(N)ERD service manual

L. OV IVIEW . ..ei et eeiteee et ee ettt e et e e e etteeeesteeeeeabaeeeaaeeesssaeessssaeeassee e sssaeanssaeaassaeesnsseeansseeennsseeensseeessssaennes 1
2. Build and set up environment for local deployment............ccccovieiiiiiiiiiiiieniieeccee e 1
3. Build and set up environment for remote deployment............ccceeeeviiiieriiieeeiiieeeiee e 1
4. USE Of (IN)ERD CONSOIC.......coeiiiiiiiiiieiiieeie ettt ettt steesae et eesbeessaeessaesnsaessseanseensseensaennsens 2
5. (N)ERD REST APttt ettt ettt et e seesbeente e st e eneeeneenneenseeseenes 4
6. REST API reSPONSe EXAMPIES.....c.eerviiiieeiiieiiietieeiiesteesteeeteesiteeteesseesseeesaessseessseasseessseesseesnses 18

Authors: Patrice Lopez
Last update: 02.10.2015

1. Overview

(N)ERD - (Named-)Entity Recognition and Disambiguation - includes a RESTful service
implementation for consuming the entity recognition and disambiguation processes.

2. Build and set up environment for local deployment

To build the (N)ERD service for local deployment, you just have to go to the root of the project and
run the following command:

> cd nerd;

> mvn clean install

Then deploy the generated war to the server. The artifact is under:

‘ nerd/target/fr.inria.nerd-<version>.war ‘

As an alternative, it is also possible to quick-start and test the service with jetty:

‘ > mvn -Dmaven.test.skip=true jetty:run-war ‘

3. Build and set up environment for remote deployment

To build (N)ERD for remote deployment, you have to go to the root of the project and run the
following command:

mvn clean install -PgenericBuild

It will generate 2 artifacts, 1 for the text mining data (nerd-data-<version>.zip) and the deployable
war (fr.inria.nerd-<version>.war):

nerd/target/nerd-data-<version>.zip

nerd/target/fr.inria.nerd-<version>.war

Copy these 2 artifacts to your remote server.

nerd-data-<version>.zip contains the needed native libraries, the models, lexicons, gazetteers and a
config directory that contains 2 properties files nerd.properties and nerd_service.properties.

You have to unzip nerd-data wherever you want on your server.

‘ unzip nerd-data-<version>.zip

In fr.inria.nerd-<version>.war, the file web.xml has 3 parameters to set before starting the server:
e fr.inria.nerd.property: path to nerd.property
* fr.inria.nerd.property.service: path to nerd service.properties
e fr.inria.nerd.home: path to nerd home

These properties are filled by the following variables:

_NERD PROPERTY, NERD SERVICE PROPERTY, and NERD HOME, so that it is possible
to fill these values with a script given the environment. It is also possible to set manually these
variables.

4, Use of (N)ERD console

Welcome page is available at http://<server instance name>/<root context name> (i.e: for local
tomcat http://localhost:8080/<name of the war deploy in webapp>).

MIME Type
Type of Requesting | Parameter .
request URL type name Request input | Response Description
type outputype
Gives a very brief description about
General /nerd GET N/A N/A text/html the (N)ERD service.

This “welcome resource” is accessed by the “About” section (Fig. 4.1). From there, it is possible to
access the service interface "Service" (Fig. 4.2) and the administration section (Fig 4.3):

NERD

About Services Admin Doc

About NERD Named Entity Recognition and Disambiguation

Contact: Patrice Lopez.

Fig 4.1: About

http://localhost:8080/%3Cname

NERD

About Services Admin Doc

Service to call NERD text j JSON j Generic j only NER sentence segmentation short text nbest
MEXICO: Recovery excitement brings Mexican markets to life. example_1 Reuters_1
Henry Tricks example_2 Reuters_2
MEXICO CITY 1o 3 R 3
Emerging evidence that Mexico's economy was back on the recovery track sent Mexican markets into a buzz example_ euters,_:
of excitement Tuesday, with stocks closing at record highs and interest rates at 19-month lows. 4 example_4 Reuters_4
Submit

Annotations Response

=) Recovery excitement brings ([EIEN) markets to life.

