
# IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODEL: 61-320 MODEL: 61-322 MODEL: 61-324

## **Multimeter Service Information**

The Service Information provides the following information:

- Precautions and safety information
- Specifications
- Basic maintenance (cleaning, replacing the battery and fuses)
- Performance test procedures
- Calibration and calibration adjustment procedures



Form Number: TM61320-2-4 Revision: 4. Date: Feb 2008

## TABLE OF CONTENTS

Page

| Introduction                                 | 1     |
|----------------------------------------------|-------|
| Precautions and Safety Information           | 1     |
| Symbols                                      | 1     |
| Safety                                       | 2     |
| Specifications                               | 3     |
| General Specification                        | 3     |
| Measurement Characteristics                  | 4     |
| Voltage Specification                        | 4     |
| Current Specifications                       | 5     |
| Resistance, Diode, Continuity Specifications | 5     |
| Frequency, Capacitance Specification         | 6     |
| Auto Power Off, Peak Hold                    | 6     |
| Physical and environment characteristics     | 7     |
| Certification and compliance                 | 7     |
| Required Equipment                           | 8     |
| Basic Maintenance                            | 9     |
| Opening the Meter Case                       | 9     |
| Replacing the Battery                        | 9     |
| Testing Fuses                                | 10    |
| Fuse Replacement                             | 10    |
| Replacing Fuses                              |       |
| Cleaning                                     | 10    |
| Performance Tests                            | 11    |
| Testing the Display                          | 11    |
| Testing the Voltage Function                 | 12    |
| Testing the Resistance Function              | 13    |
| Testing the Capacitance Function             | 13/14 |
| Testing the Diode                            | 14    |
| Testing the milliamp (mA) Function           | 14/15 |
| Testing the microamp Function                | 15    |
| Testing the Frequency                        | 15    |
| Testing Frequency Function                   | 15/16 |
| Calibration                                  | 17    |
| Calibrating DCV, ACV Functions               | 17    |
| Calibration Adjustment Points                | 18/19 |

## Introduction

## ▲Warning

To avoid shock or injury, do not perform the verification tests or calibration procedures described in the manual unless you are qualified to do so.

The information provided in this document is for the use of qualified personnel only.

## ▲Caution

## The 61-320 serials contain parts that can be damaged by static discharge. Follow the standard practices for handling static sensitive devices.

For additional information about IDEAL INDUSTRIES, INC. and its products, and services, visit IDEAL INDUSTRIES, INC. web site at: www.idealindustries.com

#### **Precautions and Safety Information**

Use the meter only as described in the Service Manual. If you do not do so, the protection provided by the meter may be impaired. Read the "Safety Information" page before servicing this product. In this manual, a **Warning** identifies conditions and actions that pose hazard (s) to the user; a **Caution** identifies conditions and actions that may damage the meter or the test instruments.

#### The Symbols

The symbols used on the meter and in this manual are explained in Table A.

#### Table A. The Symbols

| A  | Risk of electric shock                                 |  |
|----|--------------------------------------------------------|--|
| ⚠  | See instruction card                                   |  |
|    | DC measurement                                         |  |
|    | Equipment protected by double or reinforced insulation |  |
| ĒŦ | Battery                                                |  |
| ÷  | Earth                                                  |  |
| ~  | AC measurement                                         |  |
| CE | Conforms to EU directives                              |  |

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use the product only as specified.

CAUTION: These statements identify conditions or practices that could result in damage to the equipment or other property.

**WARNING:** These statements identify conditions or practices that could result in personal injury or loss of life.

#### **Specific precautions**

Use proper fuse. To avoid fire hazard, use only the fuse type and rating specified for this product.

**Do not operate without covers.** To avoid personal injury, do not apply any voltage or current to the product without covers in place.

**Electric overload.** Never apply a voltage to a connector on the product that is outside the range specified for that connector.

**Avoid electric shock.** To avoid injury or loss of life, do not connect or disconnect probes or test leads while they are connected to a voltage source.

**Do not operate in wet/damp conditions.** To avoid electric shock, do not operate this product in wet or damp conditions.

