»
2 Sun

microsystems

Application Programming Notes

Java Card™ 3 Platform

Classic Edition

Sun Microsystems, Inc.
WWWw.sun.com

July 2009

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
Earticular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
ttp:/ /www.sun.com/ patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Java Card, Mozilla, Netscape, Javadoc, JDK, JVM, NetBeans and Servlet are trademarks or
registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries.

UNIXis a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
The Adobe logo is a trademark or registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Ftats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I'adresse http:/ /www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

Droits du gouvernement des Etats-Unis - Logiciel Commercial. Les droits des utilisateur du gouvernement des Etats-Unis sont soumis aux
termes de Ia licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des éléments développés par des tiers.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Java Card, Mozilla, Netscape, Javadoc, JDK, JVM, NetBeans et Servlet sont des marques de
fabrique ou des marques déposées enregistrées de Sun Microsystems, Inc. ou ses filiales aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.
Le logo Adobe est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font 'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiére de
contrdle des exportations et peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire marjtime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, Ia liste de personnes qui
font objet d'un orgre dene Ipas participer, d'une fagon directe ou indirecte, aux exportations de des produits ou des services qui sont regi par la
legislation americaine sur le contréle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION
PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

& 9

Adobe PostScript

Contents

Preface vii

Using Object, Package and Applet Deletion 1-1

1.1

1.2

Object Deletion Mechanism 1-1

1.1.1 Requesting the Object Deletion Mechanism 1-2
1.1.2 Object Deletion Mechanism Usage Guidelines 1-2
Package and Applet Deletion 1-3

1.2.1 Developing Removable Packages 1-3

1.2.2 Writing Removable Applets 1-4

1.2.2.1 Using the AppletEvent .uninstall Method 1-4

Working with Logical Channels 2-1

2.1

2.2

2.3

Applets and Logical Channels 2-2

2.1.1 Non-MultiSelectable Applets 2-2

212 Interoperability 2-2

Understanding the MultiSelectable Interface 2-3

221 Selection for MultiSelectable Applets 2-3
2.2.2 Deselection for MultiSelectable Applets 2-4
Writing Applets For Concurrent Logical Channels 2-4
2.3.1 MultiSelectable Applet Example 2-5

23.1.1 Handling Channel Information on APDU Commands
2-7

2.3.2 Writing ISO 7816-4:2005 Compliant Applets 2-11

2321 ISO 7816-4:2005 Compliant Applet Example 2-11
2.3.3 Applet Firewall Operation Requirements 2-13

2.3.3.1 Working with Non-MultiSelectable Applets 2-13

234 IS0 7816-4:2005 Specific APDU Commands for Logical Channel
Management 2-13

2.34.1 MANAGE CHANNEL OPEN 2-14
2.34.2 MANAGE CHANNEL CLOSE 2-15

2343 SELECT FILE 2-16

3. Developing RMI Applications for the Java Card Platform 3-1
3.1 Developing an RMI Applet for the Java Card 3 Platform 3-1
3.1.1 Generating Stubs 3-2
3.1.2 Running a Java Card RMI Applet 3-2
3.1.3 Running the Java Card RMI Client Program 3-3
3.2 Basic Example 3-3
3.21 Main Program 3-3
3.22 Building an Applet 3-7
323 Writing a Client 3-9
324 Card Terminal Interaction 3-13
3.3 Adding Security 3-14
3.3.1 Implementing a Security Service 3-18
3.3.2 Building an Applet 3-19
3.3.3 Writing a Client 3-21

4. Using Extended APDU 4-1
4.1 Extended APDU Nominal Cases 4-1
4.2 Extended APDU Format 4-2

iv Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

4.3 Extended APDU Limits 4-3
431 javacardx.framework.ExtendedLength Interface 4-3
4.3.2 Extensions To javacard. framework.APDU Class 4-4

44 Sending and Receiving Extended APDU Commands 44
Glossary Glossary-1

Index Index-1

Contents

v

vi Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

Preface

This book contains tips and guidelines for developers of Classic Java Card™ applets
and for developers of vendor-specific frameworks. This book covers several topics
that are substantially different from programming models found in earlier versions
of the Java Card platform and is not meant to comprehensively introduce or cover
general programming topics.

The Java Card 3 Platform currently includes releases 3.0 and 3.0.1. The Java Card 3
Platform consists of two editions, both of which are backward compatible with
previous versions and share key security features. This book is strictly for use with
the Classic APIs, which appear in both editions.

m Classic Edition - Targets more resource-constrained devices that support applet-
based applications and contains only Classic APIs. The Classic Edition is based on
an evolution of the Java Card Platform, Version 2.2.2.

m Connected Edition - Features a significantly enhanced runtime environment and a
new virtual machine. It includes new network-oriented features, such as support
for web applications, including the Java™ Servlet APIs. The Connected Edition
supports the Classic APIs, but also supports applets with extended and advanced
capabilities.

Java Card™ technology combines a subset of the Java™ programming language with
a runtime environment optimized for smart cards and similar small-memory

embedded devices. The goal of Java Card technology is to bring many of the benefits
of the Java programming language to the resource-constrained world of smart cards.

The Java Card API is compatible with international standards such as ISO7816 and
industry-specific standards such as Europay, Master Card, Visa (EMV).

vii

Who Should Use This Book

This book is for applet developers using the Application Programming Interface for the
Java Card Platform, Version 3.0.1, Classic Edition to implement applet management,
multiselectable applets, logical channels, Remote Method Invocation (RMI), and
extended APDUs for the Java Card platform.

This book is also for developers who are considering creating a vendor-specific
framework based on version 3.0.1 of the Java Card technology specifications, Classic
Edition.

Before You Read This Book

Before reading this guide, become familiar with the Java programming language,
object-oriented design, the Java Card technology specifications, and smart card
technology. A good resource for becoming familiar with Java and Java Card
technology is the Sun Microsystems, Inc. web site, located at
http://java.sun.com.

You must also be familiar with the development tools released with version 3.0.1 of
the Java Card platform. For information on these tools, see the Development Kit User’s
Guide, Java Card Platform, Version 3.0.1, Classic Edition.

How This Document Is Organized

Chapter 1 describes how to perform object deletion, applet deletion, and package
deletion on the Java Card platform.

Chapter 2 describes how to create and use applets that can be selected for use on
multiple channels on the Java Card platform.

Chapter 3 describes how to develop applications that use the optional RMI APIs on
the Java Card platform.

Chapter 4 describes how to handle extended APDU functionality on the Java Card
platform.

viii Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

http://java.sun.com
http://java.sun.com

Glossary defines terms used in the Java Card 3 Platform, Classic Edition.

Typographic Conventions

Typeface Meaning Examples

AaBbCcl123 The names of commands, files, Edit your. login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.

AaBbCc123 What you type, when contrasted % su

with on-screen computer output pzssword:

AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.

words to be emphasized. These are called class options.
Replace command-line variables

- You must be superuser to do this.
with real names or values.

To delete a file, type rm filename.

Note — Characters display differently depending on browser settings. If characters
do not display correctly, change the character encoding in your browser to Unicode
UTEF-8.

Related Documentation

References to various documents or products are made in this manual. Have the
following documents available:

Development Kit User’s Guide for the Java Card Platform, Version 3.0.1, Classic Edition
Application Programming Interface for the Java Card Platform, Version 3.0.1, Classic
Edition

Virtual Machine Specification for the Java Card Platform, Version 3.0.1, Classic Edition
Runtime Environment Specification for the Java Card Platform, Version 3.0.1, Classic
Edition

Java Card Technology for Smart Cards by Zhiqun Chen (Addison-Wesley, 2000).

Off-Card Verifier for the Java Card™ Platform, Version 2.2.1, White Paper (Sun
Microsystems, Inc., 2003) , Sun Microsystems, Inc.

Preface ix

m The Java Programming Language (Java Series), Second Edition by Ken Arnold and
James Gosling (Addison-Wesley, 1998).

m The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999).

m The Java Class Libraries: An Annotated Reference, Second Edition (Java Series) by
Patrick Chan, Rosanna Lee and Doug Kramer (Addison-Wesley, 1999).

m SO 7816 Specification Parts 1-6.

You can download the Java Card specifications bundle separately from the Sun
Microsystems’ web site at http://java.sun.com/products/javacard.

Accessing Sun Documentation Online

The Java Developer Connection™ program web site enables you to access Java
platform technical documentation on the web at
http://developer.java.sun.com/developer/infodocs.

Documentation, Support, and Training

Sun Function URL

Documentation http://www.sun.com/documentation/
Support http://www.sun.com/support/
Training http://www.sun.com/training/

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

http://java.sun.com/products/javacard
http://java.sun.com/reference/
http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/
http://developer.java.sun.com/developer/infodocs
http://java.sun.com/products/javacard

Third-Party Web Sites

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments

Sun Microsystems is interested in improving its documentation and welcomes your
comments and suggestions. You can submit your comments to
http://java.sun.com/docs/forms/sendusmail .html.

Please include the title of your document with your feedback:

Application Programming Notes, Java Card 3 Platform, Classic Edition

Preface xi

http://java.sun.com/docs/forms/sendusmail.html

Xii Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

CHAPTER 1

Using Object, Package and Applet
Deletion

This chapter describes how to use the object deletion mechanism and the package
and applet deletion features of the Java Card 3 Platform, Classic Edition.

1.1

Object Deletion Mechanism

The object deletion mechanism on the Java Card 3 platform, Connected Edition,

reclaims memory that is being used by “unreachable” objects. For an object to be
unreachable, neither a static nor an object field can point to an object. An applet

object is reachable until successfully deleted.

The object deletion mechanism on the Java Card 3 platform is not like garbage
collection in standard Java technology applications due to space and time constraints.
The amount of available RAM on the card is limited. In addition, because object
deletion mechanism is applied to objects stored in persistent memory, it must be
used sparingly. EEPROM writes are very time-consuming operations and only a
limited number of writes can be performed on a card. Due to these limitations, the
object deletion mechanism in Java Card technology is not automatic. It is performed
only when an applet requests it. Use the object deletion mechanism sparingly and
only when other Java Card technology-based facilities are cumbersome or
inadequate.

The object deletion mechanism on the Java Card platform is not meant to change the
programming style in which programs for the Java Card platform are written.

11

1.1.1

1.1.2

1-2

Requesting the Object Deletion Mechanism

Only the runtime environment for the Java Card platform (Java Card Runtime
Environment or Java Card RE) can start the object deletion mechanism, although any
applet on the card can request it. The applet requests the object deletion mechanism
with a call to the JCSystem.requestObjectDeletion () method.

For example, the following method updates the buffer capacity to the given value. If
it is not empty, the method creates a new buffer and removes the old one by
requesting the object deletion mechanism.

/**

* The following method updates the buffer size by removing
* the old buffer object from the memory by requesting

* object deletion and creates a new one with the

* required size.

*/
void updateBuffer (byte requiredSize) {
try{
if (buffer !'= null && buffer.length == requiredSize) {
//we already have a buffer of required size
return;

}
JCSystem.beginTransaction() ;
bytel[] oldBuffer = buffer;
buffer = new bytel[requiredSize];
if (oldBuffer != null)
JCSystem.requestObjectDeletion () ;
JCSystem. commitTransaction () ;
}catch (Exception e) {
JCSystem.abortTransaction() ;
}

Object Deletion Mechanism Usage Guidelines

Do not confuse the object deletion mechanism on the Java Card platform with
garbage collection in the standard Java programming language. The following
guidelines describe the possible scenarios when the object deletion mechanism might
or might not be used:

m When throwing exceptions, avoid creating new exception objects and relying on
the object deletion mechanism to perform cleanup. Try to use existing exception
objects.

m Similarly, try not to create objects in method or block scope. This is acceptable in
standard Java technology applications, but is an incorrect use of the object deletion
mechanism in Java Card technology-based applications.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

m Use the object deletion mechanism when a large object, such as a certificate or key,
must be replaced with a new one. In this case, instead of updating the old object in
a transaction, create a new object and update its pointer within the transaction.
Then, use the object deletion mechanism to remove the old object.

m Use the object deletion mechanism when object resizing is required, as shown in
the example in “Requesting the Object Deletion Mechanism” on page 2.

1.2

1.2.1

Package and Applet Deletion

The Java Card 3 platform provides the ability to delete package and applet instances
from the card’s memory. Requests for deletion are sent in the form of an APDU from
the terminal to the smart card. Requests to delete an applet or package cannot be sent
from an applet on the card.