(L0 Tricks Type: LOCATION
m CITY Sense: country/N1
Emerging evidence that [JE{gg's economy was back on the recovery track sent [T markets into a buzz conf: 0.8

of excitement [I=E11, with stocks closing at record highs and interest rates at [f}-month lows.

"= has been trying to stage a recovery since the beginning of this year and it's always been getting ahead The ""United Mexican States"" (, commenly known as "'Mexico""

of itself in terms of fundamentals," said (SIEIRIEORY] of [[WEW YORK | (pronounced ;), is a [[Federation|federal]] [[constitutional republic]]

"Now we're at the point where the fundamentals are with us. The history is now falling out of view." i [North Anerionl ft ks hordared oo e rioits by tha [nited
States]]; on the south and west by the [[Pacific Ocean]]; on the

That history is one etched into the minds of all investors in [IE&g: an economy in crisis since [Eaal okl a) southeast by [[Guatemala]), [[Belize]), and the [[Caribbean Seal);

a free-falling peso and stubbornly high interest rates. and on the east by the [[Gulf of Mexico]]. Covering almost 2 million

NERD

About Services Admin Doc

Service to call = NERD text j JSON j Generic j only NER sentencesegmentatmn short text nbest

After marching through Belgium, Luxembourg and the Ardennes, the German Army advanced, in the latter half example_1 Reuters_1
-------- example_2 Reuters_2
example_3 Reuters_3
example_4 Reuters_4

divisions of the British Expeditionary Force, under Sir John French.

A series of engagements known as the Battle of the Frontiers ensued. Key battles included the Battle of

Submit
Annotations Response

0 After marching through Belgium, Luxembourg and the Ardennes, the German Army advanced, in the latter half of August, into northern France where they met both the French army, under
Joseph Joffre, and the initial six divisions of the British Expeditionary Force, under Sir John French.

=

A series of engagements known as the Battle of the Frontiers ensued.
Key battles included the Battle of Charlerol and the Battle of Mons.
In the former battle the French 5th Army was almost destroyed by the German 2nd and 3rd Armies and the latter delayed the German advance by a day.

a0 N

A general Allied retreat followed, resulting in more clashes such as the Battle of Le Cateau, the Siege of Maubeuge and the Battle of St. Quentin (Guise).

After marching through XY, LTS srocves i acavan aawy ELRVCSWEY Ul BRITISH EXPEDITIONARY FORCE
half of AT, into northern [GEIIIEY where they met both the (EYEY) army, under and the

initial six divisions of the [EREaI= Gz e, under BT (ENED Type: ORGANISATION
conf: 0.8

0w CowTewrBLe's ASSOCITION

Eomsmen Baawch
In Moworr o o Cowmanes

Fig 4.2: Test Rest Interface

NERD

About Services Admin Doc

Doc
Enter administrator password
Log in

Welcome to the admin console.
Property value
fr.inria.nerd.service.admin.pw d@33e22ae34Baeb5660fc2140aec35850c4da%97
fr.inria.nerd.KnowledgeBaseESName erd2014
fr.inria.nerd.grobid_home /Users/lopez/grobid-segmentation-work/grobid/grobid-home/
fr.inria.nerd.elasticSearch_port 9200
fr.inria.nerd.nerd_home /
fr.inria.nerd.cache_rest true
fr.inria.nerd.mongodb_host localhost

fr.inria.nerd.language_detector_facto
ry

fr.inria.nerd.proxy_host null

fr.inria.nerd.mongodb_port 27017
/Users/lopez/grobid-segmentation-work/grobid/grobid-home/config/grobid.propert
ies

fr.inria.nerd.proxy_port null

fr.inria.nerd.elasticSearch_host localhost

fr.inria.nerd.lang.impl.CybozulLanguageDetectorFactory

fr.inria.nerd.grobid_properties

Fig 4.3: Service administration

The web page "Service" (Fig. 4.2) allows to test the different REST requests quickly. In the source
code, the class NerdRestService is the entry point for each rest service of the (N)ERD services.

