Differentials and Drive Axles Study Notes Purposes of a Drive Axle Assembly

- To transmit power from the drive shaft to the wheels
- To turn the power flow 90-degrees on RWD cars
- To allow the wheels to turn at different speeds while cornering

RWD Live Axle Components

- Rear axle housing
 - Holds all other components and attaches to the vehicle's suspension
- Ring and pinion gears
 - Provide a final gear reduction
 - Transfer power 90-degrees to the wheels
- Differential assembly
 - Contains the differential case which attaches to the ring gear
 - Includes the side gears and differential pinion gears that allow wheels to turn at different speeds
- Axles
 - Transmit power from the differential to the wheels

Differential Operation

- The drive pinion drives the ring gear which is attached to the differential case
- When going straight ahead:
 - The differential housing and its components rotate as an assembly
 - Power is transferred equally to both wheel
- When turning a corner:
 - The wheels must travel at different speeds to prevent tire scrubbing
 - Differential pinion gears "walk" around slower side gear and cause other side gear to turn faster
 - The percentage of speed that is removed from one wheel is given to the other

Types of Axle Housings

- Integral carrier type
 - The differential assembly is mounted in and supported by the axle housing
 - It is sometimes called a Salisbury-type
- Removable carrier type
 - The differential assembly can be removed from the axle housing as a unit
 - It is sometimes called a pumpkin-type

Spiral Bevel Gears

- The centerline of the drive pinion intersects the centerline of the ring gear
- They are usually used in heavy-duty truck applications
- They are usually noisier than hypoid gears

Hypoid Gears

- The centerline of the drive pinion gear intersects the ring gear at a point lower than the centerline
- They are commonly used in cars and light- duty trucks
- Their design allows for a lower vehicle height and more passenger room inside the vehicle

Gear Ratios

- The overall gear ratio is equal to the ratio of the ring and pinion gears multiplied by the ratio of the gear the transmission is in
- Numerically low gears are said to be "high"
- Numerically high gears are said to be "low"
- Gear ratios are usually selected to provide the best combination of performance and economy

Calculating Overall Gear Ratios

If the transmission gear ratio is: 1.5:1
And the final drive gear ratio is: 3:1
The total final drive ratio is: 4.5:1

 $1.5 \times 3 = 4.5$

3 Ways to Determine Final Drive Ratio

- Using the vehicle service manual, decipher the code on the tag attached to or stamped on the axle housing
- Compare the number of revolutions of the drive wheels with those of the drive shaft
- Count the number of teeth on the drive pinion gear and the ring gear

Gearset Classifications

- Nonhunting gearset
 - Each tooth of the pinion gear will come in contact with the same teeth on the ring gear each revolution
 - The gearset must be assembled with its index marks aligned
 - An example ratio is 3.0:1
- Partial nonhunting gearset
 - Any one tooth of the pinion gear will come in contact with some of the teeth on the ring gear each revolution
 - The gearset must be assembled with its index marks aligned
 - An example ratio is 3.5:1

Gearset Classifications (cont)

- Hunting gearset
 - Any given tooth on the pinion gear contacts all of the teeth on the ring gear before
 it meets the same tooth again
 - The gearset does not have to be indexed
 - An example ratio is 3.73:1

Pinion Mounting Designs

- Straddle-mounted pinion
 - It has two opposing tapered-roller bearings with a spacer between them
 - It also has a straight-roller bearing supporting it
- Overhung-mounted pinion
 - It only has two opposing tapered-roller bearings

Methods Used to Set Pinion Bearing Preload

- Collapsible spacer method
 - The pinion nut is tightened until the spacer collapses and applies a specific preload to the bearings
- Non-collapsible spacer method
 - Uses selective shims to set the proper preload

Differential Case Adjustments

- The differential case can be adjusted side to side to provide proper backlash and side bearing preload
- Some designs use threaded bearing adjusters
- Some designs use selective shims and spacers for adjustments

Transaxle Final Drive Features

- The differential operates basically the same as in a RWD axle
- There is no 90-degree change in direction
- The drive pinion is connected to the transmission output shaft
- The ring gear is attached to the differential case

Final Drive Assembly Types

- Helical
 - Requires the centerline of the pinion gear to be aligned with the centerline of the ring gear
- Planetary
 - Allows for a very compact transaxle design
- Hypoid
 - Is quieter and stronger than other designs

