

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 1

 Trs8bit

Welcome to
this, the first
edition of 2008.
thanks for taking
the time to
download and read
it! Don’t forget
that the
newsletter format

is designed to produce an
‘a4’ booklet when printed.
I find that an ‘a5’ sized
booklet is much easier to
hold and read.
I hope that, once again,
I’ve managed to find
interesting items to cater
for a selection of tastes
and interests.
The model 1 does seem to
dominate but never having
owned any other trs-80 I’m
a bit in the dark with the
later model 3’s and 4’s.
If there is any subject you
wish to be featured, please
email me with suggestions
and I’ll do my best to
oblige.

I’ve noticed, on ebay, over
the last 6 to 8 weeks, 2
video genies, 3 model
100/2’s and various model
4 come up for sale. I was
surprised at how little
they fetched. One of the
genies (a model 3003) went
for just under £40. one of
the model 100 only fetched
99p and a model 4p only
managed just over £15.

Whilst rummaging through my
bit and pieces, I came
across items for both the
model 100 and the video
genie. this lead me to
discover another
interesting web site in new
Zealand. I’ve put a link to
this on trs-80.org.uk

This edition includes an
article by ken Robinson

which lists details of the
genie’s 50 way bus as
matched to the model 1’s 40
way bus. (Knutt has various
pieces of genie information
on his web site. It’s well
worth a visit if you’re
interested).

There’s a clear and
comprehensive walk-through
instruction set for
downloading models 1 and
100 using st-80 iii and
details of how to build a
null modem. Both of these
articles were originally
written by Leon Heller and
published in natgug news.

Talking of Leon, he was the
first person I came across
who sparked my interest in
the language ‘c’. If I
remember correctly, there
was a version of ‘small c’
available for the model 1,
but it was only produced
for disk systems.
On early pc’s I became
involved with the American
‘mix’ ‘c’ language. It had
a big user base in the
states with massive amounts
of freeware functions. but
As the years progressed, I
found the curly, curved and
straight brackets more and
more difficult to see (no
pun intended!!). so I moved
back to cobol, pick and as
a consequence basic.
I still think that ‘c’ is a
neat, powerful and compact
language, however, at
times, it can be a bit on
the obtuse side!

On the subject of ‘c’ I’ve
found (on one of the many
shareware cd’s I have) a
nice little ‘c’ source
program for use on
computers with only upper
case.

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 2

output code which is the
percent "%" sign.
the percent sign marks the
beginning and the end of a
print location to be
filled with string data.
between the 2 percent
signs is a given number of
spaces. These spaces
define the width of the
string field. For example,
the expression
"% %" defines a string
field of 4 positions. (the
beginning and end percent
signs count as one space
each.) when you use this
print mode, the computer
takes the operand string
supplied by you and tries
to put it into the 'print
using' field.
for example -
10 print using "% %";
"dusty"
will print - dust.
all characters that don't
fit into the 'print using'
statement are truncated.
any percent sign that is
not beginning or ending a
string field is regarded
as just another character.

You can, of course, pre-
define your print using
string to save memory (and
effort), for example -
10 a$=“% %“
20 b$=“27 letsbie avenue”
20 print using a$;b$
Will print - 27 letsbie.
this is a neat little
device for limiting the
width used by fields
within print outs or
screen displays.

And while I’m mentioning the
lack of lower case, I’ve also
included one of the most
useful lower case drivers I’ve
ever used. (it works great
with Matthew reed’s model 1
emulator, which, by the way,
has had another update. See
trs-80.org for details).
All of the one-liners and
programs for trs8bit are
either written, devised or
tested using the emulator. I’m
quite hooked on the windows
virtual cassette!

That’s about it
for now, keep in
touch.

dusty

--== o0o ==--

At the

READY>
Prompt

within level ii basic there
isn't an xor instruction
(only and, or, not). however
it is possible, according to
john Phelan, to use the
following :-

a xor b = (a or b)-(a and b)

and obtain the correct
result.

in the last edition I
mentioned the print using "!"
sign so it seems only fair to
'feature' the other string --== o0o ==--

Here’s a great one-liner for displaying characters rapidly
to the screen by Patrick boyle

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 3

trs-80 model 1/genie edge
connector cross-reference

From an original article by
Ken Robinson

The following table
shows the pin inter-
connections to obtain the
trs-80 bus from the video
genie. in the table the
symbols used either side of
the genie pin number have
the following meaning.
nn indicates an addition
to the genie bus
#nn# indicates a similarity
between the genie and the
trs-80 but not an identity.

an aculab floppy tape and an
lnw expansion board
controlling disks can be run
off an expansion bus using
the following substitutions-
pin 12 out* can be
obtained by or'ing genie
pins 40 and 38
pin 13 vr* can be
obtained by or'ing genie
pins 40 and 43
pin 14 intak* can be
obtained by or'ing genie
pins 38 and 45
pin 15 rd* can be
obtained by or'ing genie
pins 41 and 43
pin 19 in* can be
obtained by or'ing genie
pins 38 and 41

suitable or gates can be
found on the 74ls32, which
is a quad array. unless
intak* is definitely
required ir can be left cut
for most applications. it is
worth noting that rd* and
wr* on the trs-80 are in
fact NnenrdN and NmemwrN and

if you are connecting a
computer to another via
their rs-232 serial ports,
you need a device call a
'null modem'. this is just a
cable with appropriate
connectors, wired in such a
way that each computer
appears as a modem to the
other. with a couple of db-
25 connectors and a few
pieces of wire, two screws
and a few nuts, you can
easily build a null modem
for a few pounds in about 20
minutes.

all you do is place the
connectors back to back, and
link the pins between the
connectors according to the

table
below.

then you fix the two
connectors together using
the screws and nuts as shown
below.

if you want to be really
posh, you could use
studding, spacers and a
small box of course.

I used a male and female
connector, as this enables
me to connect my model 1 or
model ii to most other
systems.

by wiring the pins on a one
to one basis, with
connectors of the
appropriate gender, you can
easily make what is termed
as a gender-changer.

--== o0o ==--

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 4

not NrdN and NwrN, hence the
* as opposed to the bar
NcasN can be obtained from
the cpu board inside the
genie on pin 6 of z39. mux
can be obtained on pin 5 of
z37. also if you wish NoutN
is available on pin 8 of z15
whilst NinN is available on
pin 6 of z15.

 1 ras* 43 1 gnd 8,37,29
 2 sysres* #48# 2 gnd 8,37,29
 3 cas* *13* 3 a7 36
 4 a10 26 4 a6 38
 5 a12 29 5 a5 35
 6 a13 27 6 a4 31
 7 a15 21 7 a1 27
 8 gnd 1,2,49,50 8 a3 34
 9 a11 28 9 a2 40
10 a14 23 10 a0 25
11 a8 22 11 d5 28
12 out* *32* 12 d2 32
13 wr* #40# *13* NcasN 3
14 intak* -- 14 d1 22
15 rd* #41# 15 d0 30
16 mux *25* 16 d3 26
17 a9 24 17 d7 20
18 d4 20 18 d6 24
19 in* *33* 19 vcc --
20 d7 17 20 d4 18
21 int* 31 21 a15 7
22 d1 14 22 a8 11
23 test* #39# 23 a14 10
24 d6 16 24 a9 17
25 a0 10 *25* mux 16
26 d3 16 26 a10 4
27 a1 7 27 a13 6
28 d5 11 28 a11 9
29 gnd 1,2,49,50 29 a12 5
30 d0 15 30 phi --
31 a4 6 31 pint 21
32 d2 12 *32* NoutN 12
33 wait* 37 *33* NinN 15
34 a3 6 34 NphldaN --
35 a5 5 35 NphanN --
36 a7 3 36 NhaltN --
37 gnd 1,2,49,50 37 NpwaitN --
38 a6 4 38 NilrqN --
39 gnd (lev 2 only) #39# NpholdN 23
40 a2 9 #40# NwrN 13
 #41# NrdN 15
 42 NccdbsN --
 43 NmreqN 1
 44 Nd0dbsN --
 45 NmiN --
 46 NresetN --
 47 rfsh --
 #48# NnniN 2
 49 gnd 8,37,29
 50 gnd 8,37,29

(The original article was in
very poor condition and

consequentially very difficult
to read. I hope I’ve managed to

copy all the details
correctly).

Trs-80 video genie

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 5

here's a nice little mod to
the cassette version of
electric pencil from an

original article written by
Rodney schreiner.

for several months i've
been using the cassette
version of pencil to prepare
manuscripts and letters
using single sheets of 8.5 x
11 inch paper. since pencil
does not automatically pause
at the end of a page, i have
to watch the printer and
stop the program manually so
i can insert a new sheet of
paper.
the tediousness of this task
finally got to me, and i
decided to investigate the
program to see if i could
modify it so that it would
stop at the end of each
page. after a lengthy search
through the code, i located
the spot at which the
program tests for the final
line of a page. at this
point the program jumps to
the page spacing routine. by
changing only 2 bytes i
altered this jump to a
return to the main system.
now, when the printer
reaches the end of page, it
stops and i can load a fresh
sheet of paper at my
leisure. all that is
necessary to continue
printing is to move the
cursor to the start of the
next page i require printing
and off i go.

the changes i've made are
detailed below:

change

4f3fh from 28 to c8
4f40h from 06 to 00

only bytes 4f3f and 4f40 are
changed. this can be
accomplished by using t-bug,

relocated to high memory.
after the 2 changes are
completed, a new system tape
can be written from t-bug.
the starting address is
4350h, the ending address is
5374h and the entry point is
4350h.
this new version of pencil
cannot print continuously,
since the alterations above
force it to stop at the end
of each page. However, if i
need continuous printing i
can use my original pencil
cassette.