The administration section "Admin" (Fig 4.3) allows to manage dynamically the properties
contained in nerd.properties and nerd_service.properties.

Finally the "Doc" section gives access to the present manual.

5. (N)ERD REST API

5.1. Administration services

These services make possible the modification the property values dynamically while the server is
deployed. For instance it is possible to modify the nerd home path or the ElasticSearch instance
when new models and resources are available/indexed. This is a standard production requirement.

The table below shows the provided resources corresponding to the HTTP verbs to use the
administration services. All url described bellow are relative path, the root url is http.//<server
instance name>/<root context>/service/.

The console web application calls these services and can be used to administrate the (N)ERD
deployment or can be exploited as javascript reference client implementation.

Parameter Requesting | MIME Type
Type of request | URL name type R - Response output Description
equest input type
q put typ type
Jadmin POST application/x-www-form-
urlencoded R " . . fnerd ” d
equest to get parameters of nerd.properties an
shal text/html nerd_service.properties formatted in html table.
/admin?shal=<pwd> GET String
Jshal POST application/x-www-form-
urlencoded
shal text/html Request to get an input string hashed using shal.
/shal?shal=<input string> GET String
. Request to get all properties key/value/type as xml.
/allProperties POST application/x-www-form- Sent xml follow the following schema:
urlencoded <properties>
<property>
.. . Shal text/xml <key>key</key>
Administration <value>value</value>
Q) <t >t </t >
/allProperties? GET String Joropert ;/>pe ype</type
shal=<password> <property>...</property>
</properties>
application/x-www-form-
/changePropertyValue POST urlencoded
Change the property value from the property key
passed in the xml input. Xml input has to follow the
following schema:
<changeProperty>
<password>pwd</password>
xml text/xml <property>
<key>key</key>
/changePropertyValue?) <value>value</value>
_ GET Strin <type>type</type>
xml=<some xml> & </property>

</changeProperty>

5.2. Language identification

For preliminary check, a language identification service is available.

Requesting Parameter | MIME Type
Type of request | URL type name Response output Description
Request input type
type

Identify the language of a fragment of text.
Lang'uage' /processLIdText POST, PUT |text multipart/form-data application/json Answer: JSON with 1.dent1ﬁed language (ISO 639-1)
identification and confidence score:

{"lang":"en","conf":1}

> curl -X POST http://localhost:8090/service/processLIdText ?text=Bonjour
> {"lang":"fr","conf":0.7142846023142064}

5.3. Sentence segmentation

This service segments a text into sentences. It is useful in particular for the interactive mode for indicating that only certain sentences need to processed
for a given query. Beginning and end of each sentence are indicated with offset positions with respect to the input text.

Requesting | Parameter | MIME Type
Type of request | URL type fame Response output Description
Request input type
q put typ type
Segment a text into sentences.
Sentence . . o Answer: JSON with offsets for each sentences:
. /processSentenceSegmentation | POST, PUT | text String application/json { "sentences" :

segmentation { "offsetStart" : 0, "offsetEnd" : 6 },

{ "offsetStart” : 6, "offsetEnd" : 21 }

]

}

http://localhost:8090/processLIdText

> curl -X POST 'http://localhost:8090/service/processSentenceSegmentation?text=I+eat.+Then+I+spleep.’
> { "sentences" : [{ "offsetStart" : 0, "offsetEnd" : 6 }, { "offsetStart" : 6, "offsetEnd" : 21}] }

5.4. NERD text processing

Two services performing named entity recognition and disambiguation are available:
— processNERDText for processing raw text fragment, resulting in a structured response containing the different annotations,

— processNERDQuery, dedicated to interactive applications, which consumes as input a structured JSON query following the format of the
(N)ERD annotated text and which produces a re-processed structured response.