In the Java Card 3 platform, the installer deletes packages and applets. Once the
installer is selected, it can receive requests from the terminal to delete packages and
applets. The following sections describe programming guidelines that will help your
packages and applets to be more easily removed.

Developing Removable Packages

Package deletion refers to removing all of a package’s code from the card’s memory.
To be eligible for deletion, nothing on the card can have dependencies on the
package to be deleted, including the following;:

m Packages that are dependent on the package to be deleted

m Applet instances or objects that either belong to the package, or that belong to a
package that depends on the package to be deleted

Package deletion will not succeed if any of the following conditions exist:

m A reachable instance of a class belonging to the package exists on the card.

m Another package on the card depends on the package.

m A reset or power failure occurs after the deletion process begins, but before it

completes.

To ensure that a package can be removed from the card easily, avoid writing and
downloading other packages that might be dependent on the package. If there are
other packages on the card that depend on this package, then you must remove all of
the dependent packages before you can remove this package from the card memory.

Chapter 1 Using Object, Package and Applet Deletion 1-3

1.2.2

1.2.2.1

1-4

Writing Removable Applets

Deleting an applet means that the applet and all of its child objects are deleted.
Applet deletion fails if any of the following conditions exist:

= Any object owned by the applet instance is referenced by an object owned by
another applet instance on the card.

= Any object owned by the applet instance is referenced from a static field in any
package on the card.

m The applet is active on the card.
If you are writing an applet that is deemed to be short lived and is to be removed

from the card after performing some operations, follow these guidelines to ensure
that the applet can be removed easily:

m Write cooperating applets if shareable objects are required. To reduce coupling
between applets, try to obtain shareable objects on a per-use basis.

m If interdependent applets are required, make sure that these applets can be deleted
simultaneously.

m Follow one of these guidelines when static reference type fields exist:

» Ensure there is a mechanism available in the applet to disassociate itself from
these fields before applet deletion is attempted.

= Ensure that the applet instance and code can be removed from the card
simultaneously (that is, by using applet and package deletion).

Using the AppletEvent.uninstall Method

When an applet needs to perform some important actions prior to deletion, it might
implement the uninstall method of the AppletEvent interface. An applet might
find it useful to implement this method for the following types of functions:

m Release resources such as shared keys and static objects

m Backup data into another applet's space

m Notify other dependent applets

Calling uninstall does not guarantee that the applet will be deleted. The applet

might not be deleted after the completion of the uninstall method in some of these
cases:

m Other applets or packages are still dependent on this applet.

m Another applet that needs to be deleted simultaneously cannot currently be
deleted.

m The package that needs to be deleted simultaneously cannot currently be deleted.

m A tear occurs before the deletion elements are processed.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

To ensure that the applets are deleted, implement the uninstall method
defensively. Write your applet with these guidelines in mind:

m The applet continues to function consistently and securely if deletion fails.
m The applet can withstand a possible tear during the execution.

m The uninstall method can be called again if deletion is reattempted.

The following example shows such an implementation:

public class TestAppl extends Applet implements AppletEvent{

// field set to true after uninstall
private boolean disableApp = false;

public void uninstall () {
if (!disablelpp) {
JCSystem.beginTransaction(); //to protect against tear
disableApp = true; //mark as uninstalled
TestApp2SI0.removeDependency () ;
JCSystem.commitTransaction() ;

public boolean select (boolean appInstAlreadyActive) {
// refuse selection if in uninstalled state
if (disableApp) return false;
return true;

Chapter 1 Using Object, Package and Applet Deletion 1-5

1-6 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

CHAPTER 2

Working with Logical Channels

The Java Card 3 Platform, Classic Edition, has the ability to support up to twenty
logical channels per active interface. This gives an ISO-7816-4:2005-compliant
terminal the ability to open as many as twenty sessions into the smart card, one
session per logical channel. Logical channels allow the concurrent execution of
multiple applications on the card, allowing a terminal to handle different tasks at the
same time.

Applets written for version 2.1 of the Java Card platform still work correctly, but
they are unaware of logical channel support. In contrast, classic applets written for
version 2.2.2 or later can take advantage of this feature.

For example, you can write an applet for the Java Card 3 platform that is capable of
handling security on one channel, while another applet attempts to access user
personal information on another channel, using security information on the first. By
following this design, it is possible to access information owned by a different applet
without having to deselect the currently selected applet that is handling session
information. Thus, you avoid losing your session-specific security data, which is
usually stored in CLEAR_ON_DESELECT RAM memory.

On dual interface cards, each interface itself can handle up to twenty independent
logical channels. Each interface has its separate pool of logical channels: channels
sharing the same number on two distinct interfaces will be treated as two
independent, separate logical channels. Therefore, a dual concurrent interface card
could, in theory, support up to forty concurrent logical channels, twenty per each
interface. Channel management commands can only affect the operation logical
channels in the interface where these commands were issued.

For more information on logical channels, their implementation and logical channel
terminology, see the Runtime Environment Specification for the Java Card Platform,
Version 3.0.1, Classic Edition.

2-1

2.1

2.1.1

2.1.2

2-2

Applets and Logical Channels

In the Java Card 3 platform, Classic Edition, you can work with applets that are
aware of multiple channels and applets that are not aware of multiple channels.

The logical channel implementation in the Java Card 3 platform preserves backward
compatibility with applets written for the Java Card platform version 2.1. It also
allows you the option of writing your applets to use the logical channel feature or of
writing the applets to work independently on any channel without using the logical
channels at all.

Non-MultiSelectable Applets

In the Java Card 3 platform, you have the option of writing applets that can operate
in a multiple channel environment, or you can write applets that do not take
advantage of this feature. Applets written for the Java Card platform that do not take
advantage of the multiple channel environment are similar to applets written for the
version 2.1 Java Card specification. An applet written for the Java Card platform that
is not designed to be aware of multiple channels cannot be selected more than once
nor can any other applet inside the package be selected concurrently on a different
channel.

You can have several non-multiselectable applets operating simultaneously on
different channels, as long as they do not interfere with each other’s data while they
are active. For example, you can open up to 4 channels and run a distinct applet on
each as long as they do not inter-operate. You can control their operation by
multiplexing commands into the APDU communications channel. If the applets are
independent of each other, then the results will be the same as if each of these
applets were running one at a time, each in a separate session.

Interoperability

If you design your applets to take advantage of multi-session functionality, they can
inter-operate from different channels and can be selected multiple times in different
channels. For example, the card might handle security information on one channel,
while data is accessed on a second channel, while the third channel takes care of data
encoding operations.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

2.2

221

Understanding the MultiSelectable
Interface

For an applet to be selectable on multiple channels at the same time, or to have
another applet belonging to the same package selected simultaneously, it must
implement the javacard. framework.MultiSelectable interface. Implementing
this interface allows the applet to be informed when it has been selected more than
once or when applets in the same package are already selected during applet
activation.

If an applet that does not implement MultiSelectable is selected more than once
on different channels, or selected concurrently with applets in the same package, an
error is returned to the terminal.

Note — If an applet in any package implements the MultiSelectable interface,
then all applets in the package must also implement the MultiSelectable
interface. It is not possible to have multiselectable and non-multiselectable applets in
the same package.

The MultiSelectable interface contains a select and a deselect method to
manage multiselectable applets.

Selection for MultiSelectable Applets

The MultiSelectable interface defines one method to be invoked instead of
Applet.select () when the applet being selected, or any other applet in its
package, is already selected on another logical channel.

public boolean MultiSelectable.select (boolean appInstAlreadySelected)

The MultiSelectable.select (boolean) method informs the applet instance if it
is selected more than once on different channels, or if another applet in the same
package is selected on another channel on any interface. The parameter
appInstAlreadySelected is true if the applet is selected on a different channel.
Itis false if it is not selected. The method can return either true or false to accept
or reject applet selection.

This method can be called as a result of issuing a SELECT FILE or MANAGE
CHANNEL OPEN APDU command to select an applet. If the applet is not selected, then
the appInstAlreadySelected parameter is passed as false to signal an applet
activation event. If the applet is subsequently selected on another channel,

Chapter 2 Working with Logical Channels 2-3

MultiSelectable.select (boolean) is called again, but this time, the
appInstAlreadySelected parameter is passed as true, to indicate that the applet
is already active.

222 Deselection for MultiSelectable Applets

The MultiSelectable interface defines one method to be invoked instead of
Applet.select () when the applet being deselected, or any other applet in its
package, is already selected on another logical channel.

public void MultiSelectable.deselect (boolean appInstStillSelected)

The MultiSelectable.deselect (boolean) method informs the applet instance
if it is being deselected on the logical channel while the same applet instance or
another applet in the same package is still active on another channel on any interface.
The parameter appInstStillSelected is true if the applet remains active on a
different channel. It is false if it is not active on another channel. A value of false
indicates that this is the last remaining active instance of the applet.

This method can be called as the result of a MANAGE CHANNEL CLOSE or SELECT
FILE APDU command. If the applet still remains active on a different channel, the
appInstStillSelected parameter is passed as true. Note that if the
MultiSelectable.deselect (boolean) method is called, it means that either an
instance of this applet or another applet from the same package remains active on
another channel, so CLEAR_ON_DESELECT transients are not cleared. Only when the
last applet instance from the entire package is deselected does a call to
Applet.deselect () result, resulting in the erasure of CLEAR_ON_DESELECT
transients.

2.3 Writing Applets For Concurrent Logical
Channels

This section describes how to write a multiselectable applet that will perform various
tasks based on whether it is selected. The code samples in this section show how to
extend the applet to implement the MultiSelectable interface and how to
implement the MultiSelectable.select (boolean) and deselect (boolean)
methods. The code samples also show how to use the Applet.select () and
deselect () methods to work with multiselectable applets.

To take advantage of multiple channel operation, an applet must implement the
javacard. framework.MultiSelectable interface. For example:

2-4 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

2.3.1

public class SampleApplet extends Applet
implements MultiSelectable {

}

The new applet needs to provide implementation for the
MultiSelectable.select (boolean) and

MultiSelectable.deselect (boolean) methods. These methods are responsible
for encoding the behavior that the applet needs during a selection event if either of
the following situations occurs:

m The applet is already selected on a different channel.
m One or more applets from the same package are also selected on different
channels.

The behavior to be encoded might include initializing applet state, accepting or
rejecting the selection request, or clearing data structures in case of deselection.

public boolean select (boolean appInstAlreadySelected) {

// Implement the logic to control applet selection
// during a multiselection situation

public void deselect (boolean appInstStillSelected) {

// Implement the logic to control applet deselection
// during a multiselection situation

Note that the applet is still required to implement the Applet.select () and
Applet.deselect () methods in addition to the MultiSelectable interface.
These methods handle applet selection and deselection behavior when a
multiselection situation does not happen.

MultiSelectable Applet Example

In this example, assume that the multiselectable applet, SampleApplet, must
initialize the following two arrays of data when it is selected:

m An array of package data to be initialized when the first applet in the package
becomes active

m An array of private applet data to be initialized upon applet instance activation

Chapter 2 Working with Logical Channels 2-5

You can make these distinctions in your code because the MultiSelectable
interface allows the applet to recognize the circumstances under which it is selected.

Also, assume that the applet has the following requirements:
m Clear the package data once no applet in the package is active

m Clear the applet private data when the applet instance is deselected

Assume that the following methods are responsible for clearing and setting the data:

// dataType parameter as above

final static byte DATA_ PRIVATE = (byte)01;

final static byte DATA_PACKAGE = (byte)02;

public void initData(byte[] dataArray, byte dataType) {

}

public void clearData(byte[] dataArray) {

}

To achieve the behavior specified above, you must modify the selection and
deselection methods in your sample applet.