Limited-Slip Differentials

- Provide more driving force to the wheel with traction when one wheel begins to slip
- Still allow the wheels to rotate at different speeds when turning a corner
- Are sometimes called Posi-Traction, Traction-Lok, and Posi-Units

Limited-Slip Differential Designs

- Clutch pack type
 - It uses two sets of clutches, each consisting of steel plates and friction plates
 - The steel plates are splined to the differential case and the friction plates are splined to the side gears
 - During cornering, the plates slip, allowing the wheels to turn at different speeds
- Cone-type
 - It uses two cone clutches with one cone that has frictional material on its outer surface and the other with a grooved surface on the inside
 - Cones allow wheels to turn at different speeds during cornering, while providing torque to both wheels during straight-ahead driving
- Viscous clutch-type
 - It uses steel and frictional clutch plates that rely on the resistance of high-viscosity silicone fluid for application
 - A difference in rotational speed causes the fluid to shear and allows one wheel to turn at a different speed than the other one
- Gerodisc-type
 - It uses a clutch pack and a hydraulic pump
 - The pump is driven by the left axle shaft
 - The pump's output determines how much pressure is applied to the clutch pack
 - The amount of tire slip determines the pressure delivered by the pump

Designs of Axle Bearing Support

- Full-floating axle
 - The bearings are located outside the axle housing
 - They are usually found on heavy-duty applications
- Three-quarter and semi-floating axles
 - The bearings are located inside the housing
 - This design is found on passenger cars and light trucks

Types of Axle Bearings

- Ball
 - Is designed to absorb radial and axial end thrust loads
- Straight-Roller
 - Only absorbs radial loads; the axle housing bears the end thrust
- Tapered-Roller
 - Axle end thrust can be adjusted

Independent Rear Suspension Design Features

- The differential is bolted to the chassis
- The axles are similar to FWD drive axles
- Each axle has an inner and an outer constant velocity joint

Differential Lubrication

- Hypoid gear types usually use 75W to 90W gear lube
- Limited-slip differentials use a special fluid
- Some applications require ATF
- Some transaxles use a different lubricant for the transmission and the differential

Steps in Differential and Axle Diagnosis

- 1. Talk to the customer to find out where and when the problem occurs
- 2. Road test the vehicle, listening and feeling for anything unusual
- 3. Inspect the vehicle

Questions to Ask the Customer

- Ask the customer to carefully describe the problem
- Ask when and where the problem first occurred
- Ask about the accident and service history of the vehicle

What to Do on a Road Test

- Try to operate the vehicle under the same conditions that the customer described
- Operate the vehicle under these conditions:
 - Drive
 - Coast
 - Cruise
 - Float

Noise Definitions

- "Chuckle"
 - A rattling noise that sounds like a stick in the spokes of a bicycle wheel
 - It is normally heard during coasting
 - Its frequency will change with vehicle speed
 - It is usually caused by damaged gear teeth
- "Knocking"
 - Sounds similar to chuckle, but is usually louder
 - Can occur in all driving phases
 - Is usually caused by gear tooth damage on the drive side or loose ring gear bolts
- "Clunk"
 - A metallic noise often heard when an automatic transmission is shifted into drive or reverse
 - May be heard when the throttle is applied or released
 - Is usually caused by excessive backlash somewhere in the drive line
- "Gear Noise"
 - The howling or whining of a ring gear and pinion
 - Can occur under various conditions and speeds
 - Is usually caused by an improperly set gear pattern, gear damage, or improper bearing preload

- Bearing "rumble"
 - Sounds like marbles rolling around in a container
 - Is usually caused by a faulty wheel bearing
- Bearing "whine"
 - A high-pitched, whistling noise
 - Is usually caused by faulty pinion bearings
- "Chatter"
 - Can be felt as well as heard
 - Is usually caused by excessive preload
 - On limited-slip differentials, it is caused by using the wrong type of lubricant

Some Causes of Vibrations

- Out-of-round or imbalanced tires
- Improper drive line angles
- Damaged pinion flange
- Faulty universal joint
- Bent drive pinion shaft

Common Sources of Axle Assembly Leaks

- Damaged pinion seal
- Leakage past the threads of the pinion nut
- Leakage past the carrier assembly stud nuts
- Leaking gaskets
- Housing porosity
- Defective ABS sensor O-ring

