
TECHNICAL DATA & SERVICE MANUAL

INDOOR UNIT: KAF94R5TA-

SPLIT SYSTEM AIR CONDITIONER

Model No.	Product Code No.
KAF94R5TA-	387105948

KAF94R5TA-

IMPORTANT! Please read before installation

This air conditioning system meets strict safety and operating standards.

For the installer or service person, it is important to install or service the system so that it operates safely and efficiently.

For safe installation and trouble-free operation, you must:

- Carefully read this instruction booklet before beginning.
- Follow each installation or repair step exactly as shown.
- · Observe all local, state and national electrical codes.
- Pay close attention to all warning and caution notices given in this manual.
- •The unit must be supplied with a dedicated electrical line.

This symbol refers to a hazard or unsafe practice which can result in severe personal injury or death.

This symbol refers to a hazard or unsafe practice which can result in personal injury or product or property damage.

If necessary, get help

These instructions are all you need for most installation sites and maintenance conditions.

If you require help for a special problem, contact our sale/service outlet or your certified dealer for additional instructions.

In case of improper installation

The manufacturer shall in no way be responsible for improper installation or maintenance service, including failure to follow the instructions in this document.

SPECIAL PRECAUTIONS

 During installation, connect before the refrigerant system and then the wiring one; proceed in the reverse orden when removing the units.

When wiring

ELECTRICAL SHOCK CAN CAUSE SEVERE PERSONAL INJURY OR DEATH. ONLY A QUALIFIED, EXPERIENCED ELECTRICIANS SHOULD ATTEMPT TO WIRE THIS SYSTEM.

- Do not supply power to the unit until all wiring and tubing are completed or reconnected and checked, to ensure the grounding.
- Highly dangerous electrical voltages are used in this system. Carefully refer to the wiring diagram and these instructions when wiring.

Improper connections and inadequate grounding can cause accidental injury and death.

- · Ground the unit following local electrical codes.
- The Yellow/Green wire cannot be used for any connection different from the ground connection.
- Connect all wiring tightly. Loose wiring may cause overheating at connection points and a possible fire hazard.
- Do not allow wiring to touch the refrigerant tubing, compressor, or any moving parts of the fan.
- Do not use multi-core cable when wiring the power supply and control lines. Use separate cables for each type of line.

When transporting

Be careful when picking up and moving the indoor and outdoor units. Get a partner to help, and bend your knees when lifting to reduce strain on your back. Sharp edges or thin aluminium fins on the air conditioner can cut your fingers.

When installing...

... In a ceiling or wall

Make sure the ceiling/wall is strong enough to hold the unit-weight. It may be necessary to build a strong wooden or metal frame to provide added support.

... In a room

Properly insulate any tubing run inside a room to prevent "sweating", which can cause dripping and water damage to walls and floors.

... In moist or uneven locations

Use a raised concrete base to provide a solid level foundation for the outdoor unit.

This prevents damage and abnormal vibrations.

... In area with strong winds

Securely anchor the outdoor unit down with bolts and a metal frame. Provide a suitable air baffle.

... In a snowy area (for heat pump-type systems)

Install the outdoor unit on a raised platform that is higher than drifting snow. Provide snow vents.

When connecting refrigerant tubing

- Keep all tubing runs as short as possible.
- · Use the flare method for connecting tubing.
- Apply refrigerant lubricant to the matching surfaces of the flare and union tubes before connecting them; screw by hand and then tighten the nut with a torque wrench for a leak-free connection.
- · Check carefully for leaks before starting the test run.

NOTE:

Depending on the system type, liquid and gas lines may be either narrow or wide. Therefore, to avoid confusion, the refrigerant tubing for your particular model is specified as narrow tube for liquid, wide tube for gas.

When servicing

- Turn the power OFF at the main power board before opening the unit to check or repair electrical parts and wiring.
- Keep your fingers and clothing away from any moving parts.
- Clean up the site after the work, remembering to check that no metal scraps or bits of wiring have been left inside the unit being serviced.
- Ventilate the room during the installation or testing the refrigeration system; make sure that, after the installation, no gas leaks are present, because this could produce toxic gas and dangerous if in contact with flames or heat-sources.

Table of Contents

1. SPECIF	ICATIONS	4
1-1	Unit Specifications	4
1-2	Major Component Specifications	5
2. DIMENS	SIONAL DATA	6
3. ELECTE		7
3-1	Electric Wiring Diagrams	7
3-2	System Wiring Diagrams	7
4. FUNCTI	ON	8
4-1	Cool Mode Operation	8
4-2	Heat Mode Operation	9
4-3	Auto (Cool/Heat) Mode Operation	10
4-4	Dry Mode Operation	11
4-5	Fan Mode Operation	11
4-6	Protection Operations in Cool and Dry Modes	12
4-7	Protection Operations in Heat Mode	14
4-8	Sleep Function	17
4-9	Daily Timer Function	17
4-10	IFEEL Function	17
4-11	Manual Unit Control and Led Indicator	18
4-12	Recovery from Power Failure	18
5. TROUB	LESHOOTING	19
5-1	Check before and after Troubleshooting	19
5-2	Air conditioner does not operate	20
5-3	Some part of Air conditioner does not operate	24
5-4	Air conditioner operates, but abnormalities are observed	25
5-5	If a Sensor is defective	27
6. CHECK	ING ELECTRICAL COMPONENTS	28
6-1	Measurement of Insulation Resistance	28
6-2	Checking Continuity of Fuse on PCB Ass'y	29
6-3	Checking Motor Capacitor	29