--== o0o ==--

File transfers on the
models 1 and 100 by

Leon heller

if you are using the
Tandy rs-232 board, it is
not advisable to just plug
the cable from the model 1
into the back of the model
100. both machines are
configured as 'data
terminal equipments' (dte)
and although you can
reverse pins 2 and 3 on the
rs-232 board in the model
1, the other signals will
be trying to output to one
another. this should not
result in any damage, but
will prevent proper hand-
shaking between the
systems. you will need what
is termed a null modem
connector, with all the
signal crossed over. these
can be obtained at many
local computer supply shops
or you can easily make one
for yourself. (see the
article on page 3 ed.)

assuming you have a smart
terminal program like st80-
iii on the model 1, you set
the system up for 300 baud,
7 data bits, even parity, 1
stop bit, transmit auto
line feed on, and receive

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 6

auto line feed on.
on the model 100, select
'telecom' from the main
menu, then set the rs-232
parameters using f3 (stat:
37e1e). now use f4 to get
into terminal mode. keys
pressed on the model 1
should be echoed on the
model 100, and vice-versa,
showing that all
connections on both systems
are functioning.

if you are transferring a
file from the model 1 to
the model 100, you now get
the file into the model 1
buffer, using (shift) g.
respond to the transmission
speed question with 1, to
be on the safe side. on the
model 100, use f2 to select
the download mode. the
system will request a
filename. after inputting
the filename, f2 will be
displayed in reverse video.
now press (shift) o on the
model 1 keyboard, and the
file will be transferred
from the model 1 to the
model 100, being
simultaneously displayed on
the model 1 and model 100
screens. when the file has
been transferred st80-iii

'ready' will be displayed
on the model 1. if you
press f2 on the model 100,
the file will be closed,
and you can exit from
'telecom' by pressing f8
twice.

to upload from the model
100 to the model 1, first
set the model1 up for
receive auto line feed on
(shift b), and open the
memory buffer (shift) c.
keying f3 on the model 100
will result in the request
for the file name. input
the file name, and respond
to the width question with
(enter). 'up' will be
displayed in reverse video,
and the file will be
transferred to the model 1,
being displayed on the
model 1 screen as transfer
occurs.

when the file has been
transferred, 'up' on the
model 100 screen will
change from reverse video
to normal. Keying (shift) x
on the model 1 will close
the memory buffer, and the
file can be transferred to
disk using (shift) f.

This program is one of the
most useful ones I’ve ever
had for a 16k model 1! (it
will actually fit down to a
one-liner). It’s a super
little lower-case driver.
It worked well (subject to
any necessary hardware mod
being completed) with
ordinary level ii basic,
aculab xbas, disk basic and

more recently, matthew
reeds emulator.
The really nice thing about
it was that it works in
reverse! i.e. with the
shift held down, lower-case
letters are produced. This
avoided accidental lower-
case entries. A real boon
for program development and
de-bugging!

--== o0o ==--

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 7

"CONVERT"
WRITTEN BY LEOR ZOLMAN

THIS PROGRAM CONVERTS REGULAR C SOURCE FILES INTO A
FORMAT SUITABLE FOR EDITING ON THE TRS-80 (OR ANY
UPPER-CASE-ONLY SYSTEM.) SINCE THERE ARE QUITE A FEW
ASCII CHARACTERS THAT NEED TO BE REPRESENTED EVEN
THOUGH THEY DON'T SHOW UP ON UPPER-CASE-ONLY SYSTEMS,
A SPECIAL NOTATION HAS BEEN CREATED FOR REPRESENTING
THESE CHARACTERS. THE POUND SIGN IS USED AS A
SORT OF 'SHIFT' KEY, WITH THE LETTER FOLLOWING THE
POUND SIGN DENOTING THE SPECIAL CHARACTER NEEDED.
NOTE THAT THE C COMPILER DOES NOT RECOGNIZE THIS
SPECIAL SCHEME, AND BEFORE YOU CAN COMPILE A SOURCE
FILE CONTAINING THE SPECIAL CODES YOU MUST PREPROCESS
THE FILE USING THE "CC0T" COMMAND.

THE SPECIAL CODES AND THE CHARACTERS THEY REPRESENT ARE:
#L LEFT BRACKET (FOR SUBSCRIPTING) (5B HEX)
#R RIGHT BRACKET (5D HEX)
#C CIRCUMFLEX (BITWISE "NOT") (7E HEX)
#H UP-ARROW (EXCLUSIVE "OR" OPERATOR)
 (5E HEX)
#V VERTICAL VAR (LOGICAL AND BITWISE "OR")
 (7C HEX)
#B BACKSLASH (FOR ESCAPE SEQUENCES)(5C HEX)
#U UNDERSCORE (5F HEX)

FOR EXAMPLE, THE COMMAND
A>CONVERT FOO.C BAR.CT

WILL EXPECT FOO.C TO BE A NORMAL C SOURCE FILE ON
DISK, AND WILL CONVERT IT INTO A FILE NAMED BAR.CT.
THE FILE BAR.CT MAY THEN BE EDITED TO YOUR TASTE,
BUT REMEMBER TO PREPROCESS IT WITH "CC0T" BEFORE
APPLYING THE C COMPILER.

AS YOU MAY HAVE GATHERED FROM ALL THIS, THE LANGUAGE
"C" WAS NEVER INTENDED TO BE IMPLEMENTED ON A SYSTEM
HAVING UPPER-CASE ONLY; NEVERTHELESS, HERE IS A WAY
FOR IT TO BE DONE.

THIS PROGRAM IS RATHER SIMPLE, AND THUS IT WILL NOT
RECOGNIZE THAT SPECIAL CHARACTERS IN QUOTES ARE NOT
SUPPOSED TO BE CONVERTED.

#DEFINE LEFTCURLY 0X7B
#DEFINE RIGHTCURLY 0X7D
#DEFINE LEFTBRACK 0X5B
#DEFINE RIGHTBRACK 0X5D
#DEFINE CIRCUM 0X7E
#DEFINE UPARROW 0X5E
#DEFINE VERTIBAR 0X7C
#DEFINE BACKSLASH 0X5C
#DEFINE UNDERSCORE 0X5F

CHAR IBUF[134], OBUF[134];

MAIN(ARGC,ARGV)
INT ARGC;
CHAR *ARGV[];
BEGIN
 INT FD1, FD2;
 CHAR C;
 IF (ARGC != 3) BEGIN
 PRINTF("USAGE: CONVERT OLD NEW <CR>\N");
 EXIT();
 END

TRS8BIT - vol 02 no 01 - MARCH 2008 - page 8

--== o0o ==--

 FD1 = FOPEN(ARGV[1],IBUF);
 IF (FD1 == -1) BEGIN
 PRINTF("NO SOURCE FILE.\N");
 EXIT();
 END
 FD2 = FCREAT(ARGV[2],OBUF);
 IF (FD2 == -1) BEGIN
 PRINTF("CAN'T OPEN OUTPUT FILE.\N");
 EXIT();
 END

 WHILE (((C = GETC(IBUF)) != 0X1A) && C != 255) BEGIN
 SWITCH (C) BEGIN
 CASE LEFTCURLY: PUTST(" BEGIN ");
 BREAK;
 CASE RIGHTCURLY: PUTST(" END ");
 BREAK;
 CASE LEFTBRACK: PUTSPEC('L');
 BREAK;
 CASE RIGHTBRACK: PUTSPEC('R');
 BREAK;
 CASE CIRCUM: PUTSPEC('C');
 BREAK;
 CASE UPARROW: PUTSPEC('U');
 BREAK;
 CASE VERTIBAR: PUTSPEC('V');
 BREAK;
 CASE BACKSLASH: PUTSPEC('B');
 BREAK;
 CASE UNDERSCORE: PUTSPEC('U');
 BREAK;
 DEFAULT: PUTC(TOUPPER(C),OBUF);
 END
 END

 IF (C==255) C = 0X1A; /* DIGITAL RESEARCH....WOW. */
 PUTC(C,OBUF);
 FFLUSH(OBUF);
END

PUTST(STRING)
CHAR *STRING;
BEGIN
 WHILE (*STRING) PUTC(*STRING++,OBUF);
END

PUTSPEC(C)
CHAR C;
BEGIN
 PUTC('#',OBUF);
 PUTC(C,OBUF);
END

I hope you’ve enjoyed this
issue. If you have, why not
drop me a line and tell
everyone what you’re up to
with your Tandy? If not. Let
me know and I’ll try and
improve the next issue,
which by the way, should be
out early June 08.

And finally, has anyone a
pdf copy of ‘pathways
through the rom’ from ira’s
site? If you have, would
you email me a copy? It’s
the same address for all
correspondence - tia

dustym@beeb.net

TRS8BIT - vol 02 no 02 - june 2008 - page 1

--

 Trs8bit

I can’t believe
that this is our
6th edition of
trs8bit! Time
definitely goes
faster as my age
increases.

I hope you enjoy

this edition as I feel
there are some fascinating
article to keep you amused.

Star billing in this issue
must go to an article Roy T
Beck has updated which was
originally written for
trstimes. It’s for any
brave soul who would like
to attach a hard drive to a
model 1, 3 or 4. If anyone
has (or has had!) a go I’d
love to hear how you got
on. This must be one of the
most exciting and well
researched article I’ve
ever come across for the
trs-80 community.

There’s A smashing one-
liner to calculate prime
numbers.
Just as a matter of
interest, I can load-up
matthew reed’s emulator,
run the program, print out
the answers and close down,
in less time that dee’s
laptop computer (under
windows xp) takes to power
on!

There’s the usual ‘at the
ready prompt’ and various
other little snippets I’ve
been playing around with
over the last few weeks.

