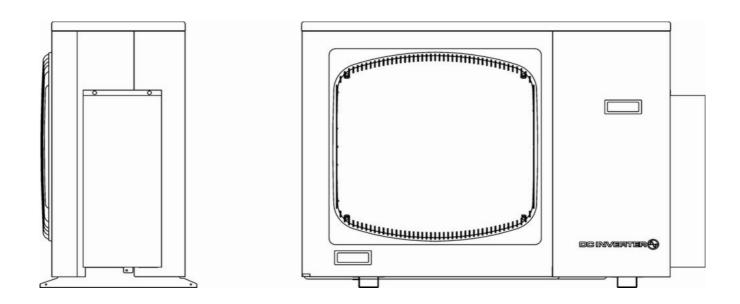
TECHNICAL DATA & SERVICE MANUAL



OUTDOOR UNIT: GR9FI65R5IAA

-

TRIAL SPLIT SYSTEM AIR CONDITIONER

Model No.	Product Code No.
GR9FI65R5IAA	38.7107.102

IMPORTANT! Please read before installation

This air conditioning system meets strict safety and operating

For the installer or service person, it is important to install or service the system so that it operates safely and efficiently

For safe installation and trouble-free operation, you must:

- · Carefully read this instruction booklet before beginning.
- · Follow each installation or repair step exactly as shown.
- Observe all local, state and national electrical codes.
- · Pay close attention to all warning and caution notices given in this manual.
- •The unit must be supplied with a dedicated electrical line.

WARNING

This symbol refers to a hazard or unsafe practice which can result in severe personal injury or death.

CAUTION

This symbol refers to a hazard or unsafe practice which can result in personal injury or product or property damage.

If necessary, get help

These instructions are all you need for most installation sites and maintenance conditions.

If you require help for a special problem, contact our sale/service outlet or your certified dealer for additional instructions.

In case of improper installation

The manufacturer shall in no way be responsible for improper installation or maintenance service, including failure to follow the instructions in this document.

SPECIAL PRECAUTIONS

· During installation, connect before the refrigerant system and then the wiring one; proceed in the reverse orden when removing the units

WARNING When wiring

ELECTRICAL SHOCK CAN CAUSE SEVERE PERSONAL INJURY OR DEATH. ONLY A QUALIFIED. **EXPERIENCED ELECTRICIANS SHOULD ATTEMPT** TO WIRE THIS SYSTEM.

0.8180.502d 1000 sup51/2007 wer to the unit until all wiring and tubing are completed or reconnected and checked, to ensure the grounding.

Highly dangerous electrical voltages are used in this system. Carefully refer to the wiring diagram and these instructions when wiring

Improper connections and inadequate grounding can cause accidental injury and death.

- · Ground the unit following local electrical codes.
- The Yellow/Green wire cannot be used for any connection different from the ground connection.
- Connect all wiring tightly. Loose wiring may cause overheating at connection points and a possible fire hazard.
- Do not allow wiring to touch the refrigerant tubing, compressor, or any moving parts of the fan.
- · Do not use multi-core cable when wiring the power supply and control lines. Use separate cables for each type of line.

When transporting

Be careful when picking up and moving the indoor and outdoor units. Get a partner to help, and bend your knees when lifting to reduce strain on your back. Sharp edges or thin aluminium fins on the air conditioner can cut your fingers.

When installing...

... In a ceiling or wall

Make sure the ceiling/wall is strong enough to hold the unit-weight. It may be necessary to build a strong wooden or metal frame to provide added support.

... In a room

Properly insulate any tubing run inside a room to prevent "sweating", which can cause dripping and water damage to walls and floors.

... In moist or uneven locations

Use a raised concrete base to provide a solid level foundation for the outdoor unit.

This prevents damage and abnormal vibrations.

... In area with strong winds

Securely anchor the outdoor unit down with bolts and a metal frame. Provide a suitable air baffle.

... In a snowy area (for heat pump-type systems)

Install the outdoor unit on a raised platform that is higher than drifting snow. Provide snow vents.

When connecting refrigerant tubing

- Keep all tubing runs as short as possible.
- Use the flare method for connecting tubing.
- Apply refrigerant lubricant to the matching surfaces of the flare and union tubes before connecting them; screw by hand and then tighten the nut with a torque wrench for a leak-free connection.
- · Check carefully for leaks before starting the test run.

