Basics of Secure Software Design, Development and Test

Michael Howard mikehow@microsoft.com Senior Security Program Manager Security Engineering Group & Comms Microsoft Corp.

Agenda

Who?

- Trustworthy Computing
- Security Development Lifecycle
- Secure Design Tenets
- Threat Models
- Security Testing
- Coding Issues

The Security Engineering & Communications Group
Help you secure your products
"Security-as-in-threats" NOT "Security-as-in-crypto"

mailto:switeam http://swi

http://msnsecurity/sdl

1

VULNERABILITY IDENTIFIERS	IMPACT OF VULNERABILITY	WINDOWS 2000	WINDOWS XP	WINDOWS SERVER 2003	
LSASS Vulnerability - CAN-2003-0533	Remote Code Execution	Critical	Critical	Low O	
LDAP Vulnerability – CAN-2003-0663	Denial Of Service	Important	None	None	
PCT Vulnerability - CAN-2003-0719	Remote Code Execution	Critical	Important	Low Q	
Winlogon Vulnerability - CAN-2003-0806	Remote Code Execution	Moderate	Moderate	None	
Metafile Vulnerability - CAN-2003-0906	Remote Code Execution	Critical	Critical	None d	
Help and Support Center Vulnerability - CAN-2003-0907	Remote Code Execution	None	Critical	Critical	
Utility Manager Vulnerability - CAN-2003-0908	Privilege Elevation	Important	None	None	
Windows Management Vulnerability - CAN-2003-0909	Privilege Elevation	None	Important	None d	
Local Descriptor Table Vulnerability - CAN-2003-0910	Privilege Elevation	Important	None	None	
H.323 Vulnerability* - CAN-2004-0117	Remote Code Execution	Important	Important	Important	
Virtual DOS Machine Vulnerability - CAN-2004-0118	Privilege Elevation	Important	None	None	
Negotiate SSP Vulnerability - CAN-2004-0119	Remote Code Execution	Critical	Critical	Critical	
SSL Vulnerability - CAN-2004-0120	Denial Of Service	Important	Important	Important	
ASN.1 "Double Free" Vulnerability - CAN-2004-0123	Remote Code Execution	Critical	Critical	Critical	
Aggregate Severity of All Vulnerabilities		Critical	Critical	Critical	
Code fixed in V	Vindows Server in Windows Se	2003 (50 1997 2003 2003	%) (50%)		

Secure Design

- Reduce Attack Surface
 - Defense in Depth
 - Least Privilege
 - Secure Defaults

Defense in Depth (MS03-007) Windows Server 2003 Unaffected The underlying DLL (NTDLL.DLL) not vulnerable Code fixed during the Windows Security Push Even if it was vulnerable IIS 6.0 not running by default on Windows Server 2003 Even if it was running IIS 6.0 doesn't have WebDAV enabled by default Even if it did have WebDAV enabled Default maximum URL length (16kb) prevented exploitation (>64kb needed)

Process halts rather than executes malicious code, due to buffer-overrun detection code (-GS)	
Would only 'network service' privileges -	

Copyright Microsoft Corp. 2004

- Not being an administrator helps ensure users cannot easily compromise a computer or the network
- The #1 ask of IT administrators interested in increased security and reducing TCO
 Increased reliability
- Attractive to Abby, as it improves computer security and parental controls
 Part of the spyware issue

Convright Microsoft Corp. 2004

Secure Defaults

- Less code running by default = less stuff to attack by default
- Slammer & CodeRed would not have happened if the features were not enabled by default
- Reduces the urgency to deploy security fixes
 A 'critical' may be rated 'important'
- Defense in depth removes single points of failure
- Reduces the need for customers to 'harden' the product
- Reduces <u>your</u> testing workload
- Reduce your attack surface <u>early</u>!

Data Flow	S	т	R	I	D	E	
$1 \rightarrow 5$		~		~	◄		Each ✓ is a
$5 \rightarrow 6$		*		V <	۲.		potential threa
6 → 7 7 0				*	*		to the system
7 → 8		~		v	v		
Data Store							
7		1		~	~		
9		1		1	1		
11		1		~	1		Each threat is
Interactor							governed by t
1	~		1				which make the threat possible
2	~		~				
8	~		~				
Brococc							
FIUCESS						1	
4	1	1	1	1	1		
6		1	1	1			
10							

A Special Note about Information Disclosure threats

All information disclosure threats are potential privacy issues. <u>Raising the Risk.</u> Is the data sensitive or PII?

Calculating Risk with Numbers

- DREAD etc.
- Very subjective
- Often requires the analyst be a security expert
 - On a scale of 0.0 to 1.0, just how likely is it that an attacker could access a private key?
- Where do you draw the line?
 Do you fix everything above 0.4 risk and leave everything below as "Won't Fix"?

yright Microsoft Corp. 200

Calculating Risk with Heuristics

- Simple rules of thumb
- Derived from the MSRC bulletin rankings

Mitigation Techniques

Threat	Mitigation Feature
Spoofing	Authentication
Tampering	Integrity
Repudiation	Nonrepudiaton
Information Disclosure	Confidentiality
Denial of Service	Availability
Elevation of Privilege	Authorization

Attend "Secure Design Principles"

Threat Model Checklist ✓ No design is complete without a threat model! ⊠ Follow anonymous data paths ☑ Every threat needs a security test plan Check all information disclosure threats – are they privacy issues? ☑ Be wary of elevated processes ☑ Use the threat modeling for threat threat

Attack Ideas

- Rule #1 There are no rules
 Attacks by admins are uninteresting
- If you provide a client to access the server, don't use it!
 - Mimic the client in code
- If you rely on a specific service build a bogus one

"Bang for the Buck" Attack Ideas

- Consume files?
 - ■Try device names and '..'
 - ■Look for: hangs, access to other files
 - Fuzz data structures
 - Look for: AVs or memory leaks (appverifier)
- Look for PII data in information disclosure threats
- ActiveX (especially Safe For Scripting)
 - Look at each method/property and ask, "what could a bad guy do"

opyright Microsoft Corp. 2004

