

# Agilent 1200 Series Standard and Preparative Autosamplers



## **Service Manual**



Agilent Technologies

## Notices

© Agilent Technologies, Inc. 2007, 2008

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

#### **Manual Part Number**

G1329-90110

#### **Edition**

11/08

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

#### **Research Use Only**

Not for use in Diagnostic Procedures.

#### Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

#### **Technology Licenses**

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

#### **Restricted Rights Legend**

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

#### **Safety Notices**

#### CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

### WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

## Contents

#### 1 Introduction to the Autosampler 7

Introduction to the Autosampler 8 Sampling Sequence 10 Sampling Unit 13 Transport Assembly 16 Early Maintenance Feedback (EMF) 18 Electrical Connections 19 Agilent 1200 Series Interfaces 21

#### 2 Site Requirements and Specifications 23

Site Requirements 24 Physical Specifications 27 Performance Specifications 28

#### 3 Installing the Autosampler 33

Unpacking the Autosampler 34 Optimizing the Stack Configuration 37 Installing the Autosampler 40 Installing the Thermostatted Autosampler 43 Flow Connections 47 Installing the Sample Tray 49 Transporting the Autosampler 50

#### 4 Using the Autosampler 51

Solvent Information 52 Sample Trays 54 Choice of Vials and Caps 56

#### 5 Optimizing Performance 59

Optimization for Lowest Carry-over 60 Fast Injection Cycle and Low Delay Volume 64 Precise Injection Volume 66

#### Contents

Choice of Rotor Seal 68

#### 6 Troubleshooting and Diagnostics 69

Agilent Lab Advisor Software 70 Overview of the Sampler's Indicators and Test Functions 71 Status Indicators 72 Error Messages 74 **Maintenance Functions** 89 Standard Autosampler Step Commands 99 Troubleshooting 101 Troubleshooting Guide for the Sample Transport Assembly 103

#### 7 Maintenance 111

Introduction into Maintenance and Repair 112 Overview of Main Repair Procedures 116 Early Maintenance Feedback (EMF) 118 Maintenance Functions 120 Simple Repairs 121

#### 8 Repairs 141

Exchanging Internal Parts 142

#### 9 Parts and Materials for Maintenance 193

Main Assemblies 194 Analytical-Head Assembly 196 Vial Trays 199 Standard Autosampler Accessory Kit G1329-68725 200 Preparative Autosampler Accessory Kit G2260-68705 201 Maintenance Kit G1313-68730 for G1329A 202 Maintenance Kit G1313-68719 for G1329B 203 Multi-Draw Kit G1313-6871 204 900 µl Injection Upgrade Kit G1363A for G1329A 205 External Tray G1313-60004 206

#### 10 Parts for Repair 207

Sampling Unit Assembly 208

Injection-Valve Assembly 210 Sheet Metal Kit 212 Cover Parts 213 Foam Parts 214 Power and Status Light Pipes 215 Leak System Parts 216

#### 11 Identifying Cables 217

Cable Overview 218 220 Analog Cables Remote Cables 223 BCD Cables 228 **External Contact Cable** 230 CAN/LAN Cables 231 Auxiliary Cable 232 **RS-232** Cables 233

#### 12 Configuring the Autosampler 235

Autosampler Control and Electronics 236 Position and Movement Sensors 237 Autosampler Main Board (ASM) 238 Firmware Description 243 **Optional Interface Boards** 246 Agilent 1100/1200 Series Interfaces 250 Setting the 8-bit Configuration Switch 256 Main Power Supply Assembly (Standard) 261

#### 13 Appendix 263

General Safety Information 264 Lithium Batteries Information 268 Radio Interference 269 Sound Emission 270 Agilent Technologies on Internet 271

#### **Contents**



# Introduction to the Autosampler

Introduction to the Autosampler 8 Sampling Sequence 10 Injection Sequence 11 Sampling Unit 13 Needle-Drive 14 Analytical head / preparative head 14 Injection-Valve 15 Transport Assembly 16 Early Maintenance Feedback (EMF) 18 Electrical Connections 19 Agilent 1200 Series Interfaces 21



## Introduction to the Autosampler

Three models of Agilent 1200 Series autosamplers are available; within this introduction they will be referred to as the standard autosampler (G1329A), the standard autosampler SL (G1329B) and the preparative autosampler (G2260A). Unless otherwise stated all information in this section is valid for all models.

The Agilent 1100 Series autosamplers and Agilent 1200 Series autosamplers are designed for use with other modules of the Agilent 1200 Series LC system, with the HP 1050 Series, or with other LC systems if adequate remote control inputs and outputs are available. The autosamplerss are controlled from the Agilent 1200 Series control module (G4208 A Instant Pilot) or from the Agilent ChemStation for LC.

Three sample-rack sizes are available for the autosamplers. The standard full-size rack holds  $100 \times 1.8$  ml vials, while the two half-size racks provide space for  $40 \times 1.8$  ml vials and  $15 \times 6$  ml vials respectively. Any two half-size rack trays can be installed in the autosamplers simultaneously. A specially designed sample-rack holding  $100 \times 1.8$  ml vials is available for use with thermostatted autosamplers. The half-size racks trays are not designed for an optimal heat transfer when they are used with a thermostatted autosampler.

The autosamplers transport mechanism uses an X-Z-Theta movement to optimize vial pick-up and return. Vials are picked up by the gripper arm, and positioned below the sampling unit. The gripper transport mechanism and sampling unit are driven by motors. Movement is monitored by optical sensors and optical encoders to ensure correct operation. The metering device is always flushed after injection to ensure minimum carry-over.

The standard analytical head device provides injection volumes from  $0.1 - 100 \mu$ l. Two preparative head devices provide injection volumes from  $0.1 - 900 \mu$ l. One head is limited by a system pressure of 200 bars, the other by a system pressure of 400 bars. The G1329B autosampler SL uses an analytical head providing injection volumes from  $0.1 - 100 \mu$ l for pressures up to 600 bar as used in rapid resolution systems.

The six-port injection valve unit (only 5 ports are used) is driven by a high-speed hybrid stepper motor. During the sampling sequence, the valve unit bypasses the autosamplers, and directly connects the flow from the pump to the column. During injection and analysis, the valve unit directs the flow through the autosamplers which ensures that the sample is injected completely into the column, and that any sample residue is removed from the metering unit and needle from before the next sampling sequence begins. Different valves are available for the standard and preparative autosamplers.

Control of the vial temperature in the thermostatted autosampler is achieved using an additional Agilent 1200 Series module; the ALS thermostat. Details of this module are given in the Agilent 1200 Series thermostatted autosampler Supplemental Manual.

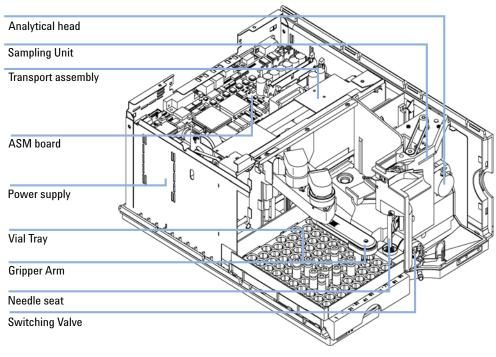
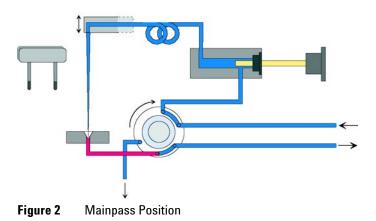



Figure 1 Overview of the Autosampler

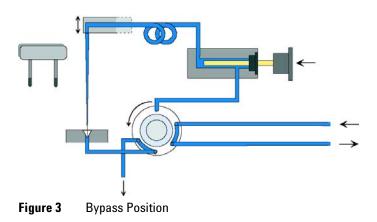
1 Introduction to the Autosampler Sampling Sequence

## **Sampling Sequence**

The movements of the autosampler components during the sampling sequence are monitored continuously by the autosampler processor. The processor defines specific time windows and mechanical ranges for each movement. If a specific step of the sampling sequence can't be completed successfully, an error message is generated.


Solvent is bypassed from the autosamplers by the injection valve during the sampling sequence. The sample vial is selected by a gripper arm from a static sample rack, or from external vial positions. The gripper arm places the sample vial below the injection needle. The required volume of sample is drawn into the sample loop by the metering device. Sample is applied to the column when the injection valve returns to the mainpass position at the end of the sampling sequence.

The sampling sequence occurs in the following order:


- **1** The injection valve switches to the bypass position.
- **2** The plunger of the metering device moves to the initialization position.
- **3** The gripper arm moves from the home position, and selects the vial. At the same time, the needle lifts out of the seat.
- **4** The gripper arm places the vial below the needle.
- **5** The needle lowers into the vial.
- **6** The metering device draws the defined sample volume.
- **7** The needle lifts out of the vial.
- 8 If the automated needle wash is selected (see "Using the Automated Needle Wash" on page 61), the gripper arm replaces the sample vial, positions the wash vial below the needle, lowers the needle into the vial, then lifts the needle out of the wash vial.
- 9 The gripper arm checks if the safety flap is in position.
- **10** The gripper arm replaces the vial, and returns to the home position. Simultaneously, the needle lowers into the seat.
- **11** The injection valve switches to the mainpass position.

### **Injection Sequence**

Before the start of the injection sequence, and during an analysis, the injection valve is in the mainpass position (Figure 2 on page 11). In this position, the mobile phase flows through the autosamplers metering device, sample loop, and needle, ensuring all parts in contact with sample are flushed during the run, thus minimizing carry-over.



When the sample sequence begins, the valve unit switches to the bypass position (Figure 3 on page 11). Solvent from the pump enters the valve unit at port 1, and flows directly to the column through port 6.



Next, the needle is raised, and the vial is positioned below the needle. The needle moves down into the vial, and the metering unit draws the sample into the sample loop (Figure 4 on page 12).

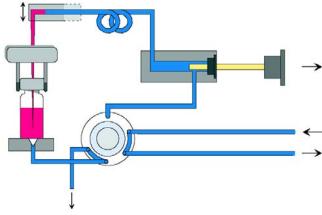



Figure 4 Drawing the Sample

When the metering unit has drawn the required volume of sample into the sample loop, the needle is raised, and the vial is replaced in the sample tray. The needle is lowered into the needle seat, and the injection valve switches back to the mainpass position, flushing the sample onto the column (Figure 5 on page 12).

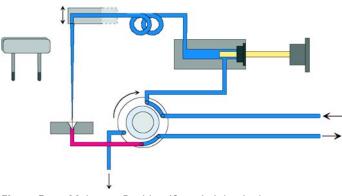



Figure 5 Mainpass Position (Sample Injection)

## **Sampling Unit**

The sampling unit comprises three main assemblies: needle drive, metering device, and injection valve.

## **NOTE** The replacement sampling unit excludes the injection valve and metering head assemblies.



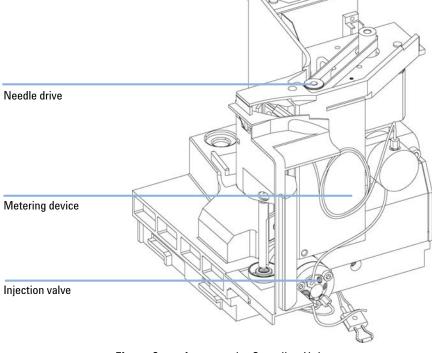



Figure 6 Autosampler Sampling Unit

## **Needle-Drive**

The needle movement is driven by a stepper motor connected to the spindle assembly by a toothed belt. The circular motion of the motor is converted to linear motion by the drive nut on the spindle assembly. The upper and lower needle positions are detected by reflection sensors on the sampling unit flex board, while the needle-in-vial position is determined by counting the motor steps from the upper needle-sensor position.

## Analytical head / preparative head

The analytical head is driven by the stepper motor connected to the drive shaft by a toothed belt. The drive nut on the spindle converts the circular movement of the spindle to linear motion. The drive nut pushes the sapphire plunger against the tension of the spring into the analytical head. The base of the plunger sits on the large bearing of the drive nut, which ensures the plunger is always centered. A ceramic ring guides the movement of the plunger in the analytical head. The home position of the plunger is sensed by an infra-red sensor on the sampling unit flex board, while the sample volume is determined by counting the number of steps from the home position. The backward movement of the plunger (driven by the spring) draws sample from the vial.

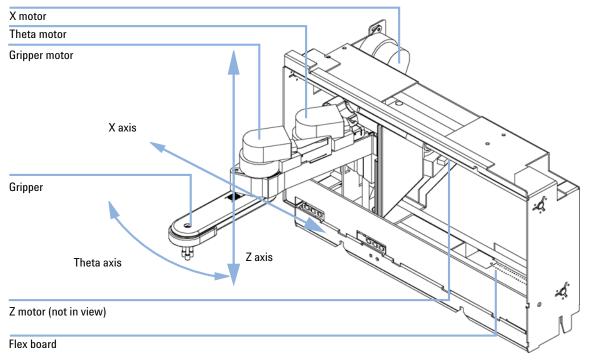
|                   | Standard (100 µl | Standard (900 µl) | Preparative (900 µl) |
|-------------------|------------------|-------------------|----------------------|
| Number of steps   | 15000            | 15000             | 15000                |
| Volume resolution | 7 nl/motor step  | 60 nl/motor step  | 60 nl/motor step     |
| Maximum stroke    | 100 µl           | 900 µl            | 900 µl               |
| Pressure limit    | 600 bar          | 200 bar           | 400 bar              |
| Plunger material  | Sapphire         | Sapphire          | Sapphire             |

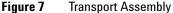
 Table 1
 Analytical Head Technical Data

## **Injection-Valve**

The two-position 6-port injection valve is driven by a stepper motor. Only five of the six ports are used (port 3 is not used). A lever/slider mechanism transfers the movement of the stepper motor to the injection valve. Two microswitches monitor switching of the valve (bypass and mainpass end positions).

No valve adjustments are required after replacing internal components.


| Table 2 | Injection-Valve Technical Data |
|---------|--------------------------------|
|---------|--------------------------------|


|                 | Standard                       | Preparative MBB™         | Autosampler SL           |
|-----------------|--------------------------------|--------------------------|--------------------------|
| Motor type      | 4 V, 1.2 A stepper motor       | 4 V, 1.2 A stepper motor | 4 V, 1.2 A stepper motor |
| Seal material   | Vespel™ (Tefzel™<br>available) | PEEK                     | РЕЕК                     |
| Stator material | Ceramic/PEEK                   | PEEK                     | None                     |
| Number of ports | 6                              | 6                        | 6                        |
| Switching time  | < 150 ms                       | < 150 ms                 | < 150 ms                 |

#### 1 Introduction to the Autosampler Transport Assembly

## **Transport Assembly**

The transport unit comprises an X-axis slide (left-right motion), a Z-axis arm (up-down motion), and a gripper assembly (rotation and vial-gripping).





The transport assembly uses four stepper motors driven in closed-loop mode for accurate positioning of the gripper assembly for sample-vial transport. The rotational movement of the motors is converted to linear motion (X- and Z-axes) by toothed belts connected to the drive spindles. The rotation (theta axes) of the gripper assembly is transferred from the motor by a toothed belt and series of gears. The opening and closing of the gripper fingers are driven by a stepper motor linked by a toothed belt to the planetary gearing inside the gripper assembly. The stepper motor positions are determined by the optical encoders mounted onto the stepper-motor housing. The encoders monitor the position of the motors continually, and correct for position errors automatically (e.g. if the gripper is accidentally moved out of position when loading vials into the vial tray). The initialization positions of the moving components are sensed by reflection sensors mounted on the flex board. These positions are used by the processor to calculate the actual motor position. An additional six reflection sensors for tray recognition are mounted on the flex board at the front of the assembly.

## Early Maintenance Feedback (EMF)

The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-setable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

For details on EMF counters and how to use them, see "Early Maintenance Feedback (EMF)" on page 118.

## **Electrical Connections**

- The GPIB connector is used to connect the module with a computer. The address and control switch module next to the GPIB connector determines the GPIB address of your module. The switches are preset to a default address and is recognized once after power is switched ON.
- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal Agilent 1200 Series module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch. See your software documentation for further information.
- The power input socket accepts a line voltage of 100 240 volts AC ± 10% with a line frequency of 50 or 60 Hz. Maximum power consumption is 300 VA. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply. The security lever at the power input socket prevents the module cover from being taken off when line power is still connected.

#### NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

**1** Introduction to the Autosampler

**Electrical Connections** 

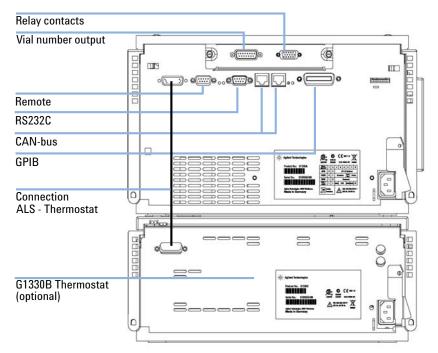


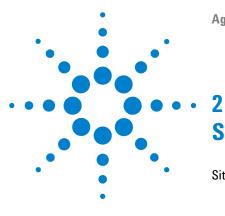

Figure 8 Autosampler (plus Thermostat) Electrical Connections

## **Agilent 1200 Series Interfaces**

The Agilent 1200 Series modules provide the following interfaces:

| Interface Type               | Pumps | Autosampler | DA Detector<br>MW Detector<br>FL Detector | VW Detector<br>RI Detector | Thermostatted<br>Column<br>Compartment | Vacuum<br>Degasser |
|------------------------------|-------|-------------|-------------------------------------------|----------------------------|----------------------------------------|--------------------|
| CAN                          | Yes   | Yes         | Yes                                       | Yes                        | Yes                                    | No                 |
| GPIB                         | Yes   | Yes         | Yes                                       | Yes                        | Yes                                    | No                 |
| RS-232C                      | Yes   | Yes         | Yes                                       | Yes                        | Yes                                    | No                 |
| APG Remote                   | Yes   | Yes         | Yes                                       | Yes                        | Yes                                    | Yes                |
| Analog                       | Yes   | No          | 2 ×                                       | 1 ×                        | No                                     | Yes <sup>1</sup>   |
| Interface board <sup>2</sup> | Yes   | Yes         | Yes                                       | Yes                        | No                                     | No                 |

 Table 3
 Agilent 1200 Series Interfaces


<sup>1</sup> The vacuum degasser will have a special connector for specific use. For details, see the degasser manual.

<sup>2</sup> The interface board slot (not common to all modules) provides specific interfacing needs (external contacts, BCD, LAN and so on).

For details on the available interfaces, see "Agilent 1100/1200 Series Interfaces" on page 250.

**1** Introduction to the Autosampler

Agilent 1200 Series Interfaces



# Site Requirements and Specifications

Site Requirements 24 Power Consideration 24 Power Cords 25 Bench Space 26 Environment 26 Physical Specifications 27 Performance Specifications 28



2 Site Requirements and Specifications Site Requirements

## Site Requirements

A suitable environment is important to ensure optimum performance of the instrument.

### **Power Consideration**

The autosampler power supply has wide-ranging capability (see Table 4 on page 27). Consequently there is no voltage selector in the rear of the autosampler. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

The thermostatted autosampler comprises two modules, the standard or preparative autosampler and the thermostat (G1330B). Both modules have a separate power supply and a power plug for the line connections. The two modules are connected by a control cable and both are turned on by the autosampler module.

### WARNING

#### **Damaged electronics**

Disconnecting or reconnecting the sampler to thermostat cable when the power cords are connected to either of the two modules will damage the electronics of the modules.

Make sure the power cords are unplugged before disconnecting or reconnecting the sampler to thermostat cable.

#### WARNING

#### Incorrect line voltage at the instrument

Shock hazard or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage.

#### CAUTION

Unaccessable power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

## **Power Cords**

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear of the module. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

### WARNING

The absence of ground connection and the use of an unspecified power cord can lead to electric shock or short circuit.

#### **Electric Shock**

- Never operate your instrumentation from a power outlet that has no ground connection.
- → Never use a power cord other than the Agilent Technologies power cord designed for your region.

#### WARNING

#### Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

#### 2 Site Requirements and Specifications Site Requirements

## **Bench Space**

The autosampler dimensions and weight (see Table 4 on page 27) allow the instrument to be placed on almost any laboratory bench. The instrument requires an additional 2.5 cm (1.0 inch) of space on either side, and approximately 8 cm (3.1 inches) at the rear for the circulation of air, and room for electrical connections. Ensure the autosampler is installed in a horizontal position.

The thermostatted autosampler dimensions and weight allow the instrument to be placed on almost any laboratory bench. The instrument requires an additional 25 cm (10 inches) of space on either side for the circulation of air, and approximately 8 cm (3.1 inches) at the rear for electrical connections. Ensure the autosampler is installed in a level position.

If a complete Agilent 1200 Series system is to be installed on the bench, make sure that the bench is designed to carry the weight of all the modules. For a complete system including the thermostatted autosampler it is recommended to position the modules in two stacks, see "Optimizing the Stack Configuration" on page 37. Make sure that in this configuration there is 25 cm (10 inches) space on either side of the thermostatted autosampler for the circulation of air.

## Environment

Your module will work within specifications at ambient temperatures and relative humidity as described in Table 4 on page 27.

### CAUTION

Condensation within the module

Condensation will damage the system electronics.

- Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- → If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

## **Physical Specifications**

| Туре                                   | Specification                                   | Comments                                                                            |
|----------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|
| Weight                                 | 14.2 kg (32 lbs)                                |                                                                                     |
| Dimensions<br>(width × depth × height) | 200 × 345 × 435 mm (8 × 13.5 × 17<br>inches)    |                                                                                     |
| Line voltage                           | 100 – 240 VAC, ± 10%                            | Wide-ranging capability                                                             |
| Line frequency                         | 50 or 60 Hz, ± 5%                               |                                                                                     |
| Power consumption                      | 300 VA / 200 W / 683 BTU                        | Maximum                                                                             |
| Ambient operating temperature          | 0-55 °C (32-131 °F)                             | See warning "" on page 27                                                           |
| Ambient non-operating temperature      | -40–70 °C (-4–158 °F)                           |                                                                                     |
| Humidity                               | < 95%, at 25–40 °C (77–104 °F)                  | Non-condensing                                                                      |
| Operating Altitude                     | Up to 2000 m (6500 ft)                          |                                                                                     |
| Non-operating altitude                 | Up to 4600 m (14950 ft)                         | For storing the module                                                              |
| Safety standards: IEC, CSA,<br>UL      | Installation Category II, Pollution<br>Degree 2 | For indoor use only. Research<br>Use Only. Not for use in<br>Diagnostic Procedures. |

#### Table 4 Physical Specifications

### WARNING

### Hot rear panel

Using the autosampler at high environmental temperatures may cause the rear panel to become hot.

→ Do not use the autosampler at environmental temperatures higher than 50 °C (122 °F)

## **Performance Specifications**

| Туре                          | Specification                                                                                                                                         |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure                      | Operating range 0 – 40 MPa (0 – 400 bar, 0 – 5900 psi)                                                                                                |
| GLP features                  | Early maintenance feedback (EMF), electronic records of maintenance and errors                                                                        |
| Communications                | Controller-area network (CAN). GPIB (IEEE-448), RS232C,<br>APG-remote standard, optional four external contact closures and<br>BCD vial number output |
| Safety features               | Leak detection and safe leak handling, low voltages in maintenance areas, error detection and display                                                 |
| Injection range               | 0.1 – 100 μl in 0.1 μl increments Up to 1500 μl with multiple draw<br>(hardware modification required)                                                |
| Replicate injections          | 1 – 99 from one vial                                                                                                                                  |
| Precision                     | < 0.25% RSD from 5 – 100 μl, < 1% RSD 1 – 5 μl<br>variable volume                                                                                     |
| Minimum sample volume         | 1 µl from 5 µl sample in 100 µl microvial, or 1 µl from 10 µl sample in<br>300 µl microvial                                                           |
| Carryover                     | Typically < 0.1%, < 0.05% with external needle cleaning                                                                                               |
| Sample viscosity range        | 0.2 – 50 cp                                                                                                                                           |
| Replicate injections per vial | 1 – 99                                                                                                                                                |
| Sample capacity               | 100 × 2-ml vials in 1 tray<br>40 × 2-ml vials in ½ tray<br>15 × 6-ml vials in ½ tray (Agilent vials only)                                             |
| Injection cycle time          | Typically 50 s depending on draw speed and injection volume                                                                                           |

Table 5Performance Specifications Agilent 1200 Series Autosampler (G1329A). Valid<br/>when standard 100 µl metering head installed.

| Туре                   | Specification                                                                                                                                                                  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pressure               | Operating range 0 – 20 MPa (0 – 200 bar, 0 – 2950 psi)                                                                                                                         |  |
| GLP features           | Early maintenance feedback (EMF), electronic records of maintenance and errors                                                                                                 |  |
| Communications         | Controller-area network (CAN). GPIB (IEEE-448), RS232C,<br>APG-remote standard, optional four external contact closures and<br>BCD vial number output                          |  |
| Safety features        | Leak detection and safe leak handling, low voltages in maintenance areas, error detection and display                                                                          |  |
| Injection range        | 0.1 – 900 μl in 0.1 μl increments (recommended 1 μl increments) Up<br>to 1800 μl with multiple draw (hardware modification required)                                           |  |
| Replicate injections   | 1 – 99 from one vial                                                                                                                                                           |  |
| Precision              | Typically < 0.5% RSD of peak areas from 5 $-$ 2000 $\mu$ l, Typically < 1% RSD of peak areas from 2000 $-$ 5000 $\mu$ l, Typically < 3% RSD of peak areas from 1 $-$ 5 $\mu$ l |  |
| Minimum sample volume  | 1 µl from 5 µl sample in 100 µl microvial, or 1 µl from 10 µl sample in<br>300 µl microvial                                                                                    |  |
| Carryover              | Typically < 0.1%, < 0.05% with external needle cleaning                                                                                                                        |  |
| Sample viscosity range | 0.2 – 50 cp                                                                                                                                                                    |  |
| Sample capacity        | 100 × 2-ml vials in 1 tray<br>40 × 2-ml vials in ½ tray<br>15 × 6-ml vials in ½ tray (Agilent vials only)                                                                      |  |
| Injection cycle time   | 50 s for draw speed 200 μl/min, ejection speed 200 μl/min, injection volume 5 μl                                                                                               |  |

Table 6Performance Specifications Agilent 1200 Series standard autosampler<br/>(G1329A). Valid when standard 900 µl metering head installed.

#### 2 Site Requirements and Specifications

**Performance Specifications** 

| Туре                   | Specification                                                                                                                                         |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pressure               | Operating range 0 – 60 MPa (0 – 600 bar, 0 – 8850 psi)                                                                                                |  |
| GLP features           | Early maintenance feedback (EMF), electronic records of maintenance and errors                                                                        |  |
| Communications         | Controller-area network (CAN). GPIB (IEEE-448), RS232C,<br>APG-remote standard, optional four external contact closures and<br>BCD vial number output |  |
| Safety features        | Leak detection and safe leak handling, low voltages in maintenance areas, error detection and display                                                 |  |
| Injection range        | $0.1-100~\mu l$ in 0.1 $\mu l$ increments (recommended 1 $\mu l$ increments) Up to 15 00 $\mu l$ with multiple draw (hardware modification required)  |  |
| Replicate injections   | 1 – 99 from one vial                                                                                                                                  |  |
| Precision              | Typically < 0.25% RSD of peak areas from 5 – 100 $\mu$ l, Typically < 1% RSD of peak areas from 1 – 5 $\mu$ l,                                        |  |
| Minimum sample volume  | 1 µl from 5 µl sample in 100 µl microvial, or 1 µl from 10 µl sample in<br>300 µl microvial                                                           |  |
| Carryover              | Typically < 0.1%, < 0.05% with external needle cleaning                                                                                               |  |
| Sample viscosity range | 0.2 – 50 cp                                                                                                                                           |  |
| Sample capacity        | 100 × 2-ml vials in 1 tray<br>40 × 2-ml vials in ½ tray<br>15 × 6-ml vials in ½ tray (Agilent vials only)                                             |  |
| Injection cycle time   | 50 s for draw speed 200 $\mu l/min,$ ejection speed 200 $\mu l/min,$ injection volume 5 $\mu l$                                                       |  |


# Table 7Performance Specifications Agilent 1200 Series standard autosampler SL<br/>(G1329B).

| Туре                   | Specification                                                                                                                                                                                             |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pressure               | Operating range 0 – 40 MPa (0 – 400 bar, 0 – 5800psi)                                                                                                                                                     |  |
| GLP features           | Early maintenance feedback (EMF), electronic records of maintenance and errors                                                                                                                            |  |
| Communications         | Controller-area network (CAN). GPIB (IEEE-448), RS232C,<br>APG-remote standard, optional four external contact closures and<br>BCD vial number output                                                     |  |
| Safety features        | Leak detection and safe leak handling, low voltages in maintenance areas, error detection and display                                                                                                     |  |
| Injection range        | 0.1 – 900 μl in 0.1 μl increments (recommended 1 μl increments)<br>Up to 1800 μl with multiple draw (hardware modification required)<br>Up to 5000 μl with multiple draw (hardware modification required) |  |
| Replicate injections   | 1 – 99 from one vial                                                                                                                                                                                      |  |
| Precision              | Typically < 0.5% RSD of peak areas from 5 $-$ 2000 $\mu$ l, Typically < 1% RSD of peak areas from 2000 $-$ 5000 $\mu$ l, Typically < 3% RSD of peak areas from 1 $-$ 5 $\mu$ l                            |  |
| Minimum sample volume  | 1 µl from 5 µl sample in 100 µl microvial, or 1 µl from 10 µl sample in<br>300 µl microvial                                                                                                               |  |
| Sample viscosity range | 0.2 — 50 ср                                                                                                                                                                                               |  |
| Sample capacity        | 100 × 2-ml vials in 1 tray<br>15 × 6-ml vials in ½ tray (Agilent vials only)                                                                                                                              |  |
| Injection cycle time   | Typically 50 s, depending on draw speed and injection volume                                                                                                                                              |  |

#### Table 8 Performance Specifications Agilent 1200 Series Preparative Autosampler (G2260A)

### 2 Site Requirements and Specifications

**Performance Specifications** 



3

# Installing the Autosampler

Unpacking the Autosampler 34 Damaged Packaging 34 Delivery Checklist 34 Optimizing the Stack Configuration 37 Installing the Autosampler 40 Installing the Thermostatted Autosampler 43 Flow Connections 47 Installing the Sample Tray 49 Transporting the Autosampler 50



## **Unpacking the Autosampler**

#### CAUTION

#### Mechanical damage of the autosampler

If the transport assembly is not parked, the autosampler could be damaged due to excessive shock of the shipping container during transport.

→ Always park the transport assembly before shipment (see "Transporting the Autosampler" on page 50).

## **Damaged Packaging**

Upon receipt of your autosampler, inspect the shipping containers for any signs of damage. If the containers or cushioning material are damaged, save them until the contents have been checked for completeness and the autosampler has been checked mechanically and electrically. If the shipping container or cushioning material is damaged, notify the carrier and save the shipping material for the carriers inspection.

### **Delivery Checklist**

Ensure all parts and materials have been delivered with the autosampler. The instrument box contains the instrument and an Accessory kit. A separate box contains the reference manual and the power cable.

In Table 9 on page 35 and Table 10 on page 36 are listed the content of each accessory kit.