These services are restricted to a set of 26 classes of names entities (see https://github.com/kermitt2/grobid-ner/wiki/Grobid-NER-classes-and-senses).
If covered by Wikipedia/FreeBase, the service will try to disambiguate the recognized named entities. Entities not covered by these knowledge bases
will be characterized by an entity class, a word sense estimation and a confidence score.

In addition, two similar services are provided performing free disambiguation. Without entity class restriction, the service tries to disambiguate all the
entities covered by Wikipedia/FreeBase. However, in this case the entities not present in the knowledge base will not be recognized and characterized
at all:

— processERDText for processing raw text fragment, resulting in a structured response containing the different annotations,

— processERDQuery, dedicated to interactive applications, which consumes as input a structured JSON query following the format of the ERD
annotated text and which produces a re-processed structured response.

54.1. processNERDText and processERDText

This is the base NERD/ERD service to be used on raw text fragment.

Note that the language identifier will be applied as a starting point of the process to ensure that the language of the text is supported by the system. In
the current version, only English, French and German are supported by the ERD services, and only English is supported by the NERD services. If
the language of the text is not supported, an http error 406 (request not acceptable) is sent back. The different possible parameters are described bellow.

The two services processNERDText and processERDText use exactly the same arguments/parameters and differ only with respect to the explanations
given in 5.4.

https://github.com/kermitt2/grobid-ner/wiki/Grobid-NER-classes-and-senses
http://localhost:8090/processLIdText

Requesting type | Parameter MIME Type
Type of request | URL name ' Response output Description
Request input type
type

toerﬁt NER E:)rcl)?egan Perform a Named Entity Recognition and
Named Entity JorocessNERDText nbe}; + boolean Disambiguation on a text: identify entities and classify
Recognition and /processERDTex A POST, PUT sentence boolean application/json |them in term of NER types and, when possible,
Disambiguation P . subtypes. Entity resolution against Wikipedia &

format String FreoBase

customisation | String '

The request is an HTTP GET or POST with the following query parameters:

text

onlyNER

nbest

sentence

format

customisation

Text to be processed in UTF-8
Mandatory - Default: none

Boolean indicating if the process should be limited to Named Entity Recognition, without disambiguation and resolution against
Wikipedia and Freebase. Performing only NER results in much faster processing time.
Optional — Default: false

Boolean indicating if only the best disambiguation results should be returned for an identified entity or several best hypotheses.
Optional — Default: false

Boolean indicating if a sentence segmentation should be present in the returned result.
Optional — Default: false

String indicating if the response format is JSON only or JSON+TEI.
Optional — Default: JSON

Indicate the name of a domain customisation, or generic if no particular customisation is used.
Optional — Default: generic

> curl -X POST 'http://localhost:8090/service/processNERDText?text=John+Smith&onlyNER=true'

> {"text": "John Smith", "runtime": 3, "language": {"lang":"de", "conf": 0.5714286566545531}, "entities": [{ "rawName" : "John Smith",
"type" : "PERSON", "offsetStart" : 0, "offsetEnd" : 10, "conf" : "0.8", "prob" : "1.0" }]}

5.4.2.

processNERDQuery and processERDQuery

This NERD service supports interactive usage, where a user can manually pre-annotate or correct some annotations and the client application might

sends the corrected annotated text to the service several time. There is only a unique parameter which is a JSON string representing a query. This query
is similar to the base response of the NERD/ERD service.

When annotations are present in the query, the NERD system will consider them certain and:

— ensure that the user annotations will be present in the output response without inconsistencies with other annotations,
— exploit the user annotations to improve the context for identifying and disambiguating the other possible entities.

The client must respect the JSON format of the NERD/ERD response as new query, as described bellow.

Requesting Parameter MIME Type
Type of request | URL type fame Response output Description
Request input type
type

Perform a Named Entity Recognition and
Named Entity Disambiguation on a text: identify entities and classify
Recognition and ;p ;gzzzzgggggeuery POST, PUT query application/json application/json [them in term of NER types and, when possible,
Disambiguation p Yy subtypes. Entity resolution against Wikipedia &

FreeBase.