At long last, I felt I had
to buck-up courage and have
a go at running Mathew
reed’s emulator with disks!
(a giant leap for mankind

you might think). The only
dos I own is newdos80 v2
and I’m on a steep re-
learning curve! (see, at
the ready prompt, for what
I mean).
During the 80’s I never
managed to afford an e.i.
and disk drives of my own,
but I was lucky enough to
be able to use ones owned
by friends. (I has half a
dozen disks of my own and a
genuine copy of newdos80).
As you can imagine, I’m
really enjoying myself!
As an aside, I’ve just been
‘elected’ treasurer of the
local branch of the british
printing society and have
decided to do all the
accountancy work on my M1
emulator by using electric
pencil and visicalc. I’ll
let you know how I get on!

Thanks to everyone who
offered me copies of
pathways through the rom.
It was greatly appreciated.
Thanks must go to david
cooper for being the first
to offer and letting me
have many other bits and
pieces, some of which I
haven’t seen for years.

Knutt has released his
latest program ‘playcass’.
It’s available as a
download from his website.
There is a link to his site
on trs-80.org.uk
Have a look, it’s, yet
again, another remarkable
piece of software, just
released for a 30 year-old
piece of hardware!!

There has been a reduction
in the amount of traffic on
the uk’s ebay for trs-80
related items for quite a
while. Various books seem
to fetch a few pounds each

--

TRS8BIT - vol 02 no 02 - june 2008 - page 2

--

v2, here’s a timely reminder
of something (else) I’d
completely forgotten. In
order for the cassette
programs to load and save, a
cmd”t” must be issued
immediately before any basic
tape input/output operation.
These operations are timing
sensitive and are affected by
interrupt-driven tasks such
as trace & clock.
Just to remind you, the
commands affected are :-
Cload, cload?, csave, input#-
1,input#-2, system, print#-1,
and print#-2,. Don’t forget
to enable interrupts when you
have finished, with the
cmd”r” command. (and yes,
before you ask, I did!)

And finally, just a little

bit of history turned
up the other day.
Tucked away inside a
book was a little cloth
badge that someone had
made for natug members
when the group first
started. (before the
name was changed to
natgug!).
It’s strange, I can
quite clearly remember
Brian issuing them but

I can’t remember who
it was who had them made.
Is there’s anyone out
there with a better memory
than me who can remember
who it was?

and a couple of model 4p’s
ranging from £12-£40 each.
someone had been advertising
270 issues of byte for sale.
With a starting bid of £200 it
was too much money for me, but
they would make very
interesting reading.
Ebay.com still manages to
amaze me with the quantity and
diversity of items still being
offered for sale. If only the
postage costs from the states
were not so high.

Just by way of advance notice,
my isp, beeb.net, is closing
down at the end of june08.
this means a new home for trs-
80.org.uk has had to be found
pretty sharpish. I hope to
accomplish the change-over as
seamlessly as possible,
but just in case, I’ll
ask for you forbearance!
It also means, of
course, my email address
will change to:-

dustym@fabsitesuk.com

Please use this address
with immediate effect. I
shall be sending an
email to everyone who
has contacted me over the last
two years, so hopefully no
contribution to trs8bit will
go amiss.

(continued on page 10)

At the

READY>
Prompt

Having bitten the
bullet and started using matthew
reed’s emulator running newdos80 --== o0o ==--

--

Louis Pelletier has written a cracking one liner to
calculate prime numbers. it's surprisingly fast for just
level 2 basic. it calculates all the primes up to 1000 in
under 10 seconds on a 16k level ii machine. Don’t believe
me? Just try it!

TRS8BIT - vol 02 no 02 - june 2008 - page 3

--

Summary of radio shack
hard drive parameters

An updated article by

Roy T Beck
Which first appeared in

trstimes

Introduction

Recently i received a call
from a man who needed to
know how many tracks and
heads were on a Radio Shack
70 Meg hard drive. Such a
simple request, and
completely necessary in
order to partition and
format a hard drive. But
where do you find the
information when you need
it at 1 AM? The answer
should be in the Radio
Shack hard drive manuals,
but it is only presented in
a fragmentary and
incomplete fashion, unless
you have the Service Manual
for that particular drive.
If you are doing a drive
swap, like hot-rodders used
to swap engines, forget it.
Radio Shack doesn't even
want to talk to you!
This article will provide a
quick summary of the
pertinent factors for the
various drives Radio Shack
has used in our TRS hard
drive packages. I will
exclude the 8.4 Meg drive,
as that drive is not
suitable for the Model 1,
111 and 4 family.

Model 1, 3 and 4 drives

I will include a few other
drives which you may run
into. To begin with, all
drives suitable for use with
Radio Shack controllers are
categorised as MFM, (meaning
modified frequency
modulation), and have the
same interface as the
Seagate ST-412 or Seagate
ST-506 drives. This
interface physically
consists of two card-edge
connectors, one with 20
conductors, the other with
34, plus a 4 wire male power
cable connector. Usable
drives in this category
range from 5 to 70 Megs. The
maximum head count and
cylinder count which can be
use by the Radio Shack hard
drive controllers (HDC) is 8
and 1024, respectively. All
of these drives are full
height unless noted to the
contrary. Incidentally, the
bare hard drive is also
commonly referred to as the
'bubble', and occasionally I
use that term to distinguish
the hard drive from the
overall package, which
includes the HDC and the
power supply, all in a case.
The bubble is called that
because the heads and
platters are located inside
a sealed dust-tight chamber
in the drive. Don't ever
open the sealed chamber,
that should only be done in
a Clean Room.

--

TRS8BIT - vol 02 no 02 - june 2008 - page 4

--

Notes for Table 1

1. This drive was used in
most Radio Shack 5 Meg
boxes, Cat No 26-1130. Some
of these drives require the
step rate to be set at 6 or
even more. This corresponds
to 3 milliseconds. Try the
default value of 10
microseconds. If the step
rate is too fast,
verification will report
numerous bad tracks. lf
this occurs, repeat the
partitioning with 6, which
should work.
2. Apparently some Radio
Shack 5 Meg boxes had this
drive.
3. This drive was not used
by Radio Shack, but is
mentioned in some of their
Service manuals.
4. This drive was used in
all the Radio Shack 15 Meg
boxes, Cat No 26-4155.
5. This drive was used in
all the Radio Shack 12 Meg
boxes, Cat No 26-4152.
6. This drive is widely
available and works well in
Radio Shack boxes. It is a
half-height drive, but is a
drop-in fit in place of a
full height drive.
7. This drive was not used
by Radio Shack, but is
listed here because it is
one of the ''generic'' MFM
drives frequently
mentioned.
8. This drive was not used
by Radio Shack, but is
listed here because it is
the other ''generic'' MFM
drive frequently mentioned.
9. This drive was used in
the Radio Shack 35 Meg
boxes, Cat No 26-4171. It
has auto-parking built in;
it parks itself at the
highest cylinder on loss of
power.
10. This drive was used in
the Radio Shack 70 Meg
boxes, Cat No 26-4173.

The infamous 'three wires'

The 'three wires' l am
referring to are three wires
which run from a harness in
the hard drive case to
specific points on the
bubble, varying with the
actual bubble used in the
system. Radio Shack soldered
these three wires directly
to the PC board of the
bubble, which could easily
be done on the production
line. It does pose a problem
to us users, especially when
we wish to swap bubbles.

It may be useful to explain
the purpose of the three
wires. The wire colours are
as found in a master drive;
the colours are different in
a slave drive.

The yellow wire responds to
the drive select signal. The
system can electrically
accommodate up to 4 drives,
one master and three slaves.
There is a drive select line
for each of them. The
selected drive has 0 volts
on its select line, and the
other three stand at + 5
volts. When the master drive
is selected, the yellow wire
will be at 0 volts, and the
green light may be on. The
reason for saying ''may'' is
that the white wire also
enters into the picture.

The white wire senses 'seek
completed’, which is a
signal returned by the drive
to the HDC. While the drive
is actively stepping, this
line will be at + 5 volts,
signifying seek is not
complete. When seek is
complete, the line goes low,
and the white wire will be
at 0 volts. The white and
yellow wires are NORed to
turn on the green light when

--

TRS8BIT - vol 02 no 02 - june 2008 - page 5

--

both are low. If the drive
is stepping or not
selected, the green light
goes dark. Thus the steady
green light means the drive
is selected and is not
stepping, and a flickering
green light means either
the drive is stepping or is
momentarily not selected as
the DOS checks on a floppy
drive, or does something
else. Normally the green
light is lit on the master
drive. If you have a slave
connected, its green light
will normally be dark.

The orange wire is part of
the Write Protect circuit,
and sends + 5 or 0 volts to
the HDC, thereby informing
the logic whether the WP
switch on the front of the
case is depressed. When the
switch is depressed and the
red light is on, the orange
wire is at 0 volts. When
the WP light is off, the
orange wire is at +5 volts.

A cautionary note on a
quirk of the write protect
circuit is appropriate, The
red lamp is active, in a
sense, even when it is
dark. When the lamp is
dark, +5 volts is passed
through it to the remaining
logic in the HDC. The quirk
is that if the lamp burns
out, or fails to make good
contact in its socket, then
the +5 volts does not get
to the logic, and the HDC
sees 0 volts, which it
interprets as a write
protected condition. The
result is the DOS cannot
write on a drive even
though the write protect
was not deliberately
engaged. With a burned-out
lamp, the drive is
continuously write
protected! The lamp, by the

way, is rated 5 volts, 55
milliamp. The current draw
is not critical, anything
from one milliamp to 100
milliamp will work. The
problem is availability of
this special lamp. An
emergency solution is to
replace the burned out lamp
with the one from the green
ACTIVE socket. The lamps are
the same, and the system
doesn't care if the green
lamp works or not.
I have chased out the
original wiring of all the
Radio Shack drives, either
personally or through other
helpful persons. I
especially want to thank Art
McAninch of Borger, TX and
Fred Oberding of Sausalito,
CA for their kind efforts
and communications.

