

XTM - XSM

WORKSHOP MANUALS

Molorand H

ELECTRIC SYSTEM TROUBLESHOOTING

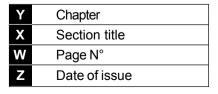
INTRODUCTION	4
Manual updates	4
Notes for easy consultation	4
Page layout	4
Modified pages	5
Additional pages	5
Editing symbols	5
Abbreviations	7
TROUBLESHOOTING	8
Wiring diagram	8
Connection of the switches described in this manual	9
Ignition system circuit	10
Ignition system troubleshooting	11
Charging system circuit	12
Charging system troubleshooting	13
Light system circuit	14
Light system troubleshooting	15
Signalling system circuit	20
Turn indicator troubleshooting	21
Stop light troubleshooting	23
Horn troubleshooting	24
Water temperature probe troubleshooting	25
Mixture oil indicator light troubleshooting	25
fuel reserve indicator light troubleshooting	26
Neutral indicator light troubleshooting	26
Speedometer sensor troubleshooting	26
MODE button troubleshooting	26
Revolution counter troubleshooting	27
Configuration of the digital instrument connector	27
Electrical component layout	28

Introduction

- Malaguti reserves the right to make any and all changes to its vehicles as it deems fit and appropriate at any time without prior notice.
- No part of this publication, whether text or illustrations, may be reproduced or circulated. Malaguti reserves all rights over this publication. Reasons must be given for any request for permission (written) thereto.

FIRST EDITION: 05/03

INTRODUCTION

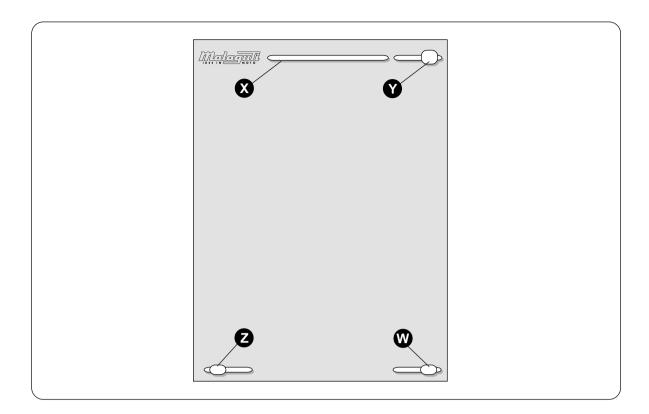

- This publication describes all necessary steps for **troubleshooting concerning the electrical system** (of the models indicated on the front page) and of the possible service operations, which are necessary for their solution. It supplies the **trade technicians** (authorised customer service centres) with the necessary information for operating in compliance with the modern concepts of "good practice" and "safety at work".
- Further information can be derived from the "Chassis" workshop manual from the "Engine" workshop manual from the Spare Parts catalogue.
- All described operations must be performed by technicians with the necessary skill and experience.
- The steps for the removal of body parts and of electrical and mechanical components, to allow access to wiring or electric components to service, can be taken from the Chassis Workshop Manual.
- We recommend you follow the information given in this publication with care.
- For any further information you may need, refer to the Malaguti S.p.A. Technical Department.

MANUAL UPDATES

- Updated **pages** of this publication will be delivered by us (*in a reasonable time*) already punched and therefore ready to be incorporated in the Manual. The superseded sheets should not be removed from the manual as they remain applicable to the servicing of pre-modified models.
- The table of contents will be duly updated in the event that new pages are inserted, which render the consultation of the manual difficult.
- **IMPORTANT!** The Electrical System Troubleshooting Manual is to be considered as an essential **tool** to be properly kept up-to-date so as to maintain its "*validity*" over time.

NOTES FOR EASY CONSULTATION

PAGE LAYOUT



Introduction

10

MODIFIED PAGES

- Modified pages shall bear the same number as those in the previous edition /pre-modified ones, followed by the letter **M**, with the **date of issue** appearing in the appropriate box.
- Modified pages may contain new illustrations; in this case, the added illustration (or illustrations) will bear the number of the illustration on the former page, followed by a letter.

ADDITIONAL PAGES

 Any additional pages shall bear the last number of the section to which they belong, followed by the letter A and the date of issue.

EDITING SYMBOLS

- Symbols have been provided for **quick and easy reference** (see page 6), identifying situations requiring utmost attention or providing practical suggestions or simple information.
- These symbols may appear next to a text (in which case they refer solely to the text itself), next to a figure (in which case they refer to the topic illustrated in the figure and to the relative text), or at the top of the page (in which case they refer to all the topics dealt with in the page).

Note:

The meaning of the symbols should be duly memorised as their scope is to avoid having to repeat basic technical concepts or safety recommendations. They are therefore to be considered as veritable "**memory tags**". In case of any doubt as to their meaning, consult the page in which they are fully described.

BCHAPTER

ELECTRIC SYSTEM TROUBLESHOOTING

Introduction

A) CAUTION! Recommendations and precautions regarding rider safety and motor vehicle integrity.

B) WARNING!

Situations entailing the risk of personal injury to maintenance or repair mechanics, other workshop personnel or third parties, or damage to environment, vehicle or equipment.

C) FIRE HAZARD

Indicates operations which may constitute a fire hazard.

D) RISK OF EXPLOSION

Indicates operations which may constitute a risk of explosion.

E) TOXIC FUMES

Indicates a possibility of intoxication or inflammation of the upper respiratory tract.

F) MECHANICAL MAINTENANCE

Operations to be performed only by an expert mechanic.

G) ELECTRICAL MAINTENANCE

Operations be performed only by an expert electrical/electronic technician

H) NO! Operations to be absolutely avoided

I) ENGINE SERVICE MANUAL

Indicates information which may be obtained by referring to said manual.