Depending on the system type, liquid and gas lines may be either narrow or wide. Therefore, to avoid confusion, the refrigerant tubing for your particular model is specified as narrow tube for liquid, wide tube for gas.

When servicing

- Turn the power OFF at the main power board before opening the unit to check or repair electrical parts and wiring.
- Keep your fingers and clothing away from any moving parts.
- Clean up the site after the work, remembering to check that no metal scraps or bits of wiring have been left inside the unit being serviced.
- Ventilate the room during the installation or testng the refrigeration system; make sure that, after the installation, no gas leaks are present, because this could produce toxic gas and dangerous if in contact with flames or heat-sources.

Table of Contents

	Page
1. OPERATING RANGE	4
2. SPECIFICATIONS	5
2-1 Unit Specifications	5
2-2 Major Component Specifications	6
2-3 Other Component Specifications	7
3. DIMENSIONAL DATA	8
4. REFRIGERANT FLOW DIAGRAM	9
4-1 Trial Split System Refrigerant Flow Diagram	9
4-2 Dual Split System Refrigerant Flow Diagram	10
4-3 Mono Split System Refrigerant Flow Diagram	11
5. PERFORMANCE DATA	12
5-1 Performance Charts	12
6. ELECTRICAL DATA	13
6-1 Electrical Characteristics	13
6-2 Electric Wiring Diagram	14
6-3 Trial Split System Wiring Diagram	15
6-4 Dual Split System Wiring Diagram	15
6-5 Mono Split System Wiring Diagram	15
7. FUNCTION	16
7-1 Diagnostic	16

1. OPERATING RANGE

	GR9FI65R5IAA				
	· · · · · · · · · · · · · · · · · · ·				
	Temperature	Indoor Air Intake Temp.	Outdoor Air Intake Temp.		
Cooling	Maximum	32°C D.B. / 23°C W.B.	43°C D.B.		
Cooming	Minimum	10°C D.B. / 6°C W.B.	-15°C D.B.		
Heating	Maximum	27°C D.B.	24°C D.B. / 18°C W.B.		
ricating	Minimum	5°C D.B.	-15°C D.B.		

2. SPECIFICATIONS

2-1 Unit Specifications

GR9FI65R5IAA

Power source	220 - 240 V ~ 50 Hz
Voltage rating	230 V

Pe	rformance *	MPA9FIB0R5I x1 + MTAFIA0R5I x2	Cooling	Heating
	Capacity	kW	6,50	7,30
		BTU/h	22179	24909
	Air circulation (High)	m³/h	6	00
	Moisture removal (High)	Liters/h	1,5	-

Electrical Rating		Cooling	Heating	
Available voltage range	V	198 ~ 264		
Running amperes	А	8,90	7,50	
Power input	W	2000	1690	
Power factor	%	98	98	
C.O.P.	W/W	3,25	4,32	
Compressor locked rotor amperes	А	-	-	

atures			
Fan speed			3 (hi755 - me395 - lo258)
Compressor			Twin Rotary (Hermetic) DC inverter
Refrigerant / Amount charged	at shipment	g	R410A / 2700
Refrigerant control			Electronic expansion valve
Power noise level	Hi	dB-A	64
Refrigerant tubing connection	S		Flare type
Max. allowable tubing length a	at shipment	m	see installation instruction
Refrigerant	Narrow tube	mm(in.)	6,35 (1/4)
tube diameter	Wide tube	mm(in.)	9,52 (3/8) - 12,7 (1/2)

mensions & Weight			
Unit dimensions	Height	mm	735
	Width	mm	1030
	Depth	mm	340/400
Package dimensions	Height	mm	900
_	Width	mm	1140
	Depth	mm	420
Weight	Net	kg	64,0
	Shipping	kg	70,0
Shipping volume		m ³	0,43

DATA SUBJECT TO CHANGE WITHOUT NOTICE

Remarks:

Rating Conditions are:

Cooling: Indoor Air Temperature 27°C D.B. / 19°C W.B.

Outdoor Air Temperature 35°C D.B. / 24°C W.B.

Heating: Indoor Air Temperature 20°C D.B.

Outdoor Air Temperature 7°C D.B. / 6°C W.B.

