

## U8860 Maintenance Manual

Issue 1.0 Date 2011-11-14

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

#### Copyright © Huawei Technologies Co., Ltd. 2011. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

#### **Trademarks and Permissions**

and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

### Huawei Technologies Co., Ltd.

- Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China
- Website: http://www.huawei.com
- Email: support@huawei.com

## **About This Document**

### Author

| Prepared by | R&D                          | Date | 2011-11-12 |
|-------------|------------------------------|------|------------|
| Reviewed by | Maintenance support engineer | Date | 2011-11-14 |
| Approved by | Service representative       | Date | 2011-11-14 |

## **Change History**

| Date       | Version | Change Reason             | Revised<br>Chapter | Description | Author |
|------------|---------|---------------------------|--------------------|-------------|--------|
| 2011-11-12 | V1.0    | Released the first issue. |                    |             | R&D    |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |
|            |         |                           |                    |             |        |

## Contents

| About This Document                                   |    |
|-------------------------------------------------------|----|
| 1 Product Introduction                                | 1  |
| 1.1 Appearance                                        |    |
| 1.2 Specifications                                    | 1  |
| 2 Applicable Scope and Precautions                    | 4  |
| 2.1 Applicable Scope                                  | 4  |
| 2.2 Maintenance Precautions                           |    |
| 2.3 How to Obtain Product and Maintenance Information |    |
| 3 Explosive View                                      | 5  |
| 4 Components on PCBA                                  | 7  |
| 5 Software Upgrade                                    | 13 |
| 5.1 Upgrade Preparation                               |    |
| 5.2 Normal Upgrade                                    |    |
| 5.3 Troubleshooting                                   |    |
| 6 Maintenance Tools                                   | 15 |
| 7 Disassembly Procedure                               | 17 |
| 8 Assembly Procedure                                  | 25 |
| 9 Principles and Troubleshooting                      |    |
| 9.1 Block Diagram and Phone Introduction              |    |
| 9.2 Baseband Unit                                     |    |
| 9.2.1 Power-on Management Circuits                    |    |
| 9.2.2 Charging Management Circuits                    |    |
| 9.2.3 Clock Circuit                                   |    |
| 9.2.4 Flash Memory Circuit                            |    |
| 9.3 RF Unit                                           |    |
| 9.4 Peripheral Circuits                               |    |
| 9.4.1 Display                                         |    |
| 9.4.2 Keypads                                         |    |
| 9.4.3 Vibration                                       |    |

| 9.4.4 Call Reception                     |    |
|------------------------------------------|----|
| 9.4.5 Call Transmission                  |    |
| 9.4.6 Headphone                          |    |
| 9.4.7 SIM Card                           |    |
| 9.4.8 I/O Connector                      |    |
| 9.4.9 microSD Card Connector             |    |
| 9.4.10 Camera                            |    |
| 9.4.11 BT&WiFi                           | 61 |
| 9.4.12 Accelerometer                     |    |
| 9.4.13 Compass                           |    |
| 9.4.14 Gyroscope                         |    |
| 9.4.15 Touch Panel                       |    |
| 9.4.16 Approach Sensor                   |    |
| 10 Solder Points on the PCB and BGA Chip | 75 |
| 11 Functional Tests                      | 80 |
| 11.1 Keys                                |    |
| 11.2 MMI Test                            |    |
| 11.3 Voice Call Test                     |    |

## **1** Product Introduction

### **1.1 Appearance**



### **1.2 Specifications**

| Item                   | Descriptions               |
|------------------------|----------------------------|
| Dimensions (H x W x D) | 122 mm x 61.5 mm x 10.9 mm |

| Item                   | Descriptions                                                                                                                                                                                                                                |                                                             |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Technical standard     | WCDMA/HSDPA/HSUPA: 3GPP FDD Release 7                                                                                                                                                                                                       |                                                             |  |
| Band                   | WCDMA: 2100 MHz/900 MHz<br>GSM: 850 MHz/900 MHz/1800 MHz/1900 MHz                                                                                                                                                                           |                                                             |  |
| Weight                 | About 140 g with batter                                                                                                                                                                                                                     | у                                                           |  |
| Appearance             | Bar                                                                                                                                                                                                                                         |                                                             |  |
| Antenna                | Built-in                                                                                                                                                                                                                                    |                                                             |  |
| SIM/USIM               | Standard 6-pin SIM care                                                                                                                                                                                                                     | d, supporting 1.8 /3 V USIM card                            |  |
| Charger                | 5 V, 1 A                                                                                                                                                                                                                                    |                                                             |  |
| Battery                | 1930 mAh                                                                                                                                                                                                                                    | standby time: 380 hours (3G)<br>Talk time: 400 minutes (3G) |  |
| Camera                 | Primary Camera                                                                                                                                                                                                                              | 8 MP AF HD                                                  |  |
|                        | Secondary camera                                                                                                                                                                                                                            | 0.3 MP FF                                                   |  |
| Display                | Resolution                                                                                                                                                                                                                                  | 854 x 480 (FWVGA)                                           |  |
|                        | Туре                                                                                                                                                                                                                                        | TFT-LCD                                                     |  |
|                        | Color                                                                                                                                                                                                                                       | 16 M                                                        |  |
|                        | Size                                                                                                                                                                                                                                        | 4.0 inch                                                    |  |
| Connectors             | Charger port                                                                                                                                                                                                                                | Micro-USB connector                                         |  |
|                        | USB port                                                                                                                                                                                                                                    | Micro-USB connector                                         |  |
|                        | MicroSD                                                                                                                                                                                                                                     | MicroSD card (up to 32 GB)                                  |  |
|                        | Headphone jack                                                                                                                                                                                                                              | 3.5 mm                                                      |  |
| Bluetooth              | V2.1 + EDR                                                                                                                                                                                                                                  |                                                             |  |
| WiFi                   | 802.11 b/g/n, supporting                                                                                                                                                                                                                    | g WiFi                                                      |  |
| USB                    | USB 2.0,480 Mbit/s                                                                                                                                                                                                                          |                                                             |  |
| FM radio               | Built-in FM radio                                                                                                                                                                                                                           |                                                             |  |
| GPS                    | GPS/AGPS/GPS XTRA                                                                                                                                                                                                                           |                                                             |  |
| Storage space          | ROM: 4 GB (the available space is about 2.5 GB); RAM: 512 MB (the available space is about 300 MB)                                                                                                                                          |                                                             |  |
| Maximum transmit power | WCDMA 2100 MHz/900 MHz: +24 dBm (Power Class 3)<br>GSM 850 MHz/900 MHz: +32.5 dBm (Power Class 4)<br>GSM 1800 MHz/1900 MHz: +29.5 dBm (Power Class 1)<br>EDGE 850 MHz/900 MHz: 26 dBm(+/-3 dBm)<br>EDGE 1800 MHz/1900 MHz: 25 dBm(+/-3 dBm) |                                                             |  |

| Item               | Descriptions                                             |  |
|--------------------|----------------------------------------------------------|--|
| Static sensitivity | WCDMA 900 MHz: better than -103.7 dBm/3.84 MHz           |  |
|                    | WCDMA 2100 MHz: better than-106 dBm/3.84 MHz             |  |
|                    | GSM 850 MHz: better than -102 dBm/200 KHz                |  |
|                    | GSM 900 MHz: better than -102 dBm/200 KHz                |  |
|                    | DCS 1800 MHz: better than -102 dBm/200 KHz               |  |
|                    | PCS 1900 MHz: better than -102 dBm/200 KHz               |  |
| Temperature        | Operating temperature: -10 °C to 45 °C (without charger) |  |
|                    | Storage temperature: $-40^{\circ}$ C to $70^{\circ}$ C   |  |
| Humidity           | Operating humidity: 5% to 95% RH                         |  |

# **2** Applicable Scope and Precautions

### 2.1 Applicable Scope

This document provides maintenance instructions for technicians at service centers authorized by Huawei. This service manual is confidential and can be accessed by authorized service sites or companies only. Although every effort has been made to ensure the accuracy of the document, errors may still exist. If you find any error or have any suggestions, please contact Huawei's customer service center.

