
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document by clicking the Feedback[+] link at: http://docs.sun.com

Lustre™ 1.6 Operations Manual

Part No. 820-3681-10

Lustre manual version: Lustre_1.6_man_v1.16

May 2009

Copyright© 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo and Lustre are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain
more information about Creative Commons licensing, visit Creative Commons Attribution-Share Alike 3.0 United States or send a letter to
Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.
Please
Recycle

http://creativecommons.org/licenses/by-sa/3.0/us

Please
Recycle

Contents

Preface xxv

Part I Lustre Architecture

1. Introduction to Lustre 1–1

1.1 Introducing the Lustre File System 1–2

1.1.1 Lustre Key Features 1–3

1.2 Lustre Components 1–4

1.2.1 MDS 1–5

1.2.2 MDT 1–5

1.2.3 OSS 1–5

1.2.4 OST 1–5

1.2.5 Lustre Clients 1–6

1.2.6 LNET 1–6

1.2.7 MGS 1–6
v

1.3 Lustre Systems 1–7

1.4 Files in the Lustre File System 1–9

1.4.1 Lustre File System and Striping 1–11

1.4.2 Lustre Storage 1–12

1.4.2.1 OSS Storage 1–12

1.4.2.2 MDS Storage 1–12

1.4.3 Lustre System Capacity 1–13

1.5 Lustre Configurations 1–13

1.6 Lustre Networking 1–15

1.7 Lustre Failover and Rolling Upgrades 1–16

1.8 Additional Lustre Features 1–18

2. Understanding Lustre Networking 2–1

2.1 Introduction to LNET 2–1

2.2 Supported Network Types 2–2

2.3 Designing Your Lustre Network 2–3

2.3.1 Identify All Lustre Networks 2–3

2.3.2 Identify Nodes to Route Between Networks 2–3

2.3.3 Identify Network Interfaces to Include/Exclude from LNET 2–3

2.3.4 Determine Cluster-wide Module Configuration 2–4

2.3.5 Determine Appropriate Mount Parameters for Clients 2–4

2.4 Configuring LNET 2–5

2.4.1 Module Parameters 2–5

2.4.1.1 Using Usocklnd 2–7

2.4.1.2 OFED InfiniBand Options 2–8

2.4.2 Module Parameters - Routing 2–8

2.4.2.1 LNET Routers 2–11

2.4.3 Downed Routers 2–12
vi Lustre 1.6 Operations Manual • May 2009

2.5 Starting and Stopping LNET 2–13

2.5.1 Starting LNET 2–13

2.5.1.1 Starting Clients 2–13

2.5.2 Stopping LNET 2–14

Part II Lustre Administration

3. Lustre Installation 3–1

3.1 Preparing to Install Lustre 3–2

3.1.1 Supported Operating System, Platform and Interconnect 3–2

3.1.2 Required Tools and Utilities 3–3

3.1.3 High-Availability Software 3–4

3.1.4 Debugging Tools 3–4

3.1.5 Environmental Requirements 3–5

3.1.6 Memory Requirements 3–6

3.1.6.1 Determining the MDS’s Memory 3–6

3.1.6.2 OSS Memory Requirements 3–7

3.2 Installing Lustre from RPMs 3–8

3.3 Installing Lustre from Source Code 3–12

3.3.1 Patching the Kernel 3–12

3.3.1.1 Introducing the Quilt Utility 3–13

3.3.1.2 Get the Lustre Source and Unpatched Kernel 3–13

3.3.1.3 Patch the Kernel 3–14

3.3.2 Create and Install the Lustre Packages 3–15

3.3.3 Installing Lustre with a Third-Party Network Stack 3–18
Contents vii

4. Configuring Lustre 4–1

4.1 Configuring Lustre 4–2

4.1.0.1 Simple Lustre Configuration Example 4–4

4.1.0.2 Module Setup 4–9

4.1.0.3 Lustre Configuration Utilities 4–9

4.2 Basic Lustre Administration 4–10

4.2.1 Specifying the File System Name 4–11

4.2.2 Mounting a Server 4–12

4.2.3 Unmounting a Server 4–13

4.2.4 Working with Inactive OSTs 4–13

4.2.5 Finding Nodes in the Lustre File System 4–14

4.2.6 Mounting a Server Without Lustre Service 4–15

4.2.7 Specifying Failout/Failover Mode for OSTs 4–15

4.2.8 Running Multiple Lustre File Systems 4–16

4.2.9 Running the Writeconf Command 4–17

4.2.10 Removing and Restoring OSTs 4–18

4.2.10.1 Removing an OST from the File System 4–18

4.2.10.2 Restoring an OST to the File System 4–19

4.2.11 Changing a Server NID 4–19

4.2.12 Aborting Recovery 4–20

4.3 More Complex Configurations 4–20

4.3.1 Failover 4–21

4.4 Operational Scenarios 4–22

4.4.1 Unmounting a Server (without Failover) 4–24

4.4.2 Unmounting a Server (with Failover) 4–24

4.4.3 Changing the Address of a Failover Node 4–24
viii Lustre 1.6 Operations Manual • May 2009

5. Service Tags 5–1

5.1 Introduction to Service Tags 5–1

5.2 Using Service Tags 5–2

5.2.1 Installing Service Tags 5–2

5.2.2 Discovering and Registering Lustre Components 5–3

5.2.3 Information Registered with Sun 5–6

6. Configuring Lustre - Examples 6–1

6.1 Simple TCP Network 6–1

6.1.1 Lustre with Combined MGS/MDT 6–1

6.1.1.1 Installation Summary 6–1

6.1.1.2 Configuration Generation and Application 6–2

6.1.2 Lustre with Separate MGS and MDT 6–3

6.1.2.1 Installation Summary 6–3

6.1.2.2 Configuration Generation and Application 6–3

6.1.2.3 Configuring Lustre with a CSV File 6–4

7. More Complicated Configurations 7–1

7.1 Multi-homed Servers 7–1

7.1.1 Modprobe.conf 7–1

7.1.2 Start Servers 7–3

7.1.3 Start Clients 7–4

7.2 Elan to TCP Routing 7–5

7.2.1 Modprobe.conf 7–5

7.2.2 Start servers 7–5

7.2.3 Start clients 7–5
Contents ix

7.3 Load Balancing with InfiniBand 7–6

7.3.1 Modprobe.conf 7–6

7.3.2 Start servers 7–6

7.3.3 Start clients 7–7

7.4 Multi-Rail Configurations with LNET 7–7

8. Failover 8–1

8.1 What is Failover? 8–1

8.1.1 The Power Management Software 8–3

8.1.2 Power Equipment 8–3

8.1.3 Heartbeat 8–4

8.1.4 Connection Handling During Failover 8–4

8.1.5 Roles of Nodes in a Failover 8–5

8.2 OST Failover 8–6

8.3 MDS Failover 8–6

8.4 Configuring MDS and OSTs for Failover 8–6

8.4.1 Configuring Lustre for Failover 8–6

8.4.2 Starting/Stopping a Resource 8–7

8.4.3 Active/Active Failover Configuration 8–7

8.4.4 Hardware Requirements for Failover 8–8

8.4.4.1 Hardware Preconditions 8–8

8.5 Setting Up Failover with Heartbeat V1 8–9

8.5.1 Installing the Software 8–9

8.5.1.1 Configuring Heartbeat 8–10

8.6 Using MMP 8–16
x Lustre 1.6 Operations Manual • May 2009

8.7 Setting Up Failover with Heartbeat V2 8–17

8.7.1 Installing the Software 8–17

8.7.2 Configuring the Hardware 8–18

8.7.2.1 Hardware Preconditions 8–18

8.7.2.2 Configuring Lustre 8–19

8.7.2.3 Configuring Heartbeat 8–19

8.7.3 Operation 8–21

8.7.3.1 Initial startup 8–21

8.7.3.2 Testing 8–22

8.7.3.3 Failback 8–22

8.8 Considerations with Failover Software and Solutions 8–22

9. Configuring Quotas 9–1

9.1 Working with Quotas 9–1

9.1.1 Enabling Disk Quotas 9–2

9.1.1.1 Administrative and Operational Quotas 9–3

9.1.2 Creating Quota Files and Quota Administration 9–4

9.1.3 Resetting the Quota 9–6

9.1.4 Quota Allocation 9–6

9.1.5 Known Issues with Quotas 9–10

9.1.5.1 Granted Cache and Quota Limits 9–10

9.1.5.2 Quota Limits 9–11

9.1.5.3 Quota File Formats 9–11

9.1.6 Lustre Quota Statistics 9–12

9.1.6.1 Interpreting Quota Statistics 9–13
Contents xi

10. RAID 10–1

10.1 Considerations for Backend Storage 10–1

10.1.1 Selecting Storage for the MDS and OSS 10–1

10.1.2 Reliability Best Practices 10–3

10.1.3 Understanding Double Failures with Hardware and Software
RAID5 10–3

10.1.4 Performance Tradeoffs 10–4

10.1.5 Formatting 10–4

10.1.5.1 Creating an External Journal 10–5

10.2 Insights into Disk Performance Measurement 10–6

10.3 Lustre Software RAID Support 10–7

10.3.0.1 Enabling Software RAID on Lustre 10–7

11. Kerberos 11–1

11.1 What is Kerberos? 11–1

11.2 Lustre Setup with Kerberos 11–2

11.2.1 Configuring Kerberos for Lustre 11–2

11.2.1.1 Kerberos Distributions Supported on Lustre 11–2

11.2.1.2 Preparing to Set Up Lustre with Kerberos 11–3

11.2.1.3 Configuring Lustre for Kerberos 11–4

11.2.1.4 Configuring Kerberos 11–6

11.2.1.5 Setting the Environment 11–8

11.2.1.6 Building Lustre 11–9

11.2.1.7 Running GSS Daemons 11–10
xii Lustre 1.6 Operations Manual • May 2009

11.2.2 Types of Lustre-Kerberos Flavors 11–11

11.2.2.1 Basic Flavors 11–11

11.2.2.2 Security Flavor 11–12

11.2.2.3 Customized Flavor 11–13

11.2.2.4 Specifying Security Flavors 11–14

11.2.2.5 Mounting Clients 11–14

11.2.2.6 Rules, Syntax and Examples 11–15

11.2.2.7 Authenticating Normal Users 11–16

12. Bonding 13–1

13.1 Network Bonding 13–1

13.2 Requirements 13–2

13.3 Using Lustre with Multiple NICs versus Bonding NICs 13–4

13.4 Bonding Module Parameters 13–5

13.5 Setting Up Bonding 13–5

13.5.1 Examples 13–9

13.6 Configuring Lustre with Bonding 13–11

13.6.1 Bonding References 13–11

13. Upgrading Lustre 14–1

14.1 Lustre Interoperability 14–1

14.2 Upgrading from Lustre 1.4.12 to Latest 1.6.x Version 14–2

14.2.1 Prerequisites to Upgrading Lustre 14–2

14.2.2 Supported Upgrade Paths 14–3

14.2.3 Starting Clients 14–4

14.2.4 Upgrading a Single File system 14–4

14.2.5 Upgrading Multiple File Systems with a Shared MGS 14–7
Contents xiii

14.3 Upgrading Lustre 1.6.x to the Next Minor Version 14–9

14.4 Downgrading from Latest 1.6.x Version to Lustre 1.4.12 14–11

14.4.1 Downgrade Requirements 14–11

14.4.2 Downgrading a File System 14–11

14. Lustre SNMP Module 14–1

14.1 Installing the Lustre SNMP Module 14–2

14.2 Building the Lustre SNMP Module 14–2

14.3 Using the Lustre SNMP Module 14–3

15. Backup and Restore 15–1

15.1 Lustre Backups 15–1

15.1.1 File System-level Backups 15–1

15.1.2 Device-level Backups 15–2

15.1.3 Performing File-level Backups 15–2

15.1.3.1 Backing Up an MDS File 15–3

15.1.3.2 Backing Up an OST File 15–4

15.2 Restoring from a File-level Backup 15–4

15.3 LVM Snapshots on Lustre Target Disks 15–6

15.3.1 Creating LVM-based Lustre File System As a Backup 15–6

15.3.2 Backing Up New Files to the Backup File System 15–8

15.3.3 Creating LVM Snapshot Volumes 15–8

15.3.4 Restoring From Old Snapshot 15–9

15.3.5 Delete Old Snapshots 15–10

16. POSIX 16–1

16.1 Installing POSIX 16–2

16.2 Running POSIX Tests Against Lustre 16–4

16.3 Isolating and Debugging Failures 16–5
xiv Lustre 1.6 Operations Manual • May 2009

17. Benchmarking 17–1

17.1 Bonnie++ Benchmark 17–2

17.2 IOR Benchmark 17–3

17.3 IOzone Benchmark 17–5

18. Lustre I/O Kit 18–1

18.1 Lustre I/O Kit Description and Prerequisites 18–1

18.1.1 Downloading an I/O Kit 18–2

18.1.2 Prerequisites to Using an I/O Kit 18–2

18.2 Running I/O Kit Tests 18–2

18.2.1 sgpdd_survey 18–3

18.2.2 obdfilter_survey 18–5

18.2.2.1 Running obdfilter_survey Against a Local Disk 18–6

18.2.2.2 Running obdfilter_survey Against a Network 18–7

18.2.2.3 Running obdfilter_survey Against a Network Disk
18–8

18.2.2.4 Output Files 18–9

18.2.2.5 Script Output 18–10

18.2.2.6 Visualizing Results 18–10

18.2.3 ost_survey 18–11

18.3 PIOS Test Tool 18–12

18.3.1 Synopsis 18–13

18.3.2 PIOS I/O Modes 18–14

18.3.3 PIOS Parameters 18–15

18.3.4 PIOS Examples 18–18
Contents xv

18.4 LNET Self-Test 18–19

18.4.1 Basic Concepts of LNET Self-Test 18–19

18.4.1.1 Modules 18–19

18.4.1.2 Utilities 18–20

18.4.1.3 Session 18–20

18.4.1.4 Console 18–20

18.4.1.5 Group 18–20

18.4.1.6 Test 18–21

18.4.1.7 Batch 18–21

18.4.1.8 Sample Script 18–21

18.4.2 LNET Self-Test Concepts 18–22

18.4.3 LNET Self-Test Commands 18–22

18.4.3.1 Session 18–22

18.4.3.2 Group 18–24

18.4.3.3 Batch and Test 18–27

18.4.3.4 Other Commands 18–30

19. Lustre Recovery 19–1

19.1 Recovering Lustre 19–1

19.2 Types of Failure 19–2

19.2.1 Client Failure 19–2

19.2.2 MDS Failure (and Failover) 19–3

19.2.3 OST Failure 19–3

19.2.4 Network Partition 19–4
xvi Lustre 1.6 Operations Manual • May 2009

Part III Lustre Tuning, Monitoring and Troubleshooting

20. Lustre Tuning 20–1

20.1 Module Options 20–1

20.1.0.1 OSS Service Thread Count 20–2

20.1.1 MDS Threads 20–3

20.1.1.1 I/O Scheduler 20–3

20.2 LNET Tunables 20–4

20.2.0.1 Transmit and receive buffer size: 20–4

20.2.0.2 enable_irq_affinity 20–4

20.3 Options to Format MDT and OST File Systems 20–5

20.3.1 Planning for Inodes 20–5

20.3.2 Sizing the MDT 20–5

20.3.3 Overriding Default Formatting Options 20–6

20.3.3.1 Number of Inodes for MDT 20–6

20.3.3.2 Inode Size for MDT 20–6

20.3.3.3 Number of Inodes for OST 20–7

20.4 Network Tuning 20–7

20.5 DDN Tuning 20–8

20.5.1 Setting Readahead and MF 20–8

20.5.2 Setting Segment Size 20–9

20.5.3 Setting Write-Back Cache 20–9

20.5.4 Setting maxcmds 20–10