The code for Applet.select (), which is invoked when this applet is the first to
become active in the package, can be implemented like this:

public boolean select() {

// First applet to be selected in package, so
// initialize package data and applet data
initData (packageData, DATA PACKAGE) ;

initData (privateData, DATA_ PRIVATE) ;

return true;

Likewise, the implementation of the method

MultiSelectable.select (boolean) must determine whether the applet is
already active. According to its definition, this method is called when another applet
within this package is active. MultiSelectable.select (boolean) can be
implemented such that if appInstAlreadySelected is false, then the applet
private data can be initialized. For example:

2-6 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

public boolean select (boolean appInstAlreadySelected) {

// If boolean parameter is false,

// then we have applet activation

// Otherwise, no applet activation occurs.

if (appInstAlreadySelected == false) {
// Initialize applet private data, upon activation
initData (privateData, DATA PRIVATE) ;

}

return true;

In the case of deselection, the applet data must be cleared. The method
MultiSelectable.deselect (boolean) can be implemented so that it clears
applet data only if the applet is no longer active. For example:

public void deselect (boolean appInstStillSelected) {

// If boolean parameter is false, then applet is no longer
// active. It is 0.K. to clear applet private data.
if (appInstStillSelected == false) {

clearData (privateData) ;

If this applet is the last one to be deactivated from the package, it also must clear
package data. This situation results in a call to Applet.deselect (). This method
can be implemented like this:

public void deselect() {
// This call means that the applet is no longer active and
// that no other applet in the package is. Data for both
// applet and package must be cleared.
clearData (packageData) ;
clearData (privateData) ;

23.1.1 Handling Channel Information on APDU Commands

APDU commands follow the ISO 7816-4:2005 specifications to encode logical channel
information. The CLA byte encodes logical channel information. The CLA byte
encoding is divided into two spaces: interindustry, used by all ISO 7816-4:2005-
defined commands, and the proprietary space, used by Java Card technology to
encode application- specific commands.

Chapter 2 Working with Logical Channels 2-7

The CLA byte encoding is divided into two classes: Type 4 commands, which encode
legacy ISO 7816-4 logical channel information; and Type 16 commands, which are
defined by the ISO 7816-4:2005 specification to encode information for additional 16
logical channels in the card. Type 4 logical channels occupy the range of [0..3], while
Type 16 logical channels go in the range of [4..19], that is, the value encoded in the
CLA byte plus four, as it is used in SELECT, MANAGE CHANNEL and other
proprietary or ISO commands.

However, a note of caution: while MANAGE CHANNEL command CLA byte
follows the encoding as described below, its P2 parameter does not. The logical
channel numbers in its P2 parameter are correctly encoded in the range of [0..19].

The CLA byte encoding follows the following rules.

Interindustry Space

CLA Remarks

0x0X Type 4, last or only command in chain

0x1X Type 4, not last command in chain (paired with 0x0X)

0x2X RFU

0x3X RFU

0x4X Type 16, no SM, last or only command in chain

0x5X Type 16, no SM, not last command in chain (paired with 0x4X)
0x6X Type 16, SM, last or only command in chain

0x7X Type 16, SM, not last command in chain (paired with 0x07X)
The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3 b2 bl

0 0 0 x v v z =z

Type 16:

b8 b7 b6 b5 b4 b3 b2 bl

0 1 v x z z z zZ

Notation:

x = Command Chaining bit

2-8 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

0 = last or only command

1 = command chaining

y = Secure Messaging indicator, see ISO7816-4:2003 section 6 for further information.

z = Logical channel indicator

Type 4 supports logical channels [0..3]

Type 16 supports logical channels [0..15], which are mapped to logical channels

[4..19]

Proprietary Java Card Technology Space

CLA Remarks

0x8X Type 4, last or only command in chain

0x9X Type 4, not last command in chain (paired with 0x8X)

OxAX Type 4, last or only command in chain

0xBX Type 4, not last command in chain (paired with 0xAX)

0xCX Type 16, no SM, last or only command in chain

0xDX Type 16, no SM, not last command in chain (paired with 0xCX)
OxEX Type 16, SM, last or only command in chain

OxFX

The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3

1 0 N/A X A% Y

Type 16:

b8 b7 b6 b5 b4 b3

1 1 v x 4 4

Type 16, SM, not last command in chain (paired with 0xEX)

b2 bl
z z
b2 bl
z z

All applets willing to use the logical channel capabilities must comply with the ISO
7816-4:2005 CLA byte encoding specification, and choose APDU commands as

defined in the proprietary space.

Chapter 2 Working with Logical Channels

2-9

The X nibble is responsible for logical channels and secure message encoding. Only
the two least significant bits of the nibble are used for channel encoding, which
ranges from 0 to 3. When an APDU command is received, the card processes it and
determines whether the command has logical channel information encoding. If
logical channel information is encoded, then the card sends the APDU command to
the respective channel. All other APDU commands are forwarded to the card’s basic
channel (0). For example, the command 0x21 forwards the command to the card’s
basic channel (0), because the CLA byte with the nibble 0x2X does not contain logical
channel information.

This also means that all applets willing to use the logical channel capabilities must
comply with the ISO 7816-4 CLA byte encoding specification, and choose APDU
commands accordingly.

Just as the deselection and selection mechanisms must be written to take into
consideration a multiple-channel environment, it is important to write the
Applet.process () method so that it handles channel information correctly. Due to
the fact that some APDUs can be digitally signed, the APDU command is passed to the
applet’s process method as it is sent by the terminal. That means any logical
channel information is not cleared and is passed intact to the applet. The applet must
deal with this situation.

To assist applet developers in correctly identifying proprietary and interindustry
commands, the following API call can be used. This call returns true if the CLA byte
encoding corresponds to the interindustry space, or false if it corresponds to the
proprietary space.

// RApplet’s process method
public void process (APDU apdu) {

bytel[] buffer = apdu.getBuffer();

// check SELECT APDU command
if (apdu.isISOInterindustryCLA()) {
if (Applet.selectinglApplet()) {
return;
} else {
ISOException.throwIt (ISO7816.SW_CLA_NOT_ SUPPORTED) ;
}

2-10 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

2.3.2

23.2.1

Writing ISO 7816-4:2005 Compliant Applets

If your applets must be compliant with the ISO 7816-4:2005 specification, then you
must track the applet security state on each channel where it is active. Additionally,
in the case of multiselectable applets, you must copy the state (including its security
configuration) when you perform MANAGE CHANNEL commands from a channel other
than the basic channel.

For example, applets might need to perform some sort of initialization upon
activation, as well as cleanup procedures during deactivation. To do these tasks, a
multiselectable applet might need to keep track of the channels on which it is being
selected during a card session.

To track this information, you need to know the channel on which the task is being
performed. Tracking is done by two methods in the Java Card API:

m APDU class: public static byte getCLAChannel () ;

This method returns the origin channel where the command was issued. In case of
MANAGE CHANNEL or SELECT FILE commands, if this method is called within the
Applet.select (), MultiSelectable.select (boolean),
Applet.deselect (), or MultiSelectable.deselect (boolean) method, it
returns the APDU command logical channel as specified in the CLA byte.

m JCSystemclass: public static byte getAssignedChannel () ;

This method returns the channel of the currently selected applet. In case of a
MANAGE CHANNEL command, if this method is invoked inside the
Applet.select (), MultiSelectable.select (boolean),
Applet.deselect (), or MultiSelectable.deselect (boolean) method, it
returns the channel where the applet to be selected or deselected is assigned to
run.

ISO 7816-4:2005 Compliant Applet Example

In case of a MANAGE CHANNEL command from a non-zero channel to another non-zero
channel, the ISO 7816-4 specification requires that the security state from the applet
selected in the origin channel be copied into the new channel. In the example
presented in this section, assume that the state information is stored in the array
appState inside the applet:

StateObj appState[MAX CHANNELS] ; // Holds the security state
// for each logical channel

You can use the APDU.getCLAChannel () and

JCSystem.getAssignedChannel () methods to identify if the applet selection case
corresponds to an ISO 7816-4 case where the security state needs to be copied. Note
that if such an event occurs, it will also be a multiselection situation, where the
applet is also selected on the newly opened channel.

Chapter 2 Working with Logical Channels 2-11

In this example, the code to identify the applet selection case is included in the
implementation of the MultiSelectable.select (boolean) method:

public boolean select (boolean appInstAlreadySelected) {

// Obtain logical channels information
// This call returns the channel where
// the command was issued

byte origChannel = APDU.getCLAChannel () ;

// This call returns the channel where the applet is being
// selected
byte targetChannel = JCSystem.getAssignedChannel () ;

if (origChannel == targetChannel) {
// This is a SELECT FILE command.
// Do processing here.

if (origChannel == 0) {
// This is a MANAGE CHANNEL command from channel O.
// ISO 7816-4 state sharing case does not
// apply here.
// Do processing here.

} else {
// Since origChannel != 0, the special
// ISO 7816-4 case applies.
// Copy security state from origin channel
// to assigned logical channel.
appState[targetChannel] = appState[origChannel];

// Do further processing here

Please refer to the Application Programming Interface for the Java Card Platform, Version
3.0.1, Classic Edition for more information about the API methods described above.

2-12 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

2.3.3

2.3.3.1

234

Applet Firewall Operation Requirements

To ensure proper operation and protection, a number of applet firewall checks have
been added to the virtual machine for the Java Card virtual machine (Java Card VM)
regarding security checks on method invocations.

Applets that implement MultiSelectable are designed to handle calls to Shareable
objects across packages when several applets are active on different logical channels.
In contrast, an applet written for version 2.1 of the Java Card platform, or an applet
written for the Java Card 3 platform that does not implement MultiSelectable,
has exclusive control over any changes to its internal objects or data when it is
selected. Only when the non-multiselectable applet is in a deselected state can other
applets modify its internal data structures. Therefore, if an applet is
non-multiselectable, no calls to its Shareable objects can be made when it is selected.

Working with Non-MultiSelectable Applets

Applets written for the Java Card 3 platform do not have to implement the
MultiSelectable interface. In this case, the applet assumes that it is uniquely
selected and its owned objects will not be modified via Shareable interface objects
while it is selected. The limitations are imposed when you interact with applets that
do not implement MultiSelectable:

m It is not possible to select more than one applet simultaneously from a package if
any of the applets you want to select does not implement the MultiSelectable
interface.

m It is not possible to invoke methods of a Shareable object belonging to a
non-multiselectable applet when an applet, belonging to the same group context,
is active.

ISO 7816-4:2005 Specific APDU Commands for
Logical Channel Management

There are two ISO-specific APDU commands that you can use to work with logical
channels in a smart card:

m SELECT FILE - This command selects the specified applet on the specified
channel number. The channel number can be from 0 to 3 and is specified in the
lower two bits of the CLA byte. If the channel is closed, it is opened and the
specified applet is selected on the channel. SELECT FILE commands are
forwarded to the newly selected applet.

Chapter 2 Working with Logical Channels 2-13

234.1

2-14

MANAGE CHANNEL - This command can be used to open a new channel from
another channel or close it. It allows you to specify the channel to be used or to
allow the smart card to select the channel. Like SELECT FILE, this command uses
the lower two bits of the CLA byte to specify the channel number. MANAGE
CHANNEL commands are not forwarded to the applet.

When you work with these commands, keep the following guidelines in mind:

Origin logical channel values are encoded in the two least significant bits of the
CLA byte.

Logical channel values have a valid range of [0..19] only.
Logical channel 0 is known as the basic channel, and it cannot be closed.

At card reset, the basic channel (channel 0) is open. All other channels (1, 2, ...19)
are closed.

The MANAGE CHANNEL and SELECT FILE commands are read by the Java Card RE
dispatcher, which performs the functions specified by the commands, including the
following;:

Managing logical channels
Deselecting applets
Selecting applets

MANAGE CHANNEL OPEN

In response to the MANAGE CHANNEL OPEN command, the dispatcher follows this
procedure:

1.
2.

If the origin channel is not open, an error is returned.

Determines whether the channel is open or closed. If the channel is open, an error
is returned.

Opens the channel.

If the origin channel is 0, the default applet (if there is one) is selected in the new
channel.

If the origin channel is not 0, the selected applet on the origin channel becomes the
selected applet in new channel.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

This MANAGE CHANNEL OPEN command opens a new channel from channel encoded
in Q.:

CLA INS P2 Lc Data Le Data SwWi1 Sw2

R N R S R v e

CLA INS P1 P2 Lc Data Le Swi1 sSw2
bXQ F)x70 |00 be b |» b bx90 |OO |

This command produces the following results:

m If channel encoded in Q is the basic channel (channel 0), the card’s default applet
is selected on channel encoded in R. No applet is selected if no default applet is
defined.

m If channel encoded in Q is other than the basic channel (channels 1, 2, ...19), the
selected applet on channel encoded in Q becomes the current applet selected on
channel R.

m The applet on channel encoded in R can either accept or reject selection.

This command returns an error under the following circumstances:

m The applet does not implement the javacard. framework.MultiSelectable
interface, when an attempt to select the applet in more than one channel takes
place.

m The applet rejects selection or throws exception.
m No channel is available.

m Channel encoded in Q is not open.

