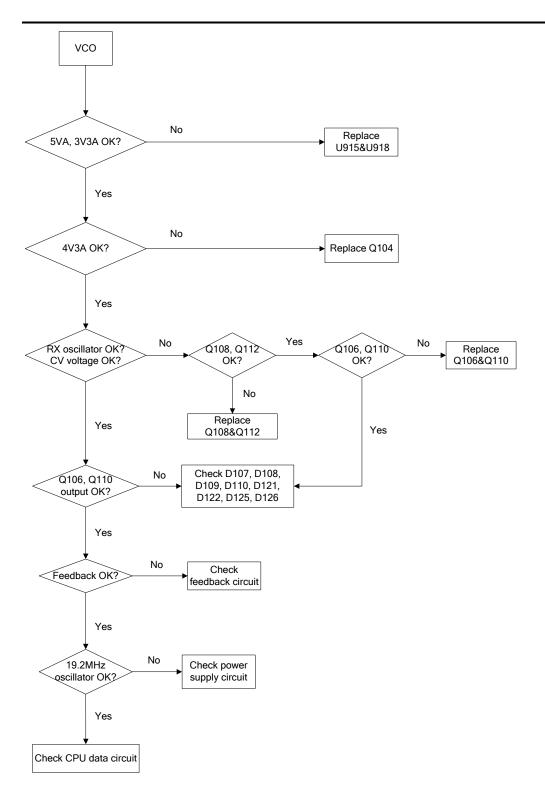
2.1 Front Panel

Pin No.	Name	I/O	Description			
	J404 (to front panel aviation socket)					
1	Accessory identifier port 1	Digital input	Pin 1 and pin 10 (accessory identifier port 2) compose an accessory identification matrix. See MMP accessory identification for more details.			
2	PTT input	Digital input	Used to input PTT signal from microphone. The pin is at low level when PTT is hold down.			
3	Handset audio output	Analog output	Accessory audio line. It is open when accessory identification code is			

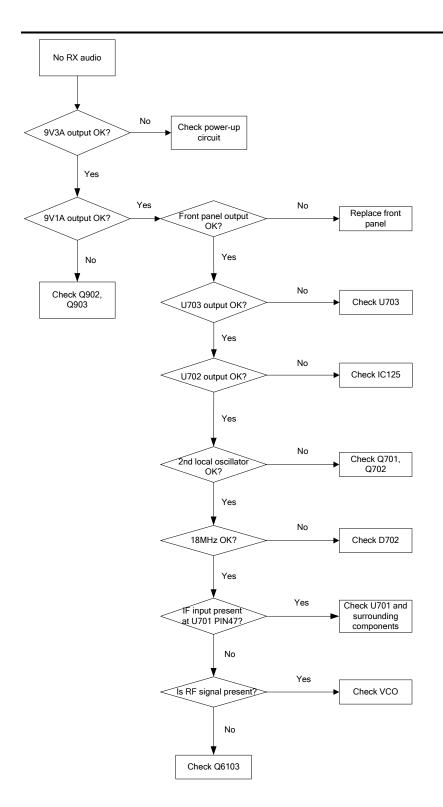
		00 01 10, and is off when the code is
		11.
USB_D- / serial	USB data	USB data bus D- (compared with CPU
port RX	line/input pin	inside the mobile radio)
	Cround line	This pin together with MIC provides
GND	Glound line	differential input.
		+5V, 500mA. 5V is output when
	Dowor oupply	accessory identification code is
036_0603	Power supply	00 01 10, and low level is output when
		the code is 11.
Misipput	Analog input	Palm microphone input. Vrms=80mV
Mic input	Analog Input	@ 60% system max. deviation
USB_D+ / serial	USB data	USB data bus D+ (compared with
port TX	line/output pin	CPU inside the mobile radio)
		Valid upon low level. The default is
ноок	Hook signal input	high level. Hook and Monitor
		functions: when key is pressed, low
		level is present at this pin. Then Hook
		function will be active if palm
		microphone or keypad microphone is
		detected, or the Monitor function will
		be active if desktop microphone is
		detected.
		Pin 1 (accessory identifier port 1) and
Accessory identifier port 2		pin 10 compose an accessory
	Digital input	identification matrix. See MMP
		accessory identification for more
		details.
	Port RX GND USB_VBUS Mic input USB_D+ / serial port TX HOOK Accessory	port RXline/input pinGNDGround lineUSB_VBUSPower supplyMic inputAnalog inputUSB_D+ / serial port TXUSB data line/output pinHOOKHook signal inputAccessoryDigital input

