Attached is one native pdf file								
REV	DESCRIPTION OF CHANGE			CHANGE REFERENCE	ORIGINATOR	VERIFIED	APPF	ROVED
					DATE AND SIGN	DATE AND SIGN	DATE ANI) SIGN
					DATE AND SIGN	DATE AND SIGN	DATE AND	D SIGN
А	Initial Release			LN-06-101	DATE AND SIGN	DATE AND SIGN	DATE AND) SIGN
THE INFORMATION CONTAINED HEREIN IS PROPRIETARY TO LAERDAL AND SHALL NOT BE USED FOR ANY PURPOSE DETRIMENTAL TO OR BE			DMR DHF			erdal	·	
REPRU	DUCED WITHOUT PERM	ISSION OF LAERDAL		helping save lives				
REFERENCE REPLACES N/A		REV _	Technical Manual SimMan Mk.2					
PRODUCT GROU		PART NO	REV	DOCUMENT NO	0017	PAGE	ATTACH	REV
211	N/A	211-19550	A	PRO-PR02	-0017	1 of 3	1	Α

Specification of Printed Matter

Product Name:	Technical Manual SimMan Mk.2		
Part no.:	211-19550	Revision	Α

1. Functionality		Description
а.	Function	Technical Service Manual

2.	Pre-press	Description
а.	Drawing Document	Ref. CD
b.	Pre-press file	CD / DocuShare
C.	Correction	Proof print to Laerdal
d.	File reference	Ref. CD / DocuShare

3.	Press	Description
а.	Color	4+4 CMYK
b.	Paper type, jacket	Plastic foil
c.	Paper type insides	Silk
d.	Paper Weight, jacket	0,0116 mm
e.	Paper Weight insides	80 grams
f.	Paper Color	Ref. item 9 below

4.	Label	Description
а.	Cutting of label	NA
b.	Type of clue	NA
c.	Size	NA
d.	Type surface	NA
e.	Label thickness/weight	NA
f.	Other	NA

5.	Envelope	Description
а.	Format	NA
b.	Type of clue	NA
C.	Type of window	NA
d.	Type of paper	NA
e.	Paper weight	NA
f.	Other	NA

6.	Post-press	Description
а.	Number printed	Ref. Purchase Order
b.	No. Of pages	48 pages without front and back page
C.	Size on product	Ref. item 9 below
d.	Clue line on book	NA
e.	No. of nails	NA
f.	Laminated	NA
g.	Corner on paper	NA
h.	Finish of the material	Ref. item 9 below

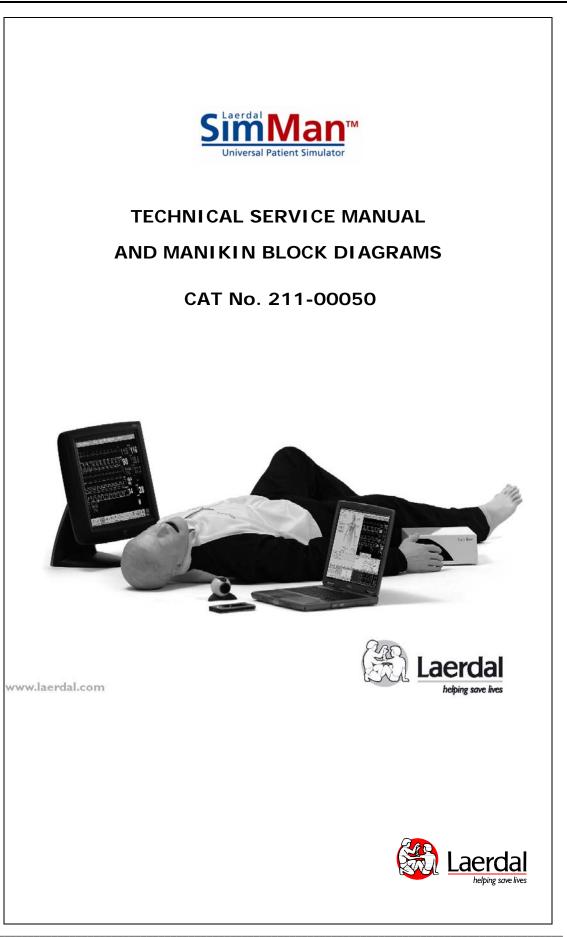
7. Delivery		Description
а.	Packing	Boxes, marked with art.no, PO no. and how many in the box
b.	Delivery note	Yes
C.	Delivery date	Ref. Purchase Order
d.	Place of delivery	Ref. Purchase Order

8.	Incoming inspection	Description
а.	COA, COC sertificate	NA
b.	Finish product	Ref. master sample
C.	Color on product	Ref. master sample
d.	Other	NA

9. Additional information

Ref. item 3.h above:

Jacket:


- Front page is transparent plastic foil
- Back page is white plastic foil
- Front and back pages is just a dust jacket without print Insides:
- White paper

Ref. item 6.c above:

Jacket is 3mm bigger then insides, On head, foot and right side, except on the side who shall be spiral binded (left side)

Ref. item 6.h:

- Spiral binding
- Insides need to be printed on both sides

	of content eneral	page 3
	chnical Specifications	3
	Inctional Description	4
	General System Overview SimMan	4
	Link Unit Overview	5
	Main Board	6
0.0	3.3.1 Main Board Block diagram	6
34	Expansion Board	7
0.1	3.4.1 Expansion Board Block diagram	, 7
35	Signals and Outputs	8
	Manikin Audio Input-Output	8
	Communications	9
017	3.7.1 System Communication Block Diagram	9
	3.7.2 Link Box Distribution of RS-232 Communication signals	9
3.8	PC-Monitor Communication	9
	3.8.1 Link Manikin Communication	9
	3.8.2 Programming of Link & Manikin Boards	10
3.9	Manikin Functions	10
	3.9.1 Solenoid Control block diagram	11
	3.9.2 Solenoid Controls on the Microcontroller	11
	3.9.3 Solenoid Functions	11
	3.9.4 Solenoid Block diagram	12
3.10) LED output	13
3.11	1 Manikin Main Board layout	13
3.12	Main Board functions	14
	3.12.1 ECG output	14
	3.12.2 Pacing/Defibrillator Input	14
	3.12.3 Defib/ECG connector, J4	15
	3.12.4 Pulse detection/Drive	15
	3.12.5 Pulse drive circuit, Laerdal pulse unit	16
	3.12.6 Pulse Drive signals on the Microcontroller	16
	3.12.7 Detection (Palpation) Carotid pulse	17
	3.12.8 Carotid Pulse detection on the Microcontroller	17
	3.12.8.1 Drive carotid pulse	17
	3.12.8.2 Carotid pulse drive on the Microcontroller	17
	3.12.9 Sound output	17
	3.12.10 Sound signals at the Microcontroller	18
	3.12.11 Lung Pressure	18
	3.12.12 Chest Compressions	19
	3.12.13 Accelerator signals at the Microcontroller	19
3.13	Spare driver	19
0.4.4	3.13.1 Driver signal at the Microcontroller	19
	Difficult Airway Functions	20 & 21
	echanical Construction	22
	Manifold and Valve Block diagram	22
	SimMan Torso top view	23
	SimMan pneumatic hose layout	24 25
	Solenoid pin layout Split View drawings	25
	SimMan Head Assembly drawing & BOM	26 & 27
4.0	28 & 29	
4.7	30 & 31	
	32, 33 & 34	
5.1	ervice and Maintenance Test and inspection SimMan	34
	SimMan Trouble Shooting Guide	35
0.2	5.2.1 Short Form	36
5.3	Compressor Troubleshooting Guide, Maintenance and Service	37, 38, 39 & 40
5.4	Spare parts list	41, 42, 43 & 44

1.0 General

The information provided in this manual is limited to what is required for checking, maintenance and repair of the SimMan manikin. This service manual provides a general understanding of the design and function of the manikin and Link Box as well as information on the mechanical assembly of the manikin.

The Directions for Use manual provided with every new unit should be consulted for detailed information on use as well as the Software Help Files.

Service of the SimMan should only be performed by authorized service personnel. Service by others may invalidate the warranty of the device.

Refer to the local purchaser for service on the PC or Video/Audio equipment. ELO Patient Monitor, PDA, USB WEB Camera is serviced by manufacturer and has to be returned to site of purchase.

Warning.

Do not open the air compressor with compressed air in the tank; always drain the compressed air before service.

2.0 Technical Specification

2.1	Power consumption: Link Box and manikin	Input 110/220VAC Output 12VDC	1,4A 5,0A
	Patient Monitor	Input 110/220VAC	2,0A
	Compressor Unit	Input 110VAC Input 220VAC	1,9A, internal thermo protection 1,0A, internal thermo protection
2.2	Air/CO2 pressure: Compressor air outlet Compressor CO2 outlet	1,1 bar +/- 10% 0,7 bar +/- 15%	
2.3	Weight and size: SimMan manikin Legs Compressor Regulator unit Patient Monitor Link box	23kg (50,4 lbs.) 2 x 3,25kg 15kg (32,9 lbs) 1,5kg (3,3 lbs) 7 kg (15,3 lbs) 2,4kg (5,3 lbs)	106x55x23cm (lxhxd) 75x12cm 40x43x24cm 20,5x16x11cm 40x35x15cm 21x10x22cm
2.4	Environmental condition: Operating temperature: Storage temperature: Humidity	: +10 C - +40 C -15 C - +50 C 15-90% RH (non cor	ndensing)

2.5 Approvals:

Council Directive 89/336/EEC, EMC-directive

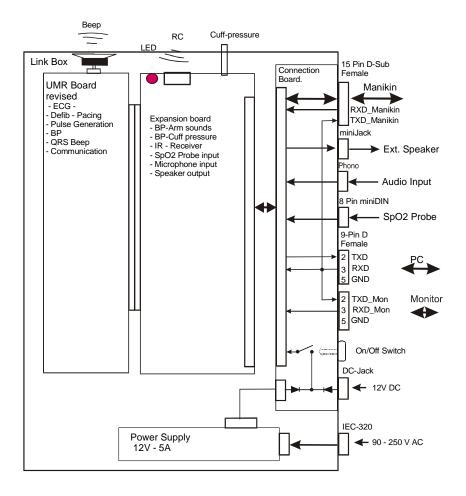
3.0 Functional Description

3.1 General System Overview SimMan

The SimMan Training System consists of the following components:

-Laerdal SimMan Manikin -SimMan Software CD-ROM Ver. 3.0 -Directions for Use -PDA User Guide -Quick Installation Guide -SpO₂ (Pulse Oximetry Probe) -Set of Defibrillation Studs: -Hands Free Defibrillation/Pacing Adaptors (Heartstart and Physio control) -Plates for Manual Defibrillation -Replaceable Neck Skin Collars (6) -Roll of Crico-Thyroid Membrane Hy-Tape (2) -Chest Tube Insertion Modules (6) -Airway Lubricant -Upper Dentures [one (1) non-breakable installed, and (3) breakable] -Replaceable Male and Female Genitalia with Urinary Connection Valves -Tool Kit, consisting of: -Pliers -Screw-driver -Nut Driver -Bolts for attaching legs to body (with locking wing nuts) -Maintenance/Repair Kit, consisting of: -Extra Pneumothorax Bladders -Modeling Wax -Talcum Powder

- -IV Kit, consisting of:
- -Tubing (2)
- -Simulated Blood Concentrate
- -IV Bag (2)-Blood Pressure Measuring Kit-Track Suit (jacket and trousers)

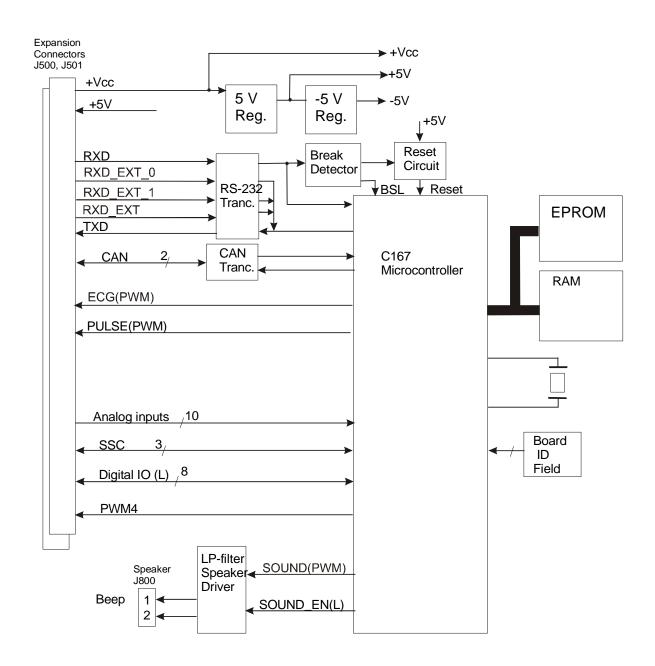


For further details on the SimMan system refer to Directions for Use

3.2 Link Unit Overview:

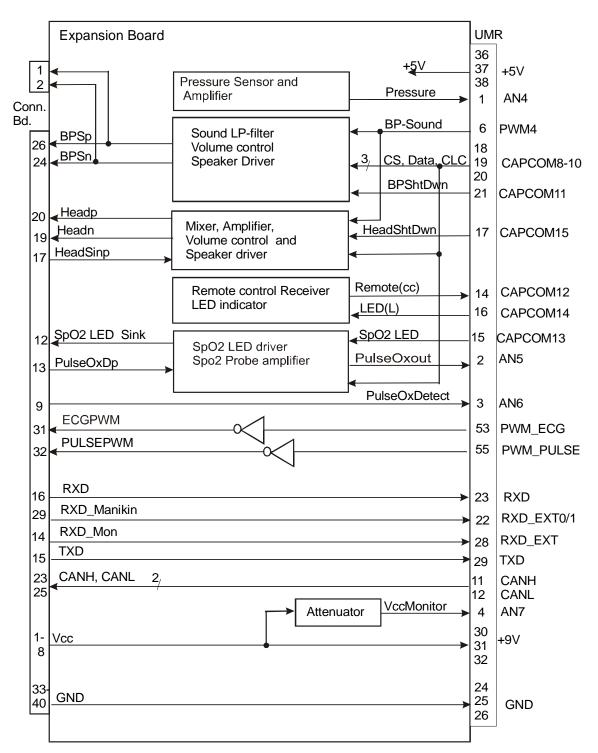
The Link Box is used in the SimMan Training System to maintain the following functions:

- Power supply for Link and Manikin.
- Remote control receiver.
- Interconnect to Monitor.
- Interconnect to Manikin.
- SpO2 dummy probe input.
- Blood pressure function (Cuff pressure and sound generation).
- Audio input and sound output for Manikin speech and oral sounds.
- ECG and Pulse generation, including Defibrillation and Pacing detection.
- QRS beep.


3.3 Main Board.

The main board in the Link box is FST1826, is the same board that is used in the HeartSim 4000. Not all the functions on the board are used in this application.

Unique functions and connections for the SimMan Link application shall be implemented on the SimMan Link Expansion Board, which are connected to one of the expansion connectors J500 / J501.


3.3.1 Main Board Block diagram:

This block diagram shows the functions that are used in this application.

3.4 Expansion Board.

The Expansion Board, FST1858 expands the UMR board with and additional sound channel for BP-sound generation plus pressure measurement for BP cuff pressure. In addition the board contains an IR remote control receiver and a status LED, an amplifier for the operator voice simulation and interface for a simulated SpO_2 .

3.4.1 Expansion Board Block diagram.

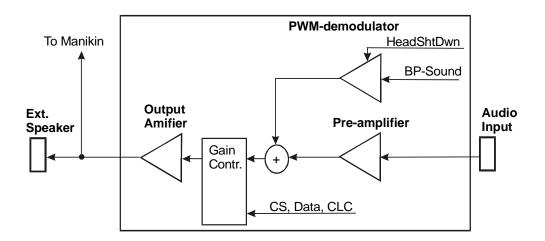
3.5 Signals and outputs:

ECG and Pulse output.

The Link box generates ECG and Pulse signals as Pulse with Modulated signals. The signals are routed to the Manikin and are generated based on samples and data received from the PC. Signal frequency for ECG is 20 kHz and for Pulse 39kHz.

QRS Beep output.

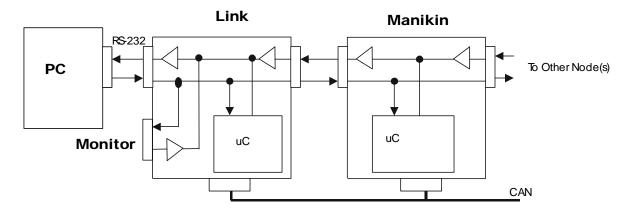
QRS beep is generated on an internal speaker in the Control Unit when SpO2 probe is attached and when SpO2 probe is not connected. Beep volumes could be set to Off, Low, Medium and High. The beep frequency will depend on SpO2 setting.


Blood pressure function:

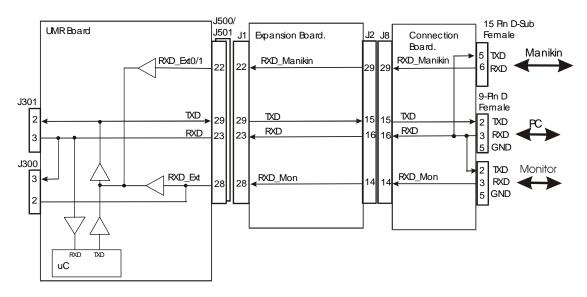
The pressure transducer measures the blood pressure cuff pressure with a signal scale of 12mV/mmHg (100mmHG=1,2V). When the Cuff pressure is set between the set Systolic and Diastolic pressure, Korotkoff sounds (phase 1-4 dependent on BP) are generated on the BP sound output.

3.6 Manikin Audio Input - Output.

The Link has an audio input that accepts input from an audio line output source. This audio input makes it possible to mix with the BP-sound output.


The Link has an audio speaker output with volume control. The output is connected to the manikin and to an external speaker connector.

SpO₂ Probe Input.


The Link have a connection to Dummy SpO2 probe that allows simulation of probe attachment /detachment. The probe has an LED and a photo-detector that is possible to turn on and off from the microcontroller.

3.7 Communication.

3.7.1 System Communication Block diagram.

3.8 PC – Monitor Communication

The RS-232 receive signal from the PC is hardwired further to the Monitor connector. The receive signal from the Monitor is "bussed" into the transmit line from the Link to the PC. (See figure above). The communication speed is set to 19200 baud, 8-bit, No parity and 1 stop bit.

3.8.1 Link – Manikin Communication.

The Link shall communicate with the Manikin through the CAN-bus. All communication from PC to Link is repeated on the CAN-bus. All Communication received on the CAN-bus by the Link is repeated to the PC with a communication speed of 125 kb/s.

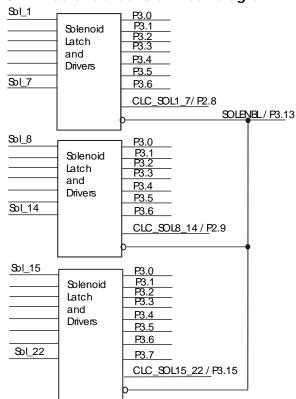
Manikin Connector.

Connector type:		15-pin D-sub, Female
Connector attachr	ment:	Screw, M3
Pinout:		
Pin #	Signal	Description
1, 2	GND	Ground
3,4	CANH, CANL	CAN bus High and Low
5	TXD	RS-232 from Link (PC) to Manikin
6	RXD	RS-232 from Manikin to Link (PC)
7	PulsePWM	Generated Pulse, PWM signal to Manikin
8	ECGPWM	Generated ECG, PWM signal to Manikin
9	Pacing/ Defib	Pacing / Defib detection from Manikin (Not used)
10, 11	BPSp,BPSn	BP sound output to Manikin
12, 13	Headp,Headn	Head Sound output to Manikin
14, 15	Vcc	Power to Manikin, +12V nom.

3.8.2 Programming of Link and Manikin Boards.

Both the Link and manikin boards contain Flash EPROM that can be programmed from the PC through the serial line.

3.9 Manikin Functions.


Inflation and deflation of bladders control the functions in the manikin.

The Control Unit controls the manikin functions by activating air solenoids in the manikin. Each function have an inflate solenoid and a deflate solenoid. Only one inflate solenoid is activated at a time. Deflate solenoids can be activated simultaneously. When several solenoids are activated simultaneously, the system puts the activations on queue and activates them consecutively.