1. SPECIFICATIONS

1-1 Unit Specifications

KAF94R5TA-

Power source	220 - 240	220 - 240 V ~ 50 Hz		
Voltage rating	230	230 V		
Performance	Cooling	Heating		

10	Tormance			oooliing	ricuting
	Capacity			See catalogue with th	e requested matching
	Air circulation	High/Med./Low	m³/h	400 / 36	60 / 300

Features

Controls/Temperature controls			Microprocessor/ I.C. thermostat
Control unit			Wireless remote control unit
Timer			ON/OFF 24 hours
Fan speed			3 and Auto
Airflow direction		Horizontal	Manual
		Vertical	Manual
Air Filter			Washable, Anti-Mold
Power noise level	High/Med./Low	dB(A)	51 / 48 / 42
Refrigerant tubing connections			Flare type
Refrigerant	Narrow tube	mm(in.)	6.35 (1/4)
tube diameter	Wide tube	mm(in.)	9.52 (3/8)
Refrigerant			R410A
Refrigerant tube kit / Air clean filte	r		Optional / Optional

Dimensions & Weight

			300
Unit dimensions	Height	mm	700
	Width	mm	560
	Depth	mm	200
Package dimensions	Height	mm	770
	Width	mm	620
	Depth	mm	265
Weight	Net	kg	18
	Shipping	kg	20
Shipping volume	· · ·	m ³	0,13

DATA SUBJECT TO CHANGE WITHOUT NOTICE

1-2 Major Component Specifications

KAF94R5TA-

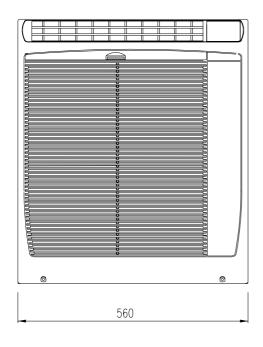
Со	Controller PCB		
	Part No.	WSA - 128	
	Controls	Microprocessor	
	Control circuit fuse	250 V - 3.15 A	

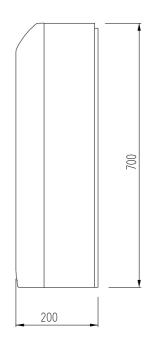
Remote Control Unit

RC-2 (RC) - RC-7 (RC)

Fan & Fan Motor				
Туре				Cross - flow
Q'ty Dia. and le	nght	mm		1Ø 100 / L 410
Fan motor modelQ	'ty			K35406-M018921
No. of polesrpm (2	30 V, High)			41196
Nominal output			W	27
Running Amps			А	0.12
Power input			W	26
Coil resistance (Amb	ient temp. 25 °C)		Ω	GRY-WHT: 545÷630
				WHT-VLT: 92÷105
				VLT-YEL: 62÷71
				GRY-BRN: 78÷90
Safety devices	Туре			Thermal protection
	Operating temp.	Open	°C	150 ± 10
		Close		Automatic
Run capacitor			μF	1
			VAC	450

Hea	Heat Exch. Coil			
	Coil		Aluminium plate fin / Copper tube	
	Rows		1	
	Fin pitch	mm	1,4	
	Face area	m²	0,185	

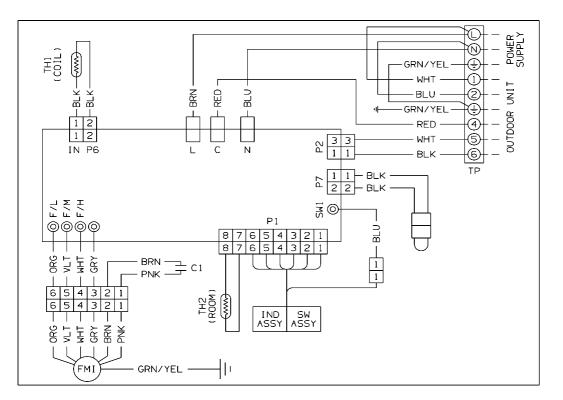

Thermistor (Coil sensor TH1)			
Туре	NTC sensor		
Resistance (at 25 °C)	κ <u>Ω</u> 10 ± 3%		


The	Thermistor (Room sensor TH2)		
	Туре		NTC sensor
	Resistance (at 25 °C)	кΩ	10 ± 5%