20.5.5 Further Tuning Tips 20–10

20.6 Large-Scale Tuning for Cray XT and Equivalents 20–12

20.6.1 Network Tunables 20–12

20.7 Lockless I/O Tunables 20–14

20.8 Data Checksums 20–14
Contents xvii

21. Lustre Monitoring and Troubleshooting 21–1

21.1 Monitoring Lustre 21–1

21.2 Troubleshooting Lustre 21–4

21.2.1 Error Numbers 21–4

21.2.2 Error Messages 21–5

21.2.3 Lustre Logs 21–5

21.3 Submitting a Lustre Bug 21–6

21.4 Common Lustre Problems and Performance Tips 21–7

21.4.1 Recovering from an Unavailable OST 21–7

21.4.2 Write Performance Better Than Read Performance 21–8

21.4.3 OST Object is Missing or Damaged 21–8

21.4.4 OSTs Become Read-Only 21–10

21.4.5 Identifying a Missing OST 21–10

21.4.6 Changing Parameters 21–12

21.4.7 Viewing Parameters 21–13

21.4.8 Default Striping 21–14

21.4.9 Erasing a File System 21–14

21.4.10 Reclaiming Reserved Disk Space 21–15

21.4.11 Considerations in Connecting a SAN with Lustre 21–15

21.4.12 Handling/Debugging "Bind: Address already in use" Error 21–16

21.4.13 Replacing An Existing OST or MDS 21–17

21.4.14 Handling/Debugging Error "- 28" 21–17

21.4.15 Triggering Watchdog for PID NNN 21–18

21.4.16 Handling Timeouts on Initial Lustre Setup 21–19

21.4.17 Handling/Debugging "LustreError: xxx went back in time" 21–20

21.4.18 Lustre Error: "Slow Start_Page_Write" 21–20

21.4.19 Drawbacks in Doing Multi-client O_APPEND Writes 21–21

21.4.20 Slowdown Occurs During Lustre Startup 21–21
xviii Lustre 1.6 Operations Manual • May 2009

21.4.21 Log Message ‘Out of Memory’ on OST 21–21

21.4.22 Number of OSTs Needed for Sustained Throughput 21–22

21.4.23 Setting SCSI I/O Sizes 21–22

22. LustreProc 22–1

22.1 /proc Entries for Lustre 22–2

22.1.1 Finding Lustre 22–2

22.1.2 Lustre Timeouts 22–3

22.1.3 Adaptive Timeouts in Lustre 22–5

22.1.3.1 Configuring Adaptive Timeouts 22–6

22.1.3.2 Interpreting Adaptive Timeout Information 22–8

22.1.4 LNET Information 22–9

22.1.5 Free Space Distribution 22–11

22.1.5.1 Managing Stripe Allocation 22–11

22.2 Lustre I/O Tunables 22–12

22.2.1 Client I/O RPC Stream Tunables 22–12

22.2.2 Watching the Client RPC Stream 22–14

22.2.3 Client Read-Write Offset Survey 22–15

22.2.4 Client Read-Write Extents Survey 22–16

22.2.5 Watching the OST Block I/O Stream 22–18

22.2.6 Using File Readahead and Directory Statahead 22–19

22.2.6.1 Tuning File Readahead 22–19

22.2.6.2 Tuning Directory Statahead 22–20

22.2.7 mballoc History 22–21

22.2.8 mballoc3 Tunables 22–23

22.2.9 Locking 22–25

22.3 Debug Support 22–26

22.3.1 RPC Information for Other OBD Devices 22–27

22.3.1.1 llobdstat 22–30
Contents xix

23. Lustre Debugging 23–1

23.1 Lustre Debug Messages 23–2

23.1.1 Format of Lustre Debug Messages 23–3

23.2 Tools for Lustre Debugging 23–4

23.2.1 Debug Daemon Option to lctl 23–5

23.2.1.1 lctl Debug Daemon Commands 23–5

23.2.2 Controlling the Kernel Debug Log 23–7

23.2.3 The lctl Tool 23–8

23.2.4 Finding Memory Leaks 23–9

23.2.5 Printing to /var/log/messages 23–10

23.2.6 Tracing Lock Traffic 23–10

23.2.7 Sample lctl Run 23–10

23.2.8 Adding Debugging to the Lustre Source Code 23–11

23.2.9 Debugging in UML 23–12

23.3 Troubleshooting with strace 23–13

23.4 Looking at Disk Content 23–14

23.4.1 Determine the Lustre UUID of an OST 23–15

23.4.2 Tcpdump 23–15

23.5 Ptlrpc Request History 23–15

23.6 Using LWT Tracing 23–16
xx Lustre 1.6 Operations Manual • May 2009

Part IV Lustre for Users

24. Free Space and Quotas 24–1

24.1 Querying File System Space 24–2

24.2 Using Quotas 24–4

25. Striping and I/O Options 25–1

25.1 File Striping 25–1

25.1.1 Advantages of Striping 25–2

25.1.1.1 Bandwidth 25–2

25.1.1.2 Size 25–2

25.1.2 Disadvantages of Striping 25–3

25.1.2.1 Increased Overhead 25–3

25.1.2.2 Increased Risk 25–3

25.1.3 Stripe Size 25–3

25.2 Displaying Files and Directories with lfs getstripe 25–4

25.3 lfs setstripe – Setting File Layouts 25–6

25.3.1 Changing Striping for a Subdirectory 25–7

25.3.2 Using a Specific Striping Pattern/File Layout for a Single File 25–7

25.3.3 Creating a File on a Specific OST 25–8

25.4 Free Space Management 25–8

25.4.1 Round-Robin Allocator 25–9

25.4.2 Weighted Allocator 25–9

25.4.3 Adjusting the Weighting Between Free Space and Location 25–9

25.5 Performing Direct I/O 25–10

25.5.1 Making File System Objects Immutable 25–10
Contents xxi

25.6 Other I/O Options 25–11

25.6.1 End-to-End Client Checksums 25–11

25.6.1.1 Changing Checksum Algorithms 25–12

25.7 Striping Using llapi 25–13

26. Lustre Security 26–1

26.1 Using ACLs 26–1

26.1.1 How ACLs Work 26–1

26.1.2 Using ACLs with Lustre 26–2

26.1.3 Examples 26–3

26.2 Using Root Squash 26–4

26.2.1 Configuring Root Squash 26–4

26.2.2 Enabling and Tuning Root Squash 26–4

26.2.3 Tips on Using Root Squash 26–6

27. Lustre Operating Tips 27–1

27.1 Adding an OST to a Lustre File System 27–2

27.2 A Simple Data Migration Script 27–3

27.3 Adding Multiple SCSI LUNs on Single HBA 27–5

27.4 Failures Running a Client and OST on the Same Machine 27–5

27.5 Improving Lustre Metadata Performance While Using Large Directories
27–6
xxii Lustre 1.6 Operations Manual • May 2009

Part V Reference

28. User Utilities (man1) 28–1

28.1 lfs 28–2

28.2 lfsck 28–11

28.3 Filefrag 28–19

28.4 Mount 28–21

28.5 Handling Timeouts 28–22

29. Lustre Programming Interfaces (man2) 29–1

29.1 User/Group Cache Upcall 29–1

29.1.1 Name 29–1

29.1.2 Description 29–2

29.1.2.1 Primary and Secondary Groups 29–2

29.1.3 Parameters 29–3

29.1.4 Data structures 29–3

30. Setting Lustre Properties (man3) 30–1

30.1 Using llapi 30–1

30.1.1 llapi_file_create 30–1

30.1.2 llapi_file_get_stripe 30–4

30.1.3 llapi_file_open 30–5

30.1.4 llapi_quotactl 30–6

30.1.5 llapi_path2fid 30–9
Contents xxiii

31. Configuration Files and Module Parameters (man5) 31–1

31.1 Introduction 31–1

31.2 Module Options 31–2

31.2.1 LNET Options 31–3

31.2.1.1 Network Topology 31–3

31.2.1.2 networks ("tcp") 31–5

31.2.1.3 routes (“”) 31–5

31.2.1.4 forwarding ("") 31–7

31.2.2 SOCKLND Kernel TCP/IP LND 31–8

31.2.3 QSW LND 31–10

31.2.4 RapidArray LND 31–11

31.2.5 VIB LND 31–12

31.2.6 OpenIB LND 31–14

31.2.7 Portals LND (Linux) 31–15

31.2.8 Portals LND (Catamount) 31–18

31.2.9 MX LND 31–20
xxiv Lustre 1.6 Operations Manual • May 2009

32. System Configuration Utilities (man8) 32–1

32.1 mkfs.lustre 32–2

32.2 tunefs.lustre 32–5

32.3 lctl 32–8

32.4 mount.lustre 32–13

32.5 New Utilities in Lustre 1.6 32–16

32.5.1 lustre_rmmod.sh 32–16

32.5.2 e2scan 32–16

32.5.3 Utilities to Manage Large Clusters 32–17

32.5.4 Application Profiling Utilities 32–18

32.5.5 More /proc Statistics for Application Profiling 32–18

32.5.6 Testing / Debugging Utilities 32–19

32.5.7 Flock Feature 32–20

32.5.7.1 Example 32–20

32.5.8 l_getgroups 32–21

32.5.9 llobdstat 32–22

32.5.10 llstat 32–23

32.5.11 lst 32–25

32.5.12 plot-llstat 32–27

32.5.13 routerstat 32–28

32.5.14 ll_recover_lost_found_objs 32–29
Contents xxv

33. System Limits 33–1

33.1 Maximum Stripe Count 33–1

33.2 Maximum Stripe Size 33–2

33.3 Minimum Stripe Size 33–2

33.4 Maximum Number of OSTs and MDTs 33–2

33.5 Maximum Number of Clients 33–2

33.6 Maximum Size of a File System 33–3

33.7 Maximum File Size 33–3

33.8 Maximum Number of Files or Subdirectories in a Single Directory 33–3

33.9 MDS Space Consumption 33–4

33.10 Maximum Length of a Filename and Pathname 33–4

33.11 Maximum Number of Open Files for Lustre File Systems 33–4

33.12 OSS RAM Size for a Single OST 33–5

A. Version Log A–1

B. Lustre Knowledge Base B–1

Glossary Glossary–1

Index Index–1
xxvi Lustre 1.6 Operations Manual • May 2009

Preface

The Lustre 1.6 Operations Manual provides detailed information and procedures to
install, configure and tune Lustre. The manual covers topics such as failover, quotas,
striping and bonding. The Lustre manual also contains troubleshooting information
and tips to improve Lustre operation and performance.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
xxv

Shell Prompts

Typographic Conventions

Note – Characters display differently depending on browser settings. If characters
do not display correctly, change the character encoding in your browser to Unicode
UTF-8.

A '\' (backslash) continuation character is used to indicate that commands are too
long to fit on one text line.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
xxvi Lustre 1.6 Operations Manual • May 2009

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.
Preface xxvii

xxviii Lustre 1.6 Operations Manual • May 2009

Revision History

BookTitle Part Number Rev Date Comments

Lustre 1.6 Operations Manual 820-3681-10 A November 2008 First Sun re-brand of Lustre manual.

Lustre 1.6 Operations Manual 820-3681-10 B March 2008 Second Sun manual version.

Lustre 1.6 Operations Manual 820-3681-10 C May 2008 Third Sun manual version.

Lustre 1.6 Operations Manual 820-3681-10 D July 2008 Fourth Sun manual version.

Lustre 1.6 Operations Manual 820-3681-10 E September 2008 Fifth Sun manual version.

Lustre 1.6 Operations Manual 820-3681-10 F November 2008 Sixth Sun manual version.

Lustre 1.6 Operations Manual 820-3681-10 G May 2009 Seventh Sun manual version.

PART I Lustre Architecture

Lustre is a storage-architecture for clusters. The central component is the Lustre file
system, a shared file system for clusters. The Lustre file system is currently available
for Linux and provides a POSIX-compliant UNIX file system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters in
the world with tens of thousands of client systems, petabytes (PBs) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, servicing dozens of clusters on an
unprecedented scale.

CHAPTER 1

Introduction to Lustre

This chapter describes Lustre software and components, and includes the following
sections:

■ Introducing the Lustre File System

■ Lustre Components

■ Lustre Systems

■ Files in the Lustre File System

■ Lustre Configurations

■ Lustre Networking

■ Lustre Failover and Rolling Upgrades

■ Additional Lustre Features
1-1

1.1 Introducing the Lustre File System
Lustre is a storage architecture for clusters. The central component is the Lustre file
system, a shared file system for clusters. Currently, the Lustre file system is available
for Linux and provides a POSIX-compliant UNIX file system interface. In 2008, a
complementary Solaris version is planned.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters in
the world, with tens of thousands of client systems, petabytes (PB) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, serving dozens of clusters on an
unprecedented scale.

The scalability of a Lustre file system reduces the need to deploy many separate file
systems (such as one for each cluster). This offers significant storage management
advantages, for example, avoiding maintenance of multiple data copies staged on
multiple file systems. Hand in hand with aggregating file system capacity with many
servers, I/O throughput is also aggregated and scales with additional servers.
Moreover, throughput (or capacity) can be easily adjusted after the cluster is installed
by adding servers dynamically.

Because Lustre is open source software, it has been adopted by numerous partners
and integrated with their offerings. Both Red Hat and SUSE offer kernels with Lustre
patches for easy deployment.
1-2 Lustre 1.6 Operations Manual • May 2009

1.1.1 Lustre Key Features
The key features of Lustre include:

■ Scalability: On Lustre, individual nodes, cluster size and disk storage are all
scalable. For nodes, Lustre scales up and down well. For clusters, we currently
support a production environment with 25,000 clients, and many clusters in the
10,000-20,000 client range are supported. Another installation supports 450 OSSs
with up to 1,000 OSTs. For disk storage, several 1 PB Lustre file systems have been
in use since 2006, with a 2 billion file maximum.