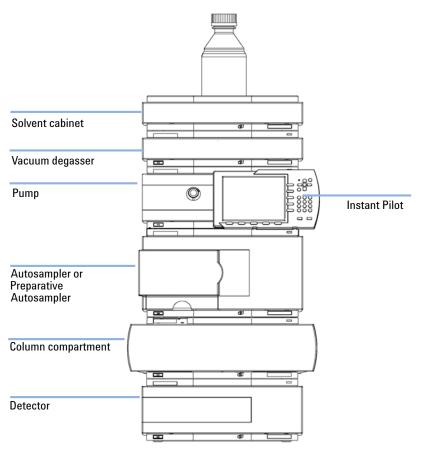
Please report missing or damaged parts to your local Agilent Technologies sales and service office.

| 5063-6527<br>5181-1519<br>5182-0714<br>5182-0717<br>5989-3890<br>no PN<br>8710-0510<br>8710-2391 |
|--------------------------------------------------------------------------------------------------|
| 5182-0714<br>5182-0717<br>5989-3890<br>no PN<br>8710-0510                                        |
| 5182-0717<br>5989-3890<br>no PN<br>8710-0510                                                     |
| <b>5989-3890</b><br>no PN<br><b>8710-0510</b>                                                    |
| no PN<br>8710-0510                                                                               |
| 8710-0510                                                                                        |
|                                                                                                  |
| 8710-2391                                                                                        |
|                                                                                                  |
| 8710-2392                                                                                        |
| 8710-2394                                                                                        |
| 8710-2412                                                                                        |
| 5063-6506                                                                                        |
| G1329-40301                                                                                      |
| G1329-43200                                                                                      |
| no PN                                                                                            |
| G1329-87300                                                                                      |
| 01090-87306                                                                                      |
| no PN                                                                                            |
|                                                                                                  |

 Table 9
 G1329A/G1329B - Standard Autosampler Accessory Kit Contents G1329-68725

<sup>1</sup> Reorder gives pack of 15

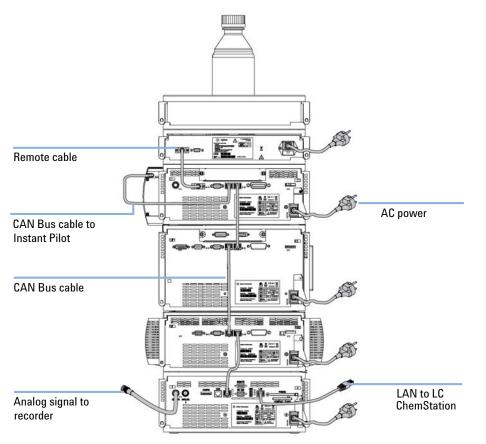
#### **3** Installing the Autosampler

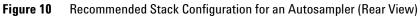

**Unpacking the Autosampler** 

| Description                                 | Part Number |
|---------------------------------------------|-------------|
| Tubing assembly                             | 5063-6527   |
| Filter promo kit                            | 5064-8240   |
| CAN cable, 1 m long                         | 5181-1519   |
| Screw cap vials, clear 100/pk               | 5182-0714   |
| Blue screw caps 100/pk                      | 5182-0717   |
| Label halftray                              | 5989-3890   |
| Wrenches 1/4 - 5/16 inch                    | 8710-0510   |
| Rheotool socket wrench 1/4 inch             | 8710-2391   |
| Hex key 4 mm, 15 cm long, T-handle          | 8710-2392   |
| Hex key 9/64 inch, 15 cm long, T- handle    | 8710-2394   |
| Hex key 2.5 mm, 15 cm long, straight handle | 8710-2412   |
| Finger caps x3 (reorder gives pack of 15)   | 5063-6506   |
| Front door cooled autosampler               | G1329-40301 |
| Air channel adapter                         | G1329-43200 |
| Tray for 15 x 6 ml vials (x2)               | G1313-44513 |
| Union, loop extension                       | 5022-2133   |
| Seat extension capillary (500 µl)           | G1313-87307 |
| Seat extension capillary (1500 µl)          | G1313-87308 |
| Sampler - Column capillary                  | G2260-87300 |

 Table 10
 G2260A - Preparative Autosampler Accessory Kit Contents G2260-68705

# **Optimizing the Stack Configuration**


If your autosampler is part of a system, you can ensure optimum performance by installing the autosampler in the stack in the position shown in Figure 9 on page 37 and Figure 10 on page 38. Figure 11 on page 39 and Figure 12 on page 39 show the configuration recommended for a thermostatted autosampler. These configurations optimize the system flow path, ensuring minimum delay volume.






## **3** Installing the Autosampler

**Optimizing the Stack Configuration** 





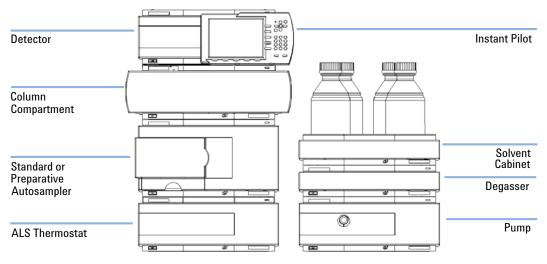



Figure 11 Recommended Stack Configuration for a thermostatted ALS (Front View)

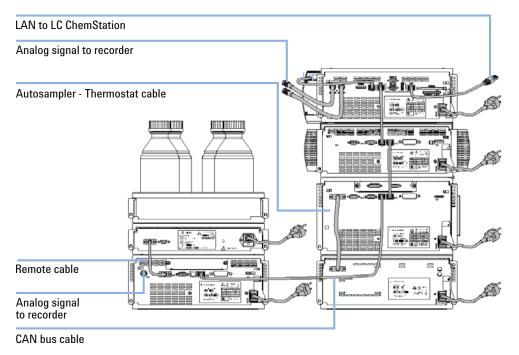



Figure 12 Recommended Stack Configuration for a thermostatted ALS (Rear View)

# Installing the Autosampler

| Parts required | # | Description                                                                    |
|----------------|---|--------------------------------------------------------------------------------|
|                | 1 | Sampler                                                                        |
|                | 1 | Power cord, for the other cables see below and "Cable Overview" on page 218    |
|                | 1 | Control Software (ChemStation, EZChrom, OL, etc.) and/or Control Module G1323B |
| Preparations   | • | Locate bench space<br>Provide power connection<br>Unpack the Sampler           |

## WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Risk of stroke and other personal injury. Repair work at the module can lead to personal injuries, e. g. shock hazard, when the module cover is opened and the instrument is connected to power.

- → Never perform any adjustment, maintenance or repair of the module with the top cover removed and with the power cord plugged in.
- → The security lever at the power input socket prevents that the module cover is taken off when line power is still connected. Never plug the power line back in when cover is removed.

## WARNING

### Personal injury

To avoid personal injury, keep fingers away from the needle area during autosampler operation.

- → Do not bend the safety flap away from its position, or attempt to remove the safety cover (see Figure 13 on page 41).
- → Do not attempt to insert or remove a vial from the gripper when the gripper is positioned below the needle.

## CAUTION

#### "Defective on arrival" problems

If there are signs of damage to the autosampler, please do not attempt to install the autosampler. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- → An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.
- **1** Install the LAN interface board in the sampler (if required), see "LAN Communication Interface Board" on page 248.

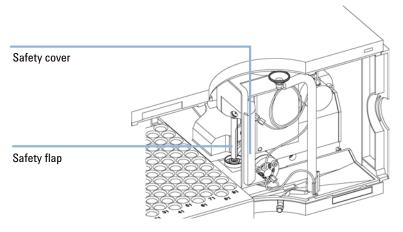



Figure 13 Safety Flap

- **2** Remove the adhesive tape which covers the front door.
- **3** Remove the front door and remove the transport protection foam.
- **4** Place the Autosampler on the bench or in the stack as recommended in "Optimizing the Stack Configuration" on page 37.
- **5** Ensure the power switch at the front of the Autosampler is OFF.
- 6 Connect the power cable to the power connector at the rear of the sampler.
- 7 Connect the CAN cable to the other Agilent 1200 Series modules.
- 8 If an Agilent Chemstation is the controller, connect either
  - The GPIB cable to the detector

**Installing the Autosampler** 

- The LAN connector to the LAN interface
- **9** Connect the APG remote cable (optional) for non Agilent 1200 Series instruments.
- **10** Turn ON power by pushing the button at the lower left hand side of the sampler.

| Vial number output              |     |
|---------------------------------|-----|
| CAN cable<br>to previous module |     |
| Remote                          |     |
| RS232C                          | 3   |
| CAN-bus                         |     |
| Relay contacts                  |     |
| GPIB                            | 210 |

Figure 14 Cable Connections

NOTE

If the front cover is not installed the autosampler is in a not ready condition and operation is inhibited.

## NOTE

The sampler is turned ON when the line power switch is pressed and the green indicator lamp is illuminated. The detector is turned OFF when the line power switch is protruding and the green light is OFF.

# Installing the Thermostatted Autosampler

| Parts required | # Description                                                                                                           |
|----------------|-------------------------------------------------------------------------------------------------------------------------|
|                | 1 Sampler and Thermostat                                                                                                |
|                | 1 Power cord, for the other cables see below and "Cable Overview" on page 218                                           |
|                | 1 Control Software (ChemStation, EZChrom, OL, etc.) and/or Control Module G1323B.                                       |
| Preparations   | <ul> <li>Locate bench space</li> <li>Provide power connection</li> <li>Unpack the Sampler and the Thermostat</li> </ul> |
| WARNING        | Module is partially energized when switched off, as long as the power cord is plugged in.                               |

Risk of stroke and other personal injury. Repair work at the module can lead to personal injuries, e. g. shock hazard, when the module cover is opened and the instrument is connected to power.

- → Never perform any adjustment, maintenance or repair of the module with the top cover removed and with the power cord plugged in.
- → The security lever at the power input socket prevents that the module cover is taken off when line power is still connected. Never plug the power line back in when cover is removed.

### WARNING

### **Damaged electronics**

Disconnecting or reconnecting the autosampler to ALS thermostat cable when the power cords are connected to either of the two modules will damage the electronics of the modules.

→ Make sure the power cords are unplugged before disconnecting or reconnecting the autosampler to ALS thermostat cable.

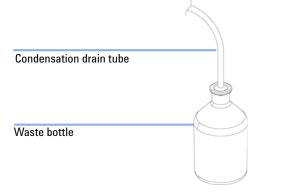
### **3** Installing the Autosampler

Installing the Thermostatted Autosampler

### WARNING

### Personal injury

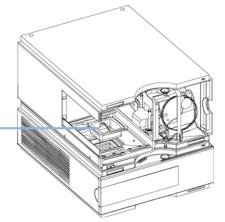
To avoid personal injury, keep fingers away from the needle area during Autosampler operation.


→ Do not attempt to insert or remove a vial or a plate when the needle is positioned.

### WARNING

#### Damage through condensation

If the condensation tube is located in liquid the condensed water cannot flow out of the tube and the outlet is blocked. Any further condensation will then remain in the instrument. This may damage the instruments electronics.


- → Make sure that the condensation tube is always above the liquid level in the vessel.
- **1** Place the Thermostat on the bench.
- **2** Remove the front cover and route the condensation drain tube to the waste.





- **3** Install the LAN interface board in the sampler (if required), see "LAN Communication Interface Board" on page 248
- **4** Remove the adhesive tape which covers the front door.
- **5** Remove the front door and remove the transport protection foam.
- **6** Place the Autosampler on top of the Thermostat. Make sure that the Autosampler is correctly engaged in the Thermostat locks.

7 Place the air channel adapter into the autosampler tray base. Make sure the adapter is fully pressed down. This assures that the cold airstream from the Thermostat is correctly guided to the tray area of the Autosampler.



Air channel adapter

Figure 16 Air channel adapter

- 8 Re-install the tray
- **9** Ensure the power switch on the front of the Autosampler is OFF and the power cables are disconnected.
- **10** Connect the cable between the Autosampler and the Thermostat, see Figure 17 on page 46.
- **11** Connect the power cables to the power connectors.
- **12** Connect the CAN cable to the other Agilent 1200 Series modules.
- 13 If an Agilent ChemStation is the controller, connect either
  - The GPIB cable to the detector
  - The LAN connector to the LAN interface
- **14** Connect the APG remote cable (optional) for non Agilent 1200 Series instruments.
- **15** Turn ON power by pushing the button at the lower left hand side of the sampler.
- **NOTE** The sampler is turned ON when the line power switch is pressed and the green indicator lamp is illuminated. The detector is turned OFF when the line power switch is protruding and the green light is OFF.

## **3** Installing the Autosampler

Installing the Thermostatted Autosampler

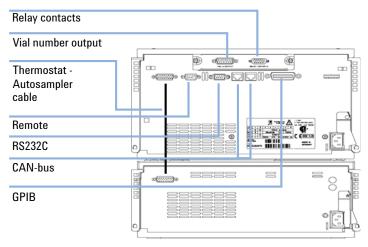



Figure 17 Cable Connections

# **Flow Connections**

| Parts required | # Description                                                                                                                                                                                                                                                           |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 1 Parts from the Accessory kit                                                                                                                                                                                                                                          |
| Preparations   | Sampler is installed in the LC system                                                                                                                                                                                                                                   |
| WARNING        | Toxic and hazardous solvents                                                                                                                                                                                                                                            |
|                | The handling of solvents and reagents can hold health risks.                                                                                                                                                                                                            |
|                | → When opening capillary or tube fittings solvents may leak out.                                                                                                                                                                                                        |
|                | → Please observe appropriate safety procedures (for example, goggles, safety gloves<br>and protective clothing) as described in the material handling and safety data sheet<br>supplied by the solvent vendor, especially when toxic or hazardous solvents are<br>used. |
|                | <b>1</b> Connect the pump outlet capillary to port 1 of the injection valve.                                                                                                                                                                                            |
|                | <b>2</b> Connect column-compartment inlet capillary to port 6 of the injection valve.                                                                                                                                                                                   |
|                | <b>3</b> Connect the corrugated waste tube to the solvent waste from the leak plane.                                                                                                                                                                                    |
|                | <b>4</b> Ensure that the waste tube is positioned inside the leak channel.                                                                                                                                                                                              |
| NOTE           | Do not extend the waste capillary of the autosampler. The siphoning effect might empty the complete seat capillary introducing air into the system.                                                                                                                     |

## **3** Installing the Autosampler

Flow Connections

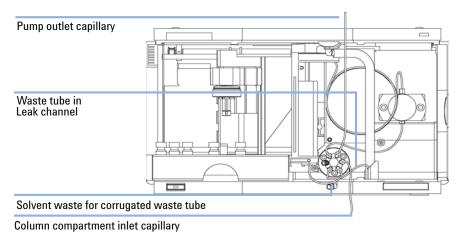


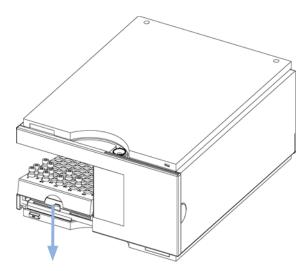

Figure 18 Hydraulic Connections

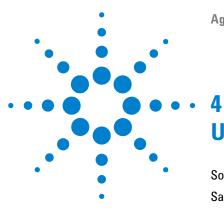
# **Installing the Sample Tray**

- **1** Open the front door.
- **2** Load the sample tray with sample vials as required.
- **3** Slide the sample tray into the autosampler so that the rear of the sample tray is seated firmly against the rear of the sample-tray area.
- **4** Press the front of the sample tray down to secure the tray in the autosampler.

## NOTE

If the thermostatted autosampler tray pops out of position the air channel adapter is not inserted correctly.





Figure 19 Installing the Sample Tray

# **Transporting the Autosampler**

When moving the autosampler around the laboratory, no special precautions are needed. However, if the autosampler needs to be shipped to another location via carrier, ensure:

- The transport assembly is parked (see "Park Arm (Park Gripper)" on page 94);
- The vial tray is secured.

If the autosampler is to be shipped to another location, the transport assembly must be moved to the park position to prevent mechanical damage should the shipping container be subjected to excessive shock. Also, ensure the vial tray is secured in place with suitable packaging, otherwise the tray may become loose and damage internal components.



# Using the Autosampler

Solvent Information 52 Sample Trays 54 Choice of Vials and Caps 56



# **Solvent Information**

Observe the following recommendations on the use of solvents.

### **Flow Cell**

Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.

Prevent any crystallization of buffer solutions. This will lead into a blockage/damage of the flow cell.

If the flow cell is transported while temperatures are below 5  $^{\circ}$ C, it must be assured that the cell is filled with alcohol.

Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add small % of organic solvents (e.g. Acetonitrile or Methanol  $\sim$ 5%).

### **Solvents**

Brown glass ware can avoid growth of algae.

Always filter solvents, small particles can permanently block the capillaries. Avoid the use of the following steel-corrosive solvents:

- Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on).
- High concentrations of inorganic acids like nitric acid, sulfuric acid especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

2CHCl<sub>3</sub> + O<sub>2</sub> -> 2COCl<sub>2</sub> + 2HCl

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1% solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

# **Sample Trays**

## Supported trays for the different Autosampler

| d trays for the Autosam | pler (G1329A/ G2260A)   |
|-------------------------|-------------------------|
|                         | d trays for the Autosam |

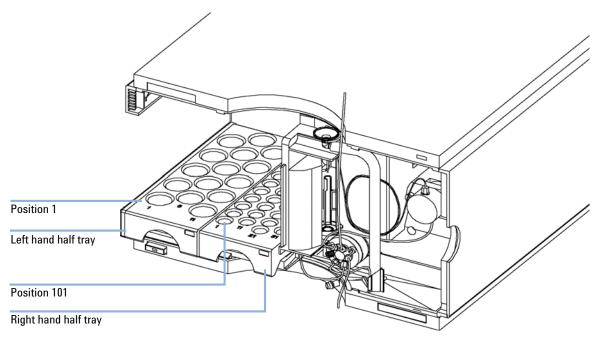
| Description                                                  | Part Number |
|--------------------------------------------------------------|-------------|
| Tray for 100 x 2 ml vials                                    | G1313-44510 |
| Halftray for 15 x 6 ml vials                                 | G1313-44513 |
| Halftray for 40 x 2 ml vials                                 | G1313-44512 |
| Thermostattable Tray for 100 x 2 ml vials                    | G1329-60011 |
| Halftray for 15 x 6 ml vials (for G2260A only <sup>1</sup> ) | G1313-44513 |

 $^{1}$   $\,$  This tray is not recommended when using a thermostat  $\,$ 

## **Half-Tray Combinations**

Half-trays can be installed in any combination enabling both 2 ml-and 6 ml-vials to be used simultaneously.

## **Numbering of Vial Positions**


The standard 100-vial tray has vial positions 1 to 100. However, when using two half-trays, the numbering convention is slightly different. The vial positions of the right-hand half tray begin at position 101 as follows:

Left-hand 40-position tray: 1 - 40

Left-hand 15-position tray: 1–15

Right-hand 40-position tray: 101-140

Right-hand 15-position tray: 101-115



**Figure 20** Numbering of Tray Positions

# **Choice of Vials and Caps**

### **List of Compatible Vials and Caps**

For reliable operation vials used with the Agilent 1200 Series autosampler must not have tapered shoulders or caps that are wider than the body of the vial. The vials in Table 12 on page 56, Table 13 on page 56 and Table 14 on page 57 and caps in Table 15 on page 57, Table 16 on page 57 and Table 17 on page 57 (shown with their Part numbers) have been successfully tested using a minimum of 15,000 injections with the Agilent 1200 Series autosampler.

| Table 12Crimp Top Vials |  |
|-------------------------|--|
|-------------------------|--|

| Description                    | Volume (ml) | 100/Pack  | 1000/Pack | 100/Pack<br>(silanized) |
|--------------------------------|-------------|-----------|-----------|-------------------------|
| Clear glass                    | 2           | 5181-3375 | 5183-4491 |                         |
| Clear glass,<br>write-on spot  | 2           | 5182-0543 | 5183-4492 | 5183-4494               |
| Amber glass,<br>write-on spot  | 2           | 5182-3376 | 5183-4493 | 5183-4495               |
| Polypropylene,<br>wide opening | 1           | 5182-0567 |           | 5183-4496               |
| Polypropylene,<br>wide opening | 0.3         |           | 9301-0978 |                         |

| Description                   | Volume (ml) | 100/Pack  | 1000/Pack | 100/Pack<br>(silanized) |
|-------------------------------|-------------|-----------|-----------|-------------------------|
| Clear glass                   | 2           | 5182-0544 | 5183-4504 | 5183-4507               |
| Clear glass,<br>write-on spot | 2           | 5182-0546 | 5183-4505 | 5183-4508               |
| Amber glass,<br>write-on spot | 2           | 5182-0545 | 5183-4506 | 5183-4509               |

| Table 14 | Screw Top | Vials |
|----------|-----------|-------|
|----------|-----------|-------|

| Description                   | Volume (ml) | 100/Pack  | 1000/Pack | 100/Pack<br>(silanized) |
|-------------------------------|-------------|-----------|-----------|-------------------------|
| Clear glass                   | 2           | 5182-0714 | 5183-2067 | 5183-2070               |
| Clear glass,<br>write-on spot | 2           | 5182-0715 | 5183-2068 | 5183-2071               |
| Amber glass,<br>write-on spot | 2           | 5182-0716 | 5183-2069 | 5183-2072               |

### Table 15Crimp Caps

| Description     | Septa                 | 100/Pack              |
|-----------------|-----------------------|-----------------------|
| Silver aluminum | Clear PTFE/red rubber | 5181-1210             |
| Silver aluminum | Clear PTFE/red rubber | 5183-4498 (1000/Pack) |
| Blue aluminum   | Clear PTFE/red rubber | 5181-1215             |
| Green aluminum  | Clear PTFE/red rubber | 5181-1216             |
| Red aluminum    | Clear PTFE/red rubber | 5181-1217             |

### Table 16Snap Caps

| Description         | Septa                 | 100/Pack  |
|---------------------|-----------------------|-----------|
| Clear polypropylene | Clear PTFE/red rubber | 5182-0550 |
| Blue polypropylene  | Clear PTFE/red rubber | 5182-3458 |
| Green polypropylene | Clear PTFE/red rubber | 5182-3457 |
| Red polypropylene   | Clear PTFE/red rubber | 5182-3459 |

### Table 17 Screw Caps

| Description         | Septa                 | 100/Pack  |
|---------------------|-----------------------|-----------|
| Blue polypropylene  | Clear PTFE/red rubber | 5182-0717 |
| Green polypropylene | Clear PTFE/red rubber | 5182-0718 |

## 4 Using the Autosampler

**Choice of Vials and Caps** 

## Table 17Screw Caps

| Description         | Septa                 | 100/Pack  |
|---------------------|-----------------------|-----------|
| Red polypropylene   | Clear PTFE/red rubber | 5182-0719 |
| Blue polypropylene  | Clear PTFE/silicone   | 5182-0720 |
| Green polypropylene | Clear PTFE/silicone   | 5182-0721 |
| Red polypropylene   | Clear PTFE/silicone   | 5182-0722 |



# **Optimizing Performance**

Optimization for Lowest Carry-over 60 Using the Automated Needle Wash 61 Using an Injector Program 62 General Recommendation to Lowest Carry-over 63 Fast Injection Cycle and Low Delay Volume 64 Overlapped Injection Mode 64 General Recommendations for Fast Injection Cycle Times 65 Precise Injection Volume 66 Draw and Eject Speed 66 Choice of Rotor Seal 68



# **Optimization for Lowest Carry-over**

Several parts of an injection system can contribute to carry-over:

- needle outside
- needle inside
- needle seat
- sample loop
- seat capillary
- · injection valve

The autosampler continuous flow-through design ensures that sample loop, needle inside, seat capillary, and the mainpass of the injection valve is always in the flow line. These parts are continuously flushed during an isocratic and also during a gradient analysis. The residual amount of sample remaining on the outside of the needle after injection may contribute to carry-over in some instances. When using small injection volumes or when injecting samples of low concentration immediately after samples of high concentration, carry-over may become noticeable. Using the automated needle wash enables the carry-over to be minimized and prevents also contamination of the needle seat.

# Using the Automated Needle Wash

The automated needle wash can be programmed either as "injection with needle wash" or the needle wash can be included into the injector program. When the automated needle wash is used, the needle is moved into a wash vial after the sample is drawn. By washing the needle after drawing a sample, the sample is removed from the surface of the needle immediately.

### **Uncapped Wash Vial**

For best results, the wash vial should contain solvent in which the sample components are soluble, and the vial should *not* be capped. If the wash vial is capped, small amounts of sample remain on the surface of the septum, which may be carried on the needle to the next sample.

### **Injector Program with Needle Wash**

The injector program includes the command NEEDLE WASH. When this command is included in the injector program, the needle is lowered once into the specified wash vial before injection.

For example:

1 DRAW 5  $\mu$ l

2 NEEDLE WASH vial 7

3 INJECT

Line 1 draws 5  $\mu$ l from the current sample vial. Line 2 moves the needle to vial 7. Line 3 injects the sample (valve switches to main pass).

# **Using an Injector Program**

The process is based on a program that switches the bypass grove of the injection valve into the flow line for cleaning. This switching event is performed at the end of the equilibration time to ensure that the bypass grove is filled with the start concentration of the mobile phase. Otherwise the separation could be influenced, especially if microbore columns are used.

## For example:

Outside wash of needle in vial 7 before injection

Injector program:

Draw x.x  $(y) \mu l$  from sample

NEEDLE WASH vial 7

Inject

Wait (equilibration time - see text above)

Valve bypass

Wait 0.2 min

Valve mainpass

Valve bypass

Valve mainpass

NOTE

Overlapped injection together with additional injection valve switching is not possible.

# **General Recommendation to Lowest Carry-over**

• For samples where needle outside cannot be cleaned sufficiently with water or alcohol use wash vials with an appropriate solvent. Using an injector program and several wash vials can be used for cleaning.

In case the needle seat has got contaminated and carry-over is significantly higher than expected, the following procedure can be used to clean the needle seat:

- Go to MORE INJECTOR and set needle to home position.
- Pipette an appropriate solvent on to the needle seat. The solvent should be able to dissolve the contamination. If this is not known use 2 or 3 solvents of different polarity. Use several milliliters to clean the seat.
- Clean the needle seat with a tissue and remove all liquid from it.
- RESET the injector.

# **Fast Injection Cycle and Low Delay Volume**

Short injection cycle times for high sample througput is one of the most important requirements in analytical laboratories. In order to shorten cycle times, you can:

- shorten the column length
- use high flow rates
- apply a steep gradient

Having optimized these parameters, further reduction of cycle times can be obtained using the overlapped injection mode.

## **Overlapped Injection Mode**

In this process, as soon as the sample has reached the column, the injection valve is switched back to bypass and the next injection cycle starts but waits with switching to mainpass until the actual run is finished. You gain the sample preparation time when using this process.

Switching the valve into the bypass position reduces the system delay volume, the mobile phase is directed to the column without passing sample loop, needle and needle seat capillary. This can help to have faster cycle times especially if low flow rates have to be used like it is mandatory in narrow bore and micro bore HPLC.

### NOTE

Having the valve in bypass position can increase the carry-over in the system.

The injection cycle times also depend on the injection volume. In identically standard condition, injecting 100  $\mu$ l instead of 1  $\mu$ l, increase the injection time by approximately 8 sec. In this case and if the viscosity of the sample allows it, the draw and eject speed of the injection system has to be increased.

## NOTE

For the last injection of the sequence with overlapped injections it has to be considered that for this run the injection valve is not switched as for the previous runs and consequently the injector delay volume is not bypassed. This means the retention times are prolonged for the last run. Especially at low flow rates this can lead to retention time changes which are too big for the actual calibration table. To overcome this it is recommended to add an additional "blank" injection as last injection to the sequence.

# **General Recommendations for Fast Injection Cycle Times**

As described in this section, the first step to provide short cycle times are optimizing the chromatographic conditions. If this is done the autosampler parameter should be set to:

- Overlapped injection mode
- Increase of draw and eject speed for large injection volumes
- Add at last run a blank, if overlapped injection is used

To reduce the injection time, the detector balance has to be set to OFF.

# **Precise Injection Volume**

### Injection Volumes Less Than 2 µl

When the injection valve switches to the BYPASS position, the mobile phase in the sample loop is depressurized. When the syringe begins drawing sample, the pressureof the mobile phase is decreased further. If the mobile phase is not degassed adequately, small gas bubbles may form in the sample loop during the injection sequence. When using injection volumes < 2  $\mu$ l, these gas bubbles may affect the injection-volume precision. For best injection-volume precision with injection volumes < 2  $\mu$ l, use of the Agilent 1200 Series degasser is recommended to ensure the mobile phase is adequately degassed. Also, using the automated needle wash (see "Optimization for Lowest Carry-over" on page 60) between injections reduces carry-over to a minimum, further improving the injection volume precision.

## **Draw and Eject Speed**

### **Draw Speed**

The speed at which the metering unit draws sample out of the vial may have an influence on the injection volume precision when using viscous samples. If the draw speed is too high, air bubbles may form in the sample plug, affecting precision. The default draw speed is 200  $\mu$ l/min for the autosampler and 1000  $\mu$ l/min for the preparative autosampler. This speed is suitable for the majority of applications, however, when using viscous samples, set the draw speed to lower speed for optimum results. A "DRAW" statement in an injector program also uses the draw speed setting which is configured for the autosampler.

### **Eject Speed**

The default eject speed setting is 200  $\mu$ l/min for the standard autosampler and 1000  $\mu$ l/min for the preparative autosampler. When using large injection volumes, setting the eject speed to a higher value speeds up the injection cycle

by shortening the time the metering unit requires to eject solvent at the beginning of the injection cycle (when the plunger returns to the home position).

An "EJECT" statement in an injector program also uses the eject speed setting which is configured for the autosampler. A faster eject speed shortens the time required to run the injector program. When using viscous samples, a high eject speed should be avoided.

# **Choice of Rotor Seal**

## Vespel<sup>™</sup> Seal (for standard valves only)

The standard seal has sealing material made of Vespel. Vespel is suitable for applications using mobile phases within the pH range of 2.3 to 9.5, which is suitable for the majority of applications. However, for applications using mobile phases with pH below 2.3 or above 9.5, the Vespel seal may degrade faster, leading to reduced seal lifetime.

## Tefzel<sup>™</sup> Seal (for standard valve only)

For mobile phases with pH below 2.3 or above 9.5, or for conditions where the lifetime of the Vespel seal is drastically reduced, a seal made of Tefzel is available (see "Injection-Valve Assembly" on page 210). Tefzel is more resistant than Vespel to extremes of pH, however, is a slightly *softer* material. Under normal conditions, the expected lifetime of the Tefzel seal is shorter than the Vespel seal, however, Tefzel may have the longer lifetime under more extreme mobile phase conditions.

## PEEK Seal (for preparative injection valve only)

The preparative injection valve has a sealing material made of PEEK. This material has high chemical resistance and versatility. It is suitable for application using mobile phases within a pH between 1 and 14.

This seal is also used for the G1329B module.

## NOTE

Strong oxidizing acids such as concentrated nitric and sulfuric acids are not compatible with PEEK.



6

# Troubleshooting and Diagnostics

Agilent Lab Advisor Software 70 Overview of the Sampler's Indicators and Test Functions 71 Status Indicators 72 Power Supply Indicator 73 Instrument Status Indicator 73 Error Messages 74 Maintenance Functions 89 User Interface 90 Change Needle 91 Change Piston 93 Park Arm (Park Gripper) 94 Change Gripper (Change Arm) 96 Tray Alignment 97 Standard Autosampler Step Commands 99 Troubleshooting 101 Troubleshooting Guide for the Sample Transport Assembly 103 Intermittent lock-ups with or without vial in the gripper fingers 104 Jittery (shaky) movement in X and or theta axes and/or when the needle goes through the gripper arm into the vial 106 Poor alignment, seen during vial pickup and vial replacement and/or when the needle hits the gripper arm 108



6 Troubleshooting and Diagnostics Agilent Lab Advisor Software

# Agilent Lab Advisor Software

The Agilent Lab Advisor Software is a standalone product that can be used with or without data system. Agilent Lab Advisor helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor provides diagnostic capabilities for all Agilent 1200 Series HPLC modules. This includes tests and calibrations procedures as well as the different injector steps to perform all the maintenance routines.

Agilent Lab Advisor also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor Software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor help files.

This manual provides lists with the names of Error Messages, Not Ready messages, and other common issues.

# **Overview of the Sampler's Indicators and Test Functions**

### **Status Indicators**

The autosamplers are provided with two status indicators which indicate the operational state (prerun, run, and error states) of the instrument. The status indicators provide a quick visual check of the operation of the autosampler (see "Status Indicators" on page 72).

### **Error Messages**

In the event of an electronic, mechanical or hydraulic failure, the instrument generates an error message in the user interface. For details on error messages and error handling, please refer to the Agilent Lab Monitor & Diagnostic Software.

### **Maintenance Functions**

The maintenance functions position the needle arm, gripper assembly, and metering device for easy access when doing maintenance (see "Maintenance Functions" on page 120).

### **Tray Alignment**

Tray alignment is required after repair of internal components, or after a firmware update. The procedure aligns the gripper arm correctly to ensure the positioning of the gripper arm is correct for all vials (see "Tray Alignment" on page 97).

### **Step Commands**

The step functions provide the possibility to execute each step of the sampling sequence individually. The step functions are used primarily for troubleshooting, and for verification of correct autosampler operation after repair (see "Standard Autosampler Step Commands" on page 99).

6

6 Troubleshooting and Diagnostics Status Indicators

# **Status Indicators**

Two status indicators are located on the front of the autosampler. The lower left indicates the power supply status, the upper right indicates the autosampler status.

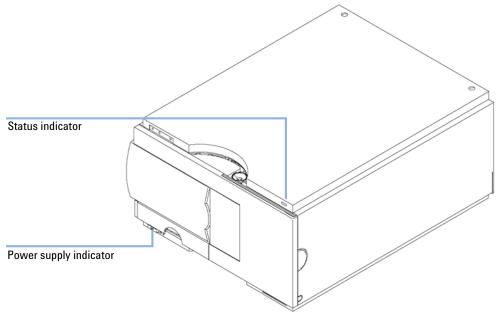



Figure 21 Location of Status Indicators

### **Power Supply Indicator**

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is ON.

### **Instrument Status Indicator**

The instrument status indicator indicates one of four possible instrument conditions:

- When the status indicator is OFF (and power switch light is on), the instrument is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the instrument is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The instrument is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, front cover not installed), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the instrument has detected an internal problem which affects correct operation of the instrument. Usually, an error condition requires attention (for example, leak, defective internal components). An error condition always interrupts the analysis.

6 Troubleshooting and Diagnostics Error Messages

### **Error Messages**

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written to the instrument log book.

This section describes the meaning of autosampler error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

#### Timeout

The timeout threshold was exceeded.

| Probable cause |                                                                                                                                     | Suggested actions                                                                                                    |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| 1              | The analysis was completed successfully,<br>and the timeout function switched off the<br>module as requested.                       | Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.       |  |
| 2              | A not-ready condition was present during a<br>sequence or multiple-injection run for a<br>period longer than the timeout threshold. | Check the logbook for the occurrence and<br>source of a not-ready condition. Restart the<br>analysis where required. |  |

#### Shut-Down

An external instrument has generated a shut-down signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

| Probable cause |                                                                                 | Suggested actions                                                                                                                 |
|----------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1              | Leak detected in another module with a CAN connection to the system.            | Fix the leak in the external instrument before restarting the module.                                                             |
| 2              | Leak detected in an external instrument with a remote connection to the system. | Fix the leak in the external instrument before restarting the module.                                                             |
| 3              | Shut-down in an external instrument with a remote connection to the system.     | Check external instruments for a shut-down condition.                                                                             |
| 4              | The degasser failed to generate sufficient vacuum for solvent degassing.        | Check the vacuum degasser for an error condition. Refer to the <i>Service Manual</i> for the Agilent 1200 Series vacuum degasser. |

#### Remote Timeout

A not-ready condition is still present on the remote input.