DATA SUBJECT TO CHANGE WITHOUT NOTICE

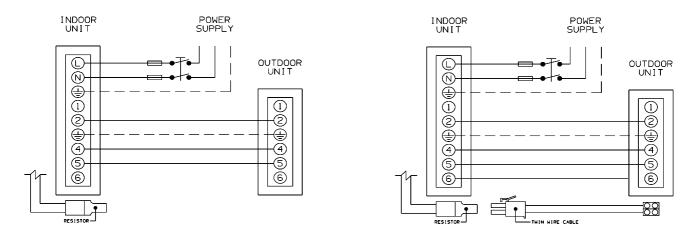
2. DIMENSIONAL DATA

KAF94R5TA-

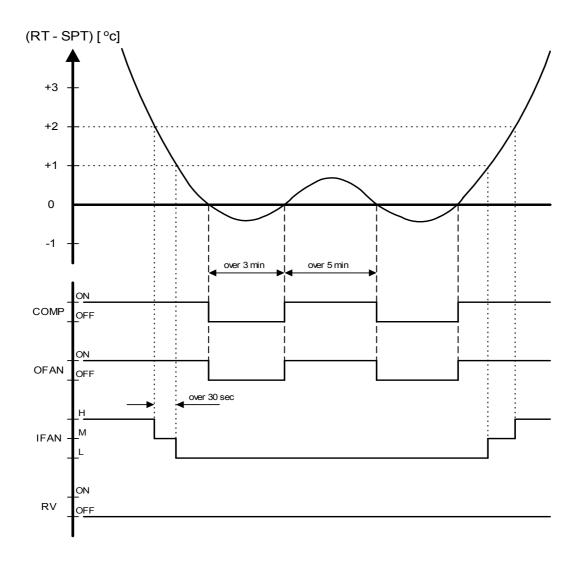


Unit: mm

3. ELECTRICAL DATA 3-1 Electric Wiring Diagrams


KAF94R5TA-

3-2 System Wiring Diagrams


Cooling only Models

Heat Pump Models

Heat Pump Models: disconnect the resistor from the indoor unit twin wire cable and connect the suppled twin wire cable instead.

4. FUNCTION 4-1 Cool Mode Operation

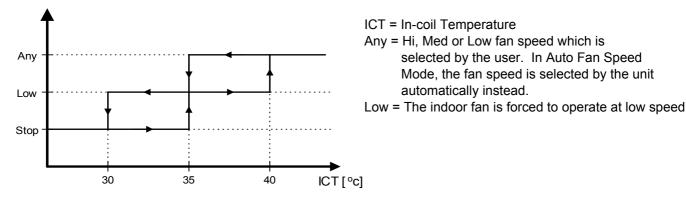


In Cool Mode, the operation of the Compressor (COMP), Outdoor Fan (OFAN) and Indoor Fan (IFAN) are determined by the difference between the Room Temperature (RT) and the Set Point Temperature (SPT) as in the graph above.

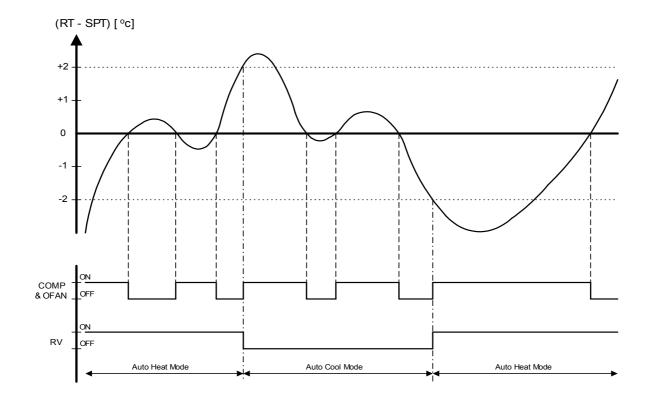
Notes:

- 1. In this graph, the IFAN is operating in the "Auto Fan Speed" setting. If the user has selected the low, medium or high fan speed, the IFAN will run constantly at that speed only.
- 2. In addition to the value of (RT-SPT), the operations of the relays are also controlled by protection delays. For example, (a) the minimum On/Off time of the COMP is 5 min and 3 min respectively, and (b) the IFAN can change speed only after it has operated at the same speed for 30 sec.

4-2 Heat Mode Operation

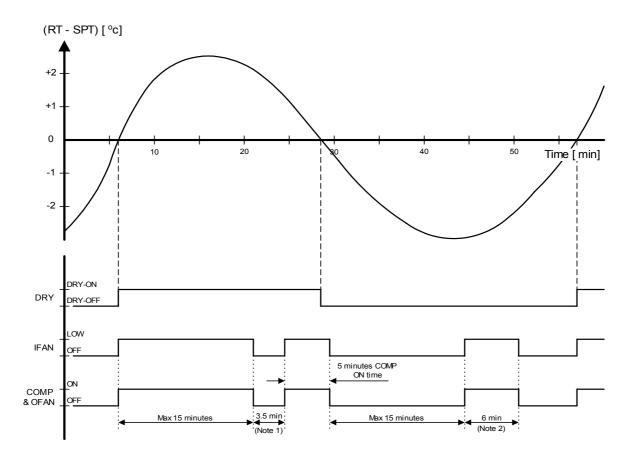


The Heat Mode operation is similar to the Cool Mode operation. The COMP, OFAN and IFAN are mainly controlled by the value of (RT - SPT). In the graph above, the IFAN is operating in Auto Fan speed mode. Therefore, the IFAN speed changes automatically according to the (RT - SPT).


Note 1: The 30s IFAN operation is for purging the heat from the in-coil after COMP has stopped.

Note 2: The IFAN will not be turned on until the in-coil temperature is high enough (as shown in the graph below) to prevent the unit from supplying cool air.

IFAN Speed



4-3 Auto (Cool/Heat) Mode Operation

In Auto Mode, the unit switches between the Auto Cooling Mode and Auto Heating Mode automatically to maintain the room temperature (RT) at the set point temperature (SPT).