■ Performance: On clusters, Lustre offers current performance of 100 GB/s in
production deployments, 130 GB/s sustained in a test environment, and 13,000
creates/s sustained. On nodes, Lustre offers current single node performance of 2
GB/s client throughout (max) and 2.5 GB/s OSS throughput (max).

■ POSIX compliance: The full POSIX test suite passes on Lustre clients. In a cluster,
POSIX means that most operations are atomic and clients never see stale data or
metadata.

■ High-availability: Lustre offers shared storage partitions for OSS targets (OSTs),
and a shared storage partition for MDS target (MDT).

■ Security: In Lustre, it is an option to have TCP connections only from privileged
ports. Group membership handling is server-based. POSIX ACLs are supported.

■ Open source: Lustre is licensed under the GNU GPL
Chapter 1 Introduction to Lustre 1-3

1.2 Lustre Components
A Lustre cluster consists of the following basic components:

■ Metadata Server (MDS)

■ Metadata Targets (MDT)

■ Object Storage Servers (OSS)

■ Object Storage Target (OST)

■ Lustre clients

FIGURE 1-1 Lustre components in a basic cluster
1-4 Lustre 1.6 Operations Manual • May 2009

1.2.1 MDS
The MDS is a server that makes metadata available to Lustre clients via MDTs. Each
MDS manages the names and directories in the file system, and provides the network
request handling for one or more local MDTs.1

1.2.2 MDT
The MDT stores metadata (such as filenames, directories, permissions and file layout)
on an MDS. There is one MDT per file system.

An MDT on a shared storage target can be available to many MDSs, although only
one should actually use it. If an active MDS fails, a passive MDS can serve the MDT
and make it available to clients. This is referred to as MDS failover.

1.2.3 OSS
The OSS provides file I/O service, and network request handling for one or more
local OSTs. Typically, an OSS serves between 2 and 8 OSTs, up to 8 TB2 each.

The MDT, OSTs and Lustre clients can run concurrently (in any mixture) on a single
node. However, a typical configuration is an MDT on a dedicated node, two or more
OSTs on each OSS node, and a client on each of a large number of compute nodes.

1.2.4 OST
The OST stores file data (chunks of user files) on one or more OSSs. A single Lustre
file system can have multiple OSTs, each serving a subset of file data. There is not
necessarily a 1:1 correspondence between a file and an OST. To optimize
performance, a file may be spread over many OSTs. A Logical Object Volume (LOV),
manages file striping across many OSTs.

1. For historical reasons, the term “MDS” has traditionally referred to both the MDS and a single MDT. This
manual version (and future versions) use the more specific meaning.

2. Lustre observes the IEC standard for base 2 and base 10 naming.
Chapter 1 Introduction to Lustre 1-5

http://www.iec.ch/zone/si/si_bytes.htm

1.2.5 Lustre Clients
Lustre clients are computational, visualization or desktop nodes that mount the
Lustre file system.3

The Lustre client software consists of an interface between the Linux Virtual File
System and the Lustre servers. Each target has a client counterpart: Metadata Client
(MDC), Object Storage Client (OSC), and a Management Client (MGC). A group of
OSCs are wrapped into a single LOV. Working in concert, the OSCs provide
transparent access to the file system.

Clients which mount the Lustre file system see a single, coherent, synchronized
namespace at all times. Different clients can write to different parts of the same file at
the same time, while other clients can read from the file.

Lustre includes several additional components, LNET and the MGS.

1.2.6 LNET
Lustre Networking (LNET) is an API that handles metadata and file I/O data for file
system servers and clients. LNET supports multiple, heterogeneous interfaces on
clients and servers. Lustre Network Drivers (LNDs) are available for a number of
commodity and high-end networks, including TCP/IP, Quadrics Elan, Myrinet (MX
and GM) and Cray.

1.2.7 MGS
The MGS stores configuration information for all Lustre file systems in a cluster. Each
Lustre target contacts the MGS to provide information, and Lustre clients contact the
MGS to retrieve information. The MGS requires its own disk for storage. However,
there is a provision that allows the MGS to share a disk ("co-locate") with a single
MDT. The MGS is not considered "part" of an individual file system; it provides
configuration information to other Lustre components.

3. Lustre clients require Lustre software to mounta a Lustre file system.
1-6 Lustre 1.6 Operations Manual • May 2009

1.3 Lustre Systems
Lustre components work together as coordinated systems to manage file and
directory operations in the file system.

FIGURE 1-2 Lustre system interaction in a file system

The characteristics of the Lustre system include:

Typical number of
systems Performance

Required
attached storage

Desirable hardware
characteristics

Clients 1-100,000 1 GB/sec I/O,
1,000 metadata
ops/sec

None None

OSS 1-1,000 500-2.5 GB/sec File system
capacity/OSS
count

Good bus bandwidth

MDS 2
(2-100 in future)

3,000-15,000
metadata ops/sec

1-2% of file
system capacity

Adequate CPU power,
plenty of memory
Chapter 1 Introduction to Lustre 1-7

At scale, the Lustre cluster can include up to 1,000 OSSs and 100,000 clients.

FIGURE 1-3 Lustre cluster at scale
1-8 Lustre 1.6 Operations Manual • May 2009

1.4 Files in the Lustre File System
Traditional UNIX disk file systems use inodes, which contain lists of block numbers
where file data for the inode is stored. Similarly, for each file in a Lustre file system,
one inode exists on the MDT. However, in Lustre, the inode on the MDT does not
point to data blocks, but instead, points to one or more objects associated with the
files. This is illustrated in FIGURE 1-4. These objects are implemented as files on the
OST file systems and contain file data.

FIGURE 1-4 MDS inodes point to objects, ext3 inodes point to data
Chapter 1 Introduction to Lustre 1-9

FIGURE 1-5 shows how a file open operation transfers the object pointers from the
MDS to the client when a client opens the file, and how the client uses this
information to perform I/O on the file, directly interacting with the OSS nodes where
the objects are stored.

FIGURE 1-5 File open and file I/O in Lustre

If only one object is associated with an MDS inode, that object contains all of the data
in that Lustre file. When more than one object is associated with a file, data in the file
is "striped" across the objects.

The benefits of the Lustre arrangement are clear. The capacity of a Lustre file system
equals the sum of the capacities of the storage targets. The aggregate bandwidth
available in the file system equals the aggregate bandwidth offered by the OSSs to
the targets. Both capacity and aggregate I/O bandwidth scale simply with the
number of OSSs.
1-10 Lustre 1.6 Operations Manual • May 2009

1.4.1 Lustre File System and Striping
Striping allows parts of files to be stored on different OSTs, as shown in FIGURE 1-6. A
RAID 0 pattern, in which data is "striped" across a certain number of objects, is used;
the number of objects is called the stripe_count. Each object contains "chunks" of
data. When the "chunk" being written to a particular object exceeds the stripe_size,
the next "chunk" of data in the file is stored on the next target.

FIGURE 1-6 Files striped with a stripe count of 2 and 3 with different stripe sizes

File striping presents several benefits. One is that the maximum file size is not
limited by the size of a single target. Lustre can stripe files over up to 160 targets, and
each target can support a maximum disk use of 8 TB by a file. This leads to a
maximum disk use of 1.48 PB by a file in Lustre. Note that the maximum file size is
much larger (2^64 bytes), but the file cannot have more than 1.48 PB of allocated
data; hence a file larger than 1.48 PB must have many sparse sections. While a single
file can only be striped over 160 targets, Lustre file systems have been built with
almost 5000 targets, which is enough to support a 40 PB file system.

Another benefit of striped files is that the I/O bandwidth to a single file is the
aggregate I/O bandwidth to the objects in a file and this can be as much as the
bandwidth of up to 160 servers.
Chapter 1 Introduction to Lustre 1-11

1.4.2 Lustre Storage
The storage attached to the servers is partitioned, optionally organized with logical
volume management (LVM) and formatted as file systems. Lustre OSS and MDS
servers read, write and modify data in the format imposed by these file systems.

1.4.2.1 OSS Storage

Each OSS can manage multiple object storage targets (OSTs), one for each volume;
I/O traffic is load-balanced against servers and targets. An OSS should also balance
network bandwidth between the system network and attached storage to prevent
network bottlenecks. Depending on the server's hardware, an OSS typically serves
between 2 and 25 targets, with each target up to 8 terabytes (TBs) in size.

1.4.2.2 MDS Storage

For the MDS nodes, storage must be attached for Lustre metadata, for which 1-2
percent of the file system capacity is needed. The data access pattern for MDS storage
is different from the OSS storage: the former is a metadata access pattern with many
seeks and read-and-writes of small amounts of data, while the latter is an I/O access
pattern, which typically involves large data transfers.

High throughput to MDS storage is not important. Therefore, we recommend that a
different storage type be used for the MDS (for example FC or SAS drives, which
provide much lower seek times). Moreover, for low levels of I/O, RAID 5/6 patterns
are not optimal, a RAID 0+1 pattern yields much better results.

Lustre uses journaling file system technology on the targets, and for a MDS, an
approximately 20 percent performance gain can sometimes be obtained by placing
the journal on a separate device. Typically, the MDS requires CPU power; we
recommend at least four processor cores.
1-12 Lustre 1.6 Operations Manual • May 2009

1.4.3 Lustre System Capacity
Lustre file system capacity is the sum of the capacities provided by the targets.

As an example, 64 OSSs, each with two 8-TB targets, provide a file system with a
capacity of nearly 1 PB. If this system uses sixteen 1-TB SATA disks, it may be
possible to get 50 MB/sec from each drive, providing up to 800 MB/sec of disk
bandwidth. If this system is used as storage backend with a system network like
InfiniBand that supports a similar bandwidth, then each OSS could provide 800
MB/sec of end-to-end I/O throughput. Note that the OSS must provide inbound and
outbound bus throughput of 800 MB/sec simultaneously. The cluster could see
aggregate I/O bandwidth of 64x800, or about 50 GB/sec. Although the architectural
constraints described here are simple, in practice it takes careful hardware selection,
benchmarking and integration to obtain such results.

In a Lustre file system, storage is only attached to server nodes, not to client nodes. If
failover capability is desired, then this storage must be attached to multiple servers.
In all cases, the use of storage area networks (SANs) with expensive switches can be
avoided, because point-to-point connections between the servers and the storage
arrays normally provide the simplest and best attachments.

1.5 Lustre Configurations
Lustre file systems are easy to configure. First, the Lustre software is installed, and
then MDT and OST partitions are formatted using the standard UNIX mkfs
command. Next, the volumes carrying the Lustre file system targets are mounted on
the server nodes as local file systems. Finally, the Lustre client systems are mounted
(in a manner similar to NFS mounts).
Chapter 1 Introduction to Lustre 1-13

The configuration commands listed below are for the Lustre cluster shown in
FIGURE 1-7.

On the MDS (mds.your.org@tcp0):

mkfs.lustre --mdt --mgs --fsname=large-fs /dev/sda
mount -t lustre /dev/sda /mnt/mdt

On OSS1:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdb
mount -t lustre /dev/sdb/mnt/ost1

On OSS2:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdc
mount -t lustre /dev/sdc/mnt/ost2

FIGURE 1-7 A simple Lustre cluster
1-14 Lustre 1.6 Operations Manual • May 2009

1.6 Lustre Networking
In clusters with a Lustre file system, the system network connects the servers and the
clients. The disk storage behind the MDSs and OSSs connects to these servers using
traditional SAN technologies, but this SAN does not extend to the Lustre client
system. Servers and clients communicate with one another over a custom networking
API known as Lustre Networking (LNET). LNET interoperates with a variety of
network transports through Network Abstraction Layers (NAL).

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

■ Support for many commonly-used network types such as InfiniBand and IP.

■ High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

■ Simultaneous availability of multiple network types with routing between them.

LNET includes LNDs to support many network type including:

■ InfiniBand: OpenFabrics versions 1.0 and 1.2, Mellanox Gold, Cisco, Voltaire, and
Silverstorm

■ TCP: Any network carrying TCP traffic, including GigE, 10GigE, and IPoIB

■ Quadrics: Elan3, Elan4

■ Myrinet: GM, MX

■ Cray: Seastar, RapidArray

The LNDs that support these networks are pluggable modules for the LNET software
stack.

LNET offers extremely high performance. It is common to see end-to-end throughput
over GigE networks in excess of 110 MB/sec, InfiniBand double data rate (DDR) links
reach bandwidths up to 1.5 GB/sec, and 10GigE interfaces provide end-to-end
bandwidth of over 1 GB/sec.
Chapter 1 Introduction to Lustre 1-15

1.7 Lustre Failover and Rolling Upgrades
Lustre offers a robust, application-transparent failover mechanism that delivers call
completion. This failover mechanism, in conjunction with software that offers
interoperability between versions, is used to support rolling upgrades of file system
software on active clusters.

The Lustre recovery feature allows servers to be upgraded without taking down the
system. The server is simply taken offline, upgraded and restarted (or failed over to
a standby server with the new software). All active jobs continue to run without
failures, they merely experience a delay.

Lustre MDSs are configured as an active/passive pair, while OSSs are typically
deployed in an active/active configuration that provides redundancy without extra
overhead, as shown in FIGURE 1-8. Often the standby MDS is the active MDS for
another Lustre file system, so no nodes are idle in the cluster.

FIGURE 1-8 Lustre failover configurations for OSSs and MDSs
1-16 Lustre 1.6 Operations Manual • May 2009

Although a file system checking tool (lfsck) is provided for disaster recovery,
journaling and sophisticated protocols re-synchronize the cluster within seconds,
without the need for a lengthy fsck. Lustre version interoperability between
successive minor versions is guaranteed. As a result, the Lustre failover capability is
used regularly to upgrade the software without cluster downtime.

Note – Lustre does not provide redundancy for data; it depends exclusively on
redundancy of backing storage devices. The backing OST storage should be RAID 5
or, preferably, RAID 6 storage. MDT storage should be RAID 1 or RAID 0+1.
Chapter 1 Introduction to Lustre 1-17

1.8 Additional Lustre Features
Additional features of the Lustre file system are described below.

■ Interoperability: Lustre runs on many CPU architectures (x86, IA-64, x86-64
(EM64 and AMD64, Power PC architectures [clients only], and mixed-endian
clusters; clients and servers are interoperable between these platforms. Lustre
strives to provide interoperability between adjacent software releases. Versions
1.4.x (x > 7) and version 1.6.x can interoperate with mixed clients and servers.4

■ Access control list (ACL): Currently, the Lustre security model follows a UNIX file
system, enhanced with POSIX ACLs. Noteworthy additional features include root
squash and connecting from privileged ports only.

■ Quotas: User and group quotas are available for Lustre.