### **2.2 Maintenance Precautions**

- Only qualified technicians are allowed to perform the repair and calibration.
- Perform all operations in electrostatic discharge (ESD) rooms and wear electrostatic wrist straps throughout the operations.
- Ensure that all the components, screws, and insulators are properly installed after repair and calibration. Ensure that all cables and wires are installed and connected correctly.
- Ensure that the soldering is pb-free and compliant with the environmental-friendly requirements.



ESD is the major cause of damages to electrostatic-sensitive components, so every service center must pay high attention to avoid ESD discharge and comply with the ESD protection requirements of this manual.

### 2.3 How to Obtain Product and Maintenance Information

To obtain relevant product and maintenance information, you can visit Huawei website at

http://www.huaweidevice.com/cn/technicaIndex.do





### List of components in the explosive view drawing

Note: The components listed in the following table are structural parts of the phone, and cannot be used as reference when applying for spare parts.

| No. | Description                       | Quantity |
|-----|-----------------------------------|----------|
| 1   | U8860 touch panel protective film | 1        |
| 2   | U8860 touch panel                 | 1        |
| 3   | U8860 receiver decorating items   | 1        |

| No. | Description                        | Quantity |
|-----|------------------------------------|----------|
| 4   | U8860 cover A assembly             | 1        |
| 5   | U8860 main FPC                     | 1        |
| 6   | U8860 receiver                     | 1        |
| 7   | U8860 front camera                 | 1        |
| 8   | U8860 main PCB                     | 1        |
| 9   | U8860 speaker                      | 1        |
| 10  | U8860 battery                      | 1        |
| 11  | U8860 battery cover                | 1        |
| 12  | U8860 test point protection jacket | 1        |
| 13  | U8860 screws                       | 6        |
| 14  | U8860 cover B assembly             | 1        |
| 15  | U8860 rear camera                  | 1        |
| 16  | U8860 LCD shielding film           | 1        |
| 17  | U8860 microphone                   | 1        |
| 18  | U8860 LCD module                   | 1        |







| BOM Code | Description                                                           | Bit          |
|----------|-----------------------------------------------------------------------|--------------|
| 15040208 | Transient voltage suppression diode-6.8 V-11.4 V-75 W-7<br>A-SOT-363  | D1301, D1601 |
| 15040238 | Transient voltage suppression diode-6 V-14 V-10 W-12<br>A-SOD882/0402 | D1501        |

| BOM Code | Description                                                                                                                                     | Bit                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 15020099 | Lighting diode-0.045 cd-White-25 mA-0603, SMD                                                                                                   | D1502, D1503, D1504,<br>D1505                |
| 15010251 | Schottky diode-30 V-0.2 A-0.5 V-SOD523                                                                                                          | D2001, D4001                                 |
| 19040121 | Fast Blowout Fuse-32 V-2 A-IEC Spec-0.03 ohm-0.100<br>A*A*Sec-UL/CSA/ANSI 248 Certificated                                                      | F1501                                        |
| 14090079 | FPC connector -27pin-0.6 mm-0.3 mm-horizontal-0.2 mm                                                                                            | J1201                                        |
| 14240246 | Headphone Connector, 3.5 mm, 6 pin, Side plugging, SMT, Mid<br>Mount, 1.85 mm Height from PCB Top Side, Arc type                                | J1301                                        |
| 14240100 | Card holder connector—battery socket-3PIN-side contact-2.8 mm-1.4 mm-with positioning peg                                                       | J1501                                        |
| 14240272 | IO connector-Micro_B-Female-5pin-bend-SMT                                                                                                       | J1502                                        |
| 14240207 | Card holder connector-SIM card socket-6 Pin-horizontal-2.54<br>mm-without clip-without positioning peg-SMT-spherical<br>structure-height-2.0 mm | J1601                                        |
| 14240243 | Card holder connector-Micro SD Receptacle-10 Pin-bend-1.1<br>mm-without clip-without positioning peg                                            | J1602                                        |
| 14240181 | BTB connector-female-24-0.4 mm-1 mm-SMT                                                                                                         | J1302, J1901, J1902                          |
| 13010265 | SAW filter -1574.42 MHz/1605.89 MHz-2.2 dB-50 V-1411-Balance                                                                                    | J4105                                        |
| 14240004 | RF connector-straight-female-SMT                                                                                                                | J6003, U3201                                 |
| 22050053 | Microphone-44 dBD4.0 mm*1.3 mm-SMT                                                                                                              | MIC2001, MIC601                              |
| 15060150 | MOSFET-P channel—12 V-2.4 A-0.112 ohm-8 V-SOT-23                                                                                                | Q301                                         |
| 15050170 | Triode-NPN bias resistor transistor                                                                                                             | Q1501                                        |
| 07050063 | NTC-150000 ohms-SMT-0402                                                                                                                        | RT301                                        |
| 07040061 | Varistor-12 V-99999 V-5A-25V-SMT-0402-50pF@1 KHz                                                                                                | RV1501, RV2001,<br>RV2002, RV2003,<br>RV2004 |
| 07040071 | Varistor-90 V-45 V-1 A-300 V-SMT-0402-3pF@100 MHz                                                                                               | RV1502, RV1503                               |
| 07040075 | Varistor-18 V-14 V-10 A-40 V-SMT-0402-82pF@1 KHz                                                                                                | RV1504                                       |
| 39200306 | CPU-WCDMA/GSM dual mode baseband processor MSM8255T                                                                                             | U201                                         |
| 39110566 | Switching Regulators-1~4 V-1.5 A-SMT                                                                                                            | U203, U3900                                  |
| 39200177 | Terminal Dedicated IC, Power Management IC of QUALCOMM<br>MSM7x30 Series (PM8058)                                                               | U301                                         |
| 39110531 | DCDC charging control chip-20-Pin WCSP                                                                                                          | U1001                                        |
| 39110523 | LED flash driver IC-QFN16                                                                                                                       | U1102                                        |

| BOM Code | Description                                                                                | Bit   |
|----------|--------------------------------------------------------------------------------------------|-------|
| 38140023 | Semiconductor sensor-accelerometer -LGA-3 axis                                             | U1401 |
| 38140024 | Semiconductor sensor – Electronic compass-WL-CSP (pb-free)-3<br>axis                       | U1402 |
| 40060276 | NAND FLASH-4GB EMMC V4.4-52 MHz-1024 KB                                                    | U1701 |
| 39080127 | Audio amplifier2.5 V~5.5 V-differential-Micro SMD 9pin (pb free BGA)                       | U2001 |
| 38020046 | Analog switch-DUAL SPDT-2.7-4.2V-0.6 ohm-16 MHz-QFN10L                                     | U2002 |
| 38140020 | Semiconductor sensor—3 axis gyroscope-SMT                                                  | U2101 |
| 47140073 | RF switch -824-2170 MHz                                                                    | U3202 |
| 13010147 | SAW filter-881.5 MHz-2.2 dB-50 V-00241564                                                  | U3203 |
| 13010186 | SAW filter – 1950 MHz-2.9-QCS5I                                                            | U3301 |
| 47100397 | RF power module-1920~1980 MHz-28.2 dB-3*3 QFN-1000 V                                       | U3302 |
| 13080038 | Duplexer-RX: 2110~2170 MHz/TX: 1920~1980 MHz                                               | U3304 |
| 13010189 | SAW filter-897.5 MHz-2.7 dB-100V(MM)-SFLT5-0101                                            | U3401 |
| 47100387 | RF power module-880 MHz~915 MHz-28/18/11-QFN-1000 V                                        | U3402 |
| 13080067 | Duplexer-TX: 880~915 MHz/RX: 925~960 MHz                                                   | U3404 |
| 47100307 | RF power module-824-849 MHz; 880-915 MHz; 1710-1785 MHz; 1850-1910 MHz                     | U3501 |
| 39110552 | Switching Regulators-0.4~3.4 V-                                                            | U3800 |
| 39200249 | Terminal dedicated baseband IC-WCMDA/GSM Radio Transceiver (QTR8615)                       | U4001 |
| 39110626 | Switching Regulators- LED Driver                                                           | U4003 |
| 47140049 | RF switch                                                                                  | U4104 |
| 39200222 | Single Band 2.4 GHz WLAN/Bluetooth 2.1/FM single chip-BCM4329-2.3~5.5 V-WLBGA182 (pb free) | U4201 |
| 47090037 | RF low-noise amplifier-1.5 G-3 GHz-15 dB-1.1 dB-QFN-200 V                                  | U5002 |
| 13010176 | SAW filter-2140 MHz-1.9 dB-1.4*1.1 mm                                                      | U5003 |
| 13010264 | SAW filter-1590.16 MHz-1.8 dB-50 V-1411                                                    | U6001 |
| 47090042 | RF low-noise amplifier-0.5~3 GHz-16.8 dB-0.87-QFN-250 V                                    | U6002 |
| 12020141 | Crystal oscillator-19.2 MHz-7pF-+/-10 ppm-70 ohm-3.2*2.5*0.6 mm                            | X401  |
| 12020125 | Crystal oscillator-0.032768 MHz                                                            | X402  |
| 12020162 | Crystal oscillator-24.576 MHz-12 pF-+/-30 ppm-100 ohm-3225                                 | X701  |