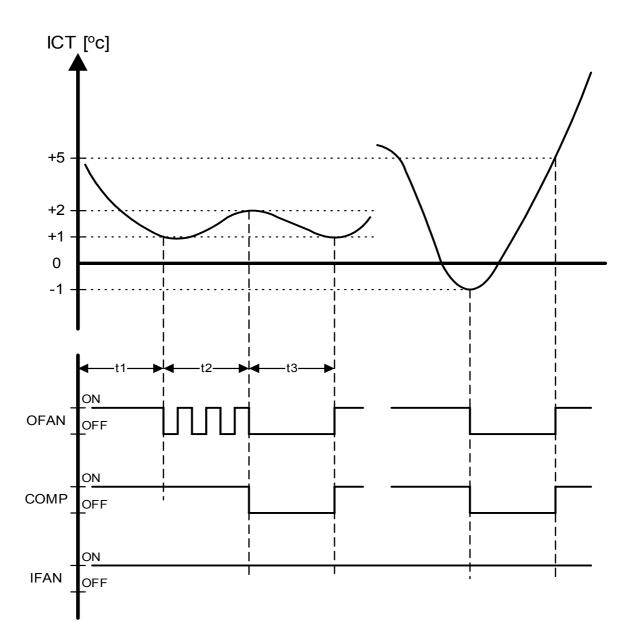
4-4 Dry Mode Operation

In Dry Mode, the unit operates in a mild cool mode to lower the humidity of the room. In order to maintain a high efficiency in the drying operation without over lowering the room temperature excessively, the Dry Mode is different from the Cool Mode in two ways.

- 1. The IFAN is forced to operate at low speed only. And, the IFAN is turned off with the COMP.
- 2. The unit operates in either the "Dry-on" state or the "Dry-off" state. If RT = SPT, the unit will operate in "Dry-off" state. The COMP is forced to operate for 6 min after it has stopped working for 15 min. If RT > SPT, the unit will operate in "Dry-on" state. The COMP is forced off for 3.5 min after it has been working for 15 min.

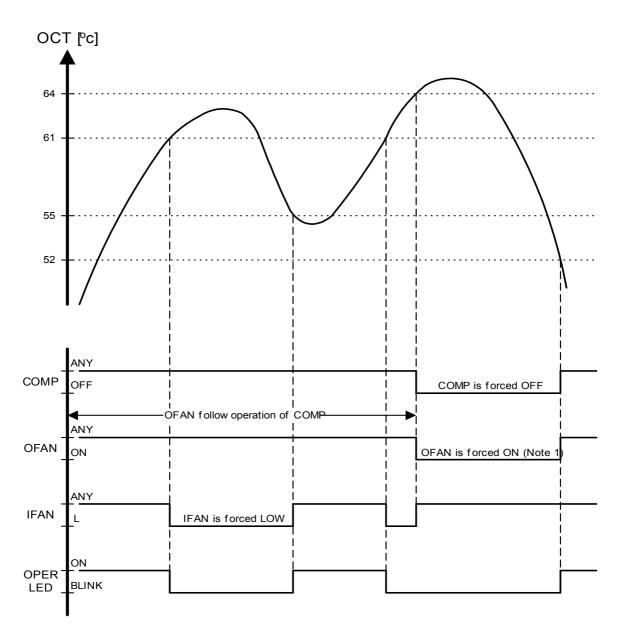
Note 1: COMP is forced off in Dry-on state. Note 2: COMP is forced to operate in Dry-off state.

4-5 Fan Mode Operation


In Fan Mode, the indoor fan is turned on to improve the air circulation in the room. COMP and OFAN remain OFF all the time.

Note: If the user has selected the Auto Fan Speed setting, the IFAN speed would be selected by the unit automatically according to the difference between RT and SPT, as in Cool Mode.

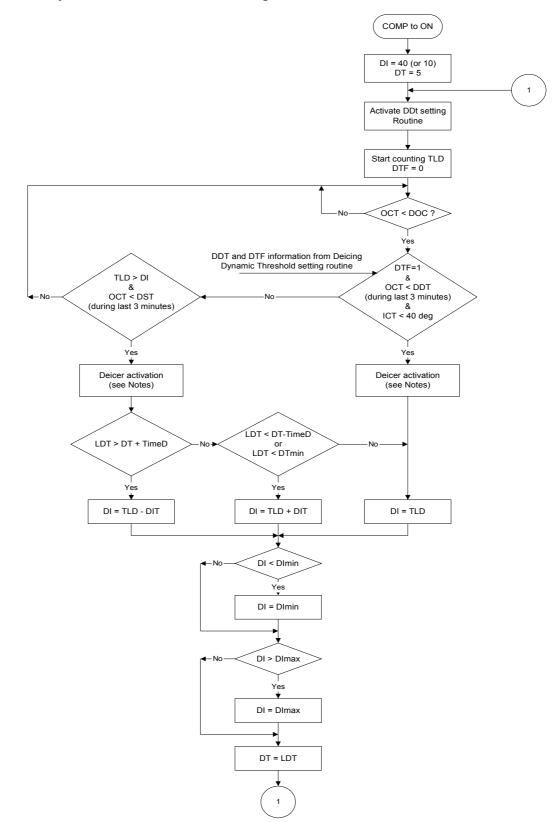
4-6 Protection Operations in Cool and Dry Modes

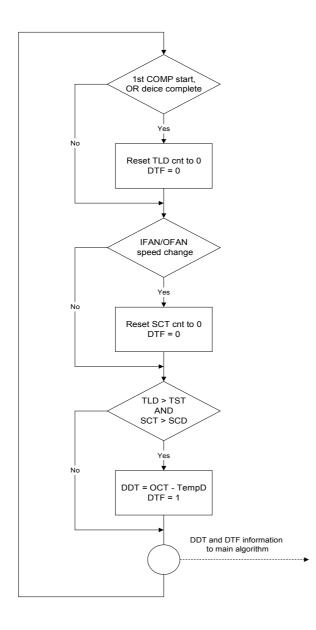

1. Indoor Coil Defrost Protection

The in-coil defrost protection can prevent the ice formation at the in-coil when the ambient temperature is low.