■ OSS addition: The capacity of a Lustre file system and aggregate cluster
bandwidth can be increased without interrupting any operations by adding a new
OSS with OSTs to the cluster.

■ Controlled striping: The default stripe count and stripe size can be controlled in
various ways. The file system has a default setting that is determined at format
time. Directories can be given an attribute so that all files under that directory
(and recursively under any sub-directory) have a striping pattern determined by
the attribute. Finally, utilities and application libraries are provided to control the
striping of an individual file at creation time.

■ Snapshots: Lustre file servers use volumes attached to the server nodes. The
Lustre software includes a utility (using LVM snapshot technology) to create a
snapshot of all volumes and group snapshots together in a snapshot file system
that can be mounted with Lustre.

■ Backup tools: Lustre 1.6 includes two utilities supporting backups. One tool scans
file systems and locates files modified since a certain timeframe. This utility makes
modified files’ pathnames available so they can be processed in parallel by other
utilities (such as rsync) using multiple clients. Another useful tool is a modified
version of GNU tar (gtar) which can back up and restore extended attributes (i.e.
file striping) for Lustre.5

Other current features of Lustre are described in detail in this manual. Future
features are described in the Lustre roadmap.

4. Future Lustre releases may require "server first" or "all nodes at once" upgrade scenarios.

5. Files backed up using the modified version of gtar are restored per the backed up striping information. The
backup procedure does not use default striping rules.
1-18 Lustre 1.6 Operations Manual • May 2009

CHAPTER 2

Understanding Lustre Networking

This chapter describes Lustre Networking (LNET) and supported networks, and
includes the following sections:

■ Introduction to LNET

■ Supported Network Types

■ Designing Your Lustre Network

■ Configuring LNET

2.1 Introduction to LNET
In a Lustre network, servers and clients communicate with one another using LNET,
a custom networking API which abstracts away all transport-specific interaction. In
turn, LNET operates with a variety of network transports through Lustre Network
Drivers .

The following terms are important to understanding LNET.

■ LND: Lustre Network Driver. A modular sub-component of LNET that
implements one of the network types. LNDs are implemented as individual kernel
modules (or a library in userspace) and, typically, must be compiled against the
network driver software.

■ Network: A group of nodes that communicate directly with each other. The
network is how LNET represents a single cluster. Multiple networks can be used
to connect clusters together. Each network has a unique type and number (for
example, tcp0, tcp1, or elan0).

■ NID: Lustre Network Identifier. The NID uniquely identifies a Lustre network
endpoint, including the node and the network type. There is an NID for every
network which a node uses.
2-1

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet, and
InfiniBand

■ Support for many commonly-used network types such as InfiniBand and TCP/IP

■ High availability and recovery features enabling transparent recovery in
conjunction with failover servers

■ Simultaneous availability of multiple network types with routing between them

LNET is designed for complex topologies, superior routing capabilities and
simplified configuration.

2.2 Supported Network Types
LNET supports the following network types:

■ TCP

■ openib (Mellanox-Gold InfiniBand)

■ cib (Cisco Topspin)

■ iib (Infinicon InfiniBand)

■ vib (Voltaire InfiniBand)

■ o2ib (OFED - InfiniBand and iWARP)

■ ra (RapidArray)

■ Elan (Quadrics Elan)

■ GM and MX (Myrinet)

■ Cray Seastar
2-2 Lustre 1.6 Operations Manual • May 2009

2.3 Designing Your Lustre Network
Before you configure Lustre, it is essential to have a clear understanding of the Lustre
network topologies.

2.3.1 Identify All Lustre Networks
A network is a group of nodes that communicate directly with one another. As
previously mentioned in this manual, Lustre supports a variety of network types and
hardware, including TCP/IP, Elan, varieties of InfiniBand, Myrinet and others. The
normal rules for specifying networks apply to Lustre networks. For example, two
TCP networks on two different subnets (tcp0 and tcp1) would be considered two
different Lustre networks.

2.3.2 Identify Nodes to Route Between Networks
Any node with appropriate interfaces can route LNET between different
networks—the node may be a server, a client, or a standalone router. LNET can route
across different network types (such as TCP-to-Elan) or across different topologies
(such as bridging two InfiniBand or TCP/IP networks).

2.3.3 Identify Network Interfaces to Include/Exclude
from LNET
If not explicitly specified, LNET uses either the first available interface or a
pre-defined default for a given network type. If there are interfaces that LNET should
not use (such as administrative networks, IP over IB, and so on), then the included
interfaces should be explicitly listed.
Chapter 2 Understanding Lustre Networking 2-3

2.3.4 Determine Cluster-wide Module Configuration
The LNET configuration is managed via module options, typically specified in
/etc/modprobe.conf or /etc/modprobe.conf.local (depending on the distribution).
To ease the maintenance of large clusters, you can configure the networking setup for
all nodes using a single, unified set of options in the modprobe.conf file on each
node. For more information, see the ip2nets option in Modprobe.conf.

Users of liblustre should set the accept=all parameter. For details, see Module
Parameters.

2.3.5 Determine Appropriate Mount Parameters for
Clients
In mount commands, clients use the NID of the MDS host to retrieve their
configuration information. Since an MDS may have more than one NID, a client
should use the appropriate NID for its local network. If you are unsure which NID to
use, there is a lctl command that can help.

MDS

On the MDS, run:

lctl list_nids

This displays the server's NIDs.

Client

On a client, run:

lctl which_nid <NID list>

This displays the closest NID for the client.
2-4 Lustre 1.6 Operations Manual • May 2009

Client with SSH Access

From a client with SSH access to the MDS, run:

mds_nids=`ssh the_mds lctl list_nids`

lctl which_nid $mds_nids

This displays, generally, the correct NID to use for the MDS in the mount command.

Note – In the mds_nids command above, be sure to use the correct mark (`), not a
straight quotation mark ('). Otherwise, the command will not work.

2.4 Configuring LNET
This section describes how to configure LNET.

Note – We recommend that you use dotted-quad IP addressing rather than host
names. We have found this aids in reading debug logs, and helps greatly when
debugging configurations with multiple interfaces.

2.4.1 Module Parameters
LNET network hardware and routing are configured via module parameters of the
LNET and LND-specific modules. Parameters should be specified in the
/etc/modprobe.conf or /etc/modules.conf file, for example:

options lnet networks=tcp0,elan0

This specifies that the node should use a TCP interface and an Elan interface.

All LNET routers that bridge two networks are equivalent. Their configuration is not
primary or secondary. All available routers balance their overall load. Router fault
tolerance only works from Linux nodes. To do this, LNET routing must correspond
exactly with the Linux nodes' map of alive routers. There is no hard limit on the
number of LNET routers.
Chapter 2 Understanding Lustre Networking 2-5

Note – When multiple interfaces are available during the network setup, Lustre
choose the 'best' route. Once the network connection is established, Lustre expects
the network to stay connected. In a Lustre network, connections do not fail over to
the other interface, even if multiple interfaces are available on the same node.

Under Linux 2.6, the LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under lnet and LND-specific
parameters under the corresponding LND name.

Note – Depending on the Linux distribution, options with included commas may
need to be escaped using single and/or double quotes. Worst-case quotes look like:

options lnet'networks="tcp0,elan0"' 'routes="tcp [2,10]@elan0"'

Additional quotes may confuse some distributions. Check for messages such as:

lnet: Unknown parameter ‘'networks'

After modprobe LNET, remove the additional single quotes (modprobe.conf in this
case). Additionally, the refusing connection - no matching NID message generally
points to an error in the LNET module configuration.

Note – By default, Lustre ignores the loopback (lo0) interface. Lustre does not ignore
IP addresses aliased to the loopback. In this case, specify all Lustre networks.

The liblustre network parameters may be set by exporting the environment variables
LNET_NETWORKS, LNET_IP2NETS and LNET_ROUTES. Each of these variables
uses the same parameters as the corresponding modprobe option.

Note, it is very important that a liblustre client includes ALL the routers in its setting
of LNET_ROUTES. A liblustre client cannot accept connections, it can only create
connections. If a server sends remote procedure call (RPC) replies via a router to
which the liblustre client has not already connected, then these RPC replies are lost.

Note – Liblustre is not for general use. It was created to work with specific hardware
(Cray) and should never be used with other hardware.
2-6 Lustre 1.6 Operations Manual • May 2009

2.4.1.1 Using Usocklnd

Lustre now offers usocklnd, a socket-based LND that uses TCP in userspace. By
default, liblustre is compiled with usocklnd as the transport, so there is no need to
specially enable it.

Use the following environmental variables to tune usocklnd’s behavior.

Variable Description

USOCK_SOCKNAGLE=N Turns the TCP Nagle algorithm on or off. Setting N to 0 (the
default value), turns the algorithm off. Setting N to 1 turns
the algorithm on.

USOCK_SOCKBUFSIZ=N Changes the socket buffer size. Setting N to 0 (the default
value), specifies the default socket buffer size. Setting N to
another value (must be a positive integer) causes usocklnd
to try to set the socket buffer size to the specified value.

USOCK_TXCREDITS=N Specifies the maximum number of concurrent sends. The
default value is 256. N should be set to a positive value.

USOCK_PEERTXCREDITS=N Specifies the maximum number of concurrent sends per
peer. The default value is 8. N should be set to a positive
value and should not be greater than the value of the
USOCK_TXCREDITS parameter.

USOCK_NPOLLTHREADS=N Defines the degree of parallelism of usocklnd, by equaling
the number of threads devoted to processing network
events. The default value is the number of CPUs in the
system. N should be set to a positive value.

USOCK_FAIR_LIMIT=N The maximum number of times that usocklnd loops
processing events before the next polling occurs. The default
value is 1, meaning that every network event has only one
chance to be processed before polling occurs the next time.
N should be set to a positive value.

USOCK_TIMEOUT=N Specifies the network timeout (measured in seconds).
Network options that are not completed in N seconds
time out and are canceled. The default value is 50 seconds.
N should be a positive value.

USOCK_POLL_TIMEOUT=N Specifies the polling timeout; how long usocklnd ‘sleeps’ if
no network events occur. N results in a slightly lower
overhead of checking network timeouts and longer delay of
evicting timed-out events. The default value is 1 second.
N should be set to a positive value.

USOCK_MIN_BULK=N This tunable is only used for typed network connections.
Currently, liblustre clients do not use this usocklnd facility.
Chapter 2 Understanding Lustre Networking 2-7

2.4.1.2 OFED InfiniBand Options

For the SilverStorm/Infinicon InfiniBand LND (iiblnd), the network and HCA may
be specified, as in this example:

options lnet networks="o2ib3(ib3)"

This specifies that the node is on o2ib network number 3, using HCA ib3.

2.4.2 Module Parameters - Routing
The following parameter specifies a colon-separated list of router definitions. Each
route is defined as a network number, followed by a list of routers.

route=<net type> <router NID(s)>

Examples:

options lnet 'networks="o2ib0"' 'routes="tcp0 192.168.10.[1-8]@o2ib0"'

This is an example for IB clients to access TCP servers via 8 IB-TCP routers.

options lnet 'ip2nets="tcp0 10.10.0.*; o2ib0(ib0) 192.168.10.[1-128]"' \

'routes="tcp 192.168.10.[1-8]@o2ib0; o2ib 10.10.0.[1-8]@tcp0"

This specifies bi-directional routing; TCP clients can reach Lustre resources on the IB
networks and IB servers can access the TCP networks. For more information on
ip2nets, see Modprobe.conf.

Note – Configure IB network interfaces on a different subnet than LAN interfaces.

Caution – For options ip2nets, routes and networks, several best practices must
be followed or configuration errors occur:

Best Practice 1: If you add a comment to any of the options mentioned above,
position the semicolon after the comment. If you fail to do so, some nodes are not
properly initialized because LNET silently ignores everything following the '#'
character (which begins the comment), until it reaches the next semicolon. This is
subtle; no error message is generated to alert you to the problem.

This example shows the correct syntax:

options lnet ip2nets="pt10 192.168.0.[89,93] # comment with semicolon AFTER comment; \

pt11 192.168.0.[92,96] # comment

In this example, the following is ignored: comment with semicolon AFTER comment
2-8 Lustre 1.6 Operations Manual • May 2009

This example shows the wrong syntax:

options lnet ip2nets="pt10 192.168.0.[89,93]; # comment with semicolon BEFORE comment \

pt11 192.168.0.[92,96];

In this example, the following is ignored: comment with semicolon BEFORE comment
pt11 192.168.0.[92,96]. Because LNET silently ignores pt11 192.168.0.[92,96],
these nodes are not properly initialized.

Best Practice 2: Do not add an excessive number of comments to these options. The
Linux kernel has a limit on the length of string module options; it is usually 1KB, but
may differ in vendor kernels. If you exceed this limit, errors result and the
configuration specified by the user is not processed properly.

Using Routing Parameters Across a Cluster

To ease Lustre administration, the same routing parameters can be used across
different parts of a routed cluster. For example, the bi-directional routing example
above can be used on an entire cluster (TCP clients, TCP-IB routers, and IB servers):

■ TCP clients would ignore o2ib0(ib0) 192.168.10.[1-128] in ip2nets since they have
no such interfaces. Similarly, IB servers would ignore tcp0 192.168.0.*. But TCP-IB
routers would use both since they are multi-homed.

■ TCP clients would ignore the route "tcp 192.168.10.[1-8]@o2ib0" since the target
network is a local network. For the same reason, IB servers would ignore "o2ib
10.10.0.[1-8]@tcp0".

■ TCP-IB routers would ignore both routes, because they are multi-homed.
Moreover, the routers would enable LNet forwarding since their NIDs are
specified in the 'routes' parameters as being routers.

live_router_check_interval, dead_router_check_interval, auto_down,
check_routers_before_use and router_ping_timeout

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan,
the router checker checks the status of a router. The auto_down parameter
enables/disables (1/0) the automatic marking of router state.

The live_router_check_interval parameter specifies a time interval in seconds after
which the router checker will ping the live routers.

In the same way, you can set the dead_router_check_interval parameter for checking
dead routers.
Chapter 2 Understanding Lustre Networking 2-9

You can set the timeout for the router checker to check the live or dead routers by
setting the router_ping_timeout parmeter. The Router pinger sends a ping message to
a dead/live router once every dead/live_router_check_interval seconds, and if it
does not get a reply message from the router within router_ping_timeout seconds, it
considers the router to be down.

The last parameter is check_routers_before_use, which is off by default. If it is turned
on, you must also give dead_router_check_interval a positive integer value.