When an analysis is started, the system expects all not-ready conditions (e.g. a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

| Probable cause |                                                                             | Suggested actions                                                                                                   |
|----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1              | Not-ready condition in one of the instruments connected to the remote line. | Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis. |
| 2              | Defective remote cable.                                                     | Exchange the remote cable.                                                                                          |
| 3              | Defective components in the instrument showing the not-ready condition.     | Check the instrument for defects (refer to the instrument's reference documentation).                               |

#### Synchronization Lost

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

| Probable cause |                                             | Suggested actions                                                                                                  |  |
|----------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| 1              | CAN cable disconnected.                     | Ensure all the CAN cables are connected correctly.                                                                 |  |
|                |                                             | Ensure all CAN cables are installed correctly                                                                      |  |
| 2              | Defective CAN cable.                        | Exchange the CAN cable.                                                                                            |  |
| 3              | Defective main board in a different module. | Switch off the system. Restart the system, and determine which module or modules are not recognized by the system. |  |

#### Leak

. . . .

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

| Probable cause                              | Suggested actions                                                                                      |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1 Loose fittings.                           | Ensure all fittings are tight.                                                                         |
| <b>2</b> Broken capillary.                  | Exchange defective capillaries.                                                                        |
| <b>3</b> Leaking rotor seal or needle seat. | Exchange the rotor seal or seat capillary.                                                             |
| <b>4</b> Defective metering seal.           | • Exchange the metering seal.                                                                          |
|                                             | <ul> <li>Make sure the leak sensor is thoroughly dry<br/>before restarting the autosampler.</li> </ul> |

#### Leak Sensor Open

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

| Probable cause |                                              | Suggested actions                              |
|----------------|----------------------------------------------|------------------------------------------------|
| 1              | Leak sensor not connected to the main board. | Ensure the leak sensor is connected correctly. |
| 2              | Defective leak sensor.                       | Exchange the leak sensor.                      |

### Leak Sensor Short

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

| Probable cause |              | Suggested actions         |
|----------------|--------------|---------------------------|
| 1 Defective    | leak sensor. | Exchange the leak sensor. |

#### Compensation Sensor Open

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

| Probable cause |                       | Suggested actions        |
|----------------|-----------------------|--------------------------|
| 1              | Defective main board. | Exchange the main board. |

#### Compensation Sensor Short

The ambient-compensation sensor (NTC) on the main board in the module has failed (short circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

#### **Probable cause**

**Suggested actions** 

**1** Defective main board.

Exchange the main board.

### Fan Failed

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below 2 revolutions/second for longer than 5 seconds, the error message is generated.

| Probable cause |                         | Suggested actions                      |
|----------------|-------------------------|----------------------------------------|
| 1              | Fan cable disconnected. | Ensure the fan is connected correctly. |
| 2              | Defective fan.          | Exchange fan.                          |
| 3              | Defective main board.   | Exchange the main board.               |

#### Open Cover

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed, the fan is switched off, and the error message is generated.

| Pr | obable cause                               | Suggested actions        |
|----|--------------------------------------------|--------------------------|
| 1  | The top foam was removed during operation. | Reinstall the top foam.  |
| 2  | Foam not activating the sensor.            | Replace the top foam.    |
| 3  | Sensor defective.                          | Exchange the main board. |

### Restart Without Cover

The module was restarted with the top cover and foam open.

The sensor on the main board detects when the top foam is in place. If the module is restarted with the foam removed, the module switches off within 30 s, and the error message is generated.

| Probable cause | Suggested actions |
|----------------|-------------------|
|                |                   |

1 The module started with the top cover and foam. Reinstall the top cover and foam. foam removed.

#### Arm Movement Failed

The transport assembly was unable to complete a movement in one of the axes.

The processor defines a certain time window for the successful completion of a movement in any particular axis. The movement and position of the transport assembly is monitored by the encoders on the stepper motors. If the processor does not receive the correct position information from the encoders within the time window, the error message is generated.

See figure Figure 7 on page 16 for axes identification.

• Arm Movement 0 Failed: X-axis.

Arm Movement 1 Failed: Z-axis.

Arm Movement 2 Failed: Theta (gripper rotation).

Arm Movement 3 Failed: Gripper (gripper fingers open/close).

| Probable cause |                                                 | Suggested actions                                       |
|----------------|-------------------------------------------------|---------------------------------------------------------|
| 1              | Mechanical obstruction.                         | Ensure unobstructed movement of the transport assembly. |
| 2              | High friction in transport assembly.            | Exchange the sample transport assembly.                 |
| 3              | Defective motor assembly.                       | Exchange the sample transport assembly.                 |
| 4              | Defective sample transport assembly flex board. | Exchange the sample transport assembly.                 |
| 5              | Defective main board.                           | Exchange the main board.                                |

### Valve to Bypass Failed

The injection valve failed to switch to the bypass position.

The switching of the injection valve is monitored by two microswitches on the valve assembly. The switches detect the successful completion of the valve movement. If the valve fails to reach the bypass position, or if the microswitch does not close, the error message is generated.

| Probable cause |                            | Suggested actions             |
|----------------|----------------------------|-------------------------------|
| 1              | Defective injection valve. | Exchange the injection valve. |
| 2              | Defective ASM board.       | Exchange the ASM board.       |

### Valve to Mainpass Failed

The injection valve failed to switch to the mainpass position.

The switching of the injection valve is monitored by two microswitches on the valve assembly. The switches detect the successful completion of the valve movement. If the valve fails to reach the mainpass position, or if the microswitch does not close, the error message is generated.

| Probable cause |                            | Suggested actions             |
|----------------|----------------------------|-------------------------------|
| 1              | Defective injection valve. | Exchange the injection valve. |
| 2              | Defective ASM board.       | Exchange the ASM board.       |

#### Needle Up Failed

The needle arm failed to move successfully from the seat or out of the vial to the upper position.

The upper position of the needle arm is monitored by a position sensor on the sampling unit flex board. The sensor detects the successful completion of the needle movement to the upper position. If the needle fails to reach the end point, or if the sensor fails to recognize the needle arm movement, the error message is generated.

| Probable cause                               | Suggested actions                                        |
|----------------------------------------------|----------------------------------------------------------|
| <b>1</b> Defective or dirty position sensor. | Exchange the sampling unit flex board.                   |
| 2 Defective motor.                           | Exchange the needle drive motor.                         |
| <b>3</b> Sticking spindle assembly.          | Exchange the spindle assembly or sampling unit assembly. |
| 4 Defective ASM board.                       | Exchange ASM board.                                      |

#### Needle Down Failed

The needle arm failed to move down into the needle seat.

The lower position of the needle arm is monitored by a position sensor on the sampling unit flex board. The sensor detects the successful completion of the needle movement to the needle seat position. If the needle fails to reach the end point, or if the sensor fails to recognize the needle arm movement, the error message is generated.

| Probable cause |                                                                | Suggested actions                                                |
|----------------|----------------------------------------------------------------|------------------------------------------------------------------|
| 1              | Needle installed incorrectly, or wrong needle type (too long). | Ensure the correct needle type is used, and installed correctly. |
| 2              | Defective or dirty position sensor.                            | Exchange the sampling unit flex board.                           |
| 3              | Defective motor.                                               | Exchange the needle drive motor.                                 |

| Probable cause |                            | Suggested actions                                        |
|----------------|----------------------------|----------------------------------------------------------|
| 4              | Sticking spindle assembly. | Exchange the spindle assembly or sampling unit assembly. |
| 5              | Defective ASM board.       | Exchange the ASM board.                                  |

### Missing Vial

No vial was found in the position defined in the method or sequence.

When the gripper arm picks a vial out of the sample tray, the processor monitors the gripper motor encoder. If a vial is present, the closing of the gripper fingers is limited by the vial. However, if no vial is present, the gripper fingers close too far. This is sensed by the processor (encoder position), causing the error message to be generated.

| Probable cause |                                                                 | Suggested actions                                                                            |
|----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1              | No vial in the position defined in the method or sequence.      | Install the sample vial in the correct position, or edit the method or sequence accordingly. |
| 2              | Incorrect gripper alignment.                                    | Align gripper.                                                                               |
| 3              | Defective gripper assembly (defective gripper fingers or belt). | Exchange the gripper assembly.                                                               |
| 4              | Defective transport assembly flex board.                        | Exchange the transport assembly.                                                             |

### Initialization Failed

The autosampler failed to complete initialization correctly.

The autosampler initialization procedure moves the needle arm and transport assembly to their home positions in a predefined sequence. During initialization, the processor monitors the position sensors and motor encoders to check for correct movement. If one or more of the movements is not successful, or is not detected, the error message is generated.

| Probable cause |                                          | Suggested actions                                       |  |
|----------------|------------------------------------------|---------------------------------------------------------|--|
| 1              | Mechanical obstruction.                  | Ensure unobstructed movement of the transport assembly. |  |
| 2              | Defective sampling unit flex board.      | Exchange the transport assembly.                        |  |
| 3              | Defective transport assembly flex board. | Exchange the transport assembly.                        |  |
| 4              | Defective sampling unit motor.           | Exchange the defective sampling unit motor.             |  |
| 5              | Defective ASM board.                     | Exchange the ASM board.                                 |  |

### Metering Home Failed

The metering plunger has failed to move back to the home position.

The home position sensor on the sampling unit flex board monitors the home position of the plunger. If the plunger fails to move to the home position, or if the sensor fails to recognize the plunger position, the error message is generated.

| Probable cause |                                 | Suggested actions                       |
|----------------|---------------------------------|-----------------------------------------|
| 1              | Dirty or defective sensor.      | Exchange the sampling unit flex board.  |
| 2              | Broken plunger.                 | Exchange the metering plunger and seal. |
| 3              | Defective metering-drive motor. | Exchange the metering-drive motor.      |
| 4              | Defective ASM board.            | Exchange the ASM board.                 |

#### Motor Temperature

One of the motors of the transport assembly has drawn excessive current, causing the motor to become too hot. The processor has switched OFF the motor to prevent damage to the motor.

See figure Figure 7 on page 16 for motor identification.

• Motor 0 temperature: X-axis motor.

Motor 1 temperature: Z-axis motor.

Motor 2 temperature: Theta (gripper rotation) motor.

Motor 3 temperature: Gripper motor (motor for gripper fingers).

The processor monitors the current drawn by each motor and the time the motor is drawing current. The current drawn by the motors is dependent on the load on each motor (friction, mass of components etc.). If the current drawn is too high, or the time the motor draws current is too long, the error message is generated.

| Probable cause |                                          | Suggested actions                                                                                         |
|----------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1              | Mechanical obstruction.                  | Ensure unobstructed movement of the transport assembly.                                                   |
| 2              | High friction in the transport assembly. | Exchange the transport assembly.                                                                          |
| 3              | Motor belt tension too high.             | Switch OFF the autosampler at the power<br>switch. Wait at least 10 minutes before<br>switching on again. |
| 4              | Defective motor.                         | Exchange the transport assembly.                                                                          |
| 5              | Defective transport assembly flex board. | Exchange the transport assembly.                                                                          |

### Initialization with Vial

The autosampler attempted to initialize with a vial still in the gripper.

During initialization, the autosampler checks correct operation of the gripper by closing and opening the gripper fingers while monitoring the motor encoder. If a vial is still in the gripper when initialization is started, the gripper fingers cannot close causing the error message to be generated.

| Probable cause |                        | Suggested actions                                                                                      |
|----------------|------------------------|--------------------------------------------------------------------------------------------------------|
| 1              | Vial still in gripper. | Remove the vial using the "Release Vial" function in the user interface. Reinitialize the autosampler. |

### Safety Flap Missing

The safety flap was not detected.

Before the needle moves down into the needle seat to inject sample, the safety flap locks into position. Next, and the gripper checks the safety flap by trying to move the safety flap away from the needle. If the gripper is able to move beyond the safety flap position (safety flap not in position), the error message is generated.

| Probable cause |                                | Suggested actions         |
|----------------|--------------------------------|---------------------------|
| 1              | Safety flap missing or broken. | Exchange the safety flap. |

### Vial in Gripper

The gripper arm attempted to move with a vial still in the gripper.

During specific stages of the sampling sequence, no vial should be held by the gripper. The autosampler checks if a sample vial is stuck in the gripper by closing and opening the gripper fingers while monitoring the motor encoder. If the gripper fingers are unable to close, the error message is generated.

| Probable cause           | Suggested actions                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| 1 Vial still in gripper. | Remove the vial using the "Release Vial"<br>function in the user interface. Reinitialize the<br>autosampler. |

### Missing Wash Vial

The wash vial programmed in the method was not found.

When the gripper arm picks a vial out of the sample tray, the processor monitors the gripper motor encoder. If a vial is present, the closing of the gripper fingers is limited by the vial. However, if no vial is present, the gripper fingers close too far. This is sensed by the processor (encoder position), causing the error message to be generated.

| Pr | obable cause                                        | Suggested actions                                                              |
|----|-----------------------------------------------------|--------------------------------------------------------------------------------|
| 1  | No wash vial in the position defined in the method. | Install the wash vial in the correct position, or edit the method accordingly. |

### Invalid Vial Position

The vial position defined in the method or sequence does not exist.

The reflection sensors on the transport assembly flex board are used to check automatically which sample trays are installed (coding on tray). If the vial position does not exist in the current sample tray configuration, the error message is generated.

| Probable cause |                                                                                            | Suggested actions                                                                                 |  |
|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| 1              | Incorrect tray or trays installed.                                                         | Install the correct trays, or edit the method or sequence accordingly.                            |  |
| 2              | Incorrect vial positions defined in the method or sequence.                                | Exchange the transport assembly.                                                                  |  |
| 3              | Tray recognition defective (dirty sample tray or defective transport assembly flex board). | Ensure the coding surfaces of the sample tray are clean (located at the rear of the sample tray). |  |

### **Maintenance Functions**

Certain maintenance procedures require the needle arm, metering device, and gripper assembly to be moved to specific positions to enable easy access to components. The maintenance functions move these assemblies into the appropriate maintenance position. In the ChemStation the ALS maintenance positions can be selected from the Maintenance menu in the Diagnosis display. In the Control Module the functions can be selected in the Test screens of the autosampler. 6 Troubleshooting and Diagnostics Maintenance Functions

### **User Interface**

The functions for the ChemStation and Control Module (different names for functions in the Control Module are shown in brackets) are:

### **Change Needle:**

moves the safety flap away from the needle, and positions the needle arm for easy access to the needle and needle seat.

### **Change Piston:**

relieves the tension on the metering spring (draws the piston to the outer position), enabling easy disassembly of the metering head assembly).

### Park Arm (Park Gripper):

secures the gripper arm to the park position behind the sampling unit. ready for transport or shipping of the autosampler.

### Home:

moves the tray arm to its home position for better access and exchange of the trays.

### **Change Gripper:**

The change gripper function moves the gripper to the front of the autosampler enabling easy access to the gripper release mechanism.

### **Change Needle**

### WARNING

For needle exchange, the needle arm moves down automatically when the front cover is removed.

Risk of personal injury due to moving needle.

Keep fingers away from the needle area during needle movement.

The change-needle/seat function moves the safety flap out of position, and positions the needle for easy exchange and alignment of the needle and needle seat.

### **User Interface**

The commands for the ChemStation and Control Module (different names for the commands in the Control Module are shown in brackets) are:

NOTE

The autosampler front cover must be in place when "Start" and "End" are selected.

### Start (Change)

Moves the safety flap away from the needle, and positions the needle approximately 15 mm above the needle seat.

### Needle Up (Up Arrow)

Press function key couple of times to move the needle arm up in 2 mm steps.

### Needle Down (Down Arrow)

Press function key couple of times to move the needle arm down in 2 mm steps. The lowest position ("end position") is used to align the needle at the correct position in the needle seat.

### End (Done)

Completes the procedure by moving the gripper arm to the home position, and releasing the safety flap.

### **Using the Change Needle Function**

- **1** Ensure the front cover is installed.
- **2** Select "**Start**" ("**Change**") to move the needle arm to the maintenance position.
- **3** Remove the front cover.

## **NOTE** Do not remove the front cover until the needle arm is in its maintenance position. Removing the cover while the needle arm is activated may lock up the system.

- **4** Exchange the needle or needle seat (see "Needle-Seat Assembly" on page 125 and "Needle Assembly" on page 122).
- **5** Replace the front cover.
- 6 Select "End" ("Done") to complete the procedure.

### **Change Piston**

The change-piston function draws the piston away from the home position, relieving the tension on the spring. In this position, the analytical head assembly can be removed and reinstalled easily after maintenance.

### **User Interface**

The commands for the ChemStation and Control Module (different names for commands in the Control Module are shown in brackets) are:

### Start (Change)

Draws the piston away from the home position, relieving the tension on the spring.

### End (Done)

Repositions the plunger at the home position.

### **Using the Change Seal Function**

- 1 Select "Start" ("Change") to move the piston to the maintenance position.
- 2 Exchange the metering seal (see "Gripper Arm" on page 138).
- **3** Select **"End**" (**"Done**") to move the piston back to the home position.

### Park Arm (Park Gripper)

### **User Interface**

In the ChemStation the Park Arm command is part of the ALS maintenance positions that can be selected from the Maintenance menu in the Diagnosis display. In the Control Module the Park Gripper command is located in the Control display of the autosampler.

The commands for the ChemStation and Control Module (different names for commands in the Control Module are shown in brackets) are:

### Park Arm (Park Gripper)

moves the gripper arm to the park position.

### Home

moves the gripper arm out of the park position to the home position.

### To prepare autosampler for transportation

The park arm function moves the gripper and transport slider to the home position behind the sampling unit, and lowers the gripper arm into the park position where the transport assembly is secured against a mechanical stop. The autosampler can be switched OFF after parking the arm.

#### When

Before transporting or shipping the autosampler.

### CAUTION

Unsecured Transportation of Autosampler Unsecured transportation of the autosampler may result in mechanical damage to the

- gripper and transport slider.
- → Always secure the arm in the park position.

### NOTE

Before parking the gripper arm, ensure there is no vial in the gripper. Use the "**Release Gripper**" function to remove the vial.

- 1 Select "Park Arm" ("Park Gripper").
- **2** When the arm is in the park position, the autosampler is ready for shipment, and can be switched OFF.

6 Troubleshooting and Diagnostics Maintenance Functions

### **Change Gripper (Change Arm)**

The change gripper function moves the gripper to the front of the autosampler enabling easy access to the gripper release mechanism.

### **User Interface**

The commands for the ChemStation and Control Module (different names for commands in the Control Module are shown in brackets) are:

### Start (Change)

Moves the transport assembly and gripper arm to the position required to change the gripper arm.

### End (Done)

Repositions the transport assembly and gripper arm to the home position.

### **Using the Change Seal Function**

- **1** Select "**Start**" ("**Change**") to move the gripper arm to the maintenance position.
- 2 Exchange the gripper arm (see "Gripper Arm" on page 138).
- **3** Select "End" ("Done") to move the gripper arm to the home position.

### **Tray Alignment**

Tray alignment is required to compensate for small deviations in positioning of the gripper which may occur after disassembling the module for repair.

The tray alignment procedure uses several tray positions as reference points. Because the tray is a rectangle, a two-point alignment is sufficient to corrects all other vial positions within the tray. On completion of the procedure, the corrected gripper positions are stored in the instrument firmware.

This procedure is supported as indicated in the table below. For Instant Pilot and Agilent Lab Monitor and Diagnostic Software (LMD) see the online help for detailed instructions.

 Table 18
 Supported Controllers and Software Products

| Handheld<br>Controller<br>G1323B | Instant Pilot | LMD            |
|----------------------------------|---------------|----------------|
| Firmware B.02.02                 | Firmware Rev. | LMD A.02.01 or |
| or higher                        | B.02.02       | higher         |

For the Handheld Controller please follow the instructions below.

### CAUTION

If this procedure is not caried out properly, the autosampler will no longer work unless switched back to operation by an enforced cold start.

Risk of data loss due to enforced cold start

→ Carefully follow the instructions below.

### NOTE

The screen with the alignment dialog box can be found under the menus **Views > System** > **Tests > Autosampler.**The alignment procedure must be done with the standard 100-position vial tray installed.

In the Control Module the "Align Tray" function is located in the Control display of the autosampler. Carry out the following steps:

- **1** Set alignment to factory default:
  - Go to Align > Tray and press Default.

### 6 Troubleshooting and Diagnostics Maintenance Functions

- Go to Align > Transport and press Default.
- Wait while the Autosampler performs a reset and go back to Align > Transport.
- 2 Put capped vials into positions #15 and #95 of the 100-vial tray.
- **3** Move the gripper arm to position of vial #15. Use **Enter** to hit **Goto Vial**.
- 4 Use Arm down(F2) to move the fingers as close as possible to the top of the vial, without the gripper fingers touching the vial.
- **5** Use the Up and Down arrows for Theta correction (rotational movement).
- **6** Use the Left and Right arrows for X-position correction (horizontal movement).
- 7 Open the gripper (F4) and move it further down for about 5 mm in such a way that vial cap and rubber of gripper fingers have the same height.
- 8 Visually re evaluate if the vial is in the center of the gripper fingers and correct X- and Theta position accordingly.
- 9 Press Enter to hit Next Vial; enter
   vial #95
   and press Goto Vial.
- **10** Repeat steps 4 to 8 to align the gripper at position #95.

To leave the alignment screen without changes use the Esc key.

- **11** Press **Average** (**F8**) to balance the alignment.
- 12 Press Done (F6) to store the alignment permanently in non-volatile memory and to reset the module.
- **13** To check the result go back to the alignment dialog box, move to vial position #15 and #95 to see if the alignment is acceptable.

### NOTE

### NOTE

The result can be a compromise e.g. if the X position at #15 and #95 are off to the same side, then it is OK. However, if at both positions the correction still should be in one direction or, if the failure in one position is larger than the other, you must restart the alignment procedure with step 3. The same goes for the Theta correction.

### **Standard Autosampler Step Commands**

Each movement of the sampling sequence can be done under manual control. This is useful during troubleshooting, where close observation of each of the sampling steps is required to confirm a specific failure mode or verify successful completion of a repair.

Each injector step command actually consists of a series of individual commands that move the autosampler components to predefined positions, enabling the specific step to be done.

| Step               | Action                                              | Comments                                                                                                                                                                                                                                                            |
|--------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Valve Bypass       | Switches injection valve to the bypass position.    |                                                                                                                                                                                                                                                                     |
| Plunger Home       | Moves the plunger to the home position.             |                                                                                                                                                                                                                                                                     |
| Needle Up          | Lifts the needle arm to the upper position.         | Command also switches the valve to bypass if it is not already in that position.                                                                                                                                                                                    |
| Vial to Seat       | Moves the selected vial to the seat position.       | Command also lifts the needle to the upper position.                                                                                                                                                                                                                |
| Needle into Sample | Lowers the needle into the sample.                  | Command also positions the vial at the seat, and lifts the needle to the upper position.                                                                                                                                                                            |
| Draw               | Metering device draws the defined injection volume. | Command also positions the<br>vial at the seat, lifts the<br>needle, and lowers the needle<br>into vial. Command can be<br>done more than once<br>(maximum draw volume of<br>100µl cannot be exceeded).<br>Use <b>Plunger Home</b> to reset the<br>metering device. |

|  | Table 19 | Injector Step | Commands |
|--|----------|---------------|----------|
|--|----------|---------------|----------|

### **6** Troubleshooting and Diagnostics

**Standard Autosampler Step Commands** 

| Step             | Action                                                 | Comments                                                                         |
|------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|
| Needle Up        | Lifts the needle out of the vial.                      | Command also switches the valve to bypass if it is not already in that position. |
| Vial to Tray     | Returns the selected vial to the tray position.        | Command also lifts the needle to the upper position.                             |
| Needle into Seat | Lowers the needle arm into the seat.                   | Command also returns the vial to the tray position.                              |
| Valve Mainpass   | Switches the injection valve to the mainpass position. |                                                                                  |
| Reset            | Resets the injector.                                   |                                                                                  |

### Table 19 Injector Step Commands

### Troubleshooting

If the autosampler is unable to perform a specific step due to a hardware failure, an error message is generated. You can use the injector steps to do the injection sequence, while observing how the instrument responds. Table 20 on page 101 summarizes the injector steps, and lists the associated error messages and probable causes of step failures.

| Step Function | Probable Failure Modes                                     |
|---------------|------------------------------------------------------------|
| Bypass        | Valve already in bypass.                                   |
|               | Valve not connected.                                       |
|               | Defective injection valve.                                 |
| Plunger Home  | Defective or dirty sensor on the sampling-unit flex board. |
|               | Defective metering-drive motor.                            |
| Needle Up     | Needle already in the upper position.                      |
|               | Defective or dirty sensor on the sampling-unit flex board. |
|               | Sticking needle-arm assembly.                              |
|               | Defective needle-drive motor.                              |
| Vial to Seat  | No vial in selected position.                              |
|               | Vial already in seat position.                             |
|               | Defective transport assembly motors.                       |
|               | Sticking transport assembly.                               |
|               | Defective gripper assembly.                                |
|               | Gripper not aligned (see "Tray Alignment" on page 97).     |
| Draw          | Sum of all draw volumes exceeds 100µl.                     |
|               | Defective metering-drive motor.                            |
| Needle Up     | Needle already in the upper position.                      |
|               | Needle already in the upper position.                      |
|               | Defective or dirty sensor on the sampling-unit flex board. |
|               | Sticking needle-arm assembly.                              |
|               | Defective needle-drive motor.                              |

Table 20 Step Failures

### **6** Troubleshooting and Diagnostics

Troubleshooting

### Table 20Step Failures

| Step Function   | Probable Failure Modes                                     |
|-----------------|------------------------------------------------------------|
| /ial to Tray    | Defective transport assembly motors.                       |
|                 | Sticking transport assembly.                               |
|                 | Defective gripper assembly.                                |
|                 | Gripper not aligned (see "Tray Alignment" on page 97).     |
| edle Down       | Needle already in the lower position.                      |
|                 | Defective or dirty sensor on the sampling-unit flex board. |
|                 | Sticking needle-arm assembly.                              |
|                 | Defective needle-drive motor.                              |
| npass           | Valve already in mainpass.                                 |
|                 | Valve not connected.                                       |
|                 | Defective injection valve.                                 |
| dle Up/Mainpass | Blockage in the sample loop or needle (no solvent flow).   |
|                 | Needle already in the upper position.                      |
|                 | Defective or dirty sensor on the sampling-unit flex board. |
|                 | Sticking needle-arm assembly.                              |
|                 | Defective needle-drive motor.Valve already in mainpass.    |
|                 | Valve not connected.                                       |
|                 | Defective injection valve.                                 |

### **Troubleshooting Guide for the Sample Transport Assembly**

This troubleshooting guide is meant to help you diagnose and repair autosampler problems.

In general, autosampler problems can be divided into three categories.

1 Intermittent lock-ups with or without vial in the gripper fingers with error messages

Many times the sampler is being used very heavily.

- motor overtemp (0 or 1 or 2 or 3)
- movement failed (0 or 1 or 2 or 3)
- missing vial
- **2** Jittery (shaky) movement in X and/or theta axes and/or when the needle goes through the gripper arm into the vial with error messages
  - motor overtemp (0 or 2)
  - movement failed (0 or 2)
- **3** Poor alignment, seen during vial pickup and vial replacement and/or when the needle hits the gripper arm with error messages
  - motor overtemp (0 or 2 or 3)
  - movement failed (0 or 2 or 3)
  - missing vial

NOTE

Motor 0=X; 1=Z; 2=Theta; 3=Gripper.

NOTE

**Troubleshooting Guide for the Sample Transport Assembly** 

### Intermittent lock-ups with or without vial in the gripper fingers

With error messages

- motor overtemp (0 or 1 or 2 or 3)
- movement failed (0 or 1 or 2 or 3)
- missing vial

When a motor over temperature message has occurred, the sampler must be turned OFF for about 10 minutes to allow the motor to cool down.

- Check the firmware and update to the latest revision if necessary.
   Since firmware revision A.03.61 (resident A03.60) most "movement failed", "motor over temp", "initialization failed (X-axis)" errors are solved.
- **2** Check the vials and the caps.

For reliable operation, vials used with the Agilent 1200 Series Autosampler must not have tapered shoulders or caps that are wider than the body of the vial. For more details see the *service note G1313-017*.

**3** Very heavy usage - use a macro.

A pre-sequence macro, **QMBUVHW\_PDF** will automatically reset the sampler at the start of a sequence (ChemStation).

4 Check if the "INJECT" line is used in the "Injector Program".

Remove this line from the program. In this mode the system does not need this command to do the injection. A firmware revision (>3.81) will address this problem. For more details see the *service note G1313-018*.

**5** Reset the sampler alignment to default value.

Reset tray alignment, and transport alignment is possible with the Control Module and the ChemStation. To reset the transport alignment with the ChemStation, enter following command in the command line. Print sendmodule\$(lals, "tray:alig 0.00,0.00")

**6** Check the tension of the belts.

For this use the Torque2.mac and measure the torque for each axis.

### Troubleshooting and Diagnostics 6

**Troubleshooting Guide for the Sample Transport Assembly** 

| Typical ranges | Theta (both) 30-50        |
|----------------|---------------------------|
|                | X-axis (both) 50-90       |
|                | Z-axis (both) 90-130      |
|                | Gripper open 30-65        |
|                | Gripper closed maximum 30 |

#### Table 21

### NOTE

If the Gripper open/closed torque is not in the range, proceed with STEP 7. If the theta or X torque is not in the range, proceed with STEP 8 (if you think you can adjust the torque), otherwise proceed with STEP 9.

- 7 Exchange the gripper arm assembly (part number G1313-60010).
- **8** Adjust the belt tension.
  - If the measured torque value is too low, the belt needs to be tightened.
  - If the measured torque value is too high, the belt needs to be loosened.

For this, slide the motor (X or theta) on the holder bracket in the appropriate direction and test the tension with the **torque2** macro. Repeat this steps until the values are in the appropriate torque range.

**9** Exchange the sample transport assembly (G1329-60009).

**10** Exchange the main board (part number G1329-69520).

**Troubleshooting Guide for the Sample Transport Assembly** 

# Jittery (shaky) movement in X and or theta axes and/or when the needle goes through the gripper arm into the vial

With Error messages

- motor overtemp (0 or 2)
- movement failed (0 or 2)

# **NOTE** When a motor over temperature message has occurred, the sampler must be turned OFF for about 10 minutes to allow the motor to cool down.

**1** Check the firmware and update to the latest revision if necessary.

Since firmware revision A.03.61 (resident A03.60) most of following errors "movement failed", "motor over temp" and "initialization failed (X-axis)" are solved.

**2** Check the cleanliness of the transport rods (X-axis) and clean them.

NOTE

DO NOT lubricate the transport rod.

**3** Lubricate the X-gear.

Friction can result in the belt slipping on the gear so that the position of the belt teeth towards the gear changes.

To avoid this, apply some grease from the sample transport repair kit to the X-motor-gear.

**NOTE** Do not use other grease as the one in the kit and carefully follow the instruction from the technical note.

- Troubleshooting Guide for the Sample Transport Assembly
- **4** Check the tension of the belts.

For this use the Macro2.mac and measure the torque for theta and X-axis.

#### Table 22

| Typical ranges | Theta (both) 30-50  |
|----------------|---------------------|
|                | X-axis (both) 50-90 |

- If the theta or X torque is not in the range, proceed with STEP 5 (if you think you can adjust the torque). Otherwise proceed with STEP 7.
- **5** Adjust the belts tension.
  - If the measured torque value is too low, the belt needs to be tightened.
  - If the measured torque value is too high, the belt needs to be loosened.

For this, slide the motor (X or theta) on the holder bracket in the appropriate direction and test the tension with the **Torque2.mac** macro. Repeat this steps until the values are in the appropriate torque range.

6 Reset the sampler alignments to default value.

Reset tray alignment, and transport alignment is possible with the Control Module and the Chemstation. To reset the transport alignment with the Chemstation enter following command in the command line: **Print sendmodule\$(lals, "tray:alig 0.00,0.00")** 

- 7 Exchange the sample transport assembly (part number G1329-60009).
- 8 Exchange the main board (part number G1329-69520).

**Troubleshooting Guide for the Sample Transport Assembly** 

### Poor alignment, seen during vial pickup and vial replacement and/or when the needle hits the gripper arm

With Error messages

- motor overtemp (0 or 2 or 3)
- movement failed (0 or 2 or 3)

**NOTE** When a motor over temperature message has occurred, the sampler must be turned OFF for about 10 minutes to allow the motor to cool down.

**1** Check the firmware and update to the latest revision if necessary.

Since revision A.03.61 (resident A03.60) most of following "movement failed", "motor over temp" and "initialization failed (X-axis)" errors are solved.