1) The JSON format for the query parameter to be sent to the service is identical to a response of the service. The parameters of the processNERDText
are attribute of the JSON, which typically follow a template like the following one:

{ "text": "The text to be processed.",
"l anguage": {
"l ang": "en"
"entities": [],
"resul t Languages" : ["fr,"de"]
"onl yNER': fal se,
"nbest": O,
"sentence": fal se,
"format": "JSON',
"custoni sation": "generic"

}

An additional available parameter is resultLanguages. This parameter is a list of language codes and permits to get the wikipedia pages in additional
languages if they exist (currently only English, German and French wikipedia are supported). In this example the processNERDText service optional
parameters (onlyNER, nbest, sentence, format, customisation) are set to their default values (they remain optionals). The 'entities' attribute is here
empty, which means that there is no pre-defined annotation. Apart from the source language which is pre-set (consequently the language is considered

certain, and the language identifier will not be used) and additional target languages of results, this example is similar to a processNERDText request
but in a JSON format.

2) In the following example, a pre-defined entity (typically pre-annotated by a user) is present in the 'entities’ attribute:

{ "text": "Austria invaded and fought the Serbian arny at the Battle of Cer and Battle of Kol ubara
begi nning on 12 August.",

"l anguage":
"l ang": "en"
b
"entities": [{
"rawNanme": "Austria",
"type": "LOCATI ON',
"offsetStart": O,
"of fsetEnd": 7,
"wi ki pedi a": "26964606"
0}

In a typical interactive scenario, an application client first sends a text to be processed via the processNERDText service, and receives a JSON
response with some entities. The annotated text is displayed to a user which might correct some invalid annotations. The client updates the modified
annotations in the first JSON response and can send it back to the service now as new query via the processNERDQuery. The corrected annotations
will then be exploited by the (N)ERD system to possibly improve the other annotations and disambiguations.

3) To support addition of text by a user (e.g. note taking environment where the (N)ERD service is called continuously in background), it is possible to
indicate the (N)ERD system to process only certain sentences of the input text. The entity disambiguation and resolution will still consider the entire
text and the previous annotations when processing only the indicated sentences.

For this purpose, an additional attribute processSentence is possible when calling the service processNERDQuery. The parameter/attribute provides the
list of sentences to be processed:

{

"text": "The arny, |ed by general Paul von H ndenburg defeated Russia in a series of battles
collectively known as the First Battle of Tannenberg. But the failed Russian invasion,
causing the fresh German troops to nove to the east, allowed the tactical Alied victory at
the First Battle of the Marne.",

"processSent ence" : [1]

}

When processSentence is set, a sentence segmentation always occur, whatever the value of the attribute sentence. In this example only the second
sentence will be the object of the NERD processing. It is possible to express sentences as interval, e.g. [2, 5-10].

{

"text": "The arny, |led by general Paul von Hi ndenburg defeated Russia in a series of battles
collectively known as the First Battle of Tannenberg. But the failed Russian invasion,
causing the fresh Gernman troops to nove to the east, allowed the tactical Alied victory
at the First Battle of the Marne.",

"processSentence" : [1],

"sentences":

{ "offsetStart": O,
"of fsetEnd": 163 },
{ "offsetStart": 163,
"of fsetEnd": 319 }],

"entities": [{ "rawNane": "Russian",
"type": "NATI ONAL",
"offsetStart": 179,
"of fset End": 186,
etc, ...

}

> curl -X POST 'http://localhost:8090/service/processNERDQuery' -d '{ "text" : "John Smith", "onlyNER" : true}'

> {"text": "John Smith", "runtime": 3, "language": {"lang":"de", "conf": 0.5714286566545531}, "entities": [{ "rawName" : "John Smith",
"type" : "PERSON", "offsetStart" : 0, "offsetEnd" : 10, "conf" : "0.8", "prob" : "1.0" }]}

5.5. ERD term vector processing

5.5.1. processERDQueryTerms

The (N)ERD service can process a weighted vector of terms. Each term will be disambiguated - when possible - in the context of the complete vector.

