

Technical Manual

Version 01.00

Motorola C381p Handset
J2ME™ Developer Guide

Table of Contents

2

Table of Contents

TABLE OF CONTENTS ... 2
TABLE OF FIGURES.. 6
INDEX OF TABLES .. 7
TABLE OF CODE SAMPLES.. 9
1 INTRODUCTION .. 10
PURPOSE .. 10
AUDIENCE .. 10
DISCLAIMER .. 10
REFERENCES .. 11
REVISION HISTORY .. 12
DEFINITIONS, ABBREVIATIONS, ACRONYMS ... 12
DOCUMENT OVERVIEW .. 13

2 J2ME INTRODUCTION... 15
THE JAVA 2 PLATFORM, MICRO EDITION (J2ME).. 15
THE MOTOROLA J2ME PLATFORM ... 16
MIDP 1.0 ... 16
RESOURCES AND API’S AVAILABLE.. 17

3 DEVELOPING AND PACKAGING J2ME APPLICATIONS ... 18
GUIDE TO DEVELOPMENT IN J2ME.. 18

4 DOWNLOADING APPLICATIONS .. 20
METHOD OF DOWNLOADING ... 20
ERROR LOGS .. 21
OTA AND DOWNLOAD ... 22

5 APPLICATION MANAGEMENT... 24
DOWNLOADING A JAR FILE WITHOUT A JAD .. 24
MIDLET UPGRADE ... 24
INSTALLATION AND DELETION STATUS REPORTS.. 25
SYSTEM MENU .. 25

6 JAD ATTRIBUTES.. 27
JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS .. 27

7 JAVA.LANG IMPLEMENTATION .. 29

Table of Contents

3

JAVA.LANG SUPPORT ... 29
8 NETWORK APIS .. 30
NETWORK CONNECTIONS... 30
USER PERMISSION .. 32
HTTPS CONNECTION .. 32

9 JSR 135 MOBILE MEDIA API .. 35
JSR 135 MOBILE MEDIA API ... 35
TONECONTROL .. 36
GUICONTROL ... 37
VOLUMECONTROL .. 37
STOPTIMECONTROL .. 38
MANAGER CLASS .. 38
AUDIO MEDIA .. 38

10 JSR 120 – WIRELESS MESSAGING API .. 41
WIRELESS MESSAGING API (WMA).. 41
SMS CLIENT MODE AND SERVER MODE CONNECTION .. 41
SMS PORT NUMBERS ... 42
SMS MESSAGE TYPES ... 43
SMS MESSAGE STRUCTURE ... 43
SMS NOTIFICATION ... 43

11 PHONEBOOK ACCESS API ... 49
PHONEBOOK ACCESS API ... 49
PHONEBOOK ACCESS API PERMISSIONS .. 49

12 TELEPHONY API.. 54
DIALER CLASS .. 54
CLASS DIALEREVENT .. 54
CLASS DIALER .. 56
getDefaultDialer.. 57
setDialerListener ... 57
startCall .. 58
startCall .. 58
sendExtNo .. 58
endCall ... 59

INTERFACE DIALERLISTENER... 59
SAMPLE DIALERLISTENER IMPLEMENTATION ... 59
notifyDialerEvent ... 61

CLASS HIERARCHY .. 61
INTERFACE HIERARCHY... 61

13 SERIAL PORT ACCESS.. 62
14 SMS MESSAGING AS GSM EXTENSION ... 63
CREATING A MESSAGE... 63
SENDING A MESSAGE .. 63
VIEWING A MESSAGE .. 64
DELETING A MESSAGE... 64

15 USER DISPLAY INTERFACE .. 65

Table of Contents

4

CANVAS FUNCTIONALITY... 65
HARDWARE MAPPING .. 67

16 ONE-CLICK APPLICATION ACCESS .. 71
APPLICATION RESOURCES ... 71
APPLICATION KEYS .. 71
APPLICATION ICONS .. 71
SOFTKEY LABELS .. 72
EFFECT OF MASTER CLEAR OR MASTER RESET ... 72
DELETING THE MIDLET/APPLICATION .. 72

17 DOWNLOAD MIDLET THROUGH BROWSER ... 73
STAR ACTIVE BROWSER SESSION FROM MAIN MENU ... 74
FIND A LOCATION WITH J2ME APPLICATION .. 74
DOWNLOADING MIDLETS.. 75
DIFFERENT ERROR CHECKS .. 77
Memory Full.. 77
Memory Full during installation process.. 80
Application version already exists:... 81
Newer Application Version Exists: ... 82

18 LIGHTWEIGHT WINDOWING TOOLKIT.. 84
19 UDP SUPPORT .. 85
20 SHARED JAD URLS ... 86
OVERVIEW .. 86
TELL-A-FRIEND OPTION ... 86
Accessing Tell-A-Friend from SMM.. 87
Downloading through Browser.. 88
Downloading from PC (Via serial/USB) .. 88
Downloading through MMS ... 89

21 GET URL FROM FLEX API... 90
OVERVIEW .. 90
FLEXIBLE URL FOR DOWNLOADING FUNCTIONALITY .. 90
SECURITY POLICY .. 91

22 MULTIPLE KEY PRESS.. 92
23 ITAP ... 94
INTELLIGENT KEYPAD TEXT ENTRY API.. 94

24 LCDUI... 95
LCDUI API ... 95

25 AUTO LAUNCH OF MIDLETS .. 100
SCENARIOS INVOLVED IN LAUNCHING MIDLET ... 100

26 BACKGROUND APPLICATIONS .. 101
BACKGROUND ATTRIBUTE... 101
BACKGROUND JAVA APPLICATION LIFECYCLE ... 101
BACKGROUND MIDLET.. 101
FLIP BEHAVIORS .. 102

Table of Contents

5

27 JAVA SYSTEM MENU... 103
MIDLET MANAGER MENU ... 103
View MIDlet Suite Information ... 104

DELETING MIDLET SUITES.. 104
28 INVISIBLE NET FOR J2ME .. 107
INTRODUCTION .. 107
J2ME INVISIBLE NET OPTIONS .. 107
J2ME Component Options ... 107
J2ME Context-Sensitive Menu Options... 109

29 DOWNLOAD MIDLET THROUGH PC... 111
ESTABLISHING CONNECTION ... 111

30 OPERATOR APPS PROVISIONING... 112
31 MIDP 2.0 SECURITY MODEL .. 113
UNTRUSTED MIDLET SUITES.. 114
UNTRUSTED DOMAIN .. 114
TRUSTED MIDLET SUITES ... 115
PERMISSION TYPES CONCERNING THE HANDSET .. 115
USER PERMISSION INTERACTION MODE ... 115
IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY... 116
TRUSTED 3RD PARTY DOMAIN.. 116
TRUSTED MIDLET SUITES USING X.509 PKI ... 117
SIGNING A MIDLET SUITE.. 117
SIGNER OF MIDLET SUITES.. 118
MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES.. 118
CREATING THE SIGNING CERTIFICATE ... 118
INSERTING CERTIFICATES INTO JAD .. 119
CREATING THE RSA SHA-1 SIGNATURE OF THE JAR .. 119
AUTHENTICATING A MIDLET SUITE .. 119
VERIFYING THE SIGNER CERTIFICATE ... 119
VERIFYING THE MIDLET SUITE JAR ... 120

APPENDIX A: AUDIO MIX TABLE.. 122
APPENDIX B: KEY MAPPING ... 123
KEY MAPPING FOR THE C381P ... 123

APPENDIX C: MEMORY MANAGEMENT CALCULATION .. 125
AVAILABLE MEMORY .. 125

APPENDIX D: FAQ .. 126
ONLINE FAQ ... 126

APPENDIX E: HTTP RANGE ... 127
GRAPHIC DESCRIPTION... 127

APPENDIX F: SPEC SHEET ... 128
C381P SPEC SHEET .. 128

Table of Figures

6

Table of Figures

Figure 1 Java Platform...15
Figure 2 Active Global Commands - Back, Cancel, OK, Help & Stop
..69
Figure 3 Active Global Commands - Cancel, Screen, OK, Help & Stop
..69
Figure 4 Starting Active Browser Session from Main Menu74

Figure 5 Downloading and Installing J2ME Application (MIDlets) ..75
Figure 6 Application does not have Mandatory Attributes in ADF ..77
Figure 7 Memory full error ..79
Figure 8 Mot-Data-Space & Mot-Program-Space attributes are not
present or are incorretct ..80
Figure 9 Memory Full help message during installation process.....81
Figure 10 Same Version of Application already exists on the
handset ...82
Figure 11 Latest (Newer) Version of Application exists....................83
Figure 12 the MIDlet Manager and the context-sensitive menus.......88
Figure 13 Java service menu for a MIDlet with background
attributes...102
Figure 14 Viewing MIDlet Suite Information..104
Figure 15 Deleting MIDlet Suites ...105
Figure 16 Description of HTTP Range...127

Index of Tables

7

Index of Tables

Table 1 Error Logs ...22
Table 2 JAD file information..23
Table 3 Application management feature/class support for MIDP 2.0
..25
Table 4 Java System menu ..26
Table 5 MIDlet Attributes, descriptions, and JAD and/or JAR
location ...28
Table 6 Network API feature/class support for MIDP 2.0....................31
Table 7 Multimedia File formats ...38
Table 8 List of audio MIME types ...39
Table 9 Multimedia feature/class support for JSR 13539
Table 10 Messaging features/classes supported44
Table 11 Interface Summary ..54
Table 12 Class Summary...54
Table 13 Field Summary...55
Table 14 Constructor Summary..55
Table 15 Field Details...56
Table 16 Method Summary ..57
Table 17 Key Ranking Priority..68
Table 18 Performed on a suite..87
Table 19 Gaming and keypad feature/class ..93
Table 20 ITAP feature/class ..94
Table 21 Interfaces supported by Motorola implementation95
Table 22 Specific classes supported by Motorola implementation ..96
Table 23 LCDUI feature/class..99
Table 24 Function Describes..103
Table 25 Midlet Manager Menu Description..103

Index of Tables

8

Table 26 Security feature/class support for MIDP 2.0 114
Table 27 Protected Functionality fot top line of prompt 117
Table 28 Dialog Prompts for MIDP 2.0 Permission Types.................... 117
Table 29 Actions performed upon completion of signer certificate
verification ..120
Table 30 MIDlet suite verification...121
Table 31 Audio Mix ...122

Table of Code Samples

9

Table of Code Samples

Code Sample 1 Java.lang support ...29
Code Sample 2 Socket Connection ...32
Code Sample 3 HTTPS Connection ...34
Code Sample 4 JSR 135 Mobile Media API ..36
Code Sample 5 JSR 120 Wireless Messaging API ...48
Code Sample 6 Phonebook API ..53
Code Sample 7 DialerListener Implementation ...60

1
Introduction

10

1
Introduction

Purpose
This document describes the application program interfaces used to develop Motorola
compliant Java™ 2 Platform, Micro Edition (J2ME™) applications for the C381p handset.

Audience
This document is intended for premium J2ME developers and specific carriers involved
with the development of J2ME applications for the C381p handset.

Disclaimer
Motorola reserves the right to make changes without notice to any products or services
described herein. “Typical” parameters, which may be provided in Motorola Data sheets
and/or specifications can and do vary in different applications and actual performance
may vary. Customer’s technical experts will validate all “Typicals” for each customer
application.
Motorola makes no warranty with regard to the products or services contained herein.
Implied warranties, including without limitation, the implied warranties of merchantability
and fitness for a particular purpose, are given only if specifically required by applicable
law. Otherwise, they are specifically excluded.
No warranty is made as to coverage, availability, or grade of service provided by the
products or services, whether through a service provider or otherwise.
No warranty is made that the software will meet your requirements or will work in
combination with any hardware or applications software products provided by third
parties, that the operation of the software products will be uninterrupted or error free, or
that all defects in the software products will be corrected.
In no event shall Motorola be liable, whether in contract or tort (including negligence), for
any damages resulting form use of a product or service described herein, or for any
indirect, incidental, special or consequential damages of any kind, or loss of revenue or
profits, loss of business, loss of information or data, or other financial loss arising out of or

1
Introduction

11

in connection with the ability or inability to use the Products, to the full extent these
damages may be disclaimed by law.
Some states and other jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, or limitation on the length of an implied warranty, so the above
limitations or exclusions may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights, which
vary from jurisdiction to jurisdiction.
Motorola products or services are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may
occur.
Should the buyer purchase or use Motorola products or services for any such unintended
or unauthorized application, buyer shall release, indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacture of the product or service.
Motorola recommends that if you are not the sole author or creator of the graphics, video,
or sound, you obtain sufficient license rights, including the rights under all patents,
trademarks, trade names, copyrights, and other third party proprietary rights.

References
Reference Link

RFC 2068 http://ietf.org/rfc/rfc2068.txt

SAR http://www.wapforum.org

MIDP 2.0 http://java.sun.com/products/midp/

JSR 118 http://www.jcp.org

JSR 120 http://www.jcp.org

JSR 135 http://www.jcp.org

Sun MIDP 2.0 SDK http://java.sun.com/products/midp/

TLS protocol version 1.0 http://www.ietf.org/rfc/rfc2246.txt

SSL protocol version 3.0 http://home.netscape.com/eng/ssl3/draft302.txt

GSM 03.38 standard http://www.etsi.org

GSM 03.40 standard http://www.etsi.org

RFC 2437 http://ietf.org/rfc/rfc2437.txt

Sun J2ME http://java.sun.com/j2me/).

1
Introduction

12

Revision History
Version Date Name Reason
00.01 November 09, 2004 C.E.S.A.R. Initial Draft

Definitions, Abbreviations, Acronyms
Acronym Description

AMS Application Management Software

API Application Program Interface.

CLDC Connected Limited Device Configuration

GPS Global Positioning System

IDE Integrated Development Environment

ITU International Telecommunication Union

JAD Java Application Descriptor

JAL Java Application Loader

JAR Java Archive. Used by J2ME applications for compression and packaging.

J2ME Java 2 Micro Edition

JSR 120 Java Specification Request 120 defines a set of optional APIs that provides
standard access to wireless communication resources.

JVM Java Virtual Machine

KVM Kilo Virtual Machine

LWT Lightweight Windowing Toolkit

MIDP Mobile Information Device Profile

MMA Multimedia API

MT Mobile Terminated

OEM Original Equipment Manufacturer

OTA Over The Air

RMS Record Management System

1
Introduction

13

RTOS Real Time Operating System

SDK Software Development Kit

SMS Short Message Service

SMSC Short Messaging Service Center

SU Subscribe Unit

UI User Interface

URI Unified Resource Identifier

VM Virtual Machine

WMA Wireless Messaging API

Document Overview
This developer’s guide is organized into the following chapters and appendixes:
Chapter 1 – Introduction: this chapter has general information about this document,
including purpose, scope, references, and definitions.
Chapter 2 – J2ME Introduction: this chapter describes the J2ME platform and the
available resources on the Motorola C381p handset.
Chapter 3 – Developing and Packaging J2ME Applications: this chapter describes
important features to look for when selecting tools and emulation environments. It also
describes how to package a J2ME application, how to package a MIDlet, and generate
JAR and JAD files properly.
Chapter 4 – Downloading Applications: this chapter describes the process for
downloading applications.
Chapter 5 – Application Management: this chapter describes the lifecycle,
installation/de-installation, and updating process for a MIDlet suite.
Chapter 6 – JAD Attributes: this chapter describes what attributes are supported.
Chapter 7 – Java.lang Implementation: this chapter describes the java.lang
implementation.
Chapter 8 – Networking APIs: this chapter describes the Java Networking API.
Chapter 9 – JSR 135 Mobile Media: this chapter describes image types and supported
formats.
Chapter 10 – JSR 120 Wireless Messaging API: this chapter describes JSR 120
implementation.
Chapter 11 -- Phonebook Access API: this chapter describes the Phonebook Access
API.
Chapter 12 – Telephony API: this chapter describes the Telephony API.
Chapter 13 – Serial Port Access: this chapter describes the Serial Port Access.

1
Introduction

14

Chapter 14 – SMS Messaging as GSM Extension: this chapter describes the SMS
Access API.
Chapter 15 – User Display Interface: this chapter describes the J2ME specific Canvas,
Hardware Mapping and External Event Interaction functionality.
Chapter 16 – One-Click Application Access: this chapter describes the used Java
applications via the soft keys, navigation keys or smart keys
Chapter 17 – Download MIDlet Through Browser: this chapter describes the
performing any downloads on the handset.
Chapter 18 – Lightweight Windowing Toolkit: this chapter describes the capabilities to
include a component-level API through which developers can control the co intents and
layout of their screens.
Chapter 19 – UDP Support: this chapter describes how to enable J2ME applications
access to Generic UDP Transport Service.
Chapter 20 – Shared JAD URLS: this chapter describes briefly a new feature that allows
users to share their downloaded J2ME application URLs with others.
Chapter 21 – Get URL from Flex API: this chapter describes the way to access URL
stored in FLEX by a java application.
Chapter 22 – File System Access API: this chapter describes the File System API.
Chapter 23 – Multiple Key Press: this chapter describes the Multiple Key Press.
Chapter 24 – ITAP: this chapter describes iTAP support.
Chapter 25 – LCDUI: this chapter describes the LCDUI.
Chapter 26 – Auto Launch of Midlet: this chapter describes the Auto Lanch of Midlet.
Chapter 27 – Background Applications: this chapter describes the.
Chapter 28 – Java System Menu: this chapter describes the Java System Menu.
Chapter 29 – Invisible net for J2ME: this chapter describes the Invisible net for J2ME.
Chapter 30 – Download MIDlet Through PC: this chapter describes the any downloads
on the handset.
Chapter 31 – MIDP 2.0 Security Model: this chapter describes the MIDP 2.0 default
security model.
Appendix A – Key Mapping: this appendix describes the key mapping of the Motorola
C381p handset, including the key name, key code, and game action of all Motorola keys.
Appendix B – Memory Management Calculation: this appendix describes the memory
management calculations.
Appendix C – FAQ: this appendix provides a link to the dynamic online FAQ.
Appendix D – HTTP Range: this appendix provides a graphic description of HTTP
Range.
Appendix E – Spec Sheet: this appendix provides the spec sheet for the Motorola C381p
handset.