2. Outdoor Coil High Pressure Protection

The out-coil high pressure protection prevent the build up of high pressure at the out-coil during cooling operation.



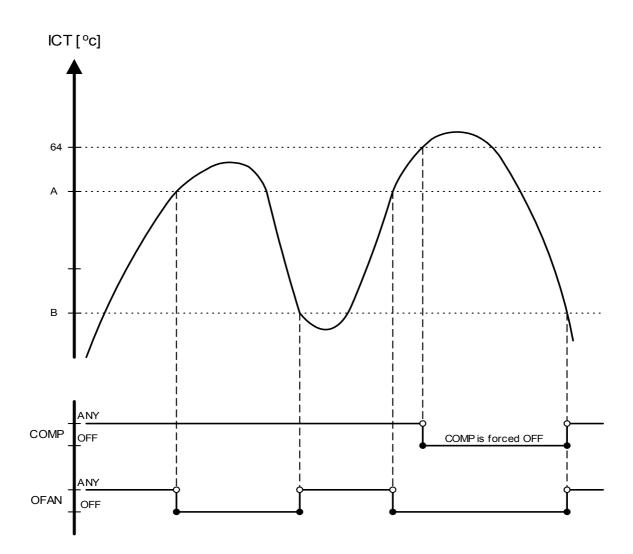

Note 1: In some applications, the outdoor fan and the compressor are controlled together by the COMP relay output from the controller. In this case, it will take more time for the out-coil to cool down during the high pressure protection, because the outdoor fan will be turned off with the compressor instead of working as in the graph above.

4-7 Protection Operations in Heat Mode

1. Outdoor Coil Deice Protection

The deice process is controlled by an Ice Detection Algorithm (IDA). The IDA is an unique control algorithm incorporated to maintain optimal utilization of the heat pump capacity, especially in below-zero outdoor temperature condition. The out-coil deicing will be activated not only by static temperature detection as normally done, but also while ice forming is detected on the out-coil.

Explanation:

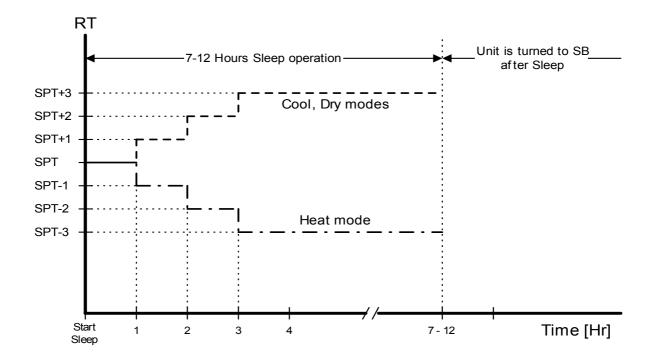

The "Ice Forming Detection" will be done by two algorithms -

- 1. In Dynamic Temp Detection, the ice formation will be detected by
 - (i) Compare the OCT with a Deicing Dynamic Temperature Threshold, and(ii) Detect the drop in ICT which accompany the ice formation.
- 2. The Static Temp Detection will be done by comparing the OCT with a Deicing Static Temperature Threshold.

The Deicing Data Record is used to determine the time delay between two deicing cycles. In general, the time delay will be increased if the last deicing cycle can be completed quickly.

2 Indoor Coil High Pressure Protection in Heat Mode

The in-coil high pressure protection prevent the build up of high pressure at the in-coil during heating operation.


Note:

The operation temperatures shown as A and B in the chart differ by models.

	WSA-78	WSA-98	WSA-128
Α	50	54	58
В	42	45	50

4-8 Sleep Function

Room temperature is automatically controlled to compensate for body temperature variations while sleeping. This mode of operation is designed for maximal comfort in both COOL and HEAT modes.

4-9 Daily Timer Function

Unit can be programmed to be ON and OFF automatically at preset time everyday, by using a remote controller. The resolutions of the ON/OFF timers are 10 min.

4-10 IFEEL Function

This feature is provided if the unit is used together with a remote controller with the I-FEEL function. When this function is selected, the remote controller sends the room temperature measured by its build-in thermistor to the air con for more accurate temperature control

4-11 Manual Unit Control and Led Indicator

The push button switch and the LED indicators on the display panel let the user to control the unit operation without a remote controller. Their operations are provided below.

LED indicators:

STAND BY	 Lights up when the Air Conditioner is connected to power and
INDICATOR	ready to receive the R/C commands Blinks continuously in case of any thermistor failure.
OPERATION	 Lights up in operation mode (Note: OFF in standby mode). Blinks for 0.5 sec., to announce that a R/C infrared signal has
INDICATOR	been received and stored. Blinks continuously during OCT High Pressure Protection Mode Deicing in Heating Mode
TIMER INDICATOR	 Lights up during Timer and Sleep operation. Active On/Off timer setting will become invalid after a power failure. When this happens, the unit is forced to restart in STBY mode, and the Timer Indicator is blinked continuously until (i) the unit is switched to OPER Mode again, or (ii) any message from the R/C is received.

Push Button switches:

MODE BUTTON (Cool, Heat, SB)	Use to cycle the operation mode of the A/C unit among COOL, HEAT and SB modes, without using the R/C. Every time this switch is pressed, the next operation mode is selected, in the order : SB => Cool Mode => Heat Mode => SB =>
---------------------------------	--

4-12 Recovery from Power Failure

Last unit settings (SPT, operation mode, louver settings, etc) are saved in the EEPROM in the unit. In case of power failure, these settings are restored automatically.