The client must respect a JSON format encoding the weighted term vector as query, as described bellow.

Requesting Parameter MIME Type
Type of request | URL type fame Response output Description
Request input type
type
Disambiguation Perform a disambiguation on a weighted term vector:
of a weighted /processERDQueryTerms GET, POST query application/json application/json |entity resolution against Wikipedia & FreeBase for
term vector each term in the global context of the vector.

The JSON format for the query parameter to be sent to the service must follow the following template:

{ "ternVector": [{"term! : "conputer science", "score" : 0.3},{"terni : "engine", "score" : 0.1}],
"l anguage": {
"l ang": "en"
"resul t Languages” : ["de"]
"nbest": O,
"format": "JSON',
"custoni sation": "generic"
}

The fields nbest, language, format, customisation are optional and defined similarly in section 5.4.2 and are set to their default values. The termVector

field is required for having a well-formed query. resultLanguages can be set to get wikipedia pages for languages in addition to the language of the
input terms.

> curl -X POST 'http://localhost:8090/service/processERDQueryTerms' -d '{"ternVector":[{"terni:"conputer science",
"score":0.3},{"ternt:"engine", "score":0.1}], "nbest": 0}

>{"runtine": 33, "nbest": false,"termvector":[{"term':"conmputer science","score":0.3,"entities":[{"rawNanme":
"conput er sci ence", "preferredTerni: " Conput er sci ence","nerd_score":"0.20149253731343286", "prob":"1. 0",
"w ki pedi aExt ernal Ref ": "5323", "freeBaseExternal Ref": "/ m 01lnkq","definitions":[{"definition":"""" Conputer

science''' or '''computing science''' (abbreviated ''"CS '') is the study of the theoretical foundations of

[[Information]] and [[conputation]] and of practical techniques for their inplenmentation and application in
[[conputer]] systenms. Conputer scientists invent [[algorithm]ic processes that create, describe, and
transform information and fornulate suitable [[abstraction (conmputer science)|abstraction]]s to nodel

conpl ex systens. ", "source":"w ki pedi a-en","lang":"en"}]]},{"term': "engine","score":0.1,"entities":
[{"rawNane": "engi ne", "preferredTernm': "Engi ne", "nerd_score":"0.001837127251406647", "prob":"1. 0", "w ki pedi aExt

ernal Ref ":"9640", "freeBaseExternal Ref ": "/ m 02nk9", "definitions":[{"definition":"An "''engine "' or
"'"motor''' is a [[machine]] designed to convert energy into useful [[Mdtion (physics)|nechanical notion]].

Devi ces converting heat energy into notion are referred to as ''engines'', which conme in many types. A
common type is a [[heat engine]] such as an [[internal conbustion engine]] which typically burns a fuel wth
air and uses the hot gases for generating power. [[External conbustion engine]]s such as [[steam engine]]s
use heat to generate notion via a separate working fluid.","source":"w ki pedia-en","lang":"en"}]}]}1.

"] anguage": {"lang":"fr", "conf":0.857140003447354} }

5.6. ERD search query processing

5.6.1. processERDSearchQuery

The (N)ERD service can disambiguate a search query expressed as a short text. Search query disambiguation uses a special model optimized for a
small number of terms and trained with search queries. The difference between standard text and short text is similar to the one of the ERD 2014
challenge (http://web-ngram.research.microsoft.com/erd2014/Docs/Detail%20Rules.pdf).

Requesting Parameter MIME Type
Type of request | URL type name

Response output Description

Request input type T

Disambicuation Perform a disambiguation on a search query: entity
ofa searfh query /processERDSearchQuery GET, POST query application/json application/json |resolution against Wikipedia & FreeBase of the search

terms in the global context of the search query.