| BOM Code | Description                                             | Bit      |
|----------|---------------------------------------------------------|----------|
| 12020168 | Crystal oscillator -37.4 MHz-10pF-+/-10 ppm-80 ohm-2016 | X4101    |
| 07040064 | Varistor—8 V-4 V-30 V-SMT-0405-ESD + EMI component      | Z1301    |
| 13030048 | Ceramic filter-2450 MHz-2.9 dB-2.0*1.25*1.05 mm         | Z4201    |
| 13010148 | SAW filter-2140 MHz-50 V-00231804                       | Z5001    |
| 40020162 | SDRAM-4Gb LPDDR2-333 MHz-32 bit-1.8 V-240 Ball          | U201_POP |

## **5** Software Upgrade

### 5.1 Upgrade Preparation

| Category       | Contents               | Remarks                            |
|----------------|------------------------|------------------------------------|
| Upgrade        | Computer               | To copy upgrade software           |
| environment    | MicroSD card           | More than 512 M                    |
|                | Battery                | With at least 30% power remaining. |
| Upgrade file   | Main upgrade pack      | dload/UPDATE.APP                   |
|                | Vendor upgrade pack    | vendor_XXX_XXX/UPDATE.APP          |
| Upgrade method | Upgrade using SD cards | Normal upgrade                     |
|                |                        | Forcible upgrade                   |

### 5.2 Normal Upgrade

- **Step 1** Format the microSD card.
- Step 2 Create a folder named dload in the root directory of the microSD card.
- Step 3 Copy the upgrade file to the dload folder.
- Step 4 Install the microSD card to the phone. Power the phone on, and enter \*#\*#2846579#\*#\* in the idle screen.

Select SD card upgrade then press Confirm to start the upgrade.

- **Step 5** Before the upgrade, NV items backup is performed (if the phone has not been backed up before). Then the phone restarts and the upgrade starts.
- Step 6 The upgrade progress is displayed on the LCD.



- Step 7 After the upgrade is completed, the phone restarts and the NV items are restored.
- **Step 8** After the main upgrade pack is upgraded, upgrade the vendor upgrade pack using the same upgrade methods.

----End

If the phone cannot be properly powered on, follow the following two methods to forcibly upgrade the phone.

- Install the battery to the phone (if the screen is splashing, remove the battery and wait for five seconds before installing the battery again). Press Volume + and Volume –, and press Power key, the phone will start SD forcible upgrade. The specific download process is similar to the project menu download.
- When the phone is not installed with a battery. Press Volume + and Volume -, and connect the phone to a charger, the phone can also start the SD forcible upgrade. It is recommended that you use charger to perform forcible upgrade. If the download still fails, replace the SD card and try forcible upgrade again.

### 5.3 Troubleshooting

| Failure                                                   | Solution                                                                                                                                                                                                        |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failed to upgrade<br>the phone using the<br>microSD card. | <ol> <li>Check whether the upgrade file is correct.</li> <li>Check whether the upgrade method is correct.</li> <li>Check whether the microSD functions properly.</li> <li>Perform the upgrade again.</li> </ol> |

## **6** Maintenance Tools

|   | Name: constant-temperature heat gun<br>Usage: to heat components |
|---|------------------------------------------------------------------|
| 7 | Name: constant-temperature heat gun<br>Usage: to heat components |
|   | Name: soldering iron<br>Usage: to maintain and solder components |
|   | Name: DC regulated power supply<br>Usage: to supply DC current   |
|   | Name: soldering table<br>Usage: to secure the main PCBA          |

| RELECCER PLUS | Name: pb-free solder wire<br>Usage: soldering                    |
|---------------|------------------------------------------------------------------|
|               | Name: digital multimeter<br>Usage: to measure during repair      |
|               | Name: toolkit<br>Usage: to assemble and disassemble components   |
|               | Name: electric screwdriver<br>Usage: to fasten and remove screws |





### U8860 disassembly guide:







3. Remove the six screws from cover B.



4. Use a cover opener to loosen the buckle between cover A and cover B.





6. Carefully take out the FPC cable.



7. Separate the FPC and the main board (Note: there is double-sided tape between FPC and shielding cover, carefully perform the operation to avoid damaging the FPC)



8. Turn over the main board and loosen the BTB connector.





10. Carefully separate the FPC and cover B (Note: there is double-sided tape between the FPC and shielding cover, carefully perform the operation to avoid damaging the FPC).



11. Remove the receiver.





12. Remove the speaker.

13. The phone is now disassembled.

### Disassembly guide to touch panel and LCD:





2. Disassemble the phone and separate the components from the front cover. The main FPC does not have to be separated.

3. Separate the BTB that the touch panel connects to main FPC, and lever the part of the main FPC that blocks the TP BTB.





6. Tighten the two screws (Note: The screws lie in the position where the sucker sucks the TP BTB).



7. Put the sucker in the middle of the TP Icon and press the sucker tightly.



7-1. Note: Put the sucker in the opposite direction of the receiver.



8. Slowly suck up the TP and stop sucking until half of the TP is sucked up.





11-2. Take out the component and remove the TP gently.



12-1. After removing the TP, use a tweezers to lift the four buckles of the LCD front cover (one of the buckles lies under the side key FPC). Usually after removing three buckles, the LCD can be removed (see Figure 12-2 for precautions).



12-2. Note: the LCD glass is thin and easy to be broken. During disassembly, place the tweezers against the buckle instead of the glass. The LCD must not be distorted.



13. Remove the LCD. The disassembly is completed.



## Assembly Procedure





2. Start to assemble the U8860.





10. Insert the FPC into the ZIF interface.

FPC aligns the positioning hole.



## **9** Principles and Troubleshooting

Before repairing a phone, ensure that the failure of the phone is not caused by environmental factors or incorrect functional settings, it is recommended that you restore the phone to its factory defaults.



### 9.1 Block Diagram and Phone Introduction

MSM8255 is the baseband signal processing chip, mainly performing the signal input and output of IMAGE, VIDEO, AUDIO, RF INTERFACES, CONECTIVITY. The baseband interface provides interfaces of keypad, LCD, SD card, Bluetooth, camera, and MIC.

PM8058 provides analog multi-channel switch, real-time clock circuit, TCXO clock circuit, motor driver circuit, and programmable current source.

The QTR8615 is the RF signal processing chip, performing the uplink and downlink RF signal conversion.