## **SPECIFICATIONS**

All specifications are warranted unless noted typical and apply to the 61-320 & 61-322 & 61-324 Stated accuracies are at 23°C±5°C at less than 80% relative humidity and without the battery indicator displayed.

| Characteristics                               | Description                                                                               |
|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| Display count                                 | 3 3/4                                                                                     |
| Numeric update rate                           | 1.5 times / sec                                                                           |
| Polarity display                              | Automatic                                                                                 |
| Overrange display                             | "OL" is display                                                                           |
| Low voltage indicator                         | E is indicated                                                                            |
| Automatic power-off time                      | Automatic backlight off = 30 minutes                                                      |
| Power source                                  | 9V×1 battery for 61-322 & 61-324;<br>1.5V×2 batteries for 61-320                          |
| Maximum input voltage                         | 1000V CAT III between V and COM                                                           |
| Maximum floating voltage                      | 1000V CAT III between any terminal and earth ground                                       |
| Maximum input current                         | 400mA between mA and COM                                                                  |
| Maximum open circuit voltage (current inputs) | 600V between mA and COM                                                                   |
| Overload protection mA connector              | 1A (600V) fast blow fuse.                                                                 |
| V connector                                   | <b>ν∼, ν==-, Ω, •</b> ≫, ♣, Ң€, Hz, μA                                                    |
| Temperature Coefficient                       | 0.2×(Spec. Accuracy) / °C, <18°C or >28°C                                                 |
| Battery Life                                  | Alkaline 9V 200 hours for 61-322 & 61-324<br>Alkaline 1.5V×2 AA size 600 hours for 61-320 |

#### **General specifications**

#### **Measurement Characteristics**

Accuracy is ±(% reading + number of digits) at 23°C ± 5°C, less than 80% R.H.

#### (1) DC Volts

| Range   | Resolution | Accuracy                  | Over Voltage<br>Protection |
|---------|------------|---------------------------|----------------------------|
| 400.0mV | 100µV      |                           |                            |
| 4.000V  | 1mV        |                           |                            |
| 40.00V  | 10mV       | ±(0.5% reading + 2 digit) | 1000V rms                  |
| 400.0V  | 100mV      |                           |                            |
| 1000V   | 1V         |                           |                            |

Input Impedance:  $10M\Omega$  (over  $1000M\Omega$  in 400mV range).

#### (2) AC Volts

| Range   | Resolution | Accuracy                                         | Over Voltage<br>Protection |
|---------|------------|--------------------------------------------------|----------------------------|
| 400.0mV | 100µV      | Unspecified                                      |                            |
| 4.000V  | 1mV        | $\pm(1.3\%$ reading + 5 digits) * <sup>1</sup>   |                            |
| 40.00V  | 10mV       |                                                  | 1000V rms                  |
| 400.0V  | 100mV      | $\pm$ (1.2% reading + 5 digits) * <sup>2,3</sup> |                            |
| 750V    | 1V         |                                                  |                            |

Input Impedance:  $10M\Omega$  // less than 100pF.

\*<sup>1</sup> Frequency Response: 50Hz ~ 300Hz

\*<sup>2</sup> Frequency Response: 50Hz ~ 500Hz

#### CMRR / NMRR: (Common Mode Rejection Ratio)

#### (Normal Mode Rejection Ratio)

 $V_{AC}$ : CMRR > 60dB at DC, 50Hz / 60Hz

 $V_{DC}$ : CMRR > 100dB at DC, 50Hz / 60Hz

NMRR > 50dB at DC, 50Hz / 60Hz

AC Conversion Type: 61-320: Average sensing rms indication calibrated to the sine wave input.

61-322 / 61-324: AC conversions are ac-coupled, true rms responding,

calibrated to the sine wave input.

\*<sup>3</sup> 61-322 / 61-324 The specified accuracy is for sine wave at full scale and non-sine wave at half scale with crest factor up to 2.

Crest Factor: C.F. = Peak/RMS

+1.5% addition error for C.F. from 1.4 to 3

+3.0% addition error for C.F. from 3 to 4.