--

TRS8BIT - vol 02 no 02 - june 2008 - page 6

--

Table 2 shows the original
hook-up plus an alternate
(and simpler) generic
arrangement for master
drives, especially where
some other bubble is being
installed. See the sections
headed 'generic' for the
simpler connections.
The advantage of the
generic connection is that
you can thereafter remove
or exchange drives without
having to unsolder the
three wires as they are now
attached to the HDC instead
of the bubble.

notes for table 2

1. Solder wire to feed
through near pin 6. Cut
trace to pin 5 of J1 to
prevent feeding 5V into the
20/c cable.
2. Cut trace to pin 5 of J6
to prevent feeding 5V into
the 20/c cable.
3. Use empty pin hole of J6
instead of J5.
4. The pad is marked R97,
but no resistor is actually
installed there,

All of the drives I deliver
to customers are connected
in the generic fashion
described above. This
simplifies matters for both
me and the customer, and of
course the logic works the
same as always, as the
generic connection connects
the three wires at the
destination (the HDC)
instead of at the source
(the bubble).

Over the last couple of
years, I have connected
many different drives into
our Radio Shack boxes, up
to and including the 70 Meg
drive, and all work well.
Be aware that the 12 Meg,
35 Meg and 70 Meg drives
all suffer from a bit of

puffery. They were
advertised and sold by
Radio Shack with those
labels, but the labels are
only strictly true when
installed on machines of
the Model 11 family
because those machines
formatted more bytes per
track than LS-DOS and LDOS
can do. The real limits on
those drives when used in
a model 1, 111 or 4 system
are 11,304,960 bytes,
33,554,432 bytes and
67,108,864 bytes
respectively, based upon 8
heads and 230, 512 or 1024
cylinders.
Following the usual
advertising practice, you
could more properly call
these 11, 34 and 67 Meg
drives. It is not possible
to use any drive larger
than 67/70 Megs because
the HDC cannot deal with
more than 8 heads and 1024
cylinders, and the DOS
cannot handle other than
32 sectors of 256 bytes
each. No matter, the 67
Meg is a large drive, and
you are unlikely to fill
it.

Slave drives

I have omitted discussing
slave drives in this
article; The whole point
of swapping drives is to
get more capacity, and my
feeling is that you are
better off to put a big
drive in the master and
file the slave in the
closet. You can go as
large as 70 Meg in your
master, so why fool around
with the slave drive?

Just in passing, I will
remark that the ''three
wires'' are actually four
in number in a slave box,

--

TRS8BIT - vol 02 no 02 - june 2008 - page 7

--

the fourth wire bringing 12
volts to a power relay
(which obviates the need for
a power switch in a slave),
and the wire colours differ
from those in a master box.

Miscellaneous comments

A few other factors of
interest are the sector
interleave, the cylinder to
reduce write current, the
cylinder to begin pre-
compensation, and the
average access time. The
sector interleave is
predetermined within the
formatter, and unless you
are good at machine code, is
not adjustable. The gurus
who designed the Radio Shack
hard drive system set this
for us. I have not made any
attempt to 'tune' the
interleave, having not had
the time (nor the interest)
to tackle this area.

The cylinder at which write
current should be reduced is
specifically stated by the
drive manufacturers, but our
formatters simply assume a
value and go ahead without
asking us. If you review the
drive specs, the recommended
value is typically about
half the total number of
cylinders, and I believe
this is what the formatter
programs assume.
Furthermore, the newer
drives take care of this
function in hardware, and so
regardless of what the
software and controller say,
the later drives do their
own thing. Don't worry about
it, it is not critical,

The cylinder to begin write
pre-compensation varies
considerably. Most older
drives set it at about 1/2
of the total cylinders, but

some of the later ones
don't want any pre-
compensation. Again, this
value appears not to be
critical, and is taken care
of in the driver software.
I have received one (only)
report from a user who said
he had to patch his code to
suppress pre-compensation
in order to make his drive
work, but I lack any
further details. It seems
to be a factor of concern,
generally.

Finally, the average access
time is a bragging point
among IBM users, but for us
TRS types, hard drives
access so much quicker than
floppies that the whole
process seems like magic
anyway. For the drives we
are using, the access times
are as shown in Table 1 ,
and (except for the 70 Meg
drive), are SLOW by IBM
standards. Even so, the
change from floppies is
dramatic, and you will
enjoy Radio Shack hard
drives anyway.

Most drives have buffered
seek, which allows the
controller to send stepping
instructions at the 10
microsecond rate. The drive
actually just holds the
count in an internal
register until the
controller stops sending.
The drive then moves its
heads at its own best rate,
and stops on the desired
cylinder. A few very old
(mostly 5 Meg) drives
lacked this feature, and
with these you must tell
the controller to send the
stepping pulses at 3
millisecond or greater
intervals. Always try the
10 microsecond step rate
first, and if the formatter
chokes, (reports most

--

TRS8BIT - vol 02 no 02 - june 2008 - page 8

--

--== o0o ==--

cylinders bad) then try
slower stepping rates until
you find one that works.

Here is a warning to
NEWDOS-80 v2.5 users, The
hard drive version of
NEWDOS-80 is V2.5, and it
works fine on the old,
large HDC boards. However,
there is a bug in NEWDOS'
formatter which prevents
operation on the new,
smaller HDC's. Fortunately,
this bug was squashed by an
Aussie, and a friend of his
sent the cure along to me.

The patch to HDFMTAPP, the
NEWDOS formatter is as
follows. Using SuperZap:

DFS of file HDFMTAPP/CMD
FRS1
MOD D1
Find: AF 32 CB 00
Change to: 3E 0F D3 CB

All of the drives in Table
1 are physically and
electrically
interchangeable. There are
actually many more
floating around; they just
have to be MFM types. The
MISOSYS RSHARD5/6 drivers
and PowerSoft Supreme HD
Drivers (series RS) both
will work with all of them.
The MISOSYS drivers are
easier to install, but the
Powerboat Supreme Drivers
allow greater flexibility
when you want maximum
control over placement of
partitions.

(note: The driver, RSHARD,
that Roy refers to, is
currently available for
downloading at www.tim-
mann.org. A big thanks go
to Tim Mann & Roy Soltoff
for this facility.
It is still possible to buy

MFM drives. I’ve seen them
advertised on Ebay on a
number of occasions.
Ed.)

Packing and
super-graphics
by Phillip Case

By now, most of you have
seen those funny listings
which appears to be garbage.
Programs like 'android Nim'
'Bee wary' and 'Star Scout'
all look like bad loads when
listed. This is due the use
of a process known as
'packing' the graphics.

The reason these programs
have their graphics strings
packed this way is to save
memory. By packing your
strings in this memory, you
reduce the amount of
overheads memory needed by
about two-thirds.

To create super-graphics,
one simply changes the value
of the characters between
the quotes in a line to read
as graphics codes. For
example: 10 A$ = "*". To
change this line, one would
simply POKE the memory
location that contains the
"*" with the value of the
graphics character needed.
in this case let's use a
full graphics block or
CHR$(191). To change line 10
to print a CHR$(191), we
find the address which
contains the "*" and POKE
the address with 191.

Most of you are probably
already familiar with this
process, so I won't say
anything more about it
except that disk users have

--

TRS8BIT - vol 02 no 02 - june 2008 - page 9

--

a real advantage in the use
of DEBUG.

The interesting thing about
super-graphics is the
method in which they work.
The S-80 converts all
commands into one byte
tokens to save memory. it
just happens that the
command tokens are the same
ASCII values as the
graphics characters. That's
why a super-graphics line
contains only command
words.

Now for the Heavy Stuff,
stay close. We've all been
told that super-graphics
lines cannot be edited.
This is because the
computer reads all the
contents between quotes as
regular character
information rather than
tokens. If you're like me,
you find you need to edit
the line that you've slaved
so hard over to convert to
tokens.

There is a little trick
that will permit you to
edit your super-graphics
without losing your tokens.
If, while you're editing
the line, you (C)hange the
first quote in the line to
an asterisk, the line will
be retokenized. Then, when
done editing, POKE the
asterisk back to a quote
and Voila! The line is
converted back to super-
graphics after editing.

This little trick should
prove useful whenever you
find you need more
characters in a line which
is already packed. For
those of you with a disk
system, I suggest doing all
the aforementioned with
DEBUG, the monitor which is
a part of DOS.

More mileage from epson
ribbons

it is possible to
extend the life of Epson mx-
70 and mx-80 ribbon
cartridges by flipping the
ribbon over in the
cartridge. since the print
head strikes off-centre on
the ribbon, flipping the
ribbon exposes a fresh
surface. here's a simple
technique for doing just
that.

take an ordinary paper clip
and bend it as shown in
figure 1. lay this aside,
within easy reach. now take
the ribbon cartridge and
refer to figure 2. lift the
ribbon at the end near the
ribbon advance knob and give
the ribbon half a twist.
turn the advance knob a few
turns to feed the twisted
ribbon into the cartridge
through the advance
mechanism. at this point,
the ribbon cartridge should
look as it did before,
except for a half-twist in
the exposed portion.

take the paper clip crank
you made earlier and insert
the loop end into the ribbon
advance socket on the
cartridge. this is on the
bottom of the cartridge,
opposite the advance knob as
in figure 3. now use the
crank to advance the ribbon
until the half-twist inside
the cartridge comes out the
other end. that's all there
is to it. the ribbon is now
flipped over.

it's the paper clip crank
that makes this idea
practical. without this, you
would have to advance the
ribbon with the knob. since
there are 20 yards of ribbon

--

--== o0o ==--

TRS8BIT - vol 02 no 02 - june 2008 - page 10

--

in the cartridge, this
could take quite some time
and the sharp/hard little
knob would play havoc with

your finger(s)! with the
crank however, it takes no
more than 2 or 3 minutes to
wind the entire ribbon.