According to logic functions, boards are categorized into four sub-systems, including baseband, RF, power supply, and user interfaces. The following table describes modules and units of each sub-system and supported functions.

| Subsystem             | Module                                                   | Unit                                                           | Function                                                                                                                                                                                                                                    |
|-----------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baseband<br>subsystem | MSM8255                                                  | Modem subsystem                                                | As a MODEM processor, the ARM11 is 400 MHz,<br>performing the modulation and demodulation of<br>WCDMA, GPS, and GSM. The subsystem includes<br>ARM11 processor, modem DSP, modem AHB bus,<br>interruption controller, and sleep controller. |
|                       |                                                          | Application<br>subsystem                                       | The Scorpion processor is 1400 MHz, supporting<br>function modules such as microSD card, EBI2,<br>UART/USIM, I2C, GPIO, and clock. The<br>subsystem includes ARM11 processor, application<br>DSP, and dedicated data mover.                 |
|                       |                                                          | User interface<br>processing unit                              | Camera interface, PCM interface, broadband<br>CODEC, Vocoder, RF interface, HKADC, LCD<br>interface, SD interface, USB interface, UART<br>interface, USIM card interface, SBI interface,<br>GPIO, JTAG/ETM interface, and keypad interface  |
|                       |                                                          | Multimedia and game engine                                     | The multimedia and game engine of the MSM8255<br>runs Mpeg/jpeg hardware engine and game engine,<br>JAVA accelerator, and provides MP3/MMS/MIDI<br>functions.                                                                               |
|                       | Environment<br>monitoring<br>(PM8058)                    | Power supply<br>voltage monitoring                             | Lists monitoring targets, such as external power<br>input, battery, button battery, VDD-phone, and<br>important LDO.                                                                                                                        |
|                       |                                                          | Temperature monitoring                                         | Battery temperature, PA temperature, and 19.2<br>MHz crystal oscillator temperature                                                                                                                                                         |
|                       | ЕММС                                                     | EMMC feature,<br>power consumption,<br>file system support     | Stores programs and NV items, 4 GB                                                                                                                                                                                                          |
|                       | DDR2 RAM<br>(POP)                                        | Memory                                                         | RAM for program running, 2 GB (64M×32)                                                                                                                                                                                                      |
| RF<br>subsystem       | Transmission and<br>receiving of<br>WCDMA and<br>GSM/DCS | AFC circuit, APC<br>circuit, AGC<br>circuit, each<br>component | Performs the RF function of WCDMA receiving<br>and transmission, mainly includes QTR8615 RF<br>chip and its peripheral circuit.                                                                                                             |
|                       | GPS                                                      | GPS receiving                                                  | Receives and processes GPS signals, mainly including QTR8615 chip and its peripheral circuit.                                                                                                                                               |
|                       | BT interface                                             | BT module                                                      | Transmits and receives the baseband function and<br>RF signal of Bluetooth and WLAN, mainly<br>includes BT + WiFi module and its peripheral<br>circuit                                                                                      |
|                       | WiFi interface                                           | WiFi chip                                                      | Uses BCM4329 chip to perform the WiFi function.                                                                                                                                                                                             |

| Subsystem                      | Module                                     | Unit                                                                             | Function                                                                                                                                                                                                                                                               |
|--------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Oscillator and<br>frequency<br>synthesizer | Use crystal<br>oscillator instead of<br>temperature<br>compensated<br>oscillator | Generates highly accurate TCXVCO of 19.2 MHz<br>local reference clock. The QTR8615 embeds LO<br>for WCDMA and GPS.                                                                                                                                                     |
|                                | Antenna                                    | External antenna,<br>internal interface<br>component, antenna<br>protection      | The phone provides internal antenna for signal<br>transmission and supports WCDMA high and low<br>frequency band. U8860-92 phone antennas include<br>main antenna, diversity antenna, WiFi/BT antenna,<br>GPS antenna, FM antenna (headphone)                          |
|                                | Coupler                                    | Power coupler                                                                    | Couples part of the output power of WCDMA power amplifier to QTR8615 for power monitoring.                                                                                                                                                                             |
| User<br>interface<br>subsystem | UART interface                             |                                                                                  | The UART1 interface of the MSM8255 subsystem is used for Bluetooth and the UART3 is used for testing.                                                                                                                                                                  |
|                                | USB interface                              | Driver, protection<br>circuit, output<br>interface<br>component                  | Indicates the peripheral circuits of USB interface in MSM8255 subsystem, and unit circuits such as protection circuit and interface connectors. It is the major data service channel for the engineering sample, and can be used to debug and test devices during R&D. |
|                                | USIM card<br>interface                     | Power supply,<br>protection circuit,<br>USIM card holder                         | Mainly includes USIM card holder and related connection circuits.                                                                                                                                                                                                      |
|                                | Keypad and<br>backlight                    | Keypad driver<br>circuit, external<br>keypad, backlight<br>LED control circuit   | Supports GPIO for keypad scanning and provides<br>backlight LED. When a key is pressed, the<br>backlight is on. By connecting with PM8058, it<br>provides brightness adjustment function.                                                                              |
|                                | Color LCD and backlight                    | LCD driver,<br>interface mode, and<br>backlight control                          | The main LCD is of 16 mega colors. The brightness of the LCD backlight can be controlled by users.                                                                                                                                                                     |
|                                | TEMMC card                                 | Power supply,<br>protection circuit,<br>connector                                | Mainly includes TEMMC card connector and related interface circuits                                                                                                                                                                                                    |
|                                | Speaker that<br>plays back MIDI            | Driver mode,<br>connection mode,<br>speaker component                            | The power of the speaker that plays polyphonic<br>ringtones when there is an incoming call can be 500<br>mW. It has sound frequency function that can play<br>back 20 – 20 KHz ringtones. It can also play<br>mono-audio MP3 files.                                    |
|                                | Receiver                                   | Driver mode,<br>connection mode,<br>receiver component                           | Receiver during a call                                                                                                                                                                                                                                                 |
| Subsystem                    | Module                                       | Unit                                                                                      | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | MIC                                          | Interface circuit,<br>connection mode,<br>MIC component                                   | The phone has a dual built-in MIC to eliminate the environment noise.                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Earphone                                     | Earphone,<br>headphone interface<br>circuit, MIC<br>interface circuit                     | The phone provides a headphone jack to output<br>audio or mp3. The MIC on the headphone cable<br>inputs audio.                                                                                                                                                                                                                                                                                                                                                  |
|                              | Vibrator interface                           | Driver mode,<br>connection mode,<br>vibrator                                              | When there is an incoming call, the vibrator vibrates.                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | NFC                                          | I2C interface<br>control                                                                  | Performs approach sensing function                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Gyroscopes                                   | I2C interface control                                                                     | Realizes the sensing of three directions to perform the game function.                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | Compass                                      | I2C interface control                                                                     | Senses the magnetic field to help indicate the direction.                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | Accelerometer                                | I2C interface control                                                                     | Acceleration sensing helps perform the game function                                                                                                                                                                                                                                                                                                                                                                                                            |
| Power<br>Supply<br>Subsystem | Internal backup<br>battery                   | Li-ion battery,<br>interface<br>component                                                 | Li-ion battery with standard output of 3.7 V/1950<br>mAh. It is required that the charge/discharge<br>lifecycle is over 500 times. The battery should pass<br>the following authentication: GB18287 safety<br>requirements (Li-ion battery)                                                                                                                                                                                                                     |
|                              | External power<br>supply (travel<br>charger) | Adaptor and<br>interface<br>component                                                     | The charger meets the requirements of China,<br>Europe, the USA, and Australia: 90–240 V, 45–55<br>Hz, AC input. The model differs with different<br>markets. The output voltage of the charger is $5 \pm 0.25$ V. The charger must pass CE and CCC<br>authentication. The output current of the charger<br>should be able to charge the battery and support the<br>normal operation of the phone at the same time.<br>The charging current requirement is 1 A. |
|                              | Power distribution network and               | Power distribution<br>network                                                             | It includes filter networks and cabling of the power supply.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | power<br>management<br>function              | Backup battery<br>management,<br>charge circuit,<br>charge mode, and<br>charge protection | It manages battery charging and discharging,<br>overcharging and over-discharging protection. The<br>battery that maintains RTC current can also be<br>charged.                                                                                                                                                                                                                                                                                                 |
|                              |                                              | Board circuit power<br>management<br>(power-on/off<br>analysis)                           | It mainly indicates LDO, which manages power<br>supply flexibly. Based on protocols and power-save<br>analysis requirements, the board software manages<br>the power supply of unit circuits according to<br>service status to decrease power consumption of<br>devices. A 32.768 KHz sleep clock is provided.                                                                                                                                                  |

| Subsystem | Module                   | Unit                           | Function                                                                                                                              |
|-----------|--------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|           | PM8058 enhanced function | RTC                            | It has a built-in RTC circuit and uses a sleep clock<br>of 32.768 KHz that provides precise time.                                     |
|           |                          | HKADC                          | The 12 MPP interfaces can be provided by PM8058 internally.                                                                           |
|           |                          | TCXO driver and other controls | The PM8058 has a built-in TCXO driver, two-<br>channel analog signals, and two-channel data signal<br>output.                         |
|           |                          | UVLO                           | Low-voltage power-off function. When the input<br>voltage is lower than the threshold for a specific<br>period, the phone powers off. |
|           |                          | WDT reset                      | Supports WDT counter overflow reset function.                                                                                         |
|           |                          | Over temperature protection    | When the on-chip junction temperature exceeds 150°C, the phone powers off.                                                            |
|           |                          | Internal driver circuit        | Provides four LED drivers, one vibrator driver, and one speaker driver.                                                               |
|           |                          | Interruption<br>management     | PM8058 has a built-in interruption manager to process related interrupted signals.                                                    |
|           |                          | USB driver                     | Supports USB 2.0 and A/B interface type and does not support OTG function.                                                            |