#### (3) DC Current

| Range    | Resolution | Accuracy                    | Voltage Burden |
|----------|------------|-----------------------------|----------------|
| 400.0µA  | 0.1µA      |                             | 5mV            |
| 4000µA   | 1µA        | 1/1.00/ reading 1.2 digita) | 2V max.        |
| 40.00mA* | 10µA       | ±(1.0% reading + 2 digits)  | 5mV            |
| 400.0mA* | 0.1mA      |                             | 2V max.        |

Overload Protection: mA Input: 1A (600V) fast blow fuse. (61-322 / 61-324)

µA Input : 600V rms.

\* For 61-322 / 61-324 only.

#### (4) AC Current (61-322 / 61-324)

| Range   | Resolution | Accuracy                                  | Voltage Burden |
|---------|------------|-------------------------------------------|----------------|
| 40.00mA | 10µA       | ±(1.5% reading + 5 digits) * <sup>1</sup> | 5mV            |
| 400.0mA | 100µA      | 50Hz ~ 500Hz                              | 2V max.        |

**Overload Protection:** mA Input : 1A (600V) fast blow fuse.

AC Conversion Type: AC conversions are ac-coupled, true rms responding, calibrated to the sine wave input.

\*<sup>1</sup> The specified accuracy is for sine wave at full scale and non-sine wave at half scale with crest factor up to 2.

#### (5) Resistance

| Range                  | Resolution | Accuracy                             | Over Voltage<br>Protection |
|------------------------|------------|--------------------------------------|----------------------------|
| 400.0Ω * <sup>1</sup>  | 0.1Ω       | ±(1.0% reading + 5 digits)           |                            |
| 4.000ΚΩ                | 1Ω         |                                      |                            |
| 40.00ΚΩ                | 10Ω        | $\pm (0.70)$ reading $\pm 2$ digita) | 600V rms                   |
| 400.0ΚΩ                | 100Ω       | ±(0.7% reading + 2 digits)           | 0000 1115                  |
| 4.000ΜΩ                | 1ΚΩ        |                                      |                            |
| 40.00MΩ * <sup>2</sup> | 10ΚΩ       | ±(1.5% reading + 5 digits)           |                            |

**Open circuit Voltage:** -1.3V approx.

\*<sup>1</sup> < 5 digit of reading rolling.

 $*^2 < 2\%$  of reading rolling.

#### (6) Diode Check and Continuity

| Ran | ge | Resolution | Accuracy                     | Max. Test<br>Current | Max. Open<br>Circuit Voltage |
|-----|----|------------|------------------------------|----------------------|------------------------------|
| →   | F  | 1mV        | ±(1.5% reading + 5 digits) * | 1.5mA                | 3V                           |

#### \* For 0.4V ~ 0.8V

Overload Protection: 600V rms.

**Continuity:** Built-in buzzer sounds when resistance is less than approximately  $450\Omega$  Response time is approximately 100 msec.

#### (7) Frequency

| Range    | Resolution | Sensitivity | Accuracy                         | Overload<br>Protection |
|----------|------------|-------------|----------------------------------|------------------------|
| 4.000KHz | 1Hz        |             |                                  |                        |
| 40.00KHz | 10Hz       | 150mV rms * | _                                |                        |
| 400.0KHz | 100Hz      |             | Frequency:<br>(± 0.1% + 1 digit) | 600V rms               |
| 4.000MHz | 1KHz       | 300mV rms   | (± 0.170 + 1 digit)              |                        |
| 40.00MHz | 10KHz      | 1V rms      |                                  |                        |

\* Less than 20Hz, the sensitivity is 1.5V rms.

#### (8) Capacitance

| Range                  | Resolution | Accuracy                                 | Over Voltage<br>Protection |
|------------------------|------------|------------------------------------------|----------------------------|
| 4.000nF                | 1pF        | 1/20/ reading 1 10 digita)               |                            |
| 40.00nF                | 10pF       | ±(3% reading + 10 digits)                |                            |
| 400.0nF                | 100pF      |                                          |                            |
| 4.000µF                | 1nF        | 1/20/ reading 1.9 digita)                | 600\/ <i>r</i> mo          |
| 40.00µF                | 10nF       | ±(2% reading + 8 digits)                 | 600V rms                   |
| 400.0µF                | 100nF      |                                          |                            |
| 4.000mF * <sup>1</sup> | 1µF        | $1/(5)/(roading + 20)$ digita) $*^2$     |                            |
| 40.00mF * <sup>1</sup> | 10µF       | ±(5% reading + 20 digits) * <sup>2</sup> |                            |

\*<sup>1</sup> In this range the reading maybe rolling within specification.

