D Series Gear Motors

Service Manual

D Series Gear Motors Service Manual Revisions

History of Revisions

Table of Revisions

Date	Page	Changed	Rev.
November 2010	all	Turolla colors	BB
March 2010	19	Added shaft seal kit number	AC
February 2010	last	Fix Osaka address	AB
April 2009	-	First edition	AA

© 2010 Turolla OpenCircuitGear™. All rights reserved.

Turolla OCG accepts no responsibility for possible errors in catalogs, brochures and other printed material. Turolla OCG reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifi cations. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, Turolla, Turolla OpenCircuitGear, Turolla

D Series Gear Motors Service Manual Contents

Introduction	Overview	4
	Warranty	4
	Safety Precautions	4
	Unintended Machine Movement	4
	Flammable Cleaning Solvents	4
	Fluid Under Pressure	4
	Personal Safety	4
	Hazardous Material	
	Symbols Used in Sauer-Danfoss literature	5
	General Description	6
	The System Circuit	6
	Design	
		,
Technical Specifications	Technical Specifications	8
	Fluid Specifications	8
Operating Parameters	Overview	9
	Pressure	9
	Temperature and Viscosity	10
	Hydraulic Fluid	10
Pressure Measurements	Required Tools	11
	Port locations and Gauge Installation	
Initial Start-Up	General	12
Procedures	Start-Up Procedure	12
Fluid and Filter	Recommendations	13
Maintenance	Fan Speed Locked High at High Engine Speed (cold conditions)	
	· · · · · · · · · · · · · · · · · · ·	
Troubleshooting	High Stand-by Fan Speed (cold conditions)	14
	Fan Speed Not Controlled by Current to Coil	14
	Fan Does Not Turn	15
	Fan Too Slow at High Engine rpm	16
	Improper Modulation of Control Module	16
	System Noise	17
	Hydraulic System Operating Hot	17
	Leaking Motor Shaft Seal	17
Minor Repair	Shaft Seal Replacement	1.9
	Shaft Benair Parts	۰۱ ۵۲
	Coil Replacement	20 21
	Valve Replacement	21 21
		Z I
Repair Parts	Valves	22
	L1022962 • Rev BB • November 2010	3

Overview	This manual includes instructions for the installation, maintenance, and minor repair of D Series Motors. It includes a description of the units and their individual components, troubleshooting information, and minor repair procedures.
	A worldwide Authorized Service Center network is available for major repairs. Sauer- Danfoss Authorized Service Centers are trained by the factory and certified on a regular basis. You can locate your nearest Authorized Service Center using the distributor locator at www.sauer-danfoss.com.
Warranty	Performing installation, maintenance, and minor repairs according to the procedures in this manual does not affect your warranty. Major repairs requiring the removal of a unit's rear cover or front flange voids the warranty. Only a Sauer-Danfoss Authorized Service Center may perform major repairs. Sauer-Danfoss trains ASC and certifies their facilities on a regular basis.
Safety Precautions	Always consider safety precautions before beginning a service procedure. Protect yourself and others from injury. Take the following general precautions whenever servicing a hydraulic system.
	Unintended Machine Movement A Warning
	Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/ disconnect the mechanism while servicing.
	Flammable Cleaning Solvents A Warning
	Some cleaning solvents are flammable. To avoid possible fire, do not use cleaning solvents in an area where a source of ignition may be present.
	Fluid Under Pressure Warning Escaping bydraulic fluid under pressure can have sufficient force to penetrate your skin
	causing againus injury and/or infaction. This fluid may also be bet arough to source to perfect at a source to

causing serious injury and/or infection. This fluid may also be hot enough to cause burns. Use caution when dealing with hydraulic fluid under pressure. Relieve pressure in the system before removing hoses, fittings, gauges, or components. Never use your hand or any other body part to check for leaks in a pressurized line. Seek medical attention immediately if you are cut by hydraulic fluid.

Personal Safety

A Warning

Protect yourself from injury. Use proper safety equipment, including safety glasses, at all times.

Hazardous Material

A Warning

Hydraulic fluid contains hazardous material. Avoid prolonged contact with hydraulic fluid. Always dispose of used hydraulic fluid according to state and federal environmental regulations.