L) SPARE PARTS CATALOGUE

Indicates information which may be obtained by referring to said catalogue

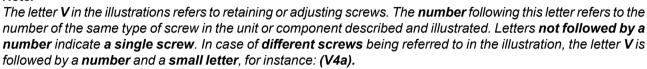
O

3

Œ

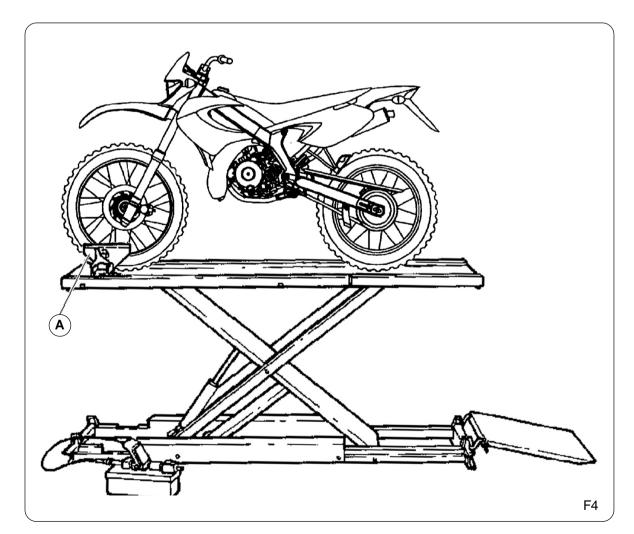
G

O


ABBREVIATIONS

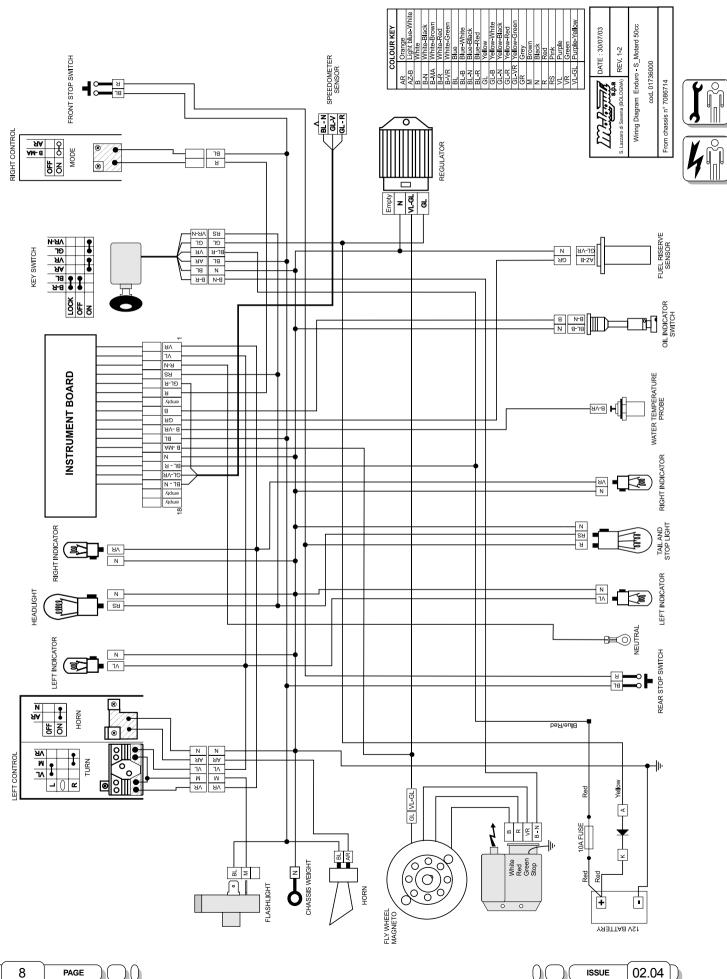
F	Figure
Cs	Tightening torque
Р	Page
Pr	Paragraph
S	Section
Sc	Diagram
T	Table
٧	Screw

Note:



Unless otherwise specified, units and components are reassembled by proceeding in the **reverse order** of removal.

Before any servicing, make sure that the motorbike is perfectly stable. The front wheel should preferably be anchored to the equipment (A - F 4) integral with the lifting board.


B CHAPTER

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

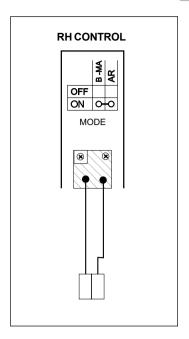
Molowing

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

CONNECTION OF THE SWITCHES DESCRIBED IN THIS MANUAL

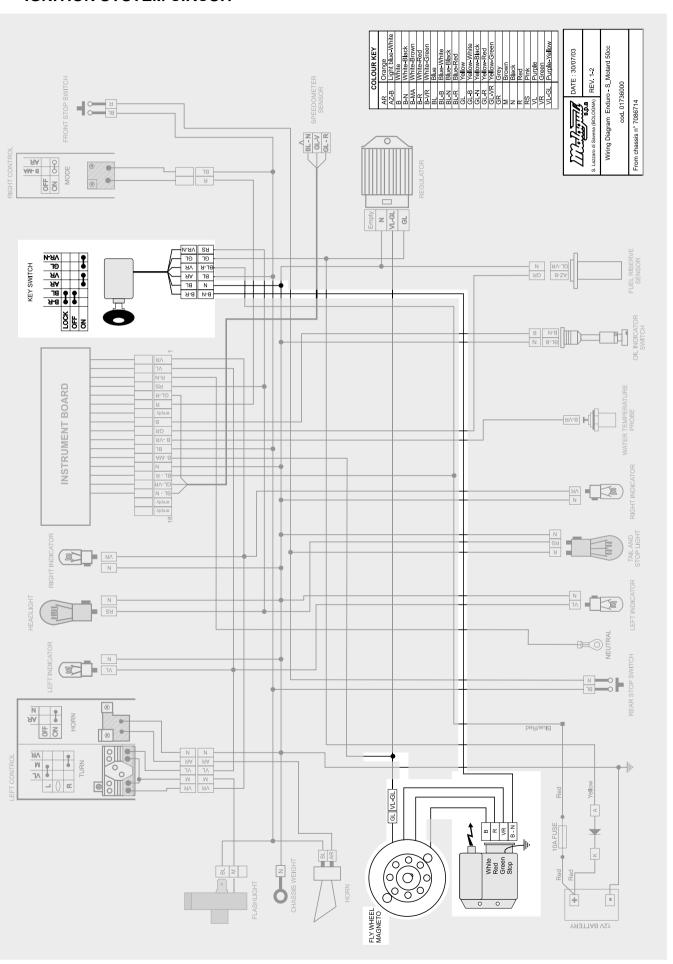
This manual contains connection diagrams, like the one illustrated hereby, which illustrate how switch terminals should be connected (key switch, brake switch, MODE button, etc.).


The first column from the left indicates the different positions of the switch, the top line the colour of the wires connected to the switch terminals.

The symbol "O-O" identifies terminals in which there is a condition of continuity, i.e. a closed circuit, in a certain position of the switch.

In this diagram:

"B-MA and AR": there is continuous contact when the switch is "ON".


Troubleshooting

ISSUE

02.04

IGNITION SYSTEM CIRCUIT

000

PAGE

10

OHM

Malanda

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

FLYWHEEL

MAGNETO

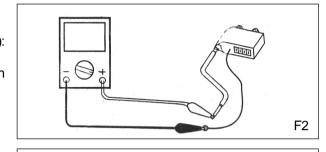
IGNITION SYSTEM TROUBLESHOOTING

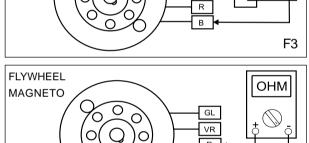
A) Check resistance of the spark plug cap

- Detach the spark plug cap from the H.V. cable and connect the **tester** ($k\Omega$) as follows (F1):
- Tester (+) terminal side 1 Tester (-) terminal side 2
- Spark plug cap resistance: 5 kΩ (20°C)
- Not compliant: replace the spark plug cap

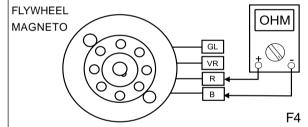
B) Check resistance of the electronic control unit

- Connect the **tester (kΩ)** to the control unit as follows (F2):
- Tester (+) terminal
 Tester (-) terminal
 H.V. cable
 lead terminal (green cable)
- Secondary winding resistance: 5-6 kΩ (20°C)
- Not compliant: replace the control unit




- Connect the **tester** (Ω) to the flywheel as follows (F3):
- Tester (+) terminal
 Tester (-) terminal
 white cable
- Power supply resistance: 640-780 Ω (20°C)
- Not compliant: replace the flywheel magneto

D) Check pick-up resistance (red cable)


- Connect the **tester** (Ω) to the flywheel as follows (F4):
- Tester (+) terminal
 Tester (-) terminal
 white cable
- Pick-up resistance: 100-140 Ω (20°C)
- Not compliant: replace the flywheel magneto

ΩX 1k F1

GL

E) Check key switch

- Disconnect the connector and connect the **tester** (Ω):

1) - Tester (+) terminal — red/white cable

KEY OFF		CONTINUITY
KEY ON	1ST CLICK	DISCONTINUITY
KEY ON	2ND CLICK	DISCONTINUITY

Up to chassis n° 7086713

- Tester (-) terminal _____ blue cable

KEY OFF	CONTINUITY
KEY ON	DISCONTINUITY

From chassis n° 7086714

2) - Tester (+) terminal — orange cable

KEY OFF		DISCONTINUITY
KEY ON	1ST CLICK	CONTINUITY
KEY ON	2ND CLICK	DISCONTINUITY

Up to chassis n° 7086713

- Tester (-) terminal — preen cable

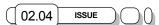
DISCONTINUITY
CONTINUITY

From chassis nº 7086714

3) - Tester (+) terminal _____ yellow cable

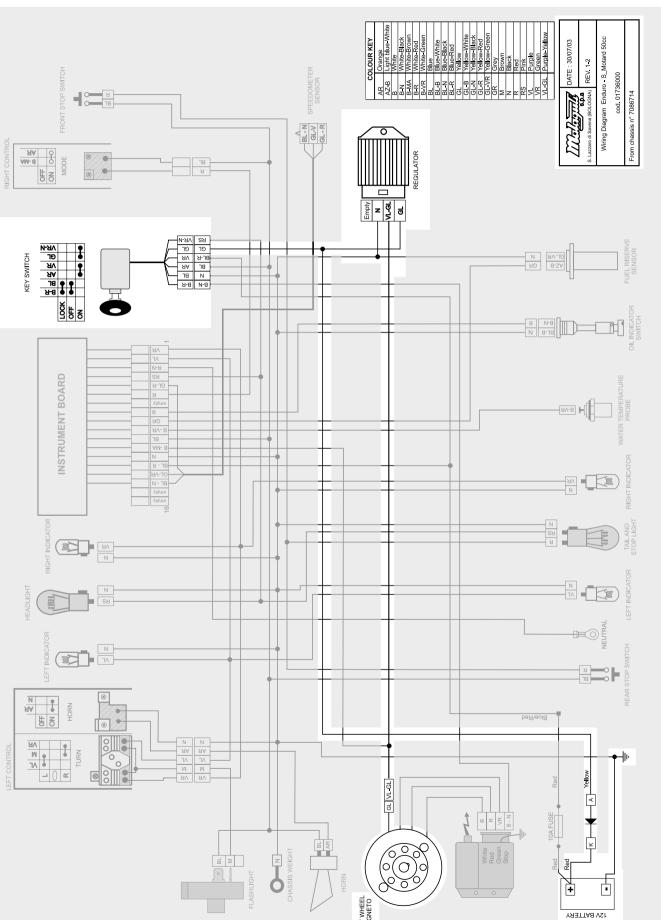
KEY OFF		DISCONTINUITY
KEY ON	1ST CLICK	CONTINUITY
KEY ON	2ND CLICK	CONTINUITY

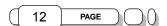
Up to chassis n° 7086713


- Tester (-) terminal _____ green/black cable

KEY OFF	DISCONTINUITY
KEY ON	CONTINUITY

From chassis nº 7086714

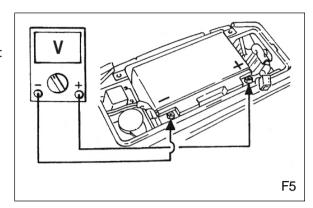

WARNING: if the white/black cable leading from the switch is grounded, the motor does not start.



CHARGING SYSTEM CIRCUIT

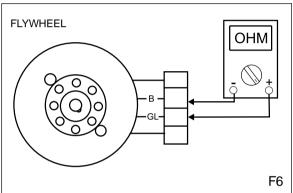
Troubleshooting

CHARGING SYSTEM TROUBLESHOOTING


If the battery is still flat, after it has been replaced or recharged, proceed as follows:

+ battery pole

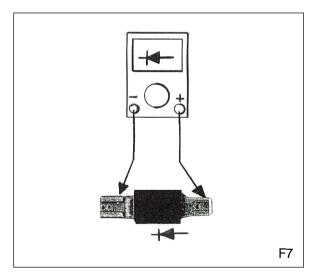
A) Check charging voltage



- Connect the tester (20 V DC) to the battery as in (F5):
- Tester (+) terminal ———
- Tester (-) terminal - battery pole
- Start the engine at approx. 7000 RPM
- Voltage measured 13.5-14V
- Not compliant: continue searching

B) Check the flywheel magneto charging coil

- Disconnect the connectors from the flywheel magneto and connect the **tester** (Ω) as follows (F6):
- Tester (+) terminal
 Tester (-) terminal
 white cable
- Charging coil resistance: 0.2-0.4Ω (20°C)
- Not compliant: replace the flywheel
- Compliant: continue searching



- C) Check that the cables have been connected to the regulator connector in the right sequence (see wiring diagram).
- D) Check continuity (tester Ω) of the yellow/purple cable leading from the flywheel to the regulator.
- E) Check continuity of the yellow cable (tester Ω) leading from the regulator to the battery (pole +).
- F) Check continuity (tester Ω) of the black grounding cable connected to the regulator connector.

G) Check the rectifier diode (F7)

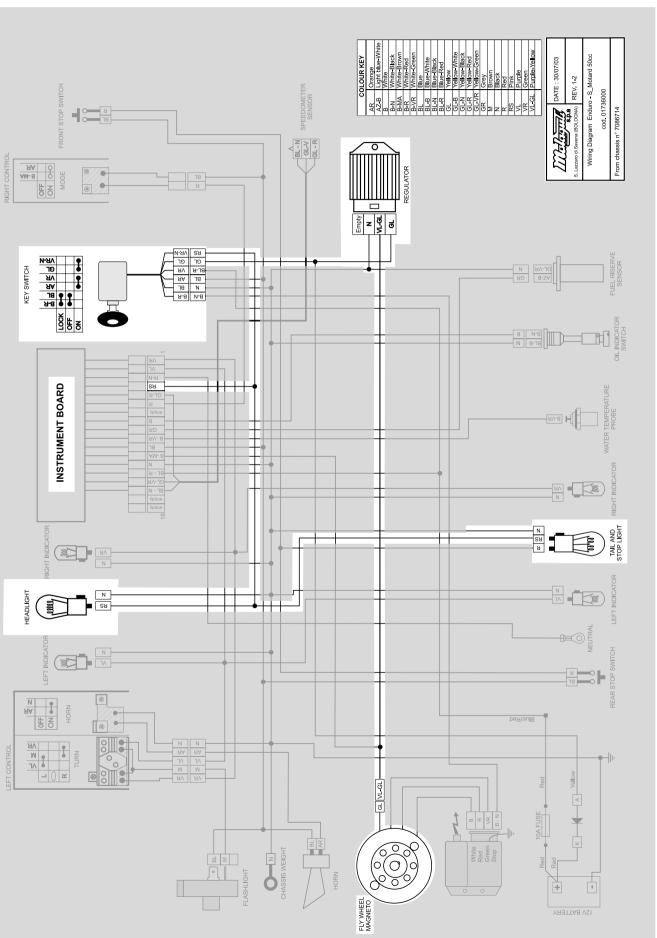
The diode is under the seat, connected to the yellow cable leading to the (+) pole of the battery.

- Remove the diode and connect the tester (—★—) as follows:
- Tester (+) terminal terminal 1
- Tester (-) terminal terminal 2
- The value measured must be (—★— 435)
- Not compliant: replace the diode

WARNING:

to avoid troublesome inconveniences on electrical components, make sure the diode is fitted before connecting the battery.

H) If all checks have positive results, replace the regulator.



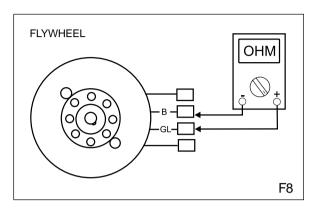
Troubleshooting

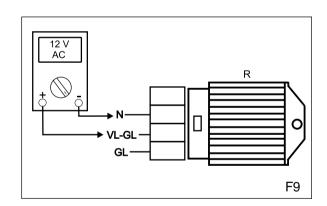
LIGHT SYSTEM CIRCUIT

Troubleshooting

LIGHT SYSTEM TROUBLESHOOTING

WARNING: the vehicle's lights come on when the key is in its "ON" position.


If the lights do not work, proceed as follows:


A) Check the light coil resistance (F8)

- Disconnect the flywheel connector and connect the tester (Ω):
- Tester (+) terminal yellow cable
- Tester (-) terminal white cable
- Light coil resistance: 0.2_0.4Ω (20°C)
- Not compliant: replace the flywheel
- Compliant: continue searching

- B) Make sure that the cables of the regulator connector are correctly positioned and firmly secured in place (see wiring diagram).
- C) Check continuity (tester Ω) between the yellow cable leading from the flywheel and the purple/yellow cable leading to the regulator.
- D) Check ground continuity (tester Ω) between the black cable in the regulator and a grounded point of the frame (to be tested after disconnecting the regulator terminal board).
- E) Check the voltage regulator (F9)
 - Connect the **tester (AC)** to the regulator connector (leaving the latter plugged in)
 - Tester (+) terminal purple/yellow cable
 - Tester (-) terminal black cable
 - Start the engine at 7000 RPM
 - The voltage measured should be: 12 volts
 - Not compliant: replace the regulator
 - Compliant: continue searching

- F) Check continuity (tester Ω) of the yellow cable leading from the regulator to the key switch.
- G) Check the key switch (see page 11). (SWITZERLAND version only)

Check continuity (tester Ω) of the pink cable leading from the key switch to the left hand switch. If there is no continuity, replace the left hand switch.

B CHAPTER

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

If the headlights are not working, proceed as follows:

A) Check continuity of the lamp and lamp socket

- Discontinuity: replace the lamp and/or lamp socket
- Continuity: continue searching

B) Check voltage delivered to the front lamp socket

- Connect the tester (20V AC) to the lamp socket
- Tester (+) terminal pink cable
- Tester (-) terminal black cable
- Turn the key to "ON".
- Start the engine at 7000 RPM
- The voltage measured should be: 12 volts
- Not compliant: continue searching.

C) Check continuity of the pink cable

- Connect the **tester** (Ω) to the pink cable leading from the key switch to the headlight connector.
- No continuity: the pink cable is interrupted. Repair (see wiring diagram).
- Continuity: black cable interrupted. Repair by providing a jumper between the black cable connected to the headlight and a grounded point of the frame.

(SWITZERLAND version only - If the front parking light does not work) Check continuity of the pink cable

- Connect the **tester** (Ω) to the pink cable leading from the key switch to the parking light lamp socket.
- No continuity: the pink cable is interrupted. Repair (see wiring diagram)
- Continuity: black cable interrupted. Repair by providing a jumper between the black cable connected to the parking light lamp socket and a grounded point of the frame.

If the low beam is not working, proceed as follows:

A) (SWITZERLAND version only)

Check continuity of the lamp

- Discontinuity: replace the lamp.

B) (SWITZERLAND version only)

Check left hand switch.

Connect the **tester** (Ω) to the switch as follows:

- Tester (+) terminal white/blue cable
 Tester (-) terminal pink cable
- Turn the switch light to the "LO" symbol.
- No continuity: replace the left hand switch.
- Continuity: the white/blue cable leading from the left hand switch to the lamp socket is interrupted. Repair (see wiring diagram)

Molocont

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

If the low beam light is not working but the low beam indicator light is, proceed as follows:

A) (SWITZERLAND version only)

Check continuity of the lamp

- Discontinuity: replace the lamp.

B) (SWITZERLAND version only)

Check continuity of the blue cable leading from the left hand switch to the lamp socket.

- No continuity: repair the blue cable (see wiring diagram).

A) (SWITZERLAND version only)

Check left hand switch.

Connect the **tester** (Ω) to the switch as follows:

- Tester (+) terminal blue cable
- Tester (-) terminal pink cable
- Turn the light switch to the "HI" symbol.
- No continuity: replace the left hand switch.

If the low beam indicator light is not working, proceed as follows:

A) (SWITZERLAND version only)

Check continuity of the light bulb

- Discontinuity: replace the light bulb.

B) (SWITZERLAND version only)

Check continuity of the blue cable leading from the left hand switch to the lamp socket of the instrument board indicator light.

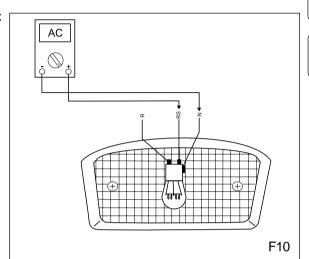
- No continuity: the blue cable is interrupted. Repair (see wiring diagram)
- Continuity: there is no grounding point. Repair by providing a jumper between the black cable connected to the lamp socket and a grounded point of the frame.

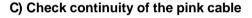
02.04 ISSUE

CHAPTER

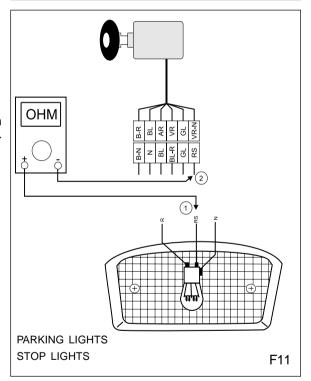
ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting


If the tail light does not work, proceed as follows:


A) Check continuity of the lamp

- Discontinuity: replace the lamp


B) Check the voltage delivered to the rear lamp socket

- Connect the **tester (AC 20V)** to the lamp socket (F10) pink cable
- Tester (+) terminal
- Tester (-) terminal black cable
- Turn the key to "ON".
- Start the engine at 7000 RPM
- The voltage measured should be: 12 volts
- Not compliant: continue searching

- Connect the **tester** (Ω) as follows (F11):
- Tester (+) terminal terminal 1
- Tester (-) terminal terminal 2
- No continuity: the pink cable leading from the key switch to the tail light is interrupted. Repair (see wiring diagram).

WARNING: if the ground connection is lacking (black cable), the stop light will not come on either.

Troubleshooting

If the number plate light is not working, proceed as follows:

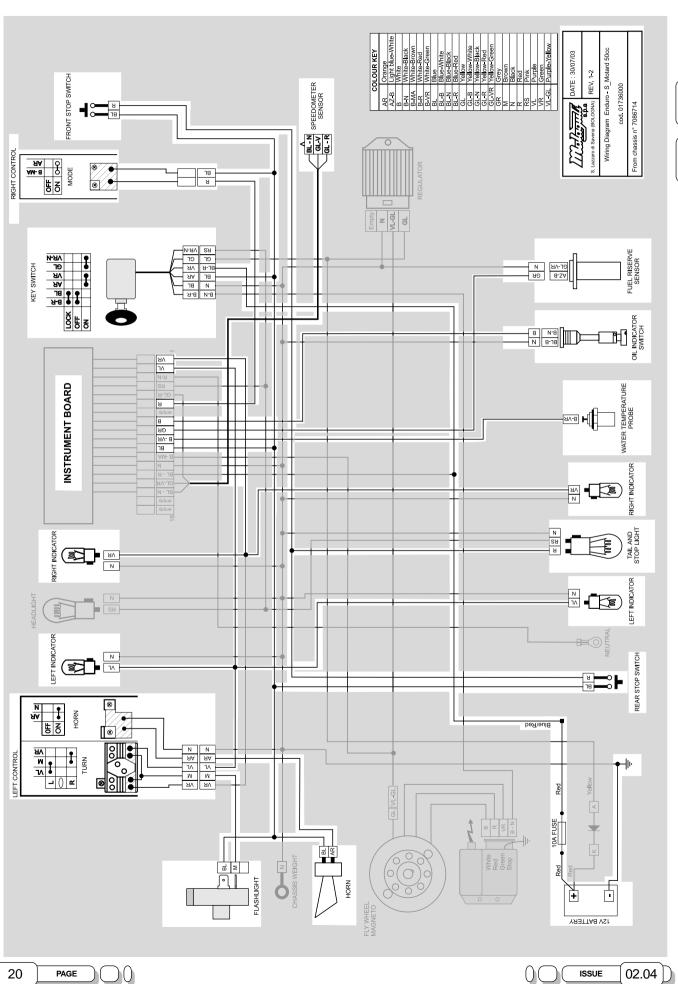
A) (SWITZERLAND version only)

Check continuity of the lamp and lamp socket.

- Discontinuity: replace the lamp and/or lamp socket.
- Continuity: continue searching.

B) (SWITZERLAND version only)

Check continuity of the pink cable


- Connect the **tester** (Ω) between the pink cable of the tail light lamp socket and the pink cable of the number plate light lamp socket.
- No continuity: the pink cable is interrupted. Repair (see wiring diagram)
- Continuity: there is no grounding point. Repair by providing a jumper between the black cable connected to the lamp socket and a grounded point of the frame.

02.04 ISSUE

Troubleshooting

SIGNALLING SYSTEM CIRCUIT

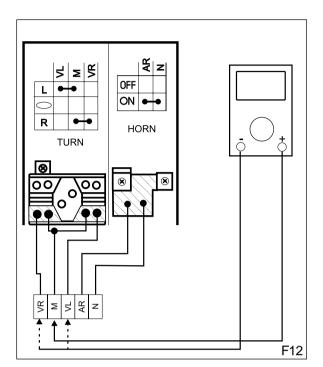
Molorina

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

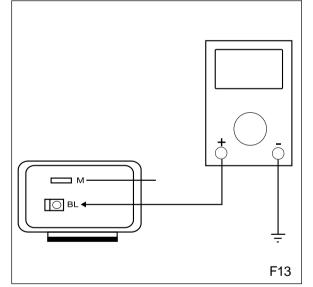
TURN INDICATOR TROUBLESHOOTING

If the turn indicators do not blink, proceed as follows:

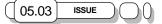


A) Check the turn indicator switch (F12)

- Disconnect the 5-way connector from the left hand switch (tester Ω).
- Put the button in left hand indicator position



- Tester (+) terminal
 Tester (-) terminal
 purple cable
- Put the button in right hand indicator position
- Tester (+) terminal
 Tester (-) terminal
 prown cable
 green cable
- There must be continuity in both cases
- No continuity: replace the left hand switch
- Continuity: continue searching.


B) Check the voltage delivered to the flashlight (F13)

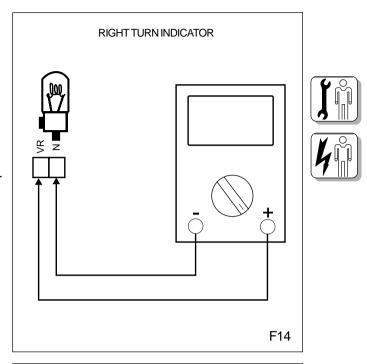
- Disconnect the flashlight connector and connect the 20 V DC tester:
- Tester (+) terminal blue cable
- Tester (-) terminal cable grounded to frame
- Turn the key "ON"
- Voltage =0: blue cable interrupted. Repair (see wiring diagram).
- Voltage 12 Volts: continue searching.

C) Check continuity of brown cable

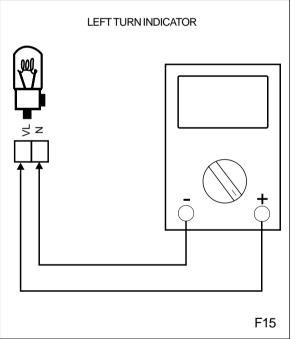
- Connect the **OHM tester** between the terminal plugged into the flashlight connector and the terminal plugged into the 5-way connector of the left hand switch; both connectors must be disconnected.
- Continuity: replace the flashlight.
- No continuity: brown cable interrupted Repair (see wiring diagram).

BCHAPTER

ELECTRIC SYSTEMTROUBLESHOOTING


Troubleshooting

Check the voltage delivered to the lamp socket connector of the turn indicators; proceed as follows:


A) Check the right indicator (F14)

- Disconnect the terminal of the right hand lamp socket and connect the **tester (20V DC)**:
- Tester (+) terminal green cable
- Tester (-) terminal black cable
- Key switch in "ON" position
- Put the switch in right hand indicator position:
- Voltage 12 Volts: compliant
- Not compliant: the circuit between the turn indicator switch and the lamp socket connector is faulty. Repair (see wiring diagram).

B) Check left indicator (F15)

- Disconnect the left lamp socket terminal and connect the **tester (20 V DC)**:
- Tester (+) terminal purple cable
 Tester (-) terminal black cable
- Key switch in "ON" position
- Put the switch in left hand indicator position
- Voltage 12 Volts: compliant
- Not compliant: the circuit between the turn indicator switch and the lamp socket connector is faulty. Repair (see wiring diagram).

Moloron

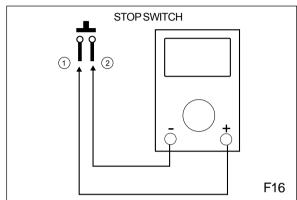
ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

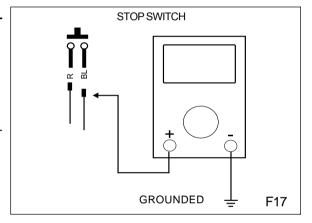
STOP LIGHT TROUBLESHOOTING

If the stop light is not working, proceed as follows:

A) Check continuity of the lamp and lamp socket with a tester (Ω)



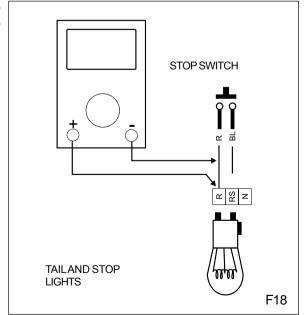
- Discontinuity: replace the lamp or lamp socket
- Continuity: continue searching


B) Check front and rear stop light switch

- Disconnect the red and blue terminals and connect the **tester** (Ω) to the switch terminals (F16).
- Tester (+) terminal terminal 1
- Tester (-) terminal terminal 2
- Operate the brake lever.
- Discontinuity: replace the stop light switch.
- Continuity: continue searching.

C) Check the voltage delivered to the blue cable inserted in the stop light switch (20 V DC tester) (F17)

- Tester (+) terminal blue cable
- Tester (-) terminal grounded to the frame
- Turn the key "ON"
- The voltage measured should be: 12 Volts.
- Not compliant: blue cable interrupted. Repair (see wiring diagram)
- Compliant: continue searching.



D) Check continuity of the red cable between the terminal inserted in the stop switch and the terminal inserted in the tail light.

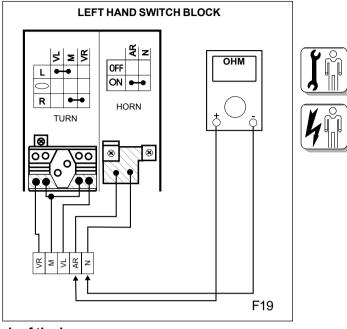
 Discontinuity: red cable interrupted. Repair (see wiring diagram) (F18).

WARNING: if the grounding connection is lacking, the tail light will not come on either.

B CHAPTER

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

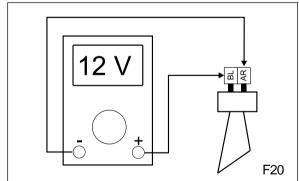


HORN TROUBLESHOOTING

If the horn is not working, proceed as follows:

A) Check the "HORN" button

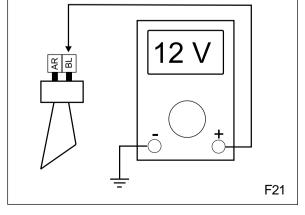
- Disconnect the 5-way connector from the left hand switch and connect the **tester** (Ω) (F19)
- Tester (-) terminal black terminal
- Press the "HORN" button
- Discontinuity: replace the left hand switch
- Continuity: continue searching.


B) Check grounding of the black cable of the 9-way switch of the harness

- Connect the OHM tester as follows:
- Tester (+) terminal

 → black cable
- Tester (-) terminal grounded to frame
- No continuity: black cable interrupted. Repair by providing a jumper between the black cable and a grounded point of the frame.
- Continuity: continue searching.

C) Check voltage delivered to the horn


- Disconnect the terminals of the horn and connect the tester (20V DC) (F20)
- Tester (+) terminal
 Tester (-) terminal
 Tester (-) terminal
- Key switch in "ON" position
- Press the "HORN" button
- Voltage 12V: replace the horn.
- No power: continue searching.

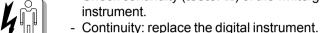
D) Check voltage delivered to blue cable (F21) (20 V DC Tester)

- Tester (+) terminal blue terminal
- Tester (-) terminal grounded to frame
- Key switch in "ON" position
- No power: blue cable interrupted: repair (see wiring diagram).

Voltage 12V: orange cable interrupted between the terminal inserted in the 5-way connector of the harness and the terminal inserted in the horn. Repair (see wiring diagram).

Troubleshooting

WATER TEMPERATURE PROBE TROUBLESHOOTING


If the motor is hot and the instrument's indicator is reading 0, proceed as follows:

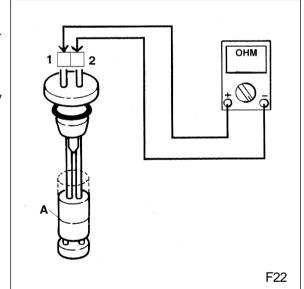
- Disconnect the white/green cable of the water temperature probe and ground it:

A) Red light on and digital temperature scale at maximum level:

- Replace the water temperature probe (on the head).

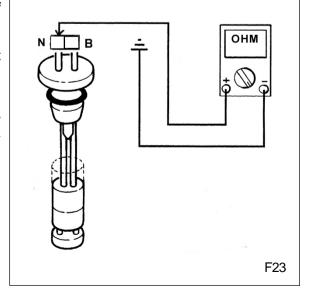
B) Red light blinking and digital temperature scale signalling only one notch:

- Check continuity (**tester** Ω) of the white/green cable leading from the water temperature probe to the digital
- Discontinuity: the white/green cable is interrupted. Repair (see wiring diagram).


Warning: the red light will also blink if the white/green water temperature probe cable has come

MIXTURE OIL INDICATOR LIGHT TROUBLESHOOTING

If the mixture oil indicator light only comes on in check mode, proceed as follows:


A) Check the oil probe

- Take the oil probe out of the tank, disconnect the connector and connect the **OHM tester** (F22).
- Tester (+) terminal coupling 1
- Tester (-) terminal coupling 2
- Whilst keeping the probe upright, float "A" must run freely and position itself at the base of the probe.
- Discontinuity: the probe is faulty. Repair.
- Continuity: continue searching.

B) Check the grounding continuity of the black cable of the connector plugged into the probe

- Disconnect the connector from the probe and connect the **OHM tester** (F23).
- Tester (+) terminal black cable
- Tester (-) terminal grounded to frame
- Discontinuity: the black cable is interrupted. Repair by providing a jumper between the black cable and a grounded point of the frame.
- Continuity: the white cable leading from the probe to the digital instrument is interrupted. Repair (see wiring diagram).

BCHAPTER

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

FUEL RESERVE INDICATOR LIGHT TROUBLESHOOTING

If the fuel reserve indicator light only comes on in check mode, proceed as follows:

A) Disconnect the probe connector and provide a jumper between the grey cable and the black cable.

- Turn the switch "ON".
- Light on: replace the petrol probe.
- Light off: continue searching.

B) Check grounding continuity (tester Ω) between the black cable and a grounded point of the frame.

- Discontinuity: black cable interrupted. Repair by providing a jumper between the black cable and a grounded point.
- Continuity: the cable leading from the probe to the digital instrument is interrupted. Repair (see wiring diagram).

NEUTRAL INDICATOR LIGHT TROUBLESHOOTING

A) The neutral light stays on, even if the vehicle is in gear.

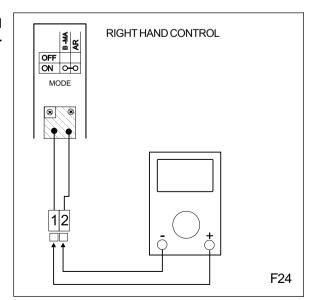
- Check whether the red/black cable is grounded.
- Disconnect the red/black cable of the "neutral" switch fastened to the motor casing and connect the tester
 (Ω) as follows:
- Tester (+) terminal → red/black cable
- Tester (-) terminal grounded to frame
- Continuity: red/black cable grounded. Repair.
- Discontinuity: replace the "neutral" switch.

B) The neutral light only comes on in check mode.

- Check continuity (tester Ω) of the red/black cable leading from the neutral switch to the digital instrument.
- Discontinuity: red/black cable interrupted. Repair.
- Continuity: replace the "neutral" switch.

SPEEDOMETER SENSOR TROUBLESHOOTING

If speed is not signalled, proceed as follows:


- make sure the digital instrument is correctly connected (see wiring diagram).
- if the cables leading to the instrument's connector are correctly inserted, replace the speedometer sensor and its electronic transmission.

"MODE" BUTTON TROUBLESHOOTING

If the functions of the digital instrument are not changed when the "Mode" button is pressed, proceed as follows:

A) Check the "MODE" button

- Disconnect the 2-way connector of the "MODE" button and connect the **OHM tester** as follows (F24):
- Tester (+) terminal terminal 1
- Tester (-) terminal terminal 2
- Press the "MODE" button
- Discontinuity: replace the "MODE" button
- Continuity: continue searching.

05.03

Molorona

ELECTRIC SYSTEMTROUBLESHOOTING

Troubleshooting

B) Check the power supply of the blue cable

- Connect the tester (20V DC) as follows:
- Tester (+) terminal blue cable
- Tester (-) terminal prounded to the frame
- Turn the switch "ON":
- Power measured must be 12 V.
- Not compliant: the blue cable is interrupted. Repair (see wiring diagram).

C) Check continuity of red cable ("MODE" pulse)

- Connect the **OHM tester** as follows:
- Tester (+) terminal red cable ("MODE" connector)
- Tester (-) terminal red cable (digital instrument connector)
 Discontinuity: red cable interrupted. Repair (see wiring diagram).

Continuity: replace the digital instrument.

REVOLUTION COUNTER TROUBLESHOOTING

Check continuity of the white/brown cable leading to the digital instrument and the purple/yellow cable leading from the flywheel magneto.

Discontinuity: white/brown cable interrupted. Repair (see wiring diagram).

Continuity: replace the digital instrument.

CONFIGURATION OF THE DIGITAL INSTRUMENT CONNECTOR

Pos.	Meaning	Colour
1	Indicator	green
2	Indicator	purple
3	Neutral	red/black
4	Lights	pink
5	Hall sensor input	yellow/red
6	MODE button	red
7	NC	-
8	Oil	white
9	Fuel	grey

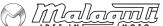
Pos.	Meaning	Colour
10	Water probe	white-green
11	Under key	blue
12	RPM	white-brown
13	Negative	black
14	Battery positive terminals	blue-red
15	Hall sensor GND	black
16	Hall sensor VDC	blue-black
17	NC	-
18	NC	-

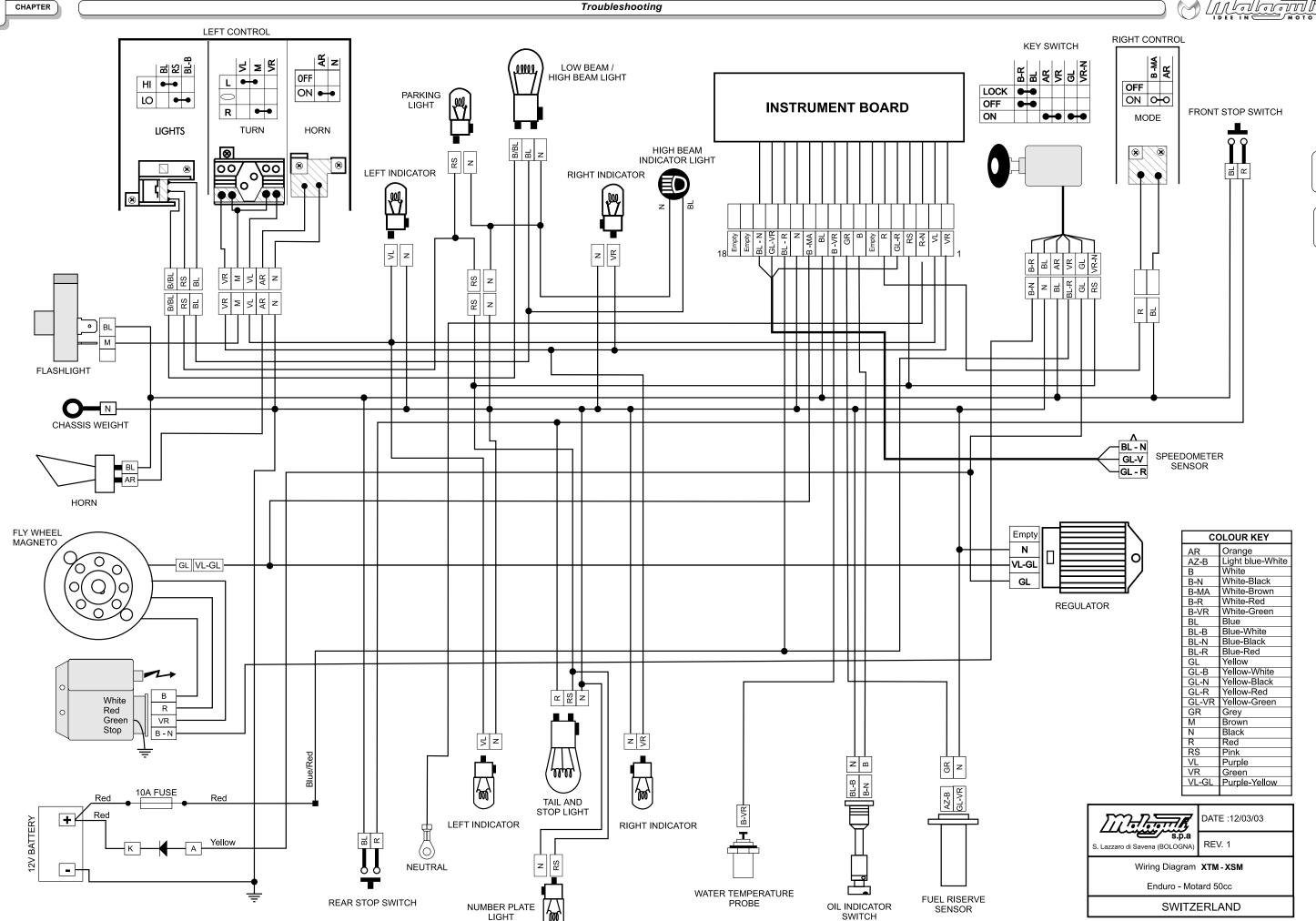
Troubleshooting

ELECTRICAL COMPONENT LAYOUT

- 1) INSTRUMENT BOARD
- 2) HEADLIGHT
- 3) HORN
- 4) SWITCH WITH KEY
- 5) LEFT CONTROL
- 6) SPEEDOMETER SENSOR
- 7) FRONT RIGHT INDICATOR
- 8) FRONT LEFT INDICATOR
- 9) RIGHT CONTROL
- 10) WATER TEMPERATURE PROBE
- 11) REAR STOP SWITCH
- 12) OIL INDICATOR SWITCH
- 13) FUEL RESERVE SENSOR
- 14) FLY WHEEL MAGNETO
- 15) "CDI" CONTROL UNIT
- 16) REGULATOR
- 17) FLASHLIGHT
- 18) BATTERY
- 19) REAR RIGHT INDICATOR
- 20) TAILAND STOP LIGHT
- 21) REAR LEFT INDICATOR
- 22) FRONT STOP SWITCH
- 23) NEUTRAL INDICATOR LEAD TERMINAL

ENGLISH


STOP LIGHT


30

PAGE

SENSOR

ISSUE 05.03

32 PAGE

ISSUE 02.04