The JSON format for the query parameter to be sent to the service must follow the following template:

{ "text": "concrete punp sensor"
"l anguage": {
"l ang": "en"
b
“nbest": O,
"format": "JSON',
"custom sation": "generic"
}

The fields nbest, language, format, customisation, resultLanguages are optional and defined similarly in section 5.4.2 and are set to their default
values.

http://web-ngram.research.microsoft.com/erd2014/Docs/Detail%20Rules.pdf

> curl -X POST 'http://localhost:8090/service/processERDSearchQuery' -d '{"text":"concrete punp sensor","language":
{"lang":"en", "conf": 1.0}, "nbest": 0}

> {"runtime": 84, "onlyNER": false, "nbest": false, "text": "concrete pump sensor", "language": {"lang":"en", "conf": 1.0}, "entities":
[{ "rawName" : "concrete", "preferredTerm" : "Concrete", "offsetStart" : o, "offsetEnd" : 8, "nerd_score" : "0.988974165793762",
"ner_conf" : "0.8", "prob" : "1.0", "wikipediaExternalRef" : "5371", "freeBaseExternalRef" : "/m/o1mxf", "definitions" : [{ "definition" :

K

"""Concrete'" is a [[composite material| composite]] construction material, composed of cement (commonly [[Portland cement]]) and
other cementitious materials such as [[fly ash]] and [[slag cement]], [[construction aggregate|aggregate]] (generally a coarse aggregate
made of gravel or crushed rocks such as [[limestone]], or [[granite]], plus a fine aggregate such as [[sand]]), [[water (properties)|
water]] and [[Chemistry|chemical]] admixtures.", "source" : "wikipedia-en", "lang" : "en" }], "domains" : ["Materials", "Engineering",
"Aviation", "Architecture"] , "categories" : [{"source" : "wikipedia-en", "category" : "Pavements", "page_id" : 1297865}, {"source" :
"wikipedia-en", "category" : "Concrete", "page_id" : 2238414}, {"source" : "wikipedia-en", "category" : "Building materials", "page_id" :
3962842}, {"source" : "wikipedia-en", "category" : "Masonry", "page_id" : 3975663}, {"source" : "wikipedia-en", "category" : "Sculpture
materials", "page_id" : 10308784}] }, { "rawName" : "concrete pump", "preferredTerm" : "Concrete pump", "offsetStart" : o,

"offsetEnd" : 13, ...

Service tocall | ERD search query .
{ m example 1 Reuters_1
‘lext : "concrete pump sensor’, example.2 Reuters 2
“language”: {
“lang": "en’ example_3 Reuters_3

NI

example.4 Reuters_4

b

Submit

Annotations ~ Response

concrete Conf: 0.98

W
Concrete is a composite construction material, composed of cement (commonly Portland cement)
and other cementitious materials such as fly ash and slag cement, aggregate (generally a coarse P
aggregate made of gravel or crushed rocks such as limestone, or granite, plus a fine aggregate such
as sand), water and chemical admixtures.
concrete pump Conf: 0.98 W

A concrete pump is a tool used for transferring liquid concrete by pumping. There are two types of
concrete pumps. The first type of concrete pump is attached 1o a truck. It is known as a trailer-
mounted boom concrete pump because it uses & remote-controlled articulating robatic am (called a

n

Fig 5: Search query disc;mbiguation console

5.7.

Customisation API

It is possible to use a customisation to specialise the entity recognition, disambiguation and resolution for a particular domain. This API allows to
manage customisations for the (N)ERD instance which can then be used a parameter by the (N)ERD services.

Requesting type | Parameter MIME Type
name o
Type of request | URL Reduest inout tvoe Response output Description
q put typ type

List the. ex1.st1ng /NERDCustomisations GET N/A N/A application/json Return the list O.f eglstlng customisations as a JSON

customisations array of customisation names.

Get the /NERDCustomisation/ Return the JSON profile of an existing customisation

information of a GET N/A N/A application/json |. . o P £

. {name} identified by its name as path parameter.

customisation
Create a customisation as defined in the input JSON,
named following the path parameter.

