
Sun Microsystems, Inc.
www.sun.com

CDC Runtime Guide

Java™ Platform, Micro Edition

Connected Device Configuration, Version 1.1.2

Foundation Profile, Version 1.1.2

Optimized Implementation

December 2008

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris and HotSpot are trademarks or registered trademarks of Sun Microsystems, Inc. or its
subsidiaries in the United States and other countries.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l’adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
États - Unis et dans les autres pays.

Droits du gouvernement des États-Unis ? Logiciel Commercial. Les droits des utilisateur du gouvernement des États-Unis sont soumis aux
termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des éléments développés par des tiers.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux États-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris et HotSpot sont des marques de fabrique ou des marques déposées enregistrées de Sun
Microsystems, Inc. ou ses filiales aux États-Unis et dans d’autres pays.

Le logo Adobe est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matière de
contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des États-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine sur le contrôle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE À LA QUALITE MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIERE OU À
L’ÀBSENCE DE CONTREFAÇON.

Contents

Preface xi

1. Introduction 1–1

1.1 Goals 1–2

1.2 Usage Contexts 1–2

1.3 CDC Technology Implementations 1–3

1.4 CDC Target Device Requirements 1–4

1.5 Java ME Technology Standards 1–4

1.6 Java ME API Choices 1–6

1.7 CDC Application Features 1–7

1.8 Developer Tools 1–7

2. Software Layout 2–1

2.1 Standard Files 2–2

2.2 Security Files 2–3

2.3 Development Files 2–4

2.4 Test and Demonstration Files 2–5

3. Running Applications 3–1

3.1 Installing the CDC Java Runtime Environment 3–1

3.2 Launching a Java Application 3–1
iii

3.3 Class Search Path Basics 3–2

3.3.1 Java Class Search Path 3–2

3.3.2 Native Method Search Path 3–3

3.4 Memory Management 3–4

3.4.1 The Java Heap 3–5

3.4.2 Garbage Collection 3–5

3.4.2.1 Garbage Collection in the CDC HotSpot
Implementation 3–6

3.4.2.2 Default Generational Collector 3–7

3.4.2.3 Tuning Options 3–8

3.4.3 Class Preloading 3–8

Class Preloading and Verification 3–9

3.4.4 Setting the Maximum Working Memory for the Dynamic
Compiler 3–10

3.5 Tuning Dynamic Compiler Performance 3–10

3.5.1 Dynamic Compiler Overview 3–11

3.5.2 Dynamic Compiler Policies 3–12

3.5.2.1 Managing the Popularity Threshold 3–13

3.5.2.2 Managing Compiled Code Quality 3–14

3.5.2.3 Managing the Code Cache 3–14

3.6 Ahead-of-Time Compilation 3–15

3.6.1 Using AOTC 3–15

3.6.2 How to Create methodsList.txt 3–16

4. Security 4–1

4.1 Overview 4–2

4.1.1 Built-in Security Features 4–2

4.1.2 Security Policy Framework 4–2

4.1.3 Security Provider Architecture 4–3

4.1.4 Custom JSSE Provider Plug-ins 4–4
iv CDC Runtime Guide • December 2008

4.1.5 Sun JSSE Ciphersuite Support 4–4

4.1.6 Self-Integrity Checks 4–4

4.2 Security Procedures 4–4

4.2.1 Using Alternate Security Providers 4–4

4.2.2 Public Key Management 4–5

4.2.3 Security Policy Management 4–5

4.2.4 Seed Generation for Random Number Generation 4–5

5. Localization 5–1

5.1 Setting Locale System Properties 5–1

5.2 Timezone Information Files 5–2

6. Developer Tools 6–1

6.1 Compiling With javac 6–1

6.1.1 CDC and Java SE 6–1

6.1.2 Compiling Java Source Code for the Java SE Platform 6–3

6.1.3 Compiling Java Source Code for CDC 6–3

6.1.4 Determining the Target Class Library 6–4

6.1.5 Useful javac Command-Line Options 6–4

6.1.5.1 -classpath classpath 6–5

6.1.5.2 -bootclasspath classpath 6–5

6.1.5.3 -extdirs classpath 6–5

6.1.5.4 -source release 6–5

6.1.5.5 -target version 6–5

6.1.5.6 -deprecation 6–5

6.1.6 Compiling an Example CDC Program 6–6

6.2 Application Debugging With jdb 6–6

6.2.1 Application Debugging Command-Line Options 6–6

6.2.2 Using the Application Debug Features of cvm 6–7
Contents v

6.2.3 Running jdb on the Host Development System 6–7

6.3 Profiling with hprof 6–8

6.3.1 Profiling Command-Line Options 6–9

6.3.2 Running cvm With hprof 6–9

A. cvm Reference A–1

A.1 Synopsis A–1

A.2 Description A–1

A.3 Options A–2

B. Java ME System Properties B–1

C. Serial Port Configuration Notes C–1

C.1 Serial Port Setup C–2

C.2 OS-Level Testing C–3
vi CDC Runtime Guide • December 2008

Figures

FIGURE 1-1 CDC Target Device Categories 1–1

FIGURE 1-2 An Example CDC Java Runtime Environment 1–6

FIGURE 3-1 GC Generations 3–7

FIGURE 3-2 Interpreter-Based Method Execution 3–11

FIGURE 3-3 Compiling a Method 3–11

FIGURE 3-4 Executing a Compiled Method 3–12

FIGURE 4-1 Java Security Policy Model 4–3

FIGURE 6-1 CDC and Java SE API Compatibility 6–2

FIGURE 6-2 Compiling Java Source Code for the Java SE Platform 6–3

FIGURE 6-3 Compiling Java Source Code for CDC 6–4
vii

viii CDC Runtime Guide • December 2008

Tables

TABLE 1-1 Java ME API Standards 1–5

TABLE 2-1 Standard Files 2–2

TABLE 2-2 Security Files 2–3

TABLE 2-3 Development Files 2–4

TABLE 2-4 Test and Demonstration Files 2–5

TABLE 4-1 Security Documentation for the Java SE Platform 4–1

TABLE 5-1 Locale System Properties 5–1

TABLE 6-1 cvm Debugging Options 6–6

TABLE 6-2 hprof Command-Line Options 6–9

TABLE A-1 Java SE Command-Line Options A–2

TABLE A-2 CDC-Specific Command-Line Options A–4

TABLE A-3 -Xgc:suboption A–5

TABLE A-4 -Xopt:suboption A–6

TABLE A-5 -Xtrace:flags (unsupported) A–6

TABLE A-6 JVMTI Options A–7

TABLE A-7 -Xjit:options A–7

TABLE A-8 -Xjit:inline=suboption A–9

TABLE A-9 -Xjit:compile=suboption A–10

TABLE A-10 -Xjit:trace=option A–10

TABLE B-1 CDC System Properties B–1
ix

TABLE C-1 Serial Communications References C–1
x CDC Runtime Guide • December 2008

Preface

This runtime guide describes how to use a Java runtime environment based on the
Connected Device Configuration (CDC) with its related profiles and optional
packages. It focuses on runtime issues like deployment, configuration and running
application software based on Java technology, as well as developer issues like
compiling, debugging and profiling.

This runtime guide is based on a version of the CDC Java runtime environment that
has been tested and used in a development environment on test devices. So the
information in this runtime guide is not what a typical end-user would generally
need for two reasons:

■ This runtime guide doesn’t describe a specific end-user product implementation
of CDC technology. Chapter 1 shows how these product implementations can
vary depending on the target device and the included optional APIs. So the user
experience for product devices is based on decisions made by product designers
who adapt CDC technology to their products specific needs.

■ This runtime guide is intended for use within a product development context,
including both runtime and application development. From a developer’s
perspective, runtime issues generally exercise configuration, testing or debugging
features of the CDC Java runtime environment.

The companion document CDC Build System Guide describes how to build a CDC
Java runtime environment for a specific target device, including the build-time
options that control functionality, testing and performance features. This runtime
guide focuses on how to use those features at runtime.

Who Should Read This Runtime Guide
This runtime guide is intended for software engineers who need to work with a
CDC Java runtime environment for one of the following purposes:
xi

■ Testing a CDC Java runtime environment

■ Developing applications

■ System integration

■ Porting the CDC Java runtime environment

■ Porting one of the CDC profiles or optional packages

CDC Software Releases
CDC technology is delivered by Sun through different kinds of software releases.
The following technology releases are relevant to this guide:

■ A reference implementation (RI) demonstrates CDC technology. CDC RIs are based
on a common desktop development environment like Suse Linux 9.1.

■ An optimized implementation (OI) supports strategic platforms and provide the
basis for porting projects. The supported optimized implementation is based on
the Linux platform and several embedded processors, including ARM and MIPS.
Starter ports for other OS/CPU combinations are available from Java Partner
Engineering (JPE).

This build guide describes the build system common to both of these source releases.

phoneME Open Source Project
Sun makes Java ME technology available through both a commercial license and the
open source phoneME project (https://phoneme.dev.java.net). The main
differences between the commercial and open source versions are:

■ The commercial version is a superset of the open source version and contains
additional security features that cannot be made available in source form as well
as third-party components that may have restrictions on redistribution.

■ The commercial version has had more rigorous software testing.

■ The open source version represents active engineering development and so may
have new features that have not been tested to the level that the commercial
version requires.
xii CDC Runtime Guide • December 2008

The phoneME project includes several subprojects including phoneME Advanced,
which corresponds with CDC technology and phoneME Feature, which corresponds
with CLDC technology. See the phoneME Advanced Twiki at
http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced
for the latest information about the phoneME Advanced open source project.

How This Book Is Organized
■ Chapter 1 introduces the CDC platform, including its standards, target devices,

application characteristics and developer tools.

■ Chapter 2 describes the contents of a CDC Java runtime environment.

■ Chapter 3 shows how to launch and use application software based on Java
technology with a CDC Java runtime environment.

■ Chapter 4 describes security features and how they are related to the security
framework provided by the Java Platform, Standard Edition (Java SE).

■ Chapter 5 describes localization procedures including font management, locale-
specific system properties and time zone information files.

■ Chapter 6 shows how to integrate the CDC Java runtime environment with Java
SE developer tools like javac, jdb and hprof.

■ Appendix A describes the command-line options for the cvm application launch
tool.

■ Appendix B describes system properties for the Java Platform, Micro Edition (Java
ME). These include CDC-specific system properties.
Preface xiii

Typographic Conventions

Runtime Documentation for the Java
Platform Standard Edition
Because CDC is heavily based on Java Platform Standard Edition, it’s important to
be familiar with the documentation for Java Platform Standard Edition. TABLE P-2
describes the main web pages for the runtime documentation for Java Platform
Standard Edition.

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

TABLE P-2 Java Standard Edition Runtime Documentation

URL Description

http://java.sun.com/
docs/index.html

Main documentation web page for the
Java SE platform.

http://java.sun.com/
j2se/1.4.2/relnotes.html

Release notes for the Java SE platform,
version 1.4.2.

http://java.sun.com/
j2se/1.4.2/docs/tooldocs/tools.html

Tool documentation for the Java SE
platform, version 1.4.2.
xiv CDC Runtime Guide • December 2008

Related Documentation
TABLE P-3 Related Documentation

Title Description

CDC Build System Guide CDC build system installation, configuration and testing.

CDC Porting Guide Procedures and interface definitions for porting CDC, including its Java
virtual machine and Java class library to an alternate target platform.

CDC HotSpot Implementation
Dynamic Compiler Architecture
Guide

Internals reference for the CDC HotSpot Implementation dynamic
compiler.

• CDC Technology Compatibility Kit
User’s Guide

• Foundation Profile Technology
Compatibility Kit User’s Guide

• Security Optional Package
Technology Compatibility Kit
User’s Guide

User documentation for running the TCK validation suites.

Java Language Specification Java Language Specification defines the Java programming language. See
http://java.sun.com/docs/books/jls.

Java Virtual Machine Specification Defines the Java class format and the virtual machine semantics for class
loading, which are the basis for the operation of the Java runtime
environment and its ability to execute Java application software on a
variety of different target platforms. See
http://java.sun.com/docs/books/vmspec.

Java Native Interface (JNI) The Java Native Interface: Programmer's Guide and Specification (Addison-
Wesley, 1999) by Sheng Liang describes the native method interface used
by the CDC HotSpot Implementation Java virtual machine. See
http://java.sun.com/docs/books/jni.