2.3.4.2 MANAGE CHANNEL CLOSE

In response to the MANAGE CHANNEL CLOSE command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.
2. If the channel to be closed is 0, an error is returned.

3. If the channel to be closed is not open or not available, a warning is thrown.

Chapter 2 Working with Logical Channels 2-15

2343

2-16

4. Deselects the applet in the channel to be closed.
5. Closes the logical channel.

This MANAGE CHANNEL CLOSE command closes channel R from channel Q:

CLA INS P1 P2 Lc Data Le swi1 Sw2

ba P bw b b F b o o

This command closes channel R. Channel R must not be the basic channel (it can be
channel 1, 2, ...19 only).

This command returns an error in the following circumstances:
m Channel encoded in R is the basic channel.

m Channel encoded in Q is not open.

It returns a warning if channel R is not open.

SELECT FILE

In response to the SELECT FILE command, the dispatcher follows this procedure:
1. If the specified channel is closed, open the channel.

2. Deselect currently selected applet in channel if needed.

3. Select specified applet in the channel.

This SELECT FILE command selects an applet on channel R:

CLA INS P1 P2 Lc Data Le SW1 Sw2

F)XOR |OxA4 bx04 beO |(AID len) I(AID) b bx90 IOO |

This command produces the following results:

m Channel encoded in R can be any channel (opened or unopened), including the
basic channel.

m The applet identified in the Data section becomes the selected applet on channel R.
m If channel encoded in R is not open, this command opens channel R.

m If channel encoded in R is open, this command changes the selected applet in the
channel to the one specified.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

This command returns an error in the following circumstances:

m The applet cannot be found or is not available. The current applet is left selected
and an error is returned.

m An active applet belonging to the same package does not implement the
javacard. framework.MultiSelectable interface, or if the applet to be
selected does not implement this interface.

m Channel encoded in R is not available.

Chapter 2 Working with Logical Channels 2-17

2-18 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

CHAPTER 3

Developing RMI Applications for
the Java Card Platform

This chapter describes how to write RMI applications for the Java Card 3 Platform,
Classic Edition. In this release, you can run and debug Java Card remote method
invocation (Java Card RMI) applications in the Java Card RE.

Note that the Java Card specifications state that Java Card RMI is optional, therefore,
before using the Java Card RMI APIs, ensure that your targeted card supports Java
Card RML

3.1

Developing an RMI Applet for the Java
Card 3 Platform

Following are the main steps for developing an RMI applet for the Java Card 3
platform:

1. Define remote interfaces
2. Develop classes implementing the remote interfaces
3. Develop the main class for the applet

For a simple applet, the main class of the applet can also be the class implementing
the remote interface.

3-1

3.1.1

3.1.2

3-2

Generating Stubs

The Java Card RMI Client framework requires stubs only when the
remote_ref_with_class format is used for passing remote references. These stubs
of remote classes of applets must be pr-generated and available on the client. When
the remote_ref_with_interfaces format is used, stubs are not necessary.

In this example, Sun Microsystems’ standard RMI Compiler (rmic) is used to
generate these stubs.

Following is the command to run the rmic:
rmic -v1.2 -classpath path -d output_dir class_name

where:

path includes the path to the remote class of your sample applet and to the file
tools.jar.

output_dir is the directory in which to place the resulting stubs.
class_name is the name of the remote class.

The -v1.2 flag is required by the RMI client framework for the Java Card
platform.

The rmic must be called for each remote class in your applet.

Note — You need to generate stubs only for remote classes that list a remote interface
in their implements clause.

The file tools. jar is provided in version 3.0.1 of the Java Card development kit.
This Java Archive (JAR™) file contains compiled implementations of packages
javacard. framework, javacard.security, javacardx.biometry,
javacardx.external and javacardx.tlwv. Classes in these packages might be
referenced by Java Card RMI applets and thus might be needed by the rmic to
generate stubs.

Running a Java Card RMI Applet

The server part (the Java Card RMI-enabled applet) can be run on the C-language
Java Card RE, for which the standard procedures apply: the applet must be installed
first, using the installer applet. After the applet is installed, the EEPROM state can be
saved and used to run the Java Card RE against the Java Card RMI client.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

3.1.3

Running the Java Card RMI Client Program

The client program can be developed and compiled using javac or your favorite
IDE. To compile the client, the remote interfaces for your applet must be present in
your classpath.

Running the client program has the following requirements.

m The client framework file jcrmiclient framework. jar is present in the
classpath. This file contains all the client framework and necessary classes from
the card framework.

m The file jeccclient.properties is present in one of the directories specified in
the classpath.

m The remote interfaces and stubs for your applet are present in the classpath. For
a sample command line to run a client program, refer to the file rmidemo or
rmidemo.bat in this directory.

m The jccclient.properties file supplied in the samples/src/demo directory.
This file specifies parameters for
com.sun.javacard.clientlib.APDUIOCardAccessor. To be accessible at
runtime, this file must be located in one of the directories listed in the classpath.
This parameter connection specified in the file must be configured to be TCP. The
protocol being used can be T0 or T1.

3.2.1

Basic Example

The basic example is the Java Card platform equivalent of “Hello World,” which is a
program that manages a counter remotely, and is able to decrement, increment, and
return the value of the counter.

Main Program

As for any Java Card RMI program, the first step is to define the interface to be used
as contract between the server (the Java Card technology-based application) and its
clients (the terminal applications):

Chapter 3 Developing RMI Applications for the Java Card Platform 3-3

package examples.purse ;
import java.rmi.* ;
import javacard.framework.* ;
public interface Purse extends Remote {
public static final short MAX AMOUNT = 400 ;
public static final short REQUEST FAILED = 0x0102 ;
public short debit(short amount) throws RemoteException, UserException;
public short credit(short amount) throws RemoteException,
UserException ;
public short getBalance() throws RemoteException, UserException ;

This is a typical Java Card RMI interface in the following ways:

m The interface type extends the java.rmi.Remote interface. This interface is a
tagging interface that identifies the interface as defining a remotely accessible
object.

m Every method in the interface must be declared as throwing a RemoteException
or one of its superclasses (I0Exception or Exception). This exception is
required to encapsulate all the communication problems that might occur during a
remote invocation of the method. In addition, the credit, debit, and
getBalance methods also throw the UserException to indicate
application-specific errors.

m The interface can also define values for constants that might be used in the
communication between the client and the server. The Purse interface defines a
constant MAX_AMOUNT that represents the maximum allowed value for the
transaction amount parameter. It also defines a reason code REQUEST_FAILED for
the UserException qualifier.

Implement a Remote Interface
The next step provides an implementation for this interface. This implementation

runs on a Java Card platform, and it therefore needs to use only features that are
supported by a Java Card platform:

3-4 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

package examples.purse ;
import javacard.framework.* ;
import javacard.framework.service.*
import java.rmi.* ;
public class PurseImpl extends CardRemoteObject implements Purse
{
private short balance ;
PurseImpl ()
{
super () ;
balance = 0 ;
}
public short debit(short amount) throws RemoteException, UserException

{

if ((amount < 0)||(amount > MAX AMOUNT))
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;
return balance ;
}
public short credit(short amount) throws RemoteException, UserException
{
if ((amount < 0)||(balance < amount))
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;

return balance ;
}
public short getBalance() throws RemoteException, UserException
{

return balance ;

Here, the remote interface is the Purse interface, which declares the remotely
accessible methods. By implementing this interface, the class establishes a contract
between itself and the compiler, by which the class promises that it will provide
method bodies for all the methods declared in the interface:

public class PurseImpl extends CardRemoteObject implements Purse

The class also extends the javacard. framework.service.CardRemoteObject
class. This class provides our class with basic support for remote objects, and in
particular the ability to export or unexport an object.

Chapter 3 Developing RMI Applications for the Java Card Platform 3-5

Define the Constructor for the Remote Object

The constructor for a remote class provides the same functionality as the constructor
of a non-remote class: it initializes the variables of each newly created instance of the
class.

In addition, the remote object instance will need to be exported. Exporting a remote
object makes it available to accept incoming remote method requests. By extending
CardRemoteObject, a class guarantees that its instances are exported automatically
upon creation on the card.

If a remote object does not extend CardRemoteObject (directly or indirectly), you
must explicitly export the remote object by calling the CardRemoteObject . export
method in the constructor of your class (or in any appropriate initialization method).
Of course, this class must still implement a remote interface.

To review:

The implementation class for a remote object needs to do the following;:
m Implement a remote interface

m Export the object so that it can accept incoming remote method calls

Provide an Implementation for Each Remote Method

The implementation class for a remote object contains the code that implements each
of the remote methods specified in the remote interface. For example, here is the
implementation of the method that debits the purse:

public short debit (short amount) throws RemoteException, UserException

if ((amount < 0)||(balance < amount)
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;

return balance ;

}

An operation is only allowed if the value of its parameter is compatible with the
current state of the purse object. In this particular case, the application only checks
that the amounts handled are positive and that the balance of the purse always
remains positive.

In Java Card RMI, the arguments to and return values from remote methods are
restricted. The main reason for this limitation is that the Java Card 3 platform, Classic
Edition, does not support object serialization. Following are the rules for the Java
Card 3 platform, Classic Edition:

3-6 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

3.2.2

m The arguments to remote methods can be of any supported integral type (such
as boolean, byte, short and int), or any single-dimensional arrays of these
integral types.

Note — The int type is optionally supported on the Java Card platform, so
applications that use this type might not run on all platforms.

m The return value from a remote method can be any type supported as arguments,
as well as any remote interface type. The method can also return void.

On the other hand, object passing in Java Card RMI follows the normal RMI rules:

m By default, non-remote objects are passed by copy, which means that all data
members of an object are copied, except those marked static or transient. In
the case of the Java Card platform, this rule is trivial to apply, because the only
objects concerned are arrays of integral types.

m Remote objects are passed by reference. In the case of the Java Card platform,
remote objects can only be passed as return values. A reference to a remote object
is actually a reference to a stub, which is a client-side proxy for the remote objects.
Stubs are needed only when the format remote_ref_with_class is used for
passing remote references. When another format, such as
remote_ref_with_interfaces, is used, stubs are not necessary. Stubs are
described in “Generate the Stubs” on page 13.

Note — Even though the semantics of the Java Card platform transient arrays are
somewhat similar to transient fields in the Java programming language, different
rules apply. Java Card platform contents are copied in Java Card RMI and passed by
value when they are returned from a remote method.

A class can define methods not specified in a remote interface, but they can only be
invoked on-card within the Java Card VM and cannot be invoked remotely.

Building an Applet

In the Java Card 3 platform all applications must include a class that inherits from
javacard. framework.Applet, which will provide an interface with the outside
world. This also applies to applications that are based on remote objects, for two
main reasons:

m The remote objects must be instantiated and initialized, which can be done in an
applet’s install method.

m The remote objects must communicate with the outside world, which can be done
in an applet’s process method.

Chapter 3 Developing RMI Applications for the Java Card Platform 3-7

For conversion, an applet should be assigned with an AID known on the client side,
0x00;0x01:0x02:0x03:0x04:0x05:0x06:0x07:0x08, since this AID is used in
the client program.

Following is the basic code for such an applet:

package examples.purse ;
import javacard.framework.* ;
import javacard.framework.service.*
import java.rmi.*;
public class PurseApplet extends Applet
{
private Dispatcher dispatcher ;
private PurselApplet ()
{
// Allocates an RMI service and sets for the Java Card platform
// the initial reference
RemoteService rmi = new RMIService(new PurseImpl())
// Allocates a dispatcher for the remote service
dispatcher = new Dispatcher ((short)l) ;
dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;
}
public static void install (byte[] buffer, short offset, byte length)
{
// Allocates and registers the applet
(new Purselpplet()).register() ;
}
public void process (APDU apdu)
{
dispatcher.process (apdu) ;

}

7

Preparing and Registering the Remote Object

The PurseApplet constructor contains the initialization code for the remote object.
First, a javacard. framework. service.RMIService object must be allocated.
This service is an object that knows how to handle all the incoming APDU commands
related to the Java Card RMI protocol. The service must be initialized to allow remote
methods on an instance of the PurseImpl class. A new instance of PurseImpl is
created, and is specified as the initial reference parameter to the RMIService
constructor as shown in the following code snippet. The initial reference is the
reference that is made public by an applet to all its clients. It is used as a bootstrap
for a client session, and is similar to that registered by a Java RMI server to the Java
Card RMI registry.