Symbols Used in Sauer-

Danfoss literature

D Series Gear Motors Service Manual Introduction

	WARNING may result in injury		Tip, helpful suggestion
9	CAUTION may result in damage to	A	Lubricate with clean hydraulic fluid
	Pousable part	- 	Apply grease/petroleum jelly
<u>(</u>)	Nen reusable part use a new part		Apply locking compound
	Non-reusable part, use a new part	R	Inspect for wear or damage
	Non-removable item	<u>A</u>	Clean area or part
	Option – either part may exist	\bigotimes	Be careful not to scratch or damage
Superseded – parts are not interchangeable		8	Note correct orientation
	Measurement required		Mark orientation for reinstallation
	Flatness specification	Ś	Torque specification
//	Parallelism specification		Press in – press fit
\bigcirc	External hex head	Þ	Pull out with tool – press fit
\bigcirc	Internal hex head		Cover splines with installation
\bigcirc	Torx head	\square	
ORB	O-ring boss port	\bigcirc	location or specification

The symbols above appear in the illustrations and text of this manual. They are intended to communicate helpful information at the point where it is most useful to the reader. In most instances, the appearance of the symbol itself denotes its meaning. The legend above defines each symbol and explains its purpose.

General Description	A Sauer-Danfoss electrohydraulic proportional fan drive system consists of a combination of fixed or variable displacement open circuit hydraulic pump and an D gear motor with or without proportional relief valve or standard relief valve and check valve to control fan speed. The engine control module or Sauer-Danfoss control module drives the proportional relief valve using a Pulse-Width Modulated (PWM) signal.
	Sauer-Danfoss fan drives work with engines produced by all the major North American and European engine manufacturers.
The System Circuit	The pump receives fluid directly from the reservoir through the inlet line. The output of the pump is connected to a fixed displacement gear motor, which has an electrohydraulic proportional valve mounted in the motor's rear cover.
	The valve setting determines the maximum pressure in the system by passing oil around the motor's gear set directly to the return port of the motor. The proportional valve is normally closed and requires the application of an electrical current to reduce the bypass pressure from a predetermined, customer selected, maximum pressure setting. In a hydraulic fan drive system, the predetermined maximum pressure setting determines the maximum pressure to the motor, and maximum trim speed of the fan.
	Applying an electrical current to the valve allows the fan to run at speeds below its maximum trim speed, regardless of the flow supplied to the pump.

Oil exiting the motor is directed back to the reservoir through a filter and a heat exchanger. Oil returning to the reservoir must enter the reservoir well below the fluid level to minimize air entrainment. Baffles in the reservoir diffuse the oil to an acceptable level, mix it with the fluid in the reservoir, and prevent the oil from flowing immediately back to the pump inlet. The return oil remains in the reservoir long enough to allow any entrained air in the fluid to rise to the surface and dissipate.

D Series Gear Motors Service Manual Introduction

Design

Sauer-Danfoss fixed displacement open circuit gear motors convert hydraulic power into mechanical power. Supply flow determines shaft speed. Load torque results in system pressure between the pump and motor. Bushings at the front and rear of the motor support the shaft. The volume between the gear teeth and the pump body defines the displacement of the motor. A shaft seal and dust protector at the front of the motor prevents leakage where the shaft exits the motor housing.