The router checker gets the following variables for each router:

■ Last time that it was disabled

■ Duration of time for which it is disabled

The initial time to disable a router should be one minute (enough to plug in a cable
after removing it). If the router is administratively marked as "up", then the router
checker clears the timeout. When a route is disabled (and possibly new), the "sent
packets" counter is set to 0. When the route is first re-used (that is an elapsed disable
time is found), the sent packets counter is incremented to 1, and incremented for all
further uses of the route. If the route has been used for 100 packets successfully, then
the sent-packets counter should be with a value of 100. Set the timeout to 0 (zero), so
future errors no longer double the timeout.

Note – The router_ping_timeout is consistent with the default LND timeouts. You
may have to increase it on very large clusters if the LND timeout is also increased.
For larger clusters, we suggest increasing the check interval.
2-10 Lustre 1.6 Operations Manual • May 2009

2.4.2.1 LNET Routers

All LNET routers that bridge two networks are equivalent. They are not configured
as primary or secondary, and load is balanced across all available routers.

Router fault tolerance only works from Linux nodes, that is, service nodes and
application nodes if they are running Compute Node Linux (CNL). For this, LNET
routing must correspond exactly with the Linux nodes’ map of alive routers.1

There are no hard requirements regarding the number of LNET routers, although
there should enough to handle the required file serving bandwidth (and a 25%
margin for headroom).

Comparing 32-bit and 64-bit LNET Routers

By default, at startup, LNET routers allocate 544M (i.e. 139264 4K pages) of memory
as router buffers. The buffers can only come from low system memory (i.e.
ZONE_DMA and ZONE_NORMAL).

On 32-bit systems, low system memory is, at most, 896M no matter how much RAM
is installed. The size of the default router buffer puts big pressure on low memory
zones, making it more likely that an out-of-memory (OOM) situation will occur. This
is a known cause of router hangs. Lowering the value of the large_router_buffers
parameter can circumvent this problem, but at the cost of penalizing router
performance, by making large messages wait for longer for buffers.

On 64-bit architectures, the ZONE_HIGHMEM zone is always empty. Router buffers
can come from all available memory and out-of-memory hangs do not occur.
Therefore, we recommend using 64-bit routers.

1. Catamount applications need an environmental variable set to configure LNET routing, which must
correspond exactly to the Linux nodes’ map of alive routers. The Catamount application must establish
connections to all routers before the server replies (load-balanced over available routers), to be guaranteed to
be routed back to them.
Chapter 2 Understanding Lustre Networking 2-11

2.4.3 Downed Routers
There are two mechanisms to update the health status of a peer or a router:

■ LNET can actively check health status of all routers and mark them as dead or
alive automatically. By default, this is off. To enable it set auto_down and if
desired check_routers_before_use. This initial check may cause a pause equal to
router_ping_timeout at system startup, if there are dead routers in the system.

■ When there is a communication error, all LNDs notify LNET that the peer (not
necessarily a router) is down. This mechanism is always on, and there is no
parameter to turn it off. However, if you set the LNET module parameter
auto_down to 0, LNET ignores all such peer-down notifications.

Several key differences in both mechanisms:

■ The router pinger only checks routers for their health, while LNDs notices all dead
peers, regardless of whether they are a router or not.

■ The router pinger actively checks the router health by sending pings, but LNDs
only notice a dead peer when there is network traffic going on.

■ The router pinger can bring a router from alive to dead or vice versa, but LNDs
can only bring a peer down.
2-12 Lustre 1.6 Operations Manual • May 2009

2.5 Starting and Stopping LNET
Lustre automatically starts and stops LNET, but it can also be manually started in a
standalone manner. This is particularly useful to verify that your networking setup is
working correctly before you attempt to start Lustre.

2.5.1 Starting LNET
To start LNET, run:

$ modprobe lnet

$ lctl network up

To see the list of local NIDs, run:

$ lctl list_nids

This command tells you if the local node's networks are set up correctly.

If the networks are not correctly setup, see the modules.conf "networks=" line and
make sure the network layer modules are correctly installed and configured.

To get the best remote NID, run:

$ lctl which_nid <NID list>

where <NID list> is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The
"best" NID is the one that the local node uses when trying to communicate with the
remote node.

2.5.1.1 Starting Clients

To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/

To start an Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Chapter 2 Understanding Lustre Networking 2-13

2.5.2 Stopping LNET
Before the LNET modules can be removed, LNET references must be removed. In
general, these references are removed automatically when Lustre is shut down, but
for standalone routers, an explicit step is needed to stop LNET. Run:

lctl network unconfigure

Note – Attempting to remove Lustre modules prior to stopping the network may
result in a crash or an LNET hang. if this occurs, the node must be rebooted (in most
cases). Make sure that the Lustre network and Lustre are stopped prior to unloading
the modules. Be extremely careful using rmmod -f.

To unconfigure the LNET network, run:

modprobe -r <any lnd and the lnet modules>

Tip – To remove all Lustre modules, run:

$ lctl modules | awk '{print $2}' | xargs rmmod
2-14 Lustre 1.6 Operations Manual • May 2009

PART II Lustre Administration

Lustre administration includes the steps necessary to meet pre-installation
requirements, and install and configure Lustre. It also includes advanced topics such
as failover, quotas, bonding, benchmarking, Kerberos and POSIX.

CHAPTER 3

Lustre Installation

Lustre installation involves two procedures, meeting the installation prerequisites
and installing the Lustre software, either from RPMs or from source code. This
chapter includes these sections:

■ Preparing to Install Lustre

■ Installing Lustre from RPMs

■ Installing Lustre from Source Code

Lustre can be installed from either packaged binaries (RPMs) or freely-available
source code. Installing from the package release is straightforward, and
recommended for new users. Integrating Lustre into an existing kernel and building
the associated Lustre software is an involved process.

For either installation method, the following are required:

■ Linux kernel patched with Lustre-specific patches

■ Lustre modules compiled for the Linux kernel

■ Lustre utilities required for Lustre configuration

Note – When installing Lustre and creating components on devices, a certain
amount of space is reserved, so less than 100% of storage space will be available.
Lustre servers use the ext3 file system to store user-data objects and system data. By
default, ext3 file systems reserve 5% of space that cannot be used by Lustre.
Additionally, Lustre reserves up to 400 MB on each OST for journal use1. This
reserved space is unusable for general storage. For this reason, you will see up to
400MB of space used on each OST before any file object data is saved to it.

1. Additionally, a few bytes outside the journal are used to create accounting data for Lustre.
3-1

3.1 Preparing to Install Lustre
To sucessfully install and run Lustre, make sure the following installation
prerequisites have been met:

■ Supported Operating System, Platform and Interconnect

■ Required Tools and Utilities

■ High-Availability Software

■ Debugging Tools

■ Environmental Requirements

■ Memory Requirements

3.1.1 Supported Operating System, Platform and
Interconnect
Lustre supports the following operating systems, platforms2 and interconnects. Make
sure you are using a supported configuration.

2. We encourage the use of 64-bit platforms.

Configuration Component Supported Type

Operating system Red Hat Enterprise Linux 4 and 5
SuSE Linux Enterprise Server 9 and 10
Linux 2.6, and a higher kernel than 2.6.15

Platform x86, IA-64, x86-64 (EM64 and AMD64)
PowerPC architectures (for clients only) and mixed-endian clusters

Interconnect TCP/IP
Quadrics Elan 3 and 4
Myri-10G and Myrinet - 2000
Mellanox
InfiniBand (Voltaire, OpenIB, Silverstorm and any
OFED-supported InfiniBand adapter)
3-2 Lustre 1.6 Operations Manual • May 2009

Note – Lustre clients running on architectures with different endianness are
supported. One limitation is that the PAGE_SIZE kernel macro on the client must be
as large as the PAGE_SIZE of the server. In particular, ia64 clients with large pages
(up to 64kB pages) can run with i386 servers (4kB pages). If you are running i386
clients with ia64 servers, you must compile the ia64 kernel with a 4kB PAGE_SIZE
(so the server page size is not larger than the client page size).

3.1.2 Required Tools and Utilities
The Lustre software includes several tools needed for setup and monitoring; several
third-party utilities are also required.

Note – Most of these tools and utilities are provided in the Lustre RPMs.

The Lustre utilites include:

■ lctl - Low-level configuration utility that can be used to troubleshoot and debug
Lustre.

■ lfs - Used to read/set information about the Lustre file system’s usage, such as
striping, quota, OSTs, etc.

■ mkfs.lustre - Formats Lustre target disks.

■ mount.lustre - Lustre-specific helper for mount(8).

■ LNET self-test - Helps determine that LNET and the network software and
hardware are performing as expected.

Lustre requires several third-party tools be installed:

■ e2fsprogs: Lustre requires very modern versions of e2fsprogs that understand
extents. Use e2fsprogs-1.38-<ver> or later, available with the Lustre file
downloads.

Note – Lustre-patched e2fsprogs utility only needs to be installed on machines that
mount backend (ldiskfs) file systems, such as the OSS, MDS and MGS nodes. It does
not need to be loaded on clients.

■ Perl - Various userspace utilities are written in Perl. Any modern Perl should work
with Lustre.

■ Build tool/Compiler - If you plan to build Lustre from source code, then you need
a GCC compiler; use GCC 3.0 or later. If you are installing Lustre from RPMs, you
do not need a compiler.
Chapter 3 Lustre Installation 3-3

http://www.sun.com/software/products/lustre/get.jsp

3.1.3 High-Availability Software
If you plan to enable failover server functionality with Lustre (either on an OSS or
MDS), you must add high-availability (HA) software to your cluster software. You
can use any HA software package with Lustre.3

Heartbeat supports a redundant system with access to the Shared (Common) Storage
with dedicated connectivity; it can determine the system’s general state. For more
information, see Failover.

3.1.4 Debugging Tools
Lustre is a complex system and you may encounter problems when using it. You
should have debugging tools on hand to help figure out how and why a problem
occurred. The e2fsprogs package (available on the Lustre download site), includes the
Lustre debugfs tool, which can be can used to interactively debug an ext3/ldiskfs4
file system. The debugfs utility can either be used either to check status of or modify
information in the file system.

There are also several third-party tools you can use, such as GDB, coupled with
crash. These tools can be used to investigate live systems and kernel core dumps.
There are also useful kernel patches/ modules, such as netconsole and netdump, that
allow core dumps to be made across the network.

For more information about these third-party tools, see the following websites:

3. In this manual, the Linux-HA (Heartbeat) package is referenced, but you can use any HA software.
4. ldiskfs is the Sun development version of ext4.

Third-party Tool URL

GDB http://www.gnu.org/software/gdb/gdb.html

crash http://oss.missioncriticallinux.com/projects/crash/

netconsole http://lwn.net/2001/0927/a/netconsole.php3

netdump http://www.redhat.com/support/wpapers/redhat/netdump/
3-4 Lustre 1.6 Operations Manual • May 2009

http://www.gnu.org/software/gdb/gdb.html
http://oss.missioncriticallinux.com/projects/crash/
http://lwn.net/2001/0927/a/netconsole.php3
http://www.redhat.com/support/wpapers/redhat/netdump/

3.1.5 Environmental Requirements
Make sure the following environmental requirements are met before installing
Lustre.

Pdsh or SSH Access

Although not strictly required to run Lustre, we recommend that all cluster nodes
have remote shell client access (preferably Pdsh5, although SSH6 is acceptable), to
facilitate the use of Lustre configuration and monitoring scripts. For more
information, see Pdsh.

Consistent Clocks

Lustre uses client clocks for timestamps. If clocks are out-of-sync between clients and
servers, timeouts and client evictions will occur. Drifting clocks can also be a
problem. It can also be difficult to debug multi-node issues or correlate logs (which
depend on timestamps).

We recommend that you use Network Time Protocol (NTP) to keep client and server
clocks in sync with each other. All machines in the cluster should synchronize their
time from a local time server (or servers) at a suitable time interval.

For more information about NTP, see:

http://www.ntp.org/

Universal UID / GID

Maintain uniform file access permissions on all cluster nodes by using the same user
IDs (UID) and group IDs (GID) on all clients. If use of supplemental groups is
required, verify that the group_upcall requirements have been met. See User/Group
Cache Upcall.

5. Parallel Distributed SHell

6. Secure SHell
Chapter 3 Lustre Installation 3-5

http://www.ntp.org/
http://sourceforge.net/projects/pdsh/

3.1.6 Memory Requirements
This section describes the memory requirements of Lustre.

3.1.6.1 Determining the MDS’s Memory

Use the following factors to determine the MDS’s memory:

■ Number of clients

■ Size of the directories

■ Extent of load

The amount of memory used by the MDS is a function of how many clients are on
the system, and how many files they are using in their working set. This is driven,
primarily, by the number of locks a client can hold at one time. The default maximum
number of locks for a compute node is 100*num_cores, and interactive clients can
hold in excess of 10,000 locks at times. For the MDS, this works out to approximately
2 KB per file, including the Lustre DLM lock and kernel data structures for it, just for
the current working set.

There is, by default, 400 MB for the file system journal, and additional RAM usage
for caching file data for the larger working set that is not actively in use by clients,
but should be kept "HOT" for improved access times. Having file data in cache can
improve metadata performance by a factor of 10x or more compared to reading it
from disk. Approximately 1.5 KB/file is needed to keep a file in cache.

For example, for a single MDT on an MDS with 1,000 clients, 16 interactive nodes,
and a 2 million file working set (of which 400,000 files are cached on the clients):

file system journal = 400 MB

1000 * 4-core clients * 100 files/core * 2kB = 800 MB

16 interactive clients * 10,000 files * 2kB = 320 MB

1,600,000 file extra working set * 1.5kB/file = 2400 MB

This suggests a minimum RAM size of 4 GB, but having more RAM is always
prudent given the relatively low cost of this single component compared to the total
system cost.

If there are directories containing 1 million or more files, you may benefit
significantly from having more memory. For example, in an environment where
clients randomly access one of 10 million files, having extra memory for the cache
significantly improves performance.
3-6 Lustre 1.6 Operations Manual • May 2009

3.1.6.2 OSS Memory Requirements

When planning the hardware for an OSS node, consider the memory usage of several
components in the Lustre system. Although Lustre versions 1.4 and 1.6 do not cache
file data in memory on the OSS node, there are a number of large memory consumers
that need to be taken into account. Also consider that future Lustre versions will
cache file data on the OSS node, so these calculations should only be taken as a
minimum requirement.

By default, each Lustre ldiskfs file system has 400 MB for the journal size. This can
pin up to an equal amount of RAM on the OSS node per file system. In addition, the
service threads on the OSS node pre-allocate a 1 MB I/O buffer for each ost_io
service thread, so these buffers do not need to be allocated and freed for each I/O
request. Also, a reasonable amount of RAM needs to be available for file system
metadata. While no hard limit can be placed on the amount of file system metadata,
if more RAM is available, then the disk I/O is needed less often to retrieve the
metadata. Finally, if you are using TCP or other network transport that uses system
memory for send/receive buffers, this must also be taken into consideration.