2
J2ME Introduction

15

2
J2ME Introduction

The Motorola C381p handset includes the Java™ 2 Platform, Micro Edition, also known
as the J2ME platform. The J2ME platform enables developers to easily create a variety of
Java applications ranging from business applications to games. Prior to its inclusion,
services or applications residing on small consumer devices like cell phones could not be
upgraded or added to without significant effort. By implementing the J2ME platform on
devices like the Motorola C381p handset, service providers, as well as customers, can
easily add and remove applications allowing for quick and easy personalization of each
device. This chapter of the guide presents a quick overview of the J2ME environment and
the tools that can be used to develop applications for the Motorola C381p handset.

The Java 2 Platform, Micro Edition (J2ME)
The J2ME platform is a new, very small application environment. It is a framework for the
deployment and use of Java technology in small devices such as cell phones and pagers.
It includes a set of APIs and a virtual machine that is designed in a modular fashion
allowing for scalability among a wide range of devices.
The J2ME architecture contains three layers consisting of the Java Virtual Machine, a
Configuration Layer, and a Profile Layer. The Virtual Machine (VM) supports the
Configuration Layer by providing an interface to the host operating system. Above the VM
is the Configuration Layer, which can be thought of as the lowest common denominator of
the Java Platform available across devices of the same “horizontal market.” Built upon this
Configuration Layer is the Profile Layer, typically encompassing the presentation layer of
the Java Platform.

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

Figure 1 Java Platform

2
J2ME Introduction

16

The Configuration Layer used in the Motorola C381p handset is the Connected Limited
Device Configuration 1.1 (CLDC 1.1) and the Profile Layer used is the Mobile Information
Device Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide common APIs for
I/O, simple math functionality, UI, and more.

For more information on J2ME, see the Sun™ J2ME documentation
(http://java.sun.com/j2me/).

The Motorola J2ME Platform
Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to
implement and support. By adding to the standard APIs, manufacturers can allow
developers to access and take advantage of the unique functionality of their handsets.
The Motorola C381p handset contains OEM APIs for extended functionality ranging
from enhanced UI to advanced data security. While the Motorola C381p handset can
run any application written in standard MIDP, it can also run applications that take
advantage of the unique functionality provided by these APIs. These OEM APIs are
described in this guide.

MIDP 1.0

J2ME is the version of Java that the mobile device will support. It was developed to
support devices with limited memory, i.e mobile devices, pagers, SIM cards.
J2ME maintains the qualities that Java technology has become famous for:
• built-in consistency across products in terms of running anywhere, any time, over

any device

• portability of the code

• leveraging of the same Java programming language

• safe network delivery

• applications written with J2ME are upwardly scalable to work with J2SE and
J2EE.

J2ME enables device manufacturers, service providers, and content creators to deploy
compelling new applications and services to their customers rapidly and cost-effectively
while capitalizing on new revenue streams.
In using J2ME, the handset must be MIDP 1.0 and CLDC 1.0 compliant. To assure this
compliance, the handset must pass the Technology Certification Kit, TCK, provided by
Sun.

2
J2ME Introduction

17

Resources and API’s Available
MIDP 2.0 will provide support to the following functional areas on the Motorola C381p
handset:

MIDP 2.0

• Application delivery and billing

• Application lifecycle

• Application signing model and privileged security model

• End-to-end transactional security (HTTPS)

• Networking

• Persistent storage

• Sounds

• Timers

• User Interface

• File Image Support (.PNG, .JPEG, .GIF)

Additional Functionality

• WMA (JSR 120)

• MMA (JSR 135)

• Phonebook API

• Telephony API

3
Developing and Packaging J2ME Applications

18

3
Developing and Packaging

J2ME Applications

Guide to Development in J2ME

Introduction to Development
This appendix assumes the reader has previous experience in J2ME development and
can appreciate the development process for Java MIDlets. This appendix will provide
some information that a beginner in development can use to gain an understanding of
MIDlets for J2ME handsets.
There is a wealth of material on this subject on websites maintained by Motorola, Sun
Microsystems and others. Please refer to the following URLs for more information:

 http://www.motocoder.com

 http://www.java.sun.com/j2me

 http://www.corej2me.com/
 http://www.javaworld.com/

As an introduction, brief details of J2ME are explained below.
The MIDlet will consist of two core specifications, namely Connected, Limited Device
Configuration (CLDC) and Mobile Information Device Profile (MIDP). Both of these
specifications (Java Specification Requests) can be located at the http://www.jcp.org/ site for
reading.

 For MIDP 1.0; JSR 37 should be reviewed.
 For MIDP 2.0; JSR 118 should be reviewed.
 For CLDC 1.0.4; JSR 30 should be reviewed.
 For CLDC 1.1; JSR 139 should be reviewed.

To determine what implementation is on Motorola handset, review the “Java System” details
through the menu on the Motorola handset (located under Java Settings).

For beginning development, key points to remember are memory size, processing power,
screen capabilities and wireless network characteristics. These all play an important part

3
Developing and Packaging J2ME Applications

19

in development of a MIDlet. The specifications listed above are designed to work upon
devices that have these characteristics.
Network conditions would only apply for networked applications such as streaming tickers,
email clients, etc.
In addition to the specifications, an array of tools is available to assist the development
cycle. These range from the command line tools provided with Software Development Kits
(SDK) from Sun (as of writing 1.4.1_04) to Integrated Development Environments (IDEs)
which can be free or purchased. These IDEs come from a range of sources such as Sun,
IBM, Metrowerks and Borland to name a few.
For a look at such environments, review the “Motorola T720 Handset Developer Guide”
which is available from the MOTOCODER website.
In addition to the IDEs and Sun SDK for development, Motorola offers access to our own
SDK which contains Motorola device emulators. From here, a MIDlet can be built and
then deployed onto an emulated target handset. This will enable debugging and validation
of the MIDlet before deployment to a real, physical handset. The latest Motorola SDK can
be downloaded from the MOTOCODER website.
Please refer to the product specifications at the back of this guide for detailed information
on each handset.

4
Downloading Applications

20

4
Downloading Applications

Method of Downloading
The option open to the developer for deploying the MIDlet to a physical Motorola device is
OTA (over -the-air) downloading.
OTA
To use the OTA method, the developer will have a connection through a wireless network
to a content server. This content server could be, for example, Apache
(http://httpd.apache.org) which is free to use, deployable on multiple operating systems,
and has extensive documentation on how to configure the platform.
The required file will be downloaded (either .jad and/or .jar) by issuing a direct URL
request to the file in question or it could be a URL request to a WAP page and a hyperlink
on that page to the target file. This request will be made through the OPERA Browser. In
MIDP 2.0, the need for a JAD file before download is not required, so the JAR file can be
downloaded directly. The information about the MIDlet will be pulled from the manifest file.
The transport mechanism used to download the file will be one of two depending on the
support from the network operators WAP Gateway and the size of file requested.

 HTTP Range – see specification RFC 2068 at http://www.rfc-editor.org/rfc.html if
content greater than 30k in size. Below is a ladder diagram showing the flow
through HTTP range transfer, although recall use of the .JAD is optional.

 SAR (Segmentation & Reassembly) – see specification of wireless transaction
protocol at the http://www.wapforum.org if less than 100k in size.

During a download of the application, the user will see the OPERA browser displaying a
progress dialog.
A complete guide for setting up an OTA server can be obtained through the
MOTOCODER website (http://www.motocoder.com). This includes details of configuring
the server and also example WAP pages.

The following error codes are supported:

 900 Success
 901 Insufficient Memory
 902 User Cancelled
 903 Loss Of Service

4
Downloading Applications

21

 904 JAR Size Mismatch
 905 Attribute Mismatch
 906 Invalid Descriptor
 907 Invalid JAR
 908 Incompatible Configuration or Profile
 909 Application Authentication Failure
 910 Application Authorization Failure
 911 Push Registration Failure
 912 Deletion Notification
 913 Required package not supported by device
 999 Other errors

Please be aware that the method used by the handset, as per the specifications, is POST.
Using a GET (URL encoding) style for the URL will fail. This is not the correct use of the
MIDlets JAD parameters.

Possible Screen Messages Seen With Downloading:

 If JAR -file size does not match with specified size, it will display a dialog stating
“Installation failed. Package invalid.” To dismiss this dialog, press “OK”.

 When downloading is done, the handset displays a transient notice “Download

Completed” and starts to install the application.

 Upon completing installation, the handset displays a dialog “Install complete”. To
dismiss this dialog, press “OK”.

 If the MANIFEST file is wrong, the handset displays a dialog stating “Installation

failed. Package invalid.” To dismiss this dialog, press “OK”.

 If JAD does not contain mandatory attributes, “Installation failed. Package
invalid.” notice appears.

Error Logs
The Table 1 represents the error logs associated with downloading applications.

Error Logs Scenario Possible Cause Error Dialog

906 Invalid
Descriptor.

JAD Download Missing or incorrectly formatted
mandatory JAD attributes
Mandatory:
MIDlet-Name (up to 32 symbols)
MIDlet-Version
MIDlet-Vendor (up to 32 symbols)
MIDlet-JAR-URL (up to 256 symbols)
MIDlet-JAR_Size
JAD signature verification failed
Unknown error during JAD validation

Failed: Invalid File

904 JAR Size OTA JAR The received JAR size does not Download Failed

4
Downloading Applications

22

Mismatch . Download match the size indicated in JAD
902 User
Cancelled.

OTA JAR
Download

User cancelled download Cancelled:
<Icon> <Filename>

903 Loss of
Service.

OTA JAR
Download

Browser lost connection with server Installation Failed

901 Insufficient
Memory.

OTA JAR
Download

Insufficient space to install the
MIDlet suite

Insufficient Storage

905 Attribute
Mismatch

Installation Mandatory attributes are not identical
in JAD & Manifest

Installation failed.
Package invalid.

901 Insufficient
Memory.

Installation Insufficient Space to install MIDlet
suite

Insufficient Storage

907 Invalid JAR. Installation Class references non-existent class
or method
Security Certificate verification failure
Checksum of JAR file is not equal to
Checksum in MIDlet-JAR-SHA
attribute
Application not authorized

Installation failed. Package
invalid.

 MIDlet
Launching

Security Certificates expired or
removed

Application Expired

 MIDlet
Execution

Authorization failure during MIDlet
execution
Incorrect MIDlet

Application Error

Table 1 Error Logs

OTA and Download
• Comply with “OTA User Initiated Provisioning Specifications” in MIDP 2.0.

• The user MUST be prompted if the midlet is chargeable.

• Terminals should compare and predict the application program that will be
downloaded is

• the latest or old versions and give indication to users.

• Check the available memory before any downloads.

• Users should be able to terminate the download process any time by pressing
END key.

• Before downloading the following JAD file information must be displayed first:

Contents Maximum
length

Application program name (Midlet name) 32 Bytes Max
Application program version number 16 Bytes Max
Vendor Name 32 Bytes Max

4
Downloading Applications

23

URL of JAR file Not specified
Size of JAR file 8 Bytes Max
Applicable Terminal Type not specified
Application program introduction (Midlet
description)

512 Bytes Max

Information Fee (Media price). 32 Bytes Max

Table 2 JAD file information

• End user should be able to delete the applications downloaded.

5
Application Management

24

5
Application Management

The following sections describe the application management scheme for the Motorola C381p handset. This
chapter will discuss the following:

• Downloading a JAR without a JAD

• MIDlet upgrade

• Installation and Deletion Status Reports

• System Menu

Downloading a JAR file without a JAD
In Motorola’s MIDP 2.0 implementation, a JAR file can be downloaded without a JAD. In
this case, the user clicks on a link for a JAR file, the file is downloaded, and a confirmation
will be obtained before the installation begins. The information presented is obtained from
the JAR manifest instead of the JAD.

MIDlet Upgrade
Rules from the JSR 118 will be followed to help determine if the data from an old MIDlet
should be preserved during a MIDlet upgrade. When these rules cannot determine if the
RMS should be preserved, the user will be given an option to preserve the data.
The following conditions are used to determine if data can be saved:

• If the cryptographic signer of the new MIDlet suite and the original MIDlet suite
are identical, then the RMS record stores MUST be retained and made available
to the new MIDlet suite.

• If the URL of the new MIDlet suite is identical to the URL the original MIDlet suite
was downloaded from, then the RMS MUST be retained and made available to
the new MIDlet suite.

• If the above statements are false, then the device MUST ask the user whether
the data from the original MIDlet suite should be retained and made available to
the new MIDlet suite.

5
Application Management

25

If the user decides to save the data from the current MIDlet, the data will be preserved
during the upgrade and the data will be made available for the new application. In any
case, an unsigned MIDlet will not be allowed to update a signed MIDlet.

Installation and Deletion Status Reports
The status (success or failure) of an installation, upgrade, or deletion of a MIDlet suite will
be sent to the server according to the JSR 118 specification. If the status report cannot be
sent, the MIDlet suite will still be enabled and the user will be allowed to use it. Upon
successful deletion, the handset will send the status code 912 to the MIDlet-Delete-Notify
URL. If this notification fails, the MIDlet suite will still be deleted. If this notification cannot
be sent due to lack of network connectivity, the notification will be sent at the next
available network connection.
Refer to the Table 3 for application management feature/class support for MIDP 2.0:

Feature/Class

Application upgrades performed directly through the AMS
When removing a MIDlet suite, the user will be prompted to confirm the entire MIDlet suite will be
removed
Prompt for user approval when the user has chosen to download an application that is identical to, or an
different version of an application currently in the handset
Unauthorized MIDlets will not have access to any restricted function call
AMS will check the JAD for security indicated every time a installation is initiated
Application descriptor or MIDlet fails the security check, the AMS will prevent the installation of that
application and notify the user that the MIDlet could not be installed
Application descriptor and MIDlet pass the security check , the AMS will install the MIDlet and grant it the
permissions specified in the JAD
A method for launching Java application that maintains the same look and feel as other features on the
device will be provided
User will be informed of download and installation with progress indicator and will be given an opportunity
to cancel the process
User will be prompted to launch the MIDlet after installation
A no forward policy on DRM issues, included but not limited to transferring the application over-the-air,
IRDA, Bluetooth, I/O Cables, External storage devices, etc until further guidance is provided

Table 3 Application management feature/class support for MIDP 2.0

System Menu

The Java System Menu can be found under the Java Settings menu under the Main
Menu. The Java System menu allows the user to see what version of MIDP and CLDC is
being used in the handset. It also shows the user the free data space available, program
space available, and the heap size being used. The following table describes each
function in detail.

5
Application Management

26

Refer to the Table 4 Java System menu:

Action Description

CLDC Version This displays the CLDC version that is being used in the handset.

MIDP Version This displays the MIDP version that is being used in the handset.

Data Space This displays the amount of free memory available for data used by the
applications, i.e. phone book entries, game high scores..

Program Space This displays the amount of free memory available for applications.

Heap Size This is the amount of runtime memory available in the handset for J2ME
applications.

Table 4 Java System menu

6
JAD Attributes

27

6
JAD Attributes

JAD / Manifest Attribute Implementations

The JAR manifest defines attributes to be used by the application management software
(AMS) to identify and install the MIDlet suite. These attributes may or may not be found in
the application descriptor.
The application descriptor is used, in conjunction with the JAR manifest, by the application
management software to manage the MIDlet. The application descriptor is also used for
the following:

• By the MIDlet for configuration specific attributes

• Allows the application management software on the handset to verify the MIDlet
is suited to the handset before loading the JAR file

• Allows configuration-specific attributes (parameters) to be supplied to the
MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application
Descriptor attributes as outlined in the JSR-118. The Table 5 ists all MIDlet attributes,
descriptions, and its location in the JAD and/or JAR manifest that are supported in the
Motorola implementation.

Attribute Name Attribute Description JAR Manifest JAD

MIDlet-Name The name of the MIDlet suite that identifies
the MIDlets to the user

Yes Yes

MIDlet-Version The version number of the MIDlet suite Yes Yes

MIDlet-Vendor The organization that provides the MIDlet
suite.

Yes Yes

MIDlet-Icon The case-sensitive absolute name of a
PNG file within the JAR used to represent
the MIDlet suite.

MIDlet-Description The description of the MIDlet suite.

6
JAD Attributes

28

MIDlet-Info-URL A URL for information further describing
the MIDlet suite.

MIDlet-<n> The name, icon, and class of the nth
MIDlet in the JAR file.

Name is used to identify this MIDlet to the
user. Icon is as stated above. Class is the
name of the class extending the
javax.microedition.midlet.MIDletclass.

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MIDlet-Jar-URL The URL from which the JAR file can be
loaded.

 Yes

MIDlet-Jar-Size The number of bytes in the JAR file. Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the MIDlet.

MicroEdition-Profile The J2ME profiles required. If any of the
profiles are not implemented the
installation will fail.

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MicroEdition-Configuration The J2ME Configuration required, i.e
CLDC 1.0

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MIDlet-Permissions Zero or more permissions that are critical
to the function of the MIDlet suite.

MIDlet-Permissions-Opt Zero or more permissions that are non-
critical to the function of the MIDlet suite.

MIDlet-Push-<n> Register a MIDlet to handle inbound
connections

MIDlet-Install-Notify The URL to which a POST request is sent
to report installation status of the MIDlet
suite.

MIDlet-Delete-Notify The URL to which a POST request is sent
to report deletion of the MIDlet suite.