Java Virtual Machine Tools Interface
(JVMTI)

Defines an interface that allows developer tools like debuggers and
profilers to interact with a Java runtime environment to control and
measure application behavior. See
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti

Java ME Unified Emulator Interface
Specification (UEI)

Defines an interface that allows an external developer tool to control an
emulator for the running Java ME applications. See
https://uei.dev.java.net.

Inside Java 2 Platform Security Describes the Java security framework, including security architecture,
deployment and customization. See
http://java.sun.com/docs/books/security.
Preface xv

Sun Documentation Resources
Sun provides online documentation resources for developers and licensees.

TABLE P-4 Sun Documentation Resources

URL Description

http://docs.sun.com Sun product documentation

http://java.sun.com/j2me/docs Java ME technical documentation

http://developer.java.sun.com Java Developer Services

https://java-partner.sun.com Java Partner Engineering

http://java.net An open community that facilitates Java
technology collaboration.

https://phoneme.dev.java.net phoneME open source project.
xvi CDC Runtime Guide • December 2008

Terminology
These terms related to the Java™ platform and Java™ technology are used
throughout this manual.

Java technology level (Java level)

Java technology based (Java based)

class contained in a Java
class file (Java class)

Java programming
language profiler (Java profiler)

Java programming
language debugger (Java debugger)

thread in a Java virtual
machine representing a

Java programming
language thread (Java thread)

stack used by a Java
thread (Java thread stack)

application based on Java
technology (Java application)

source code written in the
Java programming

language (Java source code)

object based on Java
technology (Java object)

method in an object based
on Java technology (Java method)

field in an object based on
Java technology (Java field)

a named collection of
method definitions and

constant values based on
Java technology (Java interface)

a group of types based on
Java technology (Java package)
Preface xvii

an organized collection of
packages and types based

on Java technology (Java namespace)

constructor method in an
object based on Java

technology (Java constructor)

exception based on Java
technology (Java exception)

an application
programming interface

(API) based on Java
technology (Java API)

a service providers
interface (SPI) based on

Java technology (Java API)

developer tool based on
Java technology (Java developer tool)

system property in a Java
runtime environment (Java system property)

security framework for the
Java platform (Java security framework)

security architecture of the
Java platform (Java security architecture)

Feedback
Sun welcomes your comments and suggestions on CDC technology. The best way to
contact the development team is through the following e-mail alias:

cdc-comments@java.sun.com

You can send comments and suggestions regarding this runtime guide by sending
email to:

docs@java.sun.com
xviii CDC Runtime Guide • December 2008

CHAPTER 1

Introduction

A Java runtime environment is an implementation of Java technology for a specific
target platform. It performs a middleware function with features common to a native
application: it is installed, launched and run like a native application. But its real
purpose is to launch, run and manage Java application software on the target
platform.

The Connected Device Configuration (CDC) Java runtime environment is an
implementation of Java technology for connected devices. These include mobile
devices like PDAs and smartphones as well as attached devices like set-top boxes,
printers and kiosks.

CDC target devices can vary widely based on their features and purpose. FIGURE 1-1
describes some CDC target device categories and organizes them by their two most
important characteristics: purpose (fixed or general) and mobility (mobile or
attached).

FIGURE 1-1 CDC Target Device Categories

fixed
purpose

general
purpose

mobile

field service
automation

industrial
automation

office
equipment

set-top
boxes

VOIP

personal
mobile devices

stationary

telematics
1-1

This runtime guide describes how to use the CDC Java runtime environment for
different purposes including application development, runtime development and
solution deployment.

This chapter briefly introduces the CDC Java runtime environment through the
following:

■ Goals

■ Usage Contexts

■ CDC Technology Implementations

■ CDC Target Device Requirements

■ Java ME Technology Standards

■ Java ME API Choices

■ CDC Application Features

■ Developer Tools

1.1 Goals
It is difficult to describe CDC technology without reference to the Java SE platform
because Java SE represents the core of Java technology. In fact, the principal goal of
CDC is to adapt Java SE technology from desktop systems to connected devices.
Most of CDC’s modifications to Java SE APIs are based on identifying features that
are either too large or inappropriate for CDC target devices and then either
removing or making them optional.

Other related goals of CDC include the following:

■ Broaden the number of target devices for Java application software.
■ Take advantage of target device features while fitting within their resource

limitations.
■ Provide a runtime implementation optimized for connected devices.
■ Leverage Java SE developer tools, skills and technology.

1.2 Usage Contexts
The CDC Java runtime environment described in this runtime guide can operate in
several different usage contexts:
1-2 CDC Runtime Guide • December 2008

■ During product development, the CDC Java runtime environment has testing
features that can help isolate problems while porting CDC technology to a new
target platform. For example, the trace features provide details about opcode and
method execution as well as garbage collection (GC) state.

■ One of the final stages of product development is TCK verification. A TCK is a test
suite that verifies the behavior of an implementation of Java technology. The TCK
includes a test harness that runs a candidate Java runtime environment and
launches a series of test Java applications. TCK verification is described in the
TCK user guides listed in “Related Documentation” on page xv.

■ Application development for the CDC platform requires a target Java class library
for compiling Java source code and a CDC Java runtime environment for testing
and debugging. Chapter 6 provides more information about application
development with the CDC Java runtime environment.

■ When an application is complete and tested, it’s ready for deployment. CDC
provides a number of deployment mechanisms including preloading with
JavaCodeCompact, managed application models like applets and xlets and
network-based provisioning systems.

1.3 CDC Technology Implementations
CDC technology is delivered by Sun through different kinds of software releases:

■ A Reference Implementation (RI) demonstrates Java technology that is described in
a Java Specification Request (JSR) and verified by a corresponding Technology
Compatibility Kit (TCK). Because it serves a demonstration purpose, an RI does not
provide the best available performance features.

■ An Optimized Implementation (OI) is also a TCK-compliant implementation of Java
technology. An OI provides the following benefits:

■ Undergoes more quality assurance (QA) testing
■ Provides superior performance
■ Supports a strategic platform or can be used as a starting point for porting Java

technology to a different target platform

The phoneME Advanced project
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
has several example implementations based on open source and commercial
platforms.
Chapter 1 Introduction 1-3

1.4 CDC Target Device Requirements
CDC is an adaptable technology that can support a range of connected target devices
that exist today and in the future. The baseline system requirements of these
connected devices are the following:

■ network connectivity
■ 32-bit RISC-based microprocessor

The memory requirements for a CDC Java runtime environment vary based on the
native platform, the profile and optional packages and the application. See
Section 3.4, “Memory Management” on page 3-4 for memory usage guidelines.

Other features of the CDC target device can include:

■ a display for a graphical user interface (GUI)
■ Unicode font support
■ an open or proprietary native platform that provides operating system services

1.5 Java ME Technology Standards
CDC is part of the family of Java ME technology standards that support application
software for connected devices. From an application developer’s perspective, CDC is
a standards-based framework for creating and deploying application software on a
broad range of consumer and embedded devices. The CDC APIs are largely based
on well-known Java SE APIs, which makes the job of migrating skills, tools and
source code easier. From a product designer’s perspective, CDC provides a
standards-based Java runtime environment that supports a variety of target devices.
This allows product designers to provide an application platform that fits within
their device’s resource limitations while supporting a large number of applications
and developers.

Java ME standards are developed in collaboration with industry leaders through the
Java Community Process (www.jcp.org). JCP standards allow Java technology to
adapt to the needs of evolving products in an open way by defining APIs that
address common needs in application development. Furthermore, these standards
allow product designers to choose which API features fit their product needs.

Java ME technology uses three kinds of API standards described in TABLE 1-1 as
building blocks that can be combined in a specific product solution.
1-4 CDC Runtime Guide • December 2008

TABLE 1-1 Java ME API Standards

Category Description Options

Configuration Defines the most basic Java class
library and Java virtual machine
capabilities for a broad range of
devices.

• Connected Device Configuration (CDC, JSR-218)
supports connected devices like smart phones,
set-top boxes and office equipment.

• Connected Limited Device Configuration (CLDC,
JSR-139) supports small devices like cellphones.

Profile Defines additional APIs that support a
narrower range of devices. A profile is
built on a specific configuration.

• Foundation Profile (JSR-219) provides application-
support classes like network and I/O support
platforms without a standards-based GUI
system.

• Personal Basis Profile (JSR-217) provides a
standards-based GUI framework for supporting
lightweight components. In addition to the same
application support classes provided by
Foundation Profile, Personal Basis Profile
includes support for the xlet application model.

• Personal Profile (JSR-216) provides an AWT-based
GUI toolkit. In addition to the same application
support classes provided by both Foundation
Profile and Personal Basis Profile, Personal
Profile includes support for the applet
application model.

Optional
Package

Defines a set of technology-specific
APIs.

• The Remote Method Invocation (RMI) Optional
Package (JSR-66) provides a subset of the Java SE
RMI API for networked devices based on Java
technology. It exposes distributed application
protocols through Java interfaces, classes and
method invocations and shields the developer
from the details of network communications.

• The Java Database Connectivity (JDBC) Optional
Package (JSR-169) provides a subset of the JDBC
3.0 API that can be used by Java application
software to access tabular data sources including
spreadsheets, flat files and cross-DBMS
connectivity to a wide range of SQL databases.

• The Security Optional Packages (part of JSR-219)
include Java Secure Socket Extension (JSSE)
Optional Package, the Java Cryptography Extension
(JCE) Optional Package and the Java Authentication
and Authorization Service (JAAS) Optional Package.
These provide Java SE APIs for extending CDC’s
security architecture.

• The Web Services Optional Package (JSR-172)
provides standard access from Java ME clients to
web services.
Chapter 1 Introduction 1-5

1.6 Java ME API Choices
Each Java ME licensee can create a Java runtime environment by choosing from a
menu of standard APIs. The designer’s choice must contain a configuration, a profile
and any number of optional packages and these choices can vary from product to
product. The critical point to understand is that the application developer must
separately learn about which API combination are available for a specific CDC
product implmentation.

For example, FIGURE 1-2 describes a Java runtime environment where a product
designer selects CDC, Personal Profile, RMI Optional Package and JDBC Optional
Package to represent a conforming CDC Java runtime environment.

FIGURE 1-2 An Example CDC Java Runtime Environment

Note – See the companion document CDC Build System Guide for information on
how to build a target development version of the CDC Java class library for
application development that reflects the APIs chosen for a specific target product.
Chapter 6 describes how to compile Java application software with such a library.

Foundation Profile

CLDC

Security Optional Packages

other optional packages...

configuration profile optional packages

JRE

CDC

Personal Profile

JDBC Optional Package

RMI Optional Package

= compliant JRE

Personal Basis Profile
1-6 CDC Runtime Guide • December 2008

1.7 CDC Application Features
The applications targeted by CDC technology have certain characteristics that
distinguish them from the productivity tools and utilities common to desktop
platforms.

■ Network connectivity. The dominant trends in application development, like web
browsers, XML-based web services and RSS, are based on network connectivity.
Examples include the evolution of PDAs and cell phones into connected devices
and the evolution of office printers into multi-function peripherals that can
generate campus-specific reports.

■ Security. Application developers and users are becoming increasingly aware of the
need for security for their mobile and distributed applications. The Java SE
security framework in CDC allows applications to use fine-grained security
policies for application and enterprise security needs.

■ Application deployment. Java technology has traditionally provided flexible
application models. CDC profiles support managed application models like
applets and xlets that allow developers to easily deploy applications over the
network, either directly or through a provisioning server.

■ Standard data access. Mobile clients need access to central databases to view and
modify information. The JDBC and web Services optional packages provide
standard data access for client-side applications.

■ Portable GUIs. With the broad range of CDC target devices, applications need a
GUI system that is flexible enough different user experiences and workflows
while being portable enough to support different target devices. Personal Basis
Profile and Personal Profile support conventional AWT-based GUIs as well as
providing a hosting layer for building and supporting GUIs based on industry-
standards and vendor-specific interfaces.