Diagnosing Limited-Slip Concerns

- 1. Locate the specification for break-away torque
- 2. With one wheel on the floor and the other one raised, use a torque wrench to check the torque required to turn the wheel
- 3. If the torque is less than specified, the differential must be checked

Fluid Level Check

- Make sure the proper fluid is being used
- The vehicle must be level
- The axle assembly must be at normal operating temperature
- The fluid level should be even with the bottom of the fill plug opening

Replacing a Pinion Seal

- 1. Remove the pinion flange
- 2. Remove the seal using a slide hammer
- 3. Lubricate the new seal before installation
- 4. Use a seal driver to install the new seal
- 5. Follow the manufacturer's recommendation for tightening the pinion flange nut

Measuring Ring Gear Runout

- 1. Mount a dial indicator on the carrier assembly
- 2. With the stem of the dial indicator on the ring gear, note the highest and lowest readings
- 3. The difference between the two readings is the ring gear runout

Before Removing Final Drive Assembly

- Check adjustments of ring and pinion gears
- Check the gear tooth pattern
- Measure the pinion bearing preload
- Measure the case bearing preload
- Measure the gear backlash

Carrier Removal and Disassembly Tips

- Always follow shop manual procedures
- Mark the alignment of the drive shaft to the pinion flange before disassembly
- Check the ring and pinion side play before removing
- Check the ring gear runout before removing
- Keep the shims and bearings in order for reference
- Never reuse the old ring gear bolts

Parts Inspection

- Clean all parts before inspection
- Check the bearings for damage or defects
- Check the gears and gear teeth for cracks, scoring, chips, or damage

Reassembly Tips

- Always clean the mounting and sealing surfaces before assembly
- Always replace ring and pinion gears in sets
- Use pilot studs to align the ring gear to the case
- Check the gears for timing marks and properly align if necessary

Checking Pinion Gear Depth

- Check the pinion gear for depth adjustment markings
- Use special depth-measuring tools
- Follow service manual instructions

Pinion Bearing Preload

- Check the pinion bearing preload using an inch-pound torque wrench
- Tightening the pinion nut crushes the collapsible spacer to set the preload
- Tighten the nut in small increments, checking preload after each phase
- Take care not to overtighten the nut

Checking Ring and Pinion Backlash

- Mount the dial indicator base firmly on the axle housing
- Place the dial indicator against the face of a ring gear tooth
- Move the ring gear back and forth and read needle movement
- Take readings at several points around the gear

Gear Tooth Pattern Nomenclature

- "Drive" The convex side of the tooth
- "Coast" The concave side of the tooth
- "Heel" The outside diameter of the ring gear
- "Toe" The inside diameter of the ring gear
- "High" The area near the top of the tooth
- "Low" The area near the bottom of the tooth

FWD Final Drive Service

- Pinion shaft adjustments are not necessary
- Ring gear and side bearing adjustments are necessary
- Adjustments are normally made with the differential case assembled and out of the transaxle
- Always follow service manual procedures

Clutch Type Limited-Slip Differential Service

- Inspect the clutch plates and side gear retainers for wear and cracks
- Refer to the shop manual to determine the proper way to measure thickness
- After assembly, check the total width of the clutch pack to determine shim thickness

Tips for Removing Axle Bearings

- Never use a torch to remove a retaining ring
- Use a drill or cold chisel to loosen a press fit ring
- Use a puller to remove a bearing from an axle housing
- Use a press to remove a tapered bearing from an axle shaft

Bearing Inspection

- Heavily spalled inner race unacceptable
- Lightly spalled inner race unacceptable
- Heavy particle indentation and light spalling unacceptable
- Light particle indentation acceptable

Summary

- The axle assembly includes the axle housing, ring and pinion gears, differential assembly, and the axles
- The two major designs of axle assemblies are the integral and the removable carrier types
- A differential allows one wheel to rotate faster than the other in a turn

- A limited-slip differential allows torque to be applied to the wheel with the most traction while still allowing the wheels to turn at different speeds while cornering
- Proper diagnosis of differential and axle problems is important
- Noise or vibration are the common symptoms of differential problems
- Differential measurements include pinion depth, pinion bearing preload, backlash, ring gear runout, and side bearing preload
- Measuring pinion bearing depth requires special tools
- A tooth contact pattern is used to determine needed differential adjustments