\*<sup>2</sup> Specify reading < half full scale of range.

## (9) Auto Power Off (APO)

If the meter idles for more than 30 minutes, the meter automatically turns the power off.

#### (10) Peak Hold

| Function        | Range                  | Accuracy                                          |  |
|-----------------|------------------------|---------------------------------------------------|--|
|                 | 400mV                  | Unspecified                                       |  |
|                 | 4.000V                 | ±(1.5% reading + 300 digits) * <sup>2</sup>       |  |
| ACV             | 40.00V                 |                                                   |  |
|                 | 400.0V                 | ±(1.5% reading + 60 digits)                       |  |
|                 | 750V                   |                                                   |  |
| ACA             | 40.00mA * <sup>3</sup> | $\pm (2\% \text{ reading} \pm 60 \text{ digita})$ |  |
| (61-322/61-324) | 400.0mA * <sup>3</sup> | ±(3% reading + 60 digits)                         |  |

#### Note:

<sup>1</sup> With zero calibrated before measurement.

\*<sup>2</sup> 4V range specifies readings above 10% of full scale of range.

\*<sup>3</sup> Amp range specify reading <90% of full scale of range.

<sup>4</sup> In the noise generating field, may affect intervals.

## Physical and Environmental Characteristics

| Characteristics               | Description                                                                      |
|-------------------------------|----------------------------------------------------------------------------------|
| Dimensions (H×W×D)            | 158mm×76mm×38mm<br>164mm×82mm×44mm (with holster)                                |
| Weight (with battery)         | 0.3Kg                                                                            |
| With holster                  | 0.5Kg                                                                            |
| Environmental characteristics | Description                                                                      |
| Temperature operating         | 0 to +50°C                                                                       |
| Non-Operating                 | -20 to +60°C                                                                     |
| Humidity (operating)          | <80% R.H.                                                                        |
| Altitude Operating            | 2,000M (6560 ft.)                                                                |
| Non-Operating                 | 12,300M (40354 ft.)                                                              |
| Vibration & shock Operating   | MIL-T-28800E TYPE II Class 5<br>2.66gRMS, 5 to 500Hz, 3axes<br>(10 minutes each) |
| Indoor Use                    | Indoor Use                                                                       |

#### Certifications and compliances

| Safety                          | Designed to ICE 1010-1, UL3111-1 and CSA specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| log ut roting                   | V / Ω/μA: Category III 1000 Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Input rating                    | V / Ω/mA: Category III 600 Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | CAT III: Distribution level mains, fixed installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Over voltage category           | CAT II: Local level mains, appliances, portable equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Over voltage category           | CAT I: Signal level, special equipment or parts of equipment, telecommunication, electronics.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Pollution Degree 2              | Do not operate in environments where conductive Pollutants may be present.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| EC Declaration<br>of Conformity | Meets the intent of Directive 89/336/EEC for Electromagnetic<br>Compatibility and Low Voltage Directive 73/23/EEC for product<br>safety. Compliance was demonstrated to the following specifica-<br>tions as listed in the official Journal of the European Communities:<br>En 55011 Class A: Radiated and Conducted<br>Emissions.<br>En 50082-1 Immunity: IEC 801-2 Electrostatic Discharge<br>IEC 801-3 RF Radiated<br>En 61010-1 Safety requirements for electrical equipment for<br>measurement, control, and laboratory use. |  |

## **Required Equipment**

Required equipment is listed in Table B. If the recommended models are not available, equipment with equivalent specifications may be used.

