

MODEL:

GAN GAG A180IV GAN GAG A220IV

Model		GAN GAG	A180IV	GAN GAG	A220IV
Functio	on	COOLING HEATING		COOLING HEATING	
Rated	Voltage	220-2	240V~	220-240V~	
Rated Frequency		30 / 100 / 75 30 / 100 / 72		25 / 100 / 82	25 / 100 / 74
Total Capacity (W) (Low / High / Standard)		2500 / 5800 / 5300	2300/6400/5850	2000/6800/6500	1600 / 8200 / 650
	Capacity (Btu/h) (Low / High /	8500 / 19800 /	0000 / 0400 / 5050	6800/23200/	5460 / 28000 /
Standa	ard)	18100	2300 / 6400 / 5850	22200	22200
Power	Input (W)	620/2200/1560	550 / 2250 / 1620	520/2450/2020	470/3250/180
Rated	Input (W)	2400	2450	3200	3250
Rated	Current (A)	10.48	10.71	14	14.2
Air Flov	w Volume (m ³ /h) (H/M/L)**	900 / 80	00/675	850 / 75	50 / 650
Dehum	nidifying Volume (l/h)	2	2	2	.4
EER/0	C.O.P (W/W)	3.40	/ 3.61	3.22	/ 3.61
Energy	Class	A/A		A / A	
	Model of Indoor Unit	GAN A	180IV	GAN A220IV	
	Fan Motor Speed (r/min) (H/M/L)	1400/1200/1100		1400/1200/1100	
	Output of Fan Motor (w)	4	5	45	
	Input of Heater (w)	/			/
	Fan Motor Capacitor (uF)	3			3
	Fan Motor RLA(A)	0.2		0.	.2
	Fan Type-Piece	Cross flow fan – 1		Cross flo	w fan – 1
	Diameter-Length (mm)	φ 96 2	X 797	φ 96 2	X 797
	Evaporator	Aluminum fin	-copper tube	Aluminum fin	-copper tube
	Pipe Diameter (mm)	Φ	7	Φ	7
Indoor	Row-Fin Gap(mm)	2-1	1.6	2-1	1.6
unit	Coil length (I) x height (H) x coil width (L)	787X40	00X25.4	787X400X25.4	
	Swing Motor Model	MP2	28AA	MP28AA	
	Output of Swing Motor (W)	2	2	2	
	Fuse (A)	PCB 3.15A Tra	ansformer 0.2A	PCB 3.15A Transformer 0.2A	
	Sound Pressure Level dB (A) (H/M/L)	48/4	3/40	48/43/40	
	Sound Power Level dB (A) (H/M/L)***	58/5	3/50	58/53/50	
	Dimension (W/H/D) (mm)	1020X3	19X234	1020X3	19X234
	Dimension of Package (L/W/H) (mm)	1078X3	25X390	1078X325X390	
	Net Weight /Gross Weight (kg)	13/17		13/17	

	Model of Outdoor Unit	GAG A180IV	GAG A220IV
	Compressor Manufacturer/trademark	SANYO	SANYO
	Compressor Model	C-6RVN93H0V	C-6RZ146H1B
	Compressor Type	Double Rotary	Double Rotary
	L.R.A. (A)	41	32
	Compressor RLA(A)	7	7.78
	Compressor Power Input(W)	1610	1500
	Overload Protector	1NT11L-3979	1NT11L-3979
	Throttling Method	Capillary	Capillary throttling
	Starting Method	Transducer starting	Transducer starting
	Working Temp Range (°C)	-15℃≪T≪46℃	-15℃≪T≪46℃
	Condenser	Aluminum fin-copper tube	Aluminum fin-copper tube
	Pipe Diameter (mm)	7	Φ9.52
	Rows-Fin Gap(mm)	2-1.4	2-1.4
	Coil length (I) x height (H) x coil width (L)	838×660×25.4	731X813X44
	Fan Motor Speed (rpm)	780/600	780/620
	Output of Fan Motor (W)	60W	60
Dutdoor	Fan Motor RLA(A)	0.26	0.3
nit	Fan Motor Capacitor (uF)	3	2
	Air Flow Volume of Outdoor Unit	2700	/
	Fan Type-Piece	Axial fan –1	Axial fan –1
	Fan Diameter (mm)	460	460
	Defrosting Method	Auto defrost	Auto defrost
	Climate Type	T1	T1
	Isolation	I	I
	Moisture Protection	IP24	IP24
	Permissible Excessive Operating Pressure for the Discharge Side(MPa)	3.8	3.8
	Permissible Excessive Operating Pressure for the Suction Side(MPa)	1.2	1.2
	Sound Pressure Level dB (A) (H/M/L)	56	58/55
	Sound Power Level dB (A) (H/WL)	66	68/65
	Dimension (W/H/D) (mm)	848X685X378	950X840X420
	Dimension of Package (L/W/H)(mm)	994X428X750	1100X450X905
	Net Weight /Gross Weight (kg)	52/57	68/73
	Refrigerant Charge (kg)	R410A/1.6	R410a/2.4
	Length (m)	5	5
	Gas additional charge(g/m)	22	50
Connec	Outer Liquid Pipe (mm)	<u>Ф</u> 6(1/4")	Φ9.52(3/8")
ion	Diameter Gas Pipe (mm)	Φ12(1/2")	Φ16(5/8")
Pipe	Max Height (m)	8	8
	Distance Length (m)	30	30