Cutaway Drawing

D Series Gear Motors Service Manual Technical Specifications

Technical Specifications

Technical data for D Motors

Ratings	Units	17	19	21	23	25	29	32	36	38	41	45
Diagla compant	cm³/rev	17.0	19.0	20.5	22.5	25.4	29.0	31.8	36.1	38.0	41.0	45.0
Displacement	in³/rev	1.04	1.16	1.25	1.37	1.55	1.77	1.94	2.20	2.32	2.50	2.75
Dated arreading	Bar	276	276	276	276	276	276	276	276	276	241	210
Rated pressure	psi	4000	4000	4000	4000	4000	4000	4000	4000	4000	3495	3045
Dealeman	Bar	303	303	303	303	303	303	303	303	303	265	231
Peak pressure	psi	4400	4400	4400	4400	4400	4400	4400	4400	4400	3843	3350
	maximum	3400	3400	3400	3400	3400	3400	3400	3400	3400	3000	3000
speed at rated pressure	minimum*	600	600	600	600	600	600	600	600	600	600	600
Start speed at 1000 PSI	rpm	400	400	400	400	400	400	400	400	400	400	400
	kg	8.53	8.66	8.80	8.94	9.07	9.38	9.53	9.84	9.93	10.16	10.43
Standard Weight	lb	18.8	19.1	19.4	19.7	20.0	20.7	21.0	21.7	21.9	22.4	23.0
	x10 ⁻⁶ kg•m ²	127	138	146	156	172	191	206	228	239	255	276
Mass moment of inertia	x10 ⁻⁶ slug•ft ²	94	102	107	115	127	141	152	168	176	188	204
	N•m	65.7	73.4	79.2	87.0	98.2	112.1	122.9	139.6	146.9	138.4	132.4
Theoretical torque at rated pressure	lbf•ft	48.5	54.2	58.4	64.2	72.4	82.7	90.7	102.9	108.3	102.1	97.6
	kW	23.4	26.1	28.2	31.0	35.0	39.9	43.8	49.7	46.1	43.5	41.6
i neoretical power at rated speed	hp	31.2	34.9	37.6	41.3	46.6	53.2	58.4	66.3	61.1	58.0	55.5
	Bar	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Case drain pressure (maximum)	psi	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5

* minimum speed at maximum pressure

Fluid Specifications

Ratings are based on operation with premium petroleum-based hydraulic fluids containing oxidation, rust, and foam inhibitors.

Parameter	Unit	Minimum	Continuous	Maximum		
Viscosity	mm2/sec (cSt)	8	10 - 100	1600		
	[SUS]	[36]	[50 - 212]	[7500]		
Temperature	°C [°F]	-40 [-40]	110 [230]	115 [239]		
Cleanliness		ISO 4406 Class 22/18/13 or better				
Filtration efficiency	charge filtration	β ₁₅₋₂₀ =75(β ₁₀ ≥10)				

For detailed filtration information, see Sauer-Danfoss publication **520L0463** *Fluids and Filtration*. For information on biodegradable fluids see Sauer-Danfoss publication **520L0465** *Biodegradable Hydraulic Fluids*.

D Series Gear Motors Service Manual **Operating Parameters**

Overview

Pressure

Definitions of the D Series motors operating parameters appear below. Consult Sauer-Danfoss technical support for applications running outside of these parameters.

Peak pressure

Peak pressure is the highest intermittent pressure allowed. The relief valve overshoot (reaction time) determines peak pressure. It is assumed to occur for less than 100 ms. The illustration to the right shows peak pressure in relation to rated pressure and reaction time (100 ms maximum).

Pressure vs. time

Rated pressure

Rated pressure is the average, regularly occurring operating inlet pressure that should yield satisfactory product life. The maximum machine load at the motor shaft determines rated pressure.

System pressure

System pressure is the differential between the inlet and outlet ports. It is a dominant operating variable affecting hydraulic unit life. High system pressure, resulting from high load at the motor shaft, reduces expected life. System pressure must remain at, or below, rated pressure during normal operation to achieve expected life.

Back pressure

Back pressure is the average, regularly occurring operating outlet pressure that should yield satisfactory motor life. The hydraulic load demand downstream of the motor determines the back pressure. The Fan Drive Gear Motor can work with back pressure up to 100% of the maximum rated inlet pressure.

Case drain pressure

Case drain pressure is the regularly occurring case drain line pressure that should yield satisfactory motor life. It is recommended to design the case drain piping connecting the case drain direct to the tank in order to keep the case drain pressure as low as possible. Maximum case drain pressure allowed is 5 bar [72.5 psi].

D Series Gear Motors Service Manual Operating Parameters

Temperature and Viscosity Temperature and viscosity requirements must be concurrently satisfied. Use petroleum/mineral-based fluids.

Temperature

High temperature limits apply at the inlet port of the motor. The motor should run at or below the maximum continuous temperature.

Cold oil, generally, doesn't affect the durability of motor components. It may affect the ability of oil to flow and transmit power. For this reason, keep the temperature at 16°C [60 °F] above the pour point of the hydraulic fluid.

Minimum (cold start) **temperature** relates to the physical properties of component materials.

Continuous temperature is the temperature at or below the temperature which normal motor life can be expected.

