UNICO 1100 SERIES SPECTROPHOTOMETER

Model 1100 Spectrophotometer Model 1100RS Spectrophotometer

SERVICE MANUAL

UNITED PRODUCTS & INSTRUMENTS INC.

MANUFACTURER OF QUALITY OPTICAL SYSTEMS

CONTENTS

1. GENERAL	3
1.1 Introduction	3
1.2 Optical System	4
1.3 Electronic	5
1.4 Specifications	6
1.5 Nomenclature	6-7
2. INSTALLATION	7
3. MAINTENANCE	8
3.1 Working Environment	8
3.2 Replacing Lamps And Adjustments	8
3.3 Wavelength Calibration	8-9
4. SERVICE	9
4.1 Operating Procedure Check	9-10
4.2 Physical	10
4.3 Troubleshooting	11-19
5. DRAWING AND DIAGRAM	20
5.1 PCB Arrangement of Synthetic Electronic System for UNICO 1100	21
5.1.1 Circuit Diagram of Synthetic Electronic System for UNICO 1100	22
5.2 PCB Arrangement of ±15 <u>v</u> , +9 <u>v</u> Power Supply	23
5.2.1 Circuit Diagram of ±15 <u>v</u> , +9 <u>v</u> Power Supply	24
5.3 PCB Arrangement of W Lamp Power Supply	25
5.3.1 Circuit Diagram of W Lamp Power Supply	26
5.4 PCB Arrangement of Logarithm Adjustment	27
5.4.1 Circuit Diagram of Logarithm Adjustment	28
5.5 PCB Arrangement of 0%T Adjustment	29
5.5.1 Circuit Diagram of 0%T Adjustment	30
5.6 PCB Arrangement of Amplifier	31
5.6.1 Circuit Diagram of Amplifier	32
6. SCHEMATIC LOYOUT	33
6.1 Schematic Diagram of UNICO	34
7. ELECTRONIC PARTS FOR UNICO 1100	35
7.1 Electronic Parts list for UNICO 1100	35

1. GENERAL

1.1 INTRODUCTION

The UNICO model 1100 Series spectrophotometers are single beam general purpose instruments designed for use in conventional laboratories. The instruments are ideal for various applications such as: Clinical Chemistries, Biochemistry, Food and Beverage Laboratories, Environmental Protection, Water and Waste Water Labs and other fields of quality control.

The UNICO 1100 Series spectrophotometers cover the visible wavelength range from 335nm to 1000nm. The analytical grating system has 1200 lines/mm for higher dispersion of the spectrum.

UNICO Model 1100 Spectrophotometer

Figure 1-1.2

UNICO Model 1100RS Spectrophotometer

1.2 OPTICAL SYSTEM

As shown in Figure 1-2 the white light coming from the Halogen Lamp is focused by the collecting lens, pass through the Entrance slit of the Monochromator, through a collimating lens to the Analytical grating where it is dispersed into its spectrum, then through the Exit slit of the monochromator, continues through the Sample compartment and finally to the Photo detector.

Figure 1-2

OPTICAL SYSTEM SCHEMATIC DIAGRAM

- 1. Halogen Lamp
- 3. Entrance Slit
- 5. Grating
- 7. Sample
- 9. Photodiode

- 2. Collecting Lens
- 4. Collimating Lens
- 6. Exit Slit
- 8. Collimating Lens

1.3 ELECTRONIC SYSTEM

The photo detector receives the monochromatic light and generates photocurrent. A direct current signal which is proportional to the amount of light energy to the photo detector. The signal is then amplified and processed. The processed signal is sent to the digital display and also to the external outputs 0 Volt to 1 Volt analog output and an RS-232C output. Figure 1-3-1 and Figure 1-3-2 demonstrates the electronic systems of Model 1100 and Model 1100RS respectively

Figure 1-3-2

1.4 SPECIFICATIONS

Table 1-1				
MODEL	1100	1100RS		
Wavelength Range	335-1000nm	335-1000nm		
Spectral Slit Width	20nm	10nm		
Wavelength Accuracy	±2nm	±2nm		
Wavelength Readability	2nm			
Stray Radiant Energy	≤0.5%T@340nm &400nm	≤0.5%T@340nm & 400nm		
Transmittance	0%T to 125%T	0%T to 125.0%T		
Absorbancy	0A to 2A	0A to 2A		
Photometric Accuracy	±2.0%T	±1.0%T		
Photometric Noise Level	±2.0%T	±1%T		
Power Requirement	115-volt, 60Hz, or 230-volt, 50Hz			
Size	408mm(W)×308mm(D)×180mm(H)			
Weight	5.5kg			
One officient and highly a share with out paties				

Specifications subject to change without notice

1.5 NOMENCLATURE

UNICO 1100 SPECTROPHOTOMETER AND NOMENCLATURE

2. INSTALLATION

2.1 The instrument should be installed in a clean environment which is free of corrosive materials, dust and severe vibrations. Furthermore, it should be kept away from any strong electric magnetic fields and high frequency fields.