1.8 Developer Tools
Because CDC APIs are derived from Java SE APIs, application developers can
migrate both their software and their skills to the CDC platform with little effort.
Java SE developers can easily learn CDC APIs by focusing on their small differences
with Java SE APIs. It is therefore easy to modify Java SE software for CDC devices.
The ability to use Java SE developer tools like compilers, debuggers and profilers
makes this transition easier.

The CDC Java runtime environment uses several developer tool-oriented
specifications, including the following:
Chapter 1 Introduction 1-7

■ Because CDC is based on the Java Virtual Machine Specification (see
java.sun.com/docs/books/vmspec), application developers can use
conventional Java SE compilers like javac.

■ The Java Virtual Machine Tools Interface (JVMTI, see
java.sun.com/j2se/1.5.0/docs/guide/jvmti) defines an interface that
allows developer tools like debuggers and profiles to control and measure
runtime data for a specific application or benchmark.

■ The Java ME Unified Emulator Interface Specification (UEI, see
https://uei.dev.java.net) defines an interface that allows an external
developer tool to control a Java ME emulator.

■ cvm, the CDC application launcher, uses many command-line options that are
available with java, the Java SE application launcher. Many of these options can
be used for application testing and development.

Java SE tools like jar and keytool can also be used in CDC application
development and deployment.
1-8 CDC Runtime Guide • December 2008

CHAPTER 2

Software Layout

A CDC Java runtime environment contains the software necessary to run Java
applications on a target platform. The software contents of a CDC Java runtime
environment can vary, especially during product development when different
testing options may be selected at build-time. This chapter describes the
organization of a CDC Java runtime environment, including standard files as well as
optional security, developer and test files.
2-1

2.1 Standard Files
After installation, the CDC Java runtime environment is located in its installation
directory. Because the location of this installation directory can be anywhere in the
local file system, the CDC Java runtime environment specifies this location with the
java.home system property. TABLE 2-1 describes the standard files located in the
installation directory based on the default build options.

TABLE 2-1 Standard Files

File Description

bin/cvm The CDC Java application launcher loads and executes Java
applications.

lib/class-lib.jar Optional. The CDC Java class library is used by the CDC Java runtime
environment to locate and load core Java classes. The actual name of
the archive file indicates the supported CDC specifications, e.g.
cdc.jar, foundation-rmi.jar.
Note: lib/class-lib.jar is only present for non-preloaded builds.

lib/content-types.properties The MIME content type system property table used by the
sun.net.www package. Each entry maps a MIME content type to a
native application that can handle it. Files are associated with a MIME
content type by either the MIME content type returned by an HTTP
header or their file name extension.

lib/security/java.policy System-wide security policies.1

1 See Inside Java 2 Platform Security, Second Edition: Architecture, API Design, and Implementation by Li Gong (Addison-Wesley, 2003) for
more information about Java SE security features.

lib/security/java.security Master security properties.1

lib/zi/America/Los_Angeles
lib/zi/Asia/Calcutta
lib/zi/Asia/Novosibirsk
lib/zi/GMT
lib/zi/ZoneInfoMappings

Time zone data files used by sun.util.calendar.ZoneInfoFile.
2-2 CDC Runtime Guide • December 2008

2.2 Security Files
TABLE 2-2 describes optional security files in versions of the CDC Java runtime
environment that include the security optional packages. See Inside Java 2 Platform
Security: Architecture, API Design, and Implementation by Li Gong (second edition,
Addison-Wesley, 2003) for more information about Java SE security features.

TABLE 2-2 Security Files

File Description

lib/jaas.jar Java Authentication and Authorization Service (JAAS) Optional
Package is a part of JSR-219 which is a framework for enforcing
access control to resources using a CodeSource-based and
Subject-based security model. jaas.jar contains the JAAS
Optional Package implementation and the
KeyStoreLoginModule authentication module, which is a
subset of what is available in J2SE version 1.4.2.

lib/jce.jar
lib/ext/sunjce_provider.jar
lib/sunrsasign.jar

Java Cryptography Extension (JCE) Optional Package is a part of
JSR-219 which extends the Java Cryptography Architecture
(JCA) to include key generation and agreement, encryption and
message authentication code (MAC) generation services.
jce.jar contains the JCE Optional Package implementation
which is fully compatible with J2SE version 1.4.2.
sunjce_provider.jar contains the default ("SunJCE")
provider implementation of the JCE service provider interface
(SPI) and is fully compatible with J2SE version 1.4.2. Note that
lib/ext is part of the extension class search path, but not part
of the system class search path. See Section 3.3, “Class Search
Path Basics” on page 3-2 for more information about class
search paths.
sunrsasign.jar contains the default ("SUN") provider
implementation of the RSA signature SPI and is fully
compatible with the SunJCE provider implementation in J2SE
version 1.4.2. See “How to Implement a Provider for the Java
Cryptography Architecture” in JSR-219.
Chapter 2 Software Layout 2-3

2.3 Development Files
TABLE 2-3 describes files that can be used with developer tools like compilers and
debuggers. These files are further described in Chapter 6.

lib/jsse-cdc.jar Java Secure Socket Extension (JSSE) Optional Package is a part of
JSR-219 which provides support for secure communication.
jsse.jar contains both the JSSE Optional Package
implementation and the default (“SunJSSE”) provider
implementation, which is fully compatible with the SunJSSE
provider implementation in J2SE version 1.4.2.

lib/security/cacerts Certificate authority (CA) keystore file. The default keystore
password is "changeit". See keytool(1) for more information
about how to use the Java SE SDK key and certificate
management tool to change the keystore password.

lib/security/local_policy.jar
lib/security/US_export_policy.jar

Security jurisdiction policy files.

TABLE 2-3 Development Files

File Description

lib/btclasses.zip The CDC Java class library can be used for compiling application source code.
Note: Because the contents of these archive files can vary depending on the
selected build options, application development must be based on a target
development version of the CDC Java class library. See the companion
document CDC Build System Guide for information about how to build a
target development version of the CDC Java class library.

lib/libdt_socket[_g].so
lib/libjdwp[_g].so

The Java Debugger Wireline Protocol (JDWP) shared libraries are necessary
for remote debugging.

TABLE 2-2 Security Files (Continued)

File Description
2-4 CDC Runtime Guide • December 2008

2.4 Test and Demonstration Files
TABLE 2-4 describes the test and demo programs. These are often included with the
installation bundle, but are not necessary for operation.

TABLE 2-4 Test and Demonstration Files

File Description

democlasses.jar Demonstration applications that demonstrate profile-based functionality. This
jar archive also contains the Java source code for these demo applications.

testclasses.zip Test applications that can be used to quickly test the CDC Java runtime
environment. The source code for these programs is located in
src/share/javavm/test of the source code release. The simplest test
programs to use are HelloWorld and Test.
Chapter 2 Software Layout 2-5

2-6 CDC Runtime Guide • December 2008

CHAPTER 3

Running Applications

The CDC Java runtime environment includes cvm, the CDC application launcher, for
loading and executing Java applications. This chapter describes basic use of the cvm
command to launch different kinds of Java applications, as well as more advanced
topics like memory management and dynamic compiler policies.

3.1 Installing the CDC Java Runtime
Environment
Because the CDC Java runtime environment is built specifically for a target platform,
the installation procedure is very target-specific. The phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
contains specific examples for building and running the CDC Java runtime
environment based on open source and commercial platforms.

3.2 Launching a Java Application
cvm, the CDC applicatoin launcher is similar to java, the Java SE application
launcher. Many of cvm’s command-line options are borrowed from java. The basic
method of launching a Java application is to specify the top-level application class
containing the main() method on the cvm command-line. For example,

% cvm HelloWorld

By default, cvm looks for the top-level application class in the current directory. As
an alternative, the -cp and -classpath command-line options can specify a list of
locations where cvm can search for application classes. For example,
3-1

% cvm -cp /mylib/testclasses.zip Hollywood

Here cvm searches for a top-level application class named HelloWorld, first in the
directory /Malabo and then in the archive file testclasses.zip. See Section 3.3,
“Class Search Path Basics” on page 3-2 for more information about class search
paths.

The -help option displays a brief description of the available command-line
options. Appendix A provides a complete description of the command-line options
available for cvm.

3.3 Class Search Path Basics
The Java runtime environment uses various search paths to locate classes, resources
and native objects at runtime. This section describes the two most important search
paths: the Java class search path and the native method search path.

3.3.1 Java Class Search Path
Java applications are collections of Java classes and application resources that are
built on one system and then potentially deployed on many different target
platforms. Because the file systems on these target platforms can vary greatly from
the development system, Java runtime environments use the Java class search path as
a flexible mechanism for balancing the needs of platform-independence against the
realities of different target platforms.

The Java class search path mechanism allows the Java virtual machine to locate and
load classes from different locations that are defined at runtime on a target platform.
For example, the same application could be organized in one way on a MacOS
system and another on a Linux system. Preparing an application’s classes for
deployment on different target systems is part of the development process.
Arranging them for a specific target system i s part of the deployment process.

The Java class search path defines a list of locations that the Java virtual machine
uses to find Java classes and application resources. A location can be either a file
system directory or a jar or Zip archive file. Locations in the Java class search path
are delimited by a platform-dependent path separator defined by the
path.separator system property. The Linux default is the colon “:” character.

The Java SE documentation1 describes three related Java class search paths:
3-2 CDC Runtime Guide • December 2008

■ The system or bootstrap classes comprise the Java platform. The system class search
path is a mechanism for locating these system classes. The default system search
path is based on a set of jar files located in JRE/lib.

■ The extension classes extend the Java platform with optional packages like the
JDBC Optional Package. The extension class search path is a mechanism for locating
these optional packages. cvm uses the -Xbootclasspath command-line option
to statically specify an extension class search path at launch time and the
sun.boot.class.path system property to dynamically specify an extension
class search path. The CDC default extension class search path is CVM/lib, with
the exception of some of the provider implementations for the security optional
packages described in TABLE 2-2 which are stored in CVM/lib/ext. The Java SE
default extension class search path is JRE/lib/ext.

■ The user classes are defined and implemented by developers to provide
application functionality. The user class search path is a mechanism for locating
these application classes. Java virtual machine implementations like the CDC Java
runtime environment can provide different mechanisms for specifying an Java
class search path. cvm uses the -classpath command-line option to statically
specify an Java class search path at launch time and the java.class.path
system property to dynamically specify an user class search path. The Java SE
application launcher also uses the CLASSPATH environment variable, which is not
supported by the CDC Java runtime environment.

3.3.2 Native Method Search Path
The CDC HotSpot Implementation virtual machine uses the Java Native Interface1

(JNI) as its native method support framework. The JNI specification leaves the
platform-level implementation of native methods up to the designers of a Java
virtual machine implementation. For the Linux-based CDC Java runtime
environment described in this runtime guide, a JNI native method is implemented as
a Linux shared library that can be found in the native library search path defined by
the java.library.path system property.

1. See the tools documentation at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html for a
description of the J2SDK tools and how they use Java class search paths.

1. See the Java Native Interface: Programmer's Guide and Specification described in “Related
Documentation” on page xv.
Chapter 3 Running Applications 3-3

Note – The standard mechanism for specifying the native library search path is the
java.library.path system property. However, the Linux dynamic linking loader
may cause other shared libraries to be loaded implicitly. In this case, the directories
in the LD_LIBRRARY_PATH environment variable are searched without using the
java.library.path system property. One example of this issue is the location of
the Qt shared library. If the target Linux platform has one version of the Qt. shared
library in /usr/lib and the CDC Java runtime environment uses another version
located elsewhere, this directory must be specified in the LD_LIBRRARY_PATH
environment variable.

Here is a simple example of how to build and use an application with a native
method. The mechanism described below is very similar to the Java SE mechanism.

1. Compile a Java application containing a native method.

% javac -boot class path lib/btclasses.zip HelloJNI.java

2. Generate the JNI stub file for the native method.

% Java -bootclasspath lib/btclasses.zip HelloJNI

3. Compile the native method library.

% gcc HelloJNI.c -shared -I${CDC_SRC}/src/share/javavm/export \
-I${CDC_SRC}/src/linux/javavm/include -o libHelloJNI.so

This step requires the CDC-based JNI header files in the CDC source release.

4. Relocate the native method library in the test directory.

% mkdir test
% mv libHelloJNI.so test

5. Launch the application.

% cvm -Djava.library.path=test HelloJNI

If the native method implementation is not found in the native method search path,
the CDC Java runtime environment throws an UnsatisfiedLinkError.