Maximum temperature is the highest temperature that is tolerable by the machine for a transient/limited time. (Duty cycle 1% or less)

Viscosity

Minimum viscosity occurs only during brief occasions of maximum fluid temperature and severe duty cycle operation. It's the minimum acceptable viscosity to guarantee the motor life. (Duty cycle 1% or less)

Maximum viscosity occurs only during cold start at very low temperatures. It is the upper limit of viscosity that allows the motor to start.

Continuous viscosity: The viscosity range at which normal motor life can be expected.

Hydraulic Fluid

Ratings and data for gear motors are based on operation with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of internal components.

Use only clean fluid in the motor and hydraulic circuit.

Caution Never mix hydraulic fluids.

For more information on hydraulic fluid selection, see Sauer-Danfoss publications **520L0463** *Hydraulic Fluids and Lubricants, Technical Information, and* **520L465** *Experience with Biodegradable Hydraulic Fluids, Technical Information.*

Required Tools	You can perform the service procedures described in this manual using common mechanic's hand tools. Special tools, if required are shown. When testing system pressures, calibrate pressure gauges frequently to ensure accuracy. Use snubbers to protect gauges.
Port locations and Gauge Installation	For economical reasons, the motors do not contain any designated gauge installation ports. Use tee fittings to obtain pressure measurements. The table lists locations and gauge sizes.

D	Se	ries	М	lotor
$\boldsymbol{\nu}$	JU	nc s	1	0101

D	·	
PORT	intorm	ation
1010		anon

Port identifier	Size	Pressure obtained	Gauge size, bar [psi]
	3/4-16 SAE J 1926/1 O-ring boss		
	7/8-14 SAE J 1926/1 O-ring boss		
Inlet and outlet	1 1/16-12 SAE J 1926/1 O-ring boss	System and return	(00 [10 000]
ports A and B	1 5/16-12 SAE J 1926/1 O-ring boss	pressure	600 [10 000]
	1 inch split flange		
	1 1/4 split flange		
Drain port L1	9/16-18 SAE	Case drain	10 [100]

External drain **L1** 9/16-18 SAE Straight thread for 3/8 inch O.D. tube (Note: Location can be on opposite side of motor)

Radial ports

Axial ports

P107 962E

D Series Gear Motors Service Manual Initial Start-Up Procedures

General

Follow this procedure when starting-up a new motor installation or when restarting an installation in which the motor has been removed.

Prior to installing the motor, inspect for damage incurred during shipping. Make certain all system components (reservoir, hoses, valves, fittings, heat exchanger, etc.) are clean prior to filling with fluid.

Start-Up Procedure

- 1. Ensure that the machine hydraulic oil and system components (reservoir, hoses, valves, fittings, and heat exchanger) are clean and free of any foreign material.
 - 2. Install new system filter element(s) if necessary.
 - 3. Install the gear motor.
 - 4. Fill the reservoir with hydraulic fluid of the recommended type and viscosity. Use a 10-micron reservoir filler filter.

After start-up the oil level in the reservoir may drop due to filling of the system components. Check the oil level in the reservoir to maintain the full level throughout the start-up.

Caution

If reservoir is low, damage to hydraulic components may occur. Maintain sufficient oil in the reservoir at all times.

- 5. Use a common method to disable the engine to prevent the engine from starting. Crank the engine starter for several seconds. Do not to exceed the engine manufacturer's recommendation. Wait 30 seconds and then crank the engine a second time as stated above. This operation helps remove unwanted air from the pump outlet line and lubricates the gear motor prior to engine start up. Refill the reservoir to recommended full oil level.
- 6. Enable engine to start. Start the engine. Let the engine run for a minimum of 30 seconds at low idle to allow the air to work itself out of the system. Check for leaks at all line connections and listen for cavitation.

Caution

Cavitation damages hydraulic components. Take steps to avoid air entrainment in the system.

- 7. After initial air removal and ensuring the hydraulic reservoir oil level is correct, raise the engine speed enough to increase fan speed to a moderate level but not enough to open the bypass relief valve.
- 8. With the engine at high rpm disconnect the PWM wire or a sensor to ensure the motor is going to full speed.
- 9. Check that the reservoir is full. The motor is now ready for operation.