MIDlet-Delete-Confirm A text message to be provided to the user
when prompted to confirm deletion of the
MIDlet suite.

Background MIDlets with this Motorola specific attribute
will continue to run when not in focus.

Table 5 MIDlet Attributes, descriptions, and JAD and/or JAR location

7
Java.lang Implementation

29

7
Java.lang Implementation

java.lang support
Motorola implementation for the java.lang.System.getProperty method will support
additional system properties beyond what is outlined in the JSR 118 specification and is
controlled by a flex bit. These additional system properties can only be accessed by
trusted MIDlets.
The additional system properties are as follows:

• Cell ID: The current Cell ID of the device will be returned during implementation.

• IMEI: The IMEI number of the device will be returned during implementation.

The Code Sample 1 shows java.lang support:

System.getProperty("phone.mcc")
System.getProperty("phone.mnc")
System.getProperty("phone.imei")
System.getProperty("phone.cid")
System.getProperty(“phone.lai”)
System.getProperty(“phone.ta”)

Code Sample 1 Java.lang support

8
Network APIs

30

8
Network APIs

Network Connections
The Motorola implementation of Networking APIs will support several network
connections. The network connections necessary for Motorola implementation are the
following:

• CommConnection for serial interface

• HTTP connection

• HTTPS connection

• Socket connection

• SSL

Refer to the Table 6 for Network API feature/class support for MIDP 2.0:

Feature/Class Implementation
All fields, methods, and inherited methods for the Connector class in
the javax.microedition.io package

Supported

Mode parameter for the open () method in the Connector class the
javax.microedition.io package

READ, WRITE, READ_WRITE

The timeouts parameter for the open () method in the Connector class
of the javax.microedition.io package

Supported

HttpConnection interface in the javax.microedition.io package Supported
HttpsConnection interface in the javax.microedition.io package Supported
SecureConnection interface in the javax.microedition.io package Supported
SecurityInfo interface in the javax.microedition.io package Supported
ServerSocketConnection interface in the javax.microedition.io package Supported
UDPDDatagramConnection interface in the javax.microedition.io
package

Supported

Connector class in the javax.microedition.io.package Supported
Dynamic DNS allocation through DHCP Supported
HttpConnection interface in the javax.microedition.io.package. Supported

HttpsConnection interface in the javaxmicroedition.io.package Supported

8
Network APIs

31

SecureConnection interface in the javax.microedition.io.package Supported

SecurityInfo Interface in the javax.microedition.io.package Supported

ServerSocketConnection interface in the javax.microedition.io.package Supported

UDPDatagramConnection interface in the
javax.microedition.io.package

Supported

Table 6 Network API feature/class support for MIDP 2.0

The Code Sample 2 shows the implementation of Socket Connection:

Socket Connection
import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

….

 try {
 //open the connection and io streams
 sc =
(SocketConnection)Connector.open("socket://www.myserver.com
:8080", Connector.READ_WRITE, true);
 is = sc[i].openInputStream();
 os = sc[i].openOutputStream();

 } catch (Exception ex) {
 closeAllStreams();
 System.out.println("Open Failed: " +
ex.getMessage());
 }
 }
 if (os != null && is != null)
 {
 try
 {
 os.write(someString.getBytes()); //write
some data to server

 int bytes_read = 0;
 int offset = 0;
 int bytes_left = BUFFER_SIZE;

 //read data from server until done
 do
 {
 bytes_read = is.read(buffer, offset,
bytes_left);

 if (bytes_read > 0)
 {
 offset += bytes_read;
 bytes_left -= bytes_read;
 }

8
Network APIs

32

 }
 while (bytes_read > 0);

 } catch (Exception ex) {
 System.out.println("IO failed: "+
ex.getMessage());
 }
 finally {
 closeAllStreams(i); //clean up
 }
 }

Code Sample 2 Socket Connection

User Permission
The user of the handset will explicitly grant permission to add additional network
connections.

HTTPS Connection
Motorola implementation supports a HTTPS connection on the Motorola C381p handset.
Additional protocols that will be supported are the following:

• TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt

• SSL protocol version 3.0 as defined in
http://home.netscape.com/eng/ssl3/draft302.txt

The Code Sample 3 shows the implementation of HTTPS:

HTTPS
import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;
…

 try {
 hc[i] =
(HttpConnection)Connector.open(“https://” + url[i] + "/");

 } catch (Exception ex) {
 hc[i] = null;
 System.out.println("Open Failed: " +
ex.getMessage());
 }

 if (hc[i] != null)
 {

8
Network APIs

33

 try {
 is[i] = hc[i].openInputStream();

 byteCounts[i] = 0;
 readLengths[i] = hc[i].getLength();

 System.out.println("readLengths = " +
readLengths[i]);

 if (readLengths[i] == -1)
 {
 readLengths[i] = BUFFER_SIZE;
 }

 int bytes_read = 0;
 int offset = 0;
 int bytes_left = (int)readLengths[i];

 do
 {
 bytes_read = is[i].read(buffer, offset,
bytes_left);
 offset += bytes_read;
 bytes_left -= bytes_read;
 byteCounts[i] += bytes_read;
 }
 while (bytes_read > 0);

 System.out.println("byte read = " +
byteCounts[i]);

 } catch (Exception ex) {
 System.out.println("Downloading Failed: "+
ex.getMessage());
 numPassed = 0;
 }
 finally {
 try {
 is[i].close();
 is[i] = null;
 } catch (Exception ex) {}
 }
 }
 /**
 * close http connection
 */
 if (hc[i] != null)
 {
 try {
 hc[i].close();

8
Network APIs

34

 } catch (Exception ex) { }
 hc[i] = null;
 }

Code Sample 3 HTTPS Connection

9
JSR 135 Mobile Media API

35

9
JSR 135 Mobile Media API

JSR 135 Mobile Media API
The JSR 135 Mobile Media APIs feature sets are defined for five different types of media.
The media defined is as follows:

• Tone Sequence

• Sampled Audio

• MIDI
When a player is created for a particular type, it will follow the guidelines and control types
listed in the sections outlined below.

The Code Sample 4 shows the implementation of the JSR 135 Mobile Media API:
JSR 135
Player player;

// Create a media player, associate it with a stream
containing media data
try
{
 player =
Manager.createPlayer(getClass().getResourceAsStream("MP3.mp3
"), "audio/mpeg");
}
catch (Exception e)
{
 System.out.println("FAILED: exception for createPlayer:
" + e.toString());
}

// Obtain the information required to acquire the media
resources
try
{
 player.realize();
}

9
JSR 135 Mobile Media API

36

catch (MediaException e)
{
 System.out.println("FAILED: exception for realize: " +
e.toString());
}

// Acquire exclusive resources, fill buffers with media data
try
{
 player.prefetch();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for prefetch: " +
e.toString());
}

// Start the media playback
try
{
 player.start();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for start: " +
e.toString());
}

// Pause the media playback
try
{
 player.stop();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for stop: " +
e.toString());
}

// Release the resources

 player.close();
Code Sample 4 JSR 135 Mobile Media API

ToneControl
ToneControl is the interface to enable playback of a user-defined monotonic tone
sequence. The JSR 135 Mobile Media API will implement public interface ToneControl.

9
JSR 135 Mobile Media API

37

A tone sequence is specified as a list of non-tone duration pairs and user-defined
sequence blocks and is packaged as an array of bytes. The setSequence() method is
used to input the sequence to the ToneControl.
The following is the available method for ToneControl:
-setSequence (byte[] sequence): Sets the tone sequence

GUIControl
GUIControl extends control and is defined for controls that provide GUI functionalities.
USE_GUI_PRIMITIVE defines a mode on how the GUI is displayed. initializes the mode
on how the GUI is displayed.
When USE_GUI_PRIMITIVE is specified for initDisplayMode, a GUI primitive will be
returned. This object is where the GUI of this control will be displayed. It can be used in
conjunction with other GUI objects and conforms to the GUI behaviors specified.

VolumeControl
VolumeControl is an interface for manipulating the audio volume of a Player. The JSR 135
Mobile Media API will implement public interface VolumeControl.
The following describes the different volume settings found within VolumeControl:

• Volume Settings - allows the output volume to be specified using an integer
value that varies between 0 and 100.

• Specifying Volume in the Level Scale - specifies volume in a linear scale. It
ranges from 0 – 100 where 0 represents silence and 100 represents the highest
volume available.

• Mute – setting mute on or off does not change the volume level returned by the
getLevel. If mute is on, no audio signal is produced by the Player. If mute is off,
an audio signal is produced and the volume is restored.

The following is a list of available methods with regards to VoumeControl:
-getLevel: Get the current volume setting.

-isMuted: Get the mute state of the signal associated with this VolumeControl.

-setLevel (int level): Set the volume using a linear point scale with values
between 0 and 100.
-setMute (Boolean mute): Mute or unmute the Player associated with this
VolumeControl.

9
JSR 135 Mobile Media API

38

StopTimeControl
StopTimeControl allows a specific preset sleep timer for a player. The JSR 135 Mobile
Media API will implement public interface StopTimeControl.
The following is a list of available methods with regards to StopTimeControl:
-getStopTime: Gets the last value successfully by setStopTime.
-setStopTime (long stopTime): Sets the media time at which you want the
Player to stop.

Manager Class
Manager Class is the access point for obtaining system dependant resources such as
players for multimedia processing. A Player is an object used to control and render media
that is specific to the content type of the data. Manager provides access to an
implementation specific mechanism for constructing Players. For convenience, Manager
also provides a simplified method to generate simple tones. Primarily, the Multimedia API
will provide a way to check available/supported content types.

Audio Media
The Table 7 depicts the multimedia file formats are supported:

File Type CODEC

WAV PCM

SP MIDI General MIDI

MIDI Type 1 General MIDI

MP3 MPEG-1 layer III

MIDI Type 0 General MIDI

Table 7 Multimedia File formats

The Table 8 depicts a list of audio MIME types supported:

Category Description MIME Type

Wav Audio/x-wav

MP3 Audio Audio/mpeg

MIDI Audio Audio/midi

Audio/Video/Image

SP MIDI Audio Audio/sp-midi

9
JSR 135 Mobile Media API

39

 Tone Sequences
Audio

Audio/x-tone-sequence

Table 8 List of audio MIME types

Refer to the Table 9 for multimedia feature/class support for JSR 135:

Feature/Class Implementation

Media package found Supported

Media control package Supported

Media Protocol package Supported

Control interface in javax.microedition.media Supported

All methods for the Controllable interface in
javax.microedition.media.control

Supported

All fields, methods, and inherited methods for the Player interface in
javax.microedition.media

Supported

All fields and methods for the PlayerListener interface in
javax.microedition.media

Supported

PlayerListener OEM event types for the PlayerListener interface Standard types only

All fields, methods, and inherited methods for the Manager Class in
javax.microedition.media

Supported

TONE_DEVICE_LOCATOR support in the Manager class of
javax.microedition.media

Supported

TONE_DEVICE_LOCATOR content type will be audio/x-tone-seq Supported

TONE_DEVICE_LOCATOR media locator will be device://tone Supported

All constructors and inherited methods in
javax.microedition.medi.MediaException

Supported

All fields and methods in the StopTimeControl interface in
javax.microedition.media.control

Supported

All fields and methods in the ToneControl interface in
javax.microedition.media.control

Supported

All methods in the VolumeControl interface in
javax.microedition.media.control

Supported

Max volume of a MIDlet will not exceed the maximum speaker setting
on the handset

Supported

All fields and methods in the GUIControl interface in
javax.microedition.media.control

Supported

Multiple SourceStreams for a DataSource 2

Table 9 Multimedia feature/class support for JSR 135

9
JSR 135 Mobile Media API

40

Note: If two wave plays have the same frequency, they can mix. See Appendix A – mix
audio table.

Player number limitation <=4 and MIDI size limitation is 150K

MP3 stream size has the limitation

10
JSR 120 – Wireless Messaging API

41

10
JSR 120 – Wireless Messaging

API

Wireless Messaging API (WMA)
Motorola has implemented certain features that are defined in the Wireless Messaging
API (WMA) 1.0. The complete specification document is defined in JSR 120.
The JSR 120 specification states that developers can be provided access to send (MO –
mobile originated) and receive (MT – mobile terminated) SMS (Short Message Service)
on the target device.
A simple example of the WMA is the ability of two J2ME applications using SMS to
communicate game moves running on the handsets. This can take the form of chess
moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features.

 Creating a SMS
 Sending a SMS
 Receiving a SMS
 Viewing a SMS
 Listening to a SMS

SMS Client Mode and Server Mode Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),
which is defined in the CLDC specification 1.0. The use of the “Connection” framework, in
Motorola's case is “MessageConnection”.

The MessageConnection can be opened in either server or client mode. A server
connection is opened by providing a URL that specifies an identifier (port number) for an
application on the local device for incoming messages.

10
JSR 120 – Wireless Messaging API

42

(MessageConnection)Connector.open("sms://:6000");

Messages received with this identifier will then be delivered to the application by this
connection. A server mode connection can be used for both sending and receiving
messages. A client mode connection is opened by providing a URL which points to
another device. A client mode connection can only be used for sending messages.

(MessageConnection)Connector.open("sms://+441234567890
:6000");

SMS Port Numbers
When a port number is present in the address, the TP-User-Data of the SMS will contain
a User-Data-Header with the application port addressing scheme information element.
When the recipient address does not contain a port number, the TP-User-Data will not
contain the application port addressing header. The J2ME MIDlet cannot receive this kind
of message, but the SMS will be handled in the usual manner for a standard SMS to the
device.

When a message identifying a port number is sent from a server type
MessageConnection, the originating port number in the message is set to the port
number of the MessageConnection. This allows the recipient to send a response to
the message that will be received by this MessageConnection.

However, when a client type MessageConnection is used for sending a message
with a port number, the originating port number is set to an implementation specific value
and any possible messages received to this port number are not delivered to the
MessageConnection. Please refer to the section A.4.0 and A.6.0 of the JSR 120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the first
MIDlet to request this identifier it will be allocated. If other applications apply for the same
identifier then an IOException will be thrown when an attempt to open
MessageConnection is made. If a system application is using this identifier, the
MIDlet will not be allocated the identifier. The port numbers allowed for this request are
restricted to SMS messages. In addition, a MIDlet is not allowed to send messages to
certain restricted ports a SecurityException will be thrown if this is attempted.

JSR 120 Section A.6.0 Restricted Ports:
2805, 2923, 2948, 2949, 5502, 5503, 5508, 5511, 5512, 9200, 9201, 9202, 9203, 9207,
49996, 49999.

If you intend to use SMSC numbers then please review A.3.0 in the JSR 120
specification. The use of an SMSC would be used if the MIDlet had to determine what
recipient number to use.

10
JSR 120 – Wireless Messaging API

43

SMS Message Types
The types of messages that can be sent are TEXT or BINARY, the method of encoding
the messages are defined in GSM 03.38 standard (Part 4 SMS Data Coding Scheme).
Refer to section A.5.0 of JSR 120 for more information.

SMS Message Structure
The message structure of SMS will comply with GSM 03.40 v7.4.0 Digital cellular
telecommunications system (Phase 2+); Technical realization of the Short Message
Service (SMS) ETSI 2000.

Motorola’s implementation uses the concatenation feature specified in sections 9.2.3.24.1
and 9.2.3.24.8 of the GSM 03.40 standard for messages that the Java application sends
that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages
and passes the fully reassembled message to the application via the API. The
implementation will support at least three SMS messages to be received and
concatenated together. Also, for sending, support for a minimum of three messages is
supported. Motorola advises that developers should not send messages that will take up
more than three SMS protocol messages unless the recipient’s device is known to support
more.

SMS Notification
Examples of SMS interaction with a MIDlet would be the following:

 A MIDlet will handle an incoming SMS message if the MIDlet is registered to
receive messages on the port (identifier) and is running.

 When a MIDlet is paused and is registered to receive messages on the port
number of the incoming message, then the user will be queried to launch the
MIDlet.

 If the MIDlet is not running and the Java Virtual Machine is not initialized, then a
Push Registry will be used to initialize the Virtual Machine and launch the J2ME
MIDlet. This only applies to trusted, signed MIDlets.

 If a message is received and the untrusted unsigned application and the KVM
are not running then the message will be discarded.

The Table 10 depicts list of Messaging features/classes supported in the device.