3.4 Memory Management
The CDC Java runtime environment uses memory to operate the Java virtual
machine and to create, store and use objects and resources. This section provides an
overview of how memory is used by the Java virtual machine. Of course, the actual
memory requirements of a specific Java application running on a specific Java
runtime environment hosted on a specific target platform can only be determined by
application profiling. But this section will provide useful guidelines.
3-4 CDC Runtime Guide • December 2008

3.4.1 The Java Heap
When it launches, the CDC Java runtime environment uses the native platform’s
memory allocation mechanism to allocate memory for native objects and reserve a
pool of memory, called the Java heap, for Java objects and resources.

■ The size of the Java heap can grow and shrink within the boundaries specified by
the -Xmxsize, -Xmssize and -Xmnsize command-line options described in
TABLE A-1.

■ If the requested Java heap size is larger than the available memory on the device,
the Java runtime environment exits with an error message:

% java -Xmx23000M MyApp
Invalid maximum heap size: -Xmx23000M
Could not create the Java virtual machine.

■ If there isn’t enough memory to create a Java heap of the requested size, the Java
runtime environment exits with an error message:

% java -Xmx2300M MyApp
Error occurred during initialization of VM
Could not reserve enough space for object heap

■ If the application launches and later needs more memory than is available in the
Java heap, the CDC Java runtime environment throws an OutOfMemoryEffor.

■ The heap will grow and shrink between the -Xmn and -Xmx values based on heap
utilization. This is true for Linux ports, but not all ports.

For example,

% cvm -Xms10M -Xmn5M -Xmx15M MyApp

launches the application MyApp and sets the initial Java heap size to 10 MB, with a
low water mark of 5 MB and a high water mark of 15 MB.

3.4.2 Garbage Collection
When a Java application creates an object, the Java runtime environment allocates
memory out of the Java heap. And when the object is no longer needed, the memory
should be recycled for later use by other objects and resources. Conventional
application platforms require a developer to track memory usage. Java technology
uses an automatic memory management system that transfers the burden of
managing memory from the developer to the Java runtime environment.

The Java runtime environment detects when an object or resource is no longer being
used by a Java application, labels it as “garbage” and later recycles its memory for
other objects and resources. This garbage collection (GC) system frees the developer
from the responsibility of manually allocating and freeing memory, which is a major
source of bugs with conventional application platforms.
Chapter 3 Running Applications 3-5

GC has some additional costs, including runtime overhead and memory footprint
overhead. However, these costs are small in comparison to the benefits of
application reliability and developer productivity.

3.4.2.1 Garbage Collection in the CDC HotSpot Implementation

The Java Virtual Machine Specification does not specify any particular GC behavior
and early Java virtual machine implementations used simple and slow GC
algorithms. More recent implementations like the Java HotSpot Implementation
virtual machine provide GC algorithms tuned to the needs of desktop and server
Java applications. And now the CDC HotSpot Implementation includes a GC
framework that has been optimized for the needs of connected devices.

The major features of the GC framework in the CDC HotSpot Implementation are:

■ Exactness. Exact GC is based on the ability to track all pointers to objects in the
Java heap. Doing so removes the need for object handles, reduces object overhead,
increases the completeness of object compaction and improves reliability and
performance.

■ Default Generational Collector. The CDC HotSpot Implementation Java virtual
machine includes a generational collector that supports most application
scenarios, including the following:

■ general-purpose

■ excellent performance

■ robustness

■ reduced GC pause time

■ reduced total time spent in GC

■ Pluggability. While the default generational collector serves as a general-purpose
garbage collector, the GC plug-in interface allows support for device-specific
needs. Runtime developers can use the GC plug-in interface to add new garbage
collectors at build-time without modifying the internals of the Java virtual
machine. In addition, starter garbage collector plug-ins are available from Java
Partner Engineering (www.sun.com/software/jpe).

Note – Needing an alternate GC plug-in is rare. If an application has an object
allocation and longevity profile that differs significantly from typical applications (to
the extent that the application profile cannot be catered to by setting the GC
arguments), and this difference turns out to be a performance bottleneck for the
application, then alternate GC implementation may be appropriate.
3-6 CDC Runtime Guide • December 2008

3.4.2.2 Default Generational Collector

The default generational collector manages memory in the Java heap. FIGURE 3-1
shows how the Java heap is organized into two heap generations, a young generation
and a tenured generation. The generational collector is really a hybrid collector in
that each generation has its own collector. This is based on the observation that most
Java objects are short-lived. The generational collector is designed to collect these
short-lived objects as rapidly as possible while promoting more stable objects to the
tenured generation where objects are collected less frequently.

FIGURE 3-1 GC Generations

The young generation is based on a technique called copying semispace. The young
generation is divided into two equivalent memory pools, the from-space and the to-
space. Initially, objects are allocated out of the from-space. When the from-space
becomes full, the system pauses and the young generation begins a collection cycle
where only the live objects in the from-space are copied to the to-space. The two
memory pools then reverse roles and objects are allocated from the “new” from-
space. Only surviving objects are copied. If they survive a certain number of
collection cycles (the default is 2), then they are promoted to the tenured generation.

-Xgc:youngGen=size

-Xmxsize

young
generation

tenured
generation

heap size = (youngen + Xmx)

from
space

to
space
Chapter 3 Running Applications 3-7

The benefit of the copying semispace technique is that copying live objects across
semispaces is faster than relocating them within the same semispace. This requires
more memory, so there is a trade-off between the size of the young generation and
GC performance.

The tenured generation is based on a technique called mark compact. The tenured
generation contains all objects that have survived several copying cycles in the
young generation. When the tenured generation reaches a certain threshold, the
system pauses and it begins a full collection cycle where both generations go
through a collection cycle. The young generation goes through the stages outlined
above. Objects in the tenured generation are scanned from their “roots” and
determined to be live or dead. Next, the memory for dead objects is released and the
tenured generation goes through a compacting phase where objects are relocated
within the tenured generation.

The default generational garbage collector reduces performance overhead and helps
collect short-lived objects rapidly, which increases heap efficiency.

3.4.2.3 Tuning Options

The relative sizes of generations can affect GC performance. So the -Xgc:youngGen
command-line option controls the size of the young object portion of the heap. See
TABLE A-3 for more information about GC command-line options.

■ youngGen should not be too small. If it is too small, partial GCs may happen too
frequently. This causes unnecessary pauses and retain more objects in the tenured
generation than is necessary because they don’t have time to age and die out
between GC cycles.

The default size of youngGen is about 1/8 of the overall Java heap size.

■ youngGen should not be too large. If it is too large, even partial GCs may result
in lengthy pauses because of the number of live objects to be copied between
semispaces or generations will be larger.

By default, the CDC Java runtime environment caps youngGen size to 1 MB
unless it is explicitly specified on the command line.

■ The total heap size needs to be large enough to cater for the needs of the
application. This is very application-dependent and can only be estimated.

3.4.3 Class Preloading
The CDC HotSpot Implementation virtual machine includes a mechanism called
class preloading that streamlines VM launch and reduces runtime memory
requirements. The CDC build system includes a special build tool called
JavaCodeCompact that performs many of the steps at build-time that the VM
3-8 CDC Runtime Guide • December 2008

would normally perform at runtime. This saves runtime overhead because class
loading is done only once at build-time instead of multiple times at runtime. And
because the resulting class data can be stored in a format that allows the VM to
execute in place from a read-only file system (for example, Flash memory), it saves
memory.

Note – It’s important to understand that decisions about class preloading are
generally made at build-time. See the companion document CDC Build Guide for
information about how to use JavaCodeCompact to include Java class files with the
list of files preloaded by JavaCodeCompact with the CDC Java runtime
environment’s executable image.

Class Preloading and Verification

Java class verification is usually performed at class loading time to insure that a class
is well-behaved. This has both performance and security benefits. This section
describes a performance optimization that avoids the overhead of Java class
verification for some application classes.

One way to avoid the overhead of Java class verification is to turn it off completely:

% cvm -Xverify:none -cp MyApp.jar MyApp

This approach has the benefit of more quickly loading the application’s classes. But
it also turns off important security mechanisms that may be needed by applications
that perform remote class loading.

Another approach is based on using JavaCodeCompact to preload an application’s
Java classes at build time. The application’s classes load faster at runtime and other
classes can be loaded remotely with the security benefits of class verification.

Note – JavaCodeCompact assumes the classes it processes are valid and secure.
Other means of determining class integrity should be used at build-time.

The companion document CDC Build Guide describes how to use
JavaCodeCompact to preload an application’s classes so that they are included
with the CDC Java runtime environment’s binary executable image. Once built, the
mechanism for running a preloaded application is very simple. Just identify the
application without using -cp to specify the user Java class search path.

% cvm -Xverify:remote MyApp

The remote option indicates that preloaded and system classes will not be verified.
Because this is the default value for the -Xverify option, it can be safely omitted. It
is shown here to fully describe the process of preloading an application’s classes.
Chapter 3 Running Applications 3-9

3.4.4 Setting the Maximum Working Memory for the
Dynamic Compiler
The -Xjit:maxWorkingMemorySize command-line option sets the maximum
working memory size for the dynamic compiler. Note that the 512 KB default can be
misleading. Under most circumstances the working memory for the dynamic
compiler is substantially less and is furthermore temporary. For example, when a
method is identified for compiling, the dynamic compiler allocates a temporary
amount of working memory that is proportional to the size of the target method.
After compiling and storing the method in the code buffer, the dynamic compiler
releases this temporary working memory.

The average method needs less than 30 KB but large methods with lots of inlining
can require much more. However since 95% of all methods use 30 KB or less, this is
rarely an issue. Setting the maximum working memory size to a lower threshold
should not adversely affect performance for the majority of applications.

3.5 Tuning Dynamic Compiler Performance
This section shows how to use cvm command-line options that control the behavior
of the CDC HotSpot Implementation Java virtual machine’s dynamic compiler for
different purposes:

■ Optimizing a specific application’s performance.

■ Configuring the dynamic compiler’s performance for a target device.

■ Exercising runtime behavior to aid the porting process.

Using these options effectively requires an understanding of how a dynamic
compiler operates and the kind of situations it can exploit. During its operation the
CDC HotSpot Implementation virtual machine instruments the code it executes to
look for popular methods. Improving the performance of these popular methods
accelerates overall application performance.

The following subsections describe how the dynamic compiler operates and
provides some examples of performance tuning. For a complete description of the
dynamic compiler-specific command-line options, see Appendix A.
3-10 CDC Runtime Guide • December 2008

3.5.1 Dynamic Compiler Overview
The CDC HotSpot Implementation virtual machine offers two mechanisms for
method execution: the interpreter and the dynamic compiler. The interpreter is a
straightforward mechanism for executing a method’s bytecodes. For each bytecode,
the interpreter looks in a table for the equivalent native instructions, executes them
and advances to the next bytecode. Shown in FIGURE 3-2, this technique is predictable
and compact, yet slow.

FIGURE 3-2 Interpreter-Based Method Execution

The dynamic compiler is an alternate mechanism that offers significantly faster
runtime execution. Because the compiler operates on a larger block of instructions, it
can use more aggressive optimizations and the resulting compiled methods run
much faster than the bytecode-at-a-time technique used by the interpreter. This
process occurs in two stages. First, the dynamic compiler takes the entire method’s
bytecodes, compiles them as a group into native code and stores the resulting native
code in an area of memory called the code cache as shown in FIGURE 3-3.

FIGURE 3-3 Compiling a Method

Then the next time the method is called, the runtime system executes the compiled
method’s native instructions from the code cache as shown in FIGURE 3-4.

...
add2and3: bastore:

...
bipush:
s_0=(int)pc[1];
updt_pc;
break;

caload;
...

interpreterbipush 2;
bipush 3;
iadd;
return;

...

...

execute
on native

device

add2and3
bipush 2;
bipush 3;
iadd;
return;

method’s
bytecodes

dynamic

code

...

...
Method add2and3:
...

cache

compiler
Chapter 3 Running Applications 3-11

FIGURE 3-4 Executing a Compiled Method

The dynamic compiler cannot compile every method because the overhead would be
too great and the start-up time for launching an application would be too noticeable.
Therefore, a mechanism is needed to determine which methods get compiled and for
how long they remain in the code cache.