# 9.2 Baseband Unit

# 9.2.1 Power-on Management Circuits

Power-on failures are classified into three types: no current, weak current and excessive current. Many failures are caused by abnormal power supply. If these types of failures occur, troubleshoot them according to the circuit fault troubleshooting methods.

## **Troubleshooting Process**

To troubleshoot the power-on failure, firstly check whether the I/O connector (battery connector) is damaged. If the I/O connector (battery connector) is not damaged, use a DC regulated power supply to supply the phone with power, and test the faulty phone current.

The power-on failure may be caused by any of the following conditions:

• No current (DC power supply)

Generally, no current may be caused by any of the three reasons:

- No power supply channel is set up or the components in the power supply channel are damaged or fall-off.
- The main components are cold-soldered; therefore, the system does not operate normally. In this case, the current is less than 100 mA.

- Power-on failure-no current Ν Is the battery connector J1501 Replace J1501. connected properly? Υ Ν Is the FPC normal? Replace the FPC. Y Is the connector J1302 cold-soldered, γ Replace J1302. damaged or distorted? Ν Re-solder or replace U301.
- The relevant circuits of the power key are faulty, which results in power-on failures.

• Weak current (DC power supply)

Generally, weak current may be caused by any of the two reasons:

- Software faults (Upgrading or reloading the software may solve the problem.)
- The PM output circuit is short-circuited.



PM voltage output table:

| Signal           | Reference Value for the Output Voltage | Test Point |
|------------------|----------------------------------------|------------|
| VREG_L3_1P8/3P3  | 1.8/3.0V                               | C449       |
| VREG_MSM_USB3V3  | 3.0V                                   | C469       |
| VREG_MSM_USB1V8  | 1.8V                                   | C470       |
| VREG_CAM_2P85    | 2.85V                                  | R4411      |
| VREG_MSM_A2_2V05 | 2.85V                                  | C456       |

| Signal             | Reference Value for the Output Voltage | Test Point |
|--------------------|----------------------------------------|------------|
| VREG_L10_2P7       | 2.7V                                   | C457       |
| VREG_L11_1P8       | 1.8V                                   | C458       |
| VREG_L14_2P85      | 2.85V                                  | C473       |
| VREG_MSM_QFUSE_PRG | 1.8V                                   | C445       |
| VREG_L18_2P2       | 2.2V                                   | C465       |
| VRGE_F6            | 2.6V                                   | C1308      |
| VREG_MSM_L20_1V8   | 1.8V                                   | C441       |
| VREG_MSM_MPLL      | 1.1V                                   | C466       |
| VREG_L24_1P2       | 1.2V                                   | C442       |
| VREG_POP_VDDQ_1P2  | 1.2V                                   | C443       |
| VREG_NCP_1V8       | -1.8V                                  | C464       |
| VREG_S0_1V1_C1     | 1.1V                                   | C418       |
| VREG_S1_1V1_C2     | 1.1V                                   | C450       |
| VREG_S2_1V35_A1    | 1.3V                                   | C447       |
| VREG_S3_1V8        | 1.8V                                   | C424       |
| VREG_S4_2V2        | 2.2V                                   | C426       |

• Excessive current (DC power supply)

There are two types of excessive currents:

- Excessive current occurs after the Power key is pressed.
- The phone has current (greater than 1 mA) when it has been powered off.

Excessive current is caused by short circuits. The main reason is ground short circuits of VBAT.



# 9.2.2 Charging Management Circuits

## Circuit schematic diagram

The power supply of MSM8255 supports two external charging modes: charger mode and USB mode.

The schematic diagram is shown as follows:



The dedicated power supply chip bq24152 is adopted to charge the phone with 1A power. *The I2C is adopted to perform communication and control GPIO149 and GPIO150*. The charging management chip obtains power from the VCHAG of the USB port. The chip is controlled by the I2C. The output VPH\_PWR supplies power for the PM and charges the battery.

This chip supports three modes: charging mode, boost mode and high resistance mode. The charging mode is normal charging process. The boost mode is USB-OTG mode. The high resistance mode is power-saving mode (standby mode) without charging.

#### **Troubleshooting process**

There are two types of common charging failures:

- The phone has no response after a charger is connected to it.
- The phone displays an animated icon indicating that it is charging, but actually, the battery is not charged.

To troubleshoot charging failure, firstly check whether the battery connector is damaged.



## 9.2.3 Clock Circuit

| Clock              | Effect                                  | Remarks |
|--------------------|-----------------------------------------|---------|
| VCTCXO in 19.2 MHz | Supporting master clock for the MSM8255 |         |

| Clock                             | Effect                     | Remarks |
|-----------------------------------|----------------------------|---------|
| 32.768 K crystal for platform use | MSM8255 sleep clock signal |         |
| BT&WiFi in 37.4 MHz               | BCM4329 clock              | BCM4329 |

#### **Troubleshooting process**

Failures:

The phone cannot be powered on or frequently freezes. X401's test result shows that X401 has no outputs or its output frequencies are unstable.

Solution: Replace X401.

#### Description of the signals in the circuit diagram in this section

| Signal           | Description                         | Reference Measurement or Wave<br>Form |
|------------------|-------------------------------------|---------------------------------------|
| XTAL_19M<br>_OUT | Output from the 19.2 MHz main clock |                                       |
| XTAL_19M<br>_IN  | Input to the 19.2 MHz main clock    |                                       |

## 9.2.4 Flash Memory Circuit

The MSM8255-0 is able to visit the LPDDR2 through two high-speed buses (EBI0/EBI1). The LPDDR2 is connected to the MSM8255-0 in PoP (Package-on-package) mode. Meanwhile, the MSM8255-0 also can visit the external storage eMMC through a low-speed bus (EBI2), as shown in the following figure.



# 9.3 RF Unit

| The power supplies of the RF unit are as follows: |
|---------------------------------------------------|
|---------------------------------------------------|

| Signal          | Voltage | Description                            |
|-----------------|---------|----------------------------------------|
| VREG_S2_1V35_A1 | 1.3 V   | Supplies power for QTR8615             |
| VREG_S4_2V2     | 2.2 V   | Supplies power for QTR8615             |
| VREG_S3_1V8     | 1.8 V   | Supplies power for QTR8615             |
| VBAT            | 3.7 V   | Supplies 3.7 V voltage for WiFi and BT |
| VREG_L14_2P85   | 2.85 V  | Single pole, 10 throw power switch     |
| VCC2            | 3.4 V   | PA VCC2                                |

### **Troubleshooting process:**

Failure: The phone cannot initiate a call or be called.

Solution:

Maintenance procedure for transmission failure in W2100, W900, GSM900, and GSM1800

Maintenance procedure for transmission failure in W2100:

Firstly, ensure that the SIM card and antenna are installed properly, and then detect the phone according to the following procedure.



In W900, just replace the U3302 detection with U3402 detection.

In GSM900 and GSM1800, just replace the U3302 detection with U3502 detection.