10
JSR 120 – Wireless Messaging API

44

Feature/Class Implementation

JSR-120 API. Specifically, APIs defined in the
javax.wireless.messaging package will be implemented with regards to
the GSM SMS Adaptor

Supported

All fields, methods, and inherited methods for the Connector Class in
the javax.microedition.io package

Supported

All methods for the BinaryMessage interface in the
javax.wireless.messaging package

Supported

All methods for the Message interface in the javax.wireless.messaging
package

Supported

All fields, methods, and inherited methods for the MessageConnection
interface in the javax.wireless.messaging package

Supported

Number of MessageConnection instances in the
javax.wireless.messaging package

5

All methods for the MessageListener interface in the
javax.wireless.messaging package

Supported

All methods and inherited methods for the TextMessage interface in
the javax.wireless.messaging package

Supported

Number of concatenated messages. 40 messages in inbox, each can
be concatenated from 10 parts at
max.
No limitation on outbox
(immediately transmitted)

Table 10 Messaging features/classes supported

The Code Sample 5 shows the implementation of the JSR 120 Wireless Messaging API:

Creation of client connection and for calling of method ‘numberOfSegments’ for
Binary message:
BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

 /* Create connection for client mode */
 connClient = (MessageConnection) Connector.open("sms://" +
outAddr);

 /* Create BinaryMessage for client mode */
 binMsg =
(BinaryMessage)connClient.newMessage(MessageConnection.BINARY
_MESSAGE);

 /* Create BINARY of 'size' bytes for BinaryMsg */
 public byte[] createBinary(int size) {
 int nextByte = 0;

10
JSR 120 – Wireless Messaging API

45

byte[] newBin = new byte[size];

 for (int i = 0; i < size; i++) {
 nextByte = (rand.nextInt());
 newBin[i] = (byte)nextByte;
 if ((size > 4) && (i == size / 2)) {
 newBin[i-1] = 0x1b;
 newBin[i] = 0x7f;
 }
 }
 return newBin;
 }

byte[] newBin = createBinary(msgLength);
 binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);
Creation of server connection:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274:9532");

Creation of client connection without port number:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection:
MessageConnection messageConnection.close();

Creation of SMS message:
Message textMessage =
messageConnection.newMessage(MessageConnection.TEXT_MESSAGE);

Setting of payload text for text message:

 ((TextMessage)message).setPayloadText("Text Message");
Getting of payload text of received text message:
receivedText =
((TextMessage)receivedMessage).getPayloadText();
Getting of payload data of received binary message:
BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number:
message.setAddress("sms://+18473297274:9532");

10
JSR 120 – Wireless Messaging API

46

Setting of address without port number:
message.setAddress("sms://+18473297274");

Sending of message:
messageConnection.send(message);

Receiving of message:
Message receivedMessage = messageConnection.receive();

Getting of address:
String address = ((TextMessage)message).getAddress();

Getting of timestamp for the message:
Message message;
System.out.println("Timestamp: " +
message.getTimestamp().getTime());

Creation of client connection, creation of binary message, setting of payload for

binary message and calling of method ‘numberOfSegments(Message)’ for Binary
message:

BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

 /* Create connection for client mode */
 connClient = (MessageConnection) Connector.open("sms://" +
outAddr);

 /* Create BinaryMessage for client mode */
 binMsg =
(BinaryMessage)connClient.newMessage(MessageConnection.BINARY
_MESSAGE);

 /* Create BINARY of 'size' bytes for BinaryMsg */
 public byte[] createBinary(int size) {
 int nextByte = 0;
byte[] newBin = new byte[size];

 for (int i = 0; i < size; i++) {
 nextByte = (rand.nextInt());
 newBin[i] = (byte)nextByte;
 if ((size > 4) && (i == size / 2)) {
 newBin[i-1] = 0x1b;
 newBin[i] = 0x7f;
 }
 }
 return newBin;
 }

10
JSR 120 – Wireless Messaging API

47

byte[] newBin = createBinary(msgLength);
 binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Setting of MessageListener and receiving of notifications about incoming messages:

public class JSR120Sample1 extends MIDlet implements
CommandListener {
…
JSR120Sample1Listener listener = new JSR120Sample1Listener();
…
// open connection
messageConnection =
(MessageConnection)Connector.open("sms://:9532");
…
// create message to send
…
listener.run();
…
// set payload for the message to send
…
// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");
…
// send message (via invocation of ‘send’ method)
…
// set address for the message to receive
receivedMessage.setAddress("sms://:9532");
…
// receive message (via invocation of ‘receive’ method)
…

class JSR120Sample1Listener implements MessageListener,
Runnable {
private int messages = 0;

public void notifyIncomingMessage(MessageConnection
connection) {
System.out.println("Notification about incoming message
arrived");
 messages++;
}

public void run() {
 try {
 messageConnection.setMessageListener(listener);
 } catch (IOException e) {
 result = FAIL;
System.out.println("FAILED: exception while setting listener:

10
JSR 120 – Wireless Messaging API

48

" + e.toString());
 }
}
}

Code Sample 5 JSR 120 Wireless Messaging API

11
Phonebook Access API

49

11
Phonebook Access API

Phonebook Access API
Using the Phonebook Access API, an application will be able to locate and update contact
information on the handset. This contact information includes phone numbers, email
addresses, and any other directory information related to individuals, groups, or
organizations. The database used to store phonebook information will be unique and
integrated for native phonebook, SIM card, and other applications using Phonebook API.
The primary goal of the Phonebook Access API is to be simple and thin to fit in resource-
limited devices like the Motorola C381p handset. This API will specify a base storage
class for all types of contacts items presented in the vCard specification (RFC2426 –
vCard MIME Directory Profile – vCard 3.0 Specification). In addition, schema strings used
in querying and storing contact information are those specified in the RFC2426
specification.
The Phonebook Access API will perform the following functions:

• Allow multiple phone numbers and email addresses for each contact

• Store new entries

• Retrieve entries

• Edit existing entries

• Delete entries

• Check memory status

• Order and sort contact parameters

• Support standard schema strings

Phonebook Access API Permissions
Prior to a MIDlet accessing the Phonebook API for all Phonebook operations, the
implementation will check the Phonebook permissions granted to the application.

11
Phonebook Access API

50

In the Motorola C381p, Phonebook API permissions have been added to the MIDP 2.0
security framework “com.motorola.phonebook.” The behavior is up to the domain setting
where the MIDlet falls in. For an untrusted MIDlet, the permission for the API is “Oneshot”.
The Code Sample 6 shows the implementation of the Phonebook API:
Sample of code to create object of PhoneBookRecord class:

PhoneBookRecord phbkRecEmpty = new PhoneBookRecord();

String name = “Name”;
String telNo = “9999999”;
int type = PhoneBookRecord.MAIN;

PhoneBookRecord phbkRec = new PhoneBookRecord(name, telNo, type,
PhoneBookRecord.CATEGORY_GENERAL);

Sample of code for calling of ‘add(int sortOrder)’ method:

int index = phbkRec.add(PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘update(int index, int sortOrder)’ method:

phbkRec.type = PhoneBookRecord.HOME;
int newIndex = phbkRec.update(index, PhoneBookRecord. SORT_BY_NAME);

Sample of code for calling of ‘delete(int index, int sortOrder)’ method:

PhoneBookRecord.delete(index, PhoneBookRecord. SORT_BY_NAME);

Sample of code for calling of ‘deleteAll()’ method:

PhoneBookRecord.deleteAll();

Sample of code for calling of ‘getRecord(int index, int sortOrder)’ method:

phbkRec.getRecord(index, PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘findRecordByTelNo(String tel, int sortOrder)’ method:

index = phbkRec.findRecordByTelNo(telNo,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘findRecordByName(char firstChar, int sortOrder)’ method:

index = PhoneBookRecord.findRecordByName('N',
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘findRecordByEmail(String email, int sortOrder)’ method:

String email = “email@mail.com”;
index = phbkRec.findRecordByEmail(email,
PhoneBookRecord.SORT_BY_NAME);

11
Phonebook Access API

51

Sample of code for calling of ‘getNumberRecords(int device)’ method:

// get total number of records
int numberRecsInPhone =
PhoneBookRecord.getNumberRecords(PhoneBookRecord.PHONE_MEMORY);
int numberRecsInSim =
PhoneBookRecord.getNumberRecords(PhoneBookRecord.SIM_MEMORY);
int numberRecsAll =
PhoneBookRecord.getNumberRecords(PhoneBookRecord.ALL_MEMORY);

Sample of code for calling of ‘getAvailableRecords(int device)’ method:

// get number of available records
int numberRecsAvalPhone =
PhoneBookRecord.getAvailableRecords(PhoneBookRecord.PHONE_MEMORY);
int numberRecsAvalSim =
 PhoneBookRecord.getAvailableRecords(PhoneBookRecord.SIM_MEMORY);
int numberRecsAvalAll =
PhoneBookRecord.getAvailableRecords(PhoneBookRecord.ALL_MEMORY);

Sample of code for calling of ‘getUsedRecords(int device, int sortOrder)’ method:

// get number of used records
int numberRecsUsedPhone =
PhoneBookRecord.getUsedRecords(PhoneBookRecord.PHONE_MEMORY,
PhoneBookRecord.SORT_BY_NAME);
int numberRecsUsedSim =
PhoneBookRecord.getUsedRecords(PhoneBookRecord.SIM_MEMORY,
PhoneBookRecord.SORT_BY_NAME);
int numberRecsUsedAll =
PhoneBookRecord.getUsedRecords(PhoneBookRecord.ALL_MEMORY,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘getNumberRecordsByName(String name)’ method:

int num = PhoneBookRecord.getNumberRecordsByName(name);

Sample of code for calling of ‘getMaxNameLength(int device)’ method:

int maxNameLengthPhone =
PhoneBookRecord.getMaxNameLength(PhoneBookRecord.PHONE_MEMORY);
int maxNameLengthSim =
PhoneBookRecord.getMaxNameLength(PhoneBookRecord.SIM_MEMORY);
int maxNameLengthAll =
PhoneBookRecord.getMaxNameLength(PhoneBookRecord.ALL_MEMORY);

Sample of code for calling of ‘getMaxTelNoLength (int device)’ method:

int maxTelNoLengthPhone =
PhoneBookRecord.getMaxTelNoLength(PhoneBookRecord.PHONE_MEMORY);

11
Phonebook Access API

52

int maxTelNoLengthSim =
PhoneBookRecord.getMaxTelNoLength(PhoneBookRecord.SIM_MEMORY);
int maxTelNoLengthAll =
PhoneBookRecord.getMaxTelNoLength(PhoneBookRecord.ALL_MEMORY);

Sample of code for calling of ‘getMaxEmailLength ()’ method:

int maxEmailLength =
PhoneBookRecord.getMaxEmailLength();

Sample of code for calling of ‘getIndexBySpeedNo(int speedNo, int sortOrder)’ method:

int speedNo = 1;
index = PhoneBookRecord.getIndexBySpeedNo(speedNo, PhoneBookRecord.
SORT_BY_NAME);

Sample of code for calling of ‘getNewSpeedNo(int num, int device)’ method:

int speedNo = 1;
int speedNo_phone =
PhoneBookRecord.getNewSpeedNo(speedNo,
PhoneBookRecord.PHONE_MEMORY);
int speedNo_sim =
PhoneBookRecord.getNewSpeedNo(speedNo,
 PhoneBookRecord.PHONE_MEMORY);
int speedNo_all =
PhoneBookRecord.getNewSpeedNo(speedNo,
PhoneBookRecord.PHONE_MEMORY);

Sample of code for calling of ‘getDeviceType(int speedNo)’ method:

int speedNo = 1;
int type = PhoneBookRecord.getDeviceType(speedNo);

Sample of code for calling of ‘setPrimary(int index, int sortOrder)’ method:

int index = 1;
PhoneBookRecord.setPrimary(index, PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘resetPrimary(int index, int sortOrder)’ method:

int index = 1;
PhoneBookRecord.resetPrimary(index, PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘isPrimary(int speedNo)’ method:

int speedNo = 1;
boolean res = PhoneBookRecord.isPrimary(speedNo);

Sample of code for calling of ‘fromVFormat(InputStream in, int device)’ method:

11
Phonebook Access API

53

buffer = new String("BEGIN:VCARD\r\nN:;" + new String(name) +
"\r\nTEL;TYPE=WORK:1\r\nEND:VCARD\r\n");
int num =
PhoneBookRecord.fromVFormat((InputStream)(new
ByteArrayInputStream(buffer.getBytes())),
PhoneBookRecord.PHONE_MEMORY);

Sample of code for calling of ‘toVFormat(OutputStream out, int
index, int outFormat, int sortOrder)’ method:

int index = 1;
ByteArrayOutputStream outStream = new ByteArrayOutputStream();
PhoneBookRecord.toVFormat(outStream, index,
PhoneBookRecord.VCARD_3_0,
PhoneBookRecord.SORT_BY_NAME);

System.out.println("***** Contents of the output stream: *****");
System.out.print(new String(outStream.toByteArray()));

Code Sample 6 Phonebook API

12
Telephony API

54

12
Telephony API

The Telephony API allows a MIDlet to make a voice call, however, the user needs to
confirm the action before any voice call is made. The reason for the confirmation is to
provide a measure of security from rogue applications overtaking the handset.
Unlike standard TAPI, the wireless Telephony API provide simple function and simple
even listener: startCall (), send ExtNo (), and endCall (), DialerListener.
The Tables 11 and 12 describe the Interface and Class Summary:

Interface Summary
DialerListener The DialerListener interface provides a mechanism for the application to

be notified of phone call event.

Table 11 Interface Summary

Class Summary
Dialer The Dialer class defines the basic functionality for start and end phone

call.
DialerEvent The DialerEvent class defines phone call events.

Table 12 Class Summary

Dialer Class
The dialer Class can be used to start and end a phone call and user listener to receive an
event. The applications use a Dialer to make a phone call and use DialerListener to
receive event.

Class DialerEvent
The DialerEvent class defines phone call events. The Table 13 describes the Field
Summary:

12
Telephony API

55

Summary
static byte PHONE_VOICECALL_CONNECT

 Phone call was connected event
static byte PHONE_VOICECALL_DISCONNECT

 Phone call was disconnected event
static byte PHONE_VOICECALL_DTMF_FAILURE

 Send extension number error event
static byte PHONE_VOICECALL_FAILURE

 start phone call error event
static byte PHONE_VOICECALL_HOLD

 Current java phone call was held by native phone event
static byte PHONE_VOICECALL_INIT

 Phone start dial-up event
static byte PHONE_VOICECALL_TIMEOUT

 Phone process timeout event
static byte PHONE_VOICECALL_UNHOLD

 Current java phone call was unheld event

Table 13 Field Summary

The Table 14 describes the Constructor Summary:

Constructor Summary
DialerEvent()

Table 14 Constructor Summary

 The following methods are inherited from class java.lang.Object:

• equals

• getClass

• hashCode

• notify

• notifyAll

• toString

• wait
The Table 15 describes the Field Details:

Field Detail Definition
PHONE_VOICECALL_INIT

public static final byte
PHONE_VOICECALL_INIT

Phone start
dial-up
event

PHONE_VOICECALL_FAILURE

public static final byte
PHONE_VOICECALL_FAILURE

Start
phone call
error event

12
Telephony API

56

PHONE_VOICECALL_CONNECT

public static final byte
PHONE_VOICECALL_CONNECT

Phone call
was
connected
event

PHONE_VOICECALL_DISCONNECT

public static final byte
PHONE_VOICECALL_DISCONNECT

Phone call
was
disconnect
ed event

PHONE_VOICECALL_TIMEOUT

public static final byte
PHONE_VOICECALL_TIMEOUT

Phone
process
timeout
event

PHONE_VOICECALL_HOLD

public static final byte
PHONE_VOICECALL_HOLD

Current
java phone
call was
held by
native
phone
event

PHONE_VOICECALL_UNHOLD

public static final byte
PHONE_VOICECALL_UNHOLD

Current
java phone
call was
unheld
event

PHONE_VOICECALL_DTMF_FAILURE

public static final byte
PHONE_VOICECALL_DTMF_FAILURE

Send
extension
number
error event

Table 15 Field Details

Class Dialer
The Dialer class defines the basic functionality for starting and ending a phone call. The
Table 16 describes the Method Summary:

Method Summary
 void endCall()

 end or cancel a phone call
static Dialer getDefaultDialer()

12
Telephony API

57

 void sendExtNo(String extNumber)

 send extension number.
 void setDialerListener(DialerListener listener)

 Registers a DialerListener object.
 void startCall(String telenumber)

 start a phone call using given telephone number.
 void startCall(String teleNumber, String extNo)

 start a phone call using given telephone number and extension number.

Table 16 Method Summary

The following methods are inherited from java.lang.object:

• equals

• getClass

• hashCode

• notify

• notifyAll

• toString

• wait

getDefaultDialer
public static Dialer getDefaultDialer()

Get a Dialer instance.

setDialerListener
public void setDialerListener(DialerListener listener)
Registers a DialerListener object.
The platform will notify this listener object when a phone event has been received to this
Dialer object.
There can be at most one listener object registered for a Dialer object at any given point in
time. Setting a new listener will implicitly de-register the possibly previously set listener.
Passing null as the parameter de-registers the currently registered listener, if any.
Parameters:
listener - DialerListener object to be registered. If null, the possibly currently
registered listener will be de-registered and will not receive phone call event.

12
Telephony API

58

startCall
public void startCall(String telenumber)

 throws IOException
start a phone call using given telephone number.
Parameters:
telenumber - the telephone number to be call.

extNo - the extension number to be send.
Throws:
IOException - if the call could not be created or because of network failure

NullPointerException - if the parameter is null

SecurityException - if the application does not have permission to start the call

startCall
public void startCall(String teleNumber,
 String extNo)
 throws IOException
start a phone call using given telephone number and extension number.
Parameters:
telenumber - the telephone number to be call.
extNo - the extension number to be send.
Throws:
IOException - if the call could not be created or because of network failure
NullPointerException - if the parameter is null
SecurityException - if the application does not have permission to start the call

sendExtNo
public void sendExtNo(String extNumber)
 throws IOException
send extension number.
Parameters:
sendExtNo - the extension number to be send.
Throws:
IOException - if the extension could not be send or because of network failure

12
Telephony API

59

endCall
public void endCall()
 throws IOException
end or cancel a phone call
Throws:
IOException - if the call could not be end or cancel.

Interface DialerListener
public interface DialerListener
The DialerListener interface provides a mechanism for the application to be notified
of phone call event.
When an event arrives, the notifyDialerEvent() method is called
The listener mechanism allows applications to receive TAPI voice call event without
needing to have a listener thread
If multiple event arrive very closely together in time, the implementation has calling this
listener in serial.