--

--== o0o

(Continued From page 2.)

I’ve managed to do a deal
with ‘fabsitesuk.com’ who
allow web hosting for very
moderate fees if you’re a
non-profit making
organization.

Talking of news-letter
contribution, they are a
bit thin on the ground. If
you’re having fun with your
trs-80, I’d love to know
what you’re up to. Just an
update of a few lines would
be appreciated.

My email address on the
web-site has been changed
from the date of this
issue, so, in case you
loose this note of it,
just click on the email
button.

Well, that about wraps up
this edition. I hope you
found something
of interest; so
until September

Bye for now

Dusty.

TRS8BIT - vol 02 no 03 - september 2008 - page 1

 Trs8bit

Welcome to the
September edition
of trs8bit. Just
a quick thank you
for the feedback,
kind comments in
general and in
particular about
roy’s hard disk
article in the

last issue. It seems at
least two people have been
assisted by it.
How about letting us all
know how you’re getting on?

Contributions have been a
bit thin on the ground,
most probably due to the
august holiday time, but I
hope that I’ve managed to
find odd little bits of
interest for you!

The usual one-liner makes
an appearance and a number
of snippets in ‘at the
ready prompt’ which I’ve
been playing around with.
I’ve produced a chart of
’look at a glance’ printer
information to assist in
checking for comparable
options.
There’s an article by anon.
who doesn’t like ‘mod’.
Perhaps, in his younger
life, he was a rocker eh?

Star-billing goes to a
cracking article by ec
Kilpatrick for all you
hardware buffs or anyone
wanting to fit 48k inside
their keyboard.

This all came about because
I ’won’ some 8 bit, 64k ram
chips which were for sale
on ebay and I was sure
that, in the back of my
mind, there was an article
which had a use them. Sure
enough, I found it.

It was originally published
in natgug news in September
1984 and I’ve managed to
incorporate all the later,
additional amendments that
went with it.
The chips are marked-
Sharp LH2164-15
 ** now if anyone would
like to try it out I’d be
more than happy to send the
ram chips for you to use **

If you’re interested,
please email me with your
details and I’ll send the
chips off to you.
This looks to me like major
surgery and is way past my
meagre diy abilities.
I can’t even guarantee that
the chips are suitable or
even still usable but it
would be real fun to try it
out. Just think of it,
hardware mods on a 30 year
old micro-computer!
I don't recommend attacking
your one and only remaining
model 1 though!

N.b. this offer is, by its
very nature, on a first-
come first-served basis!
There would be no charge,
but a short article for
trs8bit telling us how well
(or otherwise) the mods
went, would be most
appreciated.

Also, While I’m thinking
about freebies, I’ve, once
again thanks to ebay,
acquired a number of ‘new-
old-stock’ ribbons for an
Epson lx80. if you’re
having trouble sourcing a
replacement just let me
know. The reference numbers
quoted are 8mm x 6m
F35703za.
And…
while helping on a
clearance, I came across a

TRS8BIT - vol 02 no 03 - september 2008 - page 2

pc-6 computer any time I
need a conversion figure!

here's a few old
chestnuts, but just in
case you don't have them
to hand;
to disable the model 1's
break key poke 16396,23
and, just as handy, to
enable the break key poke
16396,201.

if you can't remember what
you've set memory size to
when starting level ii
basic, here's an easy way
to help.
printpeek(16561)+peek
(16562)*256+2.

If peek(293) = 73, the
machine you’re on is a
model 3. any other value
and it’s a model 1.

these work fine with
matthew reed's m1 emulator

if you’re on a model 1 -
Poke 15360,1
Print peek(15360) this
will print a 1 if the r/s
lower-case mod had been
fitted. If not, the result
will be 65

There’s a little ‘buglett’
in some editions of trs-
dos 2.3 which I had
forgotten about. the
password protection gives
up after one try. The
first time you try to copy
an uncopyable file it will
give the error message
“file access denied”. Try
to copy it again - this
time you should succeed!

part-box of new, 8” floppy
disks. So it you run a
model 2 or any machines
with 8” drives and you’re
having difficulties getting
media, again, please let me
know. They are Memorex,
single sided, double
density, soft sectored with
77 tracks.

Talking of model 2’s, one
sold on the uk’s ebay for
£75. there has been quite a
few tandys sold over the
last few weeks, with model
1’s fetching between £18 and
£35 and model 4’s fetching
between £50 and £90. there’s
been considerably more
sales of accessories, books
and software too, for all
models.
As at the time of writing,
there is a video genie for
sale in an ebay ‘shop’. The
price is £80
It’s nice to know there’s
still a bit of interest out
there.

Continued on page 7

At the

READY>
Prompt

One really neat feature
of disk basic is that it
allows the use of hex and
octal constants.
i.e. if you issue the command
print &h5bbb, it returns the
answer 23483, the decimal
equivalent. This Saves me
having to get out my tandy

--== o0o ==--

Here’s a one-liner from an original idea by Michael lyon

TRS8BIT - vol 02 no 03 - september 2008 - page 3

48k in the
model 1 keyboard

ec Kilpatrick

now that general
northern have gone out of
business, we thought it
would be a good idea to see
if it was possible to
modify the model 1 keyboard
to read 48k without having
to add a decoder board.

with considerable help from
my good friend guy
grantham, who had already
modified his video genie,
we have succeeded. here is
how we did it.

the memory signals combined
with ras* and cas* to
read:-
up to 16k ram require a15
low and a14 high
from 16k to 32k require a15
high and a14 low
from 32k to 48k require a15
high and a14 high
therefore, to read all 48k
either a14 or a15 or both
must be high at the
relevant time.

originally the computer
could only recognise up to
16k of ram because it was
only decoded to read memory
while a15 was low, due to
z73 (pins 4,5,6 or gate)
controlling z21 (2 line to
4 line decoder) at pins 14
and 2.

these signals will be
retained for video,
keyboard and rom, but no
longer used to generate the
mem* and ram* signals by
opening links 2,3,4,5 on
x3.

new connections are
required to generate the
mem* signal which comes

from pin 6, z74.

this signal now has to be
active low whenever there is
a rd* active, excluding
calls to reserved memory
3000h to 37ffh which is
required for disk and
printer i/o, or to the
keyboard at 3800h to 3bffh,
or again to the separate
video ram at 3c00h to 3fffh.
all these invalidating
conditions are met when a15
and a14 are low and a13 and
a12 are high, as provided by
the output from z21 pin 12
to input pin 4 of z36. so by
cutting the trace to pin 5
of z74 and linking pin 4 of
z36 to this pin, the
required conditions of mem*
are met for 48k ram.

z73 pins 8,9,10 are now
spare by virtue of cutting
the trace to z74 pin 5. this
gate, together with 2 other
originally 'spare' gates,
z73 pins 11,12,13 and z37
pins 8,9,10 will be used to
decode the row and column
addresses of the 64k ram
chips.
pins 9 and 10 of z73 must
have their incoming traces
cut and replaced by links to
a14 and a15 at z21 pin 15
and z73 pin 4 respectively.

z73 pin 8 outputs the (a15
or a14) condition required
in the first paragraph to
address the top 48k of the
memory map.
this signal is inverted by
the spare nor gate of z37
(8,9,10) and combined with
ras* in the spare or gate of
z73 (12,13) which, in turn
from pin 11 feeds the
existing ram* connection at
z74 pin 10.
note :- pins 8 and 9 of z37
must be separated and only
one of them may be connected
to pin 8 of z73, as although

TRS8BIT - vol 02 no 03 - september 2008 - page 4

pin 9 appears to be
'floating' it is not
possible to be 100% certain
about pin 8, so it must be
tied to pin 7 (earth).
a14 and a15 must also be
linked to pins 14 and 13 of
the data selector z51, while
it's output at pin 12 will
be linked to the number 9
pins of each of the 64k
rams.

here are the detailed
changes necessary :-

open up the keyboard and
locate the following chips
on the 'trace' side of the
board. z21, z36, z37, z51,
z73 and z74. (i stuck a
small number label on each
chip to make sure i could
always read them and locate
pin 1).

lay the keyboard component
side down with the keys away
from you.

cut the following traces,
between pins 8 and 9 of z37
(a solder sucker is need
here), close to pins 9 and
10 of z73, (pin 10 on the
component side) and pin 5 of
z74.

note:-
some late issue boards also
have the traces of pins 12,
13 and 14 of z73 joined
together so the trace both
sides of pin 13 must also be
cut.

using thin insulated wire
connect these pins in this
order :-
from z73 pin 11 to z74 pin
10
from z73 pin 12 to z73 pin 5
from z73 pin 10 to z73 pin 4
and on to z51 pin 13
from z73 pin 13 to z37 pin

10
from z73 pin 9 to z51 pin
14 and on to z21 pin 15
from z73 pin 8 to z37 pin 9
from z74 pin 5 to z36 pin 4
from z37 pin 8 to z37 pin 7

now x3 has to be modified,
as mentioned earlier,
starting from pin 1, leave
that as is. pins 2,3,4 and 5
have to be open and pins 6,7
and 8 closed. a small
screwdriver can be used to
open and a blob of solder to
close as needed.

before the 16k ram chips are
removed, the system can be
tested by switching the
computer on in level 2 mode
and entering 'print mem',
the answer should be either
48340 or 48338 depending on
which type of roms are
fitted. the figures are only
2 reflections of the
existing 16k and as such,
cannot be used.