2.2 LINE VOLTAGE

The power can be selected by means of the built-in switchable power switch to match the line voltage in your country.

3. MAINTENANCE

3.1 WORKING ENVIRONMENT

The optimum environment for the instruments is as follows

TEMPERATURE	5-35 <i>°</i> C
HUMIDITY	85%

Install the instrument in a clean non-vibrational area. Avoid direct strong light and air flow. The instrument will give better performance if the power supply stability is at 1% and line frequency less than 1Hz. Always allow the instrument to warm up for 20 minutes prior to taking any readings.

3.2 REPLACING LAMPS AND ADJUSTMENTS

- 1. Turn off and unplug the instrument.
- 2. Turn the instrument upside down.
- 3. Remove the grill plate on bottom of the instrument by removing fixing Screw.
- 4. Unplug the lamp from the white connector.
- 5. Insert the new lamp, pushing it in as far as it will go. The lamp filament should face the center of the collecting lens.

<u>CAUTION</u>: DO NOT HANDLE HALOGEN LAMP WITH BARK FINGERS. USE TISSUE OR CLOTH WHEN HANDLING LAMP.

8. Reinstall the grill plate.

Replacing the lamp <u>3.3 Wavelength Calibration:</u>

NORMALLYTHE UNICO 1100 SERIES SPECTROPHOTOMETERRETAINS ITS WAVELENGTH CALIBRATION INDEFINITELY. HOWEVER IF THE INSTRUMENT RECEIVES A SEVERE SHOCK OR IS ABUSED, USE THE FOLLOWING METHODS TO CHECK WAVELENGTH CALIBRATION. PLEASE NOTE THAT THIS TEST REQUIRES THE UNICO DIDYMIUM FILTER, P/N 1100-110, OR THE HOLMIUM OXIDE FILTER, P/N 1100-109.

In the filtermethod, the didymium filterhas two distinct absorbance peaks at 529nm and 807nm. The Holmium filterhas a distinct peak at 361nm. When the instrument is calibrated properlyyou willfind minimum Transmittance (maximum Absorbance) at the range ± 2 nm from these peaks. Note that the specific Transmittance values are not important as you are only looking for the wavelength where the minimum transmittance (maximum Absorbance) at the Absorbance) occurs.

Holmium Oxide Filter Method:

- 1. TURN INSTRUMENTON AND ALLOWIT TO WARM UP FOR 15 MINUTES.
- 2. SELECTTHE ABSORBANCE OPERATING MODE.
- 1. SET THE WAVELENGTH TO 350NM.
- 2. MAKE SURE THE CUVETTE HOLDERIS EMPTY AND PLACE IT IN THE SAMPLE COMPARTMENT. CLOSE THE SAMPLE COMPARTMENT LID.
- 3. SET ZERO ABSORBANCE BY PRESSING THE OA/100%T. WAIT A FEW SECONDS WHILE THE DISPLAY FLASHES 'BLA'. THE READING SHOULD THEN BE 0.000A. IF NOT, REPEAT STEP 5.
- 4. REMOVE THE CUVETTE HOLDERAND INSERT THE HOLMIUM FILTERINTOIT. PLACE IT IN THE SAMPLE COMPARTMENT AND CLOSE THE LID.
- 5. RECORD THE ABSORBANCE READING ON THE DIGITAL DISPLAY.
- 6. ADVANCE THE WAVELENGTH SETTING BY 1NM AND REPEAT STEPS 4 TO 7.
- 7. REPEAT STEP 8 UNTILTHE WAVELENGTH SETTING REACHES 370NM.
- 8. LOOK FORTHE MAXIMUM ABSORBANCE READING OBTAINED, AND THIS SHOULD BE FOUND BETWEEN 359 AND 363NM. THE WAVELENGTH ACCURACY OF THE 1100/1100RS is \pm 2NM.