Also, if the OSS nodes are to be used for failover from another node, then the RAM
for each journal should be doubled, so the backup server can handle the additional
load if the primary server fails.

OSS Memory Usage for a 2 OST server (major consumers):

■ 400MB journal size * 2 OST devices = 800MB

■ 1.5MB per OST IO thread * 256 threads = 384MB

■ e1000 RX descriptors, RxDescriptors=4096 for 9000 byte MTU = 128MB

This consumes over 1,300 MB just for the pre-allocated buffers, and does not include
memory for the OS or file system metadata. For a non-failover configuration, 2 GB of
RAM would be the minimum. For a failover configuration, 3 GB of RAM would be
the minimum.
Chapter 3 Lustre Installation 3-7

3.2 Installing Lustre from RPMs
Once all prerequisites have been met, you are ready to install Lustre.

This procedure describes how to install Lustre from the RPM packages. This is the
easier installation method, and is recommended for new users.

Alternately, you can install Lustre directly from the source code. For more
information on this installation method, see Installing Lustre from Source Code.

Note – In all Lustre installations, the server kernel (on the MDS, MGS and OSSs)
must be patched; it is optional whether to patch the kernel on the Lustre clients. You
can run the patched server kernel on the clients, but it is not necessary unless the
clients will be used for multiple purposes, for example, to run as a client and an OST.

Caution – Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured or
administered properly. Before installing Lustre, exercise caution and back up ALL
data.

1. Verify that all of the Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre RPMs/tarballs.

a. Navigate to the Lustre download site and select your platform.

The files required to install Lustre (kernels, modules and utilities RPMs) are
listed for the selected platform.

b. Download the required files, using either the Sun Download Manager
(SDM) or downloading the files individually.
3-8 Lustre 1.6 Operations Manual • May 2009

http://www.sun.com/software/products/lustre/get.jsp

Tip – When considering where to install Lustre clients and servers, remember that
for best performance in a production environment, dedicated clients are always best.

Running the MDS and a client on the same machine can cause recovery and deadlock
issues, and the performance of other Lustre clients to suffer. Running the OSS and a
client on the same machine can cause issues with low memory and memory pressure.
The client consume all of the memory and tries to flush pages to disk. The OSS needs
to allocate pages to receive data from the client, but cannot perform this operation,
due to low memory. This can result in OOM kill and other issues.

Regarding servers, the MDS and MGS can be run together on the same machine.

If you are setting up a non-production Lustre environment, conducting testing,
performing quick sanity tests, etc., it is okay to run Lustre clients and servers on the
same node.

3. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. Also, Lustre packages should be installed in a specific
order.

a. For each Lustre package, determine if it needs to be installed on servers
and/or clients.

TABLE 3-1 lists the Lustre packages. Use this table to determine where to install a
specific package. Depending on your platform, not all of the listed files need to
be installed.
Chapter 3 Lustre Installation 3-9

TABLE 3-1 Lustre packages, descriptions and installation guidance

Lustre Package Description

Install
on

servers

Install on
patchless

clients

Install on
patched
clients

Lustre kernel RPMs

kernel-lustre-smp-<ver> Lustre-patched kernel
package.

X X*

* Only install this kernel RPM if you want to patch the client kernel. You do not have to patch the clients to run
Lustre.

kernel-lustre-bigsmp-<ver> Lustre-patched kernel
package for use on SuSE
Server 9 and 10, i686
platforms.

X X*

kernel-ib-<ver> Lustre OFED package. Install
if the network interconnect is
InfiniBand (IB).

X X X*

Lustre module RPMs

lustre-modules-<ver> Lustre modules for the
patched kernel.

X X*

lustre-client-modules-<ver> Lustre modules for patchless
clients.

X

Lustre utilities

lustre-<ver> Lustre utilities package. This
includes userspace utilities
to configure and run Lustre. X X*

lustre-ldiskfs-<ver> Lustre-patched backing file
system kernel module
package for the ext3 file
system

X

e2fsprogs-<ver> Utilities package used to
maintain the ext3 backing
file system.

X

lustre-client-<ver> Lustre utilities for patchess
clients

X

3-10 Lustre 1.6 Operations Manual • May 2009

b. Install the kernel, modules and ldiskfs packages.

Use the rpm -ivh command to install the kernel, module and ldiskfs packages.
For example:

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

c. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>

d. Install the e2fsprogs package.

Use the rpm -i command to install the e2fsprogs package. For example:

$ rpm -i e2fsprogs-<ver>

If you want to add any optional packages to your Lustre file system, install them
now.

4. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

5. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.

Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.
Chapter 3 Lustre Installation 3-11

3.3 Installing Lustre from Source Code
Installing Lustre from source involves several procedures - patching the core kernel,
configuring it to work with Lustre, and creating Lustre and kernel RPMs from source
code. The easier installation method is to install Lustre from packaged binaries
(RPMs). For more information on this installation method, see Installing Lustre from
RPMs.

Caution – Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured and
administered correctly. Before installing Lustre, be cautious and back up ALL data.

Note – When using third-party network hardware with Lustre, the third-party
modules (typically, the drivers) must be linked against the Linux kernel. The LNET
modules in Lustre also need these references. To meet these requirements, a specific
process must be followed to install and recompile Lustre. See Installing Lustre with a
Third-Party Network Stack, which provides an example to install Lustre 1.6.6 using
the Myricom MX 1.2.7 driver. The same process can be used for other third-party
network stacks.

3.3.1 Patching the Kernel
If you are using non-standard hardware, plan to apply a Lustre patch, or have
another reason not to use packaged Lustre binaries, you have to apply several Lustre
patches to the core kernel and run the Lustre configure script against the kernel.
3-12 Lustre 1.6 Operations Manual • May 2009

3.3.1.1 Introducing the Quilt Utility

To simplify the process of applying Lustre patches to the kernel, we recommend that
you use the Quilt utility.

Quilt manages a stack of patches on a single source tree. A series file lists the patch
files and the order in which they are applied. Patches are applied, incrementally, on
the base tree and all preceding patches. Patches can be applied from the stack (quilt
push) or removed from the stack (quilt pop). You can query the contents of the series
file (quilt series), the contents of the stack (quilt applied, quilt previous, quilt top),
and the patches that are not applied at a particular moment (quilt next, quilt
unapplied). You can edit and refresh (update) patches with Quilt, as well as revert
inadvertent changes, and fork or clone patches and show the diffs before and after
work.

A variety of Quilt packages (RPMs, SRPMs and tarballs) are available from various
sources. Use the most recent version you can find. Quilt depends on several other
utilities, e.g., the coreutils RPM that is only available in RedHat 9. For other RedHat
kernels, you have to get the required packages to successfully install Quilt.

If you cannot locate a Quilt package or fulfill its dependencies, you can build Quilt
from a tarball, available here:

http://savannah.nongnu.org/projects/quilt

For additional information on using Quilt, including its commands, see the
introduction to Quilt and the quilt(1) man page.

3.3.1.2 Get the Lustre Source and Unpatched Kernel

The Lustre Group supports several Linux unpatched kernels for use with Lustre and
provides a series of patches for each one. The Lustre patches are maintained in the
kernel_patch directory bundled with the Lustre source code. The unpatched
kernels are also available for download.

1. Verify that all of the Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.

2. Get the Lustre source code. Navigate to the Lustre download site, select the
Lustre version you want and Source as the platform.

The files required to install Lustre from source code (unpatched kernels, Lustre
source and e2fsprogs) are listed.

3. Download the Lustre source code (lustre-<ver>.tar.gz).
Chapter 3 Lustre Installation 3-13

http://savannah.nongnu.org/projects/quilt
http://www.suse.de/~agruen/quilt.pdf
http://linux.die.net/man/1/quilt
http://www.sun.com/software/products/lustre/get.jsp

4. Download the unpatched kernel you want to use.

If you do not know the kernel’s filename, check the which_patch file.

a. In the Lustre source file, navigate to the which_patch file
(lustre/kernel_patches/which_patch) and get the filename of the kernel you
want to use.

The which_patch file lists the kernels supported in this release.

b. Download the selected kernel from the same location where you downloaded
the Lustre source in Step 2.

5. To save time later, download the e2fsprogs tarball (e2fsprogs-<ver>tar.gz).

3.3.1.3 Patch the Kernel

This procedure describes how to use Quilt to apply the Lustre patches to the kernel.
To illustrate the steps in this procedure, a RHEL 5 kernel is patched for Lustre 1.6.5.1.

1. Unpack the Lustre source and kernel to separate source trees.

Lustre source and the unpatched kernel were previously downloaded in Get the
Lustre Source and Unpatched Kernel.

a. Unpack the Lustre source.

For this procedure, we assume that the resulting source tree is in
/tmp/lustre-1.6.5.1

b. Unpack the kernel.

For this procedure, we assume that the resulting source tree (also known as the
destination tree) is in /tmp/kernels/linux-2.6.18

2. Select a config file for your kernel, located in the kernel_configs directory
(lustre/kernel_patches/kernel_config).

The kernel_config directory contains the .config files, which are named to indicate
the kernel and architecture with which they are associated. For example, the
configuration file for the 2.6.18 kernel shipped with RHEL 5 (suitable for i686 SMP
systems) is kernel-2.6.18-2.6-rhel5-i686-smp.config

3. Select the series file for your kernel, located in the series directory
(lustre/kernel_patches/series).

The series file contains the patches that need to be applied to the kernel.

4. Set up the necessary symlinks between the kernel patches and the Lustre
source.

This example assumes that the Lustre source files are unpacked under
/tmp/lustre-1.6.5.1 and you have chosen the 2.6-rhel5.series file). Run:
3-14 Lustre 1.6 Operations Manual • May 2009

$ cd /tmp/kernels/linux-2.6.18

$ rm -f patches series

$ ln -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/series/2.6-\
rhel5.series ./series

$ ln -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/patches .

5. Use Quilt to apply the patches in the selected series file to the unpatched
kernel. Run:

$ cd /tmp/kernels/linux-2.6.18

$ quilt push -av

The patched destination tree acts as a base Linux source tree for Lustre.

3.3.2 Create and Install the Lustre Packages
After patching the kernel, configure it to work with Lustre, create the Lustre
packages (RPMs) and install them.

1. Configure the patched kernel to run with Lustre. Run:

$ cd <path to kernel tree>

$ cp /boot/config-‘uname -r‘ .config

$ make oldconfig || make menuconfig

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

$ make include/linux/utsrelease.h

2. Run the Lustre configure script against the patched kernel and create the Lustre
packages.

$ cd <path to lustre source tree>

$./configure --with-linux=<path to kernel tree>

$ make rpms

This creates a set of .rpms in /usr/src/redhat/RPMS/<arch> with an
appended date-stamp. The SuSE path is /usr/src/packages.

Note – You do not need to run the Lustre configure script against an unpatched
kernel.

Example:

lustre-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm
Chapter 3 Lustre Installation 3-15

lustre-debuginfo-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-modules-1.6.5.1-\
2.6.18_53.xx.xxel5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-source-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

Note – If the steps to create the RPMs fail, contact Lustre Support by opening a bug.

Note – Lustre supports several features and packages that extend the core
functionality of Lustre. These features/packages can be enabled at the build time by
issuing appropriate arguments to the configure command. For a list of supported
features and packages, run ./configure –help in the Lustre source tree.

The configs/ directoryof the kernel source contains the config files matching each
the kernel version. Copy one to .config at the root of the kernel tree.

3. Create the kernel package. Navigate to the kernel source directory and run:

$ make rpm

Example:

kernel-2.6.95.0.3.EL_lustre.1.6.5.1custom-1.i686.rpm

Note – Step 3 is only valid for RedHat and SuSE kernels. If you are using a stock
Linux kernel, you need to get a script to create the kernel RPM.
3-16 Lustre 1.6 Operations Manual • May 2009

https://bugzilla.lustre.org/

4. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients.7 For guidance on where to install specific packages, see
TABLE 3-1. Also, Lustre packages should be installed in a specific order.

a. Install the kernel, modules and ldiskfs packages.

Navigate to the directory where the RPMs are stored, and use the rpm -ivh
command to install the kernel, module and ldiskfs packages.

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

b. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>

c. Install the e2fsprogs package.

Make sure the e2fsprogs package downloaded in Step 5 is unpacked, and use
the rpm -i command to install it. For example:

$ rpm -i e2fsprogs-<ver>

If you want to add any optional packages to your Lustre file system, install them
now.

5. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

6. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.

Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.

7. It is optional whether to run the patched server kernel on the clients. It is not necessary unless the clients will
be used for multiple purposes, for example, to run as a client and an OST.
Chapter 3 Lustre Installation 3-17

3.3.3 Installing Lustre with a Third-Party Network
Stack
When using third-party network hardware, you must follow a specific process to
install and recompile Lustre. This section provides an installation example,
describing how to install Lustre 1.6.6 while using the Myricom MX 1.2.7 driver. The
same process is used for other third-party network stacks, by replacing MX-specific
references in Step 2 with the stack-specific build and using the proper --with option
when configuring the Lustre source code.

1. Compile and install the Lustre kernel.

a. Install the necessary build tools. GCC and related tools must also be
installed. For more information, see Required Tools and Utilities.

$ yum install rpm-build redhat-rpm-config

$ mkdir -p rpmbuild/{BUILD,RPMS,SOURCES,SPECS,SRPMS}

$ echo '%_topdir %(echo $HOME)/rpmbuild' > .rpmmacros

b. Install the patched Lustre source code.

This RPM is available at the Lustre download page.

$ rpm -ivh kernel-lustre-source-2.6.18-92.1.10.el5_lustre.1.6.6.x86_64.rpm

c. Build the Linux kernel RPM.

$ cd /usr/src/linux-2.6.18-92.1.10.el5_lustre.1.6.6

$ make distclean

$ make oldconfig dep bzImage modules

$ cp /boot/config-`uname -r` .config

$ make oldconfig || make menuconfig

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

$ make rpm

d. Install the Linux kernel RPM.

If you are building a set of RPMs for a cluster installation, this step is not
necessary. Source RPMs are only needed on the build machine.

$ rpm -ivh ~/rpmbuild/kernel-lustre-2.6.18-92.1.10.el5_lustre.1.6.6.x86_64.rpm
$ mkinitrd /boot/2.6.18-92.1.10.el5_lustre.1.6.6

e. Update the boot loader (/etc/grub.conf) with the new kernel boot
information.

$ /sbin/shutdown 0 -r
3-18 Lustre 1.6 Operations Manual • May 2009

http://www.sun.com/software/products/lustre/get.jsp

2. Compile and install the MX stack.

$ cd /usr/src/

$ gunzip mx_1.2.7.tar.gz (can be obtained from www.myri.com/scs/)

$ tar -xvf mx_1.2.7.tar

$ cd mx-1.2.7

$ ln -s common include

$./configure --with-kernel-lib

$ make

$ make install

3. Compile and install the Lustre source code.

a. Install the Lustre source (this can be done via RPM or tarball). The source file
is available at the Lustre download page. This example shows installation via
the tarball.