Maintenance procedure for reception failure in W2100:



Note: Check the control signals of U3202 switch using a multimeter or oscilloscope. The truth table for control signals is as follows:

|            | VC1 | VC2 | VC3 | VC4 |
|------------|-----|-----|-----|-----|
| TRX_W2100  | 1   | 0   | 1   | 0   |
| TRX_W900   | 1   | 1   | 1   | 0   |
| GSM900 Rx  | 1   | 0   | 0   | 0   |
| GSM1800 Rx | 0   | 0   | 1   | 0   |

Note table 1:

In W900, just replace the U3404 detection with U3804 detection.

In GSM, just replace the U3404 detection with U3304 detection.

# 9.4 Peripheral Circuits

## 9.4.1 Display

The MSM8255 employs the MDDI interface to transmit command and data to the LCD. The U8860 uses Toshiba's LCD. The U8860 uses Toshiba's LCD LT040MDT9000. It is a TFT module with a point matrix of 480RGB x 854, supporting MDDI interface. Its features are:

- 16.7 M colors, TFT-LCD module
- Display mode: RGB Stripe

The schematic diagram of the MSM8255 and LCD interface is as follows:



The U8860's LCD employs the MDDI-type2 interface. It requires only two pairs of low voltage differential signal (LVDS) cables and a pair of power cables, and supports 60 Hz refreshment rate. With frame synchronization function, the LCD uses MDP\_VSYNC of GPIO\_030 as the data transmission synchronization signal to avoid LCD breakage.

A diode composes the PWM signal (pull-up) reflected by environment light detection and the PWM signal reflected by LCD's dynamic backlight adjustment function to a signal and performs computation to control the backlight brightness.

| Signal       | Description                        |
|--------------|------------------------------------|
| VREG_L16_2P8 | LCD analog voltage, 2.8 V          |
| VREG_L12_1P8 | I/O connector digit voltage, 1.8 V |
| MDDI_SP      | LVDS + signal                      |
| MDDI_SN      | LVDS - signal                      |

The signal definitions are as follow:

| Signal        | Description                               |
|---------------|-------------------------------------------|
| MDDI_DP       | LVDS + signal                             |
| MDDI_DN       | LVDS - signal                             |
| MDDI_DN_DATA1 | MDDI_DATA+                                |
| MDDI_DP_DATA1 | MDDI_DATA-                                |
| LCD_RESET     | LCD power-on reset signal                 |
| MDP_VSYNC     | Longitudinal frame synchronization signal |
| LCD_ID0       | Supplier ID                               |
| LED+          | The anode of the backlight LED            |
| LED-          | The cathode of the backlight LED          |



The U8860 adopts 4.02 inches LCD. The backlight adopts six serial LED lights, which are controlled by the backlight LED-driving chip RT9293BGJ6.

## **Troubleshooting process**

Failure: The phone can be powered on, but its LCD is blank.

Solutions:

- 1. If the phone displays a black screen, it may be LCD backlight fault.
- 2. If it is LCD fault, refer to the following troubleshooting process.



## 9.4.2 Keypads

The U8860 has seven keys. Four of them are on the touch panel. You can answer a call, hang up a call, view the menu and back the previous operation by touching them. The GPIO\_01

and GPIO\_02 on the side of the PM8058 are Volume+ key and Volume- key. The Power key is detected by KYPD\_PWR\_N on the PM8058 side instead of the scanning mode.



The brightness of the keypad's backlight LEDs can be adjusted by KYPD\_DRV\_N (PM8058), and it is supplied with power by VPH\_PWR. The keypad LEDs are the four LEDs on the LCD.



| Keypad backlight driver |                      |                                                       |
|-------------------------|----------------------|-------------------------------------------------------|
| Signal                  | Description          | Remarks                                               |
| VPH_PWR                 | Power supply         | Backlight power supply                                |
| KPD_DRV_N               | Backlight driver pin | When the level is low, the four backlight LEDs light. |

## **Troubleshooting process**



## 9.4.3 Vibration

## Circuit schematic diagram



## Analysis

The PM VIB\_DRV\_N controls the vibrator's driving voltage. The VIB\_DRV\_N controls the motor vibration by setting high level or low level. When the VIB\_DRV\_N is in low level, the motor vibrates.

#### **Troubleshooting process**

Failure: The motor fails to vibrate.

Solution:



## 9.4.4 Call Reception

#### **Troubleshooting process**

Failure: After a call is established, no sound can be heard or noises are heard.

Solution: For audio fault, check whether the phone is set properly. Generally, the reception faults are caused by earpiece fault or poor earpiece contact.



## 9.4.5 Call Transmission

## **Troubleshooting process**

Failure: No sound is heard by the other party during a call.

Solution: Check whether the phone is set properly.



# 9.4.6 Headphone

#### Circuit schematic diagram



The headphone connect status is identified according to the HS\_DETECT\_N (GPIO\_026).

Before connecting the headphone, HS\_DETECT\_N is pulled up to high level by VREG\_MSM\_L20\_1V8.

After connecting the headphone, HS\_DETECT\_N is dropped down to low level by the resistor R902.

The headphone MIC is supplied with power by MIC\_BIAS1 (PM8058/HSED\_BIAS1), and it is used for headphone answer detection.

U8860's headphone is compatible with two line sequences. The iphone's headphone line sequence is compatible by default.

#### **Troubleshooting process**

Failure: Perform the test using a normal headphone, and no sound is heard.

Solution:





# 9.4.7 SIM Card

## Circuit schematic diagram



USIM interface of the MSM8255

| Signal   | Description                   |
|----------|-------------------------------|
| USIM_IO  | SIM data line                 |
| USIM_RST | SIM reset signal              |
| USIM_CLK | SIM clock                     |
| USIM_VCC | SIM power supply, 1.8 V/3.0 V |

After is phone is powered on, it will detect the SIM card. If the SIM card is found, it will start data communication, and the preceding pins will perform power clock and data transmission. If the SIM card is not found, the system does not detect SIM card status. Therefore, it does not support hot swap.

#### **Troubleshooting process**

Failure: The USIM card cannot be detected.

Solution: Firstly, check whether the software is faulty or the USIM card is damaged. If the card is not damaged, perform the following procedure.



# 9.4.8 I/O Connector

#### Circuit schematic diagram



## Analysis

When a charger connected to the I/O connector (USB connector), the charger provides charging voltage to charge the battery.

When the phone is connected to a computer using a USB cable, USB\_DM and USB\_DP are used for communication (for upgrading the phone's firmware, reading information from the phone...) between the phone and the computer.

#### **Troubleshooting process**

Failure: The phone cannot be charged or detected by a computer.

Solution: Clean, re-solder or replace the USB connector.

#### Description of the signals in the circuit diagram in this section

| Signal  | Description            | Reference Measurement or Wave Form |
|---------|------------------------|------------------------------------|
| VEXT_DC | Charging current input | High level, 5 V                    |
| USB_DM  | Digital signal         |                                    |
| USB_DP  | Digital signal         |                                    |

# 9.4.9 microSD Card Connector

## Circuit schematic diagram



The SDIO4 connector is adopted to connect the MSM8255 and the T-FLASH card.

| Signal                 | Description        |
|------------------------|--------------------|
| SDC4_DATA0~ SDC4_DATA3 | Data line          |
| SDC4_CLK               | Clock              |
| SDC4_CMD               | Control signal     |
| SD_PWR_EN_N            | Presence detection |

After the phone is powered on, the system will periodically detect the SD card through the pin of the SD\_PWR\_EN\_N. After the SD card is found, the system will establish communication with the SD card through the pin. SDC4\_CLK controls SD card data transmission and clock process. The data cable transmits data.