Didymium Filter Method:

- 1. Set the Wavelength to 800 nm.
- 2. MAKE SURE THE CUVETTE HOLDERIS EMPTY AND PLACE IT IN THE SAMPLE COMPARTMENT. CLOSE THE SAMPLE COMPARTMENT LID.
- 3. SET ZERO ABS BY PRESSING THE OA/100%T. WAIT A FEW SECONDS WHILE THE DISPLAY FLASHES 'BLA'. THE READING SHOULD THEN BE 0.000A. IF NOT, REPEAT STEP 3.

- 4. REMOVE THE CUVETTE HOLDERAND INSERTTHE DIDYMIUM FILTERINTOIT. PLACE IT IN THE SAMPLE COMPARTMENT AND CLOSE THE LID.
- 5. RECORD THE ABSORBANCE READING ON THE DIGITALDISPLAY.
- 6. ADVANCE THE WAVELENGTH SETTING BY 1NM AND REPEAT STEPS 2 TO 5.
- 7. REPEAT STEP 6 UNTILTHE WAVELENGTH SETTING REACHES 815NM.
- 8. LOOK FORTHE MAXIMUM ABSORBANCE READING OBTAINED, AND THIS SHOULD BE FOUND BETWEEN 805 AND 809NM. THE WAVELENGTH ACCURACY OF THE 1100/1100RS is \pm 2NM.
- 9. IF A "MIDDLE" WAVELENGTH CHECK IS DESIRED, SET THE WAVELENGTH TO 522NM (OPTIONAL)
- 10. MAKE SURE THE CUVETTE HOLDERIS EMPTY AND PLACE IT IN THE SAMPLE COMPARTMENT. CLOSE THE SAMPLE LID.
- 11. SET ZERO ABS BY PRESSING THE OA/100%T BUTTON. WAIT A FEW SECONDS WHILE THE DISPLAY FLASHES 'BLA'. THE READING SHOULD THEN BE 0.000A. IF NOT REPEAT STEP 11.
- 12. REMOVE THE CUVETTE HOLDERAND INSERTTHE DIDYMIUM FILTERINTOIT. PLACE IT IN THE SAMPLE COMPARTMENT AND CLOSE THE LID.
- 13. RECORD THE ABSORBANCE READING ON THE DIGITAL DISPLAY.
- 14. ADVANCE THE WAVELENGTH SETTING BY 1NM AND REPEAT STEPS 10 TO 13.

REPEAT STEP 14 UNTIL THE WAVELENGTH SETTING REACHES 536NM. AGAIN, LOOK FOR THE MAXIMUM ABSORBANCE READING. IT SHOULD BE BETWEEN 527 AND 531NM.

Absorbance Accuracy Checks

SPECIFICATION: $\pm 2\%$ AT 1A (1100), $\pm 1\%$ AT 1A AND 2A (1100RS).

THE ABSORBANCE ACCURACY SHOULD BE CHECKED AGAINST A SET OF NEUTRALDENSITY FILTERS ACCURATELYCALIBRATED TO THE NIST STANDARDS. CONTACTYOUR UNICO REPRESENTATIVE FORMORE INFORMATION (800-588-9776).

AN ALTERNATIVE METHOD USING POTASSIUM DICHROMATE IS DESCRIBED BELOW. DUE TO THE MANY FACTORSTHATMIGHT AFFECTTHE RESULTS (I.E. TEMPERATURE, BANDPASS, WEIGHING AND DILUTING ERRORS), THIS METHOD IS LESS ACCURATE AND SHOULD ONLY BE USED AS A GUIDE.

REFERENCE: JOHNSON E A POTASSIUM DICHROMATE AS AN ABSORBANCE STANDARD PSG BULLETIN 1967, NO. 17, PAGE 505

- 1. MAKE UP N/100 SULFURICACID AS THE SOLVENTAND USE PARTOF ITTO MAKE A SOLUTION CONTAINING 120 +0.5 MG/LITREOF POTASSIUM DICHROMATE.
- 2. WASH OUT A SQUARE CUVETTE WITH SOLVENT, AND FILLWITH SOLVENT.
- 3. PUT THE CUVETTE IN THE ADAPTER INTO THE SAMPLE COMPARTMENT AND CLOSE THE LID.
- 4. SET THE WAVELENGTH TO 350NM.
- 5. SET THE MODE BUTTONTOA.
- 6. SET THE READING TO 0.000A USING THE 0A/100%T BUTTON.
- 7. EMPTY THE CELL. WASH OUT WITH DICHROMATE SOLUTION, AND FILLWITH DICHROMATE SOLUTION.
- 8. PUT THE CUVETTE IN THE ADAPTER INTO THE SAMPLE COMPARTMENT AND CLOSE THE LID.
- 9. READ THE ABSORBANCE OF THE STANDARD FROM THE DISPLAY. THE VALUE SHOULD BE 1.288 + 0.04A. REFERTO THE NOTES ABOVE WHEN INTERPRETING THE RESULT.