D Series Gear Motors Service Manual Fluid and Filter Maintenance

Recommendations

Gear motors are manufactured using a process known as cut-in, during which the gears, motor body, and bearing blocks are allowed to establish a unique relationship to each other. Opening a motor and replacing components is not recommended. Removal or replacement of some internal components will modify their critical dimensions. Because motors are cut-in at a specific pressure to ensure maximum efficiency, removal or replacement of internal components may be detrimental to motor efficiency. Motor conversions are not allowed.

To ensure optimum life, perform regular maintenance of the fluid and filter. Contaminated fluid is the main cause of unit failure. Take care to maintain fluid cleanliness when servicing.

Check the reservoir daily for proper fluid level, the presence of water, and rancid fluid odor. Fluid contaminated by water may appear cloudy or milky or free water may settle in the bottom of the reservoir. Rancid odor indicates the fluid has been exposed to excessive heat. Change the fluid immediately if these conditions occur. Correct the problem immediately.

Inspect vehicle for leaks daily.

Change the fluid and filter per the vehicle/machine manufacturer's recommendations or at these intervals:

Fluid and filter change interval

Reservoir type	Recommended oil	
	change interval	
Sealed	2000 hours	
Breather	500 hours	

Change the fluid more frequently if it becomes contaminated with foreign

matter (dirt, water, grease, etc.), or if the fluid is subjected to temperature levels greater than the recommended maximum.

Dispose of used hydraulic fluid properly. Never reuse hydraulic fluid.

Change filters whenever the fluid is changed or when the filter indicator shows that it is necessary to change the filter. Replace all fluid lost during filter change.

Fan Speed Locked High at High Engine Speed (cold conditions)

To determine minimum fan speed at high engine rpm, connect coil to battery voltage to lock coil in open position. Follow steps 1 - 3. If fan is still not operating properly, follow steps 4 - 5.

Item	Description	Action
1.Wire disconnected or	Any wire on the controller, switches, or temperature	Re-connect wires or re-wire the wiring harness.
shorted	sensors that is disconnected, cut, or shorted will	
	lock the fan to full speed.	
2. Faulty electronics	The control module is not sending a current	Replace the control module. Consult engine repair manual;
	signal to the solenoid. No feel of magnetics on	verify 12 or 24 VDC is going to the coil.
	proportional relief valve coil.	
3. Faulty input signal to	Sensors either not functioning properly or not	Replace or re-mount sensor. Determine why engine is sending
control module (sensors,	properly engaged in mounting. Improper or No	faulty signal and fix. Verify 12 or 24VDC going to controller.
switches, PWM signal)	PWM signal from engine.	Check for 5VDC across sensors.
4. Faulty valve	Valve is stuck in closed position.	Replace valve or complete motor assembly.
5. Faulty solenoid coil.	Coil is either shorted or open. No feel of magnetics	Replace coil. Torque coil nut to 4 to 6 N•m [3 to 4.5 lbf•ft].
	on coil	

High Stand-by Fan Speed (cold conditions)

Item	Description	Action
Blockage in main valve flow	Blockage in valve flow passages will increase fan	Replace valve.
passages	speed and system pressure.	Torque to 45 N•m [33 lbf•ft].
		Torque coil nut to 4 N•m to 6 N•m [3 to 4.5 lbf•ft].
Faulty electronics,	Controller is not sending full current signal to the	Replace bad sensor or connect wire. Determine reason for
sensor bad or disconnected,	solenoid. Sensor bad or disconnected, PWM signal	missing PWM signal. Replace the controller.
PWM signal missing.	missing	
Faulty solenoid coil.	Coil is either shorted or open. No feel of magnetics	Replace coil. Torque coil nut to 4 to 6 N•m [3 to 4.5 lbf•ft].
	on coil	

Fan Speed Not Controlled by Current to Coil

Item	Description	Action
Fan speed proportional to	Blocked or stuck valve causes fan speed to be	Replace valve.
engine speed at all times	proportional to engine speed at all times.	Torque to 45 N•m [33 lbf•ft].
		Torque coil nut to 4 N•m to 6 N•m [3 to 4.5 lbf•ft]