* For other INDOOR UNITS' MODELS, please refer to catalogue

2-2 Major Component Specifications

GR9FI65R5IAA

Туре			Twin Rotary (Hermetic) DC inverter
Compressor model			TNB220FLHMT
Nominal input (comp	ressor rating condition)	W	2200
Compressor oilAmount		СС	FV50S 870
Coil resistance (Amb	ient temp. 20°C)	Ω	0,64
Overload relay			Software Protection
Safety devices	Туре		-
-	Operating Temp. Open	°C	-
	Close	°C	-

Controller PCB	
Part No.	sac dci ODU
Controls	Microprocessor
Control circuit fuse	6,3x32 - 12,5A

Expansion PCB	
Part No.	sac espansion multi dci
Controls	
Control circuit fuse	

Гуре				Propeller
Q'tyØ		Nı	r mm	1Ø 460
an motor modelQ	ty			KFC6T-91C5P
No. Of polesrpm				6 3 speed (755 - 395 - 258)
Nominal output			W	65,66
Coil resistance (Ambi	ent temp. 25 °C)		Ω	BRN-WHT: 127.3
			Ω	WHT-VLT: 56.73
			Ω	VLT-YEL: 15.04
			Ω	YEL-PNK: 7.235
Safety devices	Туре			Thermal Protector
	Operating temp.	Open	°C	130 °C
		Close	°C	-

Heat Exch. Coil					
	Coil		Aluminium plate fin / Copper tube		
	Rows		2		
	Fin pitch	mm	1,4		
	Face area	m^2	0,60		

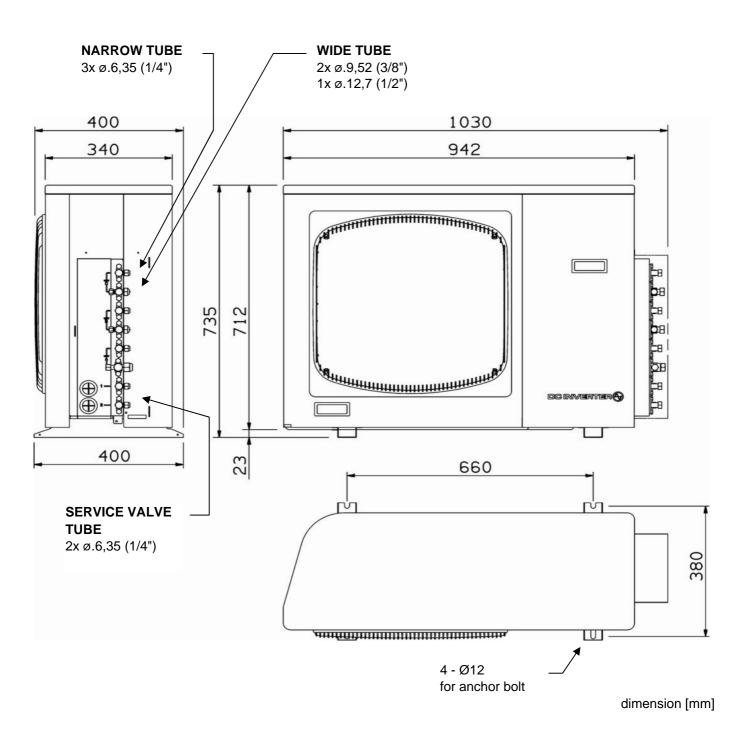
External Finish	Acrylic baked-on enamel finish

DATA SUBJECT TO CHANGE WITHOUT NOTICE

2-3 Other Component Specifications

GR9FI65R5IAA

.