Γ

-6 -

Electrical Diagram GAN GAG A180IV

Electrical Diagram GAN GAG A220IV

Manual of functions of remote controller and operation method 6.1 Manual of functions of remote controller GAN A180 IV Controller Function of Indoor Unit **1**Temperature parameters Indoor setting temperature (Tpreset) Indoor ambient temperature (Tamb.) 2 System basic function 2. 1 Cooling mode In this mode, the indoor fan will run at preset fan speed. When the compressor stops for outdoor unit malfunction protection, the indoor fan will still run at preset fan speed. > Temp. can be set in the range of 16-30 $^{\circ}$ C. 2 2 Dehumidifying mode Indoor fan will run at low speed invariably. Swing will operate according to setting status. \succ Temp. can be set in the range of 16-30 $^{\circ}$ C. 2.3 Fan mode Indoor fan and swing will operate according to setting status. \succ Temp. can be set in the range of 16-30 $^\circ C$. 2. 4 Heat mode In heating mode, if compressor is running, indoor fan will delay to run to avoid cold air blowing. When compressor stops, blowing When compressor stops, blowing residual heating will enter. Blowing residual heat: In heating mode, the unit is stopped by remote controller, indoor fan will continue to run for 60s. Fan speed can not be switched during blowing residual heat. \nearrow Temp. can be set in the range of 16-30 $^\circ$ C . 2.5 Auto mode In this mode, the system selects COOL, HEAT and FAN mode automatically according to the change of ambient temperature. Protection function is the same as that in cooling and heating mode. 3 Other control 3.10N/OFF Each time the On/Off (1) button of the remote controller is pressed, the On/Off state will switch once. 3. 2 Modes selection Press the MODE button on the remote controller to select and display the following modes: AUTO, COOL, DRY, FAN, HEAT, AUTO. 3 3 TEMP. Setting Button Each time $\wedge ee$ button is pressed, the set temperature will be increased or decreased by 1°C.Adjusting range is 16~30 $^\circ\!\mathrm{C}$. In AUTO mode, this button does not function. 3.4 Manual Button (ON/OFF) If press AUTO button under off status of the unit, the unit will run under auto mode with swing. If press AUTO button under on status of the unit, the unit will be stopped. If remote controller command is given, the mian unit will run under the command. AUTO 0 3. 5 Timer function Manual switch 3.5.1 Timer on The system will continue to run if TIMER ON is set when the system is under ON status. If TIMER OFF is set when the system is under OFF status, the system will start to run under preset mode upon the time for auto start. 3.5.2 Timer off

If TIMER OFF is set when the system is under OFF status, the system will maintain its standby status upon the time for auto stop. If the TIMER OFF is set when the system is under ON status, the system will be stopped upon the tome for auto stop.

3.5.3 Set TIMER ON/OFF Simultaneously

If TIMER ON and TIMER OFF is set simultaneously when the system is under run status, the system will maintain its current operating status and be stopped upon the coming of preset time

If TIMER ON and TIMER OFF is set simultaneously when the system is under stop status, the system will maintain its stop status. It will be started until the time for auto start.

At the time for auto start every day, the system will run under preset mode. At the time for auto stop, the system will be stopped. Noise silencing is provided under heating mode. If the unit is restarted in less than 3 minutes after it is stopped, 3-minute lag protection is provided for the compressor.

3.5. 4 Change of Timer

When the system is under TIMER ON/OFF status, switch on or off the unit by pressing ON/OFF key by remote controller, Timer can be reset. The system will run under the last status setting.

3.6 Sleep Function

Setting SLEEP function under COOL or DEHUMIDIFY mode, the preset temperature will automatically rise by 1°C after 1 hour and rise by another 1°C after 2 hours. Preset temperature will rise by 2°C in total within 2 hours. After that, the unit will run at this preset temperature , the indoor fan will run at preset speed.

Setting SLEEP function under HEAT mode, the preset temperature will automatically decrease by 1 $^{\circ}$ C after 1 hour and decrease by another 1 $^{\circ}$ C after 2 hours. Preset temperature will decrease by 2 $^{\circ}$ C in total within 2 hours. After that, the unit will run at this preset temperature , the indoor fan will run at preset speed.

No sleep function under fan mode and auto mode.

3.7 Speed Control of Indoor Fan

The indoor fan will select fan speed(HIGH, MED or LOW) automatically according to the change of ambient temp. It can also be set by remote controller.

3.8 Buzzer

When the unitis energized, pressed, or receives a signal from remote controller, the buzzer will give out a beep.

3.9 Swing Control

After energized, guide louver will first anticlockwise turn to A position, and then close the air outlet.

After the unit is turned on, guide louver will return standby to max. air outlet D2 for heating; for cooling, guide 🧹 0

louver will first turn to air outlet D1 and then return standby to L1. If the unit is in swing condition, the guide

louver will swing between L1 and D1 for cooling and between L and D2 for heating.

After the unit is off, guide louver will anticlockwise turn to A position to close air outlet.

3.10 Memory Function

What can be memorized includes: mode, swing, preset temperature, preset fan speed. If the system is in timer and sleeping status, preset timer and sleeping can not be memorized and will be canceled after the power is off, which must be reset,

A

3.11 Indoor Indicators

In normal state,power supply/mode/fan speed/preset temp. indicator will display by current state.Every time of receiving command from remote controller,preset temp. will display blink for 10s.In other conditions,ambient temp. displays.

Controller Function of Outdoor Unit

1 Temperature Parameters

1.1 Cooling Mode

1.1.1 Working Conditions and Process of Cooling

If the compressor is in off status, and (Tin-amb.-Tpreset) \geq 0.5 °C, start the unit in cooling mode, in which case, outdoor fan and compressor start running, and microcomputer will auto adjust the frequency of compressor by cooling capacity requirements.

In cooling running, if $0 \degree C \le (T_{preset}-T_{in-amb.}) \le 2 \degree C$, the compressor will run at low frequency. In cooling running, if capacity requirements is 0(unit stop for cooling), and (Tpreset-Tin-amb.) > 2 °C, the compressor will stop,

and outdoor fan will stop running in 60S.

 \geq In this mode, switch valve is de-energized,and the temp. can be set in the range of 16-30 $^\circ$ C .

1.1.2 Antifreeze Protection

In cooling or dehumidify mode, if it is detected that the system is under antifreeze protection, the compressor will stop or run with frequency decline ,and outdoor fan will bestopped in 60S. When antifreeze protection is released the unit will resume its original operating status.

1.2 Dehumidifying Mode

1.2.1 Working Conditions and Process of Dehumidifying

Same with Cooling Mode

 \succ In this mode, switch valve is de-energized,and the temp. can be set in the range of 16-30 $^\circ$ C

1.2.2 Protection is same with Cooling mode

1.3 Fan Mode

Compressor, outdoor fan and 4-way valve shut off.

➤ Temp. setting range:16-30 °C .

1.4 Heating Mode

1.4.1 Working Conditions and Process of Heating

If Tamb-3 °C <- Tpreset -0.5 °C, the unit will start heating, in which case, compressor, outdoor fan and 4-way will run. If Tamb - 3 °C Tpreset + 2 °C, the compressor will run at 30Hz.

If Tamb – 3 °C>Tpreset +2 °C, the compressor will stop running and outdoor fan will stop running after 1min delay. Stop the unit or switch into other modes in heating mode, the 4-way valve will de-energize after the compressor has stopped for 2min.

> In this mode, the Temp. setting range should be 16-30 $^{\circ}$ C.

1.4.2 Defrosting Process Outdoor microcomputer system will accord to the frost on evaporator, outdoor tube temp sensor to judge whether it enters defrosting process. If satisfied the defrosting process, compressor will stop, 4-way valve reversal; Compressor runs at high frequency running, indoor fan will run by blowing exhaust heat.