Repairs or servicing should be performed only by qualified personnel.

| Table | Β. | Required  | d Equipment |
|-------|----|-----------|-------------|
| TUNIC | Ξ. | ricquirca |             |

| Equipment  | Required Characteristics                           | Recommended Model     |
|------------|----------------------------------------------------|-----------------------|
| Calibrator | AC Voltage Range: 0 ~ 750V AC                      | Fluke 5500 or Wavetek |
|            | Accuracy: ±0.07% (Basic)                           | 9100 Calibrator or    |
|            | Frequency Range: 40 ~ 1KHz                         | equipment             |
|            | Accuracy: ±2%                                      |                       |
|            | DC Voltage Range: 0 ~ 1000V DC                     |                       |
|            | Accuracy: ±0.006% (Basic)                          |                       |
|            | Current Range: 0 ~ 10A                             |                       |
|            | Accuracy: AC (40Hz to 1KHz): ±0.08% (Basic)        |                       |
|            | DC: ±0.02% (Basic)                                 |                       |
|            | Frequency Source: 5.00Hz ~ 100MHz                  |                       |
|            | Accuracy: ±0.001%                                  |                       |
|            | Amplitude: 0.5V p-p ~ 1.0V p-p (square wave)       |                       |
|            | Accuracy: ±5%                                      |                       |
|            | <b>Resistance Range:</b> $1\Omega \sim 100M\Omega$ |                       |
|            | Accuracy: ±0.03% (Basic)                           |                       |
|            | Capacitance Range: 1pF ~ 10mF                      |                       |
|            | Accuracy: ±0.10% (Basic)                           |                       |

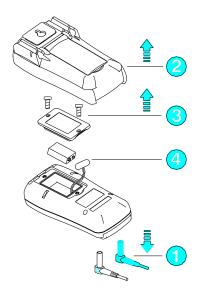
#### Basic Maintenance

## **A**Warning

To avoid shock, remove the test leads and any input signals before opening the case or replacing the battery or fuses.

#### Opening the Meter Case

## **≜**Caution


To avoid unintentional shock circuit, always place the uncovered meter assembly on a protective surface. When the case of the meter is open, circuit connections are exposed.

To open the meter case, refer to Figure 1 and do the following:

- 1. Disconnect test leads from any live source, turn the rotary switch to OFF, and remove the test leads from front terminals.
- 2. Remove the battery door by using a flat-blade screwdriver to turn the battery door screws turn counter-clockwise.
- 3. The case bottom is secured to the case top by four screws and two internal snaps (at the LCD end). Using a Phillips-head screwdriver, remove the four screws.

#### **Replacing the Battery**

The meter is powered  $1.5V \ge 2$  batteries for 61-320 and a single 9V battery for 61-322 / 61-324. To replace the battery, refer to Figure 1.





#### **Testing Fuses**

To test the internal fuses of the meter.

- 1. Turn the rotary selector switch to the  $\ \Omega$  position.
- 2. To test FS1, plug a test lead into V $\Omega$ Hz input terminal, and touch the probe to the mA input terminal. The display should indicate between 0.0 to 0.2  $\Omega$ . FS1 (1A 600V) (Bussmann BBS-1 recommended). If display reads higher than 0.2  $\Omega$ , replace the fuse.

#### **Fuse Replacement**

Refer to the following Figure 2 to replace fuse:

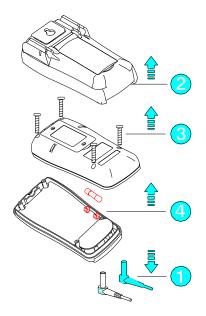



Figure 2

Use only a fuse with the amperage, interrupt, voltage, and speed rating specified. Fuse rating: 1A, 600V, Fast blow

#### **Replacing Fuses**

## AWrning

To avoid electrical shock, remove the test leads and any input signals before replacing the battery or fuses. To prevent damage or injury, INSTALL ONLY quick acting fuses with the following Amp/Volt current interrupt rating:

FS1 Fuse: 1A, 600V, FAST BLO. Minimum interrupt rating 10,000A

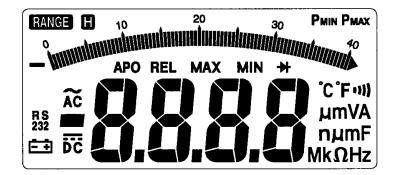
#### Cleaning

## ▲Warning

To avoid electrical shock or damage to the meter, never allow water inside the case. To avoid damaging the meter's housing, never apply solvents to the meter.