RemoteService rmi = new RMIService(new PurseImpl ())

7

3-8 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

3.2.3

Then, a dispatcher is created and initialized. A dispatcher is the glue among several
services. In this example, the initialization is quite simple, because there is a single
service to initialize:

dispatcher = new Dispatcher((short)1l) ;
dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;

Finally, the applet must register itself to the Java Card RE to be made selectable. This
is done in the install method, where the applet constructor is invoked and
immediately registered:

(new PurseApplet()) .register() ;

Processing the Incoming Commands

The processing of the incoming commands is entirely delegated to the Java Card RMI
service, which knows how to handle all the incoming requests. The service also
implements a default behavior for the handling of any request that it does not
recognize. In Java Card RMI, the following kinds of requests that can be handled:

m Selection request, to which the service responds by sending its initial remote
reference

m Method invocation request, to which the service responds by performing the
actual method invocation and returning the result

To perform these actions, the service needs privileged access to some resources that
are owned by the Java Card RE (in particular, privileged access is needed to perform
the method invocation). The applet delegates processing to the Java Card RMI service
from its process method as follows:

dispatcher.process (apdu) ;

Writing a Client

The client application runs on a terminal supporting a Java Virtual Machine!
environment such as Java 2 Platform, Standard Edition (J2SE™ platform) or Java 2
Platform, Micro Edition (Java Platform, Micro Edition (Java ME™) platform).

The PurseClient application interacts with the remote stub classes generated by a
stub generation tool and the Java Card platform-specific information managed by the
Java Card platform client-side framework located in packages
com.sun.javacard.clientlib and com.sun.javacard.rmiclientlib.

1. The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform.

Chapter 3 Developing RMI Applications for the Java Card Platform 3-9

The following example uses standard Java RMIC compiler-generated client-side
stubs. The client application as well as the Java Card client-side framework rely on
the APDU I/0 library for managing and communicating with the card reader and
the card on which the Java Card applet PurseApplet resides. This makes the client
application very portable on Java™ SE platforms. See the Development Kit User’s
Guide, Java Card Platform, Version 3.0.1, Classic Edition for information on the APDU
I/0 library.

The following example shows a very simple PurseClient application that is the
client application of the Java Card technology-based program PurseApplet:

import examples.purse.* ;
import javacard.framework.UserException ;

public class PurseClient extends java.lang.Object {

public static void main(java.lang.String[] argv) {
// arg[0] contains the debit amount
short debitAmount = (short) Integer.parseInt(argv[0]) ;

CardAccessor ca = null;
try {
// open and powerup the card
ca = new ApduIOCardAccessor () ;
// create an RMI connector instance for the Java Card platform
JCRMIConnect jcRMI = new JCRMIConnect (ca);

byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08};

// select the Java Card applet

JjCcRMI.selectApplet (RMI_DEMO_AID, JCRMIConnect.REF _WITH_CLASS_NAME) ;

or

JCcRMI.selectApplet (RMI_DEMO_AID,
JCRMIConnect .REF_WITH_INTERFACE NAMES) ;

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) jcRMI.getInitialReference() ;
// debit the requested amount

try {

short balance = myPurse.debit (debitAmount) ;
}catch (UserException jce) {

short reasonCode = jce.getReason() ;

3-10 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

// process UserException reason information
}
// display the balance to user

}catch (Exception e) {
e.printStackTrace() ;
}finally {

try {
if(ca!=null) {
ca.closeCard() ;
}
}catch (Exception e) {
e.printStackTrace() ;

}

Initializing and Shutting Down the Card Connection

The client application must open the connection to the card and close it at the end.

Note — ApduIOCardAccessor takes its settings from the file
jeclient.properties. For example. when the RMIPurse sample demo client
application runs, the JC_CLASSIC_HOME\samples\classic_applets\
RMIPurse\client directory containing the properties file is included in the
CLASSPATH. The directory in which you installed the developer’s kit is indicated as
JC_CLASSIC_HOME.

The following code shows opening and closing the connection using the RMI client
framework:

CardAccessor ca = null;

// The following line initializes card connection according to
// parameters listed in the jcclient.properties file:
ca = new ApduIOCardAccessor();

// The following line powers down the card and closes the connection:
ca.closeCard() ;

Chapter 3 Developing RMI Applications for the Java Card Platform 3-11

Creating and Using a CardAccessor Object

To access the Java Card applet using remote methods, the client application must
obtain an instance of the CardAccessor interface. The ApduIO class implements the
CardAccessor interface and is included in the framework.

The CardAccessor interface is a platform-independent and framework-independent
interface that is used by the RMI framework for the Java Card platform to
communicate with the card. The CardAccessor object is then provided as a
parameter during construction of the JavaCardRMIConnect class to initiate an RMI
dialogue for the Java Card platform as the following code shows:

// create an RMI connection object for the Java Card platform
JavaCardRMIConnect jcRMI = new JavaCardRMIConnect(myCS) ;

Selecting the Java Card Applet and Obtaining the Initial Reference

To invoke methods on the remote objects of the Java Card applet PurseApplet on
the card, it must first be selected using the AID:

// select the Java Card applet
byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08} ;
JjCcRMI.selectApplet (appAID) ;

Then, the client must obtain the initial reference remote object for PurseApplet.
JavaCardRMIConnect returns an instance of a stub class corresponding to the
PurseImpl class on the card which implements the Purse interface. The client
application knows beforehand that the PurseApplet’s initial remote reference
implements the Purse interface and therefore casts it appropriately:

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) JjcRMI.getInitialReference() ;

Using Remote Objects in Remote Method Invocations

The client can now invoke remote methods on the initial reference object. The remote
methods are declared in the Purse interface. The following code shows the client
invoking the debit method. Note how an UserException exception thrown by the
remote method is caught by the client code in a normal Java programming language
style.

3-12 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

324

// debit the requested amount
try {
short balance = myPurse.debit (debitAmount) ;
}catch (UserException jce) {
short reasonCode = jce.getReason() ;
// process on card exception reason information

Generate the Stubs

The client-side scenario uses RMIC generated stubs for the remote classes. RMIC is
the Java RMI stub compiler. For the client application PurseClient to execute
correctly on the terminal, it needs these remote stub classes and the remote interface
class files it uses to be accessible in its classpath.

The stub class PurseImpl_Stub.class for the PurseImpl class is produced by
running the standard JDK™ 1.6 compiler. Note the directory where you installed the
developer’s kit is indicated by JC_CLASSIC_HOME. For example, when in the
examples/purse directory, enter the following command:

rmic -classpath ../..;%JC_CLASSIC_HOME%/lib/tools.jar -d ../..
-vl.2 examples.purse.PurselImpl

This produces a stub class called examples.purse.PurseImpl_Stub.

Thus, for PurseClient to run correctly on the terminal, the following files must be
present in the examples/purse directory and accessible via its classpath or from
class loaders:

m PurseImpl_Stub.class

m Purse.class

Card Terminal Interaction
When a Java Card technology-enabled smart card is powered up, the card sends an

ATR (Answer to Reset) to the terminal. The Card Accessor returns the value of the
ATR to the client program.

FIGURE 3-1 Smart Card Sends an ATR to the Terminal

Terminal -4— ATR - Card

Chapter 3 Developing RMI Applications for the Java Card Platform 3-13

When the PurseClient application calls the selectApplet method of
JavaCardRMIConnect, it sends a SELECT APDU command to the card via the
CardAccessor object. This results in a File Control Information (FCI) APDU
response from the RMIService instance of PurseApplet on the card in a TLV (Tag
Length Value) format that includes the initial reference remote object information,
which FIGURE 3-2 illustrates.

FIGURE 3-2 Terminal Sends a SELECT Command to the Smart Card, which Returns FCI

Terminal ——— W SELECT (0x00, OxAd, 04, (x00) ———— P Card
Terminal #—— FCI with Initial Reference Information ~#—— Card

Later, when the PurseClient application calls the debit method of the remote
interface Purse, the PurseImpl_Stub object sends an invoke command to the card
via the CardAccessor object, identifying the remote object reference, interface,
method, and parameter data for method invocation. The RMIService instance of
PurseApplet unmarshalls this information and invokes the debit method of the
PurseImpl instance, and returns the return value in the response APDU, which
FIGURE 3-3 illustrates.

FIGURE 3-3 Terminal Sends an INVOKE Command to the Smart Card, Which Returns a
Value

Terminal —W= INVOKE (Init Ref, debit, short val) —— Card
Terminal -4—— RETURN with short value gl

3.3

3-14

Adding Security

This first example is extremely simple and is not realistic. In particular, it does not
include any kind of security. Users are not authenticated and no transport security is
provided. Of course, every smart card that implements the Java Card platform
includes such security mechanisms, because they are central to Java Card technology.

The following section describes how to add security support to the Purse example.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

The Purse interface in the package examples.securepurse is similar to the
Purse interface in the previous code sample. In addition, it might include reason
codes for exceptions to report security violations to the terminal. Replace it with
examples.securepurse. The interface does not include any implementation,
which means that, in particular, it does not include any support for security.

The applet keeps its original organization but it also includes additional code that is
dedicated to the management of security.

Chapter 3 Developing RMI Applications for the Java Card Platform 3-15

package examples.securepurse ;
import javacard.framework.* ;
import javacard.framework.service.*
import java.rmi.* ;
public class SecurePurseImpl implements Purse
{

private short balance ;

private SecurityService security ;

SecurePurselImpl (SecurityService security)

{

this.security = security ;

7

public short debit(short amount) throws RemoteException, UserException
{
if
((!security.isCommandSecure (SecurityService.PROPERTY_ INPUT INTEGRITY))
|
(!security.isAuthenticated(SecurityService.PRINCIPAL_CARDHOLDER)))
UserException.throwIt (REQUEST FAILED)

’

if ((amount < 0)|| (balance < amount))
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;

return balance ;

public short credit (short amount) throws RemoteException, UserException
{
if
((!security.isCommandSecure (SecurityService.PROPERTY_ INPUT INTEGRITY))
I
(!'security.isAuthenticated (SecurityService.PRINCIPAI, APP_PROVIDER)))
UserException.throwIt (REQUEST FAILED) ;
if ((amount < 0)||(amount > MAX AMOUNT))
UserException.throwIt (REQUEST FAILED)
balance += amount
return balance ;

7

’

public short getBalance() throws RemoteException, UserException
{
if ((!security. isAuthenticated (SecurityService.PRINCIPAIL,_CARDHOLDER))
&&
(!security.isAuthenticated (SecurityService.PRINCIPAL, APP_PROVIDER)))
UserException.throwIt (REQUEST FAILED)
return balance ;

7

3-16 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

Initialize a Security Service

In this example, basic security services (principal identification and authentication,
secure communication channel) are provided by an object that implements the
SecurityService interface. Because a generic remote object must not be dependent
on a particular kind of security service, it must take a reference to this object as a
parameter to its constructor. This is exactly what happens here, where the reference
to the object is stored in a dedicated private field:

private SecurityService security ;

The SecurityService interface is part of the extended application development
framework and offers an API that can then be used to check on the current security
status.

Use the Service to Check the Current Security Status

In the example, this following required security behaviors for the applet are
assumed:

m The debit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the cardholder is successfully
authenticated.

m The credit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the application issuer is
successfully authenticated.

m The getBalance method is authorized only if the cardholder or the application
issuer is successfully authenticated.

The SecurityService provides methods and constants that allow the
implementation to perform such checks. For instance, following is the code for the
checks on the debit method:

if
((!security.isCommandSecure (SecurityService.PROPERTY INPUT INTEGRITY))
(security.isAuthenticated (SecurityService.ID_CARDHOLDER)))
UserException.throwIt (REQUEST FAILED) ;

If one of the two conditions is not satisfied, the remote object throws an exception.
This exception is caught by the dispatcher and forwarded to the client.