D Series Gear Motors Service Manual Troubleshooting

Fan Does Not Turn

Item	Description	Action
Not enough flow through	If engine is left at idle at start-up of machine, there is not	Rev engine a couple times to get flow through motor. If
motor.	enough flow or pressure to turn fan motor.	the fan begins to turn, and continues to turn when the
		engine returns to idle, the pump and motor are OK.
Delta pressure across	Delta pressure across motor ports should measure	Measure delta pressure across motor ports. If it is greater
proportional valve too low	approximately 50 psi minimum at engine idle.	than 150 psi and the motor does not turn, replace motor.
		If the delta pressure is between 50 psi and 150 psi and
		the motor does not turn, rev the engine a couple of
		times to get flow through the motor and check current
		to the solenoid. If current is greater than recommended
		maximum, adjust controller parameters to reduce the
		current.
		If increasing the engine rpm makes the fan turn, adjust
		controller parameters to reduce the current.
		Consult Sauer-Danfoss controller documentation.
		Consult engine service manual.
	Check motor case drain flow	Is motor case drain flow greater than 1.2 l/min
		[US 0.3 gal/min]
		YES - Replace motor.
		NO - Check proportional relief valve
	Check proportional relief valve	Is there 12 or 24 VDC to coil.
		NO - Find out why and repair.
		YES - Disconnect coil.
	Check fan speed	Did fan speed increase?
		NO - Replace proportional relief valve.
		YES - Check controller
	Replace proportional relief valve	After replacing proportional relief valve, is there adequate
		fan speed?
	Check pump	YES - System is OK.
		NO - With solenoid disconnected, measure and record
		system pressure and fan speed at increasing engine
		speed (i.e.700, 1200, 1500, 1800, full throttle).
	Check fan speed and system pressure	Is the fan speed and system pressure increasing with
		engine speed?
		NO - Replace pump.
Inadequate fan system flow	If pump or motor lose efficiency, there may not be	Disconnect a sensor wire or battery wire to controller, if
coming from pump	enough flow to move the motor	the fan does not turn, check motor bearing flow out of
		motor case drain line (maximum 1.2 l/min [US 0.3 g/min])
		and / or with the solenoid disconnected verify system
		pressures and fan speed while increasing engine speed.
		If the fan does not turn replace the pump, if it does turn,
		Repeat troubleshooting chart from the top of this chart.
		Check engine idle.
	System with Priority Flow Divider (PFD) for steering may	Check flow to steering unit.
	be sending too much flow to steering	Replace pump.
Fan system flow coming	Proportional relief valve in motor is stuck in open	Disconnect solenoid coil. Fan should go to full speed. If
from pump is bypassing the	position	fan does not go to full speed, replace relief valve.
motor		

D Series Gear Motors Service Manual Troubleshooting

Fan Too Slow at High Engine rpm

Disconnect coil to send fan to maximum speed at high engine rpm. If problem remains, follow steps 1 thru 8 below. If fan attains maximum speed, follow step 9.

Item	Description	Action
1. Low oil level in reservoir	Not enough oil to maintain full system flow.	Fill reservoir to recommended level. Consult operator's manual.
2. PRV set to wrong crack	PRV may be holding pressure below specifications.	Replace PRV with one set to appropriate crack pressure.
pressure	The PRV controls the maximum speed of the motor.	Pressure setting is not externally adjustable.
3. Faulty PRV	Fan runs at low engine speed at all times	Replace valve. Torque to 45 N•m [33 lbf•ft]
		Torque coil nut to 4 N•m to 6 N•m [3 to 4.5 lbf•ft]
4. Hydraulic oil temperature	High oil temperature decreases viscosity and	Maintain hydraulic oil at normal operating temperatures (110°C
too high	affects efficiency.	[230°F] max). Ensure cooler is operating properly. High oil
		temperature can also be caused by aeration (see below).
5. Aeration of oil	Air in system decreases efficiency of units and	Find location where air is entering into the system and fix.
	controls. Noise, foaming, and hot oil are signs of	Check inlet line to pump and repair any leaks. Fill reservoir to
	aeration.	recommended level. Consult operator's manual.
6. Damaged motor, low	Proportional relief valve spool sticking open may	Measure system pressure between pump and motor. Vary
system pressure	prevent full flow from going through motor.	engine speed low to high. Does system pressure change?
	Not enough flow from pump.	Check motor case drain flow. Should be maximum 1.2 l/min [US
		0.3 gal/min]. If case drain flow exceeds limits, replace motor.
7. Inadequate fan system	If pump loses efficiency, it may not produce enough	Compare performance when oil is hot and cold. Measure flow
flow coming from pump.	flow to turn the motor. A damaged pump may	entering motor. Measure steering flow. Replace pump if flow is
	provide flow when oil is cold and viscous but may	insufficient.
	not when oil warms up. Systems equipped with	
	steering PFD may be sending too much flow to	
	steering. May be sending too much flow to steering.	
8. Inadequate flow coming	Restriction in inlet of the pump, Strainer or filter in	Clean strainer or replace filter in reservoir.
from the reservoir due to	the reservoir plugged.	Check inlet vacuum at pump inlet. Maximum Inlet vacuum
restrictions		0.7 bar absolute [10 inches Mercury vacuum]
9. Faulty electronic control	The control module is sending too high of a current	Readjust or replace the control module. Verify control module
module.	signal to the solenoid.	is working properly. Troubleshoot control module according
		to manufacturers instructions. Replace control module if
		necessary.