#### **Performance Tests**

The following performance tests verify the complete operability of the meter and check the accuracy of each meter function against the meter's specifications.


Accuracy specifications are valid for a period of one year after calibration, when measured at an operating temperature of 18°C to 28°C and a maximum of 80% relative humidity.

To perform the following tests, it is not necessary to open the case. No adjustments are necessary, merely make the required connections, apply the designated inputs, and determine if the reading on the meter display falls within the acceptable range indicated.

If the meter fails any of these tests, it needs calibration adjustment or repair.

#### Testing the Display

Press "HOLD" key while turning the meter on from the "OFF" position to hold the display in the Display Test Mode. Compare the display with the example in Figure 3. Turn off the meter to escape the test mode.



LCD Graphics 61-324

Figure 3 Display Test

#### Testing the Voltage Function

To verify accuracy in the AC and DC voltage ranges, do the following:

- 1. Turn the rotary switch to "V $\sim$ " position.
- 2. Connect the calibrator to the  $V\Omega$  and COM inputs on the meter.
- 3. Set the calibrator for the voltage and frequency from step 1 to 8 in Table 1.
- 4. Compare the reading on the meter display with the display reading shown in Table 1.
- 5. If the display reading falls outside of the range shown in Table 1, the meter does not meet specification.

| Step | Input  | Frequency | Reading        |
|------|--------|-----------|----------------|
| 1    | 3.000V | 50Hz      | 2.956 to 3.044 |
| 2    | 3.000V | 500Hz     | 2.956 to 3.044 |
| 3    | 30.00V | 50Hz      | 29.59 to 30.41 |
| 4    | 30.00V | 500Hz     | 29.59 to 30.41 |
| 5    | 300.0V | 50Hz      | 295.9 to 304.1 |
| 6    | 300.0V | 500Hz     | 295.9 to 304.1 |
| 7    | 700V   | 50Hz      | 687 to 713     |
| 8    | 700V   | 500Hz     | 687 to 713     |

#### Table 1 AC Voltage Test:

- 6. Turn the rotary switch to "**V**----" position.
- 7. Set the calibrator for the voltage from step 1 to 6 in Table 2.
- 8. Compare the reading on the meter display with the display reading shown in Table 2.
- 9. If the display reading falls outside of the range shown in Table 2, the meter does not meet specification.

#### Table 2 DC Voltage Test:

| Step | Input    | Reading          |
|------|----------|------------------|
| 1    | 300.0mV  | 298.3 to 301.7   |
| 2    | -300.0mV | -298.3 to -301.7 |
| 3    | 3.000V   | 2.983 to 3.017   |
| 4    | 30.00V   | 29.83 to 30.17   |
| 5    | 300.0V   | 298.3 to 301.7   |
| 6    | 900V     | 894 to 906       |

#### **Testing the Resistance Function**

To verify the accuracy of the resistance function, do the following:

- 1. Connect the calibrator to  $V\Omega Hz$  and COM on the meter.
- 2. Turn the rotary switch to  $\pmb{\Omega}.$
- 3. Apply the inputs for step 1 to 6 in Table 3.
- 4. Compare the meter display readings to the display readings in Table 3.
- 5. If the display reading falls outside of the range shown in Table 3, the meter does not meet specification.

#### Table 3 $\Omega$ Resistance Test:

| Step | Source  | Reading        |
|------|---------|----------------|
| 1    | 300.0Ω  | 296.5 to 303.5 |
| 2    | 3.000ΚΩ | 2.977 to 3.023 |
| 3    | 30.00KΩ | 29.77 to 30.23 |
| 4    | 300.0KΩ | 297.7 to 302.3 |
| 5    | 3.000ΜΩ | 2.977 to 3.023 |
| 6    | 30.00MΩ | 29.50 to 30.50 |

Lead resistance on the  $400\Omega$  range is not included in error.

#### Testing the Capacitance Function

The meter measures capacitance by charging the capacitor with a known direct current, measuring the resultant voltage, and calculating the capacitance. If the same capacitance is measured on an impedance bridge, a different reading may result. This variance is likely to be greater at higher frequencies.