Create a /createNERDCustomisation/ S S The JSON profile specifies a context via the

customisation {name} POST,PUT profile application/json application/json combination of a list of Wikipedia article IDs,
FreeBase entity mid and text fragments. A text
describing informally the customisation can be added
optionally.
Extend the definition of a customisation named
following the path parameter by additional context
information.

/
lcElTst‘f(ilr?liza tion extendNERDCustomisation/ | POST,PUT profile application/json application/json |The additional context is given by the combination of a
{name} list of Wikipedia article IDs, FreeBase entity mid and

text fragments, which will be merged with the existing
one. A text describing informally the customisation
can be added optionally

Delete a /NERDCustomisation/ DELETE name String application/json Delejce an existing customisation identified by its name

customisation {name} provided as path parameter.

The JSON profile of a customisation to be sent to the server for creation and extension has the following structure:

"w ki pedi a"
"freebase":

. [4764461, 51499, 1014346],
["/nOcm2xh", "/miodl 4z", "/m 02kxg_ ", "/m 06v9th"],

"texts": ["World War | (WA or WM or World War One), also known as the First Wrld War or the

Great War, was a global war centred in Europe that began on 28 July 1914 and | asted
until 11 Novenber 1918.", "The war drew in all the world s econonic great powers, which
were assenbled in two opposing alliances: the Allies (based on the Triple Entente of the
Uni ted Kingdom France and the Russian Enpire) and the Central Powers of Gernany and
Austria-Hungary. "],

"description" : "Customsation for Wrld War 1 donai n"

Name is the identifier of the customisation. The context will be build based on Wikipedia articles, FreeBase entities and raw texts, which are all
optional. Wikipedia articles are expressed as an array of Wikipedia page ID. FreeBase entities are given as an array of mid (the FreeBase Machine
IDs). Finally, texts are represented as an array of raw text segments.

Response status codes
HTTP Status Code

Reason

200
400
404
500

Successful operation.

Wrong request.

Indicates that the customisation resource was not found.
Indicate an internal service error.

In case of error status, the service returns a JSON object with an error message.

> ["wwi1"]

"n.n

> curl -X POST 'http://localhost:8090/service/createNERDCustomisation/ww1' -d '{"wi ki pedi a" : [4764461]}'
> curl -X GET http://localhost:8090/service/ NERDCustomisations

> curl -X GET http://localhost:8090/service/getNERDCustomisation/ww1
> { "name" : "ww1", "wikipedia" : [4764461] }

6. REST API response examples

It is possible to view the service response with the Web Service console as shown by Figure 6.1.

example_1 Reuters_1
example_2 Reuters_2
example_3 Reuters_3
example_4 Reuters_4

Austria invaded and fought the Serbian army at the Battle of Cer and Battle of Kolubara beginning on 12 August.

Submit

Annotations Response

"text": "Austria invaded and fought the Serbian army at the Battle of Cer and Battle of Kolubara beginning on 12 August.",
"runtime": 3697,
“language": {
“lang": “en",
"conf": @.9999977889375871
Fe
"entities": [
{

"rawhName": "Austria",

"type": "LOCATION",

"offsetStart™: @,

"offsetEnd": 7,

"conf": "8.8",

“prob™: "1.e",

"sense": {

"fineSense": "constituency/N1",
“conf": "8.7"

5
"wikipedia": "26964686",
"freebase": {

"mid": "/m/@h7x"
h

Fig 6.1: Viewing service response

Named Entity Recognition service:

Input:
Output:

	1. Overview
	2. Build and set up environment for local deployment
	3. Build and set up environment for remote deployment
	4. Use of (N)ERD console
	5. (N)ERD REST API
	5.1. Administration services
	5.2. Language identification
	5.3. Sentence segmentation
	5.4. NERD text processing
	5.4.1. processNERDText and processERDText
	5.4.2. processNERDQuery and processERDQuery

	5.5. ERD term vector processing
	5.5.1. processERDQueryTerms

	5.6. ERD search query processing
	5.6.1. processERDSearchQuery

	5.7. Customisation API

	6. REST API response examples