**2** Reset the sampler alignment to default value.

Reset tray alignment, and transport alignment is possible with the Control Module and the Chemstation. To reset the transport alignment with the Chemstation enter following command in the command line: **Print sendmodule\$(lals, "tray:alig 0.00,0.00")** 

**3** Lubricate the X-gear.

Friction can result in the belt slipping on the gear so that the position of the belt teeth towards the gear changes. To avoid this, apply some grease from the sample transport repair kit to the X-motor-gear.

NOTE

Do not use other grease as the one in the kit and carefully follow the instruction from the technical note.

**4** Check the tension of the belts.

For this use the Torque2.mac and measure the torque for each axis.

#### Table 23

| Typical ranges | Theta (both) 30-50        |
|----------------|---------------------------|
|                | X-axis (both) 50-90       |
|                | Z-axis (both) 90-130      |
|                | Gripper open 30-65        |
|                | Gripper closed maximum 30 |
|                |                           |

### NOTE

If the Gripper open/closed torque is not in the range, proceed with STEP 5. If the theta or X torque is not in the range, proceed with STEP 6 (if you think you can adjust the torque), otherwise proceed with STEP 7.

5 Exchange the gripper arm assembly (part number G1313-60010).

The gripper arm exchange procedure is explained in the reference manual G1329-90010, section *"Repairing the Autosampler"*.

- **6** Adjust the belts tension.
  - If the measured torque value is too low, the belt needs to be tightened.
  - If the measured torque value is too high, the belt needs to be loosened.

For this, slide the motor on the holder bracket in the appropriate direction and test the tension with the **Torque2.mac** macro. Repeat this steps until the values are in the appropriate torque range.

- 7 Exchange the sample transport assembly (part number G1329-60009).
- 8 Exchange the main board (part number G1329-69520).

### **6** Troubleshooting and Diagnostics

Troubleshooting Guide for the Sample Transport Assembly



7

Introduction into Maintenance and Repair 112 Simple Repairs 112 Exchanging Internal Parts 112 Safety Flap, Flex Board 112 Transport Assembly Parts 112 Updating the Firmware 113 Warnings and Cautions 113 Using the ESD Strap 114 Cleaning the module 115 **Overview of Main Repair Procedures** 116 Early Maintenance Feedback (EMF) 118 EMF Counters 118 Using the EMF Counters 119 Maintenance Functions 120 Simple Repairs 121 Needle Assembly 122 Needle-Seat Assembly 125 Stator Face 127 Rotor Seal 130 Metering Seal and Plunger 134 Gripper Arm 138 Interface Board 140



Agilent Technologies

Maintenance Introduction into Maintenance and Repair

7

# Introduction into Maintenance and Repair

### **Simple Repairs**

The autosampler is designed for easy repair. The most frequent repairs such as change and needle assembly change can be done from the front of the instrument with the instrument in place in the system stack. These repairs are described in Table 24 on page 121.

### **Exchanging Internal Parts**

Some repairs may require exchange of defective internal parts. Exchange of these parts requires removing the autosampler from the stack, removing the covers, and disassembling the autosampler.

### Safety Flap, Flex Board

It is strongly recommended that the exchange of the safety flap, and flex board is done by Agilent-trained service personnel.

### **Transport Assembly Parts**

The adjustment of the motors, and the tension on the drive belts are important for correct operation of the transport assembly (see "Transport Assembly" on page 152). It is strongly recommended that exchange of drive belts, and the gripper assembly is done by Agilent-trained service personnel. There are no other field-replaceable parts in the transport assembly. If any other component is defective (flex board, spindles, plastic parts) the complete unit must be exchanged.

7

## **Updating the Firmware**

The Agilent 1200 Series LC modules are fitted with FLASH EPROMS. These EPROMS enable you to update the instrument firmware from the ChemStation, PCMCIA card, or through the RS232 interface. The firmware update procedure is described in the on-line user information.

## **Warnings and Cautions**

### WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- → Make sure that it is always possible to access the power plug.
- → Remove the power cable from the instrument before opening the cover.
- → Do not connect the power cable to the Instrument while the covers are removed.

Introduction into Maintenance and Repair

## **Using the ESD Strap**

Electronic boards are sensitive to electrostatic discharge (ESD). In order to prevent damage, always use an ESD strap when handling electronic boards and components.

- **1** Unwrap the first two folds of the band and wrap the exposed adhesive side firmly around your wrist.
- **2** Unroll the rest of the band and peel the liner from the copper foil at the opposite end.
- **3** Attach the copper foil to a convenient and exposed electrical ground.



Figure 22 Using the ESD Strap

7

## **Cleaning the module**

The module case should be kept clean. Cleaning should be done with a soft cloth slightly dampened with water or a solution of water and mild detergent. Do not use an excessively damp cloth as liquid may drip into the module.

### WARNING

# Liquid dripping into the electronic compartment of your module.

Liquid in the module electronics can cause shock hazard and damage the module.

- → Do not use an exessively damp cloth during cleaning.
- → Drain all solvent lines before opening any fittings.

**Overview of Main Repair Procedures** 

# **Overview of Main Repair Procedures**

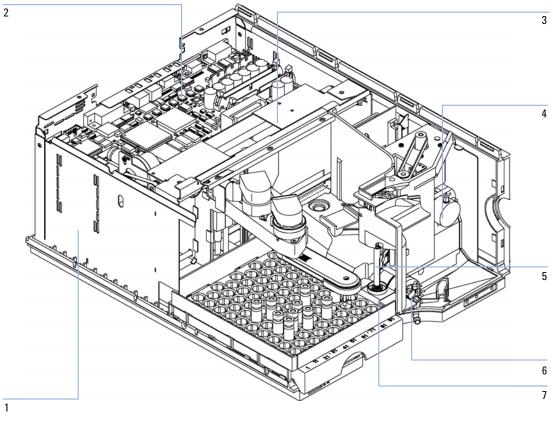



Figure 23 Main Assemblies

**Overview of Main Repair Procedures** 

| 1 | Power supply, "Power Supply" on page 187               |
|---|--------------------------------------------------------|
| 2 | ASM board, "ASM Board" on page 171                     |
| 3 | Transport assembly, "Transport Assembly" on page 152   |
| 4 | Metering seal, "Metering Seal and Plunger" on page 134 |
| 5 | Needle, "Needle Assembly" on page 122                  |
| 6 | Rotor seal, "Rotor Seal" on page 130                   |
| 7 | Needle seat, "Needle-Seat Assembly" on page 125        |

Early Maintenance Feedback (EMF)

# Early Maintenance Feedback (EMF)

Maintenance requires the exchange of components in the flow path which are subject to mechanical wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the instrument and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-setable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

### **EMF Counters**

The autosampler provides two EMF counters. Each counter increments with autosampler use, and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Each counter can be reset to zero after maintenance has been done. The autosampler provides the following EMF counters:

#### Injection valve counter

This counter display the total number of switches of the injection valve since the last reset of the counter.

#### **Needle Movements Counter**

This counter displays the total number of movements of the needle into the seat since the last reset of the counter.

7

# **Using the EMF Counters**

The user-setable EMF limits for the EMF counters enable the early maintenance feedback to be adapted to specific user requirements. The wear of autosampler components is dependent on the analytical conditions, therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

### **Setting the EMF Limits**

The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially, no EMF limit should be set. When instrument performance indicates maintenance is necessary, make note of the values displayed by the injection valve and needle movements counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.

7 Maintenance Maintenance Functions

# **Maintenance Functions**

Certain maintenance procedures require the needle arm, metering device, and gripper assembly to be moved to specific positions to enable easy access to components. The maintenance functions move these assemblies into the appropriate maintenance position. For details, refer to "Maintenance Functions" on page 89.

# **Simple Repairs**

The procedures described in this section can be done with the autosampler in place in the stack. You will do some of these procedures on a more frequent basis.

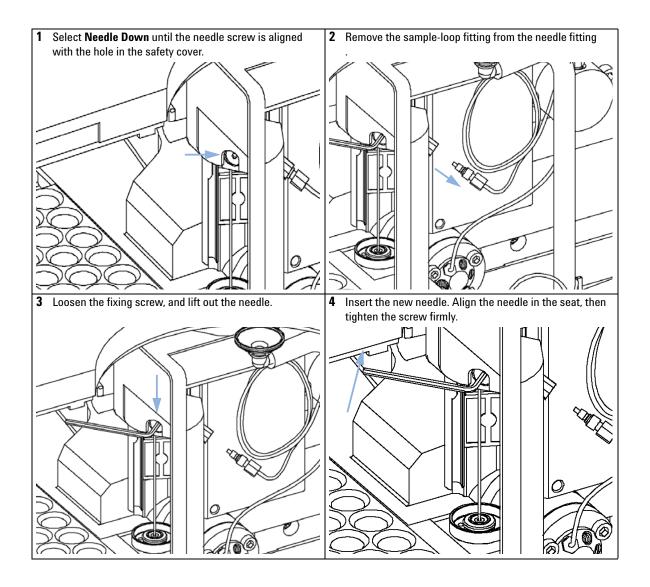
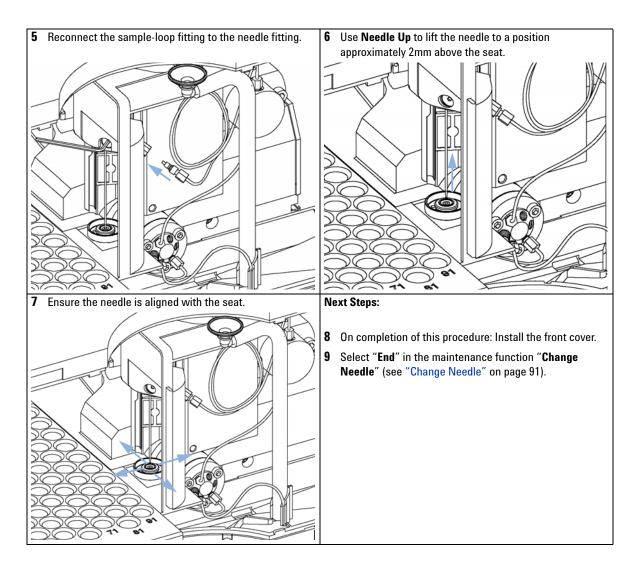

| Procedure                                                                                                                                            | Typical Frequency                                       | Time Required | Notes                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|---------------------------------------------|
| Exchanging the needle assembly                                                                                                                       | When needle shows indication of<br>damage or blockage   | 15 minutes    | See "Needle Assembly" on page 122           |
| Exchanging the seat assembly                                                                                                                         | When the seat shows indication of<br>damage or blockage | 10 minutes    | See "Needle-Seat Assembly" on page 125      |
| Exchanging the rotor<br>seal After approximately 30000 to 400<br>injections, or when the valve<br>performance shows indication of<br>leakage or wear |                                                         | 30 minutes    | See "Rotor Seal" on page 130                |
| Exchanging the When autosampler reproducibility metering seal indicates seal wear                                                                    |                                                         | 30 minutes    | See "Metering Seal and Plunger" on page 134 |
| Exchanging the gripper arm                                                                                                                           | When the gripper arm is defective                       | 10 minutes    | See "Gripper Arm" on page 138               |

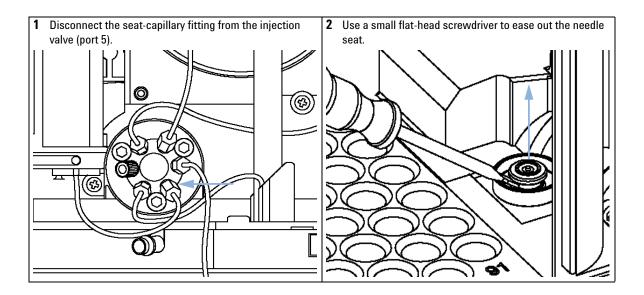
 Table 24
 Simple Repair Procedures


**Simple Repairs** 

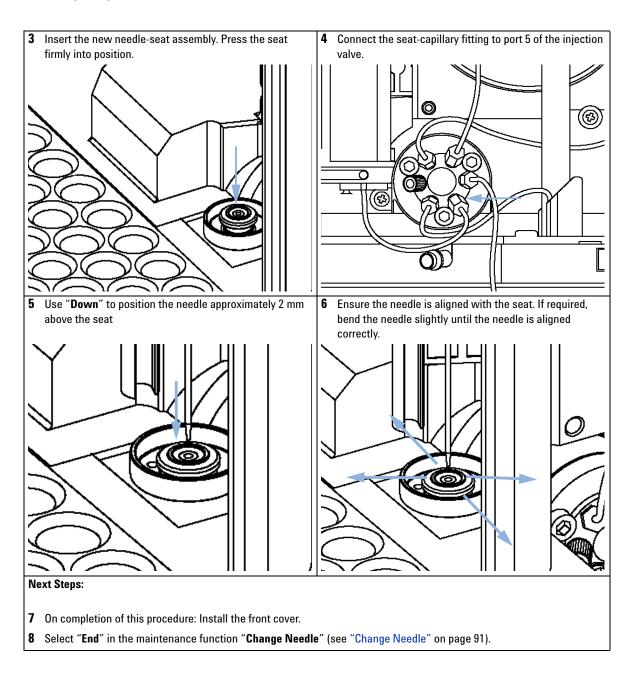
# **Needle Assembly**

| When           | When the needle is visibly damaged                                                                                                                                                                                  |                                                                    |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
|                | When the needle is blocked                                                                                                                                                                                          |                                                                    |  |
| Tools required | <ul> <li>¼ inch wrench (supplied in accessory kit)</li> <li>2.5 mm Hex key (supplied in accessory kit)</li> <li>A pair of pliers</li> </ul>                                                                         |                                                                    |  |
| Parts required | # Part number                                                                                                                                                                                                       | Description                                                        |  |
|                | 1 G1313-87201                                                                                                                                                                                                       | Needle assembly for G1313-87101 or G1313-87103 needle-seat         |  |
|                | 1 G1329-80001                                                                                                                                                                                                       | Needle assembly for G1329-87101 or G1329-87103 needle seat         |  |
|                | 1 G1313-87202                                                                                                                                                                                                       | Needle assembly (900 µl loop cap) for G1313-87101 needle seat      |  |
|                | 1 G2260-87201                                                                                                                                                                                                       | Needle assembly (900 $\mu l$ loop cap) for G2260-87101 needle-seat |  |
| Preparations   | <ul> <li>Select "Start" in the maintenance function "Change Needle" (see "Change Needle" on page 91).</li> <li>When the needle is positioned approx.15 mm above the needle seat, remove the front cover.</li> </ul> |                                                                    |  |
| WARNING        | NG Personal injury                                                                                                                                                                                                  |                                                                    |  |
|                | To avoid personal injury, keep fingers away from the needle area during autosampler operation.                                                                                                                      |                                                                    |  |
|                | Do not bend the safety flap away from its position, or attempt to insert or remove a vial from the gripper when the gripper is positioned below the needle.                                                         |                                                                    |  |



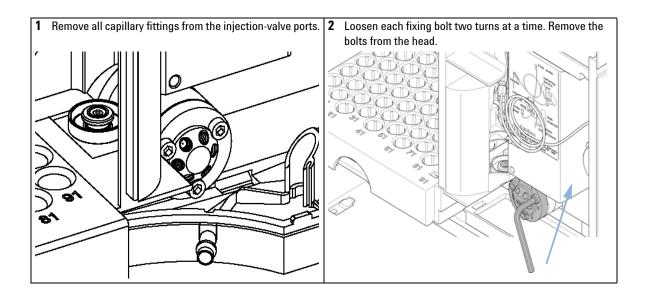

**Simple Repairs** 



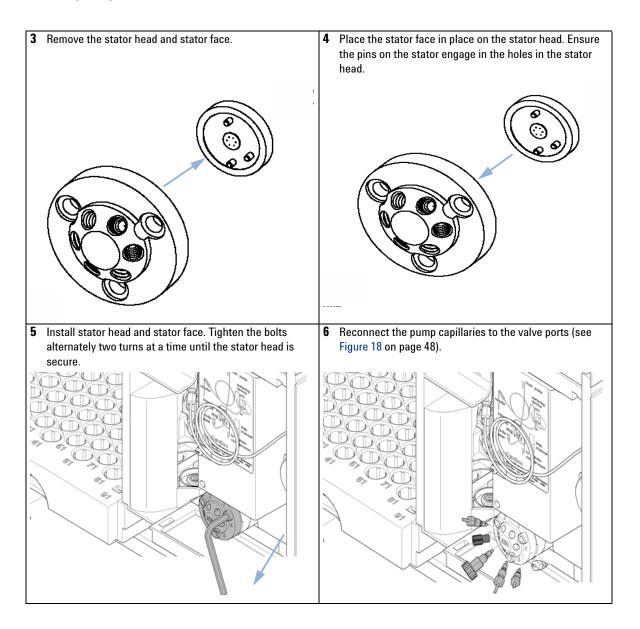

## **Needle-Seat Assembly**

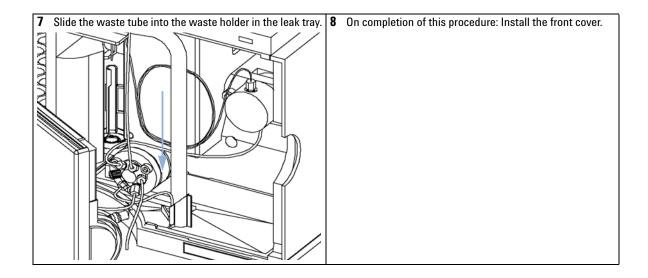
cm.

| When           | When the seat is visibly damaged<br>When the seat capillary is blocked                                                                                                                                                                                  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                |                                                                                                                                                                                                                                                         |  |  |
| Tools required | <ul> <li>1/4 inch wrench (supplied in accessory kit).</li> <li>Flat-head screwdriver.</li> </ul>                                                                                                                                                        |  |  |
| Parts required | # Part number Description                                                                                                                                                                                                                               |  |  |
|                | 1 G1313-87101 Needle-seat assy (0.17 mm i.d 2.3 μl) for G1329A/B                                                                                                                                                                                        |  |  |
|                | 1 G1313-87103 Needle-seat assy (0.12 mm i.d 1.2 μl) for G1329A/B                                                                                                                                                                                        |  |  |
|                | 1 G2260-87101 Needle-seat assy (0.50 mm i.d 20 μl) for G2260A                                                                                                                                                                                           |  |  |
| Preparations   | <ul> <li>Select "Start" in the maintenance function "Change Needle" (see "Change Needle" on page 91).</li> <li>Remove the front cover.</li> <li>Use the "Needle Up" command in the "Change Needle" function to lift the needle an addition 1</li> </ul> |  |  |




**Simple Repairs** 





# **Stator Face**

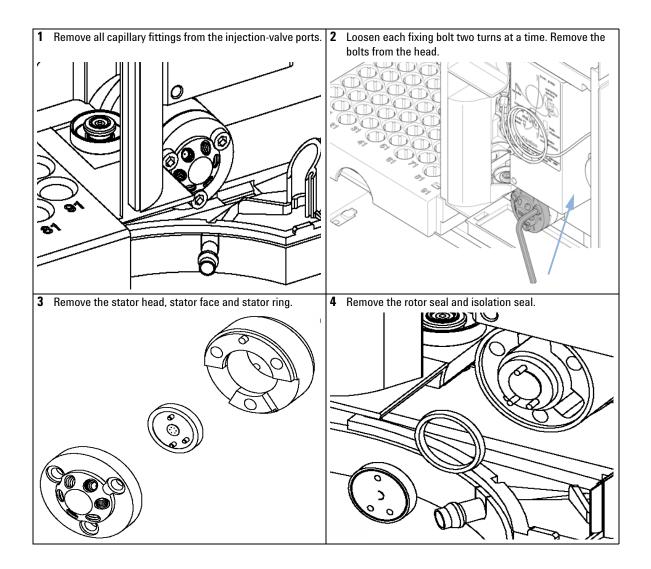
| When           | Poor injection-volume reproducibility<br>Leaking injection valve                                                                 |                                                                |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
|                |                                                                                                                                  |                                                                |  |
| Tools required | <ul> <li>1/4 inch wrench (supplied in accessory kit)</li> <li>Hex key, 9/64 inch (supplied in accessory kit)</li> </ul>          |                                                                |  |
| Parts required | # Part number                                                                                                                    | Description                                                    |  |
|                | 1 0100-1851                                                                                                                      | Stator face for G1329A                                         |  |
|                | 1                                                                                                                                | No stator face for G1329B (functionality part of stator head). |  |
|                | 1 0101-1268                                                                                                                      | Stator face for G2260A                                         |  |
| Preparations   | <ul><li>Remove the front cover.</li><li>Remove the leak tubings (if necessary).</li></ul>                                        |                                                                |  |
| CAUTION        | Removing the stator head                                                                                                         |                                                                |  |
|                | The stator face is held in place by the stator head. When you remove the stator head, the stator face can fall out of the valve. |                                                                |  |
|                | → Carefully han                                                                                                                  | dle the valve to prevent damage to the stator face             |  |



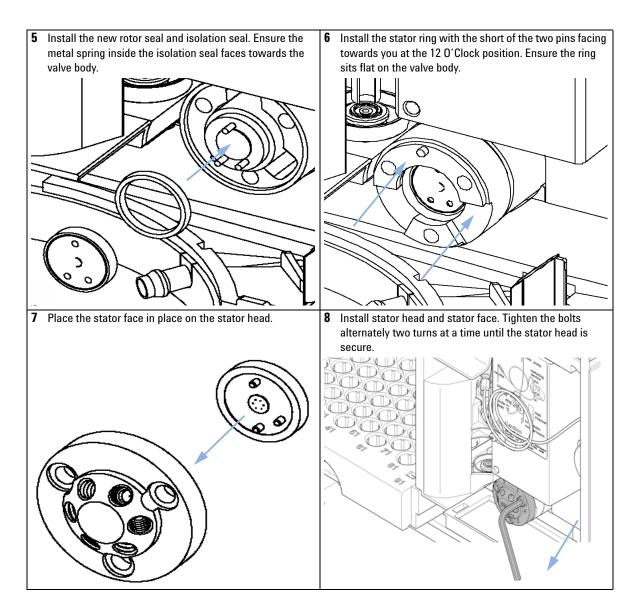
**Simple Repairs** 

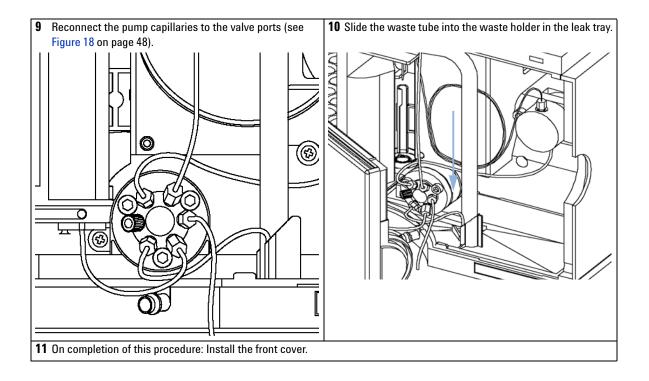





**Simple Repairs** 

# **Rotor Seal**

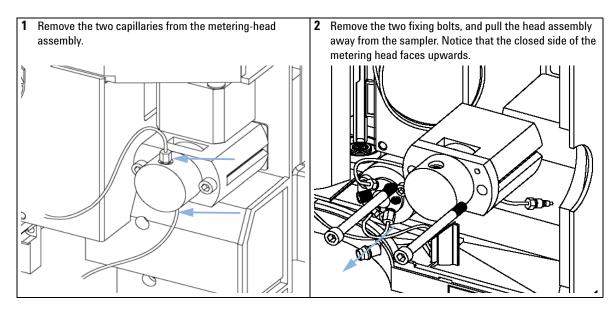

| When           | Poor injection-volume reproducibility<br>Leaking injection valve                                                                                                                                                                                                                                                          |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tools required | <ul> <li>1/4 inch wrench (supplied in accessory kit).</li> <li>Hex key, 9/64 inch (supplied in accessory kit).</li> </ul>                                                                                                                                                                                                 |  |  |
| Parts required | #         Part number         Description           1         0100-1853         Rotor seal (Vespel) for G1329A           1         0100-1849         Rotor seal (Tefzel) for G1329A           1         0101-1416         Rotor seal (PEEK) for G1329B           1         0101-1268         Rotor seal (PEEK) for G2260A |  |  |
| Preparations   | <ul> <li>Remove front cover.</li> <li>Remove the leak tubing (if necessary).</li> </ul>                                                                                                                                                                                                                                   |  |  |
| CAUTION        | <ul> <li>Removing the stator head</li> <li>The stator face is held in place by the stator head. When you remove the stator head, the stator face can fall out of the valve.</li> <li>→ Carefully handle the valve to prevent damage to the stator face</li> </ul>                                                         |  |  |
|                |                                                                                                                                                                                                                                                                                                                           |  |  |

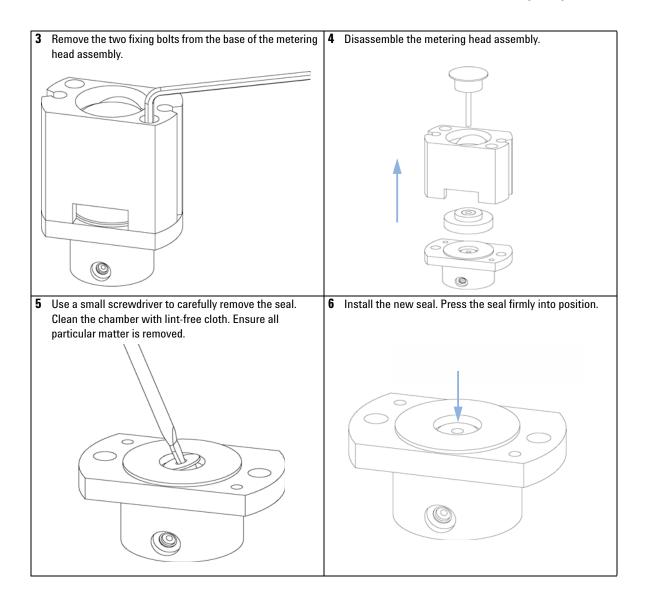

NOTE

There is no stator face for G1329B.

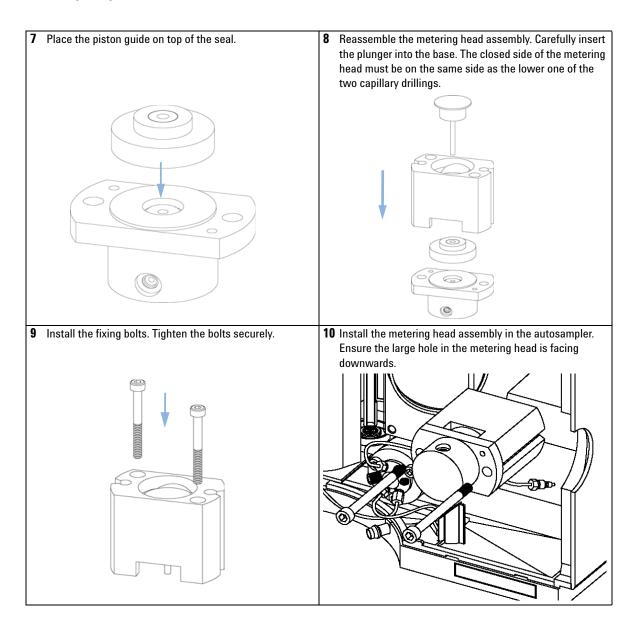


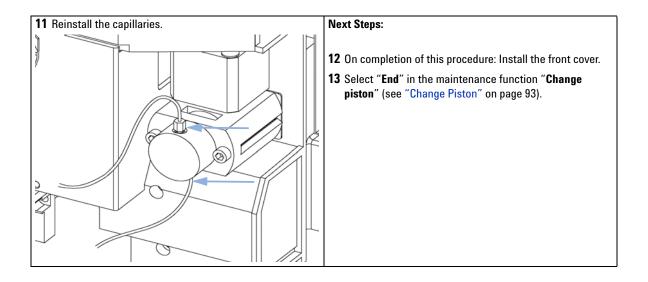
**Simple Repairs** 




# **Metering Seal and Plunger**


| When           | /hen Poor injection-volume reproducibility                                                                                                                             |                                                                                      |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                | Leaking metering de                                                                                                                                                    | evice                                                                                |
| Tools required | <ul> <li>1/4 inch wrench (supplied in accessory kit).</li> <li>4 mm hex key (supplied in accessory kit).</li> <li>3 mm hex key (supplied in accessory kit).</li> </ul> |                                                                                      |
| Parts required | # Part number                                                                                                                                                          | Description                                                                          |
|                | 1 5063-6589                                                                                                                                                            | Metering seal (pack of 2) for 100 $\mu I$ analytical head                            |
|                | 1                                                                                                                                                                      | Metering seal (pack of 1) for 900 $\mu$ l analytical head                            |
|                | 1 5063-6586                                                                                                                                                            | Metering plunger for 100 µl analytical head                                          |
|                | 1 5062-8587                                                                                                                                                            | Metering plunger for 900 $\mu l$ analytical head (only if scratched or contaminated) |
| Preparations   | • Select "Start" in the maintenance function "Change piston" (see "Change Piston" on page 93).                                                                         |                                                                                      |

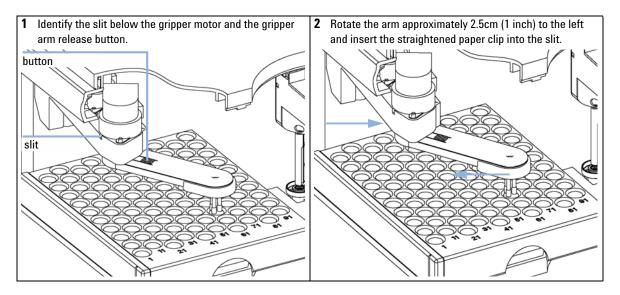

• Remove the front cover.

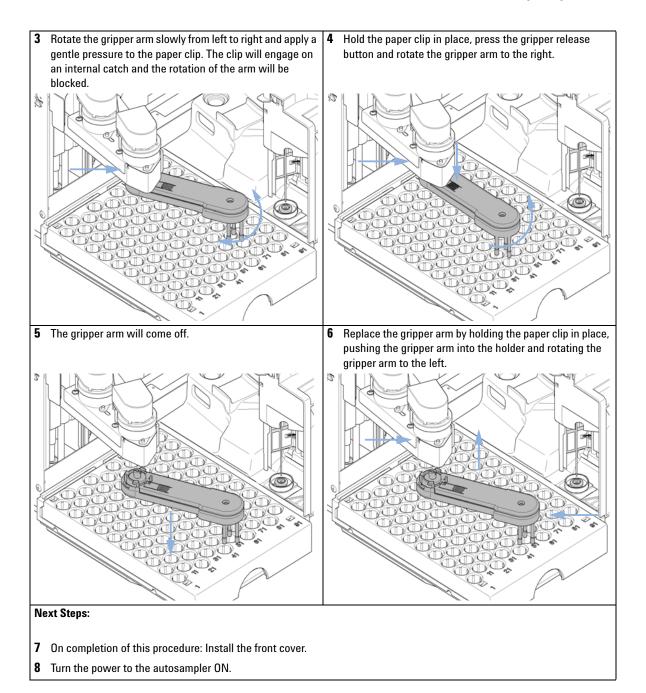




**Simple Repairs** 







**Simple Repairs** 

# **Gripper Arm**

| When           | <ul><li>Defective gripper arm</li><li>Straightened paper clip.</li></ul>                                                           |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tools required |                                                                                                                                    |  |  |
| Parts required | # Part number Description                                                                                                          |  |  |
|                | 1 G1313-60010 Gripper assembly                                                                                                     |  |  |
| Preparations   | <ul> <li>Select "Start" in the maintenance function "ChangeGripper" (see "Change Gripper (Change<br/>Arm)" on page 96).</li> </ul> |  |  |
|                | Turn off the power to the autosampler.                                                                                             |  |  |

• Remove the front cover.





#### 7 Maintenance Simple Repairs

# **Interface Board**

| When           | At installation or when defective.                                                                                                                                                                                                                                                                                           |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tools required | Flat-head screwdriver.                                                                                                                                                                                                                                                                                                       |  |  |
| Parts required | <ul> <li># Description</li> <li>1 Interface board, see "BCD / External Contact Board" on page 246.</li> </ul>                                                                                                                                                                                                                |  |  |
| CAUTION        | Electrostatic discharge at electronic boards and components<br>Electronic boards and components are sensitive to electrostatic discharge (ESD).<br>→ In order to prevent damage always use an ESD protection (for example, the ESD<br>wrist strap from the accessory kit) when handling electronic boards and<br>components. |  |  |

- **1** Switch OFF the autosampler at the main power switch.
- 2 Disconnect cables from the interface board connectors.
- **3** Loosen the screws. Slide out the interface board from the autosampler.
- **4** Install the interface board. Secure the screws.
- **5** Reconnect the cables to the board connectors

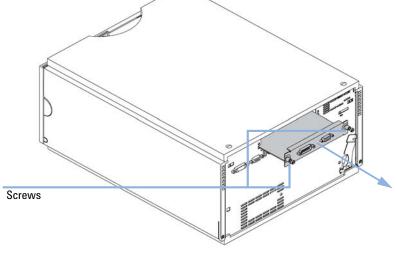



Figure 24 Exchanging the Interface Board



# **Repairs**

8

**Exchanging Internal Parts** 142 Warnings and Cautions 142 Assembling the Main Cover 144 Top Cover and Foam 146 Installing the Top Cover and Foam 148 Illumination Assembly 150 Transport Assembly 152 Installing the Transport Assembly 153 Sampling Unit 154 Installing the Sampling Unit 157 Injection-Valve Assembly 160 Metering-Drive Motor and Belt 163 Needle-Drive Motor and Belt 166 Fan 169 ASM Board 171 Changing Type and Serial Number 174 SUD Board 185 Power Supply 187 Leak Sensor 190



Agilent Technologies

# **Exchanging Internal Parts**

The procedures in this section describe how to exchange defective internal parts. You must remove the autosampler from the stack in order to open the main cover.