$ cd /usr/src/

$ gunzip lustre-1.6.6.tar.gz

$ tar -xvf lustre-1.6.6.tar

b. Configure and build the Lustre source code.

The ./configure --help command shows a list of all of the --with
options. All third-party network stacks are built in this manner.

$ cd lustre-1.6.6
$./configure --with-linux=/usr/src/linux --with-mx=/usr/src/mx-1.2.7
$ make
$ make rpms

The make rpms command output shows the location of the generated RPMs

4. Use the rpm -ivh command to install the RPMS.

$ rpm -ivh lustre-1.6.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm
$ rpm -ivh lustre-modules-1.6.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm
$ rpm -ivh lustre-ldiskfs-3.0.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm

5. Add the following lines to the /etc/modprobe.conf file.

options kmxlnd hosts=/etc/hosts.mxlnd

options lnet networks=mx0(myri0),tcp0(eth0)

6. Populate the myri0 configuration with the proper IP addresses.

vim /etc/sysconfig/network-scripts/myri0
Chapter 3 Lustre Installation 3-19

http://www.sun.com/software/products/lustre/get.jsp

7. Add the following line to the /etc/hosts.mxlnd file.

$ IP HOST BOARD EP_ID

8. Start Lustre.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.
3-20 Lustre 1.6 Operations Manual • May 2009

CHAPTER 4

Configuring Lustre

This chapter describes how to configure Lustre and includes the following sections:

■ Configuring Lustre

■ Basic Lustre Administration

■ Operational Scenarios
4-1

4.1 Configuring Lustre
A Lustre file system consists of four types of subsystems – a Management Server
(MGS), a Metadata Target (MDT), Object Storage Targets (OSTs) and clients. We
recommend running these components on different systems, although, technically,
they can co-exist on a single system. Together, the OSSs and MDS present a Logical
Object Volume (LOV) which is an abstraction that appears in the configuration.

It is possible to set up the Lustre system with many different configurations by using
the administrative utilities provided with Lustre. Some sample scripts are included in
the directory where Lustre is installed. If you have installed the Lustre source code,
the scripts are located in the lustre/tests sub-directory. These scripts enable quick
setup of some simple, standard Lustre configurations.

Note – We recommend that you use dotted-quad IP addressing (IPv4) rather than
host names. This aids in reading debug logs, and helps greatly when debugging
configurations with multiple interfaces.

1. Define the module options for Lustre networking (LNET), by adding this line
to the /etc/modprobe.conf file1.

options lnet networks=<network interfaces that LNET can use>

This step restricts LNET to use only the specified network interfaces and prevents
LNET from using all network interfaces.

As an alternative to modifying the modprobe.conf file, you can modify the
modprobe.local file or the configuration files in the modprobe.d directory.

Note – For details on configuring networking and LNET, see Configuring LNET.

2. Create a combined MGS/MDT file system on the block device. On the MDS
node, run:

mkfs.lustre --fsname=<fsname> --mgs --mdt <block device name>

The default file system name (fsname) is lustre.

Note – If you plan to generate multiple file systems, the MGS should be on its own
dedicated block device.

1. The modprobe.conf file is a Linux file that lives in /etc/modprobe.conf and specifies what parts of the kernel
are loaded.
4-2 Lustre 1.6 Operations Manual • May 2009

3. Mount (start) the combined MGS/MDT file system on the block device. On the
MDS node, run:

mount -t lustre <block device name> <mount point>

4. Create one or more OSTs2 for an OSS. For each OST, run this command on the
OSS node:

mkfs.lustre --ost --fsname=<fsname> --mgsnode=<NID> <block device
name>

You can have as many OSTs per OSS as the hardware/drivers allow.

You should only use only 1 OST per block device. Optionally, you can create an
OST which uses the raw block device and does not require partitioning.

Note – If the block device has more than 8 TB of storage, it must be partitioned
(because of the ext3 file system limitation). Lustre can support block devices with
multiple partitions, but they are not recommended because of resulting bottlenecks.

5. Mount the OSTs. For each OST, run this command on the OSS node where the
OST was created:

mount -t lustre <block device name> <mount point>

6. Mount the file system on the client. On the client node, run:

mount -t lustre <MGS node>:/<fsname> <mount point>

7. Verify that the file system started and is working by running the UNIX
commands df, dd and ls on the client node.

a. Run the df command.

[root@client1 /] df -h

b. Run the dd command.

[root@client1 /] cd /lustre

[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M
count=2

c. Run the ls command.

[root@client1 /lustre] ls -lsah

If you have a problem mounting the file system, check the syslogs for errors.

2. When you create an OST, you are defining a storage device ('sd'), a device number (a, b, c, d), and a partition
(1, 2, 3) where the OST node lives.
Chapter 4 Configuring Lustre 4-3

Tip – Now that you have configured Lustre, you can collect and register your service
tags. For more information, see Service Tags.

4.1.0.1 Simple Lustre Configuration Example

If you are configuring Lustre for the first time or want to follow the steps in a simple
test installation, use this configuration example, where:

1. Define the module options for Lustre networking (LNET), by adding this line
to the /etc/modprobe.conf file.

options lnet networks=tcp

2. Create a combined MGS/MDT file system on the block device. On the MDS
node, run:

[root@mds /]# mkfs.lustre --fsname=temp --mgs --mdt /dev/loop0

This command generates this output:

Permanent disk data:
Target: temp-MDTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x75

(MDT MGS needs_index first_time update)
Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
Parameters: mdt.group_upcall=/usr/sbin/l_getgroups

Variable Setting Variable Setting

network type TCP/IP MGS node 10.2.0.1@tcp0

block device /dev/loop0 OSS 1 node oss1

file system temp OSS 2 node oss2

mount point /mnt/mdt client node client1

mount point /lustre OST 1 ost1

OST 2 ost2
4-4 Lustre 1.6 Operations Manual • May 2009

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/loop0

target name temp-MDTffff
4k blocks 0
options -i 4096 -I 512 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-MDTffff -i 4096 -I 512 -q -O
dir_index,uninit_groups -F /dev/loop0
Writing CONFIGS/mountdata

3. Mount (start) the combined MGS/MDT file system on the block device. On the
MDS node, run:

[root@mds /]# mount -t lustre /dev/loop0 /mnt/mdt

This command generates this output:

Lustre: temp-MDT0000: new disk, initializing
Lustre: 3009:0:(lproc_mds.c:262:lprocfs_wr_group_upcall()) \
temp-MDT0000: group upcall set to /usr/sbin/l_getgroups
Lustre: temp-MDT0000.mdt: set parameter \
group_upcall=/usr/sbin/l_getgroups
Lustre: Server temp-MDT0000 on device /dev/loop0 has started

4. Create the OSTs.

In this example, the OSTs (ost1 and ost2) are being created on different OSSs (oss1
and oss2).

a. Create ost1. On the oss1 node, run:

[root@oss1 /]# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/loop0

This command generates this output:

Permanent disk data:
Target: temp-OSTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp
Chapter 4 Configuring Lustre 4-5

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/loop1

target name temp-OSTffff
4k blocks 0
options -I 256 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff -I 256 -q -O
dir_index,uninit_groups -F /dev/loop1
Writing CONFIGS/mountdata

b. Create ost2. On the oss2 node, run:

[root@oss2 /]# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/loop0

This command generates this output:

Permanent disk data:
Target: temp-OSTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/loop1

target name temp-OSTffff
4k blocks 0
options -I 256 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff -I 256 -q -O
dir_index,uninit_groups -F /dev/loop1
Writing CONFIGS/mountdata
4-6 Lustre 1.6 Operations Manual • May 2009

5. Mount the OSTs.

Mount each OST (ost1 and ost2), on the OSS where the OST was created.

a. Mount ost1. On the oss1 node, run:

root@oss1 /] mount -t lustre /dev/loop0 /mnt/ost1

This command generates this output:

LDISKFS-fs: file extents enabled

LDISKFS-fs: mballoc enabled

Lustre: temp-OST0000: new disk, initializing

Lustre: Server temp-OST0000 on device /dev/loop0 has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0

Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting
orphans

b. Mount ost2. On the oss2 node, run:

[root@oss2 /] mount -t lustre /dev/loop0 /mnt/ost2

This command generates this output:

LDISKFS-fs: file extents enabled

LDISKFS-fs: mballoc enabled

Lustre: temp-OST0001: new disk, initializing

Lustre: Server temp-OST0001 on device /dev/loop0 has started

Shortly afterwards, this output appears:

Lustre: temp-OST0001: received MDS connection from 10.2.0.1@tcp0

Lustre: MDS temp-MDT0000: temp-OST0001_UUID now active, resetting
orphans

6. Mount the file system on the client. On the client node, run:

root@client1 /] mount -t lustre 10.2.0.1@tcp0:/temp /lustre

This command generates this output:

Lustre: Client temp-client has started
Chapter 4 Configuring Lustre 4-7

7. Verify that the file system started and is working by running the UNIX
commands df, dd and ls on the client node.

a. Run the df command:

[root@client1 /] df -h

This command generates output similar to this:

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/VolGroup00-LogVol00

7.2G 2.4G 4.5G 35% /

dev/sda1 99M 29M 65M 31% /boot

tmpfs 62M 0 62M 0% /dev/shm

10.2.0.1@tcp0:/temp 30M 8.5M 20M 30% /lustre

b. Run the dd command:

[root@client1 /] cd /lustre

[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M
count=2

This command generates output similar to this:

2+0 records in

2+0 records out

8388608 bytes (8.4 MB) copied, 0.159628 seconds, 52.6 MB/s

c. Run the ls command:

[root@client1 /lustre] ls -lsah

This command generates output similar to this:

total 8.0M

4.0K drwxr-xr-x 2 root root 4.0K Oct 16 15:27 .

8.0K drwxr-xr-x 25 root root 4.0K Oct 16 15:27 ..

8.0M -rw-r--r-- 1 root root 8.0M Oct 16 15:27 zero.dat
4-8 Lustre 1.6 Operations Manual • May 2009

4.1.0.2 Module Setup

Make sure the modules (like LNET) are installed in the appropriate /lib/modules
directory. The mkfs.lustre utility tries to automatically load LNET (via the Lustre
module) with the default network settings (using all available network interfaces). To
change this default setting, use the network=... option to specify the network(s)
that LNET should use:

modprobe -v lustre "networks=XXX"

For example, to load Lustre with multiple-interface support (meaning LNET will use
more than one physical circuit for communication between nodes), load the Lustre
module with the following network=... option:

modprobe -v lustre "networks=tcp0(eth0),o2ib0(ib0)"

where:

tcp0 is the network itself (TCP/IP)

eth0 is the physical device (card) that is used (Ethernet)

o2ib0 is the interconnect (InfiniBand)

4.1.0.3 Lustre Configuration Utilities

Several configuration utilities are available to help you configure Lustre. For man
pages and reference information, see:

■ mkfs.lustre

■ tunefs.lustre

■ lctl

■ mount.lustre

The System Configuration Utilities (man8) chapter also includes information on other
utilities, such as lustre_rmmod.sh, e2scan, l_getgroups, llobdstat, llstat, lst, plot-llstat,
routerstat, and ll_recover_lost_found_objs, as well as utilities to manage large
clusters, perform application profiling, and test and debug Lustre.
Chapter 4 Configuring Lustre 4-9

4.2 Basic Lustre Administration
Once you have the Lustre system up and running, use the basic administration
procedures in this section to specify a file system name, start and stop servers, find
nodes in a file system, remove an OST, etc. This section contains the following
procedures:

■ Specifying the File System Name

■ Mounting a Server

■ Unmounting a Server

■ Working with Inactive OSTs

■ Finding Nodes in the Lustre File System

■ Mounting a Server Without Lustre Service

■ Specifying Failout/Failover Mode for OSTs

■ Running Multiple Lustre File Systems

■ Running the Writeconf Command

■ Removing and Restoring OSTs

■ Changing a Server NID

■ Aborting Recovery

■ Failover

■ Unmounting a Server (without Failover)

■ Unmounting a Server (with Failover)

■ Changing the Address of a Failover Node
4-10 Lustre 1.6 Operations Manual • May 2009

4.2.1 Specifying the File System Name
The file system name is limited to 8 characters. We have encoded the file system and
target information in the disk label, so you can mount by label. This allows system
administrators to move disks around without worrying about issues such as SCSI
disk reordering or getting the /dev/device wrong for a shared target. Soon, file
system naming will be made as fail-safe as possible. Currently, Linux disk labels are
limited to 16 characters. To identify the target within the file system, 8 characters are
reserved, leaving 8 characters for the file system name:

<fsname>-MDT0000 or <fsname>-OST0a19

To mount by label, use this command:

$ mount -t lustre <block device name> <mount point>

This is an example of mount-by-label:

$ mount -t lustre -L testfs-MDT0000 /mnt/mdt

Caution – Mount-by-label should NOT be used in a multi-path environment.

Although the file system name is internally limited to 8 characters, you can mount
the clients at any mount point, so file system users are not subjected to short names.
Here is an example:

mount -t lustre uml1@tcp0:/shortfs /mnt/<long-file_system-name>
Chapter 4 Configuring Lustre 4-11

4.2.2 Mounting a Server
Starting a Lustre server is straightforward and only involves the mount command.
Lustre servers can be added to /etc/fstab:

mount -t lustre

The mount command generates output similar to this:

/dev/sda1 on /mnt/test/mdt type lustre (rw)

/dev/sda2 on /mnt/test/ost0 type lustre (rw)

192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

In this example, the MDT, an OST (ost0) and file system (testfs) are mounted.

LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0

LABEL=testfs-OST0000 /mnt/test/ost0 lustre defaults,_netdev,noauto 0 0

In general, it is wise to specify noauto and let your high-availability (HA) package
manage when to mount the device. If you are not using failover, make sure that
networking has been started before mounting a Lustre server. RedHat, SuSE, Debian
(and perhaps others) use the _netdev flag to ensure that these disks are mounted
after the network is up.

We are mounting by disk label here—the label of a device can be read with e2label.
The label of a newly-formatted Lustre server ends in FFFF, meaning that it has yet to
be assigned. The assignment takes place when the server is first started, and the disk
label is updated.

Caution – Do not do this when the client and OSS are on the same node, as memory
pressure between the client and OSS can lead to deadlocks.

Caution – Mount-by-label should NOT be used in a multi-path environment.
4-12 Lustre 1.6 Operations Manual • May 2009

4.2.3 Unmounting a Server
Stopping a Lustre server is simple and only requires the umount command.

umount <mount point>

For example, to stop ost0 on mount point /mnt/test, run:

$ umount /mnt/test/ost0

Gracefully stopping a server with the umount command preserves the state of the
connected clients. The next time the server is started, it waits for clients to reconnect,
and then goes through the recovery procedure.