Sample DialerListener Implementation

Dialer listener program
import java.io.IOException;
 import javax.microedition.midlet.*;
 import javax.microedition.io.*;
 import com.motorola.*;

 public class Example extends MIDlet implements DialerListener {
 Dialer dialer;

 // Initial tests setup and execution.

 public void startApp() {
 try {
 dialer = Dialer.getDefaultDialer();

 // Register a listener for inbound TAPI voice call events.
 dialer.setDialerListener(this);
 dialer.startCall("01065642288");

 } catch (IOException e) {
 // Handle startup errors
 }

12
Telephony API

60

 }
Asynchronous callback for receive phone call event
 public void notifyDialerEvent(Dialer dialer, byte event) {
 switch (event) {
 case DialerEvent.PHONE_VOICECALL_INIT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_FAILURE:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_CONNECT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_DISCONNECT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_TIMEOUT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_HOLD:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_UNHOLD:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_DTMF_FAILURE:
 // your process
 break;
 }
 }

 // Required MIDlet method - release the connection and
 // signal the reader thread to terminate.

 public void pauseApp() {
 try {
 dialer.endCall();
 } catch (IOException e) {
 // Handle errors
 }
 }

 // Required MIDlet method - shutdown.
 // @param unconditional forced shutdown flag

 public void destroyApp(boolean unconditional) {
 try {
 dialer.setDialerListener(null);
 dialer.endCall();
 } catch (IOException e) {
 // Handle shutdown errors.
 }
 }
 }

Code Sample 7 DialerListener Implementation

12
Telephony API

61

notifyDialerEvent
public void notifyDialerEvent(Dialer dialer,
 byte event)
Called by the platform when a phone call event was received by a Dialer object where the
application has registered this listener object.
This method is called once for each TAPI voice call event to the Dialer object.
NOTE: The implementation of this method MUST return quickly and MUST NOT perform
any extensive operations. The application SHOULD NOT receive and handle the
message during this method call. Instead, it should act only as a trigger to start the activity
in the application's own thread.
Parameters:
dialer - the Dialer where the TAPI voice call event has arrived

event - the TAPI voice call event type.

Class Hierarchy
• class java.lang.Object

o class com.motorola.phone.Dialer

o class com.motorola.phone.DialerEvent

Interface Hierarchy
• interface com.motorola.phone.DialerListener

13
Serial Port Access

62

13
Serial Port Access

The Serial Port RS232 API is incorporated into any J2ME device allowing connection to
the J2ME serial port communication stream.
Opening the port requires the form Connector.open("comm:/name;parameters) where
name is the name of the serial port. (A comma separated list of supported names can be
obtained by calling System.getProperty("serialport.name");)
The API should allow the J2ME application to query for the available device connections
(data cable), as well as the available data speeds.
This API should be in-line with the CLDC javax.microedition.io Version 1.02. In addition,
the following changes must be added over the CLDC standard:

• Automatic baud rate detection.

• Addition of more parity options; specifically mark and space.

• Support for 1.5 stop bits as a common UART feature.

• Changes to port names, as opposed to the "open by port number option". The
use of actual port names are more meaningful to the user.

• The mode parameter for Connector.open() is not ignored. A MIDlet should not be
allowed to write a connection which is specified as READ only.

14
SMS Messaging as GSM Extension

63

14
SMS Messaging as GSM

Extension

The SMS APIs for J2ME environment enable the following functionality:

• Creating an SMS message

• Sending an SMS message

• Viewing an SMS message

• Deleting an SMS message

The SMS APIs support the following contents to be sent over SMS:

• Text message

• Audio files: .au, .midi. .wav, .mp3

• Image files: .png, .gif

The SMS messages for each MIDlet are managed by the MIDlet.

Creating a Message
The API enables creating of SMS messages. The addressing is compliant with the
standard SMS addressing as specified in the GSM standards. The content of the
message can be constructed using one or more of the content types specified in chapter
10 of this document.

Sending a Message
The SMS API provides a way to send a message to the appropriate SMS address. Any
errors while sending the message should be handled appropriately.

14
SMS Messaging as GSM Extension

64

Viewing a Message
The APIs should provide a way to get a list of messages that is associated with a specific
application and to view the messages.

Deleting a Message

The API should provide a way to delete SMS messages.

15
User Display Interface

65

15
User Display Interface

The J2ME standard allows specific Canvas, Hardware Mapping and External Event
Interaction functionality.

Canvas Functionality
The J2ME standard specifies that the Canvas class is available to the J2ME application.
The J2ME Canvas functionality controls the rendering of objects on the entire display. In
addition, the J2ME Canvas requirements a minimum display size and functional soft key
area for use by the application.

• There is a minimum of 96 x 54 pixels screen size to be available to the J2ME
application.

• The lower 10 pixels are reserved for two soft keys and the menu icon. These 10
pixels are not counted in the 54 pixels reserved for the J2ME Canvas display.

• The soft keys and menu icon, located in the 10 pixel reserved area, are rendered
in 11 high font.

• The soft keys and menu icon follow noted below:
o MIDlet UI design can be designated in the J2ME Style Guide or

Developer Guide but implementation is still decided by the developer.

The application supports the Portable Network Graphic (PNG) Image Format.

• Implementations are required to support images stored in the PNG format. All of
the 'critical' chunks specified by PNG must be supported, with the following
considerations:

o The IHDR chunk. MIDP devices must handle the following values in the
IHDR chunk:

 All positive values of width and height are supported; however,
a very large image may not be readable because of memory
constraints.

15
User Display Interface

66

 All color types are supported, although the appearance of the
image will be dependent on the capabilities of the device's
screen. Color types that include alpha channel data are
supported; however, the implementation may ignore all alpha
channel information and treat all pixels as opaque.

 All bit depth values for the given color type are supported.
 Compression method 0 (deflate) is the only supported

compression method. This is the same compression method
that is used for jar files, and so the decompression (inflate)
code may be shared between the jar decoding and PNG
decoding implementations.

 The filter method represents a series of encoding schemes
that may be used to optimize compression. The PNG spec
currently defines a single filter method (method 0) that is an
adaptive filtering scheme with five basic filter types. Filtering is
essential for optimal compression since it allows the deflate
algorithm to exploit spatial similarities within the image.
Therefore, MIDP devices must support all five filter types
defined by filter method 0.

 MIDP devices are required to read PNG images that are
encoded with either interlace method 0 (None) or interlace
method 1 (Adam7). Image loading in MIDP is synchronous and
cannot be overlapped with image rendering. There is no
advantage for an application to use interlace method 1.
Support for decoding interlaced images is required for
compatibility with PNG and for the convenience of developers
who may already have interlaced images available.

o The PLTE chunk. Palette-based images must be supported.
o The IDAT chunk. Image data may be encoded using any of the 5 filter

types defined by filter method 0 (None, Sub, Up, Average, Path).
o The IEND chunk. This chunk must be found in order for the image to be

considered valid.
o Ancillary chunk support. PNG defines several 'ancillary' chunks that

may be present in a PNG image but are not critical for image decoding.
A MIDP implementation may (but is not required to) support any of
these chunks. The implementation should silently ignore any
unsupported ancillary chunks that it encounters. The defined ancillary
chunks are:

 bKGD cHRM gAMA hIST iCCP iTXt pHYs sBIT sPLT sRGB
tEXt tIME tRNS zTXt

o All MIDlets will be displayed in the ZOOM OUT mode. Once the MIDlet
is exited, the handset will return to the user’s pre-defined ZOOM
IN/OUT state.

15
User Display Interface

67

Hardware Mapping
The J2ME standard provides a minimum key set that is determined to be available on all
devices. These key sets are to be mapped by the individual hardware manufacturers to a
specified command set for application use. In addition, if other hardware keys are
available, it is left to the manufacturer to determine the functionality of these keys. The
following sections detail the standard J2ME required keys and the Motorola proprietary
reserved key sets.

J2ME Standard Key Set

If present on the device specific hardware, the following keys are to be available to the
J2ME application. The J2ME application can assign actions to these key inputs per the
design of the application.

• Keys 0 through 9, the * key and the # key shall be available to the application
for use. The J2ME application can either retain the standard functionality (i.e.
a key press of 6 indicates the use of the number value six) or the application
can map these keys to application specific use (i.e. the number 6 could map
to a right action key).

Motorola Standard Key Set

The following keys are not available to the J2ME application and are retained by the
handset for Motorola specific usage regardless of J2ME application processing. These
keys and associated actions will always retain a higher priority than the J2ME application.
This will ensure that some minimal level of control is always available to the handset user,
regardless of the actions of a J2ME application.

End Key

The End key shall always terminate the current J2ME application and return the user back
to the mobile idle state.

Send Key

The Send key shall always remain independent of any J2ME applications. When a
telephone number from a J2ME application is displayed, the handset shall attempt to
place the call if the Send key is pressed.

Left, Right and Menu Soft Keys

The J2ME standard allows for a global command set to be available to the application
developers. This complete command list is: SCREEN, BACK, CANCEL, OK, HELP,
STOP, EXIT, MENU AND ITEM.
For all other global commands, the handset shall use the default label (which will be the
same name as the command) if a label is not supplied. If a command label supplied by the
J2ME application is too long, it should be truncated.

15
User Display Interface

68

The handset controls the rendering and positioning of these global commands, but the
J2ME application determines the actual availability and functionality of these commands.
For example, J2ME application1 may indicate to the KVM that only four of the global
commands are to be used/displayed, where as J2ME application2 may indicate that all
nine global commands are to be used/displayed.

Each of global commands in Table 17 has a priority ranking.

Global Command Soft Key Position Priority

SCREEN RIGHT 1
BACK LEFT 2
CANCEL LEFT 3
OK RIGHT 4
HELP RIGHT 5
STOP RIGHT 6
EXIT LEFT 7
OPTIONS (menu) RIGHT 8
ITEM RIGHT 9
FIRE RIGHT 10

Table 17 Key Ranking Priority

Rules:

• If no global command is specified from the J2ME application, the handset
shall always display the BACK command on the left soft key position. The
MENU icon and Right soft key shall remain blank. If the BACK key is
pressed, the J2ME application is destroyed and the handset shall return
back to the J2ME Application Manager screen.

• If the global command list is populated, but does not contain one of the
following commands, BACK / CANCEL / EXIT, then the handset shall always
display the BACK command on the left soft key position. If the global
command list is populated with commands that occupy both left and right
side soft keys, then the highest priority command shall occupy the
appropriate softkey. The remaining global commands will be displayed if the
menu soft key is pressed. The remaining global commands shall be
displayed in ascending order based on the priority value of the above table.

Example 1:

Upon start-up, the J2ME application indicates that the following global commands are

active: BACK, CANCEL, OK, HELP and STOP. The handset display would look like this:

15
User Display Interface

69

Figure 2 Active Global Commands - Back, Cancel, OK, Help & Stop

Example 2:

Upon start-up, the J2ME application indicates that the following global commands are
active: SCREEN, CANCEL, HELP, OK, and STOP. The handset display would look like
this:

Figure 3 Active Global Commands - Cancel, Screen, OK, Help & Stop

Power Key

When the Power key is pressed and held down, it should always override all applications
and power down the handset.

15
User Display Interface

70

Volume Key

Volume keys will not be supported in the first release of J2ME, Java 1.0. In following
releases, when the Volume key (s) is pressed and held down, it should always control the
speaker/ accessory volume regardless of application.

Game Key Mapping

Games require the use of UP/DOWN/LEFT/RIGHT and FIRE as a basic set of keys in
order to play. For handsets that have a four direction navigational device (joystick),
UP/DOWN/LEFT/ RIGHT should be mapped to that. Otherwise, the keypad should return
game action by mapping the 2 key to UP command, 8 key to DOWN command, 4 key to
LEFT command, and 6 key to RIGHT command. In addition, the FIRE key should be
mapped to the SELECT key if present otherwise to the right soft key and the 5 key.
Additional game action keys exist, these are the GAME A, GAME B, GAME C, and GAME
D keys. They perform different game actions depending on the game being played.
GAME A should be mapped to the 1 key. GAME B should be mapped to the 3 key. GAME
C should be mapped to the 7 key. GAME D should be mapped to the 9 key. For hardware
implementations that support multiple key presses, such as Talon, the following keys must
be supported when pressed simultaneously: Four direction navigational device (i.e.
joystick), 1, 3, 5, 7, & 9 keys.

16
One-Click Application Access

71

16
One-Click Application Access

The one-click access to J2ME applications Implementation allows the user to more readily
access frequently used Java applications via the soft keys, navigation keys or smart keys.
The key requirement is to allow MIDlets to behave as if they were Main Menu
applications. Allowing J2ME application to be moved from the My JavaApps menu to the
Main Menu, although this would be ideal, it will not be implemented until native
applications are capable of being moved up and down the menu structure in different
'folders' and 'sub-menus'.

Application Resources
The DRM application resources table must be updated to provide for the display of the
following.

• Small icon (no deletion)

• Large icon (no deletion)

• Softkey name

• Common name

Application Keys
J2ME applications must be able to be assigned to the application keys of the device. The
options for application keys will be dependent on the device being used. This includes
devices that have Smartkeys or four-way navigation keys that can be associated to
applications. The applications executed from the application keys must also be accessible
from the My JavaApps menu.

Application Icons
J2ME applications must be representable via icons of multiple sizes. This is especially
required for devices that have multiple methods for displaying applications.

16
One-Click Application Access

72

• Large Icons - Until a better solution can be implemented, a generic large
animated icon must be created for display on the idle screen.

• Small Icons - A 15 x 15 pixels (Must be used in the Personalize list views).
 The MIDlet-icon JAD attribute specifies the directory name for the

icon(PNG image)
 MIDlets with the MIDlet-icon attribute have the capability to display a

PNG image
 Next to the MIDlet name in the personalize list view.
 MIDlets that do not have this attribute will have a standard PNG image

displayed
 Next to the MIDlet name.

Softkey Labels
The softkey name of the app must be truncated (if the name is too long) after all available
space is used. In the rare occasion that there are two applications with the same name
(ex. two calculator apps: basic and advanced), the second application name must be
truncated followed by the number ‘2’).

Effect of Master Clear or Master Reset
The one-click keys that are associated to a J2ME application must be replaced by default
settings if a Master Clear or Master Reset is performed.

Deleting the MIDlet/Application
Deleting the J2ME MIDlet/application from the My JavaApps list must reset the application
keys to their defaults.

17
Download MIDlet Through Browser

73

17
Download MIDlet Through

Browser

The Download MIDlet Through Browser requires the browser to be connected before
performing any downloads on the handset.
The example shows How user may access the Browser application by any of the following
methods:

• Selecting “Browser” from the Main Menu.

• Pressing a dedicated “Browser” key on the keypad (if available on the handset).

• Pressing a “Browser” soft key from the idle display (if assigned).

• Using “Browser” shortcut (if assigned).

• Selecting URL from a message.

• Selecting GetJavaApps from the Main Menu or Java Settings.

17
Download MIDlet Through Browser

74

Star Active Browser Session from Main Menu
The Figure 4 describes Staring Active Browser Session from Main

Menu:

Figure 4 Starting Active Browser Session from Main Menu

GetJavaApps is a feature that allows an operator to insert a WAP designated URL that
links to a J2ME site with MIDlet suites. This feature can be found under Java Settings or
in the Main Menu as it is flexible for either menu item.

Find a location with J2ME Application
Once connected to the WAP browser, different locations may be visited where J2ME
Applications may be downloaded. From here, a MIDlet may be selected to download to
the handset.
Handset initially receives information from the Java Application Descriptor (JAD) file. The
JAD includes information about MIDlet-name, version, vendor, MIDlet-Jar-URL, MIDlet-
Jar-size, and MIDlet-Data-size. Two additional JAD attributes will be Mot-Data-Space-
Requirements and Mot-Program-Space-Requirements. These attribute will help the KVM
determine whether there is enough memory to download and install the selected MIDlet
suite. If there is not enough memory, “Memory Full” dialog will be displayed before the
download begins.

17
Download MIDlet Through Browser

75

Downloading MIDlets

 The Figure 5 represents J2ME Application (MIDlets) Download and Installation.

Figure 5 Downloading and Installing J2ME Application (MIDlets)

Steps to Download and Install J2ME Application:

• BACK shows previous screen to the user.

• If the SELECT softkey is selected, the handset shows display the application
size, time to install and version. If an error occurs with the descriptor file, the
handset then displays the transient notice “Failed Invalid File.” Upon Time-out,
the handset goes back to browser.

• If the CANCEL softkey is selected, it shows the Browser Application Card from
where the application was selected.

17
Download MIDlet Through Browser

76

• If the DOWNLD softkey is selected, the handset starts downloading the
application. The handset displays “Downloading...% Complete” along with the
percentage of downloading completed at a time. “Downloading...% Complete”
shall use static dots, not dynamic.

• Before downloading the MIDlet, handset checks for available memory. Mot-Data-
Space-Requirements and Mot-Program-Space-Requirements are two JAD
attributes that will help the KVM determine whether there is enough memory to
download and install the selected MIDlet suite. If there is not enough memory,
“Insufficient storage” transient dialog will be displayed before the download
begins. Upon time-out, the handset goes back to browser.

• If an error occurs during download, such as a loss of service, then the transient
notice “Download Failed” must be displayed. Upon time-out, the handset goes
back to idle state.

• A downloading application can be cancelled by pressing the END key. The
transient notice, “Download Cancelled, “ displays. Upon time-out, handset goes
back to browser.

• If JAR -file size does not match with specified size, it displays “Failed Invalid
File”. Upon time-out, the handset goes back to browser.

• When the downloading application is cancelled, handset cleans up all files,
including any partial JAR files and temporary files created during the download
process.

• When downloading is done, the handset displays a transient notice “Download
Completed”. The handset then starts to install the application.

• The handset displays “Installing...”.

• After an application is successfully downloaded, a status message must be sent
back to the network server. This allows for charging of the downloaded
application.

• Charging is per the Over the Air User Initiated Provisioning specification. The
status of an install is reported by means of an HTTP POST request to the URL
contained in the MIDlet-Install-Notify attribute. The only protocol that MUST be
supported is “http://”.

• If the browser connection is interrupted/ended during the download/installation
process, the device will be unable to send the HTTP POST with the MIDlet-Install
Notify attribute. In this case, the MIDlet will be deleted to insure the user does not
get a free MIDlet. The use case can occur when a phone call is accepted and
terminated during the installation process, because then the browser will not be
in the needed state in order to return the MIDlet Install Notify attribute.