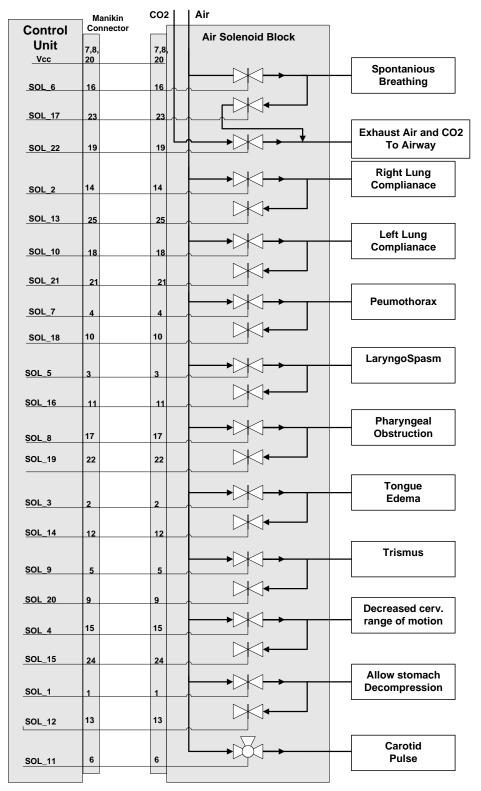
The air solenoids are activated based on key commands from the PC, Keyboard or the Remote Control.

LED indicators on the Keyboard indicate which airway functions are active, and which are not.

A valve block controls the air bladders. Routing of the different control tubes is integrated in a manifold, placed in the manikin torso. The manifold has nipples for connection to the individual bladders, and to the bronchi and lungs. The manifold also includes the Left and Right lung valve.

3.9.1 Solenoid Control Block diagram.

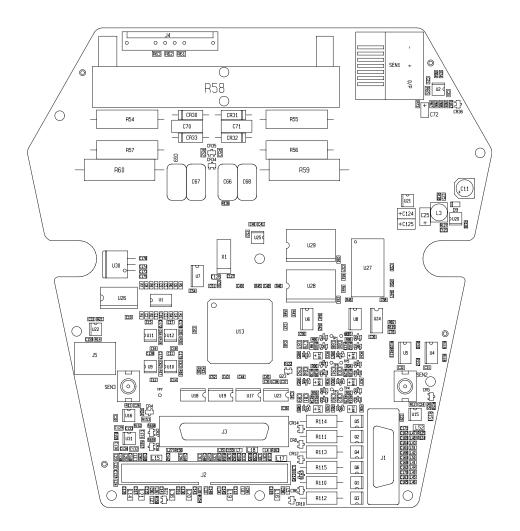
3.9.2 Solenoids Controls on the Microcontroller


Port name	Pin	Name	Function	Note
P3.0 – P3.6	65- 70,73	P3.0 – P3.6	Logic Output Bus signal.	P3.0 – P3.6 = Solenoid 1 to 7 Solenoid 8 to 14 P3.0 – P3.7 = Solenoid 15 to 22
P2.8	57	CAPCOM8 / CLC_SOL1_7	Logic output. Latch for SOL_1 - 7	Latch on Low -> High
P2.9	58	CAPCOM9 / CLC_SOL8_14	Logic output. Latch for SOL_8 - 14	Latch on Low -> High
P3.15	81	CPU_CLC / CLC_SOL15_22	Logic output. Latch for SOL_15 - 22	Latch on Low -> High
P3.13	80	SSC_CLC / SOLENBL	Logic output. Solenoids Enable.	LOW = Solenoid drive Enable

3.9.3 Solenoid Functions

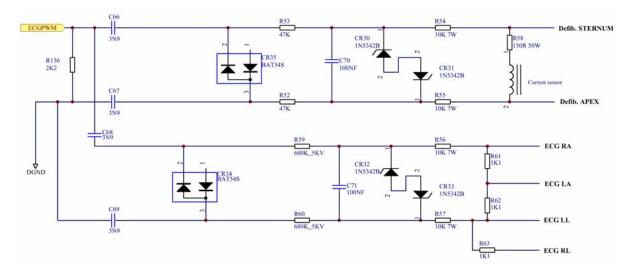
Function	Inflation Solenoid	Inflation time (ms)	Deflation Solenoid	Deflation time (ms)
Respiration	SOL_6		SOL_17	Period –Inflation
Exhale CO ₂	SOL_22	500		
Right Lung	SOL_2	450	SOL_13	2700
Left Lung	SOL_10	450	SOL_21	2700
Pneumothorax	SOL_7	1420	SOL_18	4480
Laryngospasm	SOL_5	600	SOL_16	2520
Pharyngeal Obstruction	SOL_8	700	SOL_19	4000
Tongue	SOL_3	808	SOL_14	2540
Trismus	SOL_9	1060	SOL_20	2640
Decreased Cervical	SOL_4	1060	SOL_15	2640

Function	Inflation Solenoid	Inflation time (ms)	Deflation Solenoid	Deflation time (ms)
ROM				
Stomach	SOL_1	300	SOL_12	2700
Decompression				
Pulse	SOL_11	100		


3.9.4 Solenoids Block Diagram

3.10 LED output.

The Red LED indicates the status and if the LED blinks at a frequency of 1Hz the Link has no connection with PC host program. LED shall be steady on with a very short blink every second when Link has connection with PC host program. When a valid Remote Control signal is received the Led is blinking with the frequency of 10 Hz.

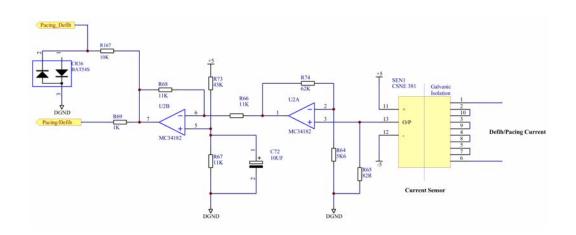

3.11 Manikin Main Board - layout

3.12 Main Board functions

3.12.1 ECG output

The ECG signal is a 20 kHz +-2 kHz, 0- 5V Pulse width modulated signal, originating at the SimMan Link Box. The circuit shown below demodulates the PWM signal:

The circuit provides two demodulators, one for defibrillator connection and one for connection to monitoring leads. The analog ECG waveform is regenerated across capacitors C70 and C71. Further attenuation by resistors creates correct ECG amplitudes. The circuit provides safety against leakage current by the use of AC coupling through capacitors C66-C69.


Typical peak-peak ECG amplitude at 5Hz, PWM modulated from 10-90%:

Defib. Apex-Defib. STERNUM : 4.8mV ECG RA-ECG LL: 6mV


ECG RA-ECG LA: 3mV

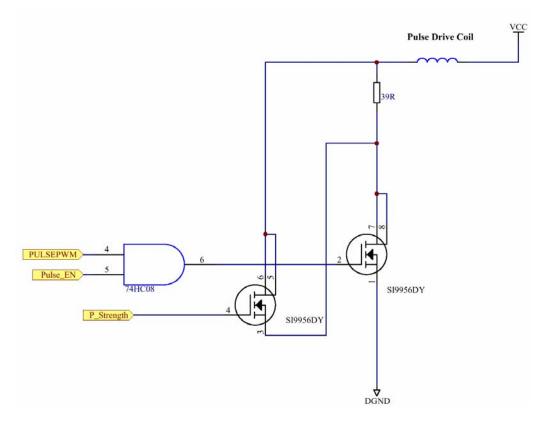
3.12.2 Pacing/Defibrillation Input

A current sensing circuit as shown below detects defibrillation and Pacing: The circuit generates two similar signals, both analog 0-5V. Pacing/Defib is connected to the SimMan Link Box trough connector J1.Pacing_Defib is connected to the Micro-controller input P5.4/AN4. The defibrillation impedance is 150Ω .

Typical signals from the circuit are shown below:

3.12.3 Defib / ECG connection, J4

Connector type: AMP 10 pos. Male header MTA-156. Pin # 2,3 and 8,9 are removed from connector.


J4, Pin #	Signal Annotation	Note
1	Defib. APEX	Defibrillation Apex connection
4	ECG RA	ECG Monitoring, Right Arm Lead
5	ECG LA	ECG Monitoring, Left Arm Lead
6	ECG LL	ECG Monitoring, Left Leg Lead
7	ECG RL	ECG Monitoring, Right Leg Lead
10	Defib. STERNUM	Defibrillation Sternum connection

3.12.4 Pulse Detection / Drive

The board will detect and drive a total of 6 Laerdal Pulse units (Item # 2154). In addition a driver is provided for a 12V Air-valve Solenoid, used to generate Carotid Pulse by bladders.

3.12.5 Pulse drive circuit, Laerdal pulse units

The pulse drive circuit is shown below:

The PULSEPWM signal is supplied from the SimMan Link Box. The signal is 0-5V, 39 kHz pulse width modulated. The PULSEPWM signal is common to all pulse units. The pulse is enabled by the Pulse_EN signal. There is one Pulse_EN signal pr. pulse unit. The pulse units can be driven at two amplitude levels. When the Pulse Strength signal is active the pulse is driven to full amplitude. Pulse amplitude can be set individually for Radial/Brachial and Femoral pulse units. The pulse drive coils will mechanically demodulate the pulse from the digital drive to analog mechanical movement. A total of 6 drive circuits are provided on the board.

3.12.6	Pulse Drive signals on the Microcontroller
--------	--

Port name	Pin #	Name	Function	Note
P3.9	76	R_Bra_Pulse_EN	Right Brachial Pulse Enable	Enables 12V PWM drive to pulse unit
P3.7	74	L_Bra_Pulse_EN	Left Brachial Pulse Enable	Enables 12V PWM drive to pulse unit
P3.8	75	R_Rad_Pulse_EN	Right Radial Pulse Enable	Enables 12V PWM drive to pulse unit
P3.6	73	L_Rad_Pulse_EN	Left Radial Pulse Enable	Enables 12V PWM drive to pulse unit
P3.13	80	R_Fem_Pulse_EN	Right Femoral Pulse Enable	Enables 12V PWM drive to pulse unit
P3.15	81	L_Fem_Pulse_EN	Left Femoral Pulse Enable	Enables 12V PWM drive to pulse unit
P4.7	92	Rad_P_Strength	Brachial/Radial Pulse Amplitude	Enables full pulse amplitude
P4.4	89	Fem_P_Strength	Femoral Pulse Amplitude	Enables full pulse amplitude

3.12.7 Detection (palpation) Carotid Pulse

Switches located in the manikin do pulse detection of the carotid pulse.