Stray Light Check

SPECIFICATION: LESS THAN 0.5%T AT 340NM BY ASTM E 387

A GOOD INDICATION AS TO WHETHER THE STRAY LIGHTLEVELIS WITHIN SPECIFICATION MAY BE OBTAINED AS FOLLOWS:

- 1. Set the wavelength to 340nm.
- 2. SET THE MODE SWITCH TO %T.
- 3. WITH THE SQUARE CELLADAPTER IN THE SAMPLE COMPARTMENT, BUT NO CELL, CLOSE THE LID AND PRESS THE 0A/100%T BUTTON TO SET THE DISPLAY TO 100.0%.
- 4. REMOVE THE CELLADAPTER FROM THE SAMPLE COMPARTMENT AND CLOSE THE LID. MAKE A NOTE OF THE READING THATSHOULD BE AT OR NEAR 00.0.
- 5. PREPARE A SOLUTION CONTAINING 50GM/L OF SODIUM NITRITE (NANO₂) IN DISTILLED WATERAND FILLA SQUARE CUVETTE WITH THIS SOLUTION.
- 6. INSERTTHE CUVETTE INTO THE ADAPTER AND PLACE IN THE SAMPLE COMPARTMENT. CLOSE THE LID. THE DISPLAY SHOULD READ<0.5%T. NOTE THAT IF THE READING OBTAINED IN STEP 4 IS GREATERTHAN 00.0, THIS VALUE SHOULD BE SUBTRACTED FROM THE DISPLAYED READING TO GIVE THE CORRECTREADING FORTHE STRAY LIGHTVALUE.

SERIVCE

4.1 PHYSICAL INSPECTION

Thoroughly inspect the instrument for physical indications that might cause a malfunction. The following categories are usually checked:

Apparent damage, Dirty Optics, Broken wire, loose connection, P.C. Board loose, Broken lands on pc board, any sign of overheated components.

4.2 OPERATING PROCEDURE CHECK

Each time an instrument has a malfunction, the operating procedure should be checked. If necessary such procedures should be repeated to see the patterns that the malfunction occurs.

The basic operating procedure is as follows:

Basic Operation:

SIMPLE OPERATING INSTRUCTIONS ARE PRINTED ON THE FRONTPANEL OF YOUR UNICO 1100/1100RS.

A. Prepare the spectrophotometer

- 1. TURN ON THE SPECTROPHOTOMETERBY PRESSING THE POWER SWITCH (IO). ALLOW 15 MINUTES FOR THE INSTRUMENT TO WARM UP.
- 2. SELECTEITHERTHE %TRANSMITTANCE OR ABSORBANCE OPERATING MODE BY PRESSING THE %T/A SELECTORBUTTON(MODE) UNTIL THE RED LIGHTFORT OR A IS ON.
- 3. SELECTTHE DESIRED WAVELENGTH BY TURNING THE WAVELENGTH CONTROLKNOB (WAVELENGTH).

B. Prepare Sample

- 4. MAKE A BLANK REFERENCE SOLUTION BY FILLINGA CLEAN CUVETTE (OR TEST TUBE) HALFFULLWITH DISTILLEDOR DE-IONIZED WATEROR OTHERSPECIFIED SOLVENT. WIPE THE CUVETTE WITH TISSUE TO REMOVE THE FINGERPRINTS AND DROPLETS OF LIQUID.
- 5. FIT THE BLANK CUVETTE INTO THE SQUARE CUVETTE ADAPTER AND PLACE THE ADAPTER IN THE SAMPLE COMPARTMENT, ALIGNING THE GUIDE MARK (IF PRESENT) WITH THE GUIDE MARK AT THE FRONTOF THE COMPARTMENT. CLOSE THE LID.
- 6. SET 0.000A OR 100%T WITH THE (0A/100%T) CONTROLBUTTON. NOTE: THIS STEP FULFILS THE INSTRUCTION ON THE FRONTOF THE SPECTROPHOTOMETER...(SET FULLSCALE).
- 7. REMOVE THE BLANK CUVETTEOR TEST TUBE. SET IT ASIDE IN THE CASE THATYOU MAY NEED TO ADJUST THE (OA/100%T) CONTROL BUTTON LATER(I.E. CHANGE THE WAVELENGTH).