### Warnings and Cautions

#### WARNING

#### Open main cover

#### The following procedures require opening the main cover of the sampler.

- → Always ensure the sampler is disconnected from the line power when the main cover is removed.
- → The security lever at the power input socket prevents the autosampler cover from being taken off when line power is still connected.

### WARNING

#### Toxic and hazardous solvents

#### The handling of solvents and reagents can hold health risks.

- → When opening capillary or tube fittings solvents may leak out.
- → Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

#### CAUTION

Electrostatic discharge at electronic boards and components

Electronic boards and components are sensitive to electrostatic discharge (ESD).

→ In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components.

8

### WARNING

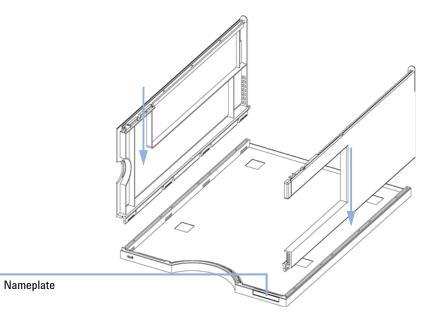
Module is partially energized when switched off, as long as the power cord is plugged in.

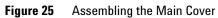
Risk of stroke and other personal injury. Repair work at the module can lead to personal injuries, e. g. shock hazard, when the module cover is opened and the instrument is connected to power.

- → Never perform any adjustment, maintenance or repair of the module with the top cover removed and with the power cord plugged in.
- → The security lever at the power input socket prevents that the module cover is taken off when line power is still connected. Never plug the power line back in when cover is removed.

### NOTE

The electronics of the sampler will not allow operation when the top cover and the top foam are removed. A safety light switch on the main board will inhibit the operation of the sampler. Always operate the sampler with the top foam and top covers in place.

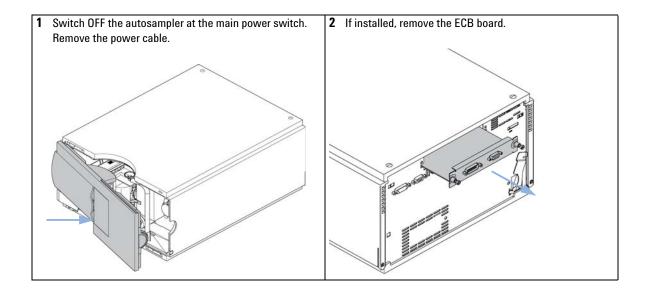

#### 8 Repairs

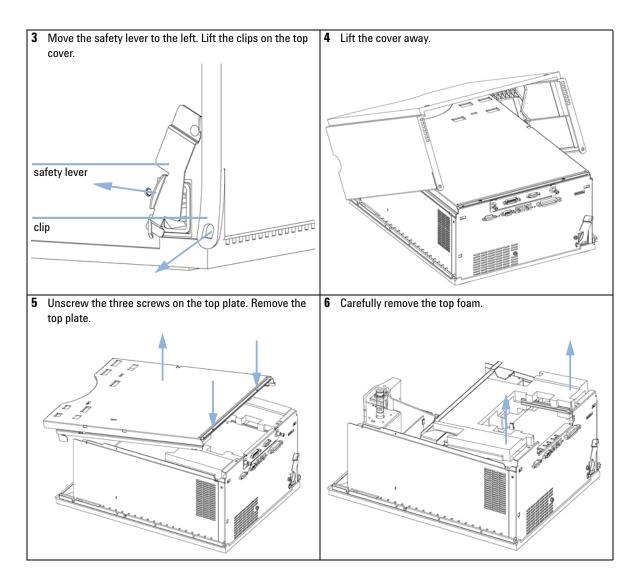

**Exchanging Internal Parts** 

# Assembling the Main Cover

| Parts required | #         Part number           1         G1329-68713           1         5042-8901           The plastics kit co | <b>Description</b><br>Cover kit for G1329A - G2260A<br>Name plate<br>ntains all parts, but it is not assembled. |  |
|----------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| CAUTION        | → Make sure to i                                                                                                  | t be able to remove the side from the top part.<br>The to install the side parts in the right direction.        |  |
|                | <b>1</b> Insert the "A the top cover                                                                              | gilent Technologies 1200 Series" nameplate into the recess in                                                   |  |

- **2** Place the top cover on the bench.
- **3** Press the side panels into the slots in the top cover



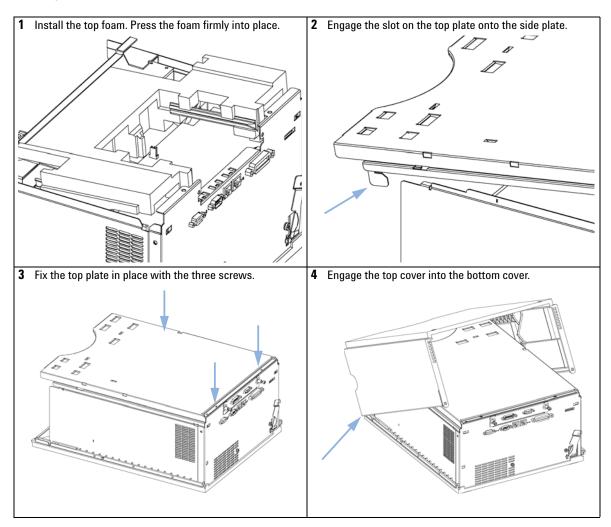

**Exchanging Internal Parts** 

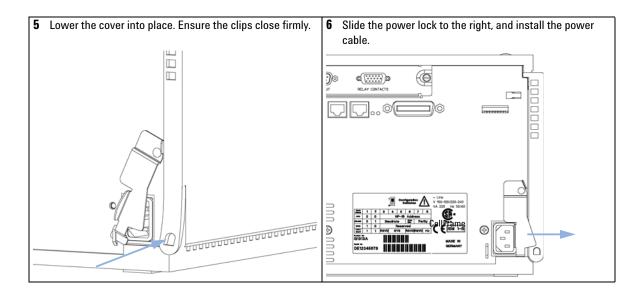
# **Top Cover and Foam**

| When           | When accessing internal parts.                                                                                                                                                                                                                                                                                                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tools required | If interface board installed: Flat-head screwdriver.                                                                                                                                                                                                                                                                                                   |
| Parts required | # Part numberDescription1G1313-68702Foam kit                                                                                                                                                                                                                                                                                                           |
| CAUTION        | <ul> <li>Electrostatic discharge at electronic boards and components</li> <li>Electronic boards and components are sensitive to electrostatic discharge (ESD).</li> <li>→ In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components.</li> </ul> |






**Exchanging Internal Parts** 


# **Installing the Top Cover and Foam**

When

When accessing internal parts.

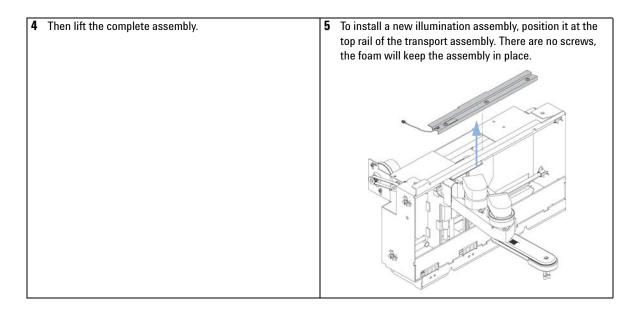
#### **Tools required** • If interface board installed: Flat-head screwdriver.





**Exchanging Internal Parts** 

### **Illumination Assembly**


•

- When
- Defective LEDs

Defective internal parts (before removing the transport assembly)

| Parts required | # | Part number | Description           |
|----------------|---|-------------|-----------------------|
|                | 1 | G1367-60040 | Illumination assembly |

1 Remove the top cover, top plate, and foam (see "Top Cover and Foam" on page 146).
2 Disconnect the cable of the illumination assembly at the autosampler mainboard.
3 The illumination assembly. After disconnecting the cable from the autosampler mainboard, the illumination assembly can be removed by turning the rail approximately 60 degrees.
3 Output the second s



**Exchanging Internal Parts** 

### **Transport Assembly**

| When           | <ul> <li>Sticking or jammed transport assembly.</li> <li>Defective flex board or sensors.</li> </ul> |
|----------------|------------------------------------------------------------------------------------------------------|
| Tools required | If interface board installed: Flat-head screwdriver.                                                 |
| Parts required | # Part number Description                                                                            |
|                | 1 G1329-60009 Transport assembly for G1329A - G2260A                                                 |
|                | <b>1</b> Remove the top cover, top plate, and foam (see "Top Cover and Foam" on page 146).           |
|                | <b>2</b> Remove the Illumination assembly as described on "Illumination Assembly" on page 150        |

**3** Lift out the transport assembly. This may require a flat head screwdriver to separate the transport assembly from the sampling unit

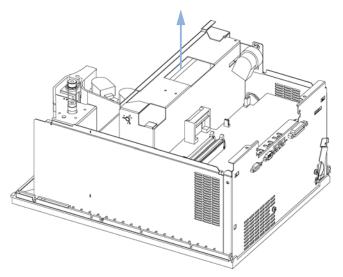
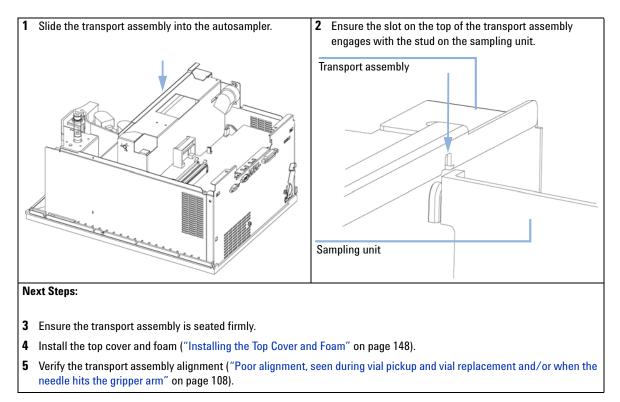
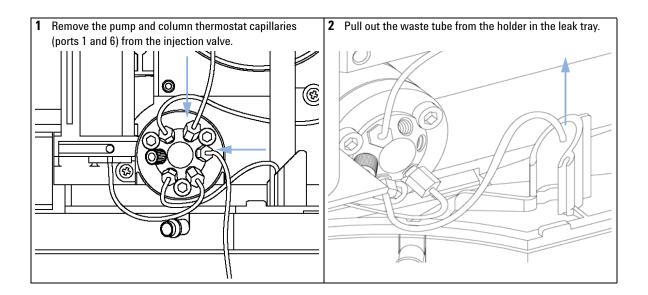
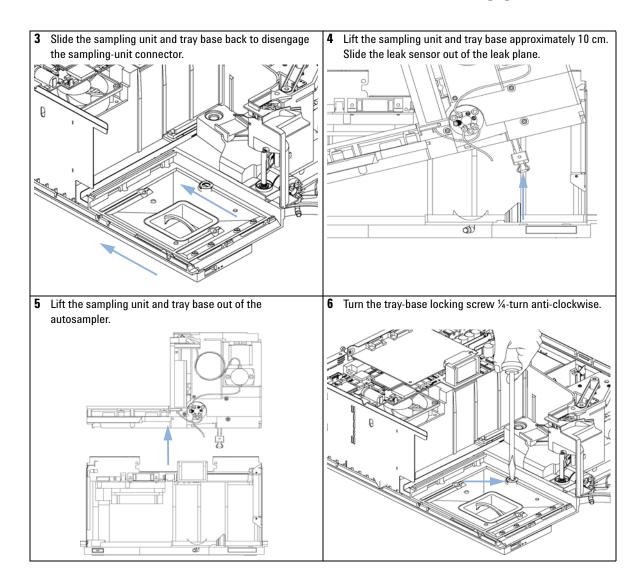
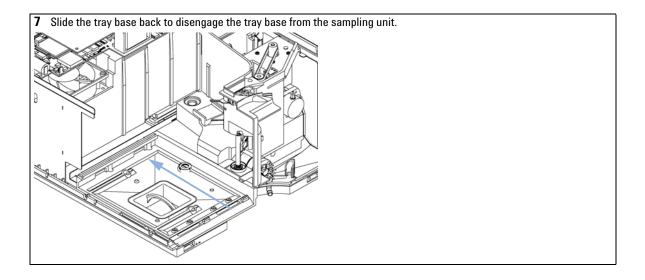




Figure 26 Removing the Transport Assembly


# **Installing the Transport Assembly**

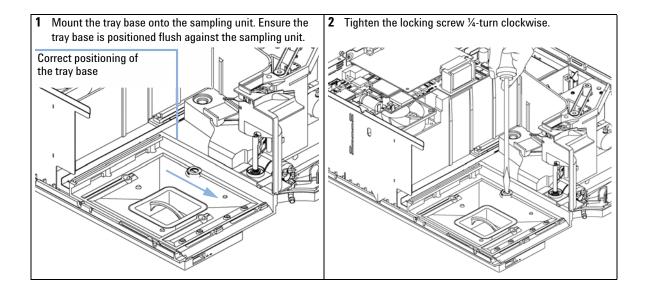


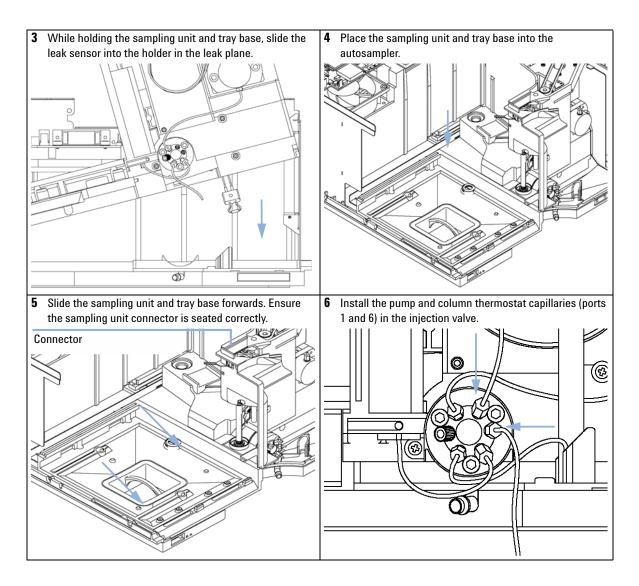


**Exchanging Internal Parts** 

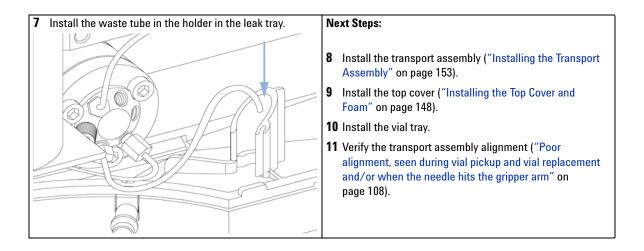
# **Sampling Unit**

| When           | When accessing internal parts, or when defective.                                                                                                                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tools required | <ul><li>1/4 inch wrench (supplied in accessory kit).</li><li>Flat-head screwdriver.</li></ul>                                                                                                                                                                                                           |
| Parts required | # Part number Description                                                                                                                                                                                                                                                                               |
|                | 1 G1329-60008 Sampling unit for G1329A/G1329B                                                                                                                                                                                                                                                           |
|                | 1 G2260-60008 Sampling unit for G2260A                                                                                                                                                                                                                                                                  |
| Preparations   | <ul> <li>Remove the front cover.</li> <li>Remove the vial tray.</li> <li>Remove the top cover ("Top Cover and Foam" on page 146).</li> <li>Remove the Illumination assembly ("Illumination Assembly" on page 150)</li> <li>Remove the transport assembly ("Transport Assembly" on page 152).</li> </ul> |
| NOTE           | The sampling units come without injection valve and analytical head assembly (see Table 40 on page 208).                                                                                                                                                                                                |







# **Installing the Sampling Unit**

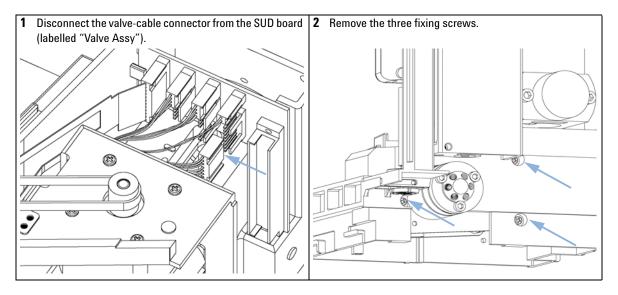
#### NOTE

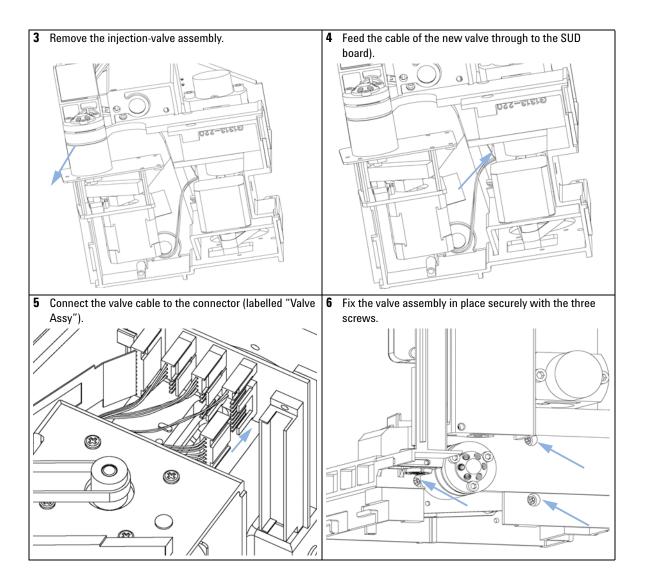
The replacement sampling unit is supplied without injection valve and metering head assembly. If you are exchanging the complete sampling unit, remove the injection valve and metering head from the defective sampling unit. Install the valve and metering head in the new sampling unit. See "Injection-Valve Assembly" on page 160 and "Gripper Arm" on page 138.








**Exchanging Internal Parts** 


### **Injection-Valve Assembly**

| When           | Wł | When defective                       |                            |
|----------------|----|--------------------------------------|----------------------------|
| Tools required | •  | Pozidrive No. 1 s<br>1/4 inch wrench |                            |
| Parts required | #  | Part number                          | Description                |
|                | 1  | 0101-0921                            | Injection valve for G1329A |
|                | 1  | 0101-1422                            | Injection valve for G1329B |
|                | 1  | 0101-1267                            | Injection valve for G2260A |
| D              |    | Demonstra all actual                 |                            |

#### Preparations

- Remove all capillaries from the injection valve (Figure 18 on page 48).
- Remove the top cover ("Top Cover and Foam" on page 146).
- Remove the transport assembly ("Transport Assembly" on page 152).
- Remove the sampling unit ("Sampling Unit" on page 154).

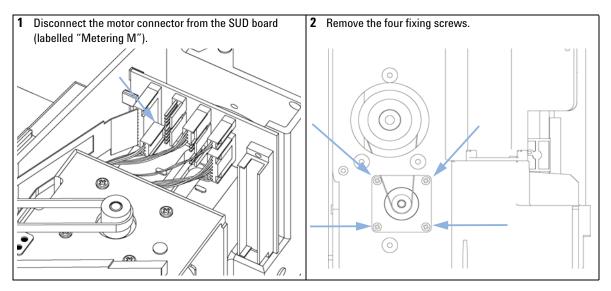


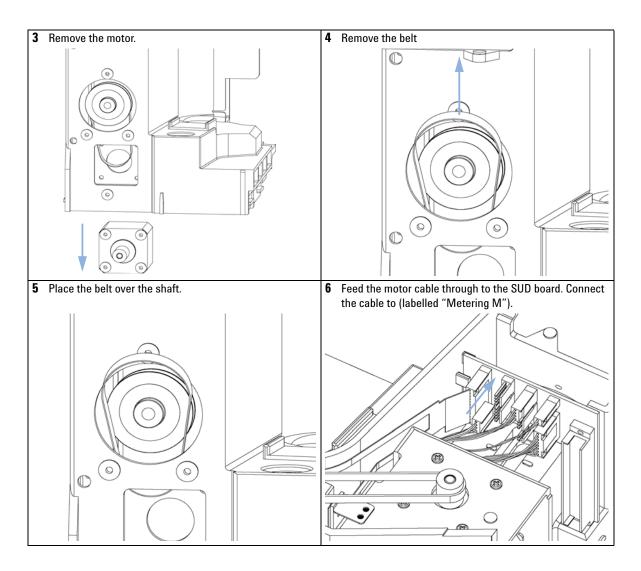


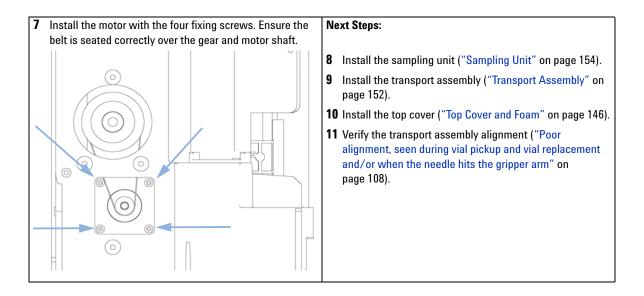
**Exchanging Internal Parts** 

#### Next Steps:

- 7 Install the sampling unit ("Sampling Unit" on page 154).
- 8 Install the transport assembly ("Transport Assembly" on page 152).
- **9** Install the top cover ("Top Cover and Foam" on page 146).
- **10** Replace the injection-valve capillaries (Figure 18 on page 48).
- 11 Verify the transport assembly alignment ("Poor alignment, seen during vial pickup and vial replacement and/or when the needle hits the gripper arm" on page 108).


#### **Repairs** Exchanging Internal Parts


8


# **Metering-Drive Motor and Belt**

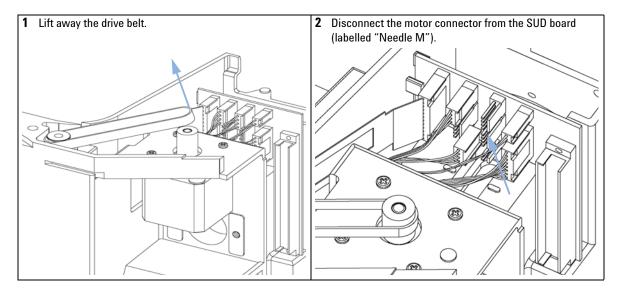
| When           | WI | nen belt or motor | defective                                 |  |
|----------------|----|-------------------|-------------------------------------------|--|
| Tools required | •  | Pozidrive No. 1   | screwdriver                               |  |
| Parts required | #  | Part number       | Description                               |  |
|                | 1  | 5062-8590         | Metering-drive motor                      |  |
|                | 1  | 1500-0697         | Belt                                      |  |
| Preparations   | •  | Remove the top    | cover ("Top Cover and Foam" on page 146). |  |

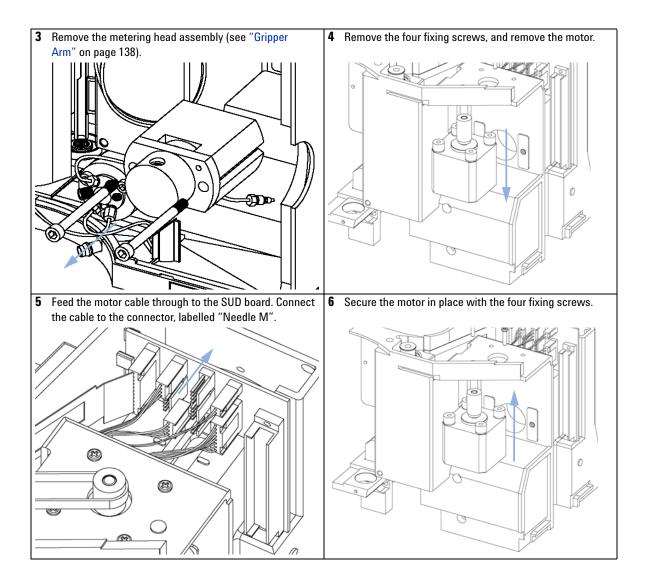
- Remove the transport assembly ("Transport Assembly" on page 152).
- Remove the sampling unit ("Sampling Unit" on page 154).

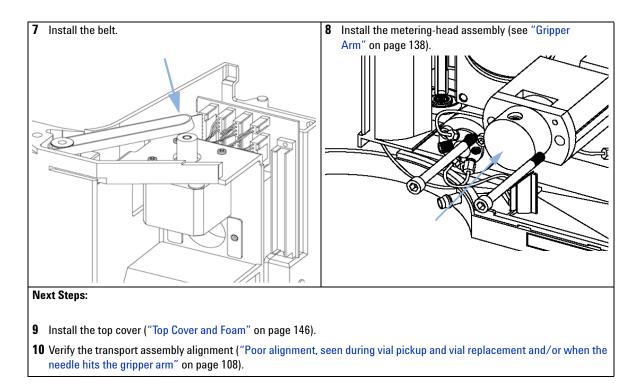






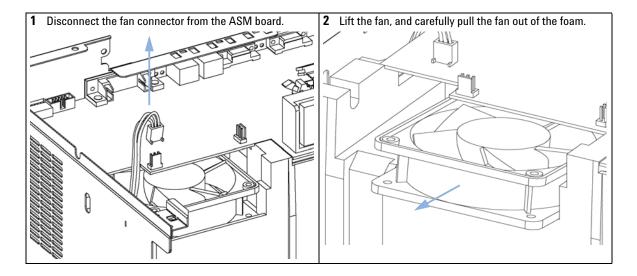

**Exchanging Internal Parts** 


## **Needle-Drive Motor and Belt**

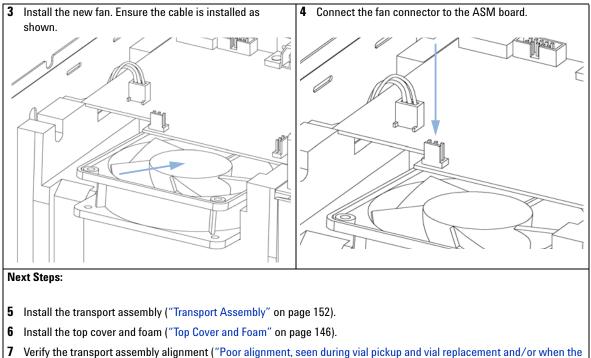

| When           | W | When defective    |                    |
|----------------|---|-------------------|--------------------|
| Tools required | • | Pozidrive No. 1 s | crewdriver         |
| Parts required | # | Part number       | Description        |
|                | 1 | 5062-8590         | Needle-drive motor |

1 1500-0697 Belt

Preparations • Remove the top cover ("Top Cover and Foam" on page 146).



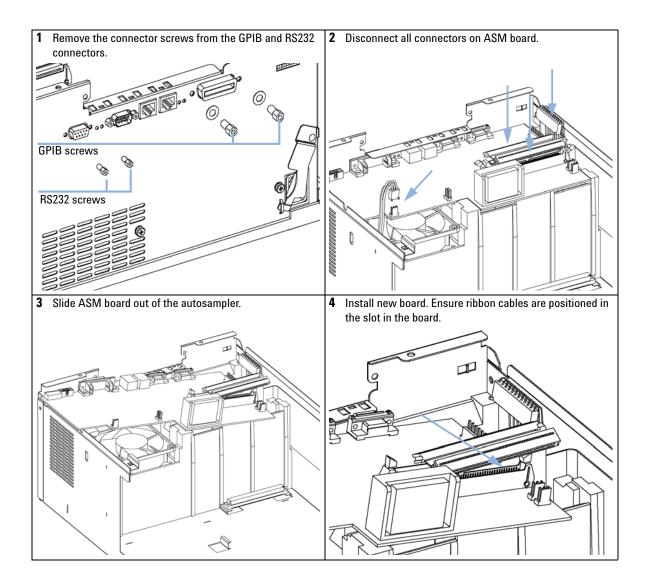


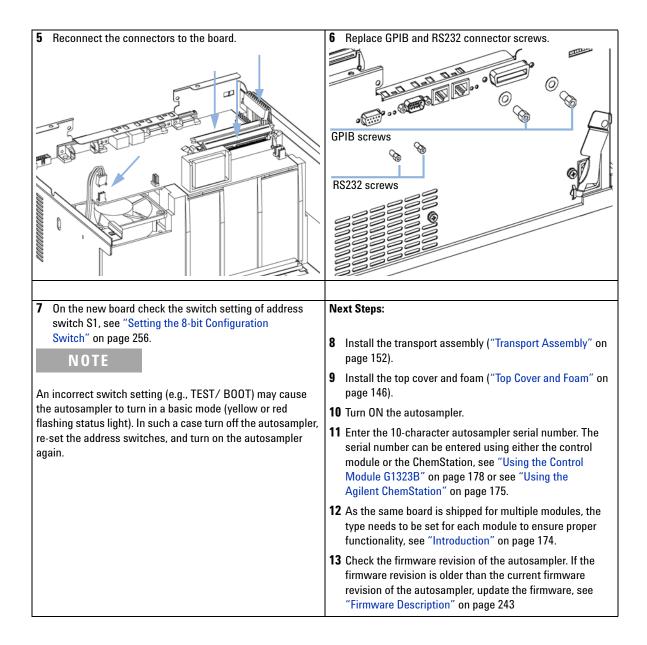




# Fan

| When           | When defective.                                                                                                                                                                                           |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parts required | # Part numberDescription13160-1017Fan                                                                                                                                                                     |  |
| Preparations   | <ul> <li>Remove the top cover and foam ("Top Cover and Foam" on page 146).</li> <li>Remove the transport assembly ("Transport Assembly" on page 152).</li> </ul>                                          |  |
| CAUTION        | Electronic boards are static sensitive and should be handled with care so as not to damage them. Touching electronic boards and components can cause electrostatic discharge (ESD).                       |  |
|                | ESD can damage electronic boards and components.                                                                                                                                                          |  |
|                | → Be sure to hold the board by the edges and do not touch the electrical components.<br>Always use an ESD protection (for example, an ESD wrist strap) when handling<br>electronic boards and components. |  |
|                |                                                                                                                                                                                                           |  |




**Exchanging Internal Parts** 




needle hits the gripper arm" on page 108).

# **ASM Board**

| When           | When defective     |                                                                                                                            |
|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| Tools required | ,                  | or remote-connector screws).<br>or GPIB connector screws).                                                                 |
| Parts required | # Part number      | Description                                                                                                                |
|                | 1 G1329-69530      | ASM board for G1329A - G2260A                                                                                              |
|                | 1 G1329-69540      | ASM board for G1329B                                                                                                       |
| Preparations   | •                  | cover and foam ("Top Cover and Foam" on page 146).<br>sport assembly ("Transport Assembly" on page 152).                   |
| NOTE           | •                  | quires reloading the autosampler firmware, reprogramming of the<br>number, and realignment of the gripper.                 |
|                |                    |                                                                                                                            |
| CAUTION        | Electrostatic disc | harge at electronic boards and components                                                                                  |
| <b>UNCTION</b> | Electronic boards  | and components are sensitive to electrostatic discharge (ESD).                                                             |
|                | -                  | vent damage always use an ESD protection (for example, the ESD<br>m the accessory kit) when handling electronic boards and |
|                |                    |                                                                                                                            |





# **Changing Type and Serial Number**

#### Introduction

When the main board has to be replaced, the new board does not have a serial number. For some modules (e.g. pumps or auto samplers) the type has to be changed (multiple usage boards). Use the information from the serial number plate of your module.

Keep in mind that

- the changes become active after a power cycle of the module.
- the information from the serial number plate of the module is used.
- the exact type (product number) is used.

**NOTE** If the type (product number) was entered incorrectly, the module may become unusable. Proceed to "Overview" on page 180.

#### NOTE

With firmware A.06.02/B.01.02 and above a wrong type cannot be entered. The entry is checked against the board revision.

#### **Using the LMD Software**

Use LMD Software version A.02.02 or later.

The LMD Software must be configured in Service Mode to have access to the function **Board Check and Change**.

Close other user interfaces.

- **1** Start the LMD software.
- 2 Select Tools on the left navigation panel.
- **3** Select in the Tools Selection box **Board Check and Change** and press the button **Start**.
- **4** Change the field Type and/or Serial as required.

**NOTE** Some Agilent 1100/1200 series modules require the correct main board version to match the type, for example the SL modules.

**5** Press the button **Apply** to complete the action.

A message "The type was changed to XXXXXX. Close this application and switch off and on the changed LC module.

- **6** Close the LMD Software.
- **7** Power cycle the module.
- 8 Restart the User Interface.

#### **Using the Agilent ChemStation**

Module serial numbers are entered by typing specific commands on the command line at the bottom of the main user interface screen.

Turn the module on.

Start the Agilent ChemStation.

1 To enter a module serial number, type the following command into the command line: print sendmodule\$(LXXX, "ser 'YYNNNNNNN'") or print sendmodule\$(NXXX, "ser 'YYNNNNNNN'") where: xxx is the module type, YY is country code (in capital letters) and NNNNNNN the 8-character serial number of the module in question.