5. TROUBLESHOOTING

5-1 Check before and after Troubleshooting

Hazardous voltage can cause ELECTRIC SHOCK or DEATH. Disconnect power or turn off circuit breaker before you start checking or servicing.

a) Check power supply wiring.

• Check that power supply wires are correctly connected to terminals L and N on the terminal plate in the indoor unit.

b) Check inter-unit wiring.

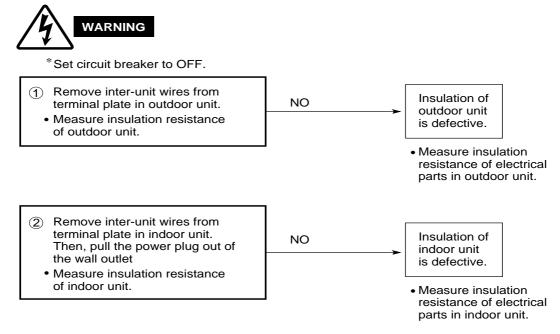
• Check that inter-unit wiring is correctly connected to the outdoor unit from the indoor unit.

c) Check power supply.

- Check that voltage is in specified range (±10% of the rating).
- Check that power is being supplied.

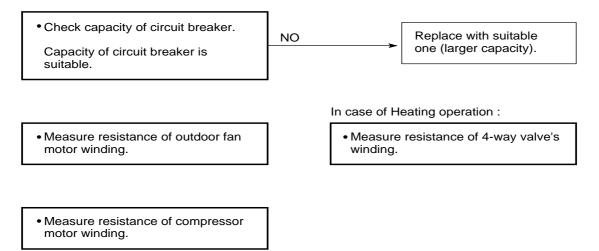
d) Check lead wires and connectors in indoor and outdoor units.

- Check that coating of lead wires is not damaged.
- Check that lead wires and connectors are firmly connected.
- Check that wiring is correct.

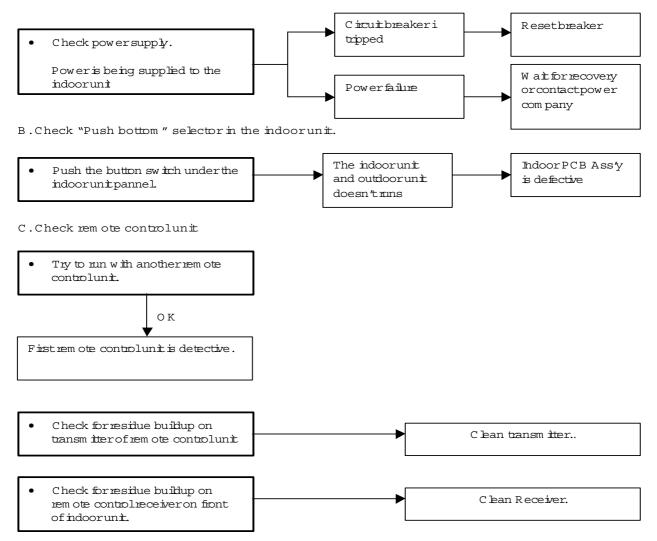

5-2 Air conditioner does not operate

5-2-1 Circuit breaker trips (or fuse blows).

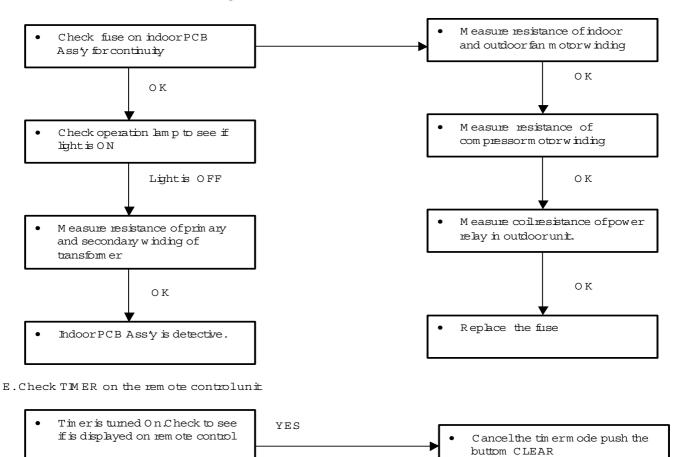
A. When the circuit breaker is set to ON, it is tripped soon. (Resetting is not possible.)


- There is a possibility of ground fault.
- Check insulation resistance.

If resistance value is $2M\Omega$ or less, insulation is defective ("NO").


B. Circuit breaker trips in several minutes after turning the air conditioner on.

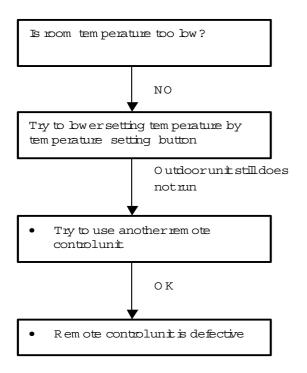
• There is a possibility of short circuit.



5-2-2 Neither indoor nor outdoor unit runs.

A. Power is not supplied

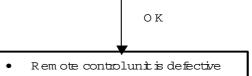
D.Check fuse on the indoor PCB Ass'y



22

5-2-3 Only outdoor unit does not run.