Chapter 3 Developing RMI Applications for the Java Card Platform 3-17

3.3.1 Implementing a Security Service

The following example shows how to implement a security service.

package com.sun.javacard.samples.SecureRMIDemo ;
import javacard.framework.* ;
import javacard.framework.service.* ;

public class MySecurityService extends BasicService implements
SecurityService {
// list IDs of known parties...
private static final byte[] PRINCIPAL APP_PROVIDER ID = {0x12, 0x34} ;
private static final byte[] PRINCIPAL_ CARDHOLDER_ID = {0x43, O0x21} ;
private OwnerPIN provider_pin, cardholder_pin = null ;
// and the security-related session flags

public MySecurityService() {
// initialize the PINs

}
public boolean processDataIn(APDU apdu) {
if (selectingApplet()) {
// reset all flags

}
else {

return preprocessCommandAPDU (apdu) ;
}

}
public boolean isCommandSecure (byte properties) throws ServiceException {
// return the value of appropriate flag

}
public boolean isAuthenticated(short principal) throws ServiceException {
// return the value of appropriate flag

}

private byte authenticated ;

private boolean preprocessCommandAPDU(APDU apdu) {
receivelInData (apdu) ;
if (checkAndRemoveChecksum (apdu)) {

3-18 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

// set DATA INTEGRITY flag

}
else {

// reset DATA_INTEGRITY flag
}

return false; // other services may also preprocess the data

}
private boolean checkAndRemoveChecksum (APDU apdu) {
// remove the checksum
// return true if checksum OK, false otherwise

}
public boolean processCommand (APDU apdu) {
if (isAuthenticate (apdu)) {
receiveInData (apdu) ;
// check PIN
// set AUTHENTICATED flags

return true; // processing of the command is finished

}
else {

return false ; // this command was addressed to another

// service - no processing is done

}
public boolean processDataOut (APDU apdu) {

// add checksum to outgoing data

return false; // other services may also postprocess outgoing data

}
private boolean isAuthenticate (APDU command) {
// check values of CLA and INS bytes

3.3.2 Building an Applet

The supporting applet also must undergo some significant changes, in particular
regarding the initialization of the remote object:

Chapter 3 Developing RMI Applications for the Java Card Platform 3-19

package examples.securepurse ;

import javacard.framework.* ;

import javacard.framework.service.*

import java.rmi.* ;

import com.sun.javacard.samples.SecureRMIDemo.MySecurityService ;

public class SecurePurseApplet extends Applet
{

Dispatcher dispatcher ;

private SecurePurseApplet ()

{
SecurityService sec ;
// First get a security service
sec = new MySecurityService() ;
// Allocates an RMI service for the Java Card platform and
// sets the initial reference
RemoteService rmi = new RMIService(new SecurePurselmpl (sec)) ;
// Allocates and initializes a dispatcher for the remote object
dispatcher = new Dispatcher ((short)2) ;
dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;
dispatcher.addService (sec, Dispatcher.PROCESS_INPUT DATA) ;

}

public static void install (byte[] buffer, short offset, byte length)

{
// Allocates and registers the applet
(new SecurePurseApplet()) .register() ;

}

public void process (APDU apdu)

{

dispatcher.process (apdu) ;

The security service that is used by the remote object must be initialized at some
point. Here, this is done in the constructor for the SecurePurseApplet:

sec = new MySecurityService() ;

The initialization then goes on with the initialization of the Java Card RMI service.
The only new thing here is that the remote object being allocated and set as the initial
reference is now a SecurePurseImpl:

RemoteService rmi = new RMIService(new SecurePurselImpl (sec));

Next, the dispatcher must be initialized. Here, it must dispatch simple Java Card RMI
requests and security-related requests (such as EXTERNAL AUTHENTICATE). In fact,
the security service handles these requests directly. First, allocate a dispatcher and
inform it that it will delegate commands to two different services:

3-20 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

3.3.3

dispatcher = new Dispatcher ((short)2);

Then, register services with the dispatcher. The security service is registered as a
service that performs preprocessing operations on incoming commands, and the Java
Card RMI service is registered as a service that processes the command requested:

dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;
dispatcher.addService(sec, Dispatcher.PROCESS_INPUT_DATA) ;

The rest of the class (install and process methods) remain unchanged.

Writing a Client

The driver client application itself only changes minimally to account for the
authentication and integrity needs of SecurePurseApplet. It must also interact
with the user for identification. Hence, a subclass of ApduIO_Card_Accessor must
be developed to provide these additional interactions and the transport filtering
required.

Following is the new SecurePurseClient application:

import examples.purse.* ;
import javacard.framework.UserException ;

public class PurseClient extends java.lang.Object {

public static void main(java.lang.String[] argv) {
// arg[0] contains the debit amount
short debitAmount = (short) Integer.parselnt(argv[0]) ;

CustomCardAccessor cca = null;
try {
// open and powerup the card - using CustomCardAccessor
cca = new CustomCardAccessor (new ApduIOCardAccessor());
// create an RMI connector instance for the Java Card platform
JCRMIConnect jcRMI = new JCRMIConnect (cca);

byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08};

// select the Java Card applet

JjCcRMI.selectApplet (RMI_DEMO_AID, JCRMIConnect.REF WITH_CLASS_NAME) ;

or

JCcRMI.selectApplet (RMI_DEMO_AID,
JCRMIConnect .REF_WITH_INTERFACE NAMES) ;

Chapter 3 Developing RMI Applications for the Java Card Platform 3-21

// give your PIN
if (! cca.authenticateUser (PRINCIPAI,_CARDHOLDER ID)){
throw new RemoteException (msg.getString("msg04"));

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) jcRMI.getInitialReference() ;
// debit the requested amount

try {

short balance = myPurse.debit (debitAmount) ;
}catch (UserException jce) {

short reasonCode = jce.getReason() ;

// process UserException reason information

}
// display the balance to user

}catch (Exception e) {
e.printStackTrace() ;
}finally {

try {
if(ccal!=null) {
cca.closeCard() ;
}
}catch (Exception e) {
e.printStackTrace() ;

Note that the CustomCardAccessor instance is now obtained instead of
ApduIOCardAccessor:

cca = new CustomCardAccessor (new ApdulOCardAccessor());

An extra step to authenticate with the SecurePurseApplet after selectApplet is
added. This invokes a new method in CustomCardAccessor to interact with the
card using the user’s credentials:

if (! cca.authenticateUser(PRINCIPAL_CARDHOLDER_ID)) {
// handle error

The rest of SecurePurseClient is the same as PurseClient.

3-22 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

Writing a CustomCardAccessor Class

The SecurePurseClient application uses a subclass of CardAccessor called
CustomCardAccessor to perform user authentication functions and to sign every
message sent thereafter for integrity purposes:

package examples.securepurseclient;

public class CustomCardAccessor extends
ApduIOCardAccessor {
/** Creates new CustomCardAccessor */
public CustomCardAccessor () {
}
public byte[] exchangeAPDU(byte[] sendData)
throws java.io.IOException {

byte[] macSignature = null ;

byte[] dataWwithMAC = new byte[sendData.length + 4 1 ;
// sign the sendData data using session key

// sign the data in commandBuffer using the user's session key

// add generated MAC signature to data in buffer before sending

return super.exchangeAPDU(dataWithMAC) ;
}
boolean authenticateUser(short userKey) {
byte[] externalAuthCommand = null ;
// build and send the appropriate commands to the
// applet to authenticate the user using the user Key
// and additional info provided
try {
byte[] response = super.exchangeAPDU (externalAuthCommand)
//
}catch (Exception e) {
// analyze
return false ;

7

}
// Then compute the session key for later use
return true; //successful authentication

Chapter 3 Developing RMI Applications for the Java Card Platform 3-23

The CustomCardAccessor class introduces the authenticateUser method to
send APDU commands to the SecurePurseApplet on the card to authenticate the
user described by the userKey parameter and other parameters and to compute a
transport key. It invokes super . sendCommandAPDU method to send the command
without modification.

This CustomCardAccessor class also reimplements the exchangeAPDU method
declared in a superclass CardAccessor to sign each message before it is sent out by
super .exchangeAPDU.

3-24 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

CHAPTER 4

Using Extended APDU

The extended APDU feature in the Java Card 3 Platform, Classic Edition, allows
applet developers to take advantage of extended APDU functionality, as defined in
the ISO 7816 specification. Extended APDU allows large amounts of data to be sent
to the card, processed appropriately, and sent back to the terminal, in a more efficient
way. Instead of having to re-issue multiple APDU messages to complete an operation
requiring large volumes of data, and requiring the developer to code the application
to keep a state across such multiple APDU commands, extended APDU allows
applets to perform this function more efficiently with one large APDU exchange.

Extended APDU can be beneficial when dealing with large amounts of information.
For example, applications such as signature verification, biometrics verification and
image storage and retrieval could greatly benefit from this feature. Extended APDU
implementations can easily be implemented if the underlying transport protocol is
T=1, while applets developed for T=0 cards would need special logic and care to
work correctly.

4.1

Extended APDU Nominal Cases

The ISO 7816-4:2005 specification defines an extended APDU as any APDU whose
payload data, response data or expected data length exceeds the 256 byte limit.
Therefore, the four traditional cases are redefined as follows:

m Case 1. As in short length, this case is not affected.

m Case 25. The legacy case 2 from previous Java Card technology releases. LE has a
value of 1 to 255.

m Case 2E. The extended version of case 25, where LE is greater than 255.
m Case 35. The legacy case 3 case. LC is less than 256 bytes of data, and LE is zero.

m Case 3E. The extended version of Case 3, where LC is greater than 255, and LE is
Zero.

4-1

m Case 4S. The legacy case 4. LC and LE are less than 256 bytes of data.

m Case 4E. The extended version of Case 4. LC or LE are greater than 256 bytes of
data.

4.2 Extended APDU Format

To express extended length, the APDU format has changed. The table below
summarizes the format defined by ISO 7816-4:2005 for extended length APDU. Any
APDU classified as extended must follow this format.

TABLE 4-1 Extended APDU Format

Field Description Number of Bytes
Command Header Class byte CLA 1
Command Header Instruction byte INS 1
Command Header Parameter bytes P1- P2 2
LC Field Absent for Nc = 0. Present for Nc > 0 0,1,or3
Data Field Absent if Nc = 0, present if Nc >0 Nc
LE Field Absent for Ne = 0, present for Ne > 0 0,1,20r3
Response Data Absent if Nr = 0, present if Nr >0 Nr (max. Ne)
Response Status Status bytes SW1 SW2 2

NOTATION

Nc = command data length
Ne = expected response data length
Nr = actual response data length

The encoding rules are defined as:

For LC:
m If LC field is absent, Nc = 0.

m If LC is present as one byte with values between 01 and FF, then Nc = 1..255
accordingly, and it will be a short field.

m If LC is present as an extended field, then it will be three bytes in length: byte one
will be 00, bytes two and three will contain a 16-bit value representing the length
of the data Nc with values between 1 and 65535.

For LE:

4-2 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

m If LE is absent, Ne = 0.

m If LE is one byte:

m A value between 01 and FF will indicate Ne = 1..255.
m A value of 00 will indicate Ne = 256.

If LE is an extended field:

m LC and LE must be in the same format.

m An LE field value between 0001 and FFFF will indicate Ne = 1..65535.
m An LE field value of 0000 will indicate Ne= 65536.

4.3

4.3.1

Extended APDU Limits

The Java Card platform supports extended APDUs with some limitations. Because
the platform defines all of its mandatory API in terms of short data length, the values
of LC and LE are limited to short positive values. That is, LC and LE have a range of
0..32,767. Lengths of 32,768 and beyond are not supported by the Java Card platform
at this time.

javacardx. framework.ExtendedLength
Interface

Not all Java Card applets can handle extended APDUs. Legacy applets should never
encounter an extended APDU in the APDU buffer. Because of this, the Java Card API
has added a tagging interface, javacardx.apdu.ExtendedLength, to signal that
the applet implementing this interface is capable of processing, receiving and
replying to extended APDU commands. The Java Card RE will not deliver extended
APDU commands to applets not implementing this interface (it would throw an
ISOException with reason code IS07816.SW_WRONG_LENGTH in that case), nor
would it allow applets to send reply data lengths greater than 256, if such an
interface is not implemented by the applet.

The APDU bulffer in Java Card technology applications will reflect the structure of
the extended APDU as defined in ISO. In T=1, this representation is straightforward
and precise; whereas in T=0, there need to be some adaptations for some cases.

Specifically, a case 2E APDU sent over T=0 transport will not show its extended LE
value in the APDU buffer. Instead, a P3 value of '00' will always be transmitted, and
interpreted as 32,767, if the applet implements ExtendedLength, or 256 if it does
not. The Java Card RE analyzes the APDU type coming into the card and determines

Chapter 4 Using Extended APDU 4-3

4.3.2

its type based on the rules defined in the ISO 7816-3 specification. Because case 2E
commands look like case 2S5 commands in T=0, the Java Card RE is not able to
distinguish this particular case.