• Upon completing Installation, the handset displays a transient notice “Installed to
Games & Apps”.

• Upon time-out, the handset goes back to Browser.

• During Installation if the MANIFEST file is wrong, the handset displays a
transient notice “Failed File Corrupt”. Upon time-out, the handset goes back to
Browser.

17
Download MIDlet Through Browser

77

• During the installation process, if the flip is closed on a flip handset, the
installation process will continue and the handset will not return to the idle
display. When the flip is opened, the “Installing...” dialogue should appear on the
screen and should be dynamic.

• During download or install of application, voice record, voice commands, voice
shortcuts, and volume control will not be supported. However, during this time,
incoming calls and SMS messages are able to be received.

• The handset must support sending and receiving at least 30 kilobytes of data
using HTTP either from the server to the client or the client to the server, per
Over the Air User Initiated Provisioning specification.

• If JAD does not contain mandatory attributes, “Failed Invalid File” notice appears.

If JAD does not contain mandatory attributes, “Failed Invalid File” notice appears.

Figure 6 Application does not have Mandatory Attributes in ADF

Different Error Checks

Memory Full
There are two distinct cases when a Memory Full error can occur during the download
process. Memory Full will be displayed when the device does not have enough memory
to completely download the MIDlet. The JAD of the MIDlet has two attributes, Mot-Data-
Space-Requirements and Mot-Program-Space-Requirements. If an application developer
adds these attributes to their JAD file, a Motorola device can determine if enough memory
exists on the phone before the MIDlet is downloaded. These attributes may or may not be

17
Download MIDlet Through Browser

78

provided in all MIDlets. Two separate prompts will be displayed depending on whether
these attributes are present.
In cases where there is not enough memory to download the application, the user MUST
be given a message to delete existing applications in order to free additional memory. The
following messages and screen flows will be displayed depending on whether specific
JAD attributes are present or not:

17
Download MIDlet Through Browser

79

Figure 7 Memory full error

Rules:

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements
attributes are present in the JAD, the above noted prompt should be displayed.
This value takes into account the memory requirements of the MIDlet and the
current memory usage on the phone, in order to tell the user exactly how much
memory to free. The memory usage is based in kilobyte units.

• “Data Space:” and the value of the data space should be on separate lines.
“Prog. Space:” and the value of the program space should be on separate lines.

• The download process is canceled when this error condition occurs.

• The Memory Full error will no longer be a transient prompt but a dialog screen
with a Help softkey and a Back softkey will be displayed.

• DETAILS will give the user the above detailed Help screen describing the
memory required to be able to download the MIDlet.

• The Help dialog will include a "More" right softkey label (for those products in
which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• BACK from this message will take the user back to the browser page from which
the user selected the MIDlet to download.

17
Download MIDlet Through Browser

80

Figure 8 Mot-Data-Space & Mot-Program-Space attributes are not present or are incorretct

Rules:
• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements JAD

attributes are not present in the JAD file, the handset can not determine how
much memory to free and will display the above help dialog.

• The Help dialog will include a "More" right softkey label (for those products in
which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• All rules stated in the previous figure must also be followed for the above stated
prompt.

Memory Full during installation process.
Once the MIDlet is successfully downloaded, the installation process begins. During the
installation of the MIDlet, the phone may determine there is insufficient memory to
complete the installation. This error can occur whether the Mot-Data-Space-Requirements
and Mot-Program-Space-Requirements JAD attributes are present or not. The following
message and Figure 9 must be displayed:

17
Download MIDlet Through Browser

81

Figure 9 Memory Full help message during installation process

Rules:

• The installation process is canceled when this error condition occurs.

• The Memory Full error will no longer be a transient prompt but a dialog screen
with a Help softkey and a Back softkey will be displayed.

• DETAILS will give the user the above Help screen explaining that additional
memory is required to be able to install the MIDlet.

• The Help dialog will include a "More" right softkey label (for those products in
which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• BACK from this message will take the user back to the browser page from which
the user selected the MIDlet to download.

Application version already exists:
Compares the version number of the application with that already present on the handset.
If the versions are the same, the following message is displayed. The error occurred can
be queried by selecting DETAILS.

17
Download MIDlet Through Browser

82

Figure 10 Same Version of Application already exists on the handset

Rules:

• Handset checks for MIDlet-Name, MIDlet-vendor, and version number. If they
are the same, a dialog “Application Already Exists” is displayed.

• To know more about this error, select the DETAILS softkey.

• Handset displays the new version of the application, as well as the existing
application.

Newer Application Version Exists:
If the application version on the handset is newer than the downloaded version of
application, the following message is displayed. The error occurred can be queried by
selecting DETAILS.

17
Download MIDlet Through Browser

83

Figure 11 Latest (Newer) Version of Application exists

Rules:

• If the latest or newer version of application is already present on the handset, it
cannot be downloaded

18
Lightweight Windowing Toolkit

84

18
Lightweight Windowing Toolkit

LWT integrate with the LCDUI API within the MIDP and enhance the capabilities to
include a component-level API through which developers can control the contents and
layout of their screens. These components are graphical user interface elements such as
buttons, check boxes, text fields, images, etc. LWT also allow developers to create new
imaginative components or change the look and feel of existing components.
Those MIDlets taking advantage of the added capabilities of LWT will only run on those
handsets that incorporate the LWT LOC.
LWT extends the MIDP class hierarchy by extending the LCDUI Canvas class. The
ComponentScreen is a subclass of Canvas, which means it can be easily added to a
MIDP implementation and minimize dependencies and maintenance overhead. This also
allows standard MIDlets to mix both MIDP screens and LWT screens in their MIDlets.
LWT is designed to use MIDP low-level graphics routines exclusively, which adds to the
ease of implementation. Although no device-specific modifications are required, an LWT
implementation may be tailored to match the rest of the device’s user interface. The text
components in LWT may be integrated with the device’s data entry mechanisms, such as
handwriting recognition or predictive keypad input.
LWT implementation requires the handset to be MIDP compliant and have approximately
30KB of flash memory.
LWT does not expose any additional native interfaces and only relies on mechanisms
specified by MIDP 1.0. LWT can be safely exposed to untrusted MIDlets.
Once LWT is implemented, the LWT TCK must be completed and pass successfully.

19
UDP Support

85

19
UDP Support

This functionality is to enable J2ME applications access to Generic UDP Transport
Service.

• This enhancement allows for J2ME applications to utilize the UDP header
compression format for data applications over IP.

• The API should follow the guidelines of the User Datagram Protocol standard,
IETF RFC 768, J. Postel, August 28, 1981.

• This functionality should be available for both CSD and GPRS connections.

20
Shared JAD URLs

86

20
Shared JAD URLs

Overview

Actually, users are able to download J2ME applications. The first step is to download the
JAD file and, after a confirmation, the site is launched to download the application. If they
want to forward the JAD link to someone else, it’s impossible.

The Share JAD URLs is a feature that resolves the prior problem, it allows users to share
their downloaded J2ME application URLs with others. When J2ME applications are
downloaded, the browser shall provide the Java Application Manager (JAM) with the JAD
URL address. When J2ME applications are downloaded via PC or MMS, a new JAD
attribute shall specify the JAD URL address.

Tell-A-Friend Option

When entering the J2ME application context-sensitive menu, a Tell-A-Friend option will be
provided. Upon selecting this option, the standard SMS messaging form will appear. The
link to the URL where the application JAD file can be found and its name will be pre-
populated into the message body. This allows the user to send messages to friends,
telling them where to download the application.

Upon receipt of a Tell-A-Friend message, a Motorola handset user should be able to use
the browser’s GOTO functionality. Selecting GOTO will cause the download of JAD to
occur. The remaining download steps will occur as normal.

20
Shared JAD URLs

87

Accessing Tell-A-Friend from SMM
The MIDlet Manager menu lets the user perform certain actions on the selected MIDlet
suites. The Table 18 describes the various actions that can be performed on a suite.

Action Description
Tell-A-Friend Populates a message with the link to the application’s JAD URL

inserted into the message body, following messaging standard
behavior for pre-populated messages.

Details Displays the information about the suite. This includes MIDlet suite
name, vendor, version, number of apps in suite, flash usage, both data
and program space of the application.

Delete

Lets the user delete a suite. A confirmation is requested before the application
is deleted.

Table 18 Performed on a suite

Rules:
• If the application does not have an associated JAD URL, the Tell-A-Friend

option will not appear in the context-sensitive menu.
• If the URL plus the application name size exceed the maximum size allowed

for an SMS message, the following rules shall be applied, in this order, to
truncate the link:
o Remove application name from link, (i.e.: “GP

http://www.mot.com/games/gp.jad” shall be truncated to
“http://www.mot.com/games/gp.jad”).

o Remove path to the JAD file, keeping only server’s URL and application
name. (i.e.: “GP http://www.mot.com/games/gp.jad” shall be truncated
to “GP http:// www.mot.com”).

• If server’s URL cannot be kept, Tell-A-Friend option shall be disabled.
• J2ME applications downloaded through a PC can specify JAD URL using

new JAD attribute Mot-Midlet-URL. If this JAD attribute is present, JAM will
use the JAD URL specified by this attribute to enable the Tell-A-Friend
option.

• J2ME applications downloaded through MMS (when this functionality is
available on the phone) can specify JAD URL using new JAD attribute Mot-
Midlet-URL. If this JAD attribute is present, JAM will use the JAD URL
specified by this attribute to enable Tell-AFriend option.

•
The Figure 12 illustrates the MIDlet Manager and the context-sensitive menus:

20
Shared JAD URLs

88

Figure 12 the MIDlet Manager and the context-sensitive menus

Downloading through Browser

Rules:

• When downloading a J2ME application, the browser shall provide JAM with
the URL of the JAD file. This URL shall override the URL specified by Mot-
Midlet-URL attribute in case of conflict.

Downloading from PC (Via serial/USB)
Rules:

• When downloading an application, JAM shall use the JAD attribute Mot-
Midlet-URL if present to get the JAD URL.

20
Shared JAD URLs

89

Downloading through MMS
Rules:

• When downloading an application via MMS, JAM shall use the JAD attribute
Mot-Midlet- URL if present to get the JAD URL.

21
Get URL from Flex API

90

21
Get URL from Flex API

Overview

This feature allows accessing URL stored in FLEX by a Java application. Carriers flex the
URL, which is used for content download, into the phone just like any invisible net URL.
So, this feature would allow Java applications to read and display the URL stored in flex
for users that would like to download new levels of Game.
The existing functionality allows current Java Applications use a dedicated URL to inform
users about the location which a new level of game can be downloaded. This new
functionality allows carriers to specify the URL for content download.

Flexible URL for downloading functionality

The URL is flexed using RadioComm or using OTA provisioning. The URL will follow the
rules mentioned below:

• All URLs used shall follow the guidelines outlined in RFC1738: Uniform

Resource Locators (URL). Refer to http://www.w3.org/addressing/rfc1738.txt for
more information.

• URLs are limited to 128 characters.

This feature enables Java applications to read the URL stored at the predefined location
in flex table. The default URL may be “http://www.hellomoto.com”.

The Java Application will be able to access the flexed URL by System.getProperty
method. The key for accessing the URL is “com.mot.carrier.URL”. The method
System.getProperty will return NULL if no URL is flexed.

21
Get URL from Flex API

91

Security Policy

Only trusted applications will be granted permission to access this property.

22
Multiple Key Press

92

22
Multiple Key Press

Multi-button press support enhances the gaming experience for the user. Multi-button
press support gives the user the ability to press two (2) keys simultaneously and the
corresponding actions of both keys will occur simultaneously. An example of this action
would be the following:

• If Left + Fire were pressed at the same time, the Java object (e.g Canvas) will
receive Left Pressed + Fire Pressed. In the same way, when the 2 keys are
released, Java object (e.g. Canvas) will receive Left Released + Fire Released.

The following sets of keys will support multi-button press support on the Motorola C381p
handset. Multi-button press within each set will be supported, while multi-button press
across these sets or with other keys will not be supported.
Set 1 – Nav (Up), Nav (Down), Nav (Right, Nav (Left)
Refer to the Table 19 for gaming and keypad feature/class support for MIDP 2.0:

Feature/Class Implementation

lcdui.game package Supported

setBacklight as defined in javax.microedition.lcdui.Display Supported

setVibrator as defined in javax.microedition.lcdui.Display Supported
All constructors and inherited classes for the IllegalStateException in
java.lang

Supported

All constructors, methods, and inherited classes for the Timer class in
java.util

Supported

All the constructors, methods, and inherited classes for the TimerTask
class in java.util

Supported

All fields, constructors, methods, inherited fields and inherited methods
for the GameCanvas class in javax.microedition.lcdui.game

Supported

Map the UP_PRESSED field in
javax.microedition.lcdui.game.GameCanvas to the top position of the

Supported

22
Multiple Key Press

93

key.
Map the DOWN_PRESSED field in
javax.microedition.lcdui.GameCanvas to the bottom position of the key

Supported

Map the LEFT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the left position of the key

Supported

Map the RIGHT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the right position of the key

Supported

All methods and inherited methods for the Layer class in
javax.microedition.lcdui.game

Supported

All constructors, methods, and inherited methods for the
LayerManager class in javax.microedition.lcdui.game.Layer

Supported

All fields, constructors, methods, and inherited methods for the Sprite
Class in javax.microedition.lcdui.game
Sprite Frame height will not be allowed to exceed the height of the
view window in javax.microedition.lcdui.Layer

Supported
Any, limited by heap size
only

Sprite frame width will not be allowed to exceed the width view of the
view window in javax.microedition.lcdui.Layer
Sprite recommended size
All constructors, methods, and inherited methods for the TiledLayer
class in javax.microedition.lcdui.game

Any, limited by heap size
only
16*16 or 32*32
Supported

MIDlet Queries to keypad hardware Supported

Alpha Blending Transparency only

Table 19 Gaming and keypad feature/class

23
iTAP

94

23
iTAP

Intelligent Keypad Text Entry API
When users are using features such as SMS (short message service), or “Text
Messaging”, they can opt for a predictive text entry method from the handset. The J2ME
environment has the ability to use SMS in its API listing. The use of a predictive entry
method is a compelling feature to the MIDlet.
This API will enable a developer to access iTAP, Numeric, Symbol and Browse text entry
methods. With previous J2ME products, the only method available was the standard use
of TAP.
Predictive text entry allows a user to simply type in the letters of a word using only one
key press per letter, as apposed to the TAP method that can require as many as four or
more key presses. The use of the iTAP method can greatly decrease text-entry time. Its
use extends beyond SMS text messaging, but into other functions such as phonebook
entries.
The following J2ME text input components will support iTAP.

 javax.microedition.lcdui.TextBox

The TextBox class is a Screen that allows the user to edit and enter text.
 javax.microedition.lcdui.TextField

A TextField is an editable text component that will be placed into a Form. It is
given a piece of text that is used as the initial value.

Refer to the Table 20 for iTAP feature/class support for MIDP 2.0:

Feature/Class

Predictive text capability will be offered when the constraint is set to ANY

User will be able to change the text input method during the input process when the constraint is set to
ANY (if predictive text is available)

Multi-tap input will be offered when the constraint on the text input is set to EMAILADDR, PASSWORD, or
URL

Table 20 ITAP feature/class

24
LCDUI

95

24
LCDUI

LCDUI API
The Table 21 lists the specific interfaces supported by Motorola implementation:

Interface Description
Choice Choice defines an API for user interface components implementing

selection from a predefined number of choices.

CommandListener This interface is used by applications which need to receive high-level
events from implementation

ItemCommandListener A listener type for receiving notification of commands that have been
invoked on Item286 objects

ItemStateListener This interface is used by applications which need to receive events that
indicate changes in the internal state of the interactive items within a
Form231 screen.

Table 21 Interfaces supported by Motorola implementation

The Table 22 lists the specific classes supported by Motorola implementation:

Classes Description
Alert An alert is a screen that shows data to the user and waits for a certain

period of time before proceeding to the next Displayable.

AlertType The AlertType provides an indication of the nature of alerts.

Canvas The Canvas class is a base class for writing applications that need to
handle low-level events and to issue graphics calls for drawing to the
display.

ChoiceGroup A ChoiceGroup is a group of selectable elements intended to be
placed within a Form.

Command The Command class is a construct that encapsulates the semantic
information of an action.

CustomItem A CustemItem is customizable by sub classing to introduce new

24
LCDUI

96

visual and interactive elements into Forms.

DateField A DateField is an editable component for presenting date and time
(calendar) information that will be placed into a Form.

Display Display represents the manager of the display and input devices of
the system.

Displayable An object that has the capability of being placed on the display.

Font The Font class represents fonts and font metrics.

Form A Form is a Screen that contains an arbitrary mixture of items:
images, read-only text fields, editable text fields, editable date fields,
gauges, choice groups, and custom items.

Gauge Implements a graphical display, such as a bar graph of an integer value.

Graphics Provides simple 2D geometric rendering capability.

Image The Image class is used to hold graphical image data.

ImageItem An item that can contain an image.

Item A superclass for components that car be added to a Form231.

List A Screen containing a list of choices.

Screen The common superclass of all high-level user interface classes.

Spacer A blank, non-interactive item that has a settable minimum size.

StringItem An item that can contain a string.

TextBox The TextBox class is a Screen that allows the user to enter and edit
data.

TextField A TextField is an editable text component that will be placed into a
Form.

Ticker Implements a “ticker-tape”, a piece of text that runs continuously across
the display.