2. Current Protection Function in Cooling/Heating/Dehumidifying Mode

2.1 Overload pretection

When Ttube is detected too high, the compressor will run in limited or dropped frequency. When Ttube goes on rising over the stated value, the compressor will stop. If Ttube resumes normal, so does the complete unit according to capacity requirements. If 6 successive times of overload protection happens, the compressor won't resume running except pressing ON/OFFbutton. In running process, if the compressor has runfor 7 min, the times of overload protection will be cleared.

2.2 Delay pretection for compressor

Once be stopped, the compressor can not be restarted within 3mins.

2.3 Exhaust Temperature Protection

If it is detected by the outdoor controller that the exhaust temperature is too high, the compressor will run in limited or dropped frequency. If the exhaust temperature goes on rising over the stated value, the compressor will stop and it is detected that the exhaust temperature has resumed normal, the compressor will resume running according to capacity requirements.

If 6 successive times of overload protection happens, the compressor won't resume running except pressing ON/OFFbutton. In running process, if the compressor has runfor 7 min, the times of overload protection will be cleared.

2.4 Current Protection Function

2.4.1.Overload protection

Once detected the whole unit current exeed the limit value 14. OA, that indoor temp. arrived, the unit will stop to run, the compressor stopped 3mins, will automatically resume to running status, protection times exceeds 6 times (If compressor running time exceeds 7 mins that the protection times will be cleared to 0), the system will be turned off and send the over current protection malfunction signal to indoor unit, cannot automatically resume to run, it must be press ON/OFF to turn off the unit.

2. 4. 2 Current drop frequency, limit frequency control

When detected the whole unit current ≥12. 0A, forbidden frequency rise.

When detected the whole unit current \ge 13. 0A, and f >max. running frequency, compressor drop frequency.

2.5Communication malfunction

When continuously 3mins. without receive from indoor or 10s cannot receive signal from drive board that is communication malfunction, outdoor unit will stop.

2.6 Module protection

Module protection, compressor stop, the unit will stop when indoor temp. arrive at setting temp., after compressor has stopped 3mins. later, it will resume to running status; if continuously 6 times module protection, the compressor cannot resume to run. It is need to press ON/OFF can resume. (If compressor running time exceeds 7min that the protection time will be clear to 0).

2.7 Demagnetization current protection

The peak value for demagnetization current is 41A, when deteced this value is more than regulated value, whole unit will drop frequency, after drop frequency, if detected the value still more than regulated value, the compressor will stop to run. After drop frequency, if the value is less than the regulated value, it will resume to the target frequency point. And resume to the target frequency point procedure, detect demagnetization current peak value is more than regulated value, then execute the drop frequency order.

2.8 Compressor phase current protection

During compressor running, detected the compressor's phase current and according to the following logic for control:

(1) If detected DC generatrix current \geq 13A, compressor drop frequency running (indicator displays DC generatrix overcurrent protection drop frequency), then detected DC generatrix current <12A, and target frequency more than the running frequency, the compressor's frequency rise up to target frequency running, if target frequency is less than frequency or there is any other frequency happens, the slow rise limit will be canceled. When whole unit running drop frequency arrives the lowest frequency and DC generatrix \geq 13A, when arrive at the temperature point unit will stop and displays the generatrix over current protection malfunction, compressor has stopped 3mins, will automatically resume to running status.

(2) If compressor frequency rise and deteced any phase current 2/2A that the compressor frequency rise up to the target frequency running.

2.9 Module over heat protection function

If detected the module surface temp. \ge 110 °C, the whole unit will accord to IPM module protection process.

3 Outdoor indicators display status The meaning of lights blinks for mainbaord

D101 (Green)	Definition	D102 (Red)	Definition	D104 (Yelllow)	Definition
1Blink	Compressor runs	1Blink		1Blink	Air exhaust protection drop frequency
2Blinks	Unit stop for compressor high pressure protection	2Blinks		2Blinks	Over current protection drop frequency
3Blinks	Unit stop for air exhaust protecti	on 3Blinks		3Blinks	Refrigerant over load drop frequency
4Blinks	Unit stop for communication malfucntion (including indoor unit and drive board)	4Blinks		4Blinks	Heating anti-high temp. drop frequency
5Blinks	Unit stop for module protection	5Blinks		5Blinks	Preserved for one to two use
6Blinks	Unit stop for over current protection	6Blinks	Communication malfunction signal sent from indoor	6Blinks	Defrosting
7Blinks	Unit stop for refrigerant overload	7Blinks		7Blinks	Anti-freezing protection drop frequency
8Blinks	Unit stop for heating anti-high temp.	8Blinks		8Blinks	DC generatrix over current protection drop frequency
9Blinks	Unit stop for refrigerant anti-freezing				
10Blinks	Unit stop for Temp. sensor malfunction				
11Blinks	Unit stop for compressor overload protection				
12Blinks	Unit stop for compressor low pressure protection				
13Blinks	Unit stop for DC generatrix over current protection				
14Blinks	EEPROM fault				
15Blinks	DC power supply short circuit				

D105 (Red)	Definition	D106 (Green)		D108 (Green)	Definition
1Blink	Air exhaust protection limit frequency	1Blink	Air exhaust protection limit frequency	1Blink	Received verified correct indoor data
2Blinks	Overcurrent protection limit frequency	2Blinks	Outdoor tube sensor malfunction		
3Blinks	Refrigerant overload	3Blinks	Outdoor air exhaust sensor malfunction		
4Blinks	limit frequency Heating anti-high temperature limit frequency	4Blinks	Preserved		
5Blinks	Preserved for one to two use	5Blinks	Malfunction with drive board (cannot receive correct data from drive board 10s)		
6Blinks	Oil return	6Blinks			
7Blinks	Anti-freezing drop frequency	7Blinks			

Meaning of lights blinks for drive board

LED1 Red- Drive	Definition	LED2 Green- Drive	Definition
Dark	Normal, reset unit stop	Bright	Communication malfunction (no data receiving by10s)
1Blink	Compressor normally	Blink	Communication normal
2Blinks	Unit stop for abnormal		
3Blinks	IPM protection IPM		
4Blinks	Demagnetization protect	ion	
5Blinks	PFC protection PFC		
6Blinks	Continuously 5times startup failure		
7Blinks	Startup failure		
8Blinks	Lack voltage		
9Blinks	Over voltage		
10Blinks	IPM overheat protection		

6. 2 Remote Controller Function Manual

Applicable to: GWHD24BCNK3A1A Controller Function of Indoor Unit

1 Temperature Parameters

- Indoor preset temperature (T_{preset})
- Indoor ambient temperature (T_{amb.})

2. Basic Functions

2.1 Cooling Mode

In this mode, the indoor fan will run at preset fan speed. When the compressor stops for outdoor unit malfunction protection. the indoor fan will still run at preset fan speed.