Port name	Pin #	Name	Function	Note
P2.1	48	R_Car_Pulse	Right Carotid Pulse Detection	Low logic level when switch in manikin is operated
P2.0	47	L_Car_Pulse	Left Carotid Pulse Detection	Low logic level when switch in manikin is operated

3.12.8 Carotid Pulse detection on the Microcontroller

3.12.8.1 Drive, Carotid pulse

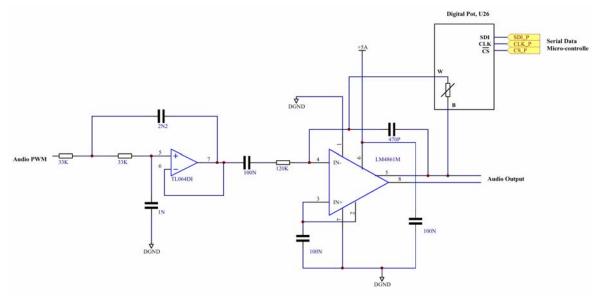
The carotid pulse is bladder-based. It uses one 12V Air-valve solenoid. The drive for this solenoid is provided by Q23.

	3.12.8.2	Carotid	Pulse drive on the Microcontroller
--	----------	---------	------------------------------------

Port name	Pin #	Name	Function	Note
P3.5	70	Car_Pulse	Right/Left Carotid Pulse Drive	Low side solenoid drive
				through Q23

3.12.9 Sound Output

The board generates sounds in order to simulate Heart, Lung and Bowel sound. The audiocircuit is illustrated below:

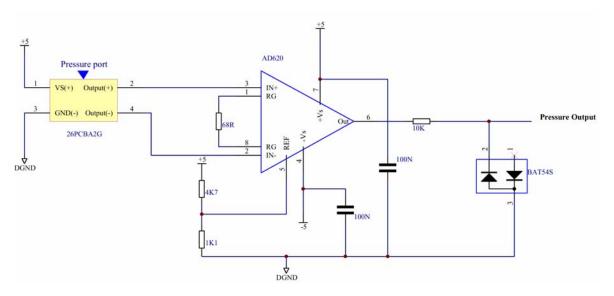

The board has 4 identical audio channels. The Audio PWM signal is 0-5V, 78 kHz pulse width modulated. The audio circuit consists of a demodulator in the form of a two-pole low-pass filter and an audio amplifier. Volume control is performed by a digital potentiometer circuit (U26). The digital potentiometer provides four individual potentiometers of 50 k Ω . The Micro-controller can set each of the potentiometers with 8 bits of resolution. The audio-circuitry is powered from a dedicated +5V regulator in order to avoid voltage dips on the logic power.

Volume: 256 levels linearly divided

Max gain: 0.83

Nominal Bandwidth: 20-3000 Hz

Min. Speaker impedance: 4Ω , differential output (symmetrical with respect to DGND).



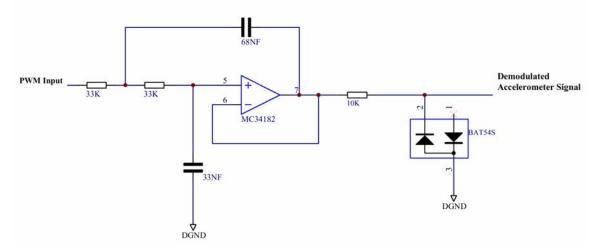
5.12.10					
Port	Pin	Name	Function	Note	
name	#				
P7.0	19	R_LungPWM	Right Lung PWM Sound	Amplifier output:	
		_		R_Lungp/R_Lungn	
P7.1	20	L_LungPWM	Left Lung PWM Sound	Amplifier output:	
				L_Lungp/L_Lungn	
P7.2	21	HeartPWM	Heart PWM Sound	Amplifier output:	
				Heartp/Heartn	
P7.3	22	BowelPWM	Bowel PWM Sound	Amplifier output:	
				Bowelp/Boweln	
P6.7	8	SDI_P	Serial data for	-	
			Potentiometer setting		
P6.6	7	CLK_P	Serial CLK for	-	
			Potentiometer setting		
P6.5	6	CS_P	Potentiometer Chip Select	-	

3.12.10 Sound Signals at the Microcontroller

3.12.11 Lung Pressure

The board calculates manikin lung inflation by measuring lung pressure. The pressure measurement circuit is illustrated below:

Two pressure measurement circuits are provided, for right and left lung. The pressure sensors used are a piezoresistive bridge-configuration with a linear pressure rage of 5 psi (260 mmHg). An instrumentation amplifier (AD620) amplifies the output from the pressure sensor. The instrumentation amplifier has a forced positive offset of approx. 1V in order to avoid a "deadband" if the pressure sensors exhibit a negative offset.


Sensitivity:70mV / mmHgMaximum pressure:30 mmHgNominal output for 20 mmHg:2.4VMaximum output for 20 mmHg:3.0VMinimum output for 20 mmHg:1.7V

3.12.12 Chest Compressions

The manikin uses an accelerometer-based sensor in order to detect chest compressions. The compression sensor generates pulse width modulated signals representing acceleration in the horizontal and vertical plane. The PWM signal is 0-5V, 1 kHz.

The compression sensor has a measurement range of +-2g. At 0 g the sensor output is PWM at 50% duty cycle.

The compression sensor has bandwidth of 0-100Hz. The board demodulates the PWM by use of a 2 pole low-pass filter as illustrated below. The filter has a –3dB point at 100Hz.

3.12.13 Accelerometer Signals at the Microcontroller

Port name	Pin #	Name	Function	Note
P5.2/AN2	29	COMPR	Signal representing acceleration from chest compressions	Analog voltage, 0-5V range
P5.3/AN3	30	Movement	Signal representing acceleration in the horizontal plane (at 90° of chest compressions)	Analog voltage, 0-5V range

3.13 Spare Driver

The board has one uncommitted low side driver (open drain).

Transistor driver:	BSH102 (Q22)
Maximum voltage:	30V
Maximum current:	850mA
Driver resistance:	0.4Ω, nom.

3.13.1 Driver signal at the Microcontroller

Port name	Pin #	Name	Function	Note
P3.4	69	P3.4	Spare low side driver	Open drain, 30V max, 850mA max.

3.14 Difficult Airway Functions.

The airway has the following difficult airway functions:

Trismus

	Will dramatically lock the teeth together and severely limit mandibular movement.
$\langle \rangle$	Controlled by inflating an air bladder in the skull.
×	When the bladder is inflated, it holds the pressure for at least 3 min.
	The distance between upper and lower teeth when Trismus active is set to 6-10
	mm.
	The required force to open jaw to 25 mm distance between teeth is set to 100 N
	Max (22.48lbs)

Tongue Edema

Tongue becomes severely enlarged causing visual obstruction of the epiglottis.			
Controlled by inflating an air bladder in the tongue.			
When the bladder is inflated, it shall hold the pressure for at least 3 min.			

Decreased Cervical Range of Motion

Locks the neck at a position slightly more forward than neutral position.
Controlled by inflating two air bladders in the head/neck.
When the bladder is inflated, it shall hold the pressure for at least 3 min.
The required force to move the neck $+/-5^{\circ}$ is set to min.10 N (2.25lbs)At the
forehead

Pharyngeal Obstruction

The posterior pharyngeal surface swells into the anterior pharyngeal cavity. Controlled by inflating an air bladder behind the pharyngeal wall. When the bladder is inflated, it shall hold the pressure for at least 3 min.

Laryngospasm

Closing of the vocal cords. Controlled by inflating two air bladders, one each side of the vocal cords. When the bladders are inflated, it shall hold the pressure for at least 3 min.

Decreased Lung Compliance

5	Close air entry to the right and/or left lung. Each lung shall be controlled individually.	
	Controlled by closing and opening a valve for each lung. The valves are controlled by pressured air.	
	When the bladders are inflated, it shall hold the pressure for at least 3 min.	
XX	When closed, the valves withstand a pressure of: 0,3 bar (4.35psi)	

Lungs.

The manikin has two independent lungs.				
The lungs have a realistic compliance of $10 - 50$ ml / cm H ₂ O and a resistance of 2 - 8 cm				
H_2O /l/sec (Normal 2-4 cm H_2O /l/sec) In the range 400 – 700 ml.				
The volume of each lung: 1 +/- 0,15 L (Total Lung volume: 1.8 – 2.3 L)				
During bag- mask or bag-tube ventilation, a volume of 300 ml total will give visible chest-rise				
of min. 3 mm.				
Chest rise shall be bilateral. If one lung is closed, a volume of 200 ml will give visible chest				
rise on the open lung side.				
CO ₂ shall be exhaled through the lungs, above (bronchi side) the lung compliance valves.				
Exhalation of CO_2 is controlled by the CO_2 value.				
At the rate 20 breaths/min. The % exhaled CO ₂ will be in the range 2-20%				
Spontaneous Breathing				

Spontaneous Breathing.

The manikin is able to simulate spontaneous breathing with a variable rate up to 40 / min.with a chest rise of min. 3 mm

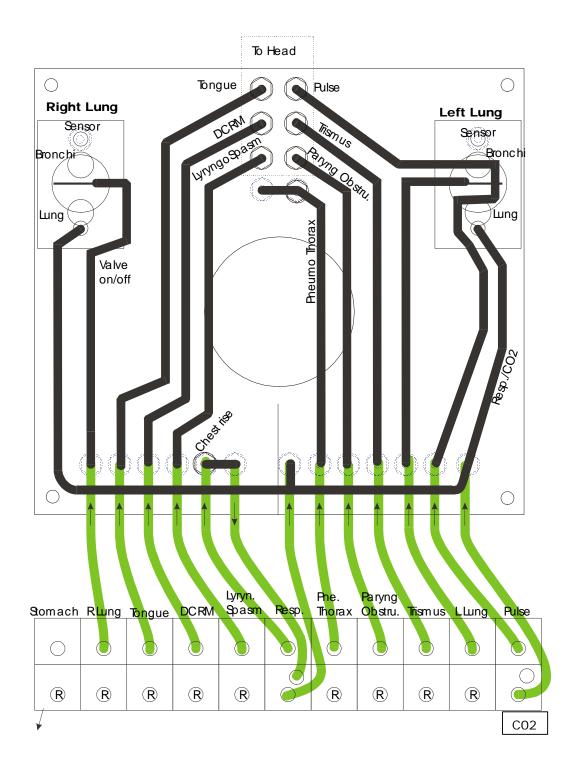
During spontaneous breathing, the manikin will give realistic chest rise.