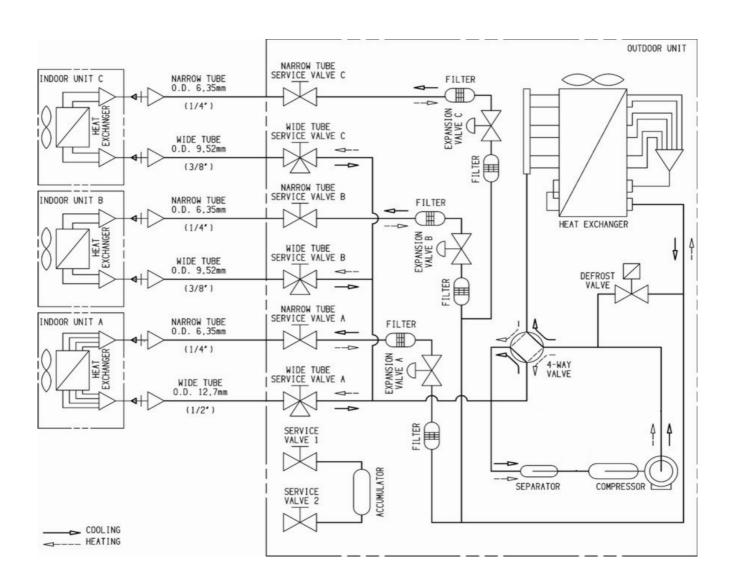

4-way Valve (20S)	LDK-41 (Coil) V2-410060-300 (Valve)
Coil rating	AC 220/240 V, 50 Hz
Coil resistance Ω (at 20°C)	1600 ± 5%
22 (at 20 0)	1000 ± 070
Electronic Expansion Valve A	UKV-U030E (Coil) UKV-18D31 (Valve)
Coil rating	DC 12 V
Coil resistance / phase Ω (at 20°C)	46 ± 3%
	•
Electronic Expansion Valve B-C	CAM-MD12EX(Coil) ZCAM-BD15EX (Valve)
Coil rating	DC 12 V
Coil resistance / phase Ω (at 20°C)	46 ± 4%
5 (, , , ,)	FO 005 BK (O.'I) FDF04 040 BK (V.l.)
Defrost Valve	FQ-235-RK (Coil) FDF6A-049-RK (Valve)
Coil rating	AC 220/240 V - 50 Hz
Coil resistance Ω (at 20°C)	1273 ± 10%
Thermistor (coil sensor)	NTC-THERMISTOR
,	kΩ 10 at 25 °C
1.100.010.1100	1000
Thermistor (compressor discharge sensor)	NTC-THERMISTOR
	kΩ 10 at 25 °C
	•
Thermistor (inlet air sensor)	NTC-THERMISTOR
Resistance	kΩ 10 at 25 °C
Thermistor (wide tube A sensor)	NTC-THERMISTOR
Resistance	kΩ 10 at 25 °C
Thermistor (narrow tube A sensor)	NTC-THERMISTOR
	$k\Omega$ 10 at 25 °C
redictation	10 01 20 0
Thermistor (wide tube B sensor)	NTC-THERMISTOR
· · · · · · · · · · · · · · · · · · ·	kΩ 10 at 25 °C
Thermistor (narrow tube B sensor)	NTC-THERMISTOR
Resistance	kΩ 10 at 25 °C
	_
Thermistor (wide tube C sensor)	NTC-THERMISTOR
Resistance	kΩ 10 at 25 °C
The amplitude (a company to be O company)	NTO TUEDMICTOR
Thermistor (narrow tube C sensor)	NTC-THERMISTOR
Resistance	kΩ 10 at 25 °C
Crank case heater	20W - RESISTANCE
Resistance Ω (at 20°C)	2640 ± 10%
22 (dt 20 0)	
Base heater	75W - FLEXELEC CSC2
Resistance Ω (at 20°C)	705 ± 10%
	•

DATA SUBJECT TO CHANGE WITHOUT NOTICE

3. DIMENSIONAL DATA

GR9FI65R5IAA

.



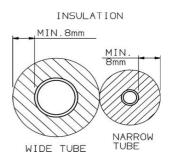
4. REFRIGERANT FLOW DIAGRAM

4-1 Trial Split System Refrigerant Flow Diagram

Outdoor Unit: GR9FI65R5IAA Indoor Unit A: MPA9FIB0R5I...

Indoor Unit B: MTAFIA0R5I..
Indoor Unit C: MTAFIA0R5I..