Table 22 Specific classes supported by Motorola implementation

Refer to Table 23 for LCDUI feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, constructors, methods, and inherited methods for the Alert
class in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, and inherited methods for the
AlertType class in the javax.microedition.lcdui package

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of ALARM

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of ERROR

Supported

24
LCDUI

97

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of WARNING

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of CONFIRMATION

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of INFO

Supported

All fields, constructors, methods, and inherited methods for the
Canvas Class in the javax.microedition.lcdui. package

Supported

Status indicators out of full-screen mode will consume a portion of the
display

Supported

UP field in javax.microedition.lcdui.Canvas to the top position of the
key

Supported

DOWN field in javax.microedition.lcdui.Canvas to the bottom position
of the key

Supported

LEFT field in javax.microedition.lcdui.Canvas to the left position of the
key

Supported

RIGHT field in javax.microedition.lcdui.Canvas to the right position of
the key

Supported

All fields and methods for the Choice interface in the
javax.microedition.lcdui package

Supported

Truncate an image in a Choice object if it exceeds the capacity of the
device display

Supported

Truncation of very long elements will not occur in a Choice object Text in forms is wrapped and
scrolled

Will display a portion of long elements to display and provide a means
for the user to view all of the parts of the element

Supported

Truncation in elements w/line breaks will not occur in a Choice object Supported

Portion of line break elements to display and provide a means for the
user to view all parts of the element

Supported

All constructors, methods, inherited fields, and inherited methods for
the ChoiceGroup class in the javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the Command
class in the javax.microedition.lcdui package

Supported

All methods for the CommandListener interface in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the CustomItem abstract class in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the DateField class in the javax.microedition.lcdui

Supported

24
LCDUI

98

package

All fields, methods, and inherited methods for the Display class in the
javax.microedition.lcdui package

Supported

Maximum colors for the numColors() method in
javax.microedition.lcdui.Display

64K colors
supported

All methods and inherited methods for the Displayable class in the
javax.microedition.lcdui package

Supported

Adding commands to soft buttons before placing it in a menu for the
addCommand() method in javax.microedition.lcdui.Displayable

Supported

All fields, methods, and inherited methods for the Font class in the
javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the FORM class
in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the Gauge class in the javax.microedition.lcdui package

Supported

All fields, methods, and inherited methods for the Graphics class in the
javax.microedition.lcdui package

Supported

DOTTED stroke style Supported

SOLID stroke style Supported

All methods and inherited methods for the Image class in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the ImageItem class in the javax.microedition.lcdui
package

Supported

All fields, methods, and inherited methods for the Item class in the
javax.microedition.lcdui package

Supported

Label field Supported

All methods for the ItemCommandListener interface in the
javax.microedition.lcdui package

Supported

All methods ItemStateListener interface in the javax.microedition.lcdui
package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the List class in the javax.microedition.lcdui package

Supported

All constructors, methods, inherited fields, and inherited methods for
the Spacer class in the javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the StringItem
class in the javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the TextBox class
in the javax.microedition.lcdui package

Supported

24
LCDUI

99

All fields, constructors, methods, inherited fields, and inherited
methods for the TextField class in the javax.microedition.lcdui package

Supported

Visual indication with UNEDITABLE field set will be provided Supported

All constructors, methods, and inherited methods for the Ticker class
in the javax.microedition.lcdui package

Supported

OEM Lights API providing control to the lights present on the handset Supported, Fun Lights API

All fields, constructors, methods, inherited fields, and inherited
methods for the TextField class in the havax.microedition.lcdui
package

Supported

Table 23 LCDUI feature/class

25
Auto Launch of Midlets

100

25
Auto Launch of Midlets

The Java framework on the device must provide a mechanism to automatically launch
midlets based on specific message. The message may be generated by several clients
including a push message coming from the network. Once the KVM received the
message, it takes the appropriate action of launching the midlet the message is intended
for.

Scenarios involved in launching midlet
There are three possible scenarios when KVM has to pass the message to a midlet.

• The midlet is currently actively running: In this case, the KVM simply passes the
message to the midlet. The client originating the request is notified that the midlet
is already running.

• No midlets are active: In this case, the KVM must launch the midlet the message
is intended for. Upon successfully starting, KVM should inform the client that the
launch has been successful.

• The KVM is currently busy either running another midlet or installing another
midlet. Since the KVM will support only one midlet at a time, the client originating
the message should be notified that KVM is currently running application. The
client then has the option of having KVM terminate the current midlet and
launching another one.

NOTE: If the installation is terminated, appropriate cleanup actions should be performed.
The midlets that were being installed should be left at an uninstalled state.

26
Background Applications

101

26
Background Applications

Background Attribute
A Motorola specific JAD attribute called background exists. MIDlets with JAD file
containing Background = True can run in the background mode.

Background Java Application Lifecycle
A MIDlet with background attributes will continue running when not in focus (in the
background mode) or when the flip is closed if the MIDlet is flip insensitive. MIDlets are
able to accept incoming data if they are running in the background.
For example:

• The phonebook application can automatically synchronize new entries when in
background mode.

Background MIDlet
When a MIDlet with background attributes is running, the user can press the END (red)
key to initiate the following options shown in Figure 13:

26
Background Applications

102

 Figure 13 Java service menu for a MIDlet with background attributes

Pressing the END key will force the handset to display a Java service menu with the
options listed in Figure 13.
If the user selects to run the application in the background, the MIDlet will run in the
background without focus. A Java icon will be displayed in the status bar to indicate to the
user that a MIDlet is currently suspended or running in the background. When a MIDlet is
suspended or runs in the background, all multimedia services will be blocked.
When in the Java Service Menu, the following apply when selected:

• Suspend – suspends the background MIDlet.

• Resume – brings the background MIDlet to the foreground and multimedia
resources will be available for the MIDlet.

• End – destroys the background MIDlet.

• Run in background – lets the MIDlet continue to run in the background. Note: A
Java icon will be displayed in the status bar.

Flip Behaviors
A Motorola specific JAD attribute called FlipInsensitive exists. When a MIDlet is running
and the flip is closed by the user, the MIDlet will follow one of the following behaviors:

• Suspend – if the FlipInsensitive attribute is = false.

• Continue running – if the FlipInsensitive attribute is = true. In this case, audio
resources will be available for the MIDlet.

27
Java System Menu

103

27
Java System Menu

The Java System menu allows the user to see what version of MIDP and CLDC is being
used in the phone. It also shows the user the free data space available, program space
available, and the heap size being used. The Table 24 describes each function in detail.

Action Description

CLDC Version This displays the CLDC version that is being used in the MS.

MIDP Version This displays the MIDP version that is being used in the MS.

Data Space This displays the amount of free memory available for data used by the
applications, i.e. phone book entries, game high scores.

Program Space This displays the amount of free memory available for applications.

Heap Size This is the amount of runtime memory available in the phone.

Table 24 Function Describes

MIDlet Manager Menu
The MIDlet Manager menu lets the user perform certain actions on the selected MIDlet suites. The
table 25 describes the various actions that can be performed on a suite.

Action Description
Details Displays the information about the suite. This includes MIDlet suite

name, vendor, version, number of apps in suite, flash usage, both data
and program space of the application.

Details Lets the user delete a suite. A confirmation is requested before the
application is deleted.

Table 25 Midlet Manager Menu Description

27
Java System Menu

104

View MIDlet Suite Information
To view information on any MIDlet suite, the user brings up the MIDlet Manager menu.
The user highlights the Details option and SELECTs it to view the information. The
information presented includes MIDlet suite name, vendor, version, number of apps in
suite, and flash usage, both data and program space. The figure 14 illustrates this:

Figure 14 Viewing MIDlet Suite Information

Rules:
• The size information is the size taken up on the device. This size may

be different from the JAR file size due to ROMizing.

• The details of the applications are shown in a Synergy Text field. For
future releases, the title of the text field is the application name,
however, for the current release it will show in the Figure 14. The
information shown in the text fields are MIDlet suite name, vendor,
version, number of apps in suite, data space, and program space. The
name, vendor, version, number of apps in the suite will be shown on a
separate line in the text field. The data space and program space will
each use two lines to show the title on one line and the value on the
next line.

Deleting MIDlet Suites
To delete any suite, the user brings up the MIDlet manager menu for the suite.The user

27
Java System Menu

105

highlights the Delete option and SELECTs it to delete the suite. This brings up a
confirmation
dialog. Upon confirmation by the user, the suite and all persistent data is deleted from the
device. The figure 15 illustrates this.

Figure 15 Deleting MIDlet Suites

Rules:
• If user selects YES, the suite, including all applications contained in the suite,

and all persistent data must be deleted from the device and the menu item must
be removed. The user is returned back to Main Menu.

• The text from the MIDlet’s JAD Attribute ‘MIDlet-Delete-Confirm’ MUST be
displayed. The text may be truncated to 70 characters. Also note that this text
cannot be translated. If the ‘MIDlet-Delete-Confirm’ attribute is not present, this
information will not be displayed.

• IF the user selects Cancel, the delete operation is not performed and the user is
returned back to the previous screen.

• If the user selects OK, the confirmation dialog is displayed.

27
Java System Menu

106

• If the application name is longer than 12 characters, it must be truncated. The
“Delete Entire Suite and All data?” text should be displayed after the above
information.

• While the MIDlet suit is being deleted, a dialog box will display, “Please Wait...”
The dialog box will remain on the display until the application has been
completely delete

• After deleting an application, a transient dialog will be displayed indicating to the
user that the file and all its contents have been deleted. The transient delete
animation dialog is displayed with the text, “Deleted:”, Newline, and the
application name.

• The pre-installed applications will be dependent on handset type, carrier and
region requirements.

• Pre-Installed MIDlet Suites will contain a JAD attribute called MIDlet-PreInstalled.

• If MIDlet-PreInstalled: TRUE and the Flex bit is set, then the MIDlet can not be
deleted by the user

28
Invisible Net for J2ME

107

28
Invisible Net for J2ME

Introduction

This chapter presents the Invisible Net for J2ME feature for multi line graphics displays.
By making it quicker and easier for the user to launch the browser for the embedded
applications, the carrier can experience ARPU bumps due to the additional Internet traffic.
Other benefits to customers and carriers include the simplification of the UI, elimination of
the “hunt and peck” scenario when trying to access URLs across applications, and
additional value-add in content/service delivery.

J2ME Invisible NET Options

J2ME applications can embed “Invisible Net” URLs within the J2ME components or within
J2ME context-sensitive menus, such as Games & Apps, and Java Tools, as listed in the
following sections.

J2ME Component Options

A product utilizing the Motorola J2ME solution should be able to use the “Invisible Net”
functionality to embed URLs within the following J2ME menus:

• Games and Apps menu

• Java Tools menu

• HTTP downloads operation for J2ME.
Rules:

• The associated right softkey when a URL will be launched shall be GO TO.

28
Invisible Net for J2ME

108

• URLs associated with J2ME menus or components will be launched using one of
the following methods:

o HTTP download with the following exceptions:
 Launch shall be directly to the URL associated with the J2ME

menu item.
 If flexed on, retrieve the URL from the HTTP client.
 If flexed off, retrieve the URL through the browser.
 Title can be flexible, and URL can be flexible.

o If existing Web Sessions is used, launch shall be using the information
from the default Browser session:

 Instead, launch shall be directly to the URL associated with the
J2ME menu item.

o For future implementation, if Web Sessions Redesign has been
implemented, launch of the URL will use the following:

 Default Java Session parameters (or in the absence of a Java
Session, the default Browser application settings) and the
launch shall be directly to the URL associated with the Java
menu item.

 Default data connection parameters
 Refer to MRS 7535 - Internet Setup (Web Sessions Redesign)

for more information on application and data connection
session parameters.

o Upon exiting the active browser or HTTP session, the user shall be
returned to the Java menu from which the browser was launched from.
(Games and Apps menu or Java Tools menu).

o J2ME menu items must be approved by Technical Marketing, CxD and
Product Marketing.

o Position of the “Invisible Net” J2ME menu item(s) in the menu structure
must be approved by the appropriate representatives from the product
team, the region, the customer, CxD and Technical Marketing.

o All prompts (including menu prompts and menu list items) and URL
addresses must be accessible through the PRI interface.

o All prompts and URLs must be set with an option to either allow or not
allow access to the carriers as determined by individual regions and
customers.

o All J2ME related application menu or context-sensitive menu item
prompts must be flexible, easy to change and provision as
customization will be necessary by region and customer.

o All J2ME related application menu or context-sensitive menu item
prompts and URL addresses must be accessible through the PRI
interface.

28
Invisible Net for J2ME

109

o CxD media team will provide or approve any J2ME menu icons or
graphics.

o Rendering guidelines for J2ME menu prompt items or J2ME menu list
items with associated URLs shall be outlined in CxD NES:
SYN2_NES_058 documentation.

o The phone should be flexed to allow URLs within J2ME in one of the
following combinations:

 URLs allowed in the Games and Apps menu
 URLs allowed in the Java Tools menu only
 URLs allowed in the BOTH Games and Apps menu AND the

Java Tools menu
 URLs not allowed Games and Apps menu AND URLs not

allowed in the Java Tools menu (URLs not allowed in either
menu).

J2ME Context-Sensitive Menu Options
The J2ME application is required to embed Invisible Net prompts and URLs within the all
J2ME context-sensitive menus.

Prompt Requirements

All prompts referred to in this document must be flexible. The following rules apply:

• Position of J2ME menu list items and context-sensitive menu prompt items must
be approved by the appropriate representatives from the product team, the
region, the customer, CxD and Technical Marketing.

• All prompts (including menu list items) must be approved via the CR process
(asyn_prompts class).

MA-specific/translation information: Prompts as stated above will be flexible and may
need translation.
User manual impact: (yes/no): Yes

Hardware Requirements

Product specific restrictions may apply based on memory constraints.
Invisible Net for J2ME functionality is available only on products which have browser
capability or products which use HTTP Downloading for J2ME applications.

Interoperability Requirements

SDK requirements and Developer/Style Guide:

• The associated right softkey when a URL will be launched shall be GO TO.

28
Invisible Net for J2ME

110

• A developer may embed a URL within a context-sensitive menu.

Because the prompts and URLs in this MRS are variable and flexible and must be
approved by the product groups, regions and customers, these items must be validated
by as accepted.

Backward Compatibility/Flexing

All J2ME menu or context-sensitive menu item prompts must be flexible, easy to change
and provision as customization will be necessary by region and customer.
All J2ME menu or context-sensitive menu item prompts and URL addresses must be
accessible through the PRI interface.
The phone shall be flexed to allow URLs within J2ME in one of the following
combinations:

• URLs allowed in the Games and Apps menu
• URLs allowed in the Java Tools menu only
• URLs allowed in the BOTH Games and Apps menu AND the Java Tools menu
• URLs not allowed Games and Apps menu A

29
Download Midlet through PC

111

29
Download Midlet through PC

To download MIDlets through a PC, make a connection to a PC through IrDA, Bluetooth,
USB or Serial Cable (RS 232). This content considers only the RS232 connection using
JAL.

Establishing Connection
When a successful connection to a PC is made, an application can be downloaded. The
MS should display that a connection has been made. Only one connection will be active
at a time.

30
Operator Apps Provisioning

112

30
Operator Apps Provisioning

The application provisioning feature uses the existing functionality to deliver a trigger pull
of Java applications. The following steps are performed to achieve this functionality.

• The operator sets up a URL with the applications that they want to be
pushed. Let us assume that this is snake.jar. The operator sets up a WML
page with the reference pointing to snake.jad, the corresponding application
descriptor file for snake.jar.

• Operator sends an SMSmessage to all the mobiles with the URL for
snake.wml embedded inside.

• When the Synergy message center receives the message, it is treated as a
browser message and the go to browser option is available.

• The user selects the Go To option to launch a browser that goes to theURL
embedded inside the message.

• The browser loads the page setup by the operator. At this point, browse
through the page and select the midlets to be downloaded. The download
process is described in the chapter 32 download through the browser.

31
MIDP 2.0 Security Model

113

31
MIDP 2.0 Security Model

The following sections describe the MIDP 2.0 Default Security Model for the Motorola
C381p handset. The chapter discusses the following topics:

• Untrusted MIDlet suites and domains

• Trusted MIDlet suites and domains

• Permissions

• Certificates
For a detailed MIDP 2.0 Security process diagram, refer to the Motocoder website
(http://www.motocoder.com).

Refer to the Table 26 for the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the javax.microedition.pki
package

Supported

All fields, constructors, methods, and inherited methods for the
CertificateException class in the javax.microedition.pki package

Supported

MIDlet-Certificate attribute in the JAD Supported

A MIDlet suite will be authenticated as stated in Trusted MIDletSuites
using X.509 of MIDP 2.0 minus all root certificates processes and
references

Supported

Verification of RSA-1 signatures with a SHA-1 message digest
algorithm

Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 attribute Supported

All methods for the Certificate interface in the javax.microedition.pki
package

Supported

All fields, constructors, methods, and inherited methods for the
CertificateException class in the javax.microedition.pki package

Supported

Will preload at least one self authorizing Certificates Supported

All constructors, methods, and inherited methods for the Supported

31
MIDP 2.0 Security Model

114

MIDletStateChangeException class in the javax.microedition.midlet
package

All constructors and inherited methods for the
MIDletStateChangeException class in the javax.microedition.midlet
package

Supported

Table 26 Security feature/class support for MIDP 2.0

Please note the domain configuration is selected upon agreement with the operator.

Untrusted MIDlet Suites
A MIDlet suite is untrusted when the origin or integrity of the JAR file cannot be trusted by
the device.
The following are conditions of untrusted MIDlet suites:

• If errors occur in the process of verifying if a MIDlet suite is trusted, then the
MIDlet suite will be rejected.

• Untrusted MIDlet suites will execute in the untrusted domain where access to
protected APIs or functions is not allowed or allowed with explicit confirmation
from the user.