providing the system works
this far, then fitting the
64k rams can be carried out.
remove the 16k rams and put
them safely away. with the
keyboard still laid out with
the keys away from you, cut
the 12v trace at pin 8 of
z19. cut the -5v trace at
the capacitor pin below pin
1 of z13. fit a thick wire
from the +5v pin above pin 7
of z1 to the pin above pin 8
of z17.
fold the keys over on top of
the board and turn the whole
assembly over. very
carefully bend up pin 9 of
each of the 64k ram chips
(not too far or they may
break) and insert them in to
the empty ram sockets the
same way round as the 16k
chips, making sure that each
pin 9 is clear of the top of
the socket, as that might be
at +5v. (contacts may be

TRS8BIT - vol 02 no 03 - september 2008 - page 5

--== o0o ==--

--== o0o ==--

slightly proud on some
types of sockets). wire
all the number 9 pins
together and connect a
wire from pin 12 of z51 to
the nearest pin 9 of the
rams.

carefully **recheck** that
the +12v trace is
definitely cut and the
system is ready to go.
it is not essential to cut
the -5v rail but it should
be done as a safety
measure. cutting the
original +5v rail is a
very complicated job and
is best left alone, hence
the comment about pins 9
being well clear of the
socket as that is still at
+5v.

note:-
do not use texas 64k rams
as they have a different
refresh system and cannot
be used without further
modifications to the
computer circuitry.

I don’t like mods
Anon.

MOD is an arithmetic
function found on the
Model II. As with SWAP,

this function is useful,
but it can very easily be
duplicated on a computer
without this function, such
as the Model I or Model
Iii.
MOD signifies the integer
remainder when a division
operation is performed. An
elementary school student
learning division would
learn that 5 divided by 3
is one remainder 2. Thus, 5
MOD 3 equals 2. In a
similar fashion, one could
derive that 103 MOD 25
equals 3.
The MOD function on the
Model 2 takes the form A
MOD B. Its equivalent on
the Model I or Model 3
would be A -
InT (A/B) * B. Thus, the
equivalent of 103 MOD 25,
as in our previous example,
would be 103 - (iNT
(103/25) * 25), which,
as stated above, simplifies
to 3.
MOD does not save a
significant portion of
execution time. It does
make code using this
function a bit easier to
read, but this, I believe,
is far outweighed by the
incompatibility it causes.
Since it is extremely easy
to "construct" a MOD
function which will work on
virtually any version of
BASIC, I would strongly
advise against using this
function.

Don’t fo
rget the

Christma
s issue

TRS8BIT - vol 02 no 03 - september 2008 - page 6

T
R
S
8
B
I
T

"
a
t

a

g
l
a
n
c
e
"

t
r
s
-
8
0

p
r
i
n
t
e
r

c
o
m
p
a
r
i
s
o
n

c
h
a
r
t

(
c
i
r
a

e
a
r
l
y

1
9
8
0
'
s
)

C
e
n
tr
o
n
ic
s
 7
3
7

E
p
s
o
n
 M
X
-8
0

O
k
i
M
ic
ro
lin
e
 8
0

C
G
P
-1
1
5

Q
u
ic
k
p
ri
n
te
r
2

D
M
P
-1
0
0

C
a
n
n
o
n
 B
J
-1
0
s
x

L
P
 I
I

W
e
i
g
h
t

(
l
b
s
)

1
2

1
2

1
4

1
.8

8
.6

3
.7

S
i
z
e

5
 x
 1
4
.5
 x
 1
1

4
.2
 x
 1
4
.7
 x
 1
2

4
.2
5
 x
 1
3
.5
 x
 9
.7
5

8
.5
 x
 8
.5
 x
 3

3
.5
 x
 7
 x
 9
.5

1
6

x
 8
.2
5
 x
 5
.3

3
1
 x
 2
2
 x
 4
.8
5

i
n
t
e
r
f
a
c
e

-

p
a
r
a
l
l
e
l
/
s
e
r
i
a
l

P

P

P

B
o
th

B
o
th

B
o
th

P

s
p
e
e
d

5
0
 c
p
s
 @
 1
0
 c
p
i

8
0
 c
p
s
 @
 1
0
 c
p
i

8
0
 c
p
s
 @
 1
0
 c
p
i

1
2
 c
p
s

6
4
 c
p
s

5
0
 c
p
s
 @
 1
0
 c
p
i

1
1
0
 c
p
s
 @
 1
0
 c
p
i

b
i
-
d
i
r
e
c
t
i
o
n
a
l

N

Y

N

N

N

N

Y

p
r
i
n
t
-
h
e
a
d

l
i
f
e

-

c
h
a
r
s
.

1
5
0
 m
ill
io
n

5
0
 -
 1
0
0
 m
ill
io
n

2
0
0
 m
ill
io
n

n
/a

3
0
 m
ill
io
n

?

n
/a

d
e
s
c
e
n
d
e
r
s

Y

Y

N

Y

N

N

Y

n
o

o
f

w
i
r
e
s

i
n

h
e
a
d

9

9

9

n
/a

n
/a

7

n
/a

d
e
n
s
i
t
i
e
s

c
h
a
r
s
/
l
i
n
e

4
0
,
6
6
,
8
0
,
1
3
2

4
0
,
6
6
,
8
0
,
1
3
2

4
0
,
8
0
,
1
3
2

4
0
,
8
0

9
,
1
8
 c
p
i

4
0
,8
0

5
,
8
.5
,
1
0
,
1
2
,
1
7

g
r
a
p
h
i
c
s

N

Y

Y

Y

Y

Y

Y

s
l
a
s
h

z
e
r
o

N

N

Y

Y

Y

Y

N

l
i
n
e

s
p
a
c
i
n
g

-

L
i
n
e
s

p
e
r

i
n
c
h

6

6
 o
r
8

6
 o
r
8

s
o
ft
w
a
re
 s
e
le
c
ta
b
le

6

6
,
9

v
a
ri
a
b
le

(f
w
d
 &
 r
e
v
)

m
a
x

p
a
p
e
r

w
i
d
t
h

9
.5
 f
a
n
fo
ld
,
8
.5
 c
u
t

1
0
 f
a
n
fo
ld

9
.5
 f
a
n
fo
ld
,
8
.5
 c
u
t

4
.5

2
.3
8
 i
n
s
 -
 f
ix
e
d

9
.5
 f
a
n
fo
ld

8
 i
n
s

t
r
a
c
t
o
r

o
r

f
r
i
c
t
i
o
n

f
e
e
d

F

T

B
o
th

F

F

T

F

m
a
x

c
o
p
i
e
s

3

3

3

1

1

1

1

i
n
k

ri
b
b
o
n
,
m
o
b
iu
s
 l
o
o
p

ri
b
b
o
n
,
c
a
rt
ri
d
g
e

ri
b
b
o
n
,
.5
 t
y
p
e
w
ri
te
r

4
 c
o
lo
u
r
p
e
n
s

A
lu
m
in
u
m
 c
o
a
te
d

in
k
e
d
 r
o
lle
r
c
a
s
s
e
tt
e

b
u
b
b
le
 j
e
t
c
a
rt
ri
d
g
e

TRS8BIT - vol 02 no 03 - september 2008 - page 7

--== o0o ==--

Continued from page 2

For those of you who
visit the web-site on a
regular basis, you’ll
already know I’ve put
out a request for help
on an article to convert
a program from apple ii
basic to level ii basic.
It is supposed to
produce a sudoku puzzle,
on a 9 x 9 grid.
I just thought that
producing sudokus on a
level 2, model 1 would
be just amazing and make
a great novelty idea for
the Christmas edition.
(Which, by the way,
should be available
early December 2008.)

I also ’won’, on ebay, a
dpm-100 printer but, so
far, I haven't been able
to get it running using
the tandy printer to
keyboard interface
connector as yet. It
seems to power up ok,
but then just sits there
- looking amazing, but
doing nothing!

I’m still looking for
more information
regarding the ‘aculab
floppy tape’ please let
me know if you come
across anything of
interest. It would be
most appreciated.

Well, I think that just
about wraps up this
issue. If you’ve any
special requests or
ideas for the xmas issue
please ask and I’ll do
my best to include them.
In the mean time -

Take care

dusty

Hide your code!
By Philip Case

here's a tip about
using control code
functions to make your
programs harder for other
people to list, examine
and/or amend. if you
remembers, chr$(23) puts
your model 1's screen into
the enlarged mode (32
characters per line).
consequently, anything
that's on the screen in the
62 character mode will lose
every other letter when you
switch into the enlarged
mode. you can illustrate
this by typing anything on
the screen, pressing shift/
right arrow, then printing
chr$(23) (home cursor). by
doing this you are entering
a control character in the
immediate mode.
You can put these codes in
your basic program coding
by adding a 'rem'ark at the
end of an important line,
then and asterisk (*).
here's an example -
10 for a=1to10:nexta:rem*
this line will still
function in the regular
way. after editing the
line, go back and find the
location in memory where
the asterisk actually
resides. one found, poke
the address with 23. then
list the line. the line
automatically causes the
computer to change into the
enlarged format.
by using different
combinations of this
technique, you can make it
a real pain for anyone to
alter or analyse your basic
code. as an idea, poking 28
will home the cursor, and
poking 31 will erase to the
end of screen!
Nice one eh?

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 1

 Trs8bit

Dee and I wish
all of our friends
out there in trs-80
land

a very
Merry Christmas

And a happy
New year

I hope, once again,
I’ve managed to put

together some interesting
items for this issue.