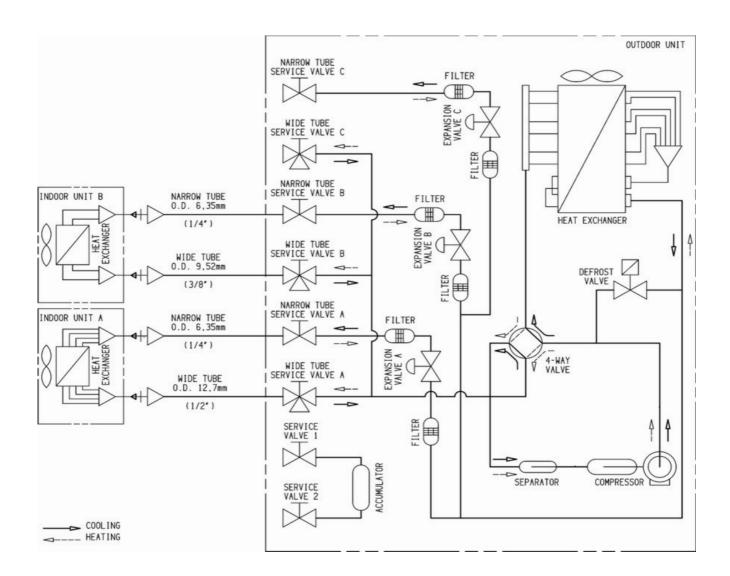
Insulation of Refrigerant Tubing


IMPORTANT

Because expansion valve is used in the outdoor unit, both the wide and narrow tubes of this air conditioner become cold. To prevent heat loss and wet floors due to dripping of condensation, both tubes must be well insulated with a proper insulation material.

The thickness of the insulation should be a min. 8mm.

CAUTION

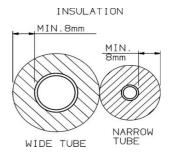

After a tube has been insulated, never try to bend it into a narrow curve because it can cause the tube to break or crack.

4-2 Dual Split System Refrigerant Flow Diagram

Outdoor Unit: GR9FI65R5IAA Indoor Unit A: MPA9FIB0R5I.. Indoor Unit B: MTAFIA0R5I..

Indoor Unit C: --

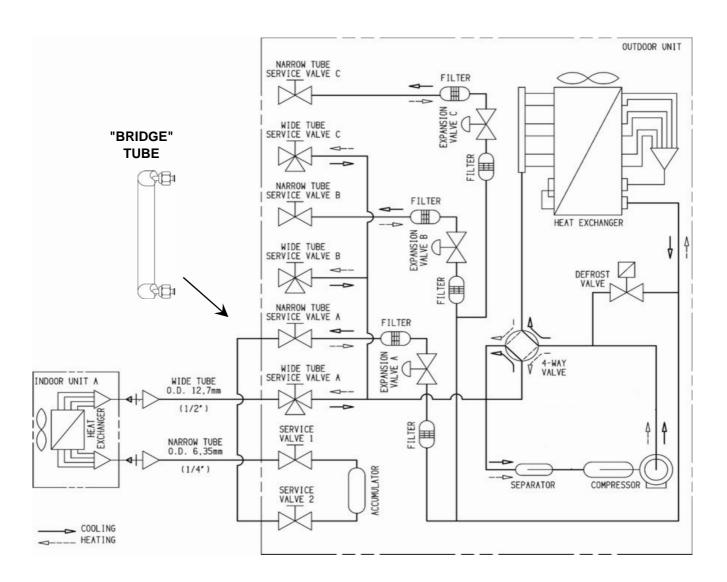
Insulation of Refrigerant Tubing


IMPORTANT

Because expansion valve is used in the outdoor unit, both the wide and narrow tubes of this air conditioner become cold. To prevent heat loss and wet floors due to dripping of condensation, both tubes must be well insulated with a proper insulation material.

The thickness of the insulation should be a min. 8mm.

CAUTION

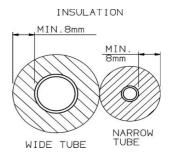

After a tube has been insulated, never try to bend it into a narrow curve because it can cause the tube to break or crack.

4-3 Mono Split System Refrigerant Flow Diagram

Outdoor Unit: GR9FI65R5IAA Indoor Unit A: MPA9FIB0R5I..

Indoor Unit B: -Indoor Unit C: --

Insulation of Refrigerant Tubing

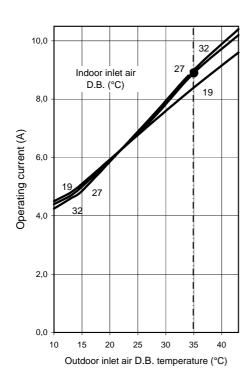

IMPORTANT

Because expansion valve is used in the outdoor unit, both the wide and narrow tubes of this air conditioner become cold. To prevent heat loss and wet floors due to dripping of condensation, both tubes must be well insulated with a proper insulation material.