#### Table 25 ChemStation Command Format - Serial Number Change

| Modules with or without optional interface board                 | Modules with LAN on-board                                        |
|------------------------------------------------------------------|------------------------------------------------------------------|
| PRINT SENDMODULE\$(Lxxx,"SER 'YYNNNNNNN'")                       | PRINT SENDMODULES(Nxxx,"SER 'YYNNNNNNN'")                        |
| module identifier = L<br>serial number embedded in single-quotes | module identifier = N<br>serial number embedded in single-quotes |
| PMP, ALS, THM, TCC, VWD, DAD, MWD, FLD, RID                      | DAD, MWD, VWD                                                    |

**Exchanging Internal Parts** 

NOTE

The first two characters are letters, which should be capitalized.

The reply line will respond with **RA 0000 SER** followed by the module serial number you just entered.

2 To change the type of the module use the following command: print sendmodule\$(Lxxx, "TYPE 'XXXXX'") or

print sendmodule\$(Nxxx, "TYPE 'XXXXX'")

where: xxx is the module type and XXXXX is the 5-character product number of the module (e.g. G1314B).

 Table 26
 ChemStation Command Format - Type Change

| Modules with or without optional interface board                        | Modules with LAN on-board                                               |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| PRINT SENDMODULE\$(Lxxx,"TYPE 'XXXXX'")                                 | PRINT SENDMODULE\$(Nxxx,"TYPE 'XXXXX'")                                 |
| module identifier = L<br>product number XXXXX embedded in single-quotes | module identifier = N<br>product number XXXXX embedded in single-quotes |
| PMP, ALS, THM, TCC, VWD, DAD, MWD, FLD, RID                             | DAD, MWD, VWD                                                           |

NOTE

Some Agilent 1100/1200 series modules require the correct main board version to match the type, for example the SL modules.

- **3** Power cycle the module. Then, restart the Agilent ChemStation. If the serial number you have just entered is different than the original module serial number, you will be given the opportunity to edit the configure **1200 access** screen during the restart of the Agilent ChemStation.
- **4** After restart, the serial number/type you have just entered can be seen under the **Instrument** menu of the main user interface screen.

#### **Using the Instant Pilot G4208A**

- 1 Connect the Instant Pilot to the module. Turn ON the module.
- 2 On the Instant Pilot's Welcome screen, press More, then select Maintenance. Using the up/down arrows, select the module where you have to change the product number or serial number.
- **3** Press **PN/SN**. This will display a screen where you can enter the product number and/or serial number.
- **4** Make your changes, using the information from the product label of your module.

Some Agilent 1100/1200 series modules require the correct main board version to match the type, for example the SL modules.

- **5** Press **OK** to highlight the complete command.
- 6 Press **Done** to transfer the information into the main board's memory. Press **Cancel** to quit the process.
- **7** Power cycle the module. The Maintenance screen should display the correct serial number for this module.
- **8** If an other User Interface is also connected, restart the User Interface as well.

NOTE

Exchanging Internal Parts

#### **Using the Control Module G1323B**

- **1** Connect the control module to the module. Turn ON the module.
- 2 On the control module, press System (F5), then Records (F4). Using the up/down arrows, make sure that the module is highlighted.
- 3 Press FW Update (F5), then m. This will display a box which says Update Enter Serial#.
- 4 Press Enter. This will display the box labeled Serial#.
- 5 Letters and numbers are created using the up and down arrows. Into the box labeled Serial#, enter the 10-character serial number for the module. When the 10-character serial number is entered, press Enter to highlight the complete serial number. Then, press Done (F6).
- **6** Turn the module OFF then ON again. The Records screen should display the correct serial number for this module.
- **7** If a Agilent ChemStation is also connected, restart the Agilent ChemStation now as well.

NOTE

To change the product number go to the *System* screen.

- 8 Press Tests (F3) and select the module and press Enter.
- **9** While in the Tests screen, press **m.m** (m dot m).
- 10 From the box now displayed, select the Command, and press Enter.
- **11** Into the box labeled *Nester* (instruction), enter the command **TYPE** '**XXXXXX**' where XXXXXX is embedded in single-quotes.

Letters and numbers are created using the up and down arrows. XXXXX is the 5-character product number of the module being changed. There must be a space between the word TYPE and the product number.

**NOTE** Some Agilent 1100/1200 series modules require the correct main board version to match the type, for example the SL modules.

12 Now, press the **Execute** key. Below the box, a reply line should then say: Reply RA 0000 TYPE "XXXXX" (XXXXX is what you just entered)

**13** Power cycle the module. Turn on should be normal. In the *Records* screen, the product# column should indicate the module you just entered. If an other User Interface is also connected, start it now.

**Exchanging Internal Parts** 

#### **Recover from wrong type**

#### **Overview**

The following situations may come up where the instrument is no longer usable due to

- an incorrect type (product number) entry after the replacement of a main board of the module.
- load of wrong firmware based on the wrong type.

**NOTE** With firmware A.06.02/B.01.02 and above a wrong type cannot be entered. The entry is checked against the board revision.

The wrong type (product number) could be

- incorrect, but a valid 1100/1200 series module number
- incorrect and invalid 1100/1200 series module number (any name)

Based on above, the User Interfaces react differently.

| User Interface     | incorrect but valid type                                                                                                                                                                                  | incorrect but valid type                                                                                                      | incorrect and invalid type                                                                                                                          |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Example Conditions | correct type = G1315B<br>entered type = G1314B                                                                                                                                                            | correct type = G1315B<br>entered type = G1314B<br>plus wrong firmware from<br>G1314B                                          | correct type = G1315B<br>entered type = G1319B                                                                                                      |  |
| ChemStation        | shows the incorrect product<br>number<br>Interface shows the settings of<br>the G1314B<br>Type can be changed via<br>command line as described<br>under "Recover with Agilent<br>ChemStation" on page 183 | does not show the module<br>NO access to the module is<br>possible<br>Use "Recover with LMD (Type<br>& Firmware)" on page 182 | does not show the incorrect<br>product number<br>NO access at all to the module<br>is possible<br>Use "Recover with LMD (Type<br>Only)" on page 182 |  |

#### Table 27 Recover From Wrong Type

8

| User Interface                   | incorrect but valid type                                                                                                                         | incorrect but valid type                                                                                                                                                                                                                                                                                                                      | incorrect and invalid type                                                                                                                                                 |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instant Pilot G4208A             | comes up with an error<br>access to the module is<br>possible via Service Mode as<br>described under "Recover with<br>Instant Pilot" on page 183 | shows resident module<br>G1314B-R<br>NO type change possible<br>Use "Recover with LMD (Type<br>& Firmware)" on page 182                                                                                                                                                                                                                       | comes up with an error<br>unsupported module G1319B<br>access to the module is<br>possible via Service Mode as<br>described in "Recover with<br>Instant Pilot" on page 183 |
| Control Module<br>G1323          | comes up with an error<br>NO access to the module is<br>possible<br>Use "Recover with LMD (Type<br>Only)" on page 182                            | shows resident or unsupported<br>module<br>NO type change possible<br>Use "Recover with LMD (Type<br>& Firmware)" on page 182                                                                                                                                                                                                                 | shows resident or unsupported<br>module<br>access to the module is<br>possible via Tests as described<br>in "Recover with Control<br>Module" on page 184                   |
| LMD Software<br>(preferred tool) | shows the incorrect product<br>number<br>access to the module is<br>possible as described in<br>"Recover with LMD (Type<br>Only)" on page 182    | shows the incorrect product<br>number<br>access to the module is<br>possible as described in<br>"Recover with LMD (Type<br>Only)" on page 182<br>If wrong firmware has been<br>loaded in addition, only the<br>LMD Software can revert to<br>correct product number as<br>described in "Recover with<br>LMD (Type & Firmware)" on<br>page 182 | shows the incorrect product<br>number<br>access to the module is<br>possible as described in<br>"Recover with LMD (Type<br>Only)" on page 182                              |

### Table 27 Recover From Wrong Type

**Exchanging Internal Parts** 

### **Recover with LMD (Type Only)**

LMD Software version A.02.02 or above in CE mode.

If no LAN connection is possible use RS-232.

The example uses G1315B as correct type.

**1** Open a connection to the module (or via system).

The module will be listed with the wrong product number (type).

- 2 Select Board Check and Change and press Start.
- **3** In the type field enter G1315B and press **Apply**.
- 4 Close the LMD Software.
- **5** After a power cycle the module should show up with the correct product number (type) in the user interface.

### **Recover with LMD (Type & Firmware)**

LMD Software version A.02.02 or above in CE mode.

If no LAN connection is possible use RS-232.

The example uses G1315B as correct type.

The module must be configured to "*Stay Resident Mode*" (module boots in resident mode - flashing status LED).

- **1** Open a connection to the module (or via system).
- 2 Select Board Check and Change and press **Start**.
- **3** In the type field enter G1315B and press **Apply**.
- **4** After a power cycle the module should show up with the correct product number (type) in the user interface.
- **5** Load the correct main firmware into the module.
- 6 Turn the module OFF.
- 7 Set module's configuration switch back to normal mode.
- **8** Turn on the module.
- **9** If required, load final firmware into the module.

8

### **Recover with Agilent ChemStation**

1 Use the ChemStation command line to change to TYPE (product number) as described under "Using the Agilent ChemStation" on page 175.

After power cycle of module the correct TYPE shows up.

### **Recover with Instant Pilot**

USB Flash Drive with file CUSTINST.CMD and a PC with USB interface.

The example uses G1315B as correct type and G1319B as incorrect type.

- 1 Edit/create the file CUSTINST.CMD and add the following line **XXXXX | Command from USB 'Type Change' | TYPE 'YYYYYY'** where XXXXX is for example G1319 from the mis-typed G1319B and YYYYYY is the correct module type, e.g. G1315B.
- **2** Save and close the file.
- **3** Insert the USB Flash Drive into the Instant Pilot.
- 4 From the Welcome screen enter the Service Mode (7268312 or SERVICE).
- 5 Select the button G1319B (wrong module) and select XXXXX | Command from USB 'Type Change'
- 6 Press the button **Send**.

This will give as reply: **RA 0 TYPE "G1315B"** 

7 After a power cycle the module should show up with the correct product number (type) in the user interface.

**Exchanging Internal Parts** 

### **Recover with Control Module**

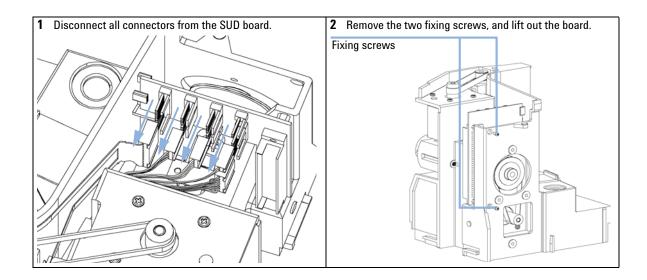
The example uses G1315B as correct type.

- 1 Select Tests Generic.

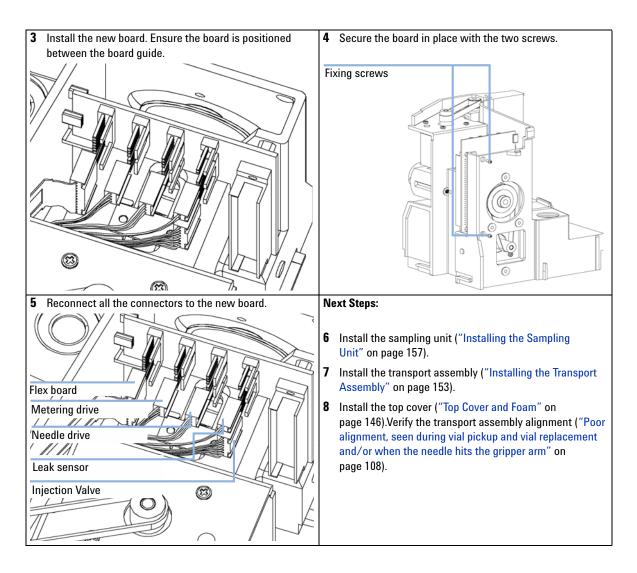
This opens hidden functions.

- **3** Select Command.
- 4 In the instruction line enter the command **TYPE G1315B**

This will give as reply: **RA 0000 TYPE "G1315B"** 


**5** After a power cycle the module should show up with the correct product number (type) in the user interface.

8

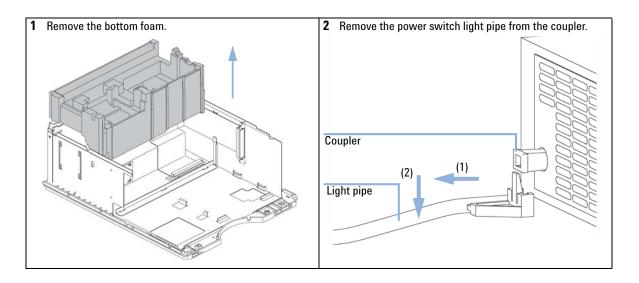

### **SUD Board**

| When           | When defective.                                                                                                                                                                                                          |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tools required | Pozidrive No. 1 screwdriver.                                                                                                                                                                                             |  |
| Parts required | # Part number Description                                                                                                                                                                                                |  |
|                | 1 G1313-66503 SUD board                                                                                                                                                                                                  |  |
| Preparations   | <ul> <li>Remove the top cover ("Top Cover and Foam" on page 146).</li> <li>Remove the transport assembly ("Transport Assembly" on page 152).</li> <li>Remove the sampling unit ("Sampling Unit" on page 154).</li> </ul> |  |
| CAUTION        | Damage of the flex board                                                                                                                                                                                                 |  |
|                | The flex board is fragile and can be damaged when the SUD board is removed uncarefully.                                                                                                                                  |  |

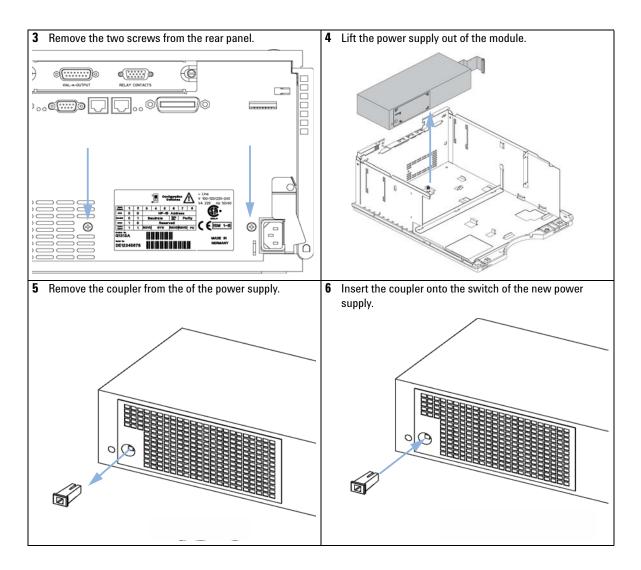
→ Remove the SUD board carefully.



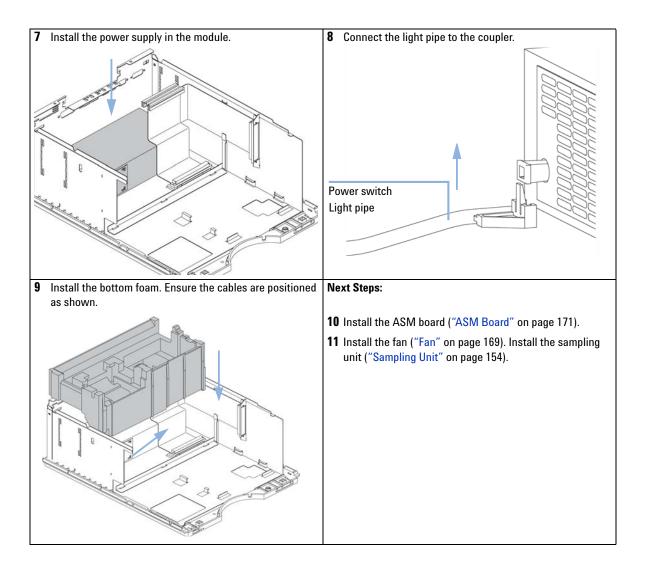
**Exchanging Internal Parts** 




8


### **Power Supply**

| When                                                                | When defective                                                     |                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tools required                                                      | Pozidrive No                                                       | Pozidrive No. 1 screwdriver                                                                                                                                                                                                 |  |  |
| Parts required                                                      | # Part numbe                                                       | er Description                                                                                                                                                                                                              |  |  |
|                                                                     | 1 0950-2528                                                        | Power supply                                                                                                                                                                                                                |  |  |
| Preparations                                                        | <ul><li>Remove the</li><li>Remove the</li><li>Remove the</li></ul> | top cover ("Top Cover and Foam" on page 146).<br>transport assembly ("Transport Assembly" on page 152).<br>sampling unit ("Sampling Unit" on page 154).<br>ASM board ("ASM Board" on page 171).<br>fan ("Fan" on page 169). |  |  |
| CAUTION                                                             | Electrostatic o                                                    | discharge at electronic boards and components                                                                                                                                                                               |  |  |
| Electronic boards and components are sensitive to electrostatic dis |                                                                    | ards and components are sensitive to electrostatic discharge (ESD).                                                                                                                                                         |  |  |
|                                                                     | → In order to                                                      | prevent damage always use an ESD protection (for example, the ES                                                                                                                                                            |  |  |


→ In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components.



**Exchanging Internal Parts** 



**Exchanging Internal Parts** 

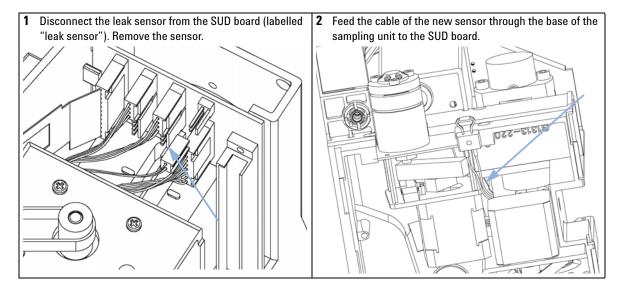


**Exchanging Internal Parts** 

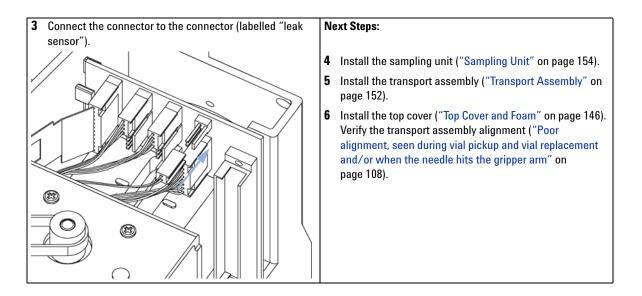
### **Leak Sensor**

#

| When | When defective |
|------|----------------|
|      |                |


| Parts | roa | uiro | d |
|-------|-----|------|---|
| rarts | req | uire | u |

Part number Description


1 5061-3356 Leak sensor

#### Preparations

- Remove the top cover ("Top Cover and Foam" on page 146).
- Remove the transport assembly ("Transport Assembly" on page 152).
- Remove the sampling unit ("Sampling Unit" on page 154).



**Exchanging Internal Parts** 



**Exchanging Internal Parts** 



# **Parts and Materials for Maintenance**

Main Assemblies 194 Analytical-Head Assembly 196 Vial Trays 199 Standard Autosampler Accessory Kit G1329-68725 200 Preparative Autosampler Accessory Kit G2260-68705 201 Maintenance Kit G1313-68730 for G1329A 202 Maintenance Kit G1313-68719 for G1329B 203 Multi-Draw Kit G1313-6871 204 900 µl Injection Upgrade Kit G1363A for G1329A 205 External Tray G1313-60004 206



9 Parts and Materials for Maintenance Main Assemblies

# **Main Assemblies**

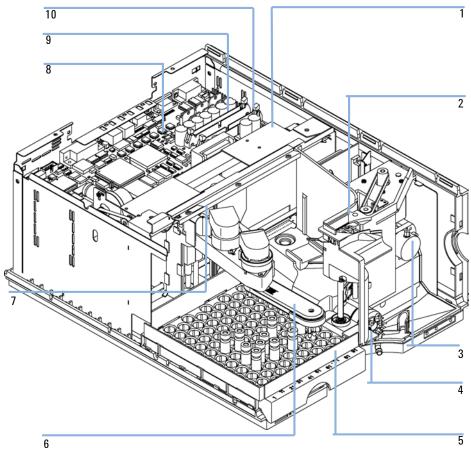



Figure 27 Autosampler Main Assemblies

| ltem | Description                                                                                                                                                                     | Part Number                               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1    | Transport assembly for G1329A-2260A                                                                                                                                             | G1329-60009                               |
| 2    | Sampling unit assembly for G1329A<br>Sampling unit assembly for G2260A<br>(The assy comes without injection valve and analytical head)                                          | G1329-60008<br>G2260-60008                |
| 3    | Analytical head assembly (100 μl) for G1329A and G1329B<br>Preparative head assembly (900 μl) for G1329A (P<200Bar)<br>Preparative head assembly (900 μl) for G2260A (P<400Bar) | 01078-60003<br>G1313-60007<br>G2260-60007 |
| 4    | Injection valve assembly for G1329A<br>Injection valve assembly for G1329B<br>Injection valve assembly for G2260A                                                               | 0101-0921<br>0101-1422<br>0101-1267       |
| 5    | Vial tray, thermostatted (see "Vial Trays" on page 199)                                                                                                                         | G1329-60011                               |
| 6    | Gripper assembly                                                                                                                                                                | G1313-60010                               |
| 7    | Illumination assembly                                                                                                                                                           | G1367-60040                               |
| 8    | Autosampler Main Board (ASM) for G1329A and 2260A<br>Autosampler Main Board (ASM) for G1329B                                                                                    | G1329-69530<br>G1329-66540                |
|      | Standoff - GPIB connector (part not shown)                                                                                                                                      | 0380-0643                                 |
|      | Standoff - remote connector (part not shown)                                                                                                                                    | 1251-7788                                 |
| 9    | Ribbon cable, sample transport                                                                                                                                                  | G1313-81601                               |
| 10   | Ribbon cable, sampling unit                                                                                                                                                     | G1313-81602                               |
|      | Sampler - TCC cap (380 mm 0.1 mm id) for G1329A<br>Sampler - Column cap (600 mm, 0.5 mm id) for G2260A                                                                          | 01090-87306<br>G2260-87300                |
|      | Power supply assembly (part not shown)                                                                                                                                          | 0950-2528                                 |
|      | Screw M4, 8 mm lg - power supply (part not shown)                                                                                                                               | 0515-0910                                 |
|      | BCD board (not shown)                                                                                                                                                           | G1351-68701                               |
|      | Cable, autosampler to ALS thermostat (part not shown)                                                                                                                           | G1330-81600                               |

| Table 28 | Autosampler Main Assemblies |
|----------|-----------------------------|
|----------|-----------------------------|

9 Parts and Materials for Maintenance Analytical-Head Assembly

# **Analytical-Head Assembly**

| ltem | Description                                                   | Part Number |
|------|---------------------------------------------------------------|-------------|
|      | Analytical head assembly, includes items 1 – 6                | 01078-60003 |
| 1    | Plunger assembly                                              | 5063-6586   |
| 2    | Screw M4, 40 mm lg, for mounting of assembly                  | 0515-0850   |
| 3    | Adapter                                                       | 01078-23202 |
| 4    | Support seal assembly                                         | 5001-3739   |
|      | Metering seal (pack of 2)                                     | 5063-6589   |
| 6    | Head body                                                     | 01078-27710 |
| 7    | Screw M5, 60 mm lg, for mounting of assembly (not shown here) | 0515-2118   |

### Table 29 Analytical-Head Assembly (100 µl) for G1329A / G1329B

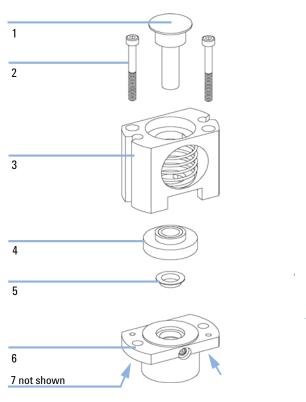



Figure 28 Analytical-Head Assembly

#### **9** Parts and Materials for Maintenance

**Analytical-Head Assembly** 

| ltem | Description                                                   | Part Number |
|------|---------------------------------------------------------------|-------------|
|      | Analytical head assembly 900 $\mu l^1,$ includes items $1-6$  | G1313-60007 |
| 1    | Plunger assembly, 900 µl                                      | 5062-8587   |
| 2    | Screws                                                        | 0515-0850   |
| 3    | Adapter                                                       | 01078-23202 |
| 4    | Support seal assembly, 900 µl                                 | 5001-3764   |
| 5    | Metering seal, 900 µl                                         | 0905-1294   |
| 6    | Head body, 900 µl                                             | G1313-27700 |
| 7    | Screw M5, 60 mm lg, for mounting of assembly (not shown here) | 0515-2118   |

### Table 30Preparative-Head Assembly (900 µl) for G1329A only

<sup>1</sup> This head is limited to 200 Bars

| Table 31 | Preparative-Head Assembly (900 μl) for G2260A |
|----------|-----------------------------------------------|
|----------|-----------------------------------------------|

| ltem | Description                                                   | Part Number |
|------|---------------------------------------------------------------|-------------|
|      | Preparative head assembly 900 $\mu l^1,$ includes items $1-6$ | G2260-60007 |
| 1    | Plunger assembly, 900 µl                                      | 5062-8587   |
| 2    | Screws                                                        | 0515-0850   |
| 3    | Adapter                                                       | 01078-23202 |
| 4    | Support seal assembly, 900 µl                                 | 5001-3764   |
| 5    | Metering seal, 900 µl                                         | 0905-1294   |
| 6    | Head body, 900 µl                                             | G2260-27700 |
| 7    | Screw M5, 60 mm lg, for mounting of assembly (not shown here) | 0515-2118   |

 $^1~$  This head is limited to 400 Bars. It can only be assembled on a sampling unit with the description "supports 900  $\mu l$  at 400 Bar.

# **Vial Trays**

| ltem | Description                                                   | Part Number |
|------|---------------------------------------------------------------|-------------|
| 1    | Adapter, air channel                                          | G1329-43200 |
| 2    | Tray for 100 × 2-ml vials, thermostattable                    | G1329-60011 |
| 3    | Spring                                                        | G1313-09101 |
| 4    | Tray base for G1329A / G1329B / G2260A (includes items 4, 5). | G1329-60000 |
| 5    | Spring stud                                                   | 0570-1574   |
|      | Halftray for 40 × 2-ml vials (not shown)                      | G1313-44512 |
|      | Halftray for 15 × 6-ml vials (not shown)                      | G1313-44513 |

 Table 32
 Thermostatted Autosampler Vial Trays and Tray Base

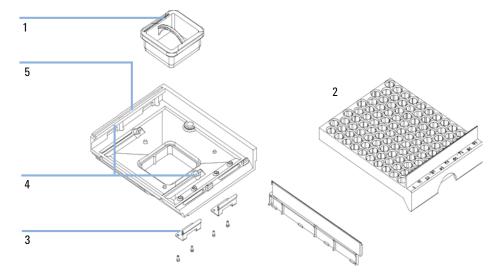



Figure 29 Thermostatted Autosampler Vial Trays and Tray Base

### **9** Parts and Materials for Maintenance

Standard Autosampler Accessory Kit G1329-68725

### Standard Autosampler Accessory Kit G1329-68725

| Description                                           | Part Number |
|-------------------------------------------------------|-------------|
| Flexible tubing assy (120 cm)                         | 5063-6527   |
| Filter promo kit                                      | no PN       |
| CAN cable, 1 m long                                   | 5181-1519   |
| Screw cap vials, clear 100/pk                         | 5182-0714   |
| Blue screw caps 100/pk                                | 5182-0717   |
| Label halftray                                        | no PN       |
| Vial instruction sheet                                | no PN       |
| Wrenches 1/4 - 5/16 inch                              | 8710-0510   |
| Rheotool socket wrench 1/4 inch                       | 8710-2391   |
| Hex key 4 mm, 15 cm long, T-handle                    | 8710-2392   |
| Hex key 9/64 mm, 15 cm long, T- handle                | 8710-2394   |
| Hex key 2.5 mm, 15 cm long, straight handle           | 8710-2412   |
| Finger caps x3 (reorder gives pack of 15)             | 5063-6506   |
| Front door cooled autosampler                         | no PN       |
| Air channel adapter                                   | G1329-43200 |
| Cover insulation                                      | no PN       |
| Capillary 0.17 mm, 900 mm                             | G1329-87300 |
| Capillary heat exchanger                              | 01090-87306 |
| Note for Agilent 1200 Series Autosampler door upgrade | no PN       |

 Table 33
 G1329A/G1329 B - Standard Autosampler Accessory Kit Contents G1329-68725

### **Preparative Autosampler Accessory Kit G2260-68705**

| Description                                 | Part Number |
|---------------------------------------------|-------------|
| Flexible tubing assy (120 cm)               | 5063-6527   |
| Filter promo kit                            | no PN       |
| CAN cable, 1 m long                         | 5181-1519   |
| Screw cap vials, clear 100/pk               | 5182-0714   |
| Blue screw caps 100/pk                      | 5182-0717   |
| Label halftray                              | no PN       |
| Wrenches 1/4 - 5/16 inch                    | 8710-0510   |
| Rheotool socket wrench 1/4 inch             | 8710-2391   |
| Hex key 4 mm, 15 cm long, T-handle          | 8710-2392   |
| Hex key 9/64 mm, 15 cm long, T- handle      | 8710-2394   |
| Hex key 2.5 mm, 15 cm long, straight handle | 8710-2412   |
| Finger caps x3 (reorder gives pack of 15)   | 5063-6506   |
| Front door cooled autosampler               | no PN       |
| Air channel adapter                         | G1329-43200 |
| Tray for 15 x 6 ml vials (x2)               | G1313-44513 |
| Union, loop extension                       | 5022-2133   |
| Seat extension capillary (500 µl)           | G1313-87307 |
| Seat extension capillary (1500 µl)          | G1313-87308 |
| Sampler - Column capillary                  | G2260-87300 |
| Pump - Sampler capillary                    | G2260-87301 |

 Table 34
 G2260A - Preparative Autosampler Accessory Kit Contents G2260-68705

9 Parts and Materials for Maintenance Maintenance Kit G1313-68730 for G1329A

# Maintenance Kit G1313-68730 for G1329A

| ltem | Description                          | Part Number |
|------|--------------------------------------|-------------|
| 1    | Rotor seal (Vespel)                  | 0100-1853   |
| 2    | Needle assembly (100 µl)             | G1313-87201 |
| 3    | Needle-seat assembly 0.17 mm, 2.3 µl | G1313-87101 |

### Table 35 Maintenance Kit for G1329A

### Maintenance Kit G1313-68719 for G1329B

| ltem | Description                  | Part Number |
|------|------------------------------|-------------|
| 1    | Rotor seal (PEEK)            | 0101-1416   |
| 2    | Needle assembly (100 µl)     | G1313-87201 |
| 3    | Needle-seat assembly 0.17 mm | G1313-87101 |
| 4    | Metering seal (pack of 2)    | 5063-6589   |
| 5    | Finger caps (pack of 15)     | 5063-6506   |

### Table 36 Maintenance Kit for G1329A

9 Parts and Materials for Maintenance Multi-Draw Kit G1313-6871

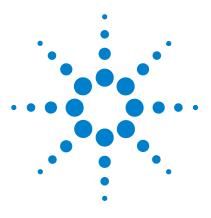
# Multi-Draw Kit G1313-6871

| ltem | Description                        | Part Number |
|------|------------------------------------|-------------|
| 1    | Seat capillary, 500 µl, 0.5 mm id  | G1313-87307 |
| 2    | Seat capillary, 1500 µl, 0.9 mm id | G1313-87308 |
| 2    | Seat capillary, 5000 µl            | 0101-0301   |
| 3    | Union                              | 5022-6515   |

### Table 37 Multi-Draw Kit for G1329A and G1329B

# 900 $\mu$ l Injection Upgrade Kit G1363A for G1329A

| ltem | Description             | Part Number |
|------|-------------------------|-------------|
| 1    | Analytical Head, 900 µl | G1313-60007 |
| 2    | Loop Extension, 900 µl  | G1313-87303 |
| 3    | Union, loop extension   | 5022-2133   |
| 4    | Needle, 900 µl          | G1313-87202 |


 Table 38
 900 µl Injection Upgrade Kit for G1329A only

9 Parts and Materials for Maintenance External Tray G1313-60004

# External Tray G1313-60004

### Table 39 External Tray

| ltem | Description   | Part Number |
|------|---------------|-------------|
| 1    | External tray | G1313-60004 |
| 2    | Disposal tube | G1313-27302 |



# 10 Parts for Repair

Sampling Unit Assembly 208 Injection-Valve Assembly 210 Sheet Metal Kit 212 Cover Parts 213 Foam Parts 214 Power and Status Light Pipes 215 Leak System Parts 216