Spontaneous breathing is be controlled by inflation and deflation of and air bladder.

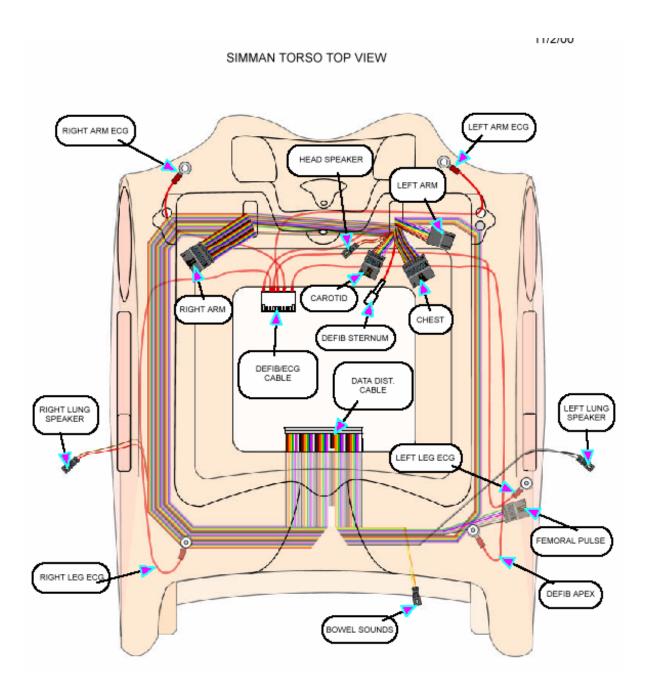
The bleed air from the breathing bladder is exhaled through the lungs, above (bronchi side) the lung compliance valves.

Pneumothorax.

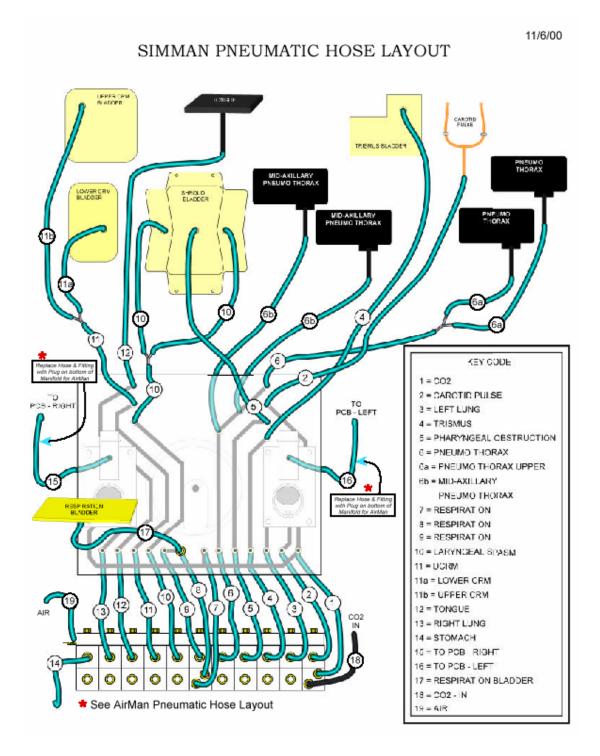
The manikin is able to simulate left and right tension pneumothorax. Proper insertion of a catheter into the appropriate site gives airflow out of the thorax area. The pneumothorax function has 4 bladders, two on each side of the chest.


The bladders are self-sealing and allow at least 10 punctures before they must be replaced.

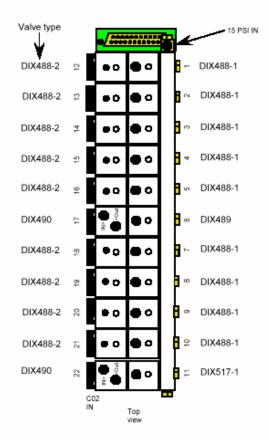
Stomach


	Esophagus		The manikin has a stomach, connected to the esophagus via stomach valves.
			It is possible to insert a gastric tube into esophagus and simulate stomach distention/decompression
Stomach Input	$\langle +$	Stomach	The stomach input valve opens if the pressure exceeds: 15 +/- 5 cmH_2O
Valve /		Decompr. Valve	The stomach input valve will release air from the stomach if the pressure exceeds: $45 + 1.5 \text{ cmH}_2\text{O}$
	Stomach		The stomach decompression valve will be open or closed for air in both directions, controlled by inflation of an air bladder.
			When gas/air is trapped in the stomach bladder it is able to hold the pressure for at least 3 min.
			There is a noticeable rise on the outside of the stomach when air is trapped inside the stomach.

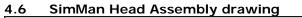
4.0 Mechanical Constructions

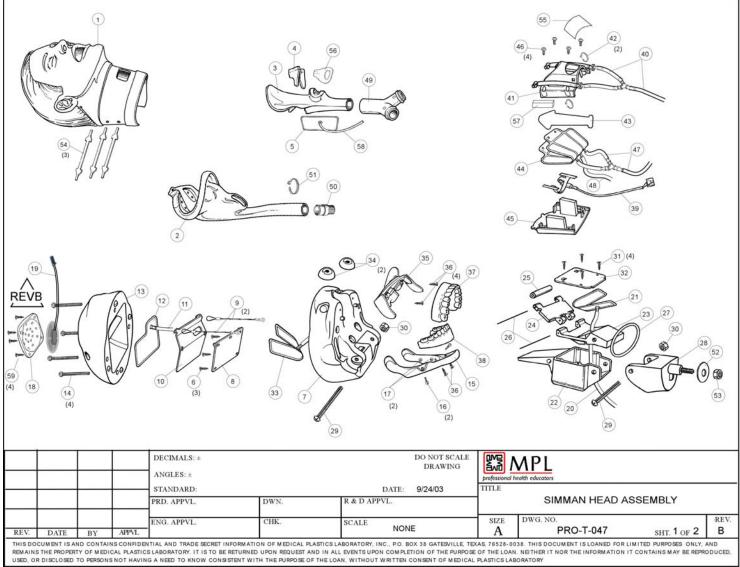

4.1 Manifold and Valve block diagram

4.2 SimMan Torso top view



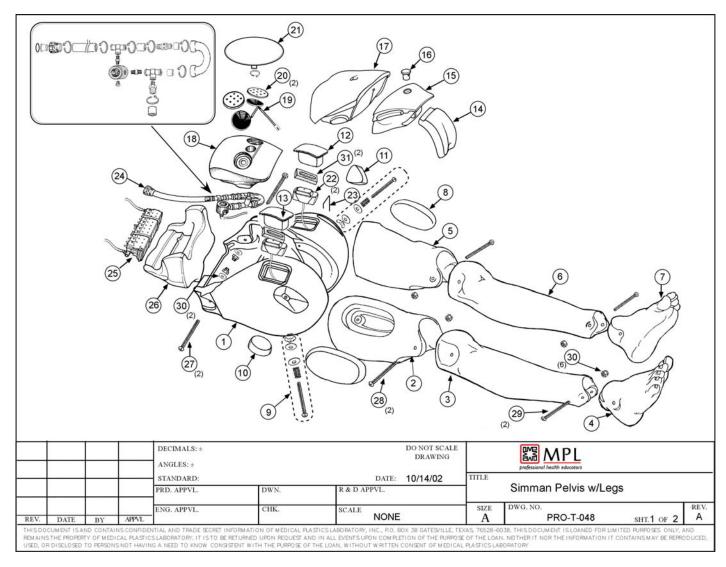
4.3 SimMan pneumatic hose layout


4.4 Solenoid pin layout


Valve #	Function	D-Sub Conn. PIN to energise
1 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 21 22	Allow stomach decompression Decreased Right Lung Compliance Tongue Edema Decreased CROM Laryngo Spasm Respiration Pneumo Thorax Pharyngeal Obstruction Trismus Decreased Left Lung Compliance Carotid Pulse Allow Stomach decompression Decreased Right Lung Compliance Tongue Edema Decreased CROM Laryngo Spasm Respiration Pnuemo Thorax Pharyngeal Obstruction Trismus Decreased Left Lung Compliance Carbon Dioxide	2 15 3 6 4 17 5 18 6 13
Note:	Pins 1-11 are the supply lines. Pins Exhaust lines. Pin 22 is the co2 sup 7, 8, and 20 are all common +12Vol	ply line. Pins

4.5 Split view drawings.

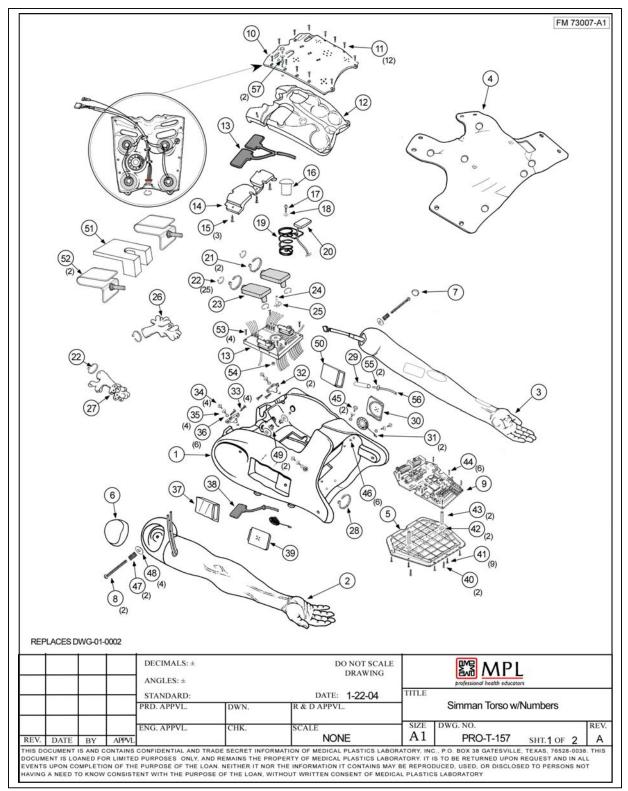
The BOM reference numbers on the illustrated pages are **NOT** spare part numbers that can be ordered. The drawings and number are for illustration please refer to the page 50 for the spare parts.