C. Analyze Sample

- 8. RINSE A SECOND CUVETTE WITH A SMALLAMOUNT OF THE SAMPLE SOLUTION TO BE TESTED. FILL THE CUVETTE HALFFULIAND WIPE IT.
- 9. PUT THE SAMPLE CUVETTE IN THE SAMPLE COMPARTMENT. CLOSE THE LID.
- 10. READ THE %TRANSMITTANCE OR ABSORBANCE FROM THE DIGITAL READOUT WINDOW. REMOVE THE SAMPLE CUVETTE OR TEST TUBE.
- 11. IF YOU ARE TO TEST THE SAME SAMPLE AT OTHER WAVELENGTHS, REPEAT STEPS 3 TO 10 FOR EACH WAVELENGTH.
- 12. FOR EACH NEW SAMPLE YOU ANALYZE, REPEAT STEPS 2 TO 11.

Additional Features of Model 1100RS

ALTHOUGH OPERATING BASICALLYTHE SAME AS THE MODEL 1100, THE 1100RS SPECTROPHOTOMETER OFFERSTWO MORE FEATURES (CONCENTRATION MODE AND FACTOR MODE) AS FOLLOWS:

Concentration (C) Mode for determining the concentration of unknown samples.

NOTE: This method should only be used when the relationship between Absorbance and Concentration is known to be linear. The concentration of the Standard solution used to calibrate the instrument should be higher than the most concentrated sample.

- 1. SELECT THE DESIRED WAVELENGTH BY TURNING THE WAVELENGTH CONTROLKNOB.
- 2. USING THE MODE BUTTON, SELECT ABSORBANCE (A) MODE.
- 3. INSERT THE CUVETTE CONTAINING THE BLANK SOLUTION.
- 4. SET 0.000A WITH THE (0A/100%T) CONTROLBUTTON.
- 5. USING THE MODE BUTTON, SELECTC (CONCENTRATION) MODE.
- 6. INSERTA CUVETTE CONTAINING A STANDARD SOLUTION OF KNOWN CONCENTRATION IN THE SAMPLE COMPARTMENT AND ADJUST THE DIGITAL READOUT WINDOW TO THE VALUE OF THE STANDARD BY USING THE A AND V ARROWS.
- 7. PRESS THE ENTERBUTTON.

NOTE: If the reading changes, the factor required is too high (i.e. >1999) to be displayed. In this case, divide the concentration by 10, re-select the C mode by successive presses on the Mode button, cycling through the F, %T, and A modes, and follow step 2 above to set the concentration of the standard to the reduced value.

- 8. WITH THE STANDARD CONCENTRATION SET, DETERMINE THE CONCENTRATION VALUES OF SAMPLES WITH UNKNOWN CONCENTRATION BY INSERTING THE SAMPLE CUVETTE INTO THE SAMPLE COMPARTMENT AND READING THE VALUE DIRECTFROM THE DISPLAY.
- 9. TO READ THE VALUE OF THE MULTIPLIERUSED TO CONVERTABS TO CONCENTRATION, AFTERME ASURING ALL THE SAMPLES, CHANGE THE MODE TO FACTOR(F) AND READ THE MULTIPLIERFROM THE DISPLAY. KEEP A RECORD OF THIS VALUE FORFUTURE USE.

Operational Note: if the mode switch is changed to read Factor or Absorbance, the Concentration (C) reading is "frozen", and cannot be changed. This requires the operator to re-start at step 1.

<u>Factor (F) Mode</u>

THIS IS A SPECIAL MODE FORMEASURING CONCENTRATION VALUES OF UNKNOWN SAMPLES USING A PREVIOUSLY DETERMINED FACTORTO CONVERTABSORBANCE READINGS TO CONCENTRATION.

- 1. AFTERSETTING THE WAVELENGTH, AND SETTING ZERO ABS ON THE BLANK SOLUTION, USING THE MODE BUTTON, SELECT FACTOR (F) MODE.
- 2. INSERTA CUVETTE CONTAINING A SAMPLE.
- 3. USING THE AAND V ARROWS, SET THE DIGITAL READ-OUT WINDOW TO THE DESIRED VALUE OF THE MULTIPLIER.
- 4. PRESS THE ENT BUTTON. THE SPECTROPHOTOMETERSWITCHES TO THE CONCENTRATION (C) MODE.