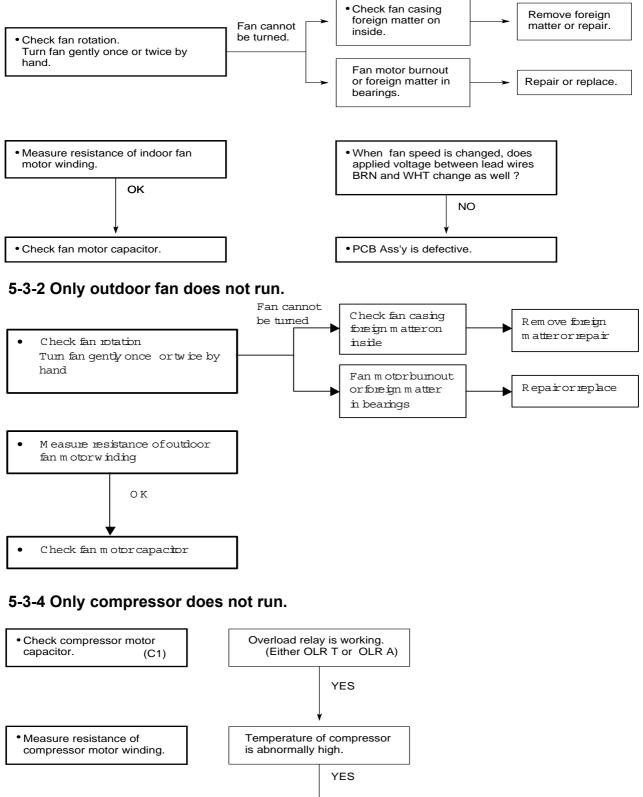
A Check setting tem perature

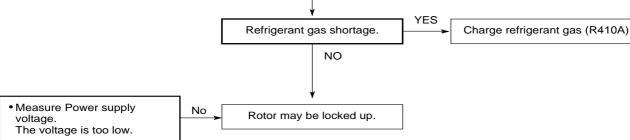

COOL

Is noom tem perature too high? NO Try to raise setting tem perature by tem perature setting button O utdoor unit still does not run

HEAT

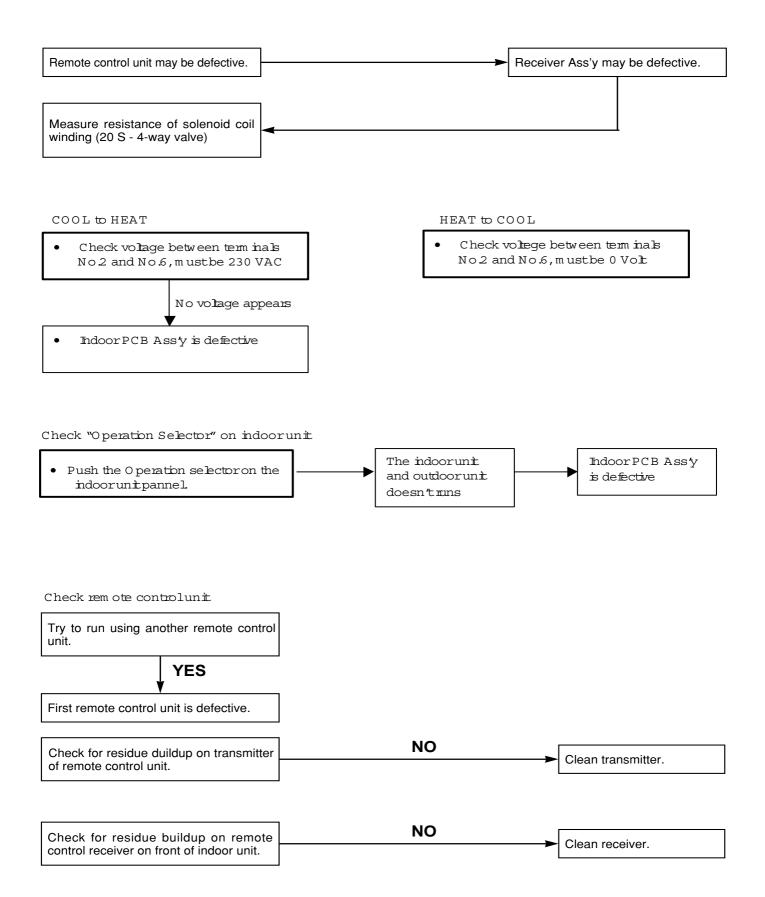
 Try to use another rem ote controlunit

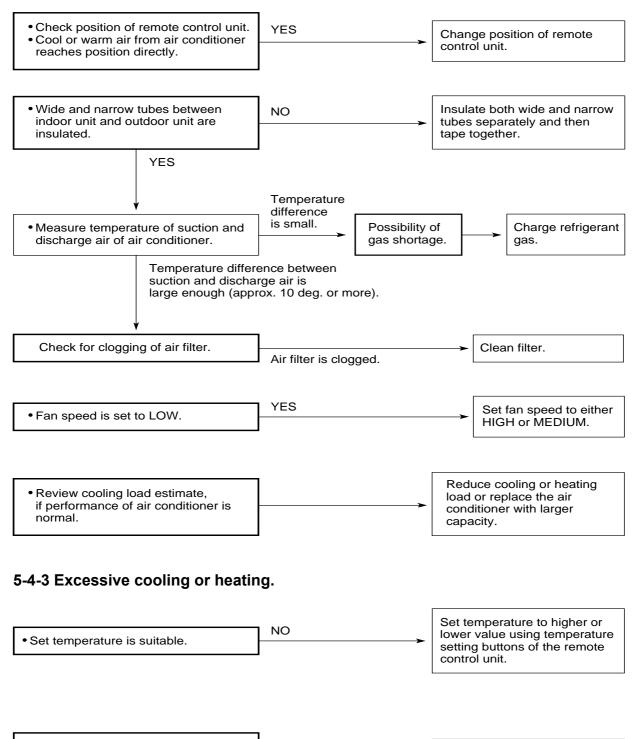



5-2-4 Only indoor unit does not run.