SIMMAN HEAD ASSEMBLY LAYOUT PRO-T-047 Number to BOM Reference						
	10050000		-			
	1005086S	SKIN, HD-SIM/AIRMAN-STD	34	9500-04-0001	EYE, HALF GLOBE3N BLUE	
2	1005013	AIRWAY, SIM/AIRMAN/ADLT MALE HEADS	35	1005057	PALATE ASSY, SIM/AIRMAN	
3	1005006	TONGUE, SIMMAN	36 37	4719-05-0606	FCHPSTS, #8-18 X 3/4 LG	
4	1005013	DAM, TONGUE-DA HEAD-PINK		1005145	TEETH, UPPER-SIM/AIRMAN HD-VINYL	
5	1005083	BLADDER	38	1005020	TEETH, LOWER-SIM/AIRMAN-SOFT	
6	4715-05-0605	FCHPSTS, #6-20 X 5/8 LG	39	2026	PULSE SENSOR, CAROTID	
7	1005002S	SKULL, BOTTOM-SIM/AIRMAN-STD	40	1005094	TUBING ASSY, CAROTID PULSE	
8	1005042	PLATE, TRISMUS STOP	(41) (12)	3431	SHROUD, FRONT-MACHINED-SIM/AIRMAN	
9	1005015	CABLE, TRISMUS ACTUATION 4.406" LON	(42)	6325-01-0001	TIE, CABLE-4 X .100 NYLON	
10	1005012	PLATE, TRISMUS ACTUATOR	(43)	1005091	PROTECTOR, BLADDER-MYLAR	
11	1005100	TUBING, TRISMUS BLADDER-SIM/AIRMAN	44	1005018	BLADDER, SHROUD	
12	1005080	BLADDER, TRISMUS ACTUATION	(45)	2704	SHROUD, BACK-SIM/AIRMAN	
13	1007006S	SKULL, TOP-SIM/AIRMAN-SCAN	(46)	4754-05-9606	PHPSTS, 3.5MM X 10MM FOR PLAST	
14	2117-05-0020	RHPMS, 1/4-20 UNC X 2-1/2	47	1005092	TUBING ASSY, SHROUD BLADDER-LARYNGO	
(15)	2705	MANDIBLE, SIM/AIRMAN	(48)	1005110	TUBING, SHROUD BLADDER-PHARYNGEAL	
(16)	2109-05-0005	RHPMS, #6-32 UNC X 5/8	49	2711	BIFURCATION, BRONCHIAL TREE-SIM/AIRMAN	
17	1422-05-0009	NUT, HEX-NYLOC #6-32 UNC	50	1000237	FITTING, 1/2 MALE NPT TO 7/8 ODBLACK	
(18)	1007010	COVER, SPKR-HEAD-ADV/DLX ALS	51	6325-01-0002	TIE, CABLE-5.6 X .13 NYLON	
(19)	1007014	SPKR ASSY, HEAD-AD/DLX ALS	52	1609-05-0007	WASHER, FENDER 5/16 X 1-1/4	
20	1005093	TUBING ASSY, CRM BLADDERS-SIM/AIR M	53	1422-05-0019	NUT, HEX-NYLOC 5/16-18 UNC	
21	1005081	BLADDER, LOWER DECREASED CRM-SIM/AI	54	729	STRAP, SILICONE-HEAD SKIN-SIM/AIRMAN	
22	2232	NECK BODY, SIM/AIRMAN	(55)	DA-1002S	TAPE, CRICO-THYROID	
22 23	2233	LEVER, NECK SIM/AIRMAN	56	1005159	CRICO-THYROID CARTILAGE	
24	2234	LOCK LEVER, NECK SIM/AIRMAN	57	1005177	CAROTID INSERT	
25	2248	ROLL, NECK SIM/AIRMAN	58	1200-02-0003	TUBING 1/8 X 1/4 - 17IN	
26	2436	ROD, NECK SIM/AIRMAN	(59)	4715-05-0604	FCHPSTS, #6-20 X 1/2 LG	
27)	2435	O-RING, NECK SIM/AIRMAN	•			
28	1005005S	NECK CRADLE, SIM/AIRMAN-SCAN				
29	2117-05-0028	RHPMS, 1/4-20 UNC X 3-1/2				
30	1422-05-0017	NUT, HEX-NYLOC 1/4-20 UNC				
<u>31</u>	4709-05-0604	FCHPSTS, #4-24 X 1/2 LG			TITLE SIMMAN HEAD ASSEMBLY	
32	1005079	COVER, NECK SIM/AIRMAN				
33	1005017	BLADDER, UPPER DECREASED CRM-SIM/A			SIZE DWG. NO. RE A2 PRO-T-047 SHT. 2 OF 2 B	

Cat. No. 211-19550 Rev. A

Page 27 of 44


4.7 SimMan Pelvis w/leg drawing & BOM

SIMMAN PELVIS W/LEGS ASSEMBLY LAYOUT PRO-T-048 Number to BOM Reference							
1 100502	'S PELVIS, SIMMAN W/FEM PULSE HOLES-STD	(23)	1000169	PIN, PELVIS			
2 100017	S THIGH, ADLT-RT-STD	24)	REF. DWG-01	-0004			
3 100018	S LEG, ADLT-RT-LOWER-STD	25	1002898	VALVE ASSY, AIR BANK-SIM/AIR MAN			
4 100018	S FOOT, ADLT-RT-STD	26	1005040	INSERT, FOAM-SIM/AIR MAN PELVIS			
5 100017	S THIGH, ADLT-LFT-STD	(27)	2117-05-0020	RHPMS, 1/4-20 UNC X 2-1/2			
6 100018	LEG, ADLT-RT-LOWER-STD	(28)	2117-05-0036	RHPMS, 1/4-20 UNC X 4-1/2			
7 100018	S FOOT, ADLT-LFT-STD	(29)	2117-05-0020	RHPMS, 1/4-20 UNC X 2-1/2			
8 100017	S PAD ASSY, ADLT-THIGH-STD	30	1427-05-0017	NUT, HEX CAP-1/4-20 UNC-NYLOC			
9 100132	HARDWARE SET, ADLT MNKN-LEG/PELVIS	31	1005076	INSERT, FOAM FEMORAL/BP ARM PULSE			
10 100016	PAD ASSY, AM-GLUTEAL-STD	32	1601-05-0009	WASHER, FLAT 1/4ZINK PLTD			
11 100016	PAD ASSY, AM-VENTRAL GLUTEAL-STD						
12 100505	SKIN, FEMORAL PLUSE-LFT-SIM-STD						
13 100502	SKIN, FEMORAL PLUSE-RT-SIM-STD						
14 100016	S GEN, ADLT MALE-BLANK-STD						
15 100020	BELLYPLT, CONV-AM 1 HOLE RSVR-STD						
16 100069	S PLUG, BELLYPLT RSVR-ADLT/PEDI-STD						
17 100506	SKIN, ABD THRUST-SIM/AIR MAN-STD						
18 100506	INSERT, FOAM-ABD THRUST UP SIM/AIR						
19 100506	SPKR ASSY, ABDOMINAL THRUST SIM/AIR						
20 100133	COVER, SPKR-ABD THRUST/HOSP CHESTPL						
21 100511	BLADDER, STOMACH AUSCULTION			Simman Pelvis w/Legs			
22 2154	PULSE UNIT, SIM MAN ARM/PELVIS			SIZE DWG. NO. A2 PRO-T-048 SHT. 2 OF 2 A			

Cat. No. 211-19550 Rev. A

	SIMMAN TORSO W/ARMS ASSEMBLY LAYOUT FM 73007 DWG-01-0002							
	Number to BOM Reference							
1	1005033S	TORSO, SIMMAN W/BACKPLT-SCAN	30	1005037S	COVER, SPKR-LFT MID AXILLARY			
2	IVR-5100SNDP	ARM ASSY, AM-RT IV MV NO DELT	31	1004490	SPKR ASSY, MID AXILLARY-SIMMAN			
3	1005170S	ARM ASSY, BLOOD PRESSURE	32	1005060S	MNT, ECG LEADS-SIMMAN			
4	1005069S	SKIN, CHEST-SIMMAN-SCAN	33	4715-05-0604	FCHPSTS #6-20 X 1/2" LG			
5	2140	BACKPLATE, SIM/AIRMAN	34)	2995	POST, ECG MONITORING			
6	1000191S	PAD ASSY, AM-DELT-SCAN	35	2706	SOCKET, ECG POST-SIMMAN			
7	1000841S	PLUG, ARM-ADLT 1 PC-SCAN	36	1601-06-0009	WASHER, FLAT 1/4" SST			
8	2117-05-0032	RHPMS, 1/4-20 UNC X 4"	37)	1005088S	PAD, ALCS-PNEUMO RT-SCAN			
9	FST1857	PCB ASSY, SIMMAN	38	1005133	BLADDER, MID AXILLARY			
10	1005054S	LID, CHESTPLT SIM/AIRMAN-SCAN	39	1005038S	COVER, SPKR-RT MID AXILLARY			
(11)	4719-05-0606	FCHPSTS, #8-18 X 3/4" LG	(40)	2566	SCREW, PHPMS - 4MM X 20MM			
(12)	1005053S	CHESTPLT BACK, SIMMAN	(41)	4719-05-0604	FCHPSTS 8-18X1/2 LONG			
(13)	1005090	BLADDER ASSY, MID CLAVICULAR	(42)	1609-08-0017	WASHER, FENDER 1/8 ID X 9/16 OD			
(14)	1005059S	PLATE, BLADDER RETAINING	(43)	2701	SPACER, 55MM LONG 4MM THRE			
(15)	4719-05-7506	OCWHPSTS, #8-18 X 3/4" LG	(44)	4754-05-9606	PHPSTS, 3.5MM X 10MM			
(16)	1005026	SHAFT, COMP-SIMMAN	(45)	2708A	POST ASSY, DEFIB-LAERDAL			
17	2111-05-0008	RHPMS, #8-32 UNC X 1"	(46)	1401-06-0108	NUT, HEX-6MM SS			
(18)	1601-05-0006	WASHER, #8 FLAT	(47)	1725-01-0001	SPRING, COMP .75 LONG			
(19)	1002906	SPRING, COMPRESSION SIM/AIRMAN	(48)	1601-05-0009	WASHER, FLAT-1/4 ZINK PLTD			
20	1005166	BLADDER, BREATHING	(49)	1427-05-0017	NUT, HEX CAP-1/4-20 UNC NYLOC			
21	6325-01-0008	TIE, CABLE 6" NYLON	(50)	1005169S	CHEST DRAIN MODULE			
22	6325-01-0002	TIE, CABLE 5.6" X .13 NYLON	(51)	1005072	CHEST FOAM			
23	1005085	BRONCHIAL SOCK	(52)	2400	LUNG BAG, SIMMAN			
24)	2111-05-0004	RHPMS, #8-32 UNC X 1/2"	(53)	4719-05-10006	PHPSTS, #8-18 X 3/4			
25	3429	CLIP, WIRE HARNESS	(54)	1422-05-0011	NUT, HEX #8-32 NYLOC			
26)	2713	BRANCH, BRONCHIAL TREE-LT	(55)	1205-02-0006	TUBE CONN STRAIGHT 5/32"			
27)	2712	BRANCH, BRONCHIAL TREE-RT	(56)	1005173	TUBING, LEFT MID AXIL PNEUMO			
28	6325-01-0007	TIE, 3/16 X 12" CABLE	(57)	2707	SOCKET, DEFIB POST			
29	1700-19-0002	SILICONE PLUG	Т	ITLE Simmon To	mo w/Numborn			
					rso w/Numbers			
				SIZE DWG. NO. A1 P	RO-T-157 SHT. 2 OF 2 A			

5.0 Service and Maintenance

5.1 Test and inspection SimMan

Unit S/N_____

Date:_____Tested by:_____

Equipment: Heartstart 4000 or Equivalent, Stethoscope, PC, Intubation equipment + Ventilation bag.