> Under this mode, temperature setting range will be 16-30 $^{\circ}$ C.

2.2 Dehumidifying Mode

Indoor fan will run at low speed invariably. Swing will operate according to setting status.

> Under this mode, temperature setting range will be 16-30 $^{\circ}$ C.

2.3 Fan mode

Under this mode, indoor fan motor, swing motor will run at setting status.

> Under this mode, temperature setting range will be 16-30 $^{\circ}$ C.

2.4 Heating Mode

In heating mode, if compressor is running, indoor fan will delay to run to avoid cold air blowing. When compressor stops blowing residual heating will enter. Blowing residual heat: In heating mode, the unit is stopped by remote controller, indoor fan will continue to run for 60s. Fan speed can not be switched during blowing residual heat.

> Under this mode, temperature setting range will be 16-30 $^{\circ}$ C.

2.5 Auto Mode

In this mode, the system selects COOL, HEAT and FAN mode automatically according to the change of ambient temperature. Protection function is the same as that in cooling and heating mode.

3 Other Control

3.1 ON/OFF

Each time the On/Off \bigcup button of the remote controller is pressed, the On/Off state will switch once.

3.2 MODE Selection

Press the MODE button on the remote controller to select and display the following modes:

AUTO, COOL, DRY, FAN, HEAT, AUTO.

3.3 TEMP. Setting Button

Each time $\land \lor$ button is pressed, the set temperature will be increased or decreased by 1°C.Adjusting range is 16~30°C. In AUTO mode, this button does not function. 3.4 Manual Button (ON/OFF)

If press AUTO button under off status of the unit, the unit will run under auto mode with swing. If press AUTO button under on status of the unit, the unit will be stopped. If remote controller command

is given, the mian unit will run under the command

3.5 TIMER ON/OFF

3.5.1 TIMER ON

The system will continue to run if TIMER ON is set when the system is under ON status. If TIMER OFF is set when the system is under OFF status, the system will start to run under preset mode upon the time for auto start.

3.5.2 TIMER OFF

If TIMER OFF is set when the system is under OFF status, the system will maintain its standby status upon the time for auto stop. If the TIMER OFF is set when the system is under ON status, the system will be stopped upon the tome for auto stop.

3.5.3 Set TIMER ON/OFF Simultaneously

If TIMER ON and TIMER OFF is set simultaneously when the system is under run status, the system will maintain its current operating status and be stopped upon the coming of preset time

If TIMER ON and TIMER OFF is set simultaneously when the system is under stop status, the system will maintain its stop status. It will be started until the time for auto start.

At the time for auto start every day, the system will run under preset mode. At the time for auto stop, the system will be stopped. Noise silencing is provided under heating mode. If the unit is restarted in less than 3 minutes after it is stopped, 3-minute lag protection is provided for the compressor.

3.5. 4 Change of Timer

When the system is under TIMER ON/OFF status, switch on or off the unit by pressing ON/OFF key by remote controller, Timer can be reset. The system will run under the last status setting.

3.6 Sleep Function

Setting SLEEP function under COOL or DEHUMIDIFY mode, the preset temperature will automatically rise by 1°C after 1 hour and rise by another 1°C after 2 hours. Preset temperature will rise by 2°C in total within 2 hours. After that, the unit will run at this preset temperature , the indoor fan will run at preset speed.

Setting SLEEP function under HEAT mode, the preset temperature will automatically decrease by 1°C after 1 hour and decrease by another 1°C after 2 hours. Preset temperature will decrease by 2°C in total within 2 hours. After that, the unit will run at this preset temperature, the indoor fan will run at preset speed. No sleep function under fan mode and auto mode.

3.7 Speed Control of Indoor Fan

The indoor fan will select fan speed(HIGH, MED or LOW) automatically according to the change of ambient temp. It can also be set by remote controller.

3.8 Buzzer

When the unitis energized, pressed, or receives a signal from remote controller, the buzzer will give out a beep.

3.9 Swing Control

After energized, guide louver will first anticlockwise turn to A position and then close the air outlet.

After the unit is turned on, guide louver will return standby to max. air outlet D2 for heating for cooling, guide 1000

louver will first turn to air outlet D1 and then return standby to L1. If the unit is in swing condition, the guide

louver will swing between L1 and D1 for cooling and between L and D2 for heating.

After the unit is off, guide louver will anticlockwise turn to A position to close air outlet.

3.10 Memory Function

What can be memorized includes: mode, swing, preset temperature, preset fan speed. If the system is in timer and sleeping

D

status, preset timer and sleeping can not be memorized and will be canceled after the power is off, which must be reset,

3.11 Indoor Indicators

In normal state, power supply/mode/fan speed/preset temp. indicator will display by current state. Every time of receiving command from remote controller, preset temp. will display blink for 10s. In other conditions, ambient temp. displays.

In normal state,power supply/mode/fan speed/preset temp. indicator will display by current state.Every time of receiving command from remote controller,preset temp. will display blink for 10s.In other conditions,ambient temp. displays.

Controller Function of Outdoor Unit

1 Temperature Parameters

- Outdoor exhaust temperature (T_{exhaust})
- Outdoor ambient temperature (T_{out-amb}.)

2 Basic Functions

In each mode, once started, the compressor can not be stopped until it has been running for 6 min. (excluding malfunction protection and stopping the compressor for mode switching); once stopped, the compressor should be started in 3-min. delay

(including mode switching, stopping the unit for temp. reached or by remote control); the compressor will start after 5S of the indoor fan.

2.1 Cooling Mode

2.1.1 Working Conditions and Process of Cooling

- If the compressor is in off status, and (T_{in-amb}.-T_{preset}) ≥ 0.5 °C, start the unit in cooling mode, in which case, outdoor fan and compressor start running, and microcomputer will auto adjust the frequency of compressor by cooling capacity requirements.
- In cooling running, if 0 $^\circ C \leq (T_{preset}-T_{in-amb.}) \leq 2^\circ C$, the compressor will run at low frequency.
- In cooling running, if capacity requirements is 0(unit stop for cooling), and (Tpreset-Tin-amb.) > 2°C, the compressor will stop, and outdoor fan will stop running in 60S.
- \succ In this mode, switch valve is de-energized,and the temp. can be set in the range of 16-30 $^\circ$ C.