Improper Modulation of Control Module

Item	Description	Action
Faulty input signal to	Sensors either not functioning properly or not	Replace or re-mount sensor. Determine why engine is
control module (sensors,	engaged into mounting properly. Improper PWM	sending faulty PWM signal and fix.
switches, PWM signal)	signal from engine.	
Faulty electronic control	Control module sending improper current to solenoid.	Consult engine service manual. Replace the control module.
module		
Faulty proportional relief	Valve not shifting properly with current signal from	Replace valve assembly.
valve	control module. Verify proper current signal to valve.	Torque to 45 N•m [33 lbf•ft].
		Torque coil nut to 4 N•m to 6 N•m [3 to 4.5 lbf•ft].

System Noise

Item	Description	Action
Aeration of the oil	Low oil in reservoir	Find location where air is entering into the system and fix.
	Air in system decreases efficiency of units and controls.	Problem is often found in inlet line to pump.
	Air in system is indicated by excessive noise in pump,	
	foaming in oil, and hot oil.	Fill reservoir
Cold oil	Low oil temperature increases viscosity and can cause	Allow the oil to warm up to its normal operating
	cavitation, resulting in system noise.	temperature with engine at idle speed.
Fan hitting shroud.	Check fan shroud and hydraulic motor mountings.	Consult owner's manual for proper fastener torques.

Hydraulic System Operating Hot

Item	Description	Action
Low oil level in reservoir	Insufficient amount of hydraulic fluid will not meet the	Fill the reservoir to the proper level.
and low supply to pump.	cooling demands of the system.	
Faulty or blocked heat	If the heat exchanger fails, or becomes obstructed, it may	Ensure that heat exchanger is receiving adequate air
exchanger (if equipped).	not meet the cooling demands of the system.	flow and that the heat exchanger is in good operating
		condition. Repair or replace as necessary.
Faulty PRV	If a system relief valve becomes unseated for an extended	Replace malfunctioning relief valves and verify that the
	period of time or fails for any other reason, the system	loads on the machine are not excessive.
	could become overheated.	Torque to 45 N•m [33]
		Torque coil nut to 4 N•m to 6 N•m [3 to 4.5 lbf•ft]
Fan system flow coming	Proportional relief valve in motor is stuck in open	Disconnect solenoid coil. Fan should go to full speed. If
from pump is bypassing the	position	fan does not go to full speed, replace relief valve.
motor	Proportional valve installed into end cover supply port.	Install valve into endcover port on return side of motor

Leaking Motor Shaft Seal

Item	Description	Action
Excessive pressure in case	Case drain line (from rear of motor) restricted. No other	Verify case drain line is routed directly to reservoir with
drain line.	return lines are tied into motor case drain.	no restrictions. Maximum case pressure limit is 5 bar
		[72 psi]. Replace motor.

D Series Gear Motors Service Manual Minor Repair

Shaft Seal Replacement

Tools needed; snap ring pliers, hammer, awl, (2) sheet metal screws, (2) wire cutting pliers, installation sleeve (PVC tube approximately 0.5 mm [0.02 in] smaller than flange hole diameter), wide cellophane packaging tape, and grease.