## **Troubleshooting process**

Failure: The microSD cards cannot be detected or read. Solution:



## 9.4.10 Camera

## Circuit schematic diagram





The 8-megapixel primary camera uses the 24 pin BTB connector and is controlled by the I2C bus. The data is transmitted in MIPI mode.

| Signal             | Remarks                              |
|--------------------|--------------------------------------|
| VREG_L11_1P8       | 1.8 V                                |
| VREG_L11_1P8       | 1.8 V                                |
| VREG_CAM_2P85      | 2.85 V                               |
| CAMIF_MCLK         | Camera's reference clock MSM->CAMERA |
| CAMMIPI_PCLK       | MIPI clock                           |
| CAMMIPI_NCLK       | MIPI clock                           |
| CAM_SHDN_OUTS      | Close signal                         |
| SCL_GSB_CAM        | I2C control signal                   |
| SDA_GSB_CAM        | I2C control signal                   |
| CAMIF_ID           | Module supplier identification       |
| CAMIF_RESET_OUTS_N | Reset signal                         |
| CAM_VCM_PD_N       | VCM motor control signal             |
| VREG_CAM_2P85      | VCM motor power supply signal        |
| DATA1_P            | Data communication signal            |
| DATA1_N            | Data communication signal            |
| DATA2_P            | Data communication signal            |
| DATA2_N            | Data communication signal            |

After the camera functions are enabled and the camera is powered on, the system establishes control communication with the camera through the I2C bus to control the camera. The camera communication is implemented depending on the MIPI interface. The data is synchronously provided by two CAMMIPI clocks, and is transmitted by data interface.

During focal length adjustment, the internal motor is supplied with power by VREG\_CAM\_2P85, and the control signal is provided by CAMIF\_RESET\_OUTS\_N.

The 0.3-megapixel secondary camera shares the I2C bus with the 8-megapixel primary camera. The data is transmitted in RAW mode. The interface definitions are as follows:

| Signal                     | Remarks                              |
|----------------------------|--------------------------------------|
| VREG_L11_1P8               | 1.8 V                                |
| VREG_L13_2P85              | 2.85 V                               |
| CAMIF_MCLK                 | Camera's reference clock MSM->CAMERA |
| CAMIF_PCLK                 | CAMRA->MSM 96MHz max                 |
| CAMIF_DATA[11:4]           | 8-bit USB cable                      |
| CAMIF_HSYNC                | Line synchronizing signal            |
| CAMIF_VSYNC                | Frame synchronizing signal           |
| SCL_GSB_CAM                | I2C control signal                   |
| SDA_GSB_CAM                |                                      |
| CAMIF_RESET_OUTS_SLAV<br>E | Reset signal                         |

The function implementation method for the secondary camera is same as that for the primary camera while their data transmission modes are different.

## **Troubleshooting process:**

Failure: No image can be captured.

Solution:



## 9.4.11 BT&WiFi

The BT functions are implemented depending on the BCM4329, and the BT data of the MSM8255 and BCM4329 are transmitted by UART and PCM. The signal definitions are as follows:

| Signal          | Remarks                                                        |
|-----------------|----------------------------------------------------------------|
| QTR_BT_UART_CTS | The ready to receive information sent to the Slave by the Host |
| QTR_BT_UART_RTS | The clear to send information sent to the Host by the Slave    |
| QTR_BT_UART_TXD | Sending signal                                                 |
| QTR_BT_UART_RXD | Receiving signal                                               |
| QTR_BT_PCM_DIN  | PCM input                                                      |
| QTR_BT_PCM_DOUT | PCM output                                                     |

| Signal           | Remarks                   |
|------------------|---------------------------|
| QTR_BT_PCM_SYNC  | PCM synchronization       |
| QTR_BT_PCM_BCLK  | PCM clock                 |
| QTR_BT_HOST_WAKE | Waking up the host        |
| QTR_BT_EXT_WAKE  | Waking up the peripherals |

After the BT module is enabled, you can perform BT communication. You can know whether the host or peripherals is woken up based on QTR\_BT\_HOST\_WAKE or QTR\_BT\_EXT\_WAKE. The signal interfaces of QTR\_BT\_UART\_TXD and QTR\_BT\_UART\_RXD control data transmission, determining to receive or transmit data. QTR\_BT\_UART\_CTS and QTR\_BT\_UART\_RTS transmit status signals, and you can know the BT status according to these two pins. Data transmission is performed by the four pins of PCM.

The Wifi functions are implemented depending on the BCM4329, the communication of the MSM8255 and BCM4329 adopts the SDIO bus of the SDIO3 interface. The signal definitions are as follows:

| Signal     | Description    |
|------------|----------------|
| SDC3_DATA3 | Data line      |
| SDC3_DATA2 |                |
| SDC3_DATA1 |                |
| SDC3_DATA0 |                |
| SDC3_CLK   | Clock          |
| SDC3_CMD   | Control signal |

After the WiFi function is enabled, the data transmission is controlled by SDC3\_CLK and SDC3\_CMD, and is performed by the four data control pins.

#### **Troubleshooting process**

Failure: the BT and WiFi functions are abnormal.

Solution:



# 9.4.12 Accelerometer

## Circuit schematic diagram



| Signal     | Description                              |
|------------|------------------------------------------|
| I2C_SCL_HW | I2C bus                                  |
| I2C_SDA_HW |                                          |
| ACCE_INT   | Accelerometer interrupt signal           |
| ACCE_INT2  | Accelerometer interrupt signal (sleep)—— |

## Analysis



Firstly, the internal micro mechanical structure of the accelerometer detects the accelerometer position. The position is reflected as the three-axis-electric charge amount inside the accelerometer. The voltage conversion device for the internal electric charge converts the voltage to voltage signal and amplifies it. Then the amplified signal is converted to digit signal through the 12-bit ADC, and is transmitted to the chip's DSP for data processing. The interrupt signal and data signal are outputted for data transmission with the main chip.

#### **Troubleshooting process:**

Failure: Relevant functions of the accelerometer are disabled.

Solution:



## 9.4.13 Compass

## Circuit schematic diagram



| Signal     | Description |
|------------|-------------|
| I2C_SCL_HW | I2C bus     |

| Signal      | Description              |
|-------------|--------------------------|
| I2C_SDA_HW  |                          |
| COMPASS_INT | Compass interrupt signal |

The compass is a three-axis-Hall sensor. Because of the earth's magnetic field, the chip generates electricity components on the three axes. After three components are processed inside the chip, the direction of the earth's magnetic field relative to the chip is obtained. Through the I2C bus, the chip communicates with the main chip. Through data processing, the main chip can obtain the relationship of the earth's magnetic field direction and the phone position.

When the compass is operating, the compass direction variation is reported to the main chip, but in the map program, the compass direction is related to GPS. As a result, the unstable GPS signal may cause compass direction error.

#### **Troubleshooting process:**

Failure: Relevant functions of the compass are disabled.

Solution:


### 9.4.14 Gyroscope



| Signal     | Description                        |  |
|------------|------------------------------------|--|
| I2C_SCL_HW | I2C bus                            |  |
| I2C_SDA_HW |                                    |  |
| GYR_INT1   | Gyroscope interrupt signal         |  |
| GYR_INT2   | Gyroscope interrupt signal (sleep) |  |

The gyroscope's internal architecture is as follows:



The gyroscope's core is a dipole. When the gyroscope is working, the core vibrates on the three axes' directions. If the phone rotates, because of the Coriolis force, the rotation will be

reflected as the variation of the corresponding electric signal of the internal circuit. After processing the result, you can obtain the rotation direction.

#### **Troubleshooting process:**

Failure: Relevant functions of the gyroscope are disabled.

Solution:



### 9.4.15 Touch Panel

• Touch panel's circuit unit is a module fixed inside the touch panel. Its interface circuits are as follows:



The principle of capacitive touch panel is: Attaching a layer of transparent metal conductive materials on the glass. When the finger touches the touch panel, the capacity on the touching point varies, which causes the oscillator frequency to vary. Then system can obtain the touching position according to the frequency variation.

As the touch panel module is integrated on the touch panel, the main board and touch panel must be connected by a BTB connector. The connector can be damaged easily. In addition, you must power on the touch panel according to the power-on sequence. First supply the 2.7 V power, and then supply the 1.8 V power; otherwise, the touch panel is disabled. When the touch panel is operating, the I2C controls data transmission.

Four touching key fields are added to the U8860's 4-inch capacitive touch panel, and four backlight LEDs for the four keys are added to the touch panel module.