Extensions To javacard. framework.APDU
Class

Because LC in cases 3E and 4E can take a large value, the parameter is sent to the
card as a three-byte quantity, in the format of 00 LCh LC1 starting at
IS07816.0FFSET_LC. Two new API calls have been added to

javacard. framework.APDU so that the applet developer will not be required to
parse the APDU. The API calls allow the applet developer to get the value of LC and
the data offset inside the APDU buffer without having to get them directly from that
buffer, as was necessary before.

These two APIs allow applet developers to write applets without having to worry
about parsing extended length in T=0 and T=1 implementations.
m public short getIncomingLength ()

This API call returns the value of LC as expressed in the APDU, whether it is
extended or not.

m public short getOffsetCdatal()

This API call returns the offset where the first byte of the APDU data segment is
found.

4.4

4-4

Sending and Receiving Extended APDU
Commands

To write an applet that takes advantage of extended length, follow these steps:

1. Implement the javacardx.apdu.ExtendedLength interface in your applet:

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

import javacard.framework.*;
import javacardx.apdu.ExtendedLength;

public MyApplet extends Applet implements
ExtendedLength {

2. Write your applet and Applet.process(..) method as you would with any
other applets. For consistency, it is advisable that your process(..) code
begin like the one below:

public void process (APDU apdu) {
byte[] buffer = apdu.getBuffer();

if (apdu.isISOInterindustryCLA()) {
if (this.selectingApplet()) {
return;
} else {
ISOException.throwIt (ISO7816.SW_CLA_NOT SUPPORTED) ;

switch (buffer[IS07816.0FFSET _INS]) {
case CHOICE_1:

return;
case CHOICE_2:
default:
ISOException.throwIt (ISO7816.SW_INS_NOT_ SUPPORTED) ;

3. For cases 3S, 4S, 3E and 4E, write the method to handle incoming data. Do it
relying on API extensions so that your applet properly handles extended, as
well as non-extended, cases.

Chapter 4 Using Extended APDU 4-5

void receiveData (APDU apdu) {
byte[] buffer = apdu.getBuffer();
short LC = apdu.getIncomingLength() ;

short recvLen = apdu.setIncomingAndreceive () ;
short dataOffset = apdu.getOffsetCdatal() ;

while (recvLen > 0) {
[process data in buffer[dataOffset]...]
recvLen = apdu.receiveBytes (dataOffset) ;

}
// Done

4. For case 2S, 2E, write the method handling data output. A method could look
something like this:

void sendData (APDU apdu) {
byte[] buffer = apdu.getBuffer();

short LE = apdu.setOutgoing() ;
short toSend =

if (LE != toSend) {
apdu.setOutgoingLength (toSend) ;

while (toSend > 0) {

[prepare data to send in APDU buffer]

apdu.sendBytes (dataOffset, sentLlen) ;
toSend -= sentlLen;

}

// Done

4-6 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

Glossary

active applet
instance

AID (application
identifier)

APDU
API

applet

applet developer

applet execution
context

applet firewall

applet package

assigned logical
channel

an applet instance that is selected on at least one of the logical channels.

defined by ISO 7816, a string used to uniquely identify card applications and
certain types of files in card file systems. An AID consists of two distinct
pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary
identifier extension). The RID is a resource identifier assigned to companies by
ISO. The PIX identifiers are assigned by companies.

A unique AID is assigned for each package. In addition, a unique AID is
assigned for each applet in the package. The package AID and the default AID
for each applet defined in the package are specified in the CAP file. They are
supplied to the converter when the CAP file is generated.

an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system
and other services.

within the context of this document, a Java Card applet, which is the basic unit
of selection, context, functionality, and security in Java Card technology.

a person creating an applet using Java Card technology.

context of a package that contains currently active applet.

the mechanism that prevents unauthorized accesses to objects in contexts other
than currently active context.

see library package.

the logical channel on which the applet instance is either the active applet
instance or will become the active applet instance.

Glossary-1

atomic operation

atomicity

ATR

basic logical channel

big-endian

binary compatibility

bytecode

CAD

CAP file

CAP file component

Glossary-2

card session

cast

an operation that either completes in its entirety or no part of the operation
completes at all.

state in which a particular operation is atomic. Atomicity of data updates
guarantee that data are not corrupted in case of power loss or card removal.

an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java
Card platform after a reset condition.

logical channel 0, the only channel that is active at card reset. This channel is
permanent and can never be closed.

a technique of storing multibyte data where the high-order bytes come first.
For example, given an 8-bit data item stored in big-endian order, the first bit
read is considered the high bit.

in a Java Card system, a change in a Java programming language package
results in a new CAP file. A new CAP file is binary compatible with
(equivalently, does not break compatibility with) a preexisting CAP file if
another CAP file converted using the export file of the preexisting CAP file can
link with the new CAP file without errors.

machine-independent code generated by the compiler and executed by the Java
virtual machine.

an acronym for Card Acceptance Device. The CAD is the device in which the
card is inserted.

the caP file is produced by the Converter and is the standard file format for
the binary compatibility of the Java Card platform. A CAP file contains an
executable binary representation of the classes of a Java programming
language package. The CAP file also contains the CAP file components (see also
CAP file component). The CAP files produced by the converter are contained in
Java Archive (JAR) files.

a Java Card platform CAP file consists of a set of components which represent a
Java programming language package. Each component describes a set of
elements in the Java programming language package, or an aspect of the CAP
file. A complete CAP file must contain all of the required components: Header,
Directory, Import, Constant Pool, Method, Static Field, and Reference Location.

The following components are optional: the Applet, Export, and Debug. The
Applet component is included only if one or more Applets are defined in the
package. The Export component is included only if classes in other packages
may import elements in the package defined. The Debug component is
optional. It contains all of the data necessary for debugging a package.

a card session begins with the insertion of the card into the CAD. The card is
then able to exchange streams of APDUs with the CAD. The card session ends
when the card is removed from the CAD.

the explicit conversion from one data type to another.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

constant pool

context

context switch

Converter

currently active

context

currently selected
applet

custom CAP file
component

default applet

EEPROM

entry point objects

the constant pool contains variable-length structures representing various
string constants, class names, field names, and other constants referred to
within the CAP file and the Export File structure. Each of the constant pool
entries, including entry zero, is a variable-length structure whose format is
indicated by its first tag byte. There are no ordering constraints on entries in
the constant pool entries. One constant pool is associated with each package.

There are differences between the Java platform constant pool and the Java
Card technology-based constant pool. For example, in the Java platform
constant pool there is one constant type for method references, while in the
Java Card constant pool, there are three constant types for method references.
The additional information provided by a constant type in Java Card
technologies simplifies resolution of references.

protected object space associated with each applet package and Java Card RE.
All objects owned by an applet belong to context of the applet's package.

a change from one currently active context to another. For example, a context
switch is caused by an attempt to access an object that belongs to an applet
instance that resides in a different package. The result of a context switch is a
new currently active context.

a piece of software that preprocesses all of the Java programming language
class files that make up a package, and converts the package to a CAP file. The
Converter also produces an export file.

when an object instance method is invoked, an owning context of this object
becomes the currently active context.

the Java Card RE keeps track of the currently selected Java Card applet. Upon
receiving a SELECT FILE command with this applet’s AID, the Java Card RE
makes this applet the currently selected applet. The Java Card RE sends all
APDU commands to the currently selected applet.

a new component added to the CAP file. The new component must conform to
the general component format. It is silently ignored by a Java Card virtual
machine that does not recognize the component. The identifiers associated
with the new component are recorded in the custom_component item of the
CAP file's Directory component.

an applet that is selected by default on a logical channel when it is opened. If
an applet is designated the default applet on a particular logical channel on the
Java Card platform, it becomes the active applet by default when that logical
channel is opened using the basic channel.

an acronym for Electrically Erasable, Programmable Read Only Memory.

see Java Card RE entry point objects.

Glossary-3

Export file

externally visible

finalization

firewall

flash memory

framework

garbage collection

heap

installer

installation program

a file produced by the Converter that represents the fields and methods of a
package that can be imported by classes in other packages.

in the Java Card platform, any classes, interfaces, their constructors, methods,
and fields that can be accessed from another package according to the Java
programming language semantics, as defined by the Java Language Specification,
and Java Card API package access control restrictions (see Java Language
Specification, section 2.2.1.1).

Externally visible items may be represented in an export file. For a library
package, all externally visible items are represented in an export file. For an
applet package, only those externally visible items that are part of a shareable
interface are represented in an export file.

the process by which a Java virtual machine (VM) allows an unreferenced
object instance to release non-memory resources (for example, close and open
files) prior to reclaiming the object's memory. Finalization is only performed on
an object when that object is ready to be garbage collected (meaning, there are
no references to the object).

Finalization is not supported by the Java Card virtual machine. The method
finalize () is not called automatically by the Java Card virtual machine.

see applet firewall.

a type of persistent mutable memory. It is more efficient in space and power
than EPROM. Flash memory can be read bit by bit but can be updated only as
a block. Thus, flash memory is typically used for storing additional programs
or large chunks of data that are updated as a whole.

the set of classes that implement the API. This includes core and extension
packages. Responsibilities include applet selection, sending APDU bytes, and
managing atomicity.

the process by which dynamically allocated storage is automatically reclaimed
during the execution of a program.

a common pool of free memory usable by a program. A part of the computer's
memory used for dynamic memory allocation, in which blocks of memory are
used in an arbitrary order. The Java Card virtual machine's heap is not required
to be garbage collected. Objects allocated from the heap are not necessarily
reclaimed.

the on-card mechanism to download and install CAP files. The installer receives
executable binary from the off-card installation program, writes the binary into
the smart card memory, links it with the other classes on the card, and creates
and initializes any data structures used internally by the Java Card Runtime
Environment.

the off-card mechanism that employs a card acceptance device (CAD) to
transmit the executable binary in a CAP file to the installer running on the card.

Glossary-4 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

instance variables

instantiation

instruction

internally visible

JAR file

Java Card Platform
Remote Method
Invocation

Java Card Runtime
Environment (Java
Card RE)

Java Card Virtual
Machine (Java Card
VM)

Java Card RE entry
point objects

also known as non-static fields.

in object-oriented programming, to produce a particular object from its class
template. This involves allocation of a data structure with the types specified
by the template, and initialization of instance variables with either default
values or those provided by the class’s constructor function.

a statement that indicates an operation for the computer to perform and any
data to be used in performing the operation. An instruction can be in machine
language or a programming language.

items that are not externally visible. These items are not described in a
package’s export file, but some such items use private tokens to represent
internal references. See also externally visible.

an acronym for Java Archive file, which is a file format used for aggregating
many files into one.

a subset of the Java Platform Remote Method Invocation (RMI) system. It
provides a mechanism for a client application running on the CAD platform to
invoke a method on a remote object on the card.

consists of the Java Card virtual machine, the framework, and the associated
native methods.

a subset of the Java virtual machine, which is designed to be run on smart
cards and other resource-constrained devices. The Java Card VM acts an engine
that loads Java class files and executes them with a particular set of semantics.

objects owned by the Java Card RE context that contain entry point methods.
These methods can be invoked from any context and allow non-privileged
users (applets) to request privileged Java Card RE system services. Java Card
RE entry point objects can be either temporary or permanent:

temporary - references to temporary Java Card RE entry point objects cannot
be stored in class variables, instance variables or array components. The Java
Card RE detects and restricts attempts to store references to these objects as
part of the firewall functionality to prevent unauthorized reuse. Examples of
these objects are APDU objects and all Java Card RE-owned exception objects.

permanent - references to permanent Java Card RE entry point objects can be
stored and freely reused. Examples of these objects are Java Card RE-owned
AID instances.