To verify the accuracy of the capacitance measuring function, do the following:

- 1. Apply the capacitor to the  $V\Omega Hz$  and COM inputs on the meter. For steps 1 to 7 in Table 4.
- 2. Turn the rotary switch +**E**.
- 3. Compare the reading on the meter display to the reading in Table 4.
  - **Note :** The meter selects the proper range automatically. Each measurement takes about one second per range, 5mF takes about 4.5 seconds.
- 4. If the display reading falls outside of the range shown in Table 4, the meter does not meet specification.

Table 4 Capacitance Test:

| Step | Source  | Reading        |
|------|---------|----------------|
| 1    | 3.000nF | 2.900 to 3.100 |
| 2    | 30.00nF | 29.00 to 31.00 |
| 3    | 300.0nF | 293.2 to 306.8 |
| 4    | 3.000µF | 2.932 to 3.068 |
| 5    | 30.00µF | 29.32 to 30.68 |
| 6    | 300.0µF | 293.2 to 306.8 |
| 7    | 3.000mF | 2.830 to 3.170 |

#### **Checking the Diode Test / Continuity Function**

To check the diode test function, do the following:

- 1. Connect the calibrator to the  $V\Omega Hz$  and COM inputs on the meter.
- 2. Turn the rotary switch to + .
- 3. Apply .500V DC. The meter display should read approximately .500V dc.
- 4. Apply a 50  $\Omega$   $\,$  resistor to meter. The built-in beeper turns on.

#### Testing the milliamp (mA) Function (for 61-322 and 61-324)

To verify the accuracy of AC current measurement functions, do the following:

1.Connect the calibrator to the **mA** and **COM** inputs on the meter.

- 2. Turn the rotary switch to **mA**
- 3. Apply the inputs for steps 1 to 4 in Table 5.
- 4. For each input, compare the reading on the meter display to the reading for your meter in Table 5.
- 5. If the display reading falls outside of the range shown in Table 5, the meter does not meet specification.

| Table 5 AC mA Test: |  |
|---------------------|--|
|---------------------|--|

| Step | Source  | Frequency | Reading        |
|------|---------|-----------|----------------|
| 1    | 30.00mA | 50Hz      | 29.50 to 30.50 |
| 2    | 30.00mA | 500Hz     | 29.50 to 30.50 |
| 3    | 300.0mA | 50Hz      | 295.0 to 305.0 |
| 4    | 300.0mA | 500Hz     | 295.0 to 305.0 |

- 6. Turn the rotary switch to **mA**----.
- 7. Set the calibration for the voltage from step 1 to 2 in Table 6.
- 8. For each input, compare the reading on the meter display to the reading in Table 6.
- 9. If the display reading falls outside of the range shown in Table 6, the meter does not meet specification.

#### Table 6 DC mA Test:

| Step | Source  | Reading        |
|------|---------|----------------|
| 1    | 30.00mA | 29.68 to 30.32 |
| 2    | 300.0mA | 296.8 to 303.2 |

#### Testing the microamp Function

- 1. Turn the rotary switch to  $\mu A$  ----.
- 3. Apply the inputs for steps 1 to 2 in Table 7.
- 4. For each input, compare the reading on the meter display to the reading for your meter in Table 7.
- 5. If the display reading falls outside of the range shown in Table 7, the meter does not meet specification.

#### Table 7 DC microamp Test:

| Step | Source  | Reading        |
|------|---------|----------------|
| 1    | 300.0µA | 296.8 to 303.2 |
| 2    | 3000µA  | 2968 to 3032   |

#### **Testing the Frequency Function**

To verify the accuracy of the meter's frequency function, do the following:

- 1. Connect the calibrator to the  $V\Omega$  and COM inputs on the meter.
  - **Note:** The accuracy of the calibrator's frequency function must be appropriate for the specified accuracy of the meter.
- 2. Set the rotary switch to Hz.
- 3. Set the function generator for the square wave voltage and frequency for steps 1 to 5 of Table 8.
- 4. Compare the reading on the meter display with the display reading shown in Table 8.
- 5. If the display reading falls outside of the range shown in Table 8, the meter does not meet specification.