The thickness of the insulation should be a min. 8mm.

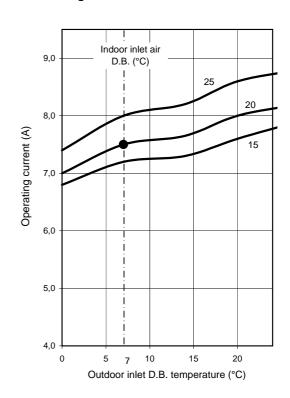
CAUTION

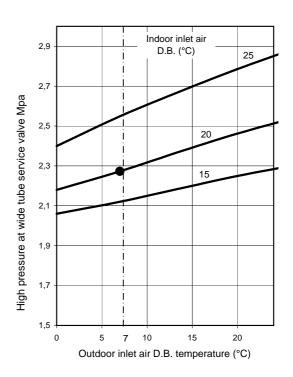
After a tube has been insulated, never try to bend it into a narrow curve because it can cause the tube to break or crack.



5. PERFORMANCE DATA

5-1 Performance charts


GR9FI65R5IAA


Cooling Characteristics

1,20 Indoor inlet air D.B. (°C) 1,10 Low pressure at wide tube service valve MPa 1,00 32 0,90 0,80 0,70 0,60 0,50 10 20 25 30 40 Outdoor inlet air D.B. temperature (°C)

Heating Characteristics

Note

Overload prevention operates to protect the air conditioner when outdoor ambient temperature reaches extremely high values in heating mode.

Points of Rating condition

Data referred to MPA9FIB0R5I x1 + MTAFIA0R5I x2

6. ELECTRICAL DATA

6-1 Electrical characteristics

Outdoor unit: GR9FI65R5IAA

COOLING

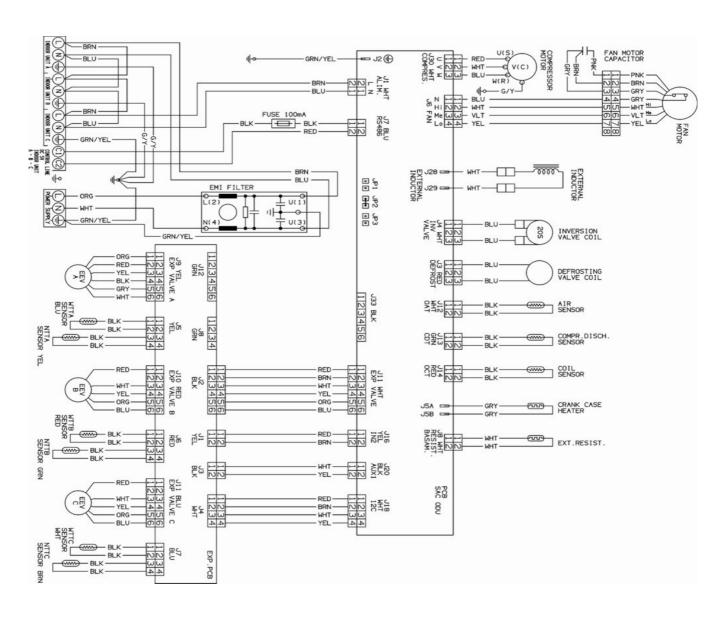
		3 Indoor Unit	Outdoor unit	Complete Unit		
			Fan Motor	Fan Motor + Compressor	Complete onit	
Performance at				230 V - 1 Phase - 50 Hz		
Rating conditions Running Amps.		Α	0,66	8,24	8,9	
	Power input	kW	0,148	1,852	2,000	

Rating Conditions: Indoor Air Temperature 27°C D.B. / 19°C W.B.

Outdoor Air Temperature 35°C D.B. / 24°C W.B.

HEATING

		3 Indoor Unit	Outdoor unit	Complete Unit	
				Fan Motor + Compressor	Complete offit
Performance at				230 V - 1 Phase - 50 Hz	
Rating conditions Running Amps.		Α	0,66	6,84	7,5
	Power input	kW	0,148	1,542	1,690

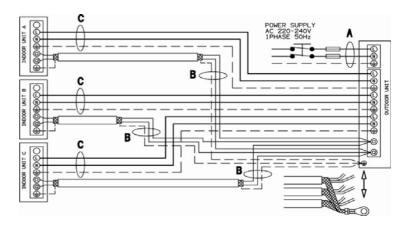

Rating Conditions: Indoor Air Temperature 20°C D.B.