2.1.2 Antifreeze Protection

In cooling or dehumidify mode, if it is detected that the system is under antifreeze protection, the compressor will stop or run with frequency decline ,and outdoor fan will bestopped in 60S. When antifreeze protection is released the unit will resume its original operating status.

2.1.3 Control Logic of Outdoor Fan

If $T_{\text{out-amb.}} \, \geqslant 26 \,\, ^\circ\!\! \mathbb{C}$,outdoor fan will run at high speed.

If $T_{\text{out-amb.}}\leqslant 24\ {}^\circ\!\!{\rm C}$,outdoor fan will run at low speed.

In running,if 24 $^\circ C < T_{out-amb.} <$ 26 $^\circ C$,the outdoor fan will remain original.

After turning on the unit ,the outdoor fan will be forced to run for 3 min, and then run at logical speed.

3.2.2 Dehumidifying Mode

- Working conditions and Process of dehumidifying:the same as that in cooling mode.
- State of 4-way valve: shut-off
- Temp. setting range:16-30 °C .
- Protection function: the same as that in cooling mode.

3.2.3 Fan Mode

- Compressor, outdoor fan and 4-way valve shut off.
- Temp. setting range:16-30 °C.

3.2.4 Heating Mode

3.2.4.1 Working Conditions and Process of Heating

- If the compressor is in stopped state, (T_{amb.} 3) °C ≤ (T_{preset} 0.5) °C, the unit will start heating, in which case compressor, outdoor fan and 4-way valve will run and the microcomputer will adjust frequency of compressor according to heating requirements.
- In heating process, if $T_{preset} C \leq (T_{amb.} 3) C \leq (T_{preset} + 2) C$, the compressor will run at low frequency.
- In heating process, if $(T_{amb.} 3)$ °C > $(T_{preset} + 2)$ °C, the compressor will stop running and outdoor fan will stop running after 60-S delay.

Note:Stop the unit or switch into other mode in heating mode,the 4-way valve will de-energize after the compressor has stopped for 2 min.

 \succ In this mode, the reversal valve is energized and temp.setting range is 16-30 $^\circ\!\mathrm{C}$.

3.2.4.2 Logic Control of Outdoor Fan

If ${\rm Tout\text{-}amb.}{\leqslant}19$ °C, the outdoor fan will run at high speed;

If $T_{out-amb} \ge 2.1 \text{ °C}$, the outdoor fan will run at low speed;

In running process, if $1 \ 9 \ \ensuremath{\mathbb{C}} < T_{\text{out-amb.}} < 2 \ 1 \ \ensuremath{\mathbb{C}}$, the speed will remain original.

During running, the outdoor fan will be forced to run at high speed for 3min, and then turn to logical speed.

2.4.3 Defrosting Process

If it is detected the defoeting is required, and if the compressor running frequency is a little higher, the frequency will first reduced to some level and then the compressor and indoor fan stop, 50s later, outdoor fan stops meanwhile, 4-way valve stops after 45-second delay. The compressor will restart with 90Hz of running frequency in 55s to defrost. Upon defrsoting is completed, compressor running frequency will decrease to 60Hz, and 4-way valve and outdoor fan will start, 10s later, compressor will run with increased frequency required by capacity. Indoor fan will run in 2 min at most.

If compressor is stopped for malfunction in heating mode, the indoor fan will run by blowing exhaust heat.

3 Current Protection Function in Cooling/Heating/Dehumidifying/Auto Mode

3.1 Overload pretection

When Ttube is detected too high, the compressor will run in limited or dropped frequency. When Ttube goes on rising over the stated value the compressor will stop. If Ttube resumes normal, so does the complete unit according to capacity requirements.

If 6 successive times of overload protection happens, the compressor won't resume running except pressing ON/OFFbutton. In running process, if the compressor has runfor 7 min, the times of overload protection will be cleared.

3.2 Delay pretection for compressor

Once be stopped, the compressor can not be restarted within 3mins.

3.3 Exhaust Temperature Pretection

If it is detected by the outdoor controller that the exhaust temperature is too high, the compressor will run in limited or dropped frequency. If the exhaust temperature goes on rising over the stated value, the compressor will stop and it is detected that the exhaust temperature has resumed normal, the compressor will resume running according to capacity requirements.

If 6 successive times of overload protection happens, the compressor won't resume running except pressing ON/OFFbutton.

In running process, if the compressor has runfor 7 min, the times of overload protection will be cleared.

3.4 Current Protection Function

1. Overload protection

If total current is detected over the stated value, the unit will be stopped as the indoor room temperature **meet the preset** value, after the compressor has stopped for 3 minutes, it will resume its original operating status automatically.

If 6 successive times of overload protection happens, the compressor won't resume running except pressing ON/OFFbutton.

In running process, if the compressor has runfor 7 min, the times of overload protection will be cleared.

2. Current dropped frequency or limited frequency control:

The controller will drop the compressor frequency or prohibit the compressor frequency rising according to the change of total current. **3.5 Communication Malfunction**

There is communication malfunction if it can not receiving correct signal for 3 minutes continuously, in which case, the outdoor unit will stop.

3.6 Module Protection

When module is in protection, the compressor will be stopped as the indoor room temperature meet the preset value, after the compressor has stopped for 3 minutes, it will resume its original operating status automatically.

If 6 successive times of overload protection happens, the compressor won't resume running except pressing ON/OFFbutton. In running process, if the compressor has runfor 7 min, the times of overload protection will be cleared.

3.7 Overheat Protection of Module

If it is detected the IPM temperature is too high, the compressor will run in limited or dropped frequency. If the IPM temperature goes on rising over the stated value, the compressor will stop. When the IPM temperature resumes normal, and the compressor has stopped

for 3 min., the complete unit will resume running.

If 3 successive times of IPM protection in an hourhappens, the compressor won't resume running except pressing ON/OFFbutton.

3.8 OverloadProtection for compressor

If compressor oveload is detected, the indoor unit will stop as the indoor room temperature meet the preset value. If the compressor has stopped for 3 min. , it should be reset to start.

3.9 9 PFC Protection

If start the unit in cooling, heating and dehumidifying mode, the compressor will operate in the frequency of 30Hz, and then PFC occurs after 30s.

At any time of stopping compressor, PFC will stop with the compressor at the same time.

Once PFC starts, protection signal will be detected soon. During PFC protection, PFC stops with the compressor at the same time.

PFC will resume operation automatically after 3min when malfunction happens to it.