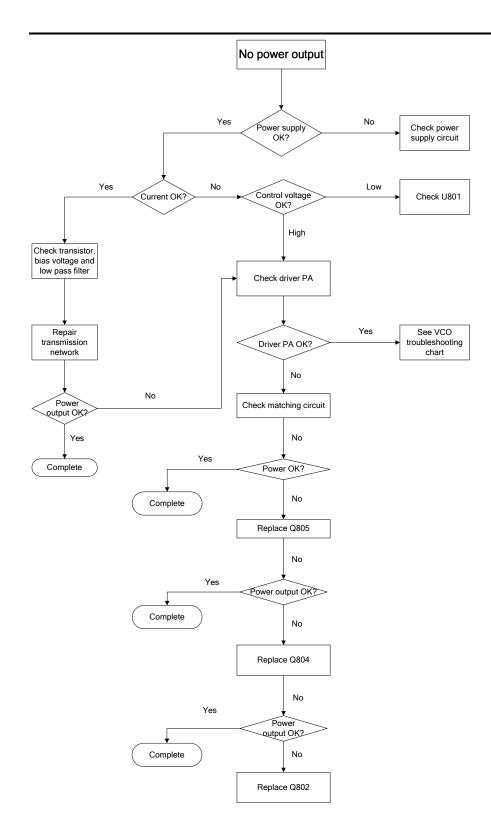

2.2 Front Panel

Pin No.	Name	Description			
	J2 (to LCD socket)				
1	GND	Ground			
2	VCI	2.5V-3.3V adjustable port			
3	VCI	2.5V-3.3V adjustable port			
4	IOVCC	1.65V-3.3V adjustable; input/output port			
5	FLM	Synchronization signal control port			
6	CS	Chip select signal			
7	RS	Memory select			
8	WR	Write signal			
9	RD	Read signal			
10	DB0	Data bus			
11	DB1				
12	DB2				
13	DB3				

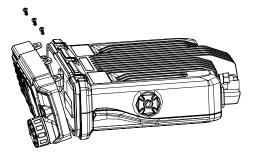

14	DB4	
15	DB5	
16	DB6	
17	DB7	
18	DB8	
19	DB9	
20	DB10	
21	DB11	
22	DB12	
23	DB13	
24	DB14	
25	DB15	
26	DB16	
27	DB17	
28	RESET	Reset signal
29	IM3	Select data line
30	IM0	
31	LEDA	LED positive
32	LED_K1	
33	LED_K2	LED negative
34	LED_K3	

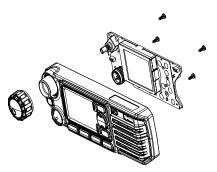
Troubleshooting Flow Chart


MCU

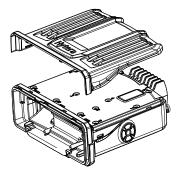

VCO

RX Circuit

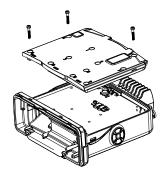

TX Circuit


Disassembly and Re-assembly for Repair

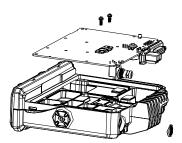
Disassembly


- 1. Power off the radio, disconnect the power cord and screw out the antenna.
- 2. Loosen the three screws to remove the front panel. Remove the FFC.