The definitions of the interfaces for touch panel and MSM8255 and touch panel and PM8058 are as follow:

| Signal           | Description                                                          |  |
|------------------|----------------------------------------------------------------------|--|
| VREG_L10_2P7     | Touch panel analog power supply, 2.7 V                               |  |
| VREG_MSM_L20_1V8 | Touch panel digit power supply and I/O connector power supply, 1.8 V |  |
| TOUCH_INT        | Touch panel interrupt signal                                         |  |
| I2C_SCL_HW       | Touch panel' I2C clock cable                                         |  |
| I2C_SDA_HW       | Touch panel' I2C data cable                                          |  |
| TOUCH_RESET      | Touch panel reset signal                                             |  |

• Troubleshooting process:

Failure: The touch panel is faulty. Solution:



### 9.4.16 Approach Sensor



| Signal     | Description                   |
|------------|-------------------------------|
| I2C_SCL_HW | I2C bus                       |
| I2C_SDA_HW |                               |
| PRO_INT    | Three-in-one interrupt signal |

The approach sensor has two functions. One is for screen brightness adjustment. The other is for misoperation prevention. If you select automatic adjustment, the system will enable the approach sensor's environment light detection function to detect the brightness of the environment light, and then adjust the screen brightness accordingly. The approach sensor realizes the approach status of the phone and other objects depending on the internal infrared sensor. If the approach status achieves a certain threshold, the system will shut down the screen forcibly to prevent it from misoperation. The I2C bus controls the approach sensor components and data transmission. The interrupt pin provides the interrupt signal.

The approach's internal structure is shown in the following figure.



The CH0/CH1 receives environment light and generates environment light value by processing the data internally. Then the system automatically adjusts the LCD brightness according to the environment light value. The approach sensor is to prevent the phone from misoperations caused by the contact of the face and touch panel. As a result, if the inferred emitted by the LED inside the chip is blocked, it will be reflected. Then the sensor will receive the reflected light through the photodiode and identify the obstacle position. When the approach status achieves a certain threshold, the system triggers the operation to shut down the touch panel.

### **Troubleshooting process**

Failure: The approach sensor is faulty.

Solution:



# **10** Solder Points on the PCB and BGA Chip

Red (R:255,G:0,B:0) :Solder point

Green (R:0,G:255,B:0) Vacant point

Main board diagram:





Partial amplified figure:



H9205

U8860 Maintenance Manual

10 Solder Points on the PCB and BGA Chip



# **11** Functional Tests

## 11.1 Keys



# 11.2 MMI Test

On the idle screen after the phone is powered on, press \*#\*#2846579#\*#\* to enter the MMI test mode. Press the Volume- key to perform a test. Touch the Menu icon to skip the current test and go to the next step. Press the Back key to return to the previous test.

| No. | Item                       | Step | Contents                                                                         | Test Method and Precautions                                                                                                                                                                                      |
|-----|----------------------------|------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | SD card test               | 1    | Testing SD<br>card                                                               | Test the microSD card functions. If a microSD card is found<br>and is available, the test succeeds. Otherwise, the information<br>indicating the test fails. Then press the Volume- to perform the<br>next test. |
| 2   | SIM card test              | 2    | Testing SIM<br>card                                                              | Check whether the SIM card can be found.                                                                                                                                                                         |
| 3   | Keypad test                | 3    | Testing keys                                                                     | Press a key, and the color of its corresponding icon on the LCD is changed. After all keys are tested, press the Volume- to perform the next test.                                                               |
| 4   | LCD test                   | 4    | White screen                                                                     | Press the Volume- to display the white screen.                                                                                                                                                                   |
|     |                            |      | Black screen                                                                     | Press the Volume- to display the black screen.                                                                                                                                                                   |
|     |                            |      | Color screen                                                                     | Press the Volume- to display a triple color bar (red, green and blue).                                                                                                                                           |
| 5   | LCD<br>backlight<br>test   | 5    | Testing LCD<br>backlight<br>functions                                            | If the LCD backlight blinks continuously, the test succeeds.<br>Press the Volume- to perform the next test.                                                                                                      |
| 6   | 8M camera<br>test          | 6    | Testing 8M<br>camera<br>functions                                                | After the phone displaying the preview screen, press the Volume+ to capture the image. If the LED flash blinks one time, the test succeeds.                                                                      |
|     |                            |      |                                                                                  | Press the Volume- to perform the next test.                                                                                                                                                                      |
| 7   | 0.3M<br>camera test        | 7    | Testing 0.3M<br>camera<br>functions                                              | After the phone displaying the preview screen, press the Volume- to perform the next test.                                                                                                                       |
| 8   | Touch panel test           | 8    | Testing touch<br>panel<br>functions                                              | Touch around the touch panel. After the edge of the touch panel displays red totally, the test succeeds.                                                                                                         |
|     |                            |      |                                                                                  | Press the Volume- to perform the next test.                                                                                                                                                                      |
| 9   | Approach<br>test           | 9    | Testing<br>approach<br>sensor<br>function                                        | Place the shielding board above the touch panel and keep it away from the photic hole for about 4 mm.                                                                                                            |
|     |                            |      |                                                                                  | If a phone icon is displayed nearby the portrait, the function is normal.                                                                                                                                        |
| 10  | Environmen<br>t light test | 10   | Testing the<br>approach<br>sensor's<br>environment<br>light sensing<br>function. | Check whether the environment light data is detected. When<br>you cover the approach sensor with hand, the number displayed<br>on the LCD should be around 10.                                                   |

| No. | Item                                    | Step | Contents                                   | Test Method and Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-----------------------------------------|------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11  | Vibration<br>test                       | 11   | Testing the<br>motor<br>functions          | If the motor vibrates continuously, the test succeeds.<br>Press the Volume- to perform the next test.                                                                                                                                                                                                                                                                                                                                                                 |
| 12  | Speaker test                            | 12   | Testing the<br>speak<br>function           | If music is heard from the speaker, the test succeeds.<br>Press the Volume- to perform the next test.                                                                                                                                                                                                                                                                                                                                                                 |
| 13  | Mobile<br>phone MIC<br>loopback<br>test | 13   | Testing the<br>MIC<br>functions            | Press Record, speak at the MIC, and then press Play. If the<br>recorded voice is heard from the receiver, the test succeeds.<br>Perform master MIC test, secondary MIC test, dual-MIC test,<br>and then perform headphone loopback test. Connect the<br>headphone, press record, speak at the headphone MIC, and then<br>press play. If the recorded voice is heard from the headphone<br>receiver, the test succeeds.<br>Press the Volume- to perform the next test. |
| 14  | FM test                                 | 14   | Testing FM<br>functions                    | Search FM channels, if program voice is heard, the test succeeds.<br>Press the Volume- to perform the next test.                                                                                                                                                                                                                                                                                                                                                      |
| 15  | Headphone<br>cable<br>control test      | 15   | Testing the<br>headphone<br>cable          | According to the prompt, first disconnect the headphone, and<br>reconnect the headphone, then the In icon should turn green.<br>Then disconnect the headphone, the Out icon should turn green.<br>Press the Volume- to perform the next test.                                                                                                                                                                                                                         |
| 16  | BT Test                                 | 16   | Testing BT<br>functions                    | Check whether the BT functions are normal. If a BT device is<br>found, the test succeeds.<br>Press the Volume- to perform the next test.<br>(Note: A terminal with BT function enabling is required to<br>assist this test.)                                                                                                                                                                                                                                          |
| 17  | Gravity<br>sensing test                 | 17   | Testing<br>gravity<br>sensing<br>functions | Move the phone to ensure that the phone exists in a three-dimensional space. If the phone and the X, Y and Z plates at an angle of 45 degrees respectively, the test succeeds.                                                                                                                                                                                                                                                                                        |
| 18  | Compass<br>test                         | 18   | Testing<br>compass<br>functions            | If the compass is immobile, sway it.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19  | WiFi test                               | 19   | Testing WiFi<br>functions                  | If signal is received normally, the test succeeds.<br>(Note: A terminal with WiFi function enabling is required to assist this test.)                                                                                                                                                                                                                                                                                                                                 |

## 11.3 Voice Call Test

- Install a UIM card and battery to the phone.
- Press the power key to Power the phone on.
- Check whether the signal strength displayed on the LCD is normal.
- Make a call to a fixed-line phone, and check the voice quality during the call.
- If no problems are found during the test, finish the voice call test. If any problems are found, troubleshoot the phone or send it to an advanced service site for repair.