# T	est and inspection method	Tested
	ad/Neck Assembly:	
1.	Inspect head skin for overall appearance	
2.	Inspect for silicone closure at back of head and neck (total of 3)	
3.	Perform direct laryngoscopy, inspect: epiglottis, vocal cords, upper	
4	trachea, esophageal area for damage, rupture or leakage.	
4.	Inspect teeth and neck assembly for overall appearance	
То	co Accombly	
5.	so Assembly: Inspect skin for overall appearance. Check that that ECG studs and	
э.	defib. connectors are clean.	
6.	Inspect for overall external appearance	
7.	Ensure head assembly-to-torso hardware is tight and that head rotates freely from side to side and forward and backward.	
8.	Inspect chest plate for overall appearance and free movement into and out of torso cavity	
9.	Inspect torso-to-pelvis attachment screws. Each should be properly	
	secure (check with screwdriver).	
Pel	vis Assembly:	
	Inspect for overall appearance	1
	Inspect femoral pulse for proper feel	
Rig	ht arm Assembly:	
12.	Inspect skin and veins for holes or damage.	
13.	Inspect arm-to-torso attachment screw: phillips head and properly	
	secure to allow full articulation.	
Lef	t arm Assembly	
14.	Inspect for overall appearance and check brachial and radial pulse for proper feel	
15.	Inspect arm-to-torso attachment screw: phillips head and properly secure to allow full articulation	
16.	Inspect deltoid pad for damage	
Cal	ole and Air/CO2 Connections	
17.		
17.	mating parts	
So	L unds: To be ausculated with a stethoscope and verified for quality and clari	tv of
	nd. All sounds to be in default volume of "5", then allow volume increase an	
	rease.	
18.	Confirm presence of heart sound, change heart sound and reconfirm	
	Confirm presence of right lung sound, change lung sounds and	
	reconfirm x 6 locations.	
20.	Confirm presence of left lung sound, change lung sounds and reconfirm	
	x 6 locations	

21.	Confirm presence of bowel sound, change bowel sound and reconfirm.	
	-	
#	Test and inspection method	Tested
22.	Confirm presence of BP sound in left arm. Sound should be present at	
0.0	set systolic pressure and diminish to absent at diastolic.	
	Confirm correct function of auscultatory gap.	
24.	Confirm presence of vocal sounds x 3	
-	ses:	
25.	With BP set at 120/80, confirm presence of carotid pulse x 2, femoral pulse x 2, brachial pulse	
26	pulse x 2, brachial pulse, and radial pulse With systolic BP set at 65 mmHg, confirm presence of carotid pulse x	
20.	2 only	
27	With systolic BP set at 75 mmHg, confirm presence of carotid x 2 and	
27.	femoral x 2 pulses only	
28.	Confirm "sense" (on computer screen) and event log for:	
_	- Femoral x 2 - Brachial	
	- Radial pulses - Carotid pulses x 2	
SpC		
29.	Verify that the red light is illuminated on the probe when the unit is	
20	plugged into the back of link box.	
30.	Confirm that when the SpO2 probe is plugged in and not on SimMan	
	finger, there is no waveform or numerical value produced on the patient data display monitor.	
31.	Confirm that when the SpO2 probe is plugged in and on SimMan	
51.	finger, a waveform or numerical value is produced on the patient data	
	display monitor.	
ECC	and Electrical Therapy:	
32.	Confirm presence of ECG at ³ / ₄ lead and at hands free (sternum and	
	apex). White lead on patient's right shoulder, black lead on patient's	
	left shoulder and red lead on patient's left lower torso.	
33.	With running rhythm set at VF, waiting rhythm at NSR, and ignore	
	shock is "active", confirm that defibrillation at 360J WILL NOT move	
	waiting to running rhythm. Three (3) shocks at 360J are to be	
24	delivered as rapidly as possible.	
34.	With running rhythm set at VF, waiting rhythm at NSR, and shock "enabled", confirm that defibrillation at a minimum of 50J WILL move	
	the waiting rhythm to the running rhythm.	
35.	With the running rhythm set at NSR at 40, pacing threshold set at	
55.	40mA, and pacing disabled, confirm that pacing at 200mA WILL NOT	
	capture	
36.	With the running rhythm set at NSR at 40, pacing threshold set at	
	40mA, and pacing "enabled", confirm that pacing greater then 80mA	
	WILL produce capture and create a pulse rate matching that set on	
	TCP device.	
	ontaneous Respirations:	
37.	Confirm variable respirations are present when increased/decreased	
20	from both computer and remote controls.	
38.	Confirm apnea causes no breathing when activated from	
20	computer/remote controls	
39.	When manikin producing spontaneous respirations, confirm presence of respiratory sounds at manikin's mouth opening	
	or respiratory souries at manifin s mouth opening	

40	Confirm processo of connegraph waveform on nationt monitor to	
40.	Confirm presence of capnograph waveform on patient monitor to match each respiratory cycle.	
Che	st Movement:	
	Confirm detection and logging of:	
	- Single precordial thump	
	- CPR compressions	
	- Bag-valve-mask while ventilating	
42.	Confirm that CPR artefacts is being produced on the patient data	
	display monitor when chest compressions are being performed	
#	Test and inspection method	Tested
	vay: (All with "apnea" activated). For all bladders inspect upon initial infl e inflated for 3 min. and recheck! If any failure replace bladder.	ation and
	Perform inspection of the entire airway including bronchial trees.	
	Confirm that mask ventilation produces acceptable chest rise,	
• • •	capnograph waveform, displayed lung filling on computer screen, and	
	breath sound.	
45.	Activate "Decreased Rt. Lung": Confirm that rt. Lung is not filled and	
	not shown as filled on computer screen.	
46.	Activate "Decreased Lt. Lung": Confirm that It. Lung is not filled and	
47	not shown as filled on computer screen.	
47.	Activate "Decreased Rt. Lung" and "Decreased Lt Lung". Confirm that ventilation attempts do not result in chest rise, that lungs are not	
	shown as filled on computer screen, and that no capnograph waveform	
	is created	
48.	Activate "Stomach Decompression". Confirm that mask ventilation	
	causes air to be held in abdomen and that deactivation of that function	
	allows the air to be released.	
49.	Activate "Rt. Pneumothorax". Confirm inflation of pneumothorax	
50	bladders x 4, blocking of rt. Lung fill, and absence of rt. Lung sounds.	
50.	Activate "Lt. Pneumothorax". Confirm inflation of pneumothorax	
51.	bladders x 4, blocking of It. Lung fill, and absence of It. Lung sounds. Activate "Pharyngeal Obstruction". Visually confirm activation. Confirm	
51.	complete deflation upon deactivation.	
52.	Activate "Tongue Swelling". Visually confirm activation. Confirm	
	complete deflation upon deactivation	
53.	Activate "Decreased Cerv. ROM". Visually confirm activation. Confirm	
	complete deflation upon deactivation	
54.	Activate "Trismus". Visually confirm activation. Teeth will close to an	
	opening of no less than 6mm and no greater than 10mm. Confirm	
FF	complete release upon deactivation	
55.	Activate "Laryngospasm". Confirm that vocal cords close to a point of complete opposition and that a 3 EET cannot be inserted between the	
	cords	
56.	Upon intubation of the right mainstem bronchus, confirm that only the	
	right lung is inflated, that the chest rises only on the right, and that	
	only the right lung is shown filled, on the computer screen, during	
	ventilation.	
57.	With the tube in place, as shown in the above item, confirm that	
	activation of CO2 causes an adult EasyCap (CO2 detector) to have the	
58.	correct change in colour for both inspiration and exhalation. When CO2 is deactivated the EasyCap should return to purple, and	
50.	when reactivated it should turn yellow on exhalation	
59.	Upon correct insertion and use of Combitube trainer, confirm proper	
	chest rise, displayed lung fill icon, and chest rise upon ventilation with	
	infant/pedi manual bag-valve device.	
60.		
	Fastrack, confirm proper chest rise, displayed lung fill icon, and chest	
	rise upon ventilation with infant/pedi bag-valve device.	

5.2 SimMan Trouble Shooting Guide

Before using this guide you should ensure that:

- 1) All components are connected as shown in the directions for use.
- 2) The Link box just has been powered up.
- 3) The Monitor just has been powered up.
- 4) The PC is powered up and is not running any SimMan software.

5.2.1 Short form

The SimMan system has built in a few indicators that give a quick overview of the running status of the system.

1.1.1 Indicator	1.1.2 Status	1.1.3 Description
Link box LED	Blinking 50% off and 50% on.	Indicates that the link box has power, but has no connection with SimMan PC program.
	Almost always on, just shut off for a very short time at regular intervals.	Indicates that the link box is communicating with the SimMan PC program.
	Always on or always off.	SimMan Link box is not running. Try to switch power off and on again.
Color of Manikin field in SimMan host program window. This window is displayed when, after the SimMan program is started, clicking on the red heart icon in the right bottom corner off the screen, on the windows task bar.	Color is green.	Indicates that the Manikin is properly connected and running.
	Color is red.	Indicates that the Manikin is not properly connected. Check connections and try to restart Link box.
Clock display in upper left corner of Patient Monitor, after SimMan program is started.	The clock is not displayed.	The Patient Monitor is not properly connected. Check connections or try to restart Monitor.
	Clock is displayed and is running. Shall have the same time as the event logging clock of the SimMan program.	The Patient Monitor is communicating with the SimMan program.
	Clock is displayed but is frozen. (While SimMan program event clock is not paused.)	Try to restart the Patient Monitor.