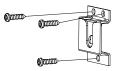
3. Detach the volume control knob, loosen the four screws, and then remove the PCB from the control panel.



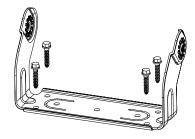
4. Undo the clips on both sides of the radio, and then remove the rear cover.



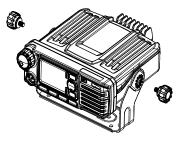
5. Loosen the eleven screws to remove the upper shield cover.


 Loosen the screw fixing the antenna connector and two screws fixing the PA module, and then take the PCB out.

Assembly


For the reassembly of the mobile radio, please do the contrary to disassembly procedures. Other procedures are as follows:

1. Fix the microphone hanger with three self-tapping screws (white, 4.0X16).

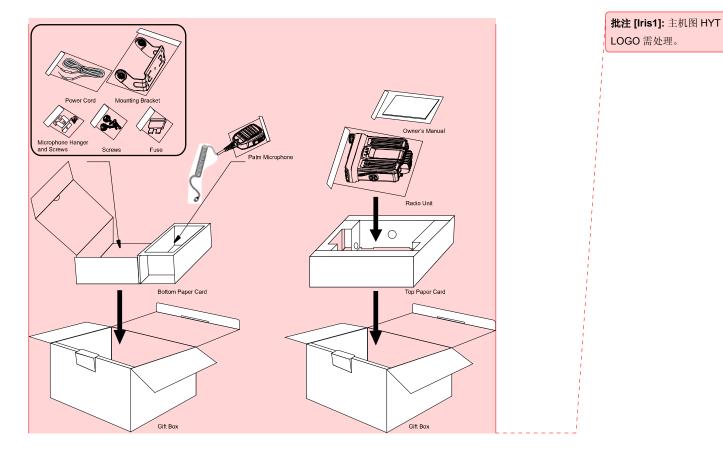


2. Fix the radio bracket with four or six self-tapping screws (black, 4.8X20).


3. Fasten the two adjustment screws, each with a silicone rubber pad.

4. Connect the palm microphone to the radio (via front-panel connector). When the palm microphone is not in use, hang it on the microphone hanger.

Exploded View



No.	Material No.	Description	Qty.
1	6300109000000	Aluminum chassis (RoHS)	1
2	7500358000000	Heat sink pad 00 (RoHS)	1
3	6100492101000	Waterproof ring for front case 00 (RoHS)	1
4	4210090000200	Signal cable (RoHS)	1
5	5208010100010	Connector (male) 10Pin (RoHS)	1
6	6001079000000	Light-guide plate for keys 00 (RoHS)	1
7	7300048000000	Metal dome for main key 00 (RoHS)	1
8	6100408001000	Waterproof ring for microphone jack 00 (RoHS)	1