### **10** Parts for Repair

**Sampling Unit Assembly** 

# **Sampling Unit Assembly**

| ltem | Description                                                                                                                                                                     | Part Number                               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|      | Sampling unit assembly for G1329A and G1329B<br>Sampling unit assembly for G2260A<br>(The assy comes without injection valve and analytical head)                               | G1329-60008<br>G2260-60008                |
| 1    | Sampling unit connector board (SUD)                                                                                                                                             | G1313-66503                               |
| 2    | Belt gear for metering unit and needle arm                                                                                                                                      | 1500-0697                                 |
| 3    | Stepper motor for metering unit and needle arm                                                                                                                                  | 5062-8590                                 |
| 4    | Loop capillary (100 μl) for G1329A /G1329B/ G2260A<br>Loop ext. capillary (900 μl) for G1329A / G2260A<br>Union for (900 μl) loop extension capillary                           | 01078-87302<br>G1313-87303<br>5022-2133   |
| 5    | Analytical head assembly (100 μl) for G1329A and G1329B<br>Preparative head assembly (900 μl) for G1329A (P<200Bar)<br>Preparative head assembly (900 μl) for G2260A (P<400Bar) | 01078-60003<br>G1313-60007<br>G2260-60007 |
| 6    | Inj. valve - Anal. head cap (160 mm 0.25 mm) for G1329A<br>Inj. valve - Prep. head cap (160 mm 0.50 mm) for G2260A                                                              | G1313-87301<br>G2258-87301                |
| 7    | Injection valve assembly for G1329A<br>Injection valve assembly for G1329B<br>Injection valve assembly for G2260A                                                               | 0101-0921<br>0101-1422<br>0101-1267       |
| 8    | Leak sensor                                                                                                                                                                     | 5061-3356                                 |
| 9    | Waste tube injection valve assy (120 mm) for G1329A/G1329B/G2260A                                                                                                               | G1313-87300                               |
| 10   | Safety cover                                                                                                                                                                    | G1329-44115                               |
| 11   | Needle-seat assy (0.17 mm i.d 2.3 µl) for G1329A/B (STANDARD)<br>Needle-seat assy (0.12 mm i.d 1.2 µl) for G1329A/BNeedle-seat assy<br>(0.50 mm i.d 20 µl) for G2260A           | G1313-87101<br>G1313-87103<br>G2260-87101 |
| 12   | Seat adapter                                                                                                                                                                    | G1313-43204                               |
| 13   | Safety flap                                                                                                                                                                     | G1313-44106                               |
| 14   | Flex board                                                                                                                                                                      | G1313-68715                               |

### Table 40 Autosampler Sampling Unit Assembly

### Parts for Repair 10 Sampling Unit Assembly

| ltem | Description                                                              | Part Number |
|------|--------------------------------------------------------------------------|-------------|
| 15   | Needle assembly for G1313-87101 or G1313-87103 needle-seat               | G1313-87201 |
|      | Needle assembly for G1329-87101 or G1329-87103 needle seat               | G1329-80001 |
|      | Needle assembly (900 µl loop capillary) for G1313-87101 needle seat      | G1313-87202 |
|      | Needle assembly (900 $\mu l$ loop capillary) for G2260-87101 needle-seat | G2260-87201 |
|      | Clamp Kit (includes needle clamp and 2 x clamp screw)                    | G1313-68713 |

### Table 40 Autosampler Sampling Unit Assembly

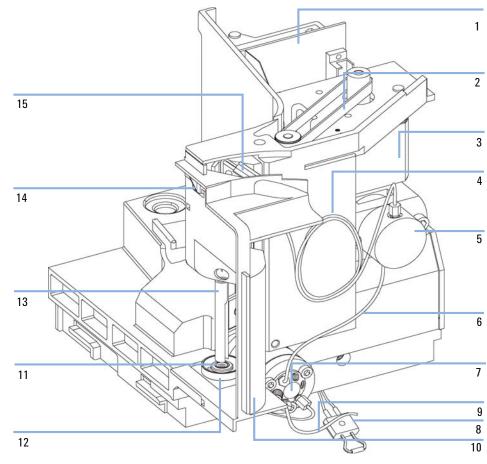



Figure 30 Autosampler Sampling Unit Assembly

### **10** Parts for Repair

**Injection-Valve Assembly** 

# **Injection-Valve Assembly**

| ltem | Description                                   | Part Number |
|------|-----------------------------------------------|-------------|
| 1    | Injection-valve assembly, includes items1 – 6 | 0101-0921   |
| 2    | Isolation seal                                | 0100-1852   |
| 3    | Rotor seal (Vespel)                           | 0100-1853   |
| 3    | Rotor seal (Tefzel)                           | 0100-1849   |
| 4    | Stator face                                   | 0100-1851   |
| 5    | Stator head                                   | 0100-1850   |
| 6    | Stator screws                                 | 1535-4857   |

### Table 41 Injection-Valve Assembly for G1329A

### Table 42 Injection-Valve Assembly for G1329B

| ltem | Description                                             | Part Number |
|------|---------------------------------------------------------|-------------|
| 1    | $^{1}$ Injection-valve assembly, includes items 2 $-$ 5 | 0101-1422   |
| 2    | Isolation seal                                          | 0100-1852   |
| 3    | Rotor seal (PEEK) includes 3 screws 1535-4857           | 0101-1416   |
| 5    | Stator head                                             | 0101-1417   |
| 6    | Stator screws                                           | 1535-4857   |

<sup>1</sup> item 4 missing: 0101-1422 does not contain a stator face

| Part Number |
|-------------|
| 0101-1267   |
| 0100-1852   |
| 0101-1268   |
| 0100-2195   |
| 1535-4857   |
|             |

 Table 43
 Preparative Injection-Valve Assembly for G2260A

<sup>1</sup> MBB (Make Before Brake) is a trademark by Rheodyne

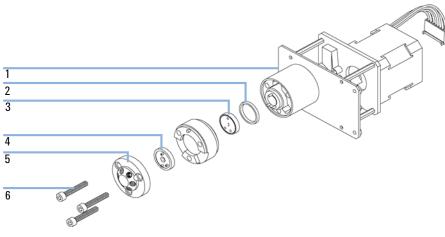



Figure 31 Injection-Valve Assembly

# **Sheet Metal Kit**

| Table 44 | Sheet Metal |
|----------|-------------|
|          | onoot wotar |

| ltem | Description                                              | Part Number |
|------|----------------------------------------------------------|-------------|
| 1    | Slot cover                                               | 5001-3772   |
| 2    | Screw cover                                              | 5022-2112   |
| 3    | Autosampler Sheet metal kit for G1329A / G1329B / G2260A | G1329-68701 |

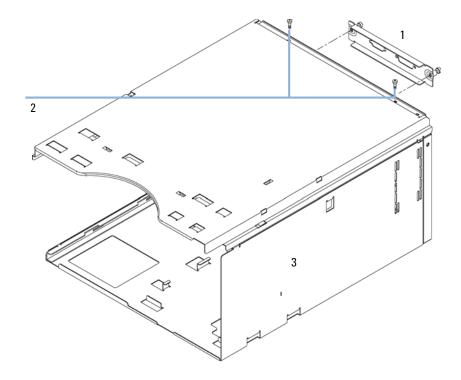



Figure 32 Sheet Metal Kit

# **Cover Parts**

| ltem | Description                                                                                     | Part Number |
|------|-------------------------------------------------------------------------------------------------|-------------|
| 1    | Autosampler Cover kit for G1329A / G1329B / G2260A<br>(include base, side panels and top cover) | G1329-68713 |
|      | Name plate for Agilent 1200 Series                                                              | 5042-8901   |
|      | Transparent front cover                                                                         | G1313-68714 |
|      | Door repair kit (includes transparent side and front door)                                      | G1329-68727 |
|      | Light protection kit (includes opaque side and front door, opaque front cover)                  | G1329-68718 |

### Table 45 Covers

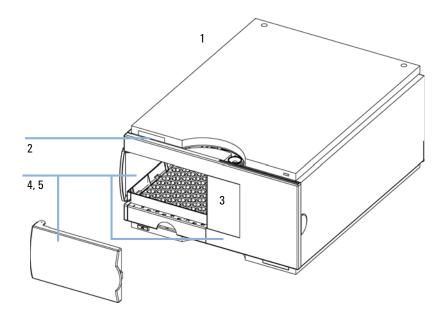



Figure 33 Cover Parts

# **Foam Parts**

| ltem | Description                      | Part Number    |
|------|----------------------------------|----------------|
|      | Foam kit, includes items 2 and 3 | G1313-68702    |
| 1    | Board guides                     | 5041-8395      |
| 2    | Top foam                         | Order foam kit |
| 3    | Bottom foam                      | Order foam kit |

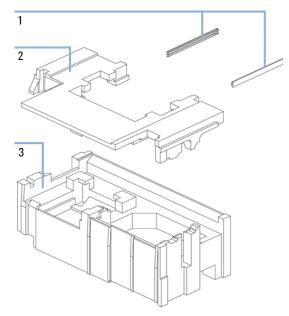



Figure 34 Foam Parts

# **Power and Status Light Pipes**

| ltem | Description               | Part Number |
|------|---------------------------|-------------|
| 1    | Power switch coupler      | 5041-8383   |
| 2    | Light pipe — power switch | 5041-8382   |
| 3    | Power switch button       | 5041-8381   |
| 4    | Light pipe — status lamp  | 5041-8384   |

 Table 47
 Power and Status Light Pipes

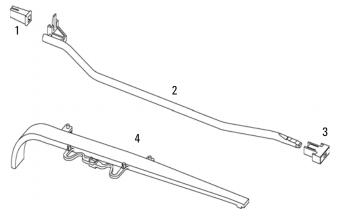



Figure 35 Power and Status Light Pipes

### **10** Parts for Repair

Leak System Parts

# Leak System Parts

| ltem | Description                     | Part Number |
|------|---------------------------------|-------------|
| 1    | Leak funnel holder              | 5041-8389   |
| 2    | Leak sensor                     | 5061-3356   |
| 3    | Leak plane                      | G1313-44511 |
| 4    | Leak tubing 120 mm <sup>1</sup> | 5062-2463   |
| 5    | Leak funnel                     | 5041-8388   |

### Table 48 Leak System Parts

 $^1$  reorder gives 5 m

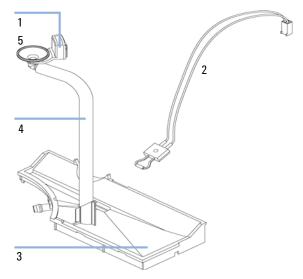
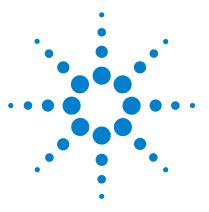




Figure 36 Leak System Parts



# 11 Identifying Cables

Cable Overview 218 Analog Cables 220 Remote Cables 223 BCD Cables 228 External Contact Cable 230 CAN/LAN Cables 231 Auxiliary Cable 232 RS-232 Cables 233



# **Cable Overview**

# NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

| Туре          | Description                                                                              | Part Number |
|---------------|------------------------------------------------------------------------------------------|-------------|
| Analog cables | 3390/2/3 integrators                                                                     | 01040-60101 |
|               | 3394/6 integrators                                                                       | 35900-60750 |
|               | Agilent <b>35900A</b> A/D converter                                                      | 35900-60750 |
|               | General purpose (spade lugs)                                                             | 01046-60105 |
| Remote cables | 3390 integrator                                                                          | 01046-60203 |
|               | 3392/3 integrators                                                                       | 01046-60206 |
|               | 3394 integrator                                                                          | 01046-60210 |
|               | 3396A (Series I) integrator                                                              | 03394-60600 |
|               | 3396 Series II / 3395A integrator, see details in section<br>"Remote Cables" on page 223 |             |
|               | 3396 Series III / 3395B integrator                                                       | 03396-61010 |
|               | HP 1050 modules / HP 1046A FLD                                                           | 5061-3378   |
|               | HP 1046A FLD                                                                             | 5061-3378   |
|               | Agilent <b>35900A</b> A/D converter                                                      | 5061-3378   |
|               | HP 1040 diode-array detector                                                             | 01046-60202 |
|               | HP 1090 liquid chromatographs                                                            | 01046-60202 |
|               | Signal distribution module                                                               | 01046-60202 |
| BCD cables    | 3396 integrator                                                                          | 03396-60560 |
|               | General purpose (spade Lugs)                                                             | G1351-81600 |
| Auxiliary     | Agilent 1100 Series vacuum degasser                                                      | G1322-61600 |

|   | 2 | h   | e | - 11 | 31 | 0 | 11  | /1  | 0 | ٩.4 |
|---|---|-----|---|------|----|---|-----|-----|---|-----|
| U | α | IJI |   | v    | v  | c | 1.1 | / 1 | c | V.  |
|   |   |     |   |      |    |   |     |     |   |     |

| Туре                 | Description                                                                                                                               | Part Number            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| CAN cables           | Agilent 1100/1200 module to module,0.5m lg<br>Agilent 1100/1200 module to module, 1m lg                                                   | 5181-1516<br>5181-1519 |
| External<br>contacts | Agilent 1100/1200 Series interface board to general purpose                                                                               | G1103-61611            |
| GPIB cable           | Agilent 1100/1200 module to ChemStation, 1 m<br>Agilent 1100/1200 module to ChemStation, 2 m                                              | 10833A<br>10833B       |
| RS-232 cable         | Agilent 1100/1200 module to a computer<br>This kit contains a 9-pin female to 9-pin female Null<br>Modem (printer) cable and one adapter. | 34398A                 |
| LAN cable            | Twisted pair cross over LAN cable, (shielded 3m long) (for point to point connection)                                                     | 5023-0203              |
|                      | Twisted pair cross over LAN cable, (shielded 7m long) (for point to point connection)                                                     | 5023-0202              |

# **Analog Cables**



One end of these cables provides a BNC connector to be connected to Agilent 1100/1200 Series modules. The other end depends on the instrument to which connection is being made.

### Agilent 1100/1200 to 3390/2/3 Integrators

| Connector 0104 | 0-6010′    | 1 | Pin 3390/2/3 | Pin Agilent<br>1100/1200 | Signal Name        |
|----------------|------------|---|--------------|--------------------------|--------------------|
|                |            |   | 1            | Shield                   | Ground             |
|                |            |   | 2            |                          | Not connected      |
| 8 7 6          |            |   | 3            | Center                   | Signal +           |
|                | BRN7<br>RD |   | 4            |                          | Connected to pin 6 |
| 32             | BRN        |   | 5            | Shield                   | Analog -           |
|                | BRN/<br>RD |   | 6            |                          | Connected to pin 4 |
|                |            |   | 7            |                          | Кеу                |
|                |            |   | 8            |                          | Not connected      |

| Connector35900-60750 | Pin 3394/6 | Pin Agilent<br>1100/1200 | Signal Name   |
|----------------------|------------|--------------------------|---------------|
|                      | 1          |                          | Not connected |
|                      | 2          | Shield                   | Analog -      |
|                      | 3          | Center                   | Analog +      |
|                      |            |                          |               |
|                      |            |                          |               |
|                      |            |                          |               |

# Agilent 1100/1200 to 3394/6 Integrators

### Agilent 1100/1200 to BNC Connector

| Connector8120-1840 | Pin BNC | Pin Agilent<br>1100/1200 | Signal Name |
|--------------------|---------|--------------------------|-------------|
|                    | Shield  | Shield                   | Analog -    |
|                    | Center  | Center                   | Analog +    |
|                    |         |                          |             |
|                    |         |                          |             |
|                    |         |                          |             |
|                    |         |                          |             |
|                    |         |                          |             |

| Connector01046-60105 | Pin 3394/6 | Pin Agilent<br>1100/1200 | Signal Name   |
|----------------------|------------|--------------------------|---------------|
|                      | 1          |                          | Not connected |
| 5                    | 2          | Black                    | Analog -      |
|                      | 3          | Red                      | Analog +      |
|                      | ≫          |                          |               |
|                      | ⇒          |                          |               |
|                      |            |                          |               |

# Agilent 1100/1200 to General Purpose

# **Remote Cables**



One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent 1100/1200 Series modules. The other end depends on the instrument to be connected to.

#### Agilent 1100/1200 to 3390 Integrators

| Connector 01046-60203 | Pin 3390 | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|-----------------------|----------|--------------------------|----------------|-----------------|
|                       | 2        | 1 - White                | Digital ground |                 |
|                       | NC       | 2 - Brown                | Prepare run    | Low             |
|                       | 7        | 3 - Gray                 | Start          | Low             |
|                       | NC       | 4 - Blue                 | Shut down      | Low             |
|                       | NC       | 5 - Pink                 | Not connected  |                 |
| (H)                   | NC       | 6 - Yellow               | Power on       | High            |
|                       | NC       | 7 - Red                  | Ready          | High            |
|                       | NC       | 8 - Green                | Stop           | Low             |
|                       | NC       | 9 - Black                | Start request  | Low             |

| Connector01046-60206 | Pin 3392/3 | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|----------------------|------------|--------------------------|----------------|-----------------|
|                      | 3          | 1 - White                | Digital ground |                 |
|                      | NC         | 2 - Brown                | Prepare run    | Low             |
|                      | 11         | 3 - Gray                 | Start          | Low             |
|                      | NC         | 4 - Blue                 | Shut down      | Low             |
|                      | NC         | 5 - Pink                 | Not connected  |                 |
|                      | NC         | 6 - Yellow               | Power on       | High            |
|                      | 9          | 7 - Red                  | Ready          | High            |
|                      | 1          | 8 - Green                | Stop           | Low             |
|                      | NC         | 9 - Black                | Start request  | Low             |

# Agilent 1100/1200 to 3392/3 Integrators

### Agilent 1100/1200 to 3394 Integrators

| Connector01046-60210 | Pin 3394 | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|----------------------|----------|--------------------------|----------------|-----------------|
|                      | 9        | 1 - White                | Digital ground |                 |
| 80,15                | NC       | 2 - Brown                | Prepare run    | Low             |
|                      | 3        | 3 - Gray                 | Start          | Low             |
|                      | NC       | 4 - Blue                 | Shut down      | Low             |
|                      | NC       | 5 - Pink                 | Not connected  |                 |
|                      | NC       | 6 - Yellow               | Power on       | High            |
|                      | 5,14     | 7 - Red                  | Ready          | High            |
|                      | 6        | 8 - Green                | Stop           | Low             |
|                      | 1        | 9 - Black                | Start request  | Low             |
|                      | 13, 15   |                          | Not connected  |                 |

#### NOTE

START and STOP are connected via diodes to pin 3 of the 3394 connector.

| Connector03394-60600 | Pin 3394 | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|----------------------|----------|--------------------------|----------------|-----------------|
|                      | 9        | 1 - White                | Digital ground |                 |
| 80 15                | NC       | 2 - Brown                | Prepare run    | Low             |
|                      | 3        | 3 - Gray                 | Start          | Low             |
|                      | NC       | 4 - Blue                 | Shut down      | Low             |
|                      | NC       | 5 - Pink                 | Not connected  |                 |
|                      | NC       | 6 - Yellow               | Power on       | High            |
|                      | 5,14     | 7 - Red                  | Ready          | High            |
|                      | 1        | 8 - Green                | Stop           | Low             |
|                      | NC       | 9 - Black                | Start request  | Low             |
|                      | 13, 15   |                          | Not connected  |                 |

### Agilent 1100/1200 to 3396A Integrators

### Agilent 1100/1200 to 3396 Series II / 3395A Integrators

Use the cable **part number: 03394-60600** and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

| Connector03396-61010 | Pin 33XX | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|----------------------|----------|--------------------------|----------------|-----------------|
|                      | 9        | 1 - White                | Digital ground |                 |
| 80 15                | NC       | 2 - Brown                | Prepare run    | Low             |
|                      | 3        | 3 - Gray                 | Start          | Low             |
|                      | NC       | 4 - Blue                 | Shut down      | Low             |
|                      | NC       | 5 - Pink                 | Not connected  |                 |
|                      | NC       | 6 - Yellow               | Power on       | High            |
|                      | 14       | 7 - Red                  | Ready          | High            |
|                      | 4        | 8 - Green                | Stop           | Low             |
|                      | NC       | 9 - Black                | Start request  | Low             |
|                      | 13, 15   |                          | Not connected  |                 |

### Agilent 1100/1200 to 3396 Series III / 3395B Integrators

### Agilent 1100/1200 to HP 1050, HP 1046A or Agilent 35900 A/D Converters

| Connector5061-3378 | Pin HP<br>1050/ | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|--------------------|-----------------|--------------------------|----------------|-----------------|
|                    | 1 - White       | 1 - White                | Digital ground |                 |
|                    | 2 - Brown       | 2 - Brown                | Prepare run    | Low             |
| 50 09              | 3 - Gray        | 3 - Gray                 | Start          | Low             |
|                    | 4 - Blue        | 4 - Blue                 | Shut down      | Low             |
|                    | 5 - Pink        | 5 - Pink                 | Not connected  |                 |
| 0                  | 6 - Yellow      | 6 - Yellow               | Power on       | High            |
|                    | 7 - Red         | 7 - Red                  | Ready          | High            |
|                    | 8 - Green       | 8 - Green                | Stop           | Low             |
|                    | 9 - Black       | 9 - Black                | Start request  | Low             |

| Connector01046-60202 | Pin HP 1090 | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|----------------------|-------------|--------------------------|----------------|-----------------|
|                      | 1           | 1 - White                | Digital ground |                 |
|                      | NC          | 2 - Brown                | Prepare run    | Low             |
| 8 7 6                | 4           | 3 - Gray                 | Start          | Low             |
|                      | 7           | 4 - Blue                 | Shut down      | Low             |
|                      | 8           | 5 - Pink                 | Not connected  |                 |
| <u> </u>             | NC          | 6 - Yellow               | Power on       | High            |
| 6                    | 3           | 7 - Red                  | Ready          | High            |
|                      | 6           | 8 - Green                | Stop           | Low             |
|                      | NC          | 9 - Black                | Start request  | Low             |

### Agilent 1100/1200 to HP 1090 LC or Signal Distribution Module

### Agilent 1100/1200 to General Purpose

| Connector01046-60201 | Pin Universal | Pin Agilent<br>1100/1200 | Signal Name    | Active<br>(TTL) |
|----------------------|---------------|--------------------------|----------------|-----------------|
|                      | ]             | 1 - White                | Digital ground |                 |
|                      |               | 2 - Brown                | Prepare run    | Low             |
|                      |               | 3 - Gray                 | Start          | Low             |
|                      |               | 4 - Blue                 | Shut down      | Low             |
|                      |               | 5 - Pink                 | Not connected  |                 |
|                      |               | 6 - Yellow               | Power on       | High            |
|                      |               | 7 - Red                  | Ready          | High            |
|                      |               | 8 - Green                | Stop           | Low             |
|                      |               | 9 - Black                | Start request  | Low             |

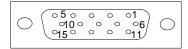
# **BCD Cables**



One end of these cables provides a 15-pin BCD connector to be connected to the Agilent 1200 Series modules. The other end depends on the instrument to be connected to

### **Agilent 1200 to General Purpose**

| Connector G1351-81600 | Wire Color    | Pin Agilent<br>1200 | Signal Name    | BCD Digit |
|-----------------------|---------------|---------------------|----------------|-----------|
|                       | Green         | 1                   | BCD 5          | 20        |
| J. Ber                | Violet        | 2                   | BCD 7          | 80        |
|                       | Blue          | 3                   | BCD 6          | 40        |
|                       | Yellow        | 4                   | BCD 4          | 10        |
|                       | Black         | 5                   | BCD 0          | 1         |
|                       | Orange        | 6                   | BCD 3          | 8         |
|                       | Red           | 7                   | BCD 2          | 4         |
|                       | Brown         | 8                   | BCD 1          | 2         |
|                       | Gray          | 9                   | Digital ground | Gray      |
|                       | Gray/pink     | 10                  | BCD 11         | 800       |
|                       | Red/blue      | 11                  | BCD 10         | 400       |
|                       | White/green   | 12                  | BCD 9          | 200       |
|                       | Brown/green   | 13                  | BCD 8          | 100       |
|                       | not connected | 14                  |                |           |
|                       | not connected | 15                  | + 5 V          | Low       |

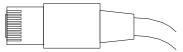

| Agilent | 1200 t | o 3396 | Integrators |
|---------|--------|--------|-------------|
|---------|--------|--------|-------------|

| Connector03396-60560  | Pin 3392/3 | Pin Agilent<br>1200 | Signal Name    | BCD Digit |
|-----------------------|------------|---------------------|----------------|-----------|
|                       | 1          | 1                   | BCD 5          | 20        |
| 8 = 15                | 2          | 2                   | BCD 7          | 80        |
|                       | 3          | 3                   | BCD 6          | 40        |
|                       | 4          | 4                   | BCD 4          | 10        |
| ● ○<br>● ○<br>↓ ● ● 9 | 5          | 5                   | BCD0           | 1         |
|                       | 6          | 6                   | BCD 3          | 8         |
|                       | 7          | 7                   | BCD 2          | 4         |
|                       | 8          | 8                   | BCD 1          | 2         |
|                       | 9          | 9                   | Digital ground |           |
|                       | NC         | 15                  | + 5 V          | Low       |

**11** Identifying Cables

**External Contact Cable** 

# **External Contact Cable**




One end of this cable provides a 15-pin plug to be connected to Agilent 1200 Series module's interface board. The other end is for general purpose.

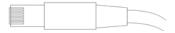
#### Agilent 1200 Series Interface Board to general purposes

| Connector G1103-61611 | Color        | Pin Agilent<br>1200 | Signal Name   |
|-----------------------|--------------|---------------------|---------------|
|                       | White        | 1                   | EXT 1         |
|                       | Brown        | 2                   | EXT 1         |
|                       | Green        | 3                   | EXT 2         |
|                       | Yellow       | 4                   | EXT 2         |
|                       | Grey         | 5                   | EXT 3         |
|                       | Pink         | 6                   | EXT 3         |
|                       | Blue         | 7                   | EXT 4         |
|                       | Red          | 8                   | EXT 4         |
|                       | Black        | 9                   | Not connected |
|                       | Violet       | 10                  | Not connected |
|                       | Grey/pink    | 11                  | Not connected |
|                       | Red/blue     | 12                  | Not connected |
|                       | White/green  | 13                  | Not connected |
|                       | Brown/green  | 14                  | Not connected |
|                       | White/yellow | 15                  | Not connected |

# **CAN/LAN Cables**



Both ends of this cable provide a modular plug to be connected to Agilent 1200 Series module's CAN or LAN connectors.


### **CAN Cables**

| Agilent 1200 module to module, 0.5 m  | 5181-1516   |
|---------------------------------------|-------------|
| Agilent 1200 module to module, 1 m    | 5181-1519   |
| Agilent 1200 module to control module | G1323-81600 |

### **LAN Cables**

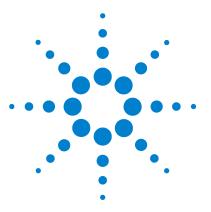
| Description                                                                    | Part number |
|--------------------------------------------------------------------------------|-------------|
| Cross-over network cable (shielded, 3 m long), (for point to point connection) | 5023-0203   |
| Twisted pair network cable (shielded, 7 m long) (for hub connections)          | 5023-0202   |

# **Auxiliary Cable**



One end of this cable provides a modular plug to be connected to the Agilent 1100 Series vacuum degasser. The other end is for general purpose.

#### Connector G1322-81600 Color **Pin Agilent Signal Name** 1100 White 1 Ground 2 Pressure signal Brown Green 3 Yellow 4 Grey 5 DC + 5 V IN 6 Pink Vent


### Agilent 1100 Series Degasser to general purposes

# **RS-232** Cables

| Description                                                                                                                                                                                                                            | Part number           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| RS-232 cable, instrument to PC, 9-to-9 pin (female) This cable<br>has special pin-out, and is not compatible with connecting<br>printers and plotters.                                                                                 | 24542U<br>G1530-60600 |
| RS-232 cable kit, 9-to-9 pin (female) and one adapter 9-pin<br>(male) 25-pin female. Suited for instrument to PC.                                                                                                                      | 34398A                |
| Cable Printer Serial & Parallel, is a SUB-D 9 pin female vs.<br>Centronics connector on the other end (NOT FOR FW<br>UPDATE).                                                                                                          | 5181-1529             |
| This kit contains a 9-pin female to 9-pin female Null Modem<br>(printer) cable and one adapter. Use the cable and adapter to<br>connect Agilent Technologies instruments with 9-pin male<br>RS-232 connectors to most PCs or printers. | 34398A                |

### **11** Identifying Cables

**RS-232** Cables



# 12 Configuring the Autosampler

Autosampler Control and Electronics236Position and Movement Sensors237Autosampler Main Board (ASM)238Firmware Description243Optional Interface Boards246Agilent 1100/1200 Series Interfaces250Setting the 8-bit Configuration Switch256Main Power Supply Assembly (Standard)261



# **Autosampler Control and Electronics**

The ASM board controls the vial-transport mechanism, sampling needle, metering unit, and high-speed injection valve. These devices are controlled by a versatile electronics design based upon a 68000 family processor which also contains battery backup RAM, flash ROM, a real time clock, and several communications options.

# **Position and Movement Sensors**

Position sensing of movement of autosampler components is done by sensors on the sample transport and sampling unit flex boards. The following sensors are used:

 Table 49
 Sample Transport Flex Board

| Sensor Type       | Number of Sensors | Position/Movement Sensed          |
|-------------------|-------------------|-----------------------------------|
| Reflection Sensor | 6                 | Vial tray identification          |
| Reflection Sensor | 1                 | Gripper initialization            |
| Reflection Sensor | 3                 | Transport assembly Initialization |

#### Table 50 Sampling Unit Flex Board

| Sensor Type       | Number of Sensors | Position/Movement Sensed                  |
|-------------------|-------------------|-------------------------------------------|
| IR light sensor   | 1                 | Metering device home (reference) position |
| Reflection sensor | 2                 | Needle end positions                      |
| Hall sensor       | 2                 | Front cover in position                   |
| Microswitch       | 2                 | Valve switching                           |

# Autosampler Main Board (ASM)

### **Common Electronics**

A common electronics and firmware design is used for all Agilent 1200 Series LC modules. This core design provides a basic set of functions to each module.

 Table 51
 Common Electronics

| Core-processor           | MC68332                                                   |  |  |  |  |
|--------------------------|-----------------------------------------------------------|--|--|--|--|
| Core-memory              | The core unit has 3 memory blocks:                        |  |  |  |  |
|                          | 128k *16 bit PSRAM                                        |  |  |  |  |
|                          | 1M*8 Flash memory                                         |  |  |  |  |
|                          | 32k*8 NVRAM                                               |  |  |  |  |
|                          | 24*8 serial NVRAM from the real time clock                |  |  |  |  |
| Communication Interfaces | The core unit directly supports the following interfaces: |  |  |  |  |
|                          | CAN bus                                                   |  |  |  |  |
|                          | GPIB                                                      |  |  |  |  |
|                          | RS232                                                     |  |  |  |  |
|                          | Remote                                                    |  |  |  |  |
|                          | MIO                                                       |  |  |  |  |

| ASIC —<br>Application-<br>Specific<br>Integrated Circuit | The application-specific integrated circuit (ASIC) provides interfacing to<br>external devices through drivers, including GPIB, CAN, APG Remote. It is<br>directly connected to the four control LEDs located near the connectors on<br>this board and the 8-bit configuration switch which is used to configure the<br>address for the GPIB communication, baud rate for RS-232 transfer, and so on.<br>Also, the ASIC controls and drives module specific functions and reads static<br>status signals. |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leak Converter                                           | Solvent leaking from the autosampler cools down the PTC. This changes the resistance of the PTC causing the leak converter to generate a leak signal. The leak converter consists of a PTC (for leak sensing) and an NTC (for ambient-temperature compensation). This configuration ensures ambient temperature changes do not affect the leak-sensing circuit.                                                                                                                                           |

- **Fan Drive** The fan speed (two speeds are possible) is controlled by the main processor according to the internal heat distribution inside the module. The fan provides a PWM signal which is proportional to the revolution. This fan status signal is used for diagnostics.
- **Electronic Fuses** The circuits that are connected to + 36 V are fused on the board electronically.
- **Onboard Battery** An onboard lithium battery buffers the electronic memories when the module is turned off. For safety information on lithium batteries see "Lithium Batteries Information" on page 268.

#### **Autosampler-Specific Electronics**

The autosampler specific functions provided by the electronics are:

- · closed loop control of four axis vial handling servos
- electric valve control
- Needle unit control
- metering device control

#### **Transport Unit Control**

The transport drive electronics use current-controlled pulse-width modulation (PWM) to drive the X, Z, ?, and gripper motors in closed-loop servo control mode. Dedicated electronics in the SGS L6506 provide the current-control loop. Commutation is done in FPGA logic. SGS L6201 SMT output drivers are used for all four stepper motors. Motor encoder signals are connected to the ASIC where the encoder quadrature decoded clock and the up/down signal are used in the FPGA to provide instantaneous stepper motor commutation with respect to the motor rotor position.

Wiring between the autosampler main board (ASM) and the motors and encoders uses a flat-band cable (64 pin) and a flex board on which 10 reflection light sensors are located. Six light sensors are used for vial-tray identification, one for gripper decoding, and three for decoding of the initialization position.

#### **12** Configuring the Autosampler

Autosampler Main Board (ASM)

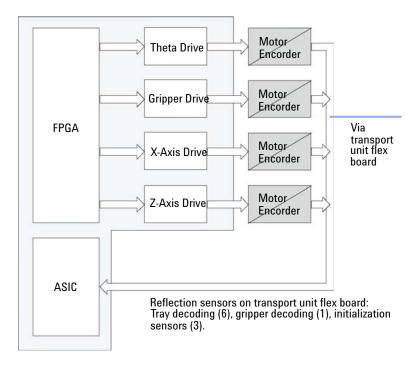



Figure 37 Transport unit control

#### **Sampling Unit Control**

Needle arm, metering device and valve motors are driven by controlled pulse-width modulation in the same way as the SGS L6506 (see Figure 37 on page 240). The motors require fast speed but do not require precise position control. Therefore, a closed loop servo system is not required. Commutation is done in FPGA logic. The needle arm, metering device and valve motors use SGS L6203 output drivers to deliver the higher currents required for fast movement or high torque.