‘star billing’ in this issue
must go to peter Phillips
who has given us all a
Christmas present by
converting an apple 2 sudoku
creation program to run on a
level 2 16K machine. (of
course, it works just as
well with disk basic!).
According to peter, the
program was originally
written in apple ’integer’
basic. I must admit, it
seemed a bit odd to me.
However, peter has done us
proud; yet another program
for a 30 year old computer.
It works surprisingly
quickly, managing to produce
a puzzle in approx. 10
seconds. Because of the
programs size, I’ve placed a
zip file for downloading it,
on the web site with a copy
in both disk and cassette
format. (just to save those
rsi fingers!). I hope you
enjoy it as much as dee and
I have.

By way of a xmas tradition,
if we’ve been about long
enough to have a
‘tradition’, I’ve produced
another ‘ascii’ print with a
suitable xmas flavour. The
program is nearly identical
to the one used last xmas,
except for an additional
line for you lucky people

with more than 16k of ram.
Other than that, it’s only
the data lines that have
changed.

Perhaps some of you will
remember that a couple of
issues ago I mentioned that
I was taking over the job
as treasure of my local
branch of the British
printing society. There are
a very small number of
transactions throughout the
year so I thought it would
be nice to try and run the
accounts using visicalc and
electric pencil. It
actually worked out quite
well. I’d forgotten just
how good visicalc is
(was?). The only problem I
encountered was with the
resulting print-out. I
wanted to use this type
face (teleprinter) and,
not having a teletype 33
anymore, I had to ‘cheat’ a
little. I downloaded a copy
of my end of year statement
to windows, using matthew
reed’s ‘trsread’ program
and used windows notepad to
change to the required
font.
Just to refresh your
memory, I’ve included a
model 3 visicalc ‘crib’
sheet (just in case you
want to play too!). Sorry
if the reproduction is not
too good, but the original
is on the ‘waxy’ paper we
all knew and loved so much!

Dee’s been playing with a
new game on her Nintendo ds
which has, yet again,
inspired me to have a go at
the one liners in this
issue. They are all about
hand and eye coordination.
The idea being that you
just type in the respective
screen number when bits of
it light-up. The first one
was quite simple, but the
other one took a bit more

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 2

printing endless random
numbers!). a simple
flashing asterisk, as used
for the cassette tape i/o
would be just the ticket.
it can be done quite
easily in basic as:-
10 if peek(15423)=42 then
poke 15423,32 else poke
15423,42
the top right hand corner
of the screen is memory
address 15423. if it
contains and asterisk
(ascii 42), then write a
space (ascii 32) else
write an asterisk. this
works fine but is not very
elegant when compared to
the code in rom which
simply xor's the contents
of 15423 with 10.
writing a small machine
code routine should be
quite simple but then I
thought, as the routine is
already in rom at, 022ch,
(according to James lee
farvour's m/s basic
decoded) I could use that!
for level 2 users just
poke16524,44:poke16527,2
(for disk basic users type
defusr0=&h022c)
x=usr(0)
this little bit of code
will do the equivalent of
a gosub and put or wipe-
out an asterisk in the top
r/h corner of the screen
as per the example below.

effort to get it down to just
the one line! It was those
pesky ‘if’ statements. They
will keep dropping you
through to the next line when
their conditions are met!!
Don’t forget, the large
spaces in both programs are
created by the down arrow and
not the space bar. for a
longer game, just increase
the ‘f’ loop.

I’ve revamped an original
article by Laurie Shields
which gives some great ideas
for changing lower case to
upper case. The small
assembler program, with
notation, is included
together with a basic program
that uses a ‘usr’ routine to
call it. I hope you find it
of some interest. Anyone
fancy changing it to convert
upper to lower case?

Well, That just about wraps
up this issue. I’d love to
have your feedback, the next
issue should be out early
march 2009, so, in the

meantime, Take care

Bye for now
dusty

At the

READY>
Prompt

I was busy (playing)
with my model1 the other day,
filling arrays with generated
random numbers and I suddenly
thought it would be a good
idea if the machine gave me
an indication that it was
working ok (other than

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 3

Text Conversion
And other bits.

From an original idea of
Laurie shields

None of my model 1
collections has the lower-
case mod fitted, but
matthew reed's emulator
come with l/c as standard.
(all that's needed is a
driver!). for the benefit
of anyone out there without
l/c, I think you've only
got half a computer!
Although I love my teletype
font, all program titles
and prompts on the
screen look
infinitely better
with l/c, as does
any printer
output. l/c is
taken for granted
on all modern
computers. I doubt
whether anyone
ever thinks about
it these days.
however, once l/c is fitted
(or being used) problems
can arise when string
comparisons are required.
for example a stock number
of 123xyz is not the same
in uppercase as it is in
lower case. this is most
annoying as a routine in
basic to check input and
convert any lower case to
uppercase can be rather
slow and will invariably
invoke a string garbage
collection 'freeze up'.

well, that was the problem
I came across and as a
result, the following usr
routine emerged. in machine
code, it is easy, once we
know where abouts in memory
the character string is
located and also how many
bytes are involved.
microsoft must have had
just this sort of problem

in mind when they put
together lii basic, as the
function varptr tells us all
that we need to know by
simply including it within
the usr brackets.

to get the value enclosed in
the usr brackets, in our
case, the varptr of the
possibly lower case string,
we have to call a rom
routine at 0a7fh and the
information returns in the
hl registers. the
information is in fact the
address of the first byte of
three that give details

about the string
variable and this
one is simply the
length of the
string. if it's
zero, then we
have a null
string. the
largest would be
255, which is why
the longest
string we are
allowed is 255

bytes, as any more would
require more than one byte
for the size. the next two
bytes give us the address of
somewhere different in
memory where the string is
located. this address is
stored in the usual z80
format of least significant
byte first followed by the
most significant byte.

if we wanted to be bullet
proof then we ought to
include a test on whether or
not the varptr supplied from
basic belongs to a string or
some other variable. this we
could do by looking three
bytes before the size and
checking that the value
there is three. if not, the
varptr belongs to something
other than a string. once we
have checked that the size
isn't zero and the actual

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 4

address has been loaded into
the 'd' and 'e' registers,
then we go round a simple
loop, looping the 'a'
register with each character
in turn, checking if it is
outside the range 'a' to
'z', and if not, then re-
setting bit 5 to zero by
and-ing with 5fh, putting
the result back where we
found it. on completion we
simply ret-urn to basic.

to get this routine within a
basic program, we convert
all of the bytes into
decimal numbers. eg cd =
12*16 + 13, 7f = 7*16 + 15
etc and writing them into
data statements, but as this
system of putting them back
into memory requires an even
number of bytes we must add
a zero at the end giving 28
bytes in total. we are going
to store them in an integer
array where each value in
the array holds 2
bytes so for 28 we
need to dimension 13
as we will use the
zero one.

to get the values into
the array, we multiply
the second one of the
pair by 256 and add it
to the first but
checking that the
result is not greater than
32767 before allocating it
to the integer array. if the
result is greater than 32767
then subtract 65536 first.
however, I don't like these
big numbers and as the only
way to end up greater than
32767 is for the second
number of the pair to be
greater than 127 in the
first place, then this is
simpler to sort out,

if you are fortunate enough
to be using the zen editor/
assembler, then include a

load 8800h command just
after the org statement and
then peek at memory
addresses 8800h to 881ah and
get the decimal values of
the machine code bytes.
convert these into data
statements and your finish
program should look
something like the one on
page 5.

it is possible to go even
further to make life much
easier. it's an interesting
and clever little 'trick' if
you're using zen (or any
editor assembler that allows
you to load code into
memory) and newdos80 V2. you
can create the data lines
for your program
automatically viz:-

open "0",1,"data/bas": ?
£1,"110 data ";:forx=&h8800
to &h881a: ?£1,peek
(x)",":next:£1,chr$(13):

close

and then load into basic
"data/bas". list the
program and you'll see
you're already half way
to writing your program
and not had to go
through the hassle of
converting a load of hex
values to decimal.

I assume that a similar
statement is allowed in
ldos. If anyone would care
to send it in, I’ll be happy
to publish it in the next
edition of trs8bit.

not wishing to 'teach my
grandmother to suck eggs',
but line 40 is also a nice
little 'wheeze' if you
haven't come across it
before.
the result, in basic, of the
statement (m>127) will
evaluate to -1 if true or 0
if not true, even without an

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 5

--== o0o ==--

'if' command before it. the
expression 256*(m>127) will
result in either -256 or 0
for either true of false.
therefore, m+256*(m>127)
will, in one statement,
result in the value m-256
if m is greater than 127
and just m otherwise. so
by reading from the data
statement pairs of values
into variables l and m (you
guessed it, least and most
significant) we calculate
the combined value as :-
256*(m+256*(m>127))+l

without an if or else in
sight!

N.B.
it is necessary to re-
define the usr routine each
time before use since
introducing other simple
variables into the running
of whatever application you
put this routine to, could
cause the actual bytes of
memory allocated by basic
for this array to be
changed.