Outdoor Air Temperature 7°C D.B. / 6°C W.B.

NOTE: Data referred to **3** indoor unit, **MPA9FIB0R5I x1 + MTAFIA0R5I x2**For other indoor unit models there could be some differences.

6-2 Electric Wiring Diagram

GR9FI65R5IAA

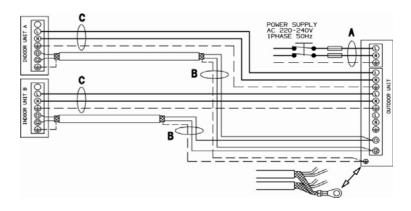

6-3 Trial Split System Wiring Diagram

Outdoor unit:

GR9FI65R5IAA

Indoor unit:

MPA9FIB0R5I x1 + MTAFIA0R5I x2

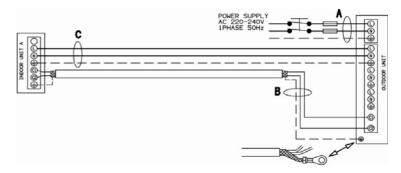

6-4 Dual Split System Wiring Diagram

Outdoor unit:

GR9FI65R5IAA

Indoor unit:

MPA9FIB0R5I + MTAFIA0R5I


6-5 Mono Split System Wiring Diagram

Outdoor unit:

GR9FI65R5IAA

Indoor unit:

MPA9FIB0R5I

7. FUNCTION

7-1 Diagnostic

With this feature is possible to have a visual signal that a trouble is occurring.

This mode is always active and the signalling is made through the display board LEDS.

In case of no troubles the LEDS status follows its normal function.

The detected troubles are showed to the user/technician using the 3 (5) leds of the indoor unit receiver and the 5 leds on the outdoor pcb. For each fault there are different effects upon the operation of the A/C:

NOTES

- The troubles are showed according to a priority list that is in case of more than one trouble present, is always showed, at first, the one with the highest priority (3 ⇒ 2 ⇒ 1 etc).
- Sensor damaged means a situation where sensor is short-circuited or opened.
- In case of damaged sensors, the system (CM, FMO, FMI etc), if in OFF state, does not start.

							system does not operate. To restart the system, power re-setting (off-on) is required			
							note: before restoring power, adjust the dip-switch			
17	*	X	*	X	₩-	WRONG CONNECTION PIPES	status on idu according to the connection pipes			
16	₩-	Χ	X	₩-	₩-	NTTC PROBE DAMAGED OR NOT CONNECTED				
15	X	¥	X	*	₩.	WTTC PROBE DAMAGED OR NOT CONNECTED				
14	₩-	X	*	X	×	NTTB PROBE DAMAGED OR NOT CONNECTED				
13	X	*	X	*	×	WTTB PROBE DAMAGED OR NOT CONNECTED				
12	X	X	*	X	*	NTTA PROBE DAMAGED OR NOT CONNECTED				
11	X	Χ	Χ	*	×	WTTA PROBE DAMAGED OR NOT CONNECTED	system does not operate.			
10	X	X	*	X	×	CDT PROBE DAMAGED OR NOT CONNECTED	as soon as fault is cleared, the system automatically restart after 3 min			
9	X	*	Χ	Х	X	OAT PROBE DAMAGED OR NOT CONNECTED				
8	₩-	X	Χ	X	X	OCT PROBE DAMAGED OR NOT CONNECTED	during this time, the signalling is showed			
7	X	X	Χ	*	₩-	COMPRESSOR OVERCURRENT				
6	X	X	*	*	×	COMPRESSOR OVERTEMPERATURE				
5	X	*	*	Χ	×	FAN OVERCURRENT				
4	₩-	*	Χ	X	×	FAN OVERTEMPERATURE				
3	X	X	*	₩-	₩-	PFC FAULT				
2	X	*	*	*	×	FAULT ON INDOOR UNITS				
1	₩-	*	*	X	X	COMUNICATION ERROR INDOOR UNIT A-B				
RANK	DL5	DL4	DL3	DL2	DL1	DIAGNOSIS CONTENTS	EFFECTS			