3) Within tube ter	n for 3 min.					
3) Within tube ter						·
tube ter	10 min when the compressor ε	starts or afte	er defr	rosting ,heating and oil return are co	omplete	ed.malfunction of outdoo
) Malfun	mp. sensor can not be detected					· - , -
, manana i	ction of other outdoor temp. se	enors will be	deter	cted soon after the unit is started .Th	ne dete	ction will last 30s.
) Once m	nalfunction of IPM overheat de	tection sens	soror	other outdoor temp. sensors is detec	cted,the	eunit will be stopped soc
3.3.11 0 D11	utdoor Indicator Meaning(r Definition	r efer to Tro D12	ubles	shooting section)	D13	Definition
1blink	Compressor running	1blink		Stop for refrigerating overload	1blink	Quick refrigerating/heating
2 blinks	Stop for exhaust protection	2 blinks	3	Stop for heating overload	2 blinks	s Defrosting
3 blinks	Stop for NEC drive module protection	3 blinks	3	Fault of communication with indoor unit	3 blinks	Oil return
4blinks	Stop for overcurrent protection	4blinks		Fault of communication with NCE module	4blinks	Nominal refrigerating/heating
5blinks	Stop for overload	5blinks		Fault of communication with computer	5blinks	Max. refrigerating/ heating
6blinks	Stop for refrigerating antifreeze	6blinks		Fault of outdoor ambient sensor	6blinks	Medium refrigerating/ heating
7blinks	Stop for sensor fault	7blinks		Fault of outdoor tube sensor	7blinks	Min.refrigerating/ heating
8blinks	Stop for communication fault (including indoor unit and NEC drive module)	8blinks		Fault of outdoor exhaust temperature sensor	8blinks	Stop
9blinks	Stop for compressor high voltage	9blinks		sent from indoor unit	9blinks	Low pressure unrestorable
10blinks	protection (Preserved) Stop for compressor low voltage protection (Preserved)	10blinks	ا ز	The parameters sent to NEC drive has some problem, unit stop		
11blinks	Cassette unit stop for water flow protection (Preserved)	11blinks	ا ن	Fault of IPM temperature sensor		
12blinks	,	12blinks	, 1			
D14	Definition	D15		Definition	D16	Definition
1blink	Air exhaust protection drop frequency	1blink		Air exhaust protection limit frequency	Bright	Receiving or sending computer d
	Overcurrent protection drop frequency	2blinks		Overcurrent protection limit frequency	Dark	Computer data received or sent
3blinks	Refrigerant overcurrent drop frequency	3blinks		Refrigerant overload limit frequency		
4blinks	Heating overcurrent drop frequency	4blinks		Heating overload limit frequency		
5blinks	Anti-freezing drop frequency	5blinks		Current 9.4A Frequency stays 2mins.		
6blinks	Stop for reduction of frequency to lowest	6blinks		Current 12A Frequency stays 2mins.		
7blinks	Stop for PFC protection	7blinks		limit frequency or drop frequency		
8blinks	Stop for compressor overload	8blinks		Compressor current limit frequency or drop frequncy	<u>ا</u>	
		9blinks		IPM module overheat limit frequency or drop freque	ncy	
	Definition (NEC drive information)	D18		Definition		
1blink	DC input voltage too low	When computer monitoring port	Bright	Reciving or sending indoor unit data		
2blinks	DC voltage too high	is not short circuited	<u> </u>	Dark Reciving or sending indoor unit data		
3blinks	AC current protection	When computer monitoring port	Bright	Indoor unit data received or sent		
4blinks	IPM abnormal	is short circuited	Dark	Communication between mainboard and drive board is abnormal	Ē	
5blinks	In-built PFC protection	「 <u> </u>		[]	「 <u> </u>	
6blinks	Startup failure					
	Phase failure or modulation failure			ļ ļ		
7blinks	Firstly PFC protection, then module					

Operation procedures/pictures

4.

Disassemble Front Case

Open the three screw covers and unscrew five screws on front case. Pull open the clasp at the front and rear sides, can remove the front panel.

5. Disassemble the electric box cover

Loosen the 3 slipknots manually, and then pull upwards the electric box cover.

Screw cover

6. Dissasemble water tray sub-assy

Unscrew the screws fixing the water tray and then loosen the slipknot in the other end. Pull out the terminal of stepping motor, and then pull upwards the water tray to take it out.

Terminal

screwdriver to unscrew the screw fixing Clasp the electric box and remove the electric box. 8. Disassemble Evaporator Use a screwdriver to loosen the screw (1pc) of left side, (2pcs) of right side. Take out the evaporator with your hands, so that the side plate clamp of evaporator falls out from the groove. Remove the evaporator with care. Screw Take care to protect the connecting pipe. Screw : 9. Disassemble Motor Use a screwdriver to loosen the 3 screws fixing the motor clamp. Remove the motor clamp. Unscrew the tighten nut which fix cross flow fan, then Screws can take out the motor from the cross flow fan. Motor right clamp 10. Disassemble cross flow fan Take out motor, then remove the cross flow fan Bolts < from the left bearing holder. Refer to Fig.7-27 Motor Cross flow fan

Tube sensor

Plugging connector

7. Disassemble Electric box

unplug the plugging connector of the

indoor motor at the electric box, use

7. 2 Disassembly Procedures for Outdoor Unit

Operating Procedures / Photos of outdoor unit

1. Disassemble Top Cover

2.

Screw off the screws which fix the top cover, then lift it up, can take off the top cover.

Disassemble the handle Screw off one screw which fix the handle, then adown to push the handle, then can take off the handle.

Disassemble the rear side plate sub-assy

Screw off the screws which fixed the rear grill and rear side plate, disassemble the rear grill, 23 — then can take off the rear side plate sub-assy.

Rear grill

Top cover

Screws

Operating Procedures / Photos of outdoor unit

4. Disassemble the front case

Screw off the screw which fix the front case, then pull it upwards, can take off the front case.

5. Disassemble cabinet

Screw off the screws which fix the cabinet, then can take off the cabinet.

6. Disassemble the electric box sub-assy

Screw off 2pcs screw which fix the electric box cover, then can take off the electric box cover. Use the screw driver to screw off 2pcs on the electric box, pull out the wire terminal of the electric box, then lift it up can take off the electric box.

7. Disassemble Valves

Unscrew the two screws fixing the gas valve, unsolder the soldering point between the gas valve and the return-air duct and remove the gas valve (note: when unsoldering the soldering point, use wet cloth to completely wrap the gas valve to prevent valve body from being harmed by high temperature).

Unscrew the two screws fixing the liquid valve, unsolder the soldering point connecting the liquid valve and the fork type pipe, and remove the liquid valve.

Use a spanner to loosen the holding nut to remove the nut, spring washer and flat washer and thenremove the axial flow fan with force.