5.3 Compressor Troubleshooting Guide, Maintenance and service

If your compressor is experiencing any of the following symptoms listed below follow the described steps:

'...not functioning', '...will not turn on...', '...has a leak...', '...will not hold air...', '...is smoking...', '...runs continuously...', '...making an unusual noise...' etc....

A) Is the compressor being started for the first time?

If the answer is yes, then

- Ask for confirmation that the start procedure in the 'User Guide Compressor Unit' has been followed.
- Follow the start procedure step by step.

If the answer is no, then follow step B.

B) Restarting of the compressor?

If the compressor has been running OK before, first go through the 'Stop / Shut Down Steps' and then the 'Start procedure'.

C) Does compressor run and rest in alternating cycles?

All the compressors have a defined 'normal' cycle of running and resting (cooling).

• Use the compressor in a typical mode of compressor and manikin set-up, and then verify that the compressor does run and stop in intervals.

If the compressor does not start and stop in intervals, then:

• Check the drain valve (1) on the compressor unit. This valve should be 'closed' in normal operation mode.

If the compressor still runs continuously with the drain valve closed,

• Turn the 'air valve' (2) to the 'closed' position while the compressor is running.

If the compressor runs continuously for more than 2 minutes after the air value is shut, this could indicate internal leakage with potential overheating as a consequence.

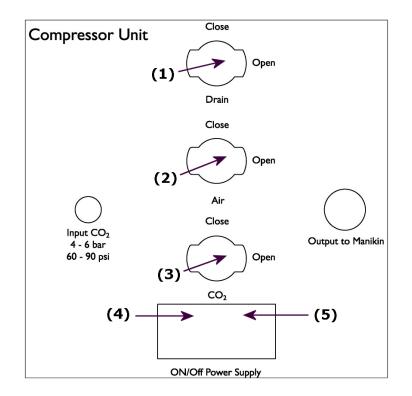
If the compressor is still not working correctly after going through the above steps, then the compressor will need to be serviced or repaired.

User guide Compressor Unit.

Start procedure:

- 1. Check Compressor Unit for transport damage.
- 2. Check that Power switch (4) is set to off position "0".
- 3. Plug power supply cable into plug (5) in Compressor panel.
- 4. Plug power supply cable into power source.
- 5. Connect all hoses to manikin.
- 6. Check that Drain valve (1) is closed.
- 7. Close Air valve (2) and CO_2 valve (3).
- 8. Push Power switch (4) to on position "1", the Compressor will start and run for approx. 45 seconds to build up pressure in tank.
- When Compressor stops you can start to use the manikin.
 Open the Air valve (2) and the CO₂ valve (3). (CO₂ supply to be connected to the "Input CO₂" connector using the black hosing attached).
- 10. The Compressor will start and stop with different intervals depending on consumption of air.

Stop procedure:


- 1. Push Power switch (4) to off position "0", the Compressor will stop if it is running.
- 2. Open Drain valve (1) and drain air out of system.
- 3. Close Drain valve (1) and disconnect all hoses.

Warning:

Do not open Compressor box when energized, dangerous voltage inside. Only to be opened by authorized personnel.

Important:

If the Compressor Unit is stopped manually with the on/off switch, the air tank has to be drained before restart.

General:

- Keep the unit clean both inside and outside.
- Always drain air after use.
- Close all valves after use.
- •

Service at every 2nd year:

- Exchange filter on the compressor air silencer (Fig.1). Part number: 500 510.
- Open air ventilation lock on the tank (Fig.2), turn the to let water out of the tank (This
 procedure must be adjusted depending on experience of use and climatic conditions where
 used)
- Check filter on the water separator (Fig.2) and exchange if necessary. Part number. 049 381 9607

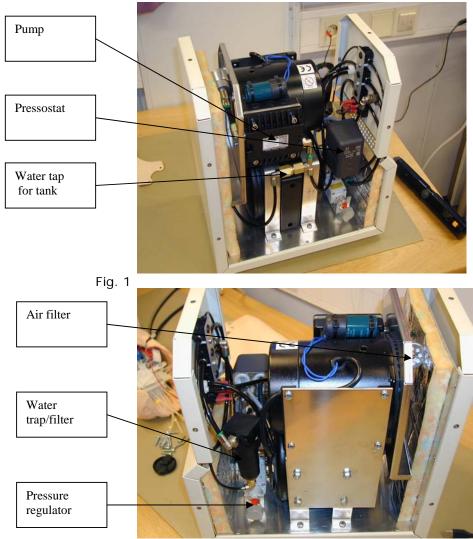
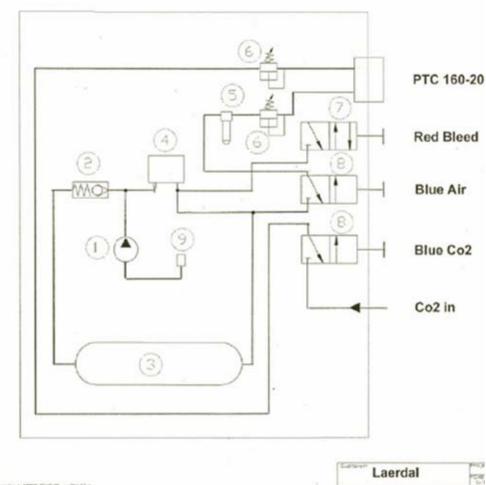
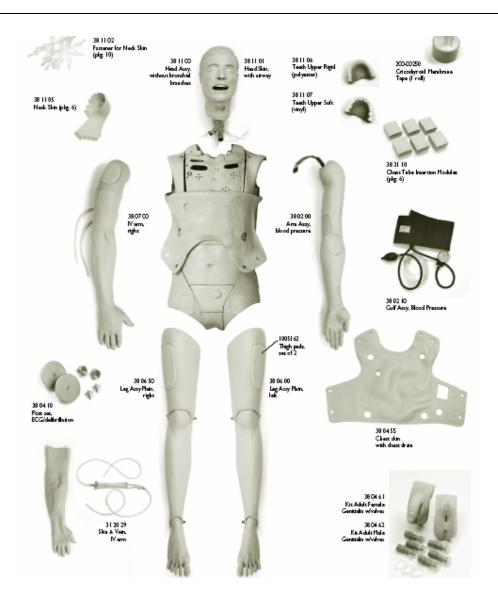



Fig. 2

NORS:

٠

Andeolow suppring to NPDEK STREAM and IMP 22-1
 Assessing, when an aparticip according to Kin-GD 2503-1 factors and #G HE2 factors 8
 A Targo signs to be charactered


5. Anniheastan Geograp (100.0)/40520 (per, 1ain 92.0) 4. Paulog KOSSY 9-05-56 (palae) (

Gallaren	Laerdal			1	100
1. 2-35,243	*1	1.11	4	to and	

Cat. no.	Description
380305	Cable main board to link
271500	Cable 9-pin D-sub (PC to Link Box)
320256	Power resistor 150R
380100	Link box
380200	Arm cpl. Blood pressure SimMan
380201	Arm bolts set
380210	Cuff assy., blood pressure SimMan
380300	Main board SimMan
381107	Upper teeth soft
380350	Compression board SimMan
380400	Chest plate cpl. SimMan
380401	Speaker set chest plate 8 ohm, w/tape
380402	Speakers Mid auxiliary, set of 2
380409	Mounting strips pkg. of 100
380410	Studs ECG & Defib set
380411	Wire Harness chest plate (Defib and speakers)
380412	Wire Harness Data distribution
380413	Wire Harness Solenoid, SimMan
380420	Lung
380430	Tubing set SimMan
380435	Breathing Bladder
380435	Chest Foam
380445	
380445	Top of compression spring Chest skin SimMan
	Genitalia blank
382460	
380461	Genitalia, Female w/connectors
380462	Genitalia; Male w/connectors
380470	Belly plate
380471	Plug belly plate
380475	Pelvic pin
380480	Abdominal thrust cpl. (stomach cpl.)
380481	Stomach shut off valve
380482	Stomach valve
381201	Jet-vent adapter kit
380484	Stomach bladder
380485	Speakers for the stomach, w/wire harness and foam, 8 ohm
	speakers
380491	Femoralis pulse right
380492	Femoralis pulse left
380493	Wire Harness Femoralis pulses
380600	Leg plain left
380650	Leg plain right
380700	IV arm right
380800	Plain arm left
380801	Hand left
380810	Pad set shoulder and hip
380901	Jacket SimMan
380902	Trousers SimMan
381000	Solenoid block cpl.
381010	Tubing Assy, Compressor-Manikin Air/CO2
381011	Quick connectors, twin female rec.
201050	Manifold cpl.
381050	

5.4 Spare Parts List Consumables

381101	Head skin w/airway
381102	Fasteners for neck skin (Pkg. 10)
381104	Speaker Assy, head SimMan
381106	Upper teeth rigid
381110	Head bladders set
381120	Shroud w/pulse and sensors
381130	Bronchial tree cpl.
211-19550	SimMan SW 3.0 Technical Service Manual
211-19950	SimMan CD SW 3.X
245-990XX	PDA (XX=Laguage codes)
245-96050	USB WEB Camera
245-98050	USB Hub
245-16750	Audio Cable
245-16350	Cable 15-pin D-sub (Link Box to Manikin)
245-18050	Transportation Case (for Patient Monitor etc.)
210-01050	Compressor 230V-240 V
210-01150	Compressor 110V
381655	SimMan Manikin Transport Case
381220	Regulator Unit
381850	Portability Kit
260305	Power-cord (US)
260306	Power-cord (EUR)
260307	Power-cord (UK)
380405	Bladder Assy, mid clavicular
380406	Bladder set, mid axillary
380407	Pneumo pad (set of 2)
381105	Neck skin (pkg.6)
381133	Sock, bronchial tree
381300	Pulse Oximetry probe
383110	Chest drain modules (pkg.6)
245-95050	Patient monitor w/touch screen
312029	Skin & vein IV Arm
200-00250	Tape crico-thyroid