If the -f (“force”) flag is given, then the server evicts all clients and stops WITHOUT
recovery. Upon restart, the server does not wait for recovery. Any currently
connected clients receive I/O errors until they reconnect.

Note – If you are using loopback devices, use the -d flag. This flag cleans up loop
devices and can always be safely specified.

4.2.4 Working with Inactive OSTs
To mount a client or an MDT with one or more inactive OSTs, run commands similar
to this:

client> mount -o exclude=testfs-OST0000 -t lustre uml1:/testfs\
/mnt/testfs

client> cat /proc/fs/lustre/lov/testfs-clilov-*/target_obd

To activate an inactive OST on a live client or MDT, use the lctl activate
command on the OSC device. For example,

lctl --device 7 activate

Note – A colon-separated list can also be specified. For example,
exclude=testfs-OST0000:testfs-OST0001.
Chapter 4 Configuring Lustre 4-13

4.2.5 Finding Nodes in the Lustre File System
There may be situations in which you need to find all nodes in your Lustre file
system or get the names of all OSTs.

To get a list of all Lustre nodes, run this command on the MGS:

cat /proc/fs/lustre/mgs/MGS/live/*

Note – This command must be run on the MGS.

In this example, file system lustre has three nodes, lustre-MDT0000,
lustre-OST0000, and lustre-OST0001.

cfs21:/tmp# cat /proc/fs/lustre/mgs/MGS/live/*

fsname: lustre

flags: 0x0 gen: 26

lustre-MDT0000

lustre-OST0000

lustre-OST0001

To get the names of all OSTs, run this command on the MDS:

cat /proc/fs/lustre/lov/<fsname>-mdtlov/target_obd

Note – This command must be run on the MDS.

In this example, there are two OSTs, lustre-OST0000 and lustre-OST0001,
which are both active.

cfs21:/tmp# cat /proc/fs/lustre/lov/lustre-mdtlov/target_obd

0: lustre-OST0000_UUID ACTIVE

1: lustre-OST0001_UUID ACTIVE
4-14 Lustre 1.6 Operations Manual • May 2009

4.2.6 Mounting a Server Without Lustre Service
If you are using a combined MGS/MDT, but you only want to start the MGS and not
the MDT, run this command:

mount -t lustre <MDT partition> -o nosvc <mount point>

The <MDT partition> variable is the combined MGS/MDT.

In this example, the combined MGS/MDT is testfs-MDT0000 and the mount point
is mnt/test/mdt.

$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

4.2.7 Specifying Failout/Failover Mode for OSTs
Lustre uses two modes, failout and failover, to handle an OST that has become
unreachable because it fails, is taken off the network, is unmounted, etc.

■ In failout mode, Lustre clients immediately receive errors (EIOs) after a timeout,
instead of waiting for the OST to recover.

■ In failover mode, Lustre clients wait for the OST to recover.

By default, the Lustre file system uses failover mode for OSTs. To specify failout
mode instead, run this command:

$ mkfs.lustre --fsname=<fsname> --ost --mgsnode=<MGS node NID> \

-- param="failover.mode=failout" <mount point>

In this example, failout mode is specified for the OSTs on MGS uml1, file system
testfs.

$ mkfs.lustre --fsname=testfs --ost --mgsnode=uml1 \
-- param="failover.mode=failout" /dev/sdb

Caution – Before running this command, unmount all OSTS that will be affected by
the change in the failover/failout mode.

Note – After initial file system configuration, use the tunefs.lustre utility to
change the failover/failout mode. For example, to set the failout mode, run:

$ tunefs.lustre --param failover.mode=failout <OST partition>
Chapter 4 Configuring Lustre 4-15

4.2.8 Running Multiple Lustre File Systems
There may be situations in which you want to run multiple file systems. This is
doable, as long as you follow specific naming conventions.

By default, the the mkfs.lustre command creates a file system named lustre. To
specify a different file system name3, run:

mkfs.lustre --fsname=<new file system name>

Note – The MDT, OSTs and clients in the new file system must share the same name
(prepended to the device name).

For example, for a new file system named foo, the MDT and two OSTs would be
named foo-MDT0000, foo-OST0000, and foo-OST0001.

To mount a client on the file system, run:

mount -t lustre mgsnode:/<new fsname> <mountpoint>

For example, to mount a client on file system foo at mount point /dev/sda, run:

mount -t lustre mgsnode:/foo /dev/sda

Note – The MGS is universal; there is only one MGS per Lustre installation, not per
file system.

Note – There is only one file system per MDT. Therefore, specify --mdt --mgs on
one file system and --mdt --mgsnode=<MGS node NID> on the other file systems.

3. Note that the file system name is limited to 8 characters.
4-16 Lustre 1.6 Operations Manual • May 2009

A Lustre installation with two file systems (foo and bar) could look like this, where
the MGS node is mgsnode@tcp0 and the mount points are /dev/sda and
/dev/sdb.

mgsnode# mkfs.lustre --mgs /dev/sda
mdtfoonode# mkfs.lustre --fsname=foo --mdt --mgsnode=mgsnode@tcp0 /dev/sda
ossfoonode# mkfs.lustre --fsname=foo --ost --mgsnode=mgsnode@tcp0 /dev/sda
ossfoonode# mkfs.lustre --fsname=foo --ost --mgsnode=mgsnode@tcp0 /dev/sdb
mdtbarnode# mkfs.lustre --fsname=bar --mdt --mgsnode=mgsnode@tcp0 /dev/sda
ossbarnode# mkfs.lustre --fsname=bar --ost --mgsnode=mgsnode@tcp0 /dev/sda
ossbarnode# mkfs.lustre --fsname=bar --ost --mgsnode=mgsnode@tcp0 /dev/sdb

To mount a client on file system foo at mount point /dev/sda, run:

mount -t lustre mgsnode@tcp0:/foo /dev/sda

To mount a client on file system bar at mount point /dev/sdb, run:

mount -t lustre mgsnode@tcp0:/bar /dev/sdb

4.2.9 Running the Writeconf Command
If the system’s configuration logs are in a state where the file system cannot be
started or if you are changing a server NID, use the writeconf command to erase
all of the file system’s configuration logs (including all lctl conf_param settings).

After the writeconf command is run, the configuration logs are re-generated as
servers restart, and the current server NIDs are used.

To run the writeconf command:

1. Unmount all servers and clients.

2. On the MDT, run:

$ mdt> tunefs.lustre --writeconf <mount point>

3. Remount all servers. You must mount the MDT first.

Caution – Lustre 1.8 introduces the OST pools feature, which enables a group of
OSTs to be named for file striping purposes. If you use OST pools, be aware that
running the writeconf command erases all pools information (as well as any other
parameters set via lctl conf_param). We recommend that the pools definitions
(and conf_param settings) be executed via a script, so they can be reproduced easily
after a writeconf is performed.
Chapter 4 Configuring Lustre 4-17

4.2.10 Removing and Restoring OSTs
OSTs can be removed from and restored to a Lustre file system.

4.2.10.1 Removing an OST from the File System

When removing an OST, remember that the MDT does not communicate directly
with OSTs. Rather, each OST has a corresponding OSC which communicates with the
MDT. It is necessary to determine the device number of the OSC that corresponds to
the OST. Then, you use this device number to deactivate the OSC on the MDT.

To remove an OST from the file system:

1. For the OST to be removed, determine the device number of the corresponding
OSC on the MDT.

a. List all OSCs on the node, along with their device numbers. Run:

lctl dl | grep " osc "

This is sample lctl dl | grep " osc " output:

11 UP osc lustre-OST-0000-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2f20318ebdb4 5
12 UP osc lustre-OST-0001-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2f20318ebdb4 5
13 IN osc lustre-OST-0000-osc lustre-MDT0000-mdtlov_UUID 5
14 UP osc lustre-OST-0001-osc lustre-MDT0000-mdtlov_UUID 5

b. Determine the device number of the OSC that corresponds to the OST to be
removed.

2. Temporarily deactivate the OSC on the MDT so no new objects are allocated on
the corresponding OST. On the MDT, run:

$ mdt> lctl --device <devno> deactivate

For example, based on the command output in Step 1, to deactivate device 13 (the
MDT’s OSC for OST-0000), the command would be:

$ mdt> lctl --device 13 deactivate

Note – Do not deactivate the OST on the clients. Do so causes errors (EIOs), and the
copy out to fail.

Caution – "Do not use lctl conf_param to deactivate the OST. It permanently
sets a parameter in the file system configuration.
4-18 Lustre 1.6 Operations Manual • May 2009

3. Use lfs find to discover all files that have objects residing on the deactivated
OST.

4. Copy (not move) the files to a new directory in the file system.

Copying the files forces object re-creation on the active OSTs.

5. Move (not copy) the files back to their original directory in the file system.

Moving the files causes the original files to be deleted, as the copies replace them.

6. Once all files have been moved, permanently deactivate the OST on the clients
and the MDT. On the MGS, run:

$ mgs> lctl conf_param <OST name>.osc.active=0

4.2.10.2 Restoring an OST to the File System

Restoring an OST to the file system is as easy as activating it. When the OST is active,
it is automatically added to the normal stripe rotation and files are written to it.

To restore an OST:

1. Make sure the OST to be restored is running.

2. Reactivate the OST. Run:

$ mgs> lctl conf_param <OST name>.osc.active=1

4.2.11 Changing a Server NID
To change a server NID:

1. Update the LNET configuration in the /etc/modprobe.conf file so the list of
server NIDs (lctl list_nids) is correct.

2. Use the writeconf command to erase the configuration logs for the file system.
On the MDT, run:

$ mdt> tunefs.lustre --writeconf <mount point>

After the writeconf command is run, the configuration logs are re-generated as
servers restart, and the current server NIDs are used.

3. If the MGS’s NID was changed, communicate the new MGS location to each
server. Run:

tunefs.lustre --erase-param --mgsnode=<new_nid(s)> --writeconf /dev/..
Chapter 4 Configuring Lustre 4-19

4.2.12 Aborting Recovery
When starting a target, to abort the recovery process, run:

$ mount -t lustre -L <MDT name> -o abort_recov <mount point>

Note – The recovery process is blocked until all OSTs are available.

4.3 More Complex Configurations
If a node has multiple network interfaces, it may have multiple NIDs. When a node
is specified, all of its NIDs must be listed, delimited by commas (,) so other nodes can
choose the NID that is appropriate for their network interfaces. When multiple nodes
are specified, they are delimited by a colon (:) or by repeating a keyword
(--mgsnode= or --failnode=). To obtain all NIDs from a node (while LNET is
running), run:

lctl list_nids
4-20 Lustre 1.6 Operations Manual • May 2009

4.3.1 Failover
This example has a combined MGS/MDT failover pair on uml1 and uml2, and a OST
failover pair on uml3 and uml4. There are corresponding Elan addresses on uml1 and
uml2.

uml1> mkfs.lustre --fsname=testfs --mdt --mgs \

--failnode=uml2,2@elan /dev/sda1

uml1> mount -t lustre /dev/sda1 /mnt/test/mdt

uml3> mkfs.lustre --fsname=testfs --ost --failnode=uml4 \

--mgsnode=uml1,1@elan --mgsnode=uml2,2@elan /dev/sdb

uml3> mount -t lustre /dev/sdb /mnt/test/ost0

client> mount -t lustre uml1,1@elan:uml2,2@elan:/testfs /mnt/testfs

uml1> umount /mnt/mdt

uml2> mount -t lustre /dev/sda1 /mnt/test/mdt

uml2> cat /proc/fs/lustre/mds/testfs-MDT0000/recovery_status

Where multiple NIDs are specified, comma-separation (for example, uml2,2@elan)
means that the two NIDs refer to the same host, and that Lustre needs to choose the
"best" one for communication. Colon-separation (for example, uml1:uml2) means
that the two NIDs refer to two different hosts, and should be treated as failover
locations (Lustre tries the first one, and if that fails, it tries the second one.)

Note – If you have an MGS or MDT configured for failover, perform these steps:

1. On the OST, list the NIDs of all MGS nodes at mkfs time.

OST# mkfs.lustre --fsname sunfs --ost --mgsnode=10.0.0.1
--mgsnode=10.0.0.2 /dev/{device}

2. On the client, mount the file system.

client# mount -t lustre 10.0.0.1:10.0.0.2:/sunfs /cfs/client/
Chapter 4 Configuring Lustre 4-21

4.4 Operational Scenarios
In the operational scenarios below, the management node is the MDS. The
management service is started as the initial part of the startup of the primary MDT.

Tip – All targets that are configured for failover must have some kind of shared
storage among two server nodes.

IP Network, Single MDS, Single OST, No Failover

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> <partition>

mount -t lustre <partition> <mountpoint>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> <partition>

mount -t lustre <partition> <mountpoint>

On the client, run:

mount -t lustre <MGS NID>:/<fsname> <mountpoint>
4-22 Lustre 1.6 Operations Manual • May 2009

IP Network, Failover MDS

For failover, storage holding target data must be available as shared storage to
failover server nodes. Failover nodes are statically configured as mount options.

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \
--failover=<failover MGS NID> <partition>

mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \
--mgsnode=<MGS NID>,<failover MGS NID> <partition>
mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \
<mount point>

IP Network, Failover MDS and OSS

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \
--failover=<failover MGS NID> <partition>

mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \

--mgsnode=<MGS NID>[,<failover mds hostdesc>] \
--failover=<failover OSS NID> <partition>

mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \
<mount point>
Chapter 4 Configuring Lustre 4-23

4.4.1 Unmounting a Server (without Failover)
To stop a server (MDS or OSS) without failover, run:

umount <mds|oss mountpoint>

This stops the server unconditionally, and cleans up client connections and export
information. When the server restarts, the clients create a new connection to it.

4.4.2 Unmounting a Server (with Failover)
To stop a server (MDS or OSS) with failover, run:

umount -f <MDS|OSS mount point>

This stops the server and preserves client export information. When the server
restarts, the clients reconnect and resume in-progress transactions.

4.4.3 Changing the Address of a Failover Node
To change the address of a failover node (e.g, to use node X instead of node Y), run
this command on the OSS/OST partition:

tunefs.lustre --erase-params --failnode=<NID> <device>
4-24 Lustre 1.6 Operations Manual • May 2009

CHAPTER 5

Service Tags

This chapter describes the use of service tags with Lustre, and includes the following
sections:

Introduction to Service Tags

Using Service Tags

5.1 Introduction to Service Tags
Service tags are part of an IT asset inventory management system provided by Sun.
A service tag is a unique identifier for a piece of hardware or software (gear) that
enables usage data about the tagged item to be shared over a local network in
standard XML format. The service tag program is used for a number of Sun products,
including hardware, software and services, and has now been implemented for