Remove the shaft seal

- 1. Remove key from shaft.
- 2. Clean shaft area of all rust, dirt and grime.
- 3. Use a needle nose pliers or sharp screwdriver to remove the dust protector.

Replacing the shaft seal

Use the following instructions to carefully pry out the shaft seal.

4. Using a sharp punch or awl, punch two holes in the shaft seal.

Do not drill holes. Drilling holes produces contamination.

5. Turn two sheet metal screws, one or two turns, into the seal.

D Series Gear Motors Service Manual Minor Repair

Shaft Seal Replacement (continued)

- 6. Using side cutting wire pliers, remove the seal by prying it out as shown. Take care not to damage the shaft.
- 7. Discard the seal.

Inspect the components

Inspect the new seal, the motor housing seal bore, and the sealing area on the shaft for rust, wear, and contamination. Polish the shaft and clean the housing if necessary, being careful not to allow contamination to fall into the motor.

Install the new shaft seal

- Seal Kit

 Kit P/N
 11078459
- 1. Cover the shaft keyway and exposed threads with a shaft cover or packaging tape to protect the shaft and seal during installation.
- 2. Lubricate the inside of the seal.
- 3. Start the shaft seal into the housing with the cupped side of the seal facing the motor.
- 4. Use an installation sleeve to press the seal slowly in place.
- 5. Stop when the seal is seated..
- 6. Using the installation sleeve, install the dust protector until it is flush with the motor.

- 7. Re-install the key into the shaft. Ensure the top of the key does not interfere with the bottom of the keyway in the fan hub when the fan is installed.
- 8. Thoroughly inspect the operation of the motor after it is installed to ensure no leakage occurs.

D Series Gear Motors Service Manual **Minor Repair**

Shaft Repair Parts

ltem	Description	Part number
1	Shaft nut (5/8-18 UNF)	163M2013
2	Locking washer	163M2428
3	Кеу	29620-17

|--|--|--|

P107 969E

Description	Part number
РВ Кеу	163M4001
TK Key	163M4007

Coil Replacement	
------------------	--

Refer to the valve drawings on the following pages for wrench sizes and torque specifications.

Remove the coil

- 1. Disconnect the electrical connection from the coil.
- 2. Remove the plastic nut holding the coil to the valve.
- 3. Remove the O-ring and coil.

Install the coil

- 1. Install new coil.
- 2. Install O-ring on the valve stem.
- 3. Install the plastic nut. Torque coil nut to 4 N•m to 6 N•m (3 to 4.5 lbf•ft)

A Warning

Do not overtorque plastic nut. Overtoruque will damage valve.

4. Install the wire connector to the coil.

Valve Replacement

Remove the valve

Remove the valve from the motor.

Install the valve

Install new valve into motor. Torque to 45 N•m [33 lbf•ft].

A Warning

Do not overtorque valve. Overtoruque will damage valve.

D Series Gear Motors Service Manual Repair Parts

Valves

Proportional Relief Valve

Fixed Relief Valve

D Series Gear Motors Service Manual Repair Parts

Valves (continued)

Valve Repair Parts

	Fixed
	Relief
$\langle n \rangle$	Valve
Seal k	000 vit P107 968E

Description	Part number
Seal Kit, F	11057062
Seal Kit, G	11057063

Model Code example:

Fan drive motor:

A, B, C, D, E 12 VDC proportional relief valve, 25 GPM or less at 172 Bar curve, F.

Above example shows a 12 volt proportional relief valve (P1) in the E1 position of the model code.

Our Products

Aluminum Gear Pumps Aluminum Gear Motors Cast Iron Gear Pumps Cast Iron Gear Motors Fan Drive Gear Motors Aluminum Fan Drive Gear Motors Cast Iron

Turolla OpenCircuitGear™

Turolla OCG, with more than 60 years of experience in designing and manufacturing gear pumps, gear motors and fan drive motors of superior quality, is the ideal partner ensuring robustness and reliability to your work functions.

We are fast and responsive - the first to specify a customer product, the most experienced in providing technical knowledge and support for fan drive solutions.

We offer a lean value chain to our partners and customers and the shortest lead time in the market.

Turolla OCG is member of the Sauer-Danfoss Group.

www.TurollaOCG.com