Glossary-5

Glossary-6

JDK software

library package

local variable

logical channel

MAC

mask production
(masking)

method

multiselectable
applets

multiselected applet

namespace

native method

nibble

normalization (classic
applet)

an acronym for Java Development Kit. The JDK software is a Sun
Microsystems, Inc. product that provides the environment required for
software development in the Java programming language. The JDK software is
available for a variety of operating systems, for example Sun Microsystems
Solaris™ OS and Microsoft Windows.

a Java programming language package that does not contain any non-abstract
classes that extend the class javacard. framework.Applet. An applet
package contains one or more non-abstract classes that extend the

javacard. framework.Applet class.

a data item known within a block, but inaccessible to code outside the block.
For example, any variable defined within a method is a local variable and
cannot be used outside the method.

as seen at the card edge, works as a logical link to an application on the card.
A logical channel establishes a communications session between a card applet
and the terminal. Commands issued on a specific logical channel are
forwarded to the active applet on that logical channel. For more information,
see the ISO/IEC 7816 Specification, Part 4. (http://www.1iso.org).

an acronym for Message Authentication Code. MAC is an encryption of data
for security purposes.

refers to embedding the Java Card virtual machine, runtime environment, and
applets in the read-only memory of a smart card during manufacture.

a procedure or routine associated with one or more classes in object-oriented
languages.

implements the javacard. framework.MultiSelectable interface.
Multiselectable applets can be selected on multiple logical channels at the same
time. They can also accept other applets belonging to the same package being
selected simultaneously.

an applet instance that is selected and, therefore, active on more than one
logical channel simultaneously.

a set of names in which all names are unique.

a method that is not implemented in the Java programming language, but in
another language. The CAP file format does not support native methods.

four bits.

the process of transforming and repackaging a Java application packaged for
the Java Card Platform, Version 2.2.2, for deployment on both the Java Card 3
Platform, Connected Edition and the Java Card 3 Platform, Classic Edition.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

http://www.iso.org

normalization (URI)

Normalizer

object-oriented

object owner

objects

origin logical
channel

owning context

package

PCD

persistent object

PIX

RAM (random access
memory)

reference
implementation

the process of removing unnecessary ".
component of a hierarchical URL

and ".." segments from the path

a software tool that allows Java applications programmed for the Java Card
Platform, Version 2.2.2, to be deployed on both the Java Card 3 Platform,
Connected Edition and on the Java Card 3 Platform, Classic Edition. It also
allows Java applications packaged for Version 2.2.2 to be transformed through
the normalization process and then repackaged for deployment on both the
Connected and Classic Editions.

a programming methodology based on the concept of an object, which is a data
structure encapsulated with a set of routines, called methods, which operate on
the data.

the applet instance within the currently active context when the object is
instantiated. An object can be owned by an applet instance, or by the Java Card
RE.

in object-oriented programming, unique instances of a data structure defined
according to the template provided by its class. Each object has its own values
for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

the logical channel on which an APDU command is issued.
the context in which an object is instantiated or created.

a namespace within the Java programming language that can have classes and
interfaces.

an acronym for Proximity Coupling Device. The PCD is a contactless card
reader device.

persistent objects and their values persist from one CAD session to the next,
indefinitely. Objects are persistent by default. Persistent object values are
updated atomically using transactions. The term persistent does not mean
there is an object-oriented database on the card or that objects are serialized
and deserialized, just that the objects are not lost when the card loses power.

see AID (application identifier).

temporary working space for storing and modifying data. RAM is non-
persistent memory; that is, the information content is not preserved when
power is removed from the memory cell. RAM can be accessed an unlimited
number of times and none of the restrictions of EEPROM apply.

a fully functional and compatible implementation of a given technology. It
enables developers to build prototypes of applications based on the technology.

Glossary-7

remote interface

remote methods

remote object

RFU
RID
RMI

ROM (read-only

memory)

runtime
environment

shareable interface

shareable interface

Glossary-8

object (SIO)

smart card

an interface which extends, directly or indirectly, the interface
java.rmi.Remote.

Each method declaration in the remote interface or its super-interfaces includes
the exception java.rmi.RemoteException (or one of its superclasses) in its
throws clause.

In a remote method declaration, if a remote object is declared as a return type,
it is declared as the remote interface, not the implementation class of that
interface.

In addition, Java Card RMI imposes additional constraints on the definition of
remote methods. These constraints are as a result of the Java Card platform
language subset and other feature limitations.

the methods of a remote interface.

an object whose remote methods can be invoked remotely from the CAD client.
A remote object is described by one or more remote interfaces.

acronym for Reserved for Future Use.
see AID (application identifier).

an acronym for Remote Method Invocation. RMI is a mechanism for invoking
instance methods on objects located on remote virtual machines (meaning, a
virtual machine other than that of the invoker).

memory used for storing the fixed program of the card. A smart card’s ROM
contains operating system routines as well as permanent data and user
applications. No power is needed to hold data in this kind of memory. ROM
cannot be written to after the card is manufactured. Writing a binary image to
the ROM is called masking and occurs during the chip manufacturing process.

see Java Card Runtime Environment (Java Card RE).

an interface that defines a set of shared methods. These interface methods can
be invoked from an applet in one context when the object implementing them
is owned by an applet in another context.

an object that implements the shareable interface.

a card that stores and processes information through the electronic circuits
embedded in silicon in the substrate of its body. Unlike magnetic stripe cards,
smart cards carry both processing power and information. They do not require
access to remote databases at the time of a transaction.

Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

terminal

thread

transaction

transient object

verification

word

a Card Acceptance Device that is typically a computer in its own right and can
integrate a card reader as one of its components. In addition to being a smart
card reader, a terminal can process data exchanged between itself and the
smart card.

the basic unit of program execution. A process can have several threads
running concurrently each performing a different job, such as waiting for
events or performing a time consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, it is suspended or
destroyed.

The Java Card virtual machine can support only a single thread of execution.
Java Card technology programs cannot use class Thread or any of the thread-
related keywords in the Java programming language.

an atomic operation in which the developer defines the extent of the operation
by indicating in the program code the beginning and end of the transaction.

the state of transient objects do not persist from one CAD session to the next,
and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not affected by transactions.

a process performed on a CAP file that ensures that the binary representation of
the package is structurally correct.

an abstract storage unit. A word is large enough to hold a value of type byte,
short, reference or returnAddress. Two words are large enough to hold a
value of integer type.

Glossary-9

Glossary-10 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

Index

A
AID, 5-1
Answer to Reset, 5-2
APDU, 5-1
APDU commands, 2-7
ISO 7816-4 specific, 2-13
API, 5-1
applet, 5-1
default, 5-3
deletion, 1-4
developer, 5-1
execution context, 5-1
firewall, 5-1
multiselectable, 5-6
multiselected, 5-6
package, 5-1
applet instance, active, 5-1
applets, 2-2,3-7,3-19
deletion, 1-3
firewall, 2-13
ISO 7816-4 compliant, 2-11
Java Card RMI, 3-1
selection, 2-3
application identifier, 5-1
Application Programming Interface, 5-1
Application Protocol Data Unit, 5-1
assigned logical channel, 5-1
atomic operation, 5-2
atomicity, 5-2
ATR, 5-2

B

basic logical channel, 5-2
big-endian, 5-2

binary compatibility, 5-2
bytecode, 5-2

C
CAD, 5-2
CAP file, 5-2
component, 5-2
Card Acceptance Device, 5-2
card session, 5-2
card terminal interaction, 3-13
CardAccessor objects, 3-12
cast, 5-2
client, 3-9, 3-21
commands
MANAGE CHANNEL CLOSE, 2-15
MANAGE CHANNEL OPEN, 2-14
SELECT FILE, 2-16
constant pool, 5-3
context, 5-3
switch, 5-3
Converter, 5-3
currently active context, 5-3
currently selected applet, 5-3
custom CAP file component, 5-3

D
default applet, 5-3

Index-1

deletion, 1-1, 1-3
deselection, 2-4

E
EEPROM, 5-3

Electrically Erasable, Programmable Read Only

Memory, 5-3
entry point objects, 5-3

entry point objects, Java Card RE, 5-5

Export file, 5-4
extended APDU, 4-1
externally visible, 5-4

F

finalization, 5-4
firewall, 2-13, 5-4
flash memory, 5-4
framework, 5-4

G
garbage collection, 5-4

H
heap, 5-4

|

installation program, 5-4

installer, 5-4

instance variables, 5-5

instantiation, 5-5

instruction, 5-5

interface
multiselectable, 2-3

internally visible, 5-5

J
JAR file, 5-5
Java Archive file, 5-5

Java Card RE
entry point objects, 5-5

Java Card RE entry point objects, 5-5

Java Card RMI, 3-1

CardAccessor objects, 3-12

client program, 3-3
running applets, 3-2

security service, 3-18
shutting down, 3-11

Java Development Kit, 5-6
JDK, 5-6

L

library package, 5-6

local variable, 5-6

logical channel, 5-6

logical channels, 2-1
management, 2-13

M
MAC, 5-6

MANAGE CHANNEL CLOSE, 2-15
MANAGE CHANNEL OPEN, 2-14

mask production, 5-6
masking, 5-6

Message Authentication Code, 5-6

method, 5-6

multiselectable applets, 5-6
multiselectable interface, 2-3
multiselected applet, 5-6

N

namespace, 5-6

native method, 5-6

nibble, 5-6

non-multiselectable applets, 2-2
Normalizer, 5-7

o

object deletion, 1-1

object owner, 5-7
object-oriented, 5-7
objects, 5-7

origin logical channel, 5-7
owning context, 5-7

P

package, 5-7
package deletion, 1-3
PCD, 5-7

persistent object, 5-7

Index-2 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

PIX, 5-7
Proximity Coupling Device, 5-7

R

RAM, 5-7

random access memory, 5-7
read-only memory, 5-8
reference implementation, 5-7
remote interface, 5-8

Remote Method Invocation, 5-5
remote methods, 5-8

remote object, 5-8

removable applets, 1-4
removable packages, 1-3
Reserved for Future Use, 5-8
RFU, 5-8

RI, 5-7

RID, 5-8

RMI, 3-1,5-5,5-8

ROM, 5-8

runtime environment, 5-8

S
security service, for Java Card RMI, 3-18
security, for Java Card RMI, 3-14
SELECT FILE, 2-16
selection, 2-3
shareable interface, 5-8
shareable interface object, 5-8
SIO, 5-8
smart card, 5-8
stubs, 3-2

generating, 3-13

T
terminal, 5-9
thread, 5-9
transaction, 5-9
transient object, 5-9

\'}

verification, 5-9

word, 5-9

Index-3

Index-4 Application Programming Notes, Java Card 3 Platform, Classic Edition ¢ July 2009

	Application Programming Notes
	Contents
	Preface
	Using Object, Package and Applet Deletion
	1.1 Object Deletion Mechanism
	1.1.1 Requesting the Object Deletion Mechanism
	1.1.2 Object Deletion Mechanism Usage Guidelines

	1.2 Package and Applet Deletion
	1.2.1 Developing Removable Packages
	1.2.2 Writing Removable Applets
	1.2.2.1 Using the AppletEvent.uninstall Method

	Working with Logical Channels
	2.1 Applets and Logical Channels
	2.1.1 Non-MultiSelectable Applets
	2.1.2 Interoperability

	2.2 Understanding the MultiSelectable Interface
	2.2.1 Selection for MultiSelectable Applets
	2.2.2 Deselection for MultiSelectable Applets

	2.3 Writing Applets For Concurrent Logical Channels
	2.3.1 MultiSelectable Applet Example
	2.3.1.1 Handling Channel Information on APDU Commands

	2.3.2 Writing ISO 7816-4:2005 Compliant Applets
	2.3.2.1 ISO 7816-4:2005 Compliant Applet Example

	2.3.3 Applet Firewall Operation Requirements
	2.3.3.1 Working with Non-MultiSelectable Applets

	2.3.4 ISO 7816-4:2005 Specific APDU Commands for Logical Channel Management
	2.3.4.1 MANAGE CHANNEL OPEN
	2.3.4.2 MANAGE CHANNEL CLOSE
	2.3.4.3 SELECT FILE

	Developing RMI Applications for the Java Card Platform
	3.1 Developing an RMI Applet for the Java Card 3 Platform
	3.1.1 Generating Stubs
	3.1.2 Running a Java Card RMI Applet
	3.1.3 Running the Java Card RMI Client Program

	3.2 Basic Example
	3.2.1 Main Program
	3.2.2 Building an Applet
	3.2.3 Writing a Client
	3.2.4 Card Terminal Interaction

	3.3 Adding Security
	3.3.1 Implementing a Security Service
	3.3.2 Building an Applet
	3.3.3 Writing a Client

	Using Extended APDU
	4.1 Extended APDU Nominal Cases
	4.2 Extended APDU Format
	4.3 Extended APDU Limits
	4.3.1 javacardx.framework.ExtendedLength Interface
	4.3.2 Extensions To javacard.framework.APDU Class

	4.4 Sending and Receiving Extended APDU Commands

	Glossary
	Index