Untrusted Domain
Any MIDlet suites that are unsigned will belong to the untrusted domain. Untrusted
domains handsets will allow, without explicit confirmation, untrusted MIDlet suites access
to the following APIs:

• javax.microedition.rms – RMS APIs

• javax.microedition.midlet – MIDlet Lifecycle APIs

• javax.microedition.lcdui – User Interface APIs

• javax.microedition.lcdui.game – Gaming APIs

• javax.microedition.media – Multimedia APIs for sound playback

• javax.microedition.media.control – Multimedia APIs for sound
playback

The untrusted domain will allow, with explicit user confirmation, untrusted MIDlet suites
access to the following protected APIs or functions:

• javax.microedition.io.HttpConnection – HTTP protocol
• javax.microedition.io.HttpsConnection – HTTPS protocol

31
MIDP 2.0 Security Model

115

Trusted MIDlet Suites
Trusted MIDlet suites are MIDlet suites in which the integrity of the JAR file can be
authenticated and trusted by the device, and bound to a protection domain. The Motorola
C381p will use x.509PKI for signing and verifying trusted MIDlet suites.
Security for trusted MIDlet suites will utilize protection domains. Protection domains define
permissions that will be granted to the MIDlet suite in that particular domain. A MIDlet
suite will belong to one protection domain and its defined permissible actions. For
implementation on the Motorola C381p, the following protection domains are supported:

• Manufacturer

• Untrusted – all MIDlet suites that are unsigned will belong to this domain.
Permissions within the above domains will authorize access to the protected APIs or
functions. These domains will consist of a set of “Allowed” and “User” permissions that will
be granted to the MIDlet suite.

Permission Types concerning the Handset
A protection domain will consist of a set of permissions. Each permission will be “Allowed”
or “User”, not both. The following is the description of these sets of permissions as they
relate to the handset:

• “Allowed” (Full Access) permissions are any permissions that explicitly allow
access to a given protected API or function from a protected domain. Allowed
permissions will not require any user interaction.

• “User” permissions are any permissions that require a prompt to be given to the
user and explicit user confirmation in order to allow the MIDlet suite access to the
protected API or function.

User Permission Interaction Mode
User permission for the Motorola C381p handsets is designed to allow the user the ability
to either deny or grant access to the protected API or function using the following
interaction modes (bolded term(s) is prompt displayed to the user):

• blanket – grants access to the protected API or function every time it is required
by the MIDlet suite until the MIDlet suite is uninstalled or the permission is
changed by the user. (Never Ask)

• session – grants access to the protected API or function every time it is required
by the MIDlet suite until the MIDlet suite is terminated. This mode will prompt the
user on or before the final invocation of the protected API or function. (Ask
Once Per App Running)

• oneshot – will prompt the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

31
MIDP 2.0 Security Model

116

• No – will not allow the MIDlet suite access to the requested API or function that is
protected. (No Access)

The prompt No, Ask Later will be displayed during runtime dialogs and will enable the
user to not allow the protected function to be accessed this instance, but to ask the user
again the next time the protected function is called.
User permission interaction modes will be determined by the security policy and device
implementation. User permission will have a default interaction mode and a set of other
available interaction modes. The user should be presented with a choice of available
interaction modes, including the ability to deny access to the protected API or function.
The user will make their decision based on the user-friendly description of the requested
permissions provided for them.
The Permissions menu allows the user to configure permission settings for each MIDlet
when the VM is not running. This menu is synchronized with available run-time options.

Implementation based on Recommended Security
Policy

The required trust model, the supported domain, and their corresponding structure will be
contained in the default security policy for Motorola’s implementation for MIDP 2.0.
Permissions will be defined for MIDlets relating to their domain. User permission types, as
well as user prompts and notifications, will also be defined.

Trusted 3rd Party Domain
A trusted third party protection domain root certificate is used to verify third party MIDlet
suites. These root certificates will be mapped to a location on the handset that cannot be
modified by the user.
The Table 27 shows the specific wording to be used in the first line of the above prompt:

Protected Functionality Top Line of Prompt
Data network “Send Data?”

Data network (server mode) “Receive Data?”

Comm “Connect?”

Push “Auto Start-Up?”

SMS “Use SMS?”

SMS send “Send SMS?”

SMS receive “Receive SMS?”

Access phonebook “Use Phonebook?”

31
MIDP 2.0 Security Model

117

Dial a call “Make Phone Call?”

CBS “Use CBS?”

Receive CBS “Receive CBS?”

Table 27 Protected Functionality fot top line of prompt

The radio button messages will appear as follows and mapped to the permission types as
shown in the Table 28:

MIDP 2.0 Permission Types Dialog Prompts
Blanket “Always yes. Do not ask again.”

Session “Yes, this is running.”

Oneshot “Only this operation. Ask me again.”

“Not this operation. Ask me again.”

“Not this running.”

No access

“No, always denied. Do not ask again.”

Table 28 Dialog Prompts for MIDP 2.0 Permission Types

The above runtime dialog prompts will not be displayed when the protected function is set
to “Allowed” (or full access), or if that permission type is an option for that protected
function according to the security policy table flexed in the handset.

Trusted MIDlet Suites Using x.509 PKI
Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset will be able to
verify the signer of the MIDlet suite and bind it to a protection domain which will allow the
MIDlet suite access to the protected API or function. Once the MIDlet suite is bound to a
protection domain, it will use the permission defined in the protection domain to grant the
MIDlet suite access to the defined protected APIs or functions.
The MIDlet suite is protected by signing the JAR file. The signature and certificates are
added to the application descriptor (JAD) as attributes and will be used by the handset to
verify the signature. Authentication is complete when the handset uses the root certificate
(found on the handset) to bind the MIDlet suite to a protection domain (found on the
handset).

Signing a MIDlet Suite
The default security model involves the MIDlet suite, the signer, and public key
certificates. A set of root certificates are used to verify certificates generated by the signer.
Specially designed certificates for code signing can be obtained from the manufacturer,

31
MIDP 2.0 Security Model

118

operator, or certificate authority. Only root certificates stored on the handset will be
supported by the Motorola C381p handset.

Signer of MIDlet Suites
The signer of a MIDlet suite can be the developer or an outside party that is responsible
for distributing, supporting, or the billing of the MIDlet suite. The signer will have a public
key infrastructure and the certificate will be validated to one of the protection domain root
certificates on the handset. The public key is used to verify the signature of JAR on the
MIDlet suite, while the public key is provided as a x.509 certificate included in the
application descriptor (JAD).

MIDlet Attributes Used in Signing MIDlet Suites
Attributes defined within the manifest of the JAR are protected by the signature. Attributes
defined within the JAD are not protected or secured. Attributes that appear in the manifest
(JAR file) will not be overridden by a different value in the JAD for all trusted MIDlets. If a
MIDlet suite is to be trusted, the value in the JAD will equal the value of the corresponding
attribute in the manifest (JAR file), if not, the MIDlet suite will not be installed.
The attributes MIDlet-Permissions (-Opt) are ignored for unsigned MIDlet suites. The
untrusted domain policy is consistently applied to the untrusted applications. It is legal for
these attributes to exist only in JAD, only in the manifest, or in both locations. If these
attributes are in both the JAD and the manifest, they will be identical. If the permissions
requested in the JAD are different than those requested in the manifest, the installation
must be rejected.
Methods:

1. MIDlet.getAppProperty will return the attribute value from the manifest (JAR) if
one id defined. If an attribute value is not defined, the attribute value will return
from the application descriptor (JAD) if present.

Creating the Signing Certificate
The signer of the certificate will be made aware of the authorization policy for the handset and contact the
appropriate certificate authority. The signer can then send its distinguished name (DN) and public key in the
form of a certificate request to the certificate authority used by the handset. The CA will create a x.509
(version 3) certificate and return to the signer. If multiple CAs are used, all signer certificates in the JAD will
have the same public key.

31
MIDP 2.0 Security Model

119

Inserting Certificates into JAD
When inserting a certificate into a JAD, the certificate path includes the signer certificate
and any necessary certificates while omitting the root certificate. Root certificates will be
found on the device only.
Each certificate is encoded using base 64 without line breaks, and inserted into the
application descriptor as outlined below per MIDP 2.0.
MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>

Note the following:

<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater than
the previous number for additional certification paths. This defines the sequence in which
the certificates are tested to see if the corresponding root certificate is on the device.
<m>:= a number equal to 1 for the signer’s certificate in a certification path or 1 greater
than the previous number for any subsequent intermediate certificates.

Creating the RSA SHA-1 signature of the JAR
The signature of the JAR is created with the signer’s private key according to the EMSA-
PKCS1 –v1_5 encoding method of PKCS #1 version 2.0 standard from RFC 2437. The
signature is base64 encoded and formatted as a single MIDlet-Jar-RSA-SHA1 attribute
without line breaks and inserted into the JAD.
It will be noted that the signer of the MIDlet suite is responsible to its protection domain
root certificate owner for protecting the domain’s APIs and protected functions; therefore,
the signer will check the MIDlet suite before signing it. Protection domain root certificate
owners can delegate signing MIDlet suites to a third party and in some instances, the
author of the MIDlet.

Authenticating a MIDlet Suite
When a MIDlet suite is downloaded, the handset will check the JAD attribute MIDlet-Jar-
RSA-SHA1. If this attribute is present, the JAR will be authenticated by verifying the
signer certificates and JAR signature as described. MIDlet suites with application
descriptors that do not have the attributes previously stated will be installed and invoked
as untrusted. For additional information, refer to the MIDP 2.0 specification.

Verifying the Signer Certificate
The signer certificate will be found in the application descriptor of the MIDlet suite. The
process for verifying a Signer Certificate is outlined in the steps below:

1. Get the certification path for the signer certificate from the JAD attributes MIDlet-
Certificate-1<m>, where <m> starts a 1 and is incremented by 1 until there is no

31
MIDP 2.0 Security Model

120

attribute with this name. The value of each attribute is abase64 encoded
certificate that will need to be decoded and parsed.

2. Validate the certification path using the basic validation process as described in
RFC2459 using the protection domains as the source of the protection domain
root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that contains the
protection domain root certificate that validated the first chain from signer to root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> with <n> being greater than 1 are present

and full certification path could not be established after verifying MIDlet-
Certificate-<1>-<m> certificates, then repeat step 1 through 3 for the value <n>
greater by 1 than the previous value.

The Table 29 describes actions performed upon completion of signer certificate
verification:

Result Action
Attempted to validate <n> paths. No public keys of the
issuer for the certificate can be found, or none of the
certificate paths can be validated.

Authentication fails, JAR installation is not
allowed.

More than one full certification path is established and
validated.

Implementation proceeds with the signature
verification using the first successfully verified
certificate path for authentication and
authorization.

Only one certification path established and validated. Implementation proceeds with the signature
verification.

Table 29 Actions performed upon completion of signer certificate verification

Verifying the MIDlet Suite JAR
The following are the steps taken to verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature, and refer

to RFC 2437 for more detail.
4. Use the signer’s public key, signature, and SHA-1 digest of JAR to verify the

signature. If the signature verification fails, reject the JAD and MIDlet suite. The
MIDlet suite will not be installed or allow MIDlets from the MIDlet suite to be
invoked as shown in the Table 30.

5. Once the certificate, signature, and JAR have been verified, the MIDlet suite is
known to be trusted and will be installed (authentication process will be
performed during installation).

31
MIDP 2.0 Security Model

121

The Table 30 is a summary of MIDlet suite verification including dialog prompts:

Initial State Verification Result

JAD not present, JAR downloaded

Authentication can not be performed, will install JAR. MIDlet suite is
treated as untrusted. The following error prompt will be shown,
“Application installed, but may have limited functionality.”

JAD present but is JAR is
unsigned

Authentication can not be performed, will install JAR. MIDlet suite is
treated as untrusted. The following error prompt will be shown,
“Application installed, but may have limited functionality.”

JAR signed but no root certificate
present in the keystore to validate
the certificate chain

Authentication can not be performed. JAR installation will not be
allowed. The following error prompt will be shown, “Root certificate
missing. Application not installed.”

JAR signed, a certificate on the
path is expired

Authentication can not be completed. JAR installation will not be
allowed. The following error prompt will be shown, “Expired
Certificate. Application not installed.”

JAR signed, a certificate rejected
for reasons other than expiration

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Authentication Error. Application not
installed.”

JAR signed, certificate path
validated but signature verification
fails

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Authentication Error. Application not
installed.”

Parsing of security attributes in
JAD fails

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Failed Invalid File.”

JAR signed, certificate path
validated, signature verified

JAR will be installed. The following prompt will be shown, “Installed.”

Table 30 MIDlet suite verification

Appendix A:
Audio Mix Table

122

Appendix A:
Audio Mix Table

 Single
tons

Tone-
Sequence

Wav MP3 AMR MIDI Video
w/audio

Video
w/o
audio

Single
tone

No No No No No Yes No Yes

Tone-
sequence

No No No No No Yes No Yes

WAV No No Partly
yes

No No Yes No Yes

MP3 No No No No No Yes No Yes

AMR No No No No No Yes No No

MIDI Yes Yes Yes Yes Yes No No Yes

Video
w/audio

No No No No No No No No

Video
w/o audio

Yes Yes Yes Yes No Yes No no

Table 31 Audio Mix

NOTE: If two wave plays have the same frequency, they can mix

Appendix B:
Key Mapping

123

Appendix B:
Key Mapping

Key Mapping for the C381p
The table below identifies key names and corresponding Java assignments. All other keys
are not processed by Java.

Key Assignment
0 NUM0
1 NUM1
2 NUM2
3 NUM3
4 NUM4
5 SELECT, followed by NUM5
6 NUM6
7 NUM7
8 NUM8
9 NUM9
STAR (*) ASTERISK
POUND (#) POUND
JOYSTICK LEFT LEFT
JOYSTICK RIGHT RIGHT
JOYSTICK UP UP
JOYSTICK DOWN DOWN
SCROLL UP UP
SCROLL DOWN DOWN
SOFTKEY 1 SOFT1
SOFTKEY 2 SOFT2
MENU SOFT3 (MENU)
SEND SELECT

Also, call placed if pressed on lcdui.TextField or lcdui.TextBox
with PHONENUMBER constraint set.

CENTER SELECT SELECT
END Handled according to Motorola specification:

Pause/End/Resume/Background menu invoked.

Appendix B:
Key Mapping

124

The following table identifies keys that will be assigned to game actions defined in
GameCanvas class of MIDP 2.0.

Action First Set Second Set Third Set Non-simultaneous
keys

Left Nav (LEFT) 4

Right Nav (RIGHT) 6

Up Nav (UP) 2

Down Nav (DOWN) 8

Game_A 0

Game_B 1

Game_C 3

Game_D 5

Game_Fire 9 7 #

Appendix C:
Memory Management Calculation

125

Appendix C:
Memory Management

Calculation

Available Memory
The available memory on the Motorola C381p handset is the following:

• Shared memory for MIDlet storage and removable memory

• 800k Bytes Heap size

Appendix D:
FAQ

126

Appendix D:
FAQ

Online FAQ
The MOTOCODER developer program is online and able to provide access to Frequently
Asked Questions around enabling technologies on Motorola products.
Access to dynamic content based on questions from the Motorola J2ME developer
community is available at the URL listed below.
http://www.motocoder.com

Appendix E:
HTTP Range

127

Appendix E:
HTTP Range

Graphic Description
The following is a graphic description of HTTP Range:

Figure 16 Description of HTTP Range

Appendix F:
Spec Sheet

128

Appendix F:
Spec Sheet

C381p Spec Sheet
Listed below is the spec sheet for the Motorola C381p handset. The spec sheet contains information
regarding the following areas:

• Technical Specifications

• Key Features

• J2ME Information

• Motorola Developer Information

• Tools

• Other Related Information

Appendix F:
Spec Sheet

129

 Motorola C381p
Developer Reference Sheet

Band/Frequency GSM 850/900/1800/1900 GPRS
Region Global
Technology WAP 2.0, J2ME, SMS, EMS,

MMS, AOL/OICQ IM
Connectivity Mini SB
Dimensions 83.5 x 44 x 22.2
Weight 97 g
Display Internal: 128 x 128
Operating System Motorola
Chipset i250S1

• Tri band
• Stylish design with soft touch paint
• 1.8 MB of user memory
• Large, active color display (128 x 128)
• Games (embedded and downloadable)
• PIM functionality with Picture Caller ID
• Downloadable themes (ringers, images,
sounds)
• High quality ring tones, MP3, and MIDI
supported
• Voice memo
• 22 KHz polyphonic speaker with 24 chord
support
• WAP 2.0

CLDC v1.0 and MIDP v2.0/v1.0 compliant
Heap size 800 Kb
Maximum record store size 64 K
MIDlet storage/Shared User Mem 1.5 MB
Interface connections HTTP, Socket, UDP,

Serial port
Maximum number of sockets 4
Supported image formats PNG, JPEG
Double buffering Yes
Encoding schemes ISO8859_1,

ISO10646
Input methods Multitap, iTAP
Additional API’s JSR 120, JSR 135, Moto

LWT, Phonebook,
Telephone API

Audio WAV, MIDI, MP3
Video No
Photo Capture No

Motorola Developer Information:
Developer Resources at http://www.motocoder.com/

Tools:
J2ME™ SDK version v4.0
Motorola Messaging Suite v1.1

Documentation:
Creating Media for the Motorola C381p Handset

References:
J2ME™ specifications: http://www.java.sun.com/j2me
MIDP v2.0 specifications: http://www.java.sun.com/products/midp
CLDC v1.0 specifications: http://www.java.sun.com/products/cldc
WAP forum: http://www.wap.org

Purchase:
Visit the Motocoder Shop at http://www.motocoder.com/
Accessories: http://www.motorola.com/consumer

Key Features J2ME™ Information

Technical Specifications

Related Information

Appendix F:
Spec Sheet

130

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other
product or service names are the property of their respective owners. Java and all other Java-based
marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

© Motorola, Inc. 2004.