The movement sensing of the valve motor is done by two microswitches. Two reflection light sensors are used to detect the end positions of the needle arm. One photo sensor is required to detect the home position of the metering device. Two hall sensors detect correct closure of the door (needle arm movement is interrupted if the door is open). All the sensors are mounted on

one flex board. The flex board and motors are connected to the sampling unit distribution board (SUD). The SUD board is connected to the autosampler main board (ASM) via a flat-band cable (64 pin).

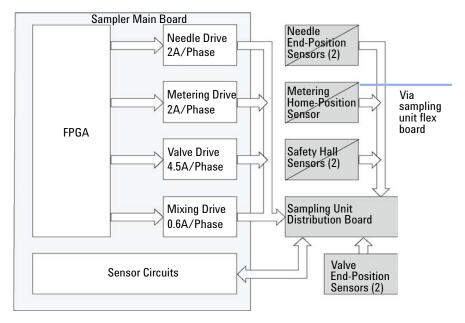



Figure 38 Sampling unit control

#### **12** Configuring the Autosampler

**Autosampler Main Board (ASM)** 

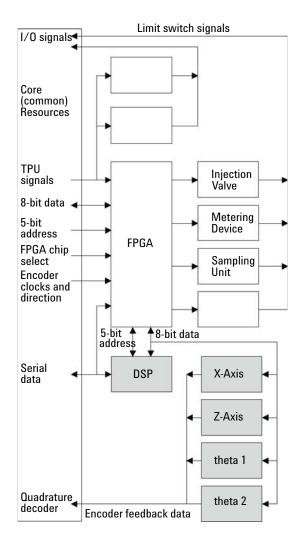



Figure 39 Autosampler block diagram

# **Firmware Description**

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called *resident system*,
- an instrument specific section, called *main system*.

#### **Resident System**

This resident section of the firmware is identical for all Agilent 1200 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C),
- memory management,
- ability to update the firmware of the 'main system'.

#### **Main System**

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C),
- memory management,
- ability to update the firmware of the 'resident system'.

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote
- error handling,
- diagnostic functions,
- or module specific functions like
  - internal events such as lamp control, filter movements,
  - raw data collection and conversion to absorbance.

#### **Firmware Updates**

Firmware updates can be done using your user interface:

- PC and Firmware Update Tool with local files on the hard disk or.
- Instant Pilot (G4208A) with files from a USB Flash Disk or
- handheld control module (G1323A/B) with files from a PC-card.

The file naming conventions are:

PPPP\_RVVV\_XX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02

XX is the build number of the firmware

For instructions on firmware updates refer to section *Replacing Firmware* in chapter *Maintenance* or use the documentation provided with the *Firmware Update Tools*.

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

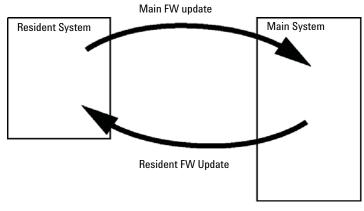



Figure 40 Firmware Update Mechanism

NOTE

#### NOTE

Some 1200 series modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

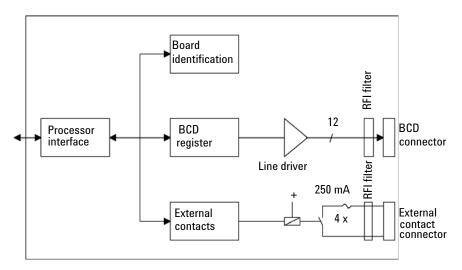
Some 1200 series SL-modules like the G1312B, G1314C, G1316B can be downgraded to lower versions by converting the module into a lower version, for example a G1312B SL pump is converted to a G1312A and looses the features of the G1312B.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

• http://www.chem.agilent.com/scripts/cag\_firmware.asp.

# **Optional Interface Boards**


# **BCD / External Contact Board**

The Agilent 1100/1200 Series modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Agilent 1100/1200 Series Interfaces" on page 250 for details.

 Table 52
 Optional Interface Boards

| Description                         | Part Number |  |  |  |
|-------------------------------------|-------------|--|--|--|
| BCD Board                           | G1351-68701 |  |  |  |
| Fuse 250 mA (four are on the board) | 2110-0004   |  |  |  |

The BCD board provides a BCD output for the bottle number of the Agilent 1200 Series autosampler and four external contacts. The external contact closure contacts are relay contacts. The maximum settings are: 30 V (AC/DC); 250 mA (fused).



There are general purpose cables available to connect the BCD output, see "BCD Cables" on page 228 and the external outputs, see "External Contact Cable" on page 230 to external devices.

| Pin | Signal name    | BCD digit |  |  |  |  |
|-----|----------------|-----------|--|--|--|--|
| 1   | BCD 5          | 20        |  |  |  |  |
| 2   | BCD 7          | 80        |  |  |  |  |
| 3   | BCD 6          | 40        |  |  |  |  |
| 4   | BCD 4          | 10        |  |  |  |  |
| 5   | BCD 0          | 1         |  |  |  |  |
| 6   | BCD 3          | 8         |  |  |  |  |
| 7   | BCD 2          | 4         |  |  |  |  |
| 8   | BCD 1          | 2         |  |  |  |  |
| 9   | Digital ground |           |  |  |  |  |
| 10  | BCD 11         | 800       |  |  |  |  |
| 11  | BCD 10         | 400       |  |  |  |  |
| 12  | BCD 9          | 200       |  |  |  |  |
| 13  | BCD 8          | 100       |  |  |  |  |
| 15  | +5V            | Low       |  |  |  |  |

**Table 53**Detailed connector layout (1200)

#### **Optional Interface Boards**

# LAN Communication Interface Board

The Agilent 1100/1200 Series modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Agilent 1100/1200 Series Interfaces" on page 250 for details.

| Description                       | Part Number           |
|-----------------------------------|-----------------------|
| LAN Communication Interface Board | G1369A<br>G1369-60001 |

### NOTE

One board is required per Agilent 1200 stack. It is recommended to add the LAN board to the detector with highest data rate.

## NOTE

For the configuration of the G1369A Lan Communication Interface card refer to its documenation.

The following cards can be used with the Agilent 1200 Series modules.

#### Table 54 LAN Boards

| Туре                  | Vendor               | Supported networks                                                               |
|-----------------------|----------------------|----------------------------------------------------------------------------------|
| G1369A<br>G1369-60001 | Agilent Technologies | Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) recommended for re-ordering |
| J4106A (*)            | Hewlett Packard      | Ethernet/802.3, RJ-45 (10Base-T(                                                 |
| J4105A (*)            | Hewlett Packard      | Token Ring/802.5, DB9, RJ-45 (10Base-T)                                          |
| J4100A (*)            | Hewlett Packard      | Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) + BNC (10Base2)             |

NOTE

These cards (\*) may be no longer orderable. Minimum firmware of these Hewlett Packard JetDirect cards is A.05.05.

| Table 55 | <b>Recommended LAN cables</b> |
|----------|-------------------------------|
|----------|-------------------------------|

| Cross-over network cable (shielded, 3 m long), (for point to point connection) | 5023-0203 |
|--------------------------------------------------------------------------------|-----------|
| Twisted pair network cable (shielded, 7 m long) (for hub connections)          | 5023-0202 |

Agilent 1100/1200 Series Interfaces

# Agilent 1100/1200 Series Interfaces

The Agilent 1100/1200 Series modules provide the following interfaces:

| Module                                                            | CAN | LAN/BCD<br>(optional) | LAN<br>(on-board) | GPIB | RS-232 | Analog | APG<br>Remote | Special                                                     |
|-------------------------------------------------------------------|-----|-----------------------|-------------------|------|--------|--------|---------------|-------------------------------------------------------------|
| Pumps                                                             |     |                       |                   |      |        |        |               |                                                             |
| G1310A ISO<br>G1311A QUAT<br>G1312A BIN<br>G2226A NANO            | 2   | Yes                   | No                | Yes  | Yes    | 1      | Yes           |                                                             |
| G1312B BIN SL                                                     | 2   | Yes                   | No                | Yes  | Yes    | 1      | Yes           |                                                             |
| G1361A PREP                                                       | 2   | Yes                   | No                | No   | Yes    | No     | Yes           | CAN-DC- OUT for<br>CAN slaves                               |
| Samplers                                                          |     |                       |                   |      |        |        |               |                                                             |
| G1313A STD                                                        | 2   | Yes                   | No                | Yes  | Yes    | No     | Yes           |                                                             |
| G1329A STD<br>G1329B STD SL<br>G2260A PREP                        | 2   | Yes                   | No                | Yes  | Yes    | No     | Yes           | THERMOSTAT for<br>G1330A/B                                  |
| G1364A FRC<br>G1367A/B/C/D<br>WPS<br>G1377A μWPS<br>G2258A D-LOOP | 2   | Yes                   | No                | Yes  | Yes    | No     | Yes           | THERMOSTAT for<br>G1330A/B<br>CAN-DC- OUT for<br>CAN slaves |
| Detectors                                                         |     |                       |                   |      |        |        |               |                                                             |
| G1314A/B VWD                                                      | 2   | Yes                   | No                | Yes  | Yes    | 1      | Yes           |                                                             |
| G1314C VWD SL                                                     | 2   | Yes                   | No                | No   | Yes    | 1      | Yes           |                                                             |
| G1314D VWD                                                        | 2   | No                    | Yes               | No   | Yes    | 1      | Yes           |                                                             |
| G1314E VWD SL+                                                    | 2   | No                    | Yes               | No   | Yes    | 1      | Yes           |                                                             |

 Table 56
 Agilent 1100/1200 Series Interfaces

#### Configuring the Autosampler 12

Agilent 1100/1200 Series Interfaces

| Module                                                     | CAN | LAN/BCD<br>(optional) | LAN<br>(on-board) | GPIB | RS-232 | Analog | APG<br>Remote | Special                                                                  |
|------------------------------------------------------------|-----|-----------------------|-------------------|------|--------|--------|---------------|--------------------------------------------------------------------------|
| G1315A/B DAD<br>G1365A/B MWD                               | 2   | Yes                   | No                | Yes  | Yes    | 2      | Yes           |                                                                          |
| G1315C DAD SL<br>G1365C MWD SL<br>G1315D DAD<br>G1365D MWD | 2   | No                    | Yes               | No   | Yes    | 2      | Yes           |                                                                          |
| G1321A FLD<br>G1362A RID                                   | 2   | Yes                   | No                | Yes  | Yes    | 1      | Yes           |                                                                          |
| G4280A ELSD                                                | No  | No                    | NO                | No   | Yes    | Yes    | Yes           | EXT Contact<br>AUTOZERO                                                  |
| Others                                                     |     |                       |                   |      |        |        |               |                                                                          |
| G1316A TCC                                                 | No  | No                    | No                | А    | Yes    | No     | Yes           |                                                                          |
| G1316B TCC SL                                              | No  | No                    | No                | А    | Yes    | No     | Yes           |                                                                          |
| G1322A DEG                                                 | No  | No                    | No                | No   | No     | No     | Yes           | AUX                                                                      |
| G1379A DEG                                                 | No  | No                    | No                | No   | Yes    | No     | No            | AUX                                                                      |
| G4240A CHIP CUBE                                           | 2   | Yes                   | No                | No   | Yes    | No     | Yes           | CAN-DC- OUT for<br>CAN slaves<br>THERMOSTAT for<br>G1330A/B (NOT<br>USED |

#### Table 56 Agilent 1100/1200 Series Interfaces

- CAN connectors as interface to other Agilent 1200 Series modules,
- GPIB connector as interface to the Agilent ChemStation,
- RS-232C as interface to a computer,
- REMOTE connector as interface to other Agilent products,
- analog output connector(s) for signal output, and
- interface slot for specific interfacing (external contacts, BCD, LAN and so on).

For identification and location of the connectors, see the module manual.

#### **12** Configuring the Autosampler

Agilent 1100/1200 Series Interfaces

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

#### CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

NOTE

If a Agilent 1100/1200 series detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

#### LAN

The 1100/1200 modules have either an interface slot for an LAN card (e.g. Agilent G1369A LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a connected PC with the appropriate control software (e.g. Agilent ChemStation).

#### GPIB

This interface is not available in all modules and may be removed from the modules in future.

The GPIB connector is used to connect the module with a computer. The address and control switches next to the GPIB connector determine the GPIB address of your module. The switches are preset to a default address and recognized by the operating software from Agilent Technologies.

#### **RS-232C** (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module next to the GPIB connector.

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

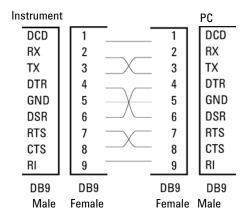



Figure 41 RS-232 Cable

### Analog Signal Output

The analog signal output (e.g. detector signal or pump pressure signal) can be distributed to a recording device. For details refer to the description of the main board of the module.

### **APG Remote**

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired-or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to SHUT DOWN the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the POWER ON state of all connected modules. Control of analysis is maintained Agilent 1100/1200 Series Interfaces

by signal readiness READY for next analysis, followed by START of run and optional STOP of run triggered on the respective lines. In addition PREPARE and START REQUEST may be issued. The signal level are defined as:

- standard TTL levels (0 V is logic true, + 5 V is false)
- fan-out is 10,
- input load is 2.2 kOhm against + 5 V, and
- output are open collector type, inputs/outputs (wired-or technique).

**NOTE** All common TTL circuits operate with a 5 volt power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5 V (with respect to the ground terminal).

| Table 57 | Remote Signal Distribution |
|----------|----------------------------|
|----------|----------------------------|

| Pin | Signal        | Description                                                                                                                                                                                |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | DGND          | Digital ground                                                                                                                                                                             |
| 2   | PREPARE       | (L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.                                               |
| 3   | START         | (L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.                                                                                    |
| 4   | SHUT DOWN     | (L) System has serious problem (for example, leak: stops pump).<br>Receiver is any module capable to reduce safety risk.                                                                   |
| 5   |               | Not used                                                                                                                                                                                   |
| 6   | POWER ON      | (H) All modules connected to system are switched on. Receiver is any module relying on operation of others.                                                                                |
| 7   | READY         | (H) System is ready for next analysis. Receiver is any sequence controller.                                                                                                                |
| 8   | STOP          | (L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities. |
| 9   | START REQUEST | (L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.                                                                               |

### **Special Interfaces**

Some 1100/1200 modules have module specific interfaces/connectors. They are described in the module documentation.

### **12** Configuring the Autosampler

**Setting the 8-bit Configuration Switch** 

# Setting the 8-bit Configuration Switch

The 8-bit configuration switch is located next to the GPIB connector. Switch settings provide configuration parameters for GPIB address, serial communication protocol and instrument specific initialization procedures.

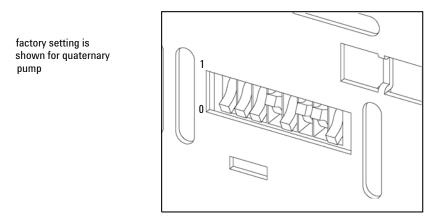



 Table 58
 Setting the 8-bit Configuration Switch

| Mode Select | 1 | 2 | 3            | 4                   | 5 | 6            | 7      | 8  |
|-------------|---|---|--------------|---------------------|---|--------------|--------|----|
| GPIB        | 0 | 0 |              | GPIB<br>Addres<br>s |   |              |        |    |
| RS-232C     | 0 | 1 | Baudra<br>te |                     |   | Data<br>Bits | Parity |    |
| Reserved    | 1 | 0 | Reserv<br>ed |                     |   |              |        |    |
| TEST/BOOT   | 1 | 1 | RSVD         | SYS                 |   | RSVD         | RSVD   | FC |

Switches 1 and 2 define which set of parameters (for example, for GPIB, RS-232C, and so on) will be changed. Once the change has been completed, the instrument must be powered up again in order to store the values in the non-volatile memory.

In the non-volatile memory, the parameters are kept, regardless of whether you turn the instrument OFF and ON again. They will be kept until the same set of parameters is changed and the power is reset. All other previously stored configuration settings will still remain in the non-volatile memory.

In this way, you can store more than one set of parameters using the same 8-bit configuration switch twice, for example, for both GPIB and RS-232C.

#### **GPIB Default Addresses**

If you just want to change the GPIB address and need a detailed procedure, refer to the *Installing Your Agilent ChemStation System* handbook.

Default GPIB address is set to the following addresses:

where 0 means that the switch is down and 1 means that the switch is up.

| Module                            | Address | Binary Address | Module                   | Address | Binary Address |
|-----------------------------------|---------|----------------|--------------------------|---------|----------------|
| G131x Pumps                       | 22      | 00010110       | DAD (HP 1040)            | 15      |                |
| G1313<br>Autosampler              | 28      | 00011100       | FLD (HP 1046)            | 12      | 00010111       |
| G1327<br>Thermostatted<br>Sampler | 28      | 00011100       | ECD (HP 1049)            | 11      |                |
| G1316 Column<br>Compartment       | 27      | 00011011       |                          |         |                |
| G1314 VWD                         | 24      | 00011000       | Pumps (HP 1050)          | 16      |                |
| G1315/G1365<br>DAD/MWD            | 26      | 00011010       | Autosampler (HP<br>1050) | 18      |                |
| G1321 FLD                         | 23      |                | VWD (HP 1050)            | 10      |                |
| G1362 RID                         | 29      | 00011101       | DAD (HP 1050)            | 17      |                |
|                                   |         |                | MWD (HP 1050)            | 17      |                |
| Agilent 8453A                     | 25      | 00011001       |                          |         |                |

 Table 59
 Default GPIB Adresses

**Setting the 8-bit Configuration Switch** 

### **RS-232C Communication Settings**

The communication protocol used in this instrument supports only hardware handshake (CTS/RTS).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the instrument must be powered up again in order to store the values in the non-volatile memory.

 Table 60
 Communication Settings for RS-232C Communication

| Mode Select | 1 | 2 | 3            | 4 | 5 | 6            | 7      | 8 |
|-------------|---|---|--------------|---|---|--------------|--------|---|
| RS-232      | 0 | 1 | Baudrat<br>e |   |   | Data<br>Bits | Parity |   |

Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.

| Table 61 | Baudrate | Settings |
|----------|----------|----------|
|----------|----------|----------|

| Switch<br>es |   |   |                | Switch<br>es |   |   | Baud Rate |
|--------------|---|---|----------------|--------------|---|---|-----------|
| 3            | 4 | 5 |                | 3            | 4 | 5 |           |
| 0            | 0 | 0 | 9600 (default) | 1            | 0 | 0 | 9600      |
| 0            | 0 | 1 | 1200           | 1            | 0 | 1 | 14400     |
| 0            | 1 | 0 | 2400           | 1            | 1 | 0 | 19200     |
| 0            | 1 | 1 | 4800           | 1            | 1 | 1 | 38400     |

| Table 62 | Data Bit Settings |
|----------|-------------------|
|----------|-------------------|

| Switch 6 | Data Word Size      |
|----------|---------------------|
| 0        | 7 Bit Communication |
| 1        | 8 Bit Communication |

One start bit and one stop bit are always used (not selectable).

Per default, the module will turn into 19200 baud, 8 data bit with no parity.

| Switches |   | Parity      |  |
|----------|---|-------------|--|
| 7        | 8 |             |  |
| 0        | 0 | No Parity   |  |
| 0        | 1 | Odd Parity  |  |
| 1        | 0 | Even Parity |  |

Table 63Parity Settings

### **Forced Cold Start Settings**

Switches 1 and 2 do not force storage of this set of parameters in non-volatile memory. Returning switches 1 and 2 to other positions (other than being both up) will allow for normal operation.

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are diagnose and repair log books which will not be erased.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

 Table 64
 Forced Cold Start Settings

| Mode Select | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
|-------------|---|---|---|---|---|---|---|---|--|
| TEST/BOOT   | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |  |

To return to normal operation, set switches back to your GPIB or RS-232C configuration settings.

### **Stay-Resident Settings**

Firmware update procedures may require this mode in case of firmware loading errors.

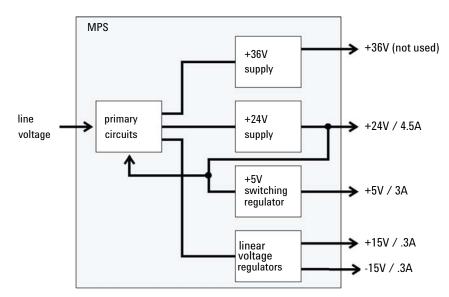
NOTE

**Setting the 8-bit Configuration Switch** 

Switches 1 and 2 do not force storage of this set of parameters in non-volatile memory. Returning switches 1 and 2 to other positions (other than being both up) will allow for normal operation.

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident part, that is, it is not operable as a specific module. It only uses basic functions of the operating system for example, for communication.

Table 65 Stay Resident Settings


| Mode Select | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------|---|---|---|---|---|---|---|---|
| TEST/BOOT   | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |

To return to normal operation, set switches back to your GPIB or RS-232C configuration settings.

# Main Power Supply Assembly (Standard)

The main power supply comprises a closed assembly and must not be disassembled further for safety reasons. In case of a defect, the entire power supply needs to be replaced.

The power supply provides all DC voltages used in the module. The line voltage can vary in a range from 100 – 240 volts AC ± 10 % and needs no manual setting.



### NOTE

To disconnect the instrument from line, unplug the power cord. The power supply still uses some power, even if the power switch on the front panel is turned off.

No accessible hardware fuse is needed because the main power supply is safe against any short circuits or overload conditions on the output lines. When overload conditions occur, the power supply turns off all output voltages. Turning the line power off and on again resets the power supply to normal operation if the cause of the overload condition has been removed. Main Power Supply Assembly (Standard)

An over-temperature sensor in the main power supply is used to turn off output voltages if the temperature exceeds the acceptable limit (for example, if the cooling fan of the instrument fails). To reset the main power supply to normal operating conditions, turn the instrument off, wait until it is approximately at ambient temperature and turn the instrument on again.

The following table gives the specifications of the main power supply.

| Maximum power | 160 VA / 130 W                                            | Continuous output |
|---------------|-----------------------------------------------------------|-------------------|
| Line Input    | $100-240$ volts AC $\pm$ 10 %, line frequency of 50/60 Hz | Wide ranging      |
| Pin 1         | Power Fail                                                | error message     |
| Pin 2         | AGND                                                      |                   |
| Pin 3         | -15 VDC                                                   |                   |
| Pin 4         | +15 VDC                                                   |                   |
| Pin 5         | PGND                                                      |                   |
| Pin 6         | PGND                                                      |                   |
| Pin 7         | +24 VDC                                                   |                   |
| Pin 8         | +24 VDC                                                   |                   |
| Pin 9         | +36 VDC                                                   | not used          |
| Pin 10        | +36 VDC                                                   | not used          |
| Pin 11        | DGND                                                      |                   |
| Pin 12        | + 5 VDC                                                   |                   |

**Table 66** Power Supply Specifications (Standard)



# 13 Appendix

General Safety Information 264 Lithium Batteries Information 268 Radio Interference 269 Sound Emission 270 Agilent Technologies on Internet 271



Agilent Technologies

# **General Safety Information**

# **General Safety Information**

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

### WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

# General

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

### Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

### **13** Appendix

**General Safety Information** 

When working with solvents please observe appropriate safety procedures (e.g. goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

# **Safety Symbols**

#### Table 67Safety Symbols

| Symbol    | Description                                                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\wedge$  | The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage. |
| \$        | Indicates dangerous voltages.                                                                                                                                                               |
|           | Indicates a protected ground terminal.                                                                                                                                                      |
|           | Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.                                                                        |
| <u>ki</u> | The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.                                                                   |

### WARNING

### A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

### CAUTION

#### A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

### **13** Appendix

**Lithium Batteries Information** 

# **Lithium Batteries Information**

### WARNING

Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

- Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.
- → Replace only with the same or equivalent type recommended by the equipment manufacturer.



### Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type.

→ Lever det brugte batteri tilbage til leverandøren.

WARNING

WARNING

#### Lithiumbatteri - Eksplosionsfare.

Ved udskiftning benyttes kun batteri som anbefalt av apparatfabrikanten.

→ Brukt batteri returneres appararleverandoren.

### NOTE

Bij dit apparaat zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggooien maar inleveren als KCA.

# **Radio Interference**

Cables supplied by Agilent Technoligies are screened to provide opitimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

### **Test and Measurement**

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

# **Sound Emission**

### **Manufacturer's Declaration**

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

### Appendix 13 Agilent Technologies on Internet

# **Agilent Technologies on Internet**

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Select Products/Chemical Analysis

It will provide also the latest firmware of the Agilent 1200 Series modules for download.

### A

Agilent Lab Advisor Software 70 on internet 271 air circulation 26 algae information 52 ambient operating temperature 27 ambient non-operating temperature 27 analog cable 218, 220 signal output 253 analytical head 14 APG remote connector 253 ASIC 238 ASM board 238 autosampler accessory kit contents 200, 201 autosampler control 236 autosampler main board 238 auxiliary 218. 232 cable

### B

239 battery safety information 268 baudrate setting 258 BCD board external contacts 246 BCD cable 218, 228 bench space 26, 26 board HP JetDirect card 248 boards

LAN card 248 bypass 11 bypassing the autosampler 56

### C

cable 218, 220 analog auxiliary 218, 232 BCD 218, 228 CAN 231 connecting APG remote 38.39 connecting the ChemStation 38, 39 connecting the power 38, 39 38, 39 connecting CAN 38, 39 connecting GPIB connecting LAN 38.39 external contact 230 219 external contacts GPIB 219 219, 231 LAN remote 218, 223 RS-232 219, 233 cables overview 218 CAN 231 cable interface 252 capillaries 47 change needle 91 change metering seal 93 changing serial number and type 174 ChemStation changing serial number and type 175

recover type 183 choice of vials and caps 66 cleaning 115 common electronics 238 compensation sensor open 78 compensation sensor short 78 condensation 26 configuration switch default settings 256 description and factory setting 256 Control Module changing serial number and type 178 recover type 184

### D

damaged packaging 34, 34 data bit settings 258 delay volume 50, 56, 56 delay 50 delivery checklist 34, 34 dimensions 27 draw speed 66, 66 DRAW 66

### Ε

eject speed 66, 66 EJECT 66 electrical connections descriptions of 19 electronics ASIC 238 ASM board 238 battery 239

electronic fuses 239 fan drive 239 sample transport control 239 sampling unit control 240 sensors 237 electrostatic discharge (ESD) 140, 142, 146, 169, 171, 187 environment 24, 26 error messages 74 error messages arm movement failed 80 compensation sensor open 78 compensation sensor short 78 fan failed 79 ignition without cover 79.79 initialization with vial 86 initialization failed 84 invalid vial position 88 leak sensor open 77 leak sensor short 77 leak 76 metering home failed 84 missing vial 83 missing wash vial 87 motor failed 85 needle down failed 82 needle up failed 82 remote timeout 75 safety flap missing 86 shut-down 75 timeout 74 valve to bypass failed 81 valve to mainpass failed 81 vial in gripper 87 ESD protection 114 external contact cable 219, 230 external contacts BCD board 246

### F

factory settings 256 failure 71 fan failed 79 firmware description 243 243 main system resident system 243 update tool 244 updates 244 flow connections 47 Forced Cold Start settings 259 frequency range 27 fuses 24 none in the instrument 261 on BCD board 246

### G

GPIB cable 219 default addresses 257 interface 252 gripper fingers 16 gripper alignment 97 gripper alignment 71 external vials 71 gripper-position verification 99

### Η

half trays 54 hall sensor 237 HP JetDirect card 248 humidity 27

illumination assembly 150

information 270 on sound emission injection valve 8, 13 injection volume precision 66 injection volumes less than 2 µl 66 injection volumes 66 injection sequence 11 injection valve 15 installation power cords 25 installing the autosampler sample trays 54 installing the sample tray 49 installing the thermostatted autosampler power cable and interface cable 45 preparation 44 installing the thermostatted autosampler interface cables 43 power cable 43 safety 40 tray cover and front cover 56 installing the tray cover front door 56 installing the autosampler flow connections 47 interface cables 40 safety 40 installing the thermostatted autosampler safety 43 installing the autosampler 40 power cable 40 Instant Pilot changing serial number and type 177 recover type 183 instrument status indicator 73 interface Agilent 1200 Series 250 253 analog signal output CAN 252 GPIB 252

remote 253 RS-232 252 special 255 internet 271 introduction to the autosampler 8 IR sensor 237

### L

Lab Advisor software 70 IAN cable 219, 231 communication interface board 248 leak sensor short 77 leak sensor open 77 leak 76 line frequency 27 line voltage 27 lithium batteries 268 LMD changing serial number and type 174 recover type and firmware 182 recovery type only 182 low volume injections 66 low-volume capillary kit 56

#### Μ

main board 238 mainpass 11 maintenance functions change needle 91 maintenance functions change metering seal 93 message ignition without cover 79.79 metering device 13, 66 metering seal 900 µl 198, 198 metering seal 196

microswitches 237 missing parts 34 multi-draw option 8

### Ν

needle drive 13, 14 Needle-Seat Assembly (Video Clip)" on page 124 92 non-operating altitude 27 non-operating temperature 27 numbering of vials 54

#### 0

| operating Altitude 27              |
|------------------------------------|
| operating temperature 27           |
| optimizing performance             |
| automated needle wash 66           |
| delay volume 66                    |
| delay-volume adjustment 66         |
| inject-valve seal 66               |
| low-volume capillary kit 66        |
| maintenance 66                     |
| optimizing performance             |
| bypassing the autosampler 56       |
| low-volume capillary kit 56        |
| minimizing delay volume 50, 56, 56 |

### P

park arm 94 park transport assembly 34 park transport assembly 56 parts and materials 900 µl injection upgrade kit 205 accessorv kit 200 autosampler sampling unit assembly 208 autosampler thermostat 208 cover parts 213 external tray 206

foam parts 214 216 leak system parts 194 main assemblies 202 maintenance kit multi-draw kit 204 preparative ALS acc. kit 201 sheet metal kit 212 standard autosampler accessory kit 200 transport assembly 208 tray cover parts 213 vial trays and tray base 199 parts and materials analytical-head assembly (optional 900 microlitre) 196 analytical-head assembly 196 autosampler main assemblies 195 injection-valve assembly 210 power and status light pipes 215 preparative-head assembly 198 performance specifications autosampler 28, 29, 30 preparative autosampler 31 physical specifications 34 27 physical specifications 73 power supply indicator 24 Power Consideration 27 power consumption power cords 25 power requirements 24 power supply description 261 preparative autosampler accessory kit contents 36 preparative head 14

### R

radio interference 269 recover wrong type 180

reflection sensor 237 remote timeout 75 remote 218. 223 cable interface 253 repair procedures 116 repairs ASM board 171 142 exchanging internal parts fan 169 injection-valve assembly 160 leak sensor 190 main board (ASM) 171 main cover 144 metering plunger 134 metering seal 134 metering-drive motor and belt 163 needle assembly 122 needle-drive motor and belt 166 needle-seat assembly 125 power supply 187 rotor seal 130 sampling unit 154 simple repairs 121 stator face 127 SUD board 185 top cover and foam 146, 148 transport assembly 152 restart without cover 79 **BS-232** 219 cable RS-232C cable 233 **RS-232** interface 252 258 settings

### S

safety class I 264 safety information

lithium batteries 268 safety 264. 264 general information standards 27 267 symbols sample trays 54 numbering of vial positions 55 sampling unit 13 sampling sequence 10 seals 196, 198, 198 metering seal sensors 237 serial number/type using ChemStation 175 using Control Mmodule 178 using Instant Pilot 177 using LMD software 174 serial number changing 174 settina baudrate 258 data bit 258 shipping 34, 56, 94 shut-down 75 simple repairs 121 site requirements 24 sound emission 270 special 255 interface specification 27 physical specifications 28.34 stack configuration 38, 39 rear view 38.39 standard autosampler accessory kit contents 35 stator 15 status indicators 72 status indicator 71

Stay-Resident settings 259 step commands 99 step functions 71 stepper motor 14 switch configuration settings 256

### T

temperature sensor 76 temperature 28 16 theta-axis timeout 74 transport assembly 16 transport mechanism 8 transport 56, 94 type and firmware recover with LMD 182 type recover with ChemStation 183 with Control Module 184 with Instant Pilot 183 with LMD 182 type changing 174

### U

unpacking the autosampler 34, 34

### V

valve capillaries 47 verifying the gripper position 99 vial contents temperature 28 vial numbering 54 vial racks 8 vial tray 56 vials 8 viscous samples 66, 66

voltage range 27 volume 50

### W

weight 26, 27

### X

X-axis 16

### Ζ

Z-axis 16

www.agilent.com

# In This Book

This manual contains service information about the Agilent 1200 Series Standard and Preparative Autosamplers.

The manual describes the following:

- introduction to the autosampler,
- site requirements and specifications
- installing the autosampler,
- configuring the autosampler,
- using the autosampler,
- optimizing performance,
- troubleshooting and diagnostics,
- maintenance,
- repairing the autosamplers,
- parts and materials,
- cable overview,
- safety and warranty

© Agilent Technologies 2007, 2008

Printed in Germany 11/08



G1329-90110