9. Disassemble Outdoor Motor

Screw off the four tapping screws fixing the motor, pull out the motor lead-out cable plug and remove the motor. Screw off the two tapping screws fixing the motor support, and pull the motor support upwards to remove it.

-25-

10. Disassemble 4-Way Valve

(Only for cooling and heating unit)

Screw off the holding nut of the 4-way valve coil and remove the coil. Use wet cotton cloth to wrap the 4-way valve, unsold the four soldering points connecting the 4-way valve, and remove the 4-way valve. Be quick during the unsoldering process, pay attention to keep the wrapping cloth wet and do not allow the soldering flame to burn the compressor lead-out cable. (caution: only after discharging all freon).

Four-way valve

11. Disassemble Capillary Sub-assembly

Unsolder the soldering points connecting the capillary sub-assy and the other pipelines, and remove the capillary sub-assy.

12.Disassemble Compressor

Firstly unsolder the pipes connecting the compressor, and then unscrew the three foot nuts at the compressor to remove the compressor.

Nut with washer

Unscrew the screws fixing the cabinet to remove it.

7. 2. 5 ||||||Disassemble the electric box

Screw off 4pcs screw which fix the electric

box, then can take off the electric box cover. Screw off 5pcs screw from electric box, pull

out the wire terminal of electric box, then lift

7. 2. 6 ||||||||| Disassemble the rear side plate

then can disassemble the rear side plate.

screw off 8pcs screw which fixed the rear side plate,

it up can take off it.

Screw

Electric Box

Screw

Screw

7. 2. 7 |||||||| Disassemble Axial Flow Fan

Unscrew the nut fixing the fan with a spanner to take out the fan .

Axial Flow Fan

Nut

Fig.7-19

7. 2. 8 ||||||||Disassemble Outdoor Motor

Unscrew the screws fixing the motor support ,and then lift it upwards to remove it. Unscrew the screws fixing the motor and pull out the connection line between it and electric box to remove it.

7. 2. 9 ||||||||Disassemble Four-way Valve

Only for cooling and heating unit

Unscrew the fastening nut of the four-way valve coil and remove the coil. Wrap the four-way valve with wet cotton and unsolder the 4 weld spots connecting the four-way valve to take it out. Welding process should be as quick as possible and keep wrapping cotton wet all the time. Be sure not to burn out the lead-out wire of compressor.

Four-way Valve

7. 2. 10 Disassemble Capillary

Unsolder the four welding points connecting the two capillary sub-asslies with the liquid valve and the condenser, and remove the capillary sub-assy. As show in Fig.7-22)

Capillary

Fig.7 - 22

Unscrew the four bolts fixing the two valves, unsolder the welding point connecting the gas valve with the return-air pipe, and remove the gas valve (caution: when unsoldering the soldering point, wrap the gas valve completely with wet cloth, so as to prevent the valve body from harmed by high temperature). Unscrew the four bolts fixging the liquid valve, and remove the liquid valve. (refer to Figure 7-23)

Fig. 7 – 23

7. 2. 12 IIII Disassemble Compressor

Compressor Unscrew the six nuts with washers at the feet of the two compressors (caution: only after discharging all freon). Unsolder the suction and the discharge pipes of the compressor, carefully remove the pipes and take out the compressor. (refer to Figure 7-24)

Fig. 7 - 24

No	Description	Part Code	Qty
NO	Description	GAN A180IV	
1	Wall-Mounting Frame	01252004	1
2	Rear Case	22202329	1
3	Helicoid tongue	26252009	1
4	Cross Flow Fan	10352022	1
5	Evaporator Assy	010022283	1
6	Front Case	200026529	1
7	Front Panel	20002844	1
8	Water Tray	20182057	1
9	Guide Louver (up)	10512085	1
10	Guide Louver (down)	10512086	1
11	Room Sensor 15k	390000451	1
12	Electric Box Cover 1	20112019	1
13	Electric Box Cover	201120201	1
14	Main PCB	30032050	1
15	Wire Clamp	71010103	1
16	Terminal Board T4B3A	42011233	1
17	Lower Shield of Electric Box	01592037	1
18	Transformer 57X25C	43110237	1
19	Tube Sensor 20k	390000595	1
20	Sensor Insert	42020063	1
21	Upper Shield of Electric Box	01592038	1
22	Receiver Board 5H53EA	30545552	1
23	Electric Box	20112018	1
24	Filter Assy	11122048	2
25	Evaporator Support	24212067	1
26	Drainage Pipe	05230014	1
27	Pipe Clamp	24242001	1
28	Screw Cover	24252015	3
29	Fan Bearing	76512210	1
30	Motor FN20X	150120671	1
31	Swing Link 1	10582057	1
32	Swing Link 2	10582058	1
33	Swing Louver	10512429	11
34	Swing Louver	10512430	1
35	Power Cord	none	0
36	Motor Clamp	26112095	1
37	Remote Controller YB1B4	30511005	1
38	Stepping Motor MP28AA	15212001	1

NIa	Description	Part Code	
No	Description	GAN A220IV	Qt
1	Wall-Mounting Frame	01252004	1
2	Rear Case	22202329	1
3	Helicoid tongue	26252009	1
4	Cross Flow Fan	10352022	1
5	Evaporator Assy	010022362	1
6	Front Case	200026529	1
7	Front Panel	20002844	1
8	Water Tray	20182057	1
9	Guide Louver (up)	10512085	1
10	Guide Louver (down)	10512086	1
11	Room Sensor 15k	390000451	1
12	Electric Box Cover 1	20112019	1
13	Electric Box Cover	201120201	1
14	Main PCB	30032050	1
15	Wire Clamp	71010103	1
16	Terminal Board T4B3A	42011233	1
17	Lower Shield of Electric Box	01592037	1
18	Transformer 57X25C	43110237	1
19	Tube Sensor 20k	390000595	1
20	Sensor Insert	42020063	1
21	Upper Shield of Electric Box	01592038	1
22	Receiver Board 5H53EA	30545552	1
23	Electric Box	20112018	1
24	Filter Assy	11122048	2
25	Evaporator Support	24212067	1
26	Drainage Pipe	5230014	1
27	Pipe Clamp	24242001	1
28	Screw Cover	24252015	3
29	Fan Bearing	76512210	1
30	Motor FN20X	150120671	1
31	Swing Link 1	10582057	1
32	Swing Link 2	10582058	1
33	Swing Louver	10512429	11
34	Swing Louver	10512430	1
35	Power Cord	none	0
36	Motor Clamp	26112095	1
37	Remote Controller YB1B4	30511005	1
38	Stepping Motor MP28AA	15212001	1