 1 ORG 8B00H
 load 8800h
 2 8B00 CD7F0A START: CALL 0A7FH ;get string pointer
 3 8B03 7E LD A,(HL) ;get length of string
 4 8B04 B7 OR A ;test if null
 5 8B05 C8 RET Z ;if zero bytes, return
 6 8B06 47 LD B,A ;put byte count into reg b
 7 8B07 23 INC HL ;point to lsb if string addr
 8 8B08 5E LD E,(HL) ;load in e register
 9 8B09 23 INC HL ;point to msb of string addr
 10 8B0A 56 LD D,(HL) ;de now has addr of string
 11 8B0B 1A LOOP: LD A,(DE) ;get byte from string
 12 8B0C FE61 CP "a" ;if < lowercase a
 13 8B0E 3807 JR C,NEXT ;ignore it
 14 8B10 FE7B CP "z"+1 ;if > lowercase z
 15 8B12 3003 JR NC,NEXT ;ignore it
 16 8B14 E65F AND 01011111B ;mask-out bit 5
 17 8B16 12 LD (DE),A ;put back into string
 18 8B17 13 NEXT: INC DE ;point to next character
 19 8B18 10F1 DJNZ LOOP ;go round loop
 20 8B1A C9 RET ;all done - return to basic
 21 END

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 6

Next iss
ue out

early ma
rch 2009

All cont
ribution

s

welcomed

10 cLEAR500
20 M$="MERRYXMASMERRYXMASMERRYXMASMERRYXMASMERRYXMASMERRYXMASMERRYXM"
30 GOSUB 200
40 READ S
50 IF S=0 GOSUB 150
60 READ L
70 T$=MID$(M$,S,L)
80 X=PEEK(VARPTR(P$)+1)+PEEK(VARPTR(P$)+2)*256
90 REM - THE LINE BELOW IS FOR 16K+ MACHINES -
100 IF X>32767 X=X-65536
110 FOR Y=1TOL
120 POKE X+S+Y,ASC(MID$(T$,Y,1))
130 NEXT Y
140 GOTO 40
150 LPRINT P$
160 GOSUB200
170 READ S
180 IF S=99 THEN END
190 RETURN
200 P$=STRING$(63,32)
210 RETURN
220 DATA16,1,0,16,1,0,15,2,18,1,0,15,2,18,2,0,13,1,15,2,18,1,0
230 DATA 13,6,0,12,8,0,5,24,0,5,1,13,2,18,3,28,1,0
240 DATA 5,1,12,3,18,4,28,1,0,4,1,12,3,18,3,29,1,43,5,0
250 DATA 3,1,12,4,18,2,30,1,43,6,0,2,1,11,10,31,1,42,8,0
260 DATA 1,1,11,12,32,1,42,9,0
270 DATA 1,1,9,1,19,3,23,1,32,1,36,4,43,7,0
280 DATA 1,1,8,2,20,1,23,1,32,1,35,6,43,5,0
290 DATA 1,1,7,1,17,1,24,1,32,1,34,6,42,7,0
300 DATA 1,1,7,1,17,2,24,1,32,1,34,14,0
310 DATA 1,1,7,1,11,2,15,4,20,2,25,1,32,1,34,15,0
320 DATA 1,1,7,1,11,2,15,5,21,1,25,1,39,1,32,17,0
330 DATA 1,1,7,1,11,2,14,8,25,1,28,21,0
340 DATA 1,1,7,1,9,1,11,13,25,1,28,10,39,10,0
350 DATA 24,13,39,11,0,22,28,0,20,32,0,19,35,0
360 DATA 17,7,27,23,0,17,6,27,24,0,99

Here’s this years
xmas print. The original
can be viewed on page 3.

I know you need to squint
a bit at it but, hey, Give
me a break, It is
Christmas after all!

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 7

--== o0o ==--

With thanks to
peter Phillips,
here’s your Christmas
present from trs8bit.

It’s a level ii, 16K
runable, version of a
sudoku creation program.

The more I run this
program, the more impressed
I become with it! On a
standard level ii machine,
or within matthew reed's
emulator running at 1.7 mhz
it manages to produce a
puzzle in approx. 10
seconds. Quite an
impressive achievement for

a 30 year old piece of
hardware. Ramp up the speed
on the emulator and it’s
truly amazing!

Anyone out there fancy
improving it? How about an
additional option to enter
the numbers from an
existing puzzle and
calculate the answer,
instead of using all random
numbers?

Don’t forget, to save you
typing the program in, a
download is available on
the website. Just click on
the named box.

Merry Christmas everyone and a
happy new year

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 8

5 DEFINTA-Z
10 DIM A(81),B(81)
20 PRINT "LARRY NELSON'S SUDOKU FOR THE APPLE II"
25 PRINT " (CONVERTED FOR TRS(CONVERTED FOR TRS(CONVERTED FOR TRS(CONVERTED FOR TRS----80 BY PETER PHILLIPS)"80 BY PETER PHILLIPS)"80 BY PETER PHILLIPS)"80 BY PETER PHILLIPS)"
30 PRINT: INPUT"WANT INSTRUCTIONS";D$:IF LEFT$(D$,1)="Y" THEN GOSUB 1000
40 PRINT"CREATING..";
50 GOSUB 4000
60 GOSUB 5000
70 GOSUB 3000
80 GOSUB 7000
90 GOSUB 6100
95 F=0
100 PRINT " 1=NEW PUZZLE": PRINT" 2=ANSWER TO PUZZLE":
105 IF F=0 THEN PRINT " 3=SHOW PUZZLE AGAIN"
107 PRINT " 4=QUIT"
110 INPUT A
120 IF A=1 THEN 40
130 IF A=2 THEN GOSUB 6000
135 IF A=3 AND F=0 THEN GOSUB 6100
140 IF A=4 THEN END
150 GOTO 100
1000 PRINT"SUDOKU IS A NUMBER PUZZLE IN A 9X9 GRID."
1010 PRINT"THE GRID IS SPLIT INTO 9 3X3 MINI-GRIDS."
1020 PRINT"SINGLE DIGITS FILL THE GRID. THE DIGITS"
1040 PRINT"MAY BE IN ANY ORDER. THERE ARE JUST"
1050 PRINT"THREE RULES FOR SOLVING THE GRID--"
1060 PRINT"-EACH ROW MUST HAVE ALL THE DIGITS 1-9."
1070 PRINT"-EACH COLUMN HAS ALL THE DIGITS 1-9."
1080 PRINT"-EACH MINI-GRID MUST ALSO HAVE ALL THE"
1090 PRINT" DIGITS FROM 1-9."
1100 PRINT:INPUT" HIT ENTER TO CONTINUE";D$
1110 RETURN
3000 PRINT ".";
3010 FORI=1TO81:A(I)=B(I):NEXT
3020 FOR I=1 TO 7 STEP 3
3030 X=RND(6)-1
3040 IF X=0 THEN 3160
3050 Y=0:Z=2
3060 IF X=1 THEN Y=1
3070 IF X=3 THEN Z=1
3080 GOSUB 3400
3090 IF X<4 THEN 3160
3100 IF X=5 THEN 3130
3110 Z=1:GOSUB 3400
3120 GOTO 3160
3130 Y=1:GOSUB 3400
3160 NEXT I
3170 FORI=1TO81:B(I)=A(I):NEXT
3180 RETURN
3400 FOR J=0 TO 8
3420 W=9*J+I+Y:V=9*J+I+Z
3425 P=A(W):Q=A(V)
3430 A(W)=Q:A(V)=P
3470 NEXT J
3480 RETURN
4000 PRINT ".";
4010 FORI=1TO9:A(I)=I:NEXT
4020 FOR I=1 TO 30
4030 X=RND(9):Y=RND(9)

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 9

--== o0o ==--

4030 X=RND(9):Y=RND(9)
4035 IF X>=Y THEN 4030
4040 B=A(Y):C=A(X)
4050 A(X)=B:A(Y)=C
4110 NEXT I
4120 RETURN
5000 PRINT".";
5005 FORI=1TO81:B(I)=0:NEXT
5010 FORI=1TO9:A(I+9)=A(I):NEXT
5015 P=1
5020 FOR I=0 TO 2
5030 FOR J=1 TO 7 STEP 3
5040 FOR K=0 TO 8:B(P+K)=A(I+J+K):NEXT
5045 P=P+9
5050 NEXT J,I
5060 RETURN
6000 REM
6010 INPUT "ARE YOU SURE YOU WANT THE ANSWER (Y/N)";D$
6020 IF D$<>"Y" THEN RETURN
6030 F=1:FORI=1TO81:A(I)=B(I):NEXT
6100 F$=CHR$(191):L$=STRING$(11,140):T$=CHR$(188)
6105 PRINT : PRINT T$;L$;T$;L$;T$;L$;T$
6110 FOR J=0 TO 8
6120 PRINT F$;
6130 FOR I=1 TO 9:K=9*J+I
6140 IF A(K)<>0 PRINT A(K); ELSE PRINT " ";
6150 IF I - 3*INT(I/3) =0 THEN PRINT F$;
6160 IF I - 3*INT(I/3) >0 THEN PRINT ":";
6170 NEXT I
6175 PRINT
6177 IF J > 7 THEN F$=CHR$(143)
6190 IF J+1 - 3*INT((J+1)/3) =0 THEN PRINT F$;L$;F$;L$;F$;L$;F$
6200 NEXT J
6210 PRINT
6220 INPUT "HIT ENTER TO CONTINUE";D$
6230 RETURN
7000 REM
7010 FORI=1TO81:A(I)=B(I):NEXT
7020 PRINT:PRINT "HOW DIFFICULT DO YOU WANT YOUR PUZZLE":PRINT "
1=EASY": PRINT " 2=MEDIUM": PRINT " 3=HARD"
7030 INPUT A
7040 IF A<1 OR A>3 THEN 7020
7050 W=2*A+20+RND(2)-1
7060 FOR I=1 TO W
7070 X= RND (81)
7080 IF A(X)=0 THEN 7070
7090 A(X)=0
7100 X=82-X
7110 A(X)=0
7120 NEXT I
7130 RETURN
8000 REM Porting comments
8010 REM 4000 Creates a random ordering of 1-9
8020 REM 5000 Fills puzzle with rotations of the random ordering
8030 REM 3000 More-or-less permutes the columns
8040 REM 7000 Hides some of the elements.
8050 REM 6100 prints the puzzle array.

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 10

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 11

TRS8BIT - vol 02 no 04 - Christmas 2008 - page 12