Operational Note: If the Concentration of the sample is too high to be displayed, the instrument will not switch to Concentration Mode when the ENT button is pressed. Dilute the sample and multiply the concentration reading by the dilution factor to obtain the original sample concentration.

- 5. READ THE CONCENTRATION VALUE OF THE SAMPLE DIRECT FROM THE DISPLAY.
- 6. INSERTA CUVETTE CONTAINING THE NEXT SAMPLE AND READ THE RESULT. REPEAT UNTILALL SAMPLES HAVE BEEN MEASURED.

Operational Note: If the MODE switch is changed to A or T, then the concentration reading is "frozen". This requires the operator to re-start at step 1.

Model 1100 Spectrophotometer:

MODE INDICATOR: Allows the operator to know the measurement mode currently in use (%Transmittance, Absorbance).

MODE BUTTON: Switches between %Transmittance and Absorbance operating modes at any time of measurement.

OA/100%T BUTTON: Adjusts digital readout to 100%T or 0.000A when blank reference solution is in sample compartment.

SAMPLE COMPARTMENT: Insert 10mm test tube and close lid or fit 10mm cuvette adapter and fit adapter (with holder to left of cuvette) into compartment.

WAVELENGTHCONTROLKNOB (WAVELENGTH): Selects desired wavelength in nanometers (nm).

WAVELENGTH READOUT WINDOW: Displays desired wavelength.

Model 1100RS Spectrophotometer:

MODE INDICATOR: Allows the operator to know the measurement mode currently in use (%Transmittance, Absorbance).

MODE BUTTON: Switches between %Transmittance and Absorbance operating modes at any time of measurement.

OA/100%T BUTTON: Adjusts digital readout to 100%T or 0.000A when blank reference solution is in sample compartment.

O%T BUTTON: When in transmittance (T) mode and sample compartment is empty, a flap blocks the beam. Pressing button adjusts readout to 00.0%T.

PRINT BUTTON(ENT): First press after selecting Concentration mode enters reading on digital readout. Other presses cause output of reading to printer. If using UNICO Application Software, press this button to communicate with software. If operating in Factor (F) Mode, then press to enter factor. This causes the Mode to enter the factor number and change to Concentration mode.

SAMPLE COMPARTMENT: Insert 10mm test tube and close lid or fit 10mm cuvette adapter and fit adapter (with holder to left of cuvette) into compartment.

WAVELENGTHCONTROLKNOB (WAVELENGTH): Selects desired wavelength in nanometers (nm).

WAVELENGTH READOUT WINDOW: Displays desired wavelength.

.

5.Drawing&diagram

- 1. Check if the monochromator light passed onto the detector at right angle and right position (area) of the detector if not, adjust it.
- 2. Amplifier output voltage (static): 20mV-30mV, put black body to prevent the light from light way, refer to Fig5.3 to adjust the potentiometer W to change the output voltage to 20mV-30mV(measure the voltage between pin3 and pin4).
- 3. Replace detector SI1227K.
- 4. Use NBS930D filter to check.
- 5. If the value of display too big, check the control single of halogen lamp
 - O solving wiring problem of socket J5
 - O replace IC4 IC5 on the power supply board
 - O replace power supply board

PCB Arrangement of Power Supply Fig5.1

J1 Socket:Pin1/Pin2 -- +5V input Pin3 -- +12V input Pin4 -- -12V input Pin5/Pin6 -- GND
J2 Socket:+5V output to CPU A3
J3 Socket:±12V output to CPU A2
J4 Socket:±8V output to Amplifier J1
J5 Socket: CPU A1
J6 Socket:CPU A1
J7 Socket:Lamp

Fig5.1.1 Circuit Diagram of Power Supply

Fig5.2 PCB Arrangement of CPU

J1 Socket: -8V betwen Pin1&Pin3 +8V betwen Pin2&Pin3 U1 betwen Pin4&Pin3 Fig5.3 PCB Arrangement of Amplifier

Fig5.3.1 Circuit Diagram of Amplifier

6 Schematic Layout

Number	Description
1	On/Off Switch
2	Pc-power
3	Power socket
4	Wavelength disc
5	Wavelength indicator
6	Part of grating
7	Monochromator
8	Sample compartment
9	Filter drive strap
10	Filter commutation cam
11	Amplifier dark box
12	Amplifier
13	Halogen lamp
14	Junction-box
15	Transistor
16	Radiator
17	Power supply board

PART LIST OF UNICO 1100 SERIES SPECTROPHOTOMETERS

Fig.6 Schematic Diagram of UNICO 1100 Series