Table 8 Frequency Test:

| Step | Source   | Level     | Reading        |
|------|----------|-----------|----------------|
| 1    | 3.000KHz | 150mV rms | 2.996 to 3.004 |
| 2    | 30.00KHz | 150mV rms | 29.96 to 30.04 |
| 3    | 300.0KHz | 150mV rms | 299.6 to 300.4 |
| 4    | 3.000MHz | 300mV rms | 2.996 to 3.004 |
| 5    | 30.00MHz | 1V rms    | 29.96 to 30.04 |

#### Calibration Procedure

Recalibrate your meter:

- It is recommended that the multimeter be calibrated once each year.
- 1. Perform calibration at an ambient temperature of 23°C±2°C and a relative humidity of 73% or less.
- 2. Disconnect the test leads and turn the meter off. Remove the test leads from the front terminals.
- 3. Position the meter face down. Remove the three screws from the case bottom.
- 4. Lift the end of the case bottom until it gently unsnaps from the case top at the end nearest the LCD.
- 5. Lift the circuit board from the case top. Do not remove the screws from the circuit board.

#### (A) DCV Calibration (Adjust VR1) (refer to Figure 4 & 5)

- 1. Set the circuit board rotary switch "arrow" to the "V" position of circuit board.
- Set the output of DC calibrator for 300.0V±0.02% and connect to VΩHz and COM input terminals on meter.
- 3. Using a small flat-tipped screwdriver adjust the potentiometer **VR1** until the display reads 299.0 or 300.1.
- 4. Disconnect the DC calibrator from the meter.

#### (B) ACV Calibration (Adjust VR2) (refer to Figure 4 & 5)

- 1. Set the circuit board rotary switch "arrow" to the "V" position of circuit board.
- 2. Set the output of AC calibration for 300Vrms 50Hz (61-320) 300Vrms 50Hz (61-322/61-324) and connect to **VΩHz** and **COM** input terminals on meter.
- 3. Using a small flat-tipped screwdriver adjust the potentiometer **VR2** until the display reads 299.9 or 300.1 (61-320) / 299.9 or 300.1 (61-322/61-324).

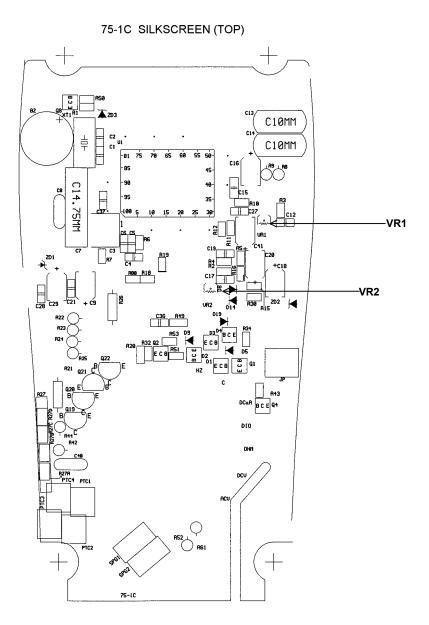
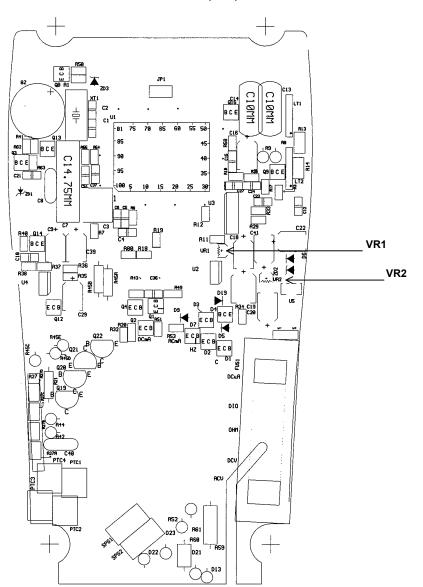




Figure 4 61-320 Calibration Adjustment Points



#### 324-5 SILKSCREEN (TOP)

Figure 5 61-322/324 Calibration Adjustment Points

Page 19