Indoor PCB Assy is defective

5-3 Some part of air conditioner does not operate

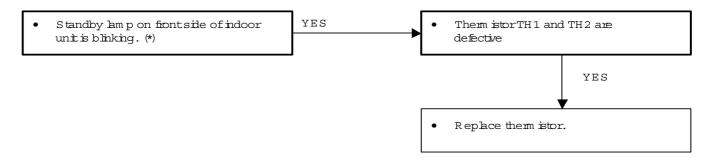

5-3-1 Only indoor fan does not run.

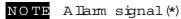


5-4 Air conditioner operates, but abnormalities are observed

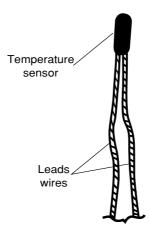
5-4-1 Operation does not switch from HEAT to COOL (or COOL to HEAT).

5-4-2 Poor cooling or heating.




 Remote control unit is placed where it can detect room temperature properly. NO

Change position of remote control unit.


5-5 If a Sensor is defective

5-5-1 Thermistor (TH1 or TH2) is defective.

Stanby ham p on the fiont side of the indoorunit will blink when the therm is toris defective. At the same time the outdoorunit will stop. Indoor operate only for ventilation.

6. CHECKING ELECTRICAL COMPONENTS

6-1 Measurement of Insulation Resistance

The insulation is good condition if the resistance exceeds 2M Ω

a) PowerSupply W ires

C hmp the grounding term halof the power plug with a lead clip of the insulation resistance tester and measure the resistance by placing a probe on either of the two power term hals. (Fig 1)

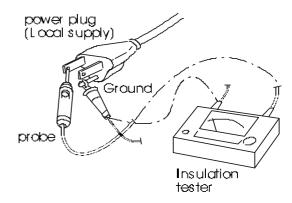
Then, also measure resistance between the grounding and other powerterm in als (Fig 1)

b) IndoorUnit

C hamp an alum nium plate fin or copper with the lead clip of the insulation resistance tester and measure the resistance by placing a probe on each term inal screw where power supply lines are connected on the term inal plate.(Fig 2)

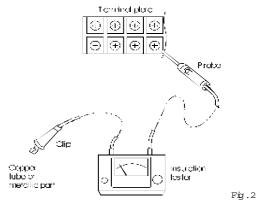
c)OutdoorUnit

C hamp an alum inium plate fin or copperwith the lead clip of the insulation resistance tester and measure the resistance by placing a probe on each term inal screw on the term inalplate.(Fig 2). Note that ground line term inal should be skipped


d) M easurem ent of Insulation resistance for electrical Parts

Disconnect the lead wires of the desired electric part from term inalplate, capacitor, etc. Similarly disconnect the connector. Then measure the insulation resistance. (Fig 3 and 4)

NOTE


Refer to Electric W iring Diagram

If the probe cannot enter the poles because the hole is too narrow the use a probe with a thinnerpin

NOTE

The shape of the powerplug may differ from that of the air conditioner which you are servicing.

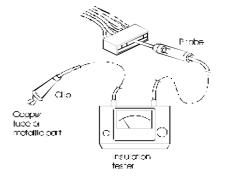


Fig.3

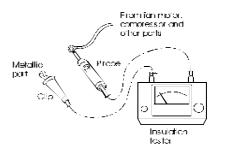
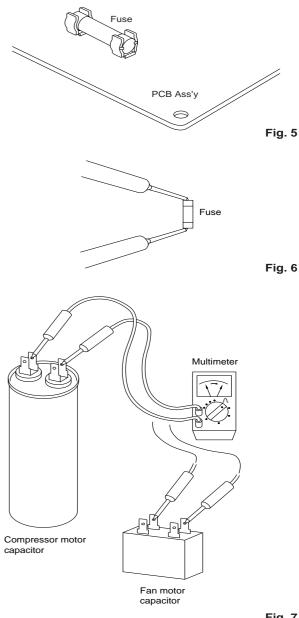


Fig.4

6-2 Checking Continuity of Fuse on PCB Ass'y

Remove the PCB Ass'y from the electrical component box. Then pull out the fuse from the PCB Ass'y (Fig.5).


Check for continuity using a multimeter as shown in Fig.6.

6-3 Checking Motor Capacitor

Remove the lead wires from the capacitor terminals and then place a probe on the capacitor terminals as shown in Fig.7. Observe the deflection of the pointer, setting the resistance measuring range of the multimeter to the maximum value.

The capacitor is "good" if the pointer bounces to a great extent and then gradually returns to its original position.

The range of deflection and deflection time differ according to the capacity of the capacitor.

R.D. 28 Reyrieux BP 131 - 01601 Trévoux CEDEX France Tél. 04.74.00.92.92 - Fax 04.74.00.42.00 R.C.S. Bourg-en-Bresse B 759 200 728