		PartCode	
0	Description	GAG A180IV	Q
	Front Grill	01473008	
	Front Plate	01303162P	
	Left Handle	26235401	
	Axial Flow Fan	10335253	
	Metal Base	01203633P	
	Electric Heater Band	765100041	
	Motor FW60T	15013703	
	Motor Support	01705003	
	Condenser Support	01793004	
)	Pipe Protection Devices	76512406	
1	Condenser Assy	01133461	
2	Sensor	3900028001	
- 3	Top Cover	01255001	
, 1	Rear Grill	01473006	
5	Isolation Sheet	01233054	
3	Reactor(PFC)	43120011	
, 7	Liquid-gas Separator	07225001	
3	4 – Way Valve	430004032	
))	4 – Way Valve Coil	430004032	
,)			
, I	Capillary Sub-Assy Rear Side Plate	03103547	
2	Handle Assy	01305013	
	Power Module	26235255	
3		32210055	
l -	PFC Module	30111018	
5	Module Support Base	24213029	
3	Screw M4X20	70110274	
7	Module Support Cap	24213010	
3	Main PCB WB8235E	30038216	
9	Screw M4X20	70110274	
)	Module Support Base	24213029	
	Module Support Cap	24213030	
2	Radiator	49013008	
3	Electric Box 4	20112036	
ŀ	Wiring Terminal	42010255	
5	Wire Clamp	71010102	
6	Isolation Washer	70410523	
7	Wire Clamp	71010003	
3	Electric Box Assy	01403532	
)	Fuse Support	24213032	
)	Fuse Assy	46010056	
	Filter 30SS4-1BC2-R-Q	43130012	
2	Capacitor CBB61 3uF/450V	33010027	
3	Electric Box Cover	01413102	
ł	Valve 1/2"	071302392	
5	Valve 1/4"	07130239	
3	Valve Support	01715006	
7	Rubber foot of com pressor	NONE	
3	OH Thermistor	NONE	
,	Compressor		
9	C-6RVN93HOV	00103041	
)	Electric Heater Band(Compressor)	7651300401	

		Part Code	
)	Description	GAG A220IV	Q
	Front Grill	01473001	
	Housing	01433011	
	Small Handle	26235401	
	Clapboard Assy	01233039	
	Axial Flow Fan	10335253	
	Fan Motor FW60T	15013703	
	Motor Support Sub-Assy	01703087	
	Condenser Assy	01103910	
	Temp Sensor Support	24213005	
)	Top Cover	01255262	
	Rear Grill	01475252	
2	Reactor	43120011	
	Relay VC15-3A1B	44020334	
,	Electric Box Assy	01403592	
;	Module Support	24213008	
;	PCB JGP011	30111018	
,	Electric Box Cover Sub-Assy	01403629	
	Main PCB 2 W9W2	30039165	
, ,		24213029	
,)	PCB Support (up) PCB Support (down)	24213010	
, 	PCB Support	24213009	
2	Main PCB 1 W9W2C	30039198	
		30039163	
	Filtering Board W9W2	3900028001	
;	Temperature Sensor	42020063	
) ;	Sensor Insert	42020066	
	Sensor Insert	33010027	
<u> </u>	Capacitor		
<u> </u>	Cable-Cross Loop	76510021	
)	Term inal Board	42011043	
)	Term inal Board	42011242	
	Filter	43130008	
2	Wire Clam p	71010102	
}	Isolation Washer	70410523	
	Wire Clamp	71010003	
•	Cable-Cross Loop	76514004	
;	Radiator	49013011	
<u> </u>	Capillary Sub-Assy	03103397	
}	Cut-off Valve	07130209	
)	Handle	26235253	
	4-way Valve	43000411	
	4-way Valve Fittings	4300040022	
2	Gas Valve Sub-Assy	07103030	
;	Rear Side Plate	01305260	
	Cable-Cross Loop	76515203	
,	Compressor	00103051	
;	Underpan Assy	01203560	
'	Front Side Plate	01305247	
;	Electric Heater	32003001	
	Band(Compressor)		
)	Choke Plug Electric Heater Band	06813401	
)	(Metal Base)	765100041	

— 41 —

Note:

- 1. When maintaining, before detecting the voltage between the modular PN is less than 50V, please never touch any of the terminals, in order to avoid electric shock.
- 2. When replacing the batteries, commutating bridge, both of them should be coated with the coolant.

Analysis or processing of some of the malfunction display:

1. Compressor discharge protection

Possible reasons: shortage of refrigerant; blockage of air filter; poor ventilation or air flow short pass for condenser; the system has noncondensing gas (such as air, water etc.); blockage of capillary assy (including filter); leakage inside four-way valve causes incorrect operation; malfunction of compressor; malfunction of protection relay; malfunction of discharge sensor; outdoor temperature too high. Processing method: refer to the malfunction analysis in the above section.

- 2. Low voltage overcurrent protection
 - Possible reason: Sudden drop of supply voltage.
- 3. Communication malfunction

Processing method: Check if communication signal cable is connected reliably

- 4 Sensor open or short circuit Processing method: Check whether sensor is normal, connected with the corresponding position on the controller and if damage of lead wire is found.
- 5. Compressor overload protection

Possible reasons: insufficient or too much refrigerant; blockage of capillary and increase of suction temp.; improper running of compressor, burning in or stuck of bearing, damage of discharge valve; malfunction of protector.

Processing method: adjust refrigerant amount; replace the capillary; replace the compressor; use universal meter to check if the contactor of compressor is fine when it is not overheated, if not replace the protector.

6. System malfunction

i.e. overload protection. When tube temperature (Check the temperature of outdoor heat exchanger when cooling and check the temperature of indoor heat exchanger when heating) is too high, protection will be activated.

Possible reasons: Outdoor temperature is too high when cooling; insufficient outdoor air circulation; refrigerant flow malfunction.

please refer to the malfunction analysis in the previous section for handling method .

7. IPM module protection

Processing method:Once the module malfunction happens, if it persists for a long time and can not be self- canceled, cut off the power and turn off the unit, and then re-energize the unit again after about 10 min. After repeating the procedure for sever times, if the malfunction still exists, replace the module. (refer to the next page)

8. PTC protection

Possible reasons: ambient temp. is too high. or PFC module is too heat; the power orcurrent of complete unit is too high,

or PFC voltage is too low; connecting wire of PFC control plate is in poor contact.

Processing method: Once protection happens, first check connecting wire of PFC control plate , and if the unit is still

abnormal with continuous protection, replace PFC controller.