Because compiling every method is too expensive, the dynamic compiler identifies
important methods that can benefit from compilation. The CDC HotSpot
Implementation Java virtual machine has a runtime instrumentation system that
measures statistics about methods as they are executed. cvm combines these statistics
into a single popularity index for each method. When the popularity index for a
given method reaches a certain threshold, the method is compiled and stored in the
code cache.

■ The runtime statistics kept by cvm can be used in different ways to handle various
application scenarios. To do this, cvm exposes certain weighting factors as
command-line options. By changing the weighting factors, cvm can change the
way it performs in different application scenarios. A specific combination of these
options express a dynamic compiler policy for a target application. An example of
these options and their use is provided in Section 3.5.2.1, “Managing the
Popularity Threshold” on page 3-13.

■ The dynamic compiler has options for specifying code quality based on various
forms of inlining. These provide space-time trade-offs: aggressive inlining
provides faster compiled methods, but consume more space in the code cache. An
example of the inlining options is provided in Section 3.5.2.2, “Managing
Compiled Code Quality” on page 3-14.

■ Compiled methods are not kept in the code cache indefinitely. If the code cache
becomes full or nearly full, the dynamic compiler decompiles the method by
releasing its memory and allowing the interpreter to execute the method. An
example of how to manage the code cache is provided in Section 3.5.2.3,
“Managing the Code Cache” on page 3-14.

3.5.2 Dynamic Compiler Policies
The cvm application launcher has a group of command-line options that control how
the dynamic compiler behaves. Taken together, these options form dynamic compiler
policies that target application or device specific needs. The most common are space-

...
invoke add2and3;
...

interpreter’s code

...
Method add2and3:
...

cachebytecode stream
3-12 CDC Runtime Guide • December 2008

time trade-offs. For example, one policy might cause the dynamic compiler to
compile early and often while another might set a higher threshold because memory
is limited or the application is short-lived.

TABLE A-7 describes the dynamic compiler-specific command-line options and their
defaults. These defaults provide the best overall performance based on experience
with a large set of applications and benchmarks and should be useful for most
application scenarios. They might not provide the best performance for a specific
application or benchmark. Finding alternate values requires experimentation, a
knowledge of the target application’s runtime behavior and requirements as well as
an understanding of the dynamic compiler’s resource limitations and how it
operates.

The following examples show how to experiment with these options to tune the
dynamic compiler’s performance.

3.5.2.1 Managing the Popularity Threshold

When the popularity index for a given method reaches a certain threshold, it
becomes a candidate for compiling. cvm provides four command-line options that
influence when a given method is compiled: the popularity threshold and three
weighting factors that are combined into a single popularity index:

■ climit, the popularity threshold. The default is 20000.

■ bcost, the weight of a backwards branch. The default is 4.

■ icost, the weight of an interpreted to interpreted method call. The default is 20.

■ mcost, the weight of transitioning between a compiled method and an
interpreted method and vice versa. The default is 50.

Each time a method is called, its popularity index is incremented by an amount
based on the icost and mcost weighting factors. The default value for climit is
20000. By setting climit at different levels between 0 and 65535, you can find a
popularity threshold that produces good results for a specific application.

The following example uses the -Xjit:option command-line option syntax to set an
alternate climit value:

% cvm -Xjit:climit=10000 MyTest

Setting the popularity threshold lower than the default causes the dynamic compiler
to more eagerly compile methods. Since this will usually cause the code cache to fill
up faster than necessary, this approach is often combined with a larger code cache
size to avoid compilation/decompilation thrashing.
Chapter 3 Running Applications 3-13

3.5.2.2 Managing Compiled Code Quality

The dynamic compiler can choose to inline methods for providing better code
quality and improving the speed of a compiled method. Usually this involves a
space-time trade-off. Method inlining consumes more space in the code cache but
improves performance. For example, suppose a method to be compiled includes an
instruction that invokes an accessor method returning the value of a single variable.

public void popularMethod() {
...

int i = getX();
...
}
public int getX() {

return X;
}

getX() has overhead like creating a stack frame. By copying the method’s
instructions directly into the calling method’s instruction stream, the dynamic
compiler can avoid that overhead.

cvm has several options for controlling method inlining, including the following:

■ maxInliningCodeLength sets a limit on the bytecode size of methods to inline.
This value is used as a threshold that proportionally decreases with the depth of
inlining. Therefore, shorter methods are inlined at deeper depths. In addition, if
the inlined method is less than value/2, the dynamic compiler allows unquick
opcodes in the inlined method.

■ minInliningCodeLength sets the floor value for maxInliningCodeLength
when its size is proportionally decreased at greater inlining depths.

■ maxInliningDepth limits the number of levels that methods can be inlined.

For example, the following command-line specifies a larger maximum method size.

% cvm -Xjit:inline=all,maxInliningCodeLength=80 MyTest

3.5.2.3 Managing the Code Cache

On some systems, the benefits of compiled methods must be balanced against the
limited memory available for the code cache. cvm offers several command-line
options for managing code cache behavior. The most important is the size of the
code cache, which is specified with the codeCacheSize option.

For example, the following command-line specifies a code cache that is half the
default size.

% cvm -Xjit:codeCacheSize=256k MyTest
3-14 CDC Runtime Guide • December 2008

A smaller code cache causes the dynamic compiler to decompile methods more
frequently. Therefore, you might also want to use a higher compilation threshold in
combination with a lower code cache size.

The build option CVM_TRACE_JIT=true allows the dynamic compiler to generate a
status report for when methods are compiled and decompiled. The command-line
option -Xjit:trace=status enables this reporting, which can be useful for tuning
the codeCacheSize option.

3.6 Ahead-of-Time Compilation
Ahead-of-time compilation (AOTC) refers to compiling Java bytecode into native
machine code beforehand, for example during VM build time or install time. In
CDC-HI, AOTC happens when the VM is being executed for the first time on the
target platform. A set of Java methods is compiled during VM startup and the
compiled code is saved into a file. During subsequent executions of CVM the saved
AOTC code is found and executed like dynamically compiled code.

3.6.1 Using AOTC
AOTC is run in two basic stages: an initial run to compile a method list specified in
a text file and subsequent runs that use that precompiled method list.

■ Initial run. AOTC is enabled with the -aot=true command-line option. The first
time cvm is executed, it must also include the aotMethodList=file to specify the
location of the method list file. These methods are compiled and stored in the
cvm.aot file. The aotFile=file command-line option can be used to specify an
alternate location for the precompiled methods.

■ Subsequent runs. When cvm is run again, it must also use -aot=true command-
line option and aotFile=file if it was used.

If it becomes necessary to recompile the method list, this can be done with the
recompileAOT=boolean command-line option.

See TABLE A-7 for a description of the AOTC command-line options.
Chapter 3 Running Applications 3-15

3.6.2 How to Create methodsList.txt
A good way to produce a method list is to start by building a VM with
CVM_TRACE_JIT=true and running with -Xjit:trace=status. This shows all
the methods being compiled while running a particular application. Note that non-
romized methods should not be included in the method list.

Adding or removing methods in methodsList.txt does not cause AOTC code
being regenerated. To regenerate the precompiled AOTC code, use the
recompileAOT=boolean command-line option to delete the bin/cvm.aot file.
3-16 CDC Runtime Guide • December 2008

CHAPTER 4

Security

Security is a principal feature of Java technology and an important requirement for
mobile and enterprise applications. CDC includes the same security features that are
in the Java SE platform. These include built-in security features of the Java
programming language and virtual machine as well as a flexible security framework
for more advanced application scenarios.

This chapter provides an overview of the security framework as well as an outline of
the kinds of security procedures that might be performed at runtime. It is not meant
to replace the security documentation available for the Java SE platform, but rather
to supplement it and show how CDC and the JAAS, JCE and JSSE security optional
packages are related to their counterparts in the Java SE platform.

TABLE 4-1 describes the security documentation for the Java SE platform.

TABLE 4-1 Security Documentation for the Java SE Platform

URL Document Description

http://java.sun.com/
docs/books/security

Inside Java 2
Platform
Security

Describes the Java security framework,
including security architecture,
deployment and customization.
Chapter 12 describes deployment and
runtime procedures.

http://java.sun.com/
security

Security and the
Java Platform

The main web page for Java security
issues.

http://java.sun.com/
docs/books/tutorial/
security1.2

Java Tutorial,
Security Trail

The Java Tutorial includes a security
section that describes many of the
security procedures for the Java
platform. Because these are identical
between CDC and the Java SE platform,
they are not duplicated in this chapter.

http://java.sun.com/
j2se/1.4.2/docs/guide/
security

Security Java SE platform security
documentation.
4-1

4.1 Overview
The security framework shared by the Java SE platform and CDC is based on three
key components:

■ Built-in Security Features
■ Security Policy Framework
■ Security Provider Architecture

These provide a solid base for application and runtime security, a flexible
mechanism for defining deployment-based security needs and a plug-in mechanism
for supplying alternate security implementations.

4.1.1 Built-in Security Features
Java security is based on built-in language and VM security features that have been
part of Java technology from its beginning:

■ Strongly typed language (runtime/compile-time/link-time)
■ Bytecode verification (classloading-time)
■ Safety checks (runtime)
■ Dynamic class loaders (classloading-time)

4.1.2 Security Policy Framework
A security policy controls how system resources are accessed by applications at
runtime. The Java security framework includes both a default security policy and a
mechanism for describing alternate security policies for application and
deployment-specific needs. The main benefits of this security policy framework are:

■ Code-centric, not identity-centric architecture
■ Security policies are described separately from both the applications they control

and the Java runtime environment.
■ Fine-grained access control at the package, class or field level
■ Flexible permission mechanism
■ Protection domains provide a layer of abstraction between permissions and code.

The main elements of a security policy are the following:

■ permission set, a list of permissions granted to the code
■ codeBase, the location from where the code is loaded
■ signedBy, the author of the code
■ principal, the identity of the entity running the code
4-2 CDC Runtime Guide • December 2008

FIGURE 4-1 illustrates the Java security model by showing how application code can
be loaded from different sources: local and remote. The security manager controls
access to system resources by comparing properties of the application code with the
current security policy. The default security policy allows full access to local
application code and limited access to remote application code. But other security
policies are possible. For example, application code from a trusted yet remote source
may be given greater access than untrusted code from a local source.

FIGURE 4-1 Java Security Policy Model

4.1.3 Security Provider Architecture
Beginning with version 1.2, the Java SE platform added some security optional
packages that allow Java technology to adapt to more specific requirements of
applications and deployments. These security optional packages include a security
provider architecture that is interoperable because it is based on publicly available
security standards, and extensible because alternate security provider implementations
can be supplied without requiring modifications to application code.

For example, the JAAS, JCE and JSSE security optional packages include several
service provider interfaces (SPIs) that describe the requirements of a security provider
implementation. TABLE 2-2 describes the default Sun implementations for these
security components.

system resources

local

Security Manager security
policy

application
code

remote
application
code

full
access

limited
access
Chapter 4 Security 4-3

4.1.4 Custom JSSE Provider Plug-ins
JSSE supports custom Provider plug-ins which can be implemented as extensions of
SSLSocketFactory.

4.1.5 Sun JSSE Ciphersuite Support
Many of the standard JSSE algorithm names are prefixed with SSL_. JSSE now
supports the TLS_ prefix to be used as an alias to a standard algorithm name.

4.1.6 Self-Integrity Checks
In general, a JCE Provider implementation should include self-integrity checks. For
example, Sun’s current JCE provider (SunJCE) includes self-integrity checks.
However, this is not a requirement of the JCE or Sun for a third-party JCE provider.
A third-party JCE provider should make its own choice regarding whether including
self-integrity checks or not.

4.2 Security Procedures
This section outlines the security procedures surrounding the Java security
framework described in the previous section. Because these procedures are identical
to the procedures used for the Java SE platform, this section just describes the
procedure and indicates where to find the appropriate Java SE platform
documentation.

4.2.1 Using Alternate Security Providers
From an administrator’s perspective, the first step is to choose whether to install and
use any alternate security providers. In most cases, the Sun default security
providers described in TABLE 2-2 are sufficient.