9	6100488000000	P+R control panel keys 00 (RoHS)	1	
0	6201893000000	Speaker fixing sheet 0.8mm 00 (RoHS)	1	
11	7102606021000	Self-tapping screw ST2.6*6.0mm 00 (RoHS)		
12	4210080000700	Speaker cable (with 2-Pin plug) (RoHS)		
13	5001210000390	Speaker 20Ω 4/8W (RoHS)		
14	7400297000000	Speaker felt 00 (RoHS)		
15	7102505000110	Machine screw M2.5*5.0mm (RoHS)		
16	6001076000010	Front case for control panel (RoHS)		
17		Logo (RoHS)	1	
18	6201739000000	Inner lining of knob 00 (RoHS)		
19	6000876000000	Encoder knob 00 (RoHS)		
20	6100493000000	Power on/off key 00 (RoHS)		
21	6100404000000	Emergency key 00 (RoHS)		
22	7500344000000	PORON pad T=1.0mm (RoHS)		
23	513000000040	TFT LCD 2.0" TFT (RoHS)	1	
24	6001078000000	LCD bracket 00 (RoHS)	1	
25	5202002100270	Board-to-wire connector 2-Pin female (RoHS)	1	
26	7207003700000	Nut M6.0*2.3mm 00 (RoHS)	1	
27	6100334000000	O-ring for encoder switch 00(RoHS)	1	
28	439903000020	Rotary switch (RoHS)	1	
29		PCB for control panel	1	
30	6100533101000	Waterproof ring for aluminum chassis 00 (RoHS)		
31	6300126000000	Upper cover of aluminum chassis 00 (RoHS)	1	
32	7103015000000	Machine screw M3.0*15.0mm 00 (RoHS)		
33	6001080000000	Plastic upper cover 00 (RoHS)		
34	6100496000000	Conductive silicone rubber for main board 00 (RoHS)	1	
35	7103008000400	Machine screw M3.0*8.0mm 00 (RoHS)		
36	7500272000000	Heat sink pad 00 (RoHS)		
37	1301000000000	Semi-finished PA with heat sink pad (136-870MHz)	2	
	0.4.4.4.0.00.0.0.0.0.0.0.0.0.0.0.0.0.0.	(RoHS)	1	
38	3414999000020	PNP transistor (RoHS)		
39	0400500400000	Main PCB		
40	6100532100000	D_SUB waterproof ring 00 (RoHS)		
41	5208026100000	Jack 26-Pin D_SUB (RoHS)	1	
42	6100530100000	Waterproof ring for power socket 00 (RoHS)	1	
43	5205002100110	Power socket male (RoHS)	1	
44	3103994770150	Electrolytic capacitor (RoHS)		
45	7212002500000	Nut M12.0*2.5mm 00 (RoHS)		
46	6100531100000	Waterproof ring for antenna connector 00 (RoHS)		
47	4401000009000	BNC RF connector (RoHS)	1	
48	6100494000000	GPS soft stopple 00 (RoHS)	1	
49	7500159000100	Thermal conductive silicone rubber 00 (RoHS)	2	
50	7500357000000	Heat sink pad 00 (RoHS)		
А	6100574100000	O_RING 00 (RoHS)	11	
В	7500344000000	PORON pad (RoHS)	1	

Note: Parts that are not marked with Part No. may vary with the radio frequency band.

Packing

MD78X PCB View

MD78X Block Diagram

MD78X Schematic Diagram

Specifications

General							
Frequency Range		UHF: 400-470MHz					
Channel Capacity		256					
Channel Spacing		25/20/12.5 KHz					
Operating Voltage		13.6V DC ±15%					
	Standby	0.6A					
Current Drain	Receive	<2.0A					
Diam	Transmit	<12A (5-45W)	<8A (5-25W)				
Operating Temperature		-30℃~+60℃					
Dimensions (H×W×D)		174 X 60 X 200 mm					
Weight		1.7 Kg					
Frequency Stability		±1.5ppm					
Receiver							
Sensitivity		0.3µV (12dB SINAD)					
		0.22µV (Typical) (12dB SINAD)					
		0.4µV (20dB SINAD)					
Adjacent Channel Selectivity		65dB @ 12.5 kHz / 75dB @ 20&25 kHz					
Intermodulation		75dB @ 12.5/20/25 kHz					
Spurious Response Rejection		75dB @ 12.5/20/25 kHz					
Rated Audio Power Output		3W					
Rated Audio Distortion		≤3%					
Transmitter							
RF Power Output		Low Power: UHF1 (400-470MHz), 5-25W;					
		High Power: UHF1 (400-470MHz), 5-45W;					
Spurious and Harmonics		-36dBm<1GHz					
		-30dBm>1GHz					
Modulation Limiting		±2.5kHz @ 12.5 kHz					
		±4.0kHz @ 20 kHz					
		±5.0kHz @ 25 kHz					
FM Noise		40dB @ 12.5 kHz					
		43dB @ 20KHz 45dB @ 25 kHz					
Audio Distor	tion	≤3%					
, 10010 010101							

NOTE: All Specifications are tested according to TIA/EIA-603, and subject to change without notice due

to continuous development.