For a description of how to install alternate security providers, see Inside Java 2
Platform Security, Second Edition. Section 12.5, Installing Provider Packages, describes
how to install alternate security providers.
4-4 CDC Runtime Guide • December 2008

4.2.2 Public Key Management
The JAAS optional package includes an extensible authentication framework that
can use different forms of authentication. The default LoginModule is the
KeyStoreLoginModule, which uses a protected database (Sun’s JKS keystore file)
to store public key data. Other forms of authentication are possible like smartcard or
Kerberos.

The main tool for managing keystore files is keytool(1), which is included in the
Java SE platform toolset. keytool can be used for

■ importing a key
■ listing available keys
■ replacing a key
■ deleting a key

The default keystore file is in lib/security/cacerts, described in TABLE 2-2.

For a description of how to use keytool to add and modify keystore entries, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The
security trail in the Java Tutorial also covers how to use keytool.

4.2.3 Security Policy Management
Security policies are stored in security policy files. policytool(1) is a convenient
GUI-based tool for managing security policies. With it, a system administrator can

■ identify a keystore
■ specify permissions
■ specify a codebase

The location of the default security policy file is lib/security.policy, described
in TABLE 2-2. Alternate locations can be defined with the
-Djava.security.policy command-line option.

For a description of how to use the policytool to manage security policies, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The
security trail in the Java Tutorial also covers how to use keytool.

4.2.4 Seed Generation for Random Number Generation
The CDC Java runtime environment uses a native platform-provided source as an
entropy gathering device for seed generation indicated by the
securerandom.source system property. The Linux default for this system
property is file:/dev/random.
Chapter 4 Security 4-5

On some Linux systems, /dev/random can block if it hasn’t generated sufficient
entropy before a random seed is needed and this can cause applications using
java.security.SecureRandom to hang while waiting for the entropy pool to fill.
To avoid this hang problem, the CDC Java runtime environment has a fallback
mechanism to read from the /dev/urandom device when it determines that there
isn’t enough entropy for /dev/random to work promptly.

Note that /dev/urandom is not generally considered strong enough to support
applications like keypair generation. If the strongest possible seed generation is
required, this fallback mechanism can be disabled by setting the
microedition.securerandom.nofallback property to true. Doing so may run
the risk of application hangs on certain devices where the entropy pool is subject to
early exhaustion.
4-6 CDC Runtime Guide • December 2008

CHAPTER 5

Localization

The CDC Java runtime environment can be localized to support different languages
and cultures. The following sections provide CDC-specific information for
localization procedures:

■ Setting Locale System Properties
■ Timezone Information Files

5.1 Setting Locale System Properties
In the CDC Java runtime environment, the locale system properties described in
TABLE 5-1 are set before cvm can parse its command-line arguments. Thus, it is not
possible to change the locale by specifying these system properties on the cvm
command-line with the -Dproperty=value option.

On Linux, these properties are extracted from the LANG locale environment variable
using the format language_region.encoding. The user.language property is obtained
from the language code. The user.region property is obtained from the region
code. The file.encoding property is obtained from the encoding suffix. For
example, to change the locale behavior of cvm on Linux, simply change the LANG
locale environment variable to set the locale system properties.

TABLE 5-1 Locale System Properties

System Property Description

user.language Two-letter language name code based on ISO 639.

user.region Two-letter region name code based on ISO 3166.

file.encoding Default character-encoding name based on the IANA Charset MIB.
5-1

% setenv LANG en_US.ISO8859_1

Therefore,

user.language = en
user.region = US
file.encoding = ISO8859_1

5.2 Timezone Information Files
The lib/zi directory contains a small set of example timezone information files.
Additional files can be generated and placed in this directory. See the javadoc(1)
comments for the sun.util.calendar.ZoneInfoFile class for information
about generating alternate timezone information files.
5-2 CDC Runtime Guide • December 2008

CHAPTER 6

Developer Tools

One of the principal goals of CDC is to leverage conventional Java SE developer
tools for use with CDC applications and devices. This chapter shows how to
integrate the CDC Java runtime environment with Java SE developer tools like
javac, jdb and hprof.

6.1 Compiling With javac
Compiling Java source code is a separate process from execution. All that is needed
is application source code, a Java compiler like javac and an appropriate Java class
library to compile against. In this way, a developer can compile a Java application on
a desktop system and later download it onto a target device for testing or
deployment.

This chapter first reviews the API relationship between the CDC and Java SE
platforms. Then it shows how javac compiles a Java class for the Java SE platform
and how this process changes for CDC. Finally, it shows how to compile an example
CDC program.

6.1.1 CDC and Java SE
It is possible to take unmodified application software that was compiled for the Java
SE platform and run it on a CDC Java runtime environment because the CDC Java
virtual machine can load and execute Java classes that are compliant with the class
specification for the Java SE platform.
6-1

FIGURE 6-1 describes the API relationship between the CDC and Java SE platforms.
The two platforms have much in common, including most of the core Java class
library. Differences between the CDC and Java SE APIs can cause discrepancies at
runtime. These differences are based on the need to remove or change certain classes
for memory, functionality or performance reasons.

FIGURE 6-1 CDC and Java SE API Compatibility

There are four major differences between the CDC and Java SE platforms:

■ Some Java SE packages, classes and methods have been removed because they are
not appropriate for smaller devices. Compiling application source code against
the Java SE class library may work, but the compiled classes may fail to run on a
CDC Java runtime environment because the classes are not available at runtime.

■ Some packages like java.sql are present in the Java SE platform but not in
CDC, though they may be added as an optional package. In this case, compiling
application source code against the Java SE class library may work but running
the compiled classes against the CDC Java runtime environment may not.

■ Most Java SE deprecated methods have been removed from CDC. For example,
java.awt.List.clear() is deprecated in JDK version 1.1 and replaced with
java.awt.List.removeAll(). In this case, compiling a Java SE application
that uses this deprecated method against the CDC Java class library will cause
javac to fail to compile because it cannot find the deprecated method.

■ CDC includes CLDC compatibility classes that are not included in the Java SE
class library. In this case, compiling CDC source code against the Java SE class
library might cause javac to fail to compile because these compatibility classes
are not present in the Java SE class library.

Therefore, in practice, it is best to recompile Java source code for a Java SE
application against a CDC Java class library. Finally, the CDC Java class library is
modular and can change based on the needs of a product design. Most of this
modularity is based on profiles and optional packages. See Section 1.6, “Java ME API
Choices” on page 1-6 for an explanation of how CDC APIs can vary.

CDCJava SE
6-2 CDC Runtime Guide • December 2008

6.1.2 Compiling Java Source Code for the Java SE
Platform
FIGURE 6-2 shows how javac compiles Java source code for the Java SE platform.
When javac processes Java source code, it uses a Java class library to discover type
information about the classes used in the source code. By default, this is the Java SE
class library located in jre/lib/rt.jar.

FIGURE 6-2 Compiling Java Source Code for the Java SE Platform

For example, when javac encounters a Java type reference like
java.util.BitSet, it gets the type information from the Java SE class library at
compile time. Later, at runtime, when the Java virtual machine creates an object of
type java.util.BitSet, it also gets the type information from the Java SE class
library.

6.1.3 Compiling Java Source Code for CDC
The same javac compiler used for developing Java SE applications can be used to
compile Java source code for the CDC Java runtime system. The key is to use a
different target Java class library to compile against. FIGURE 6-3 shows how the
javac compiler uses the -bootclasspath command-line option to specify an
alternate target Java class library as a cross-compilation target.

Java source file compiled
Java class file

JAVA SE SDK

javac

Java SE
class
library
Chapter 6 Developer Tools 6-3

FIGURE 6-3 Compiling Java Source Code for CDC

The mechanics of using javac to compile Java source code for CDC differ slightly
from those used for the Java SE platform.

6.1.4 Determining the Target Class Library
Section 1.5, “Java ME Technology Standards” on page 1-4, Section 1.6, “Java ME API
Choices” on page 1-6, and FIGURE 1-2 show how the API functionality of a specific
CDC product implementation can vary based on choices made at design time.
Therefore, it is important to use a target development version of the CDC Java class
library that represents the APIs available in the configuration, profile and optional
packages on the target device.

Note – See the companion document CDC Build System Guide for information on
how to build a target development version of the CDC Java class library which
represents the combination of configuration, profile and optional packages for the
target device.

6.1.5 Useful javac Command-Line Options
The J2SDK Tools and Utilities Web page
(http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html) describes
the javac command-line options that control the cross-compilation process. These
are described in the following subsections.

Java source file

compiled
Java class file

javac

JAVA SE SDK

CDC
class library
6-4 CDC Runtime Guide • December 2008

6.1.5.1 -classpath classpath

Sets the user class search path, which is useful for compiling against third-party
class libraries.

6.1.5.2 -bootclasspath classpath

Sets the system class search path. With javac, this option overrides the Java SE class
library and specifies an alternate target Java class library for cross-compilation like
the target development version of the CDC Java class library.

6.1.5.3 -extdirs classpath

Sets the extensions class search path for optional packages. The CDC default location
is the lib directory, except for some security optional packages which are found in
the lib/ext directory.

6.1.5.4 -source release

Specifies the version of Java source code accepted. In practice, this controls the use
of recently added Java programming language features. For example, J2SE 1.4
includes support for the assert keyword and J2SE 1.5 includes support for generics,
which are not yet supported. The release argument can be set to 1.2, 1.3 or 1.4 for
CDC application development.

6.1.5.5 -target version

This option directs javac to generate Java class files for a specific version of the Java
virtual machine. It is preferable to set the version value to 1.4, though values of 1.2 or
1.3 can also be used for CDC development.

6.1.5.6 -deprecation

Show a description of each use or override of a deprecated member or class. Without
-deprecation, javac shows the names of source files that use or override
deprecated members or classes.
Chapter 6 Developer Tools 6-5

6.1.6 Compiling an Example CDC Program
The example below demonstrates how to compile an application using the
command-line option -bootclasspath argument to specify an alternate target Java
class library:

% javac -target 1.4 -source 1.4 -bootclasspath \
/home/test-cdc/btclasses.zip MyApp.java

6.2 Application Debugging With jdb
A debugger like jdb can explore the relationships between the source code structure
of an application, the behavior of its compiled code and the capabilities of the target
Java runtime environment.

The CDC Java runtime environment supports debugging based on the Java Virtual
Machine Tools Interface (JVMTI) specification. This chapter describes the mechanics
of attaching a remote debugger to a Java application running on a CDC Java runtime
environment. The application can run on a target system while the debugger runs on
a host development system connected over a network.

6.2.1 Application Debugging Command-Line Options
The debug version of cvm includes some extra command-line options described in
TABLE 6-1 that control debugging features. See
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/conninv.html for a
complete list of -Xrunjdwp suboptions.

TABLE 6-1 cvm Debugging Options

Option Description

-Xdebug Run the VM in debugger mode.

-Xrunjdwp[option1,option2...] Load the JDWP agent library (libjdwp.so). This
library resides in the target VM and uses JVMTI and
JNI to interact with it. It uses a transport and the
JDWP protocol to communicate with a separate
debugger application.
6-6 CDC Runtime Guide • December 2008

6.2.2 Using the Application Debug Features of cvm
Here’s an example of how to launch a debug version of cvm on a remote target
system for use with a host-based Java debugger. For this example, we assume the
following:

■ The target application is in /net/MyApp.

■ The application is named MyApplication.

■ The CDC Java runtime environment is correctly installed.

■ A debug-capable version of cvm is in the shell’s search path.

1. Remote login to the target system.

% ssh cdc-dev
...

2. Change the current directory to the location of the target application.

% cd /net/MyApp

3. Launch cvm with the debug options.

% bin/cvm -Xrunjdwp:transport=dt_socket,server=y,address=8000 \
-Xdebug -Dsun.boot.library.path=jdwp/lib -cp democlasses.jar \
personal.DemoFrame

The sun.boot.library.path system property allows cvm to append to the
shared library search path from the command line. This launches cvm in a server
state where it waits for a connection with jdb, which is described in the next section.

6.2.3 Running jdb on the Host Development System
jdb is the debugger included with the Java SE SDK. The example below shows how
to attach jdb to an application running on a remote Java runtime environment.

transport=dt_socket Connect to the debugger’s front-end using a socket
transport.

server=y Start the VM in server mode and wait for the
connection with a debugger client.

address=port Set the TCP port ID for the JDWP connection.

TABLE 6-1 cvm Debugging Options

Option Description
Chapter 6 Developer Tools 6-7

This example assumes that Java SDK is properly installed and that jdb is in the
shell’s search path. Also, the source code for MyApplication should be in
/net/MyApp so that jdb can access it.

1. Change the current directory to the location of the target application.

% cd /net/MyApp

2. Launch jdb with the command-line options that identify the application on the
target system.

% jdb -attach cdc-dev:8000 -sourcepath src/personal/demo

jdb displays a command prompt.

3. Set a breakpoint.

jdb> stop in MyApplication.main

4. Launch the application and let it run to the breakpoint.

jdb> run

At this point, the application should be stopped at the first line of the top-level
main() method.

5. Step through the application.

jdb> step

See the jdb reference documentation
(http://java.sun.com/products/jpda/doc) for a list of options and
commands or type help at the jdb command-line prompt.

6.3 Profiling with hprof
Profiling is the measurement of runtime data for a specific application on a target
runtime system. Understanding the runtime behavior of an application allows the
developer to identify performance-sensitive components when tuning an
application’s implementation or selecting runtime features.

Note – The JVMTI functionality in the CDC Java runtime environment is a subset of
what is supported in the Java SE SDK. In particular, remote profiling is not
supported. Specifically, hprof profiling agent provides reports that include CPU
usage, heap allocation statistics and monitor contention profiles.
6-8 CDC Runtime Guide • December 2008

6.3.1 Profiling Command-Line Options
The profiling version of cvm includes the -Xrunhprof command-line option
described in TABLE 6-2 that controls profiling features. See
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti for more information.

6.3.2 Running cvm With hprof

Here’s an example of how to use hprof to profile an application.

% cvm -Xrunhprof:heap=all,cpu=samples,file=profile.txt MyApp

When the application terminates, the output file profile.txt contains the profile
report.

TABLE 6-2 hprof Command-Line Options

Option Default Description

-Xrunhprof[:help]|[option=value, …] Run the VM with hprof
enabled

heap=dump|sites|all all Heap profiling

cpu=samples|times|old off CPU usage

monitor=y|n n Monitor contention

format=a|b a ASCII or binary output

file=name java.hpr
of

Write data to file name and
append .txt for ASCII
format

net=host:port Send data over a socket

depth=size 4 Stack trace depth

cutoff=value 0.0001 Output cutoff point

lineno=y|n y Display line-numbers in
traces

thread=y|n n Thread in trace

doe=y|n y Dump on exit
Chapter 6 Developer Tools 6-9

6-10 CDC Runtime Guide • December 2008

APPENDIX A

cvm Reference

A.1 Synopsis
cvm [-options] class [options …]
cvm [-options] -jar jarfile [options …]

A.2 Description
cvm launches a Java application. It does this by starting a Java virtual machine,
loading its system classes, loading a specified application class, and then invoking
that class’s main method, which must have the following signature:

public static void main(String args[])

The first non-option argument to cvm is the name of the top-level application class
with a fully-qualified class name that contains the main method. The Java virtual
machine searches for the main application class, and other classes used, in three
locations: the system class path, the extension class path and the user class path. See
Section 3.3, “Class Search Path Basics” on page 3-2 for more information about Java
class paths. Non-option arguments after the main application class name are passed
to the main method.

If the -jar jarfile command-line option is used, cvm launches the application in the
jar file. The manifest of the jar file must contain a line of the form
MainClass:classname. The classname string identifies the class having the main
method which serves as the application's starting point.

Section 3.2, “Launching a Java Application” on page 3-1 has more information about
launching Java applications with cvm.
A-1

A.3 Options
cvm borrows some of its command-line options from java, the Java SE application
launcher. Other options are unique to cvm and may require certain build options to
enable the necessary runtime features. For command-line options that take a size
parameter, the default units for size are bytes. Append the letter k or K to indicate
kilobytes, or m or M to indicate megabytes.

TABLE A-1 describes the command-line options that are shared with the Java SE
application launcher.

TABLE A-1 Java SE Command-Line Options

Option Description

-help Display usage information and exit.

-showversion Display product version information and continue.

-version Display product version information and exit.

-fullversion Display build version information and exit.

-Dproperty=value Set a system property value. See Appendix B for a description of
security properties for CDC.

-classpath classpath
-cp classpath

Specify an alternate user class path.1 The default user class path
is the current directory.

-Xbootclasspath[/a | /p]:classpath Specify the extension class path.1 /a appends classpath list to the
default path. /p prepends classpath list to the default path.

-Xmssize Set the start size of the memory allocation pool (heap). This
value must be greater than 1000 bytes.
The default value is 2M.
NOTE: This option is ignored by the generational garbage
collector, though it could be used by other garbage collectors.

-Xmxsize Set the maximum heap size (high water mark).
The default value is 7M.

-Xmnsize Set the minimum heap size (low water mark).
The default value is 1M.
A-2 CDC Runtime Guide • December 2008

-Xsssize Each Java thread has two stacks: one for Java code and one for
native code. The maximum native stack size of the main thread is
determined by the native application launcher (e.g. shell, OS,
etc.). For subsequent threads, the maximum native stack size is
set by the -Xss option, although this can be ignored by the
underlying OS. See TABLE A-4 for a description of the
command-line options for controlling the size of the Java stack.
The default value is 0 which indicates that the value is actually
set by the native environment.

-enableassertions [:<package>… |
:<class>]
-ea [:<package>… | :<class>]

Enable Java assertions. These are disabled by default. With no
arguments, this switch enables assertions for all user classes.
With one argument ending in …, the switch enables assertions in
the specified package and any subpackages. If the argument is
simply …, the switch enables assertions in the unnamed package
in the current working directory. With one argument not ending
in …, the switch enables assertions in the specified class.
If a single command line contains multiple instances of these
switches, they are processed in order before loading any classes.
So, for example, to run a program with assertions enabled only
in the package com.wombat.fruitbat (and any subpackages),
the following command could be used:
% cvm -ea:com.wombat.fruitbat … <MainClass>
The -enableassertions and -ea switches apply to all class
loaders and to system classes (which do not have a class loader).
There is one exception to this rule: in their no-argument form,
the switches do not apply to system. This makes it easy to turn
on assertions in all classes except for system classes. The
-enablesystemassertions option enables asserts in all
system classes (that is, it sets the default assertion status for
system classes to true). To run a program with assertions
enabled in the package com.wombat.fruitbat but disabled in
class com.wombat.fruitbat.Brickbat, the following
command could be used:
% cvm -ea:com.wombat.fruitbat… \

-da:com.wombat.fruitbat.Brickbat <MainClass>

TABLE A-1 Java SE Command-Line Options (Continued)

Option Description
Appendix A cvm Reference A-3

TABLE A-2 describes the CDC-specific command-line options.

-disableassertions [:<package>… |
:<class>]
-da [:<package>… | :<class>]

Disable Java assertions. This is the default behavior.
With no arguments, -disableassertions or -da disables
assertions. With one argument ending in …, the option disables
assertions in the specified package and any subpackages. If the
argument is simply …, the switch disables assertions in the
unnamed package in the current working directory. With one
argument not ending in …, the switch disables assertions in the
specified class.
The -disableassertions and -da switches apply to all class
loaders and to system classes that do not have a class loader.
There is one exception to this rule: in their no-argument form,
the switches do not apply to system. This makes it easy to turn
on assertions in all classes except for system classes. A separate
switch is provided to enable assertions in all system classes. See
the description of the -disablesystemassertions option.

-enablesystemassertions
-esa

Enable assertions in all system classes (sets the default assertion
status for system classes to true).

-disablesystemassertions
-dsa

Disable assertions in all system classes.

1 See Section 3.3, “Class Search Path Basics” on page 3-2 and
http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html for more information about class search paths.

TABLE A-2 CDC-Specific Command-Line Options

Option Description

-XbuildOptions Display build options and exit.

-XshowBuildOptions Display build options and continue.

-XappName=value Specify the application name for QPE. This is used to identify
the cvm process for native application management and control.

-Xverify:[all | remote | none] Perform class verification.
• all verify all classes.
• remote verify all but preloaded and system classes.
• none don’t perform class verification.
The default value is remote. If -Xverify is used without any
arguments, the value is all.

-XfullShutdown Make sure all resources are freed and the VM destroyed upon
exit. This is the default for non-process-model operating
systems, but is not needed for process-model operating systems,
such as Linux.

TABLE A-1 Java SE Command-Line Options (Continued)

Option Description
A-4 CDC Runtime Guide • December 2008

TABLE A-3 describes the suboptions for the -Xgc command-line option.

-Xgc:suboption Specify GC-specific options. The default GC is the generational
garbage collector described in Chapter 3. See TABLE A-3 for a
description of the suboptions.
Other garbage collectors are unsupported.

-Xopt:suboption Control the Java stack. See TABLE A-4 for a description of the
suboptions. The different suboptions can be appended into a
single argument with name/value pair separated by commas.

-XtimeStamping Enable timestamping.

-Xtrace:flags Turn on trace flags. TABLE A-5 shows the hexadecimal values to
turn on each trace flag. To turn on multiple flags, bitwise-OR the
values of all the flags you wish to turn on, and use that result as
the -Xtrace value. Requires the CVM_TRACE=true build
option. (Unsupported.)

TABLE A-3 -Xgc:suboption

Option Description

maxStackMapsMemorySize=size Set the size of the stack map cache. The default value is
0xFFFFFFFF.

stat Collect and display garbage collection statistics.

youngGen=size Set the size of the young object generation.
NOTE: this option is specific to the default generational collector.
The default value is 1M.

TABLE A-2 CDC-Specific Command-Line Options (Continued)

Option Description
Appendix A cvm Reference A-5

TABLE A-4 describes the suboptions for the -Xopt command-line option, which
controls the size of the Java stack. This option is useful for runtime development
purposes only and is unsupported.

TABLE A-5 describes the flags used by the -Xtrace command-line option. This
option is useful for runtime development purposes only and is unsupported.

TABLE A-4 -Xopt:suboption

Suboption Description

stackMinSize=size Set the initial size of the Java stack, from <32…65536>. The
default for JIT-based systems is 3K and the default for non-JIT
based systems is 1K.

stackMaxSize=size Set the maximum size of the stack, from <1024…1048576>. The
default for 128K.

stackChunkSize=size Set the amount the stack grows when it needs to expand
<32…65536>. The default for JIT-based systems is 2K and the
default for non-JIT based systems is 1K.

TABLE A-5 -Xtrace:flags (unsupported)

Value Description

0x00000001 Opcode execution.

0x00000002 Method execution.

0x00000004 Internal state of the interpreter loop on method calls and
returns.

0x00000008 Fast common-case path of Java synchronization.

0x00000010 Slow rare-case path of Java synchronization.

0x00000020 Mutex locking and unlocking operations.

0x00000040 Consistent state transitions. Garbage Collection (GC)-safety
state only.

0x00000080 GC start and stop notifications.

0x00000100 GC root scans.

0x00000200 GC heap object scans.

0x00000400 GC object allocation.

0x00000800 GC algorithm internals.

0x00001000 Transitions between GC-safe and GC-unsafe states.

0x00002000 Class static initializers.

0x00004000 Java exception handling.
A-6 CDC Runtime Guide • December 2008

TABLE A-6 describes the command-line options available with the CVM_JVMTI build
option. See Chapter 6 for an example of how to use these command-line options.

TABLE A-7 describes the command-line options available with the CVM_JIT=true
build option. See Chapter 3 for an example of how to use these command-line
options.

0x00008000 Heap initialization and destruction, global state initialization,
and the safe exit feature.

0x00010000 Read and write barriers for GC.

0x00020000 Generation of GC maps for Java stacks.

0x00040000 Class loading.

0x00080000 Class lookup in VM-internal tables.

0x00100000 Type system operations.

0x00200000 Java code verifier operations.

0x00400000 Weak reference handling.

0x00800000 Class unloading.

0x01000000 Class linking.

TABLE A-6 JVMTI Options

Option Description

-Xdebug Enable VM-level debugging support.

-Xrunlib:[help]|[option=value, …] Enable feature in shared library. For example, hprof profiling
support.

TABLE A-7 -Xjit:options

Option Default Description

bcost=cost 4 Cost of a backwards branch, between
<0...32767>.

climit=cost 20000 The popularity threshold for a given method,
between <0...65535>. The VM compares a
per-method count based on bcost, icost and
mcost against this threshold to determine
when to compile a given method.

codeCacheSize=value 512k Size of code cache where compiled methods are
stored, between <0...32M>.

TABLE A-5 -Xtrace:flags (unsupported) (Continued)

Value Description
Appendix A cvm Reference A-7

compile=suboption policy When to compile methods. See TABLE A-9 for
descriptions of the suboptions for compile.
The default policy is based on the suboption
defaults listed in this table.

icost=cost 20 Cost of an interpreted-to-interpreted method
call, between <0...32767>.

inline=suboption all Perform method inlining when compiling. See
TABLE A-8 for descriptions of the suboptions
for inline.

lowerCodeCacheThreshold=percentage 90% Lower code cache threshold, between
<0%..100%>. The dynamic compiler
decompiles methods until the code cache
reaches this threshold.

maxCompiledMethodSize=value 65535 Maximum size of a compiled method, between
<0...64K>.

maxInliningCodeLength=value 68 Maximum size of an inlined method, between
<0...1000>. This value is used as a threshold
that proportionally decreases with the depth of
inlining. Therefore, shorter methods are inlined
at deeper depths. In addition, if the inlined
method is less than value/2, the dynamic
compiler allows unquickened opcodes in the
inlined method.

maxInliningDepth=value 12 Maximum inlining depth of inlined
methods/frames, between <0...1000>.

maxWorkingMemorySize=value 512k Maximum working memory size for the
dynamic compiler, between <0...64M>. See
Section 3.4.4, “Setting the Maximum Working
Memory for the Dynamic Compiler” on
page 3-10.

mcost=cost 50 Cost for transitioning between a compiled
method and an interpreted method, and vice
versa. Between <0..32767>.

minInliningCodeLength=value 16 The floor value for maxInliningCodeLength
when its size is proportionally decreased at
greater inlining depths.

policyTriggeredDecompilations=boolean true Policy triggered decompilations. If false, then
never decompile a method to make room for
more compilations. Methods remain compiled
until the class is unloaded, even if the code
cache is full.

TABLE A-7 -Xjit:options (Continued)

Option Default Description
A-8 CDC Runtime Guide • December 2008

TABLE A-8 describes the command-line options for selecting when to inline methods.

trace=suboption Set dynamic compiler trace options. See
TABLE A-10.

upperCodeCacheThreshold=percentage 95 Upper code cache threshold, between
<0%...100%>. The dynamic compiler starts
decompiling methods during a GC when the
code cache passes this threshold unless
policyTriggeredDecompilations=false.

XregisterPhis=boolean true Unsupported.

XcompilingCausesClassLoading=boolean false Unsupported.

Xpmi=boolean true Unsupported.

XregisterLocals=boolean true Unsupported.

aot=boolean true Enable/disable AOTC.

aotFile=file AOTC file path.

recompileAOT=boolean false Recompile AOTC code when this option is set
to true. The existing AOTC code will be
replaced when this option is used.

aotCodeCacheSize=size 672K Size for the code cache used for AOTC.

aotMethodList=file File containing a list of methods to be compiled
and saved for AOTC.

TABLE A-8 -Xjit:inline=suboption

Suboption Description

all Enable all the options listed below to perform inlining whenever possible. The
default.

none Do not perform inlining.

virtual Perform inlining on virtual methods.

nonvirtual Perform inlining on nonvirtual methods.

vhints Virtual hints. Use hints gathered while interpreting a method to choose a target
method to get inlined when an invokevirtual opcode is compiled.

ihints Interface hints. Use hints gathered while interpreting a method to choose a target
method for inlining when an invokeinterface opcode is compiled.

TABLE A-7 -Xjit:options (Continued)

Option Default Description
Appendix A cvm Reference A-9

TABLE A-9 describes the top-level command-line options that control dynamic
compiler policies.

TABLE A-10 describes the command-line options for controlling dynamic compiler
tracing. These options require a build with CVM_TRACE_JIT=true. These options
are experimental and unsupported.

Xvsync Inline virtual synchronized methods. Off by default. Unsupported.

Xnvsync Inline non-virtual synchronized methods. Off by default. Unsupported.

Xdopriv Inline privileged methods specified by
java.security.AccessController.doPrivileged(). On by default.
Unsupported.

TABLE A-9 -Xjit:compile=suboption

Suboption Description

policy Compile according to existing compilation policy parameters such as icost and
climit. The default.

all Compile all methods aggressively. Note: this hurts performance and should be
used only for testing the dynamic compiler.

none Do not compile any methods.

TABLE A-10 -Xjit:trace=option

Suboption Description

bctoir Print information regarding the conversion of Java bytecodes to the JIT internal
representation (IR), including a complete dump of all IR nodes.

codegen Print the generated code in a format similar to the assembler language of the
target processor. If the build option CVM_JIT_DEBUG=true, then this also prints
the JavaCodeSelect rule used to generate the code interspersed with the
generated code.

inlining Print method inlining information during the bytecode to IR pass, such as which
methods were inlined and which ones were not.

iropt Print information about optimizations done in the bytecode to IR pass.

osr Print a message when compilation of a method is triggered by on stack
replacement (OSR).

stats Print statistics gathered during compilation.

status Print a line of status each time a method is compiled. The output includes the
name of the method and whether or not it was compiled successfully.

TABLE A-8 -Xjit:inline=suboption

Suboption Description
A-10 CDC Runtime Guide • December 2008

Appendix A cvm Reference A-11

A-12 CDC Runtime Guide • December 2008

APPENDIX B

Java ME System Properties

In addition to the standard Java SE system properties, CDC supports the standard
Java ME system properties supported by CLDC 1.1 and MIDP 2.0. These system
properties are described in TABLE B-1.

TABLE B-1 CDC System Properties

System Property Default Value Description

microedition.commports No default Comma-delimited list of available
communications ports

microedition.configuration cdc Java ME configuration

microedition.encoding ISO_LATIN_1 Unicode character encoding

microedition.hostname No default Host platform

microedition.locale en-US System locale

microedition.platform j2me Java platform

microedition.profiles No default Java ME profile

microedition.securerandom.nofallback false Disable the mechanism that allows the
CDC Java runtime environment to fallback
to using /dev/urandom if /dev/random
doesn’t have enough entropy to work
properly. See Section 4.2.4, “Seed
Generation for Random Number
Generation” on page 4-5 for more
information.

cdcams.decorations false Display native window decorations.

cdcams.presentation No default Top-level presentation mode class.
B-1

For a list of the standard Java SE system properties, see the description of
java.lang.System.getProperties() in the CDC specification.

cdcams.repository CVMHOME/
repository

Location of application repository.

cdcams.verbose false Display extra diagnostic information.

java.ext.dirs CVMHOME/
lib

Specifies one or more directories to
search for installed optional packages,
each separated by
File.pathSeparatorChar.

TABLE B-1 CDC System Properties (Continued)

System Property Default Value Description
B-2 CDC Runtime Guide • December 2008

APPENDIX C

Serial Port Configuration Notes

The javax.microedition.io.CommConnection interface allows a CDC Java
runtime environment to expose an OS-level serial port as a logical serial port
connection. This appendix shows how to configure an OS-level serial port on a
Linux system so that a Java application can access the corresponding logical serial
port connection.

Note – While this example is based on the RS-232 serial interface implementation of
CommConnection in com.sun.cdc.io.j2me.comm.Protocol, an alternate
implementation could use the CommConnection interface to support other forms of
serial communication such as IrDA.

TABLE C-1 Serial Communications References

Interface Document

RS-232 serial
communications

http://www.tldp.org/HOWTO/Serial-HOWTO-4.html

minicom serial
communications program

minicom(1)

Serial port configuration setserialport(8)

Serial port driver interface ttyS(4)
C-1

C.1 Serial Port Setup
1. Setup a serial cable connection between two Linux computers.

Become super-user.

% su
#

This step is necessary to allow non-root users to access the serial port.

2. Configure the serial port to use IRQ 4.

setserial /dev/ttyS0 irq 4

3. Change the file access permissions for the serial port and the lock file.

chmod 777 /dev/ttyS0 /var/lock

This allows other users to access the serial port.

4. Launch the minicom(1) serial communications program in setup mode.

minicom -s

a. Select Serial port setup from the [configuration] menu.

b. In the setup menu, type A to change the Serial Device setting.

If the Serial Device setting is /dev/modem, then change it to /dev/ttyS0.

c. Press <ENTER> to confirm the change.

d. Press <ENTER> again to exit the setup menu.

e. Select the Save setup as dfl menu option.

f. Select the Exit menu option.

This will initialize the serial port.

g. Type <CONTROL>-a q to finally exit minicom(1)

5. Follow a similar configuration procedure with the other computer connected to
the serial cable.
C-2 CDC Runtime Guide • December 2008

C.2 OS-Level Testing
The serial connection between the two computers can be tested with the minicom(1)
serial communications program.

1. Remotely login to each computer.

2. Launch the minicom(1) serial communications program on each computer.

3. Type some text into one of the minicom(1) windows.

4. Type <CONTROL>-a q to finally exit minicom(1).

This should determine that the serial connection is correct.
Appendix C Serial Port Configuration Notes C-3

C-4 CDC Runtime Guide • December 2008

	Contents
	Figures
	Tables
	Preface
	Who Should Read This Runtime Guide
	CDC Software Releases
	phoneME Open Source Project
	How This Book Is Organized
	Typographic Conventions
	Runtime Documentation for the Java Platform Standard Edition
	Related Documentation
	Sun Documentation Resources
	Terminology
	Feedback

	Introduction
	1.1 Goals
	1.2 Usage Contexts
	1.3 CDC Technology Implementations
	1.4 CDC Target Device Requirements
	1.5 Java ME Technology Standards
	1.6 Java ME API Choices
	1.7 CDC Application Features
	1.8 Developer Tools

	Software Layout
	2.1 Standard Files
	2.2 Security Files
	2.3 Development Files
	2.4 Test and Demonstration Files

	Running Applications
	3.1 Installing the CDC Java Runtime Environment
	3.2 Launching a Java Application
	3.3 Class Search Path Basics
	3.3.1 Java Class Search Path
	3.3.2 Native Method Search Path

	3.4 Memory Management
	3.4.1 The Java Heap
	3.4.2 Garbage Collection
	3.4.3 Class Preloading

	Class Preloading and Verification
	3.4.4 Setting the Maximum Working Memory for the Dynamic Compiler

	3.5 Tuning Dynamic Compiler Performance
	3.5.1 Dynamic Compiler Overview
	3.5.2 Dynamic Compiler Policies

	3.6 Ahead-of-Time Compilation
	3.6.1 Using AOTC
	3.6.2 How to Create methodsList.txt

	Security
	4.1 Overview
	4.1.1 Built-in Security Features
	4.1.2 Security Policy Framework
	4.1.3 Security Provider Architecture
	4.1.4 Custom JSSE Provider Plug-ins
	4.1.5 Sun JSSE Ciphersuite Support
	4.1.6 Self-Integrity Checks

	4.2 Security Procedures
	4.2.1 Using Alternate Security Providers
	4.2.2 Public Key Management
	4.2.3 Security Policy Management
	4.2.4 Seed Generation for Random Number Generation

	Localization
	5.1 Setting Locale System Properties
	5.2 Timezone Information Files

	Developer Tools
	6.1 Compiling With javac
	6.1.1 CDC and Java SE
	6.1.2 Compiling Java Source Code for the Java SE Platform
	6.1.3 Compiling Java Source Code for CDC
	6.1.4 Determining the Target Class Library
	6.1.5 Useful javac Command-Line Options
	6.1.6 Compiling an Example CDC Program

	6.2 Application Debugging With jdb
	6.2.1 Application Debugging Command-Line Options
	6.2.2 Using the Application Debug Features of cvm
	6.2.3 Running jdb on the Host Development System

	6.3 Profiling with hprof
	6.3.1 Profiling Command-Line Options
	6.3.2 Running cvm With hprof

	cvm Reference
	A.1 Synopsis
	A.2 Description
	A.3 Options

	Java ME System Properties
	Serial Port Configuration Notes
	C.1 Serial Port Setup
	C.2 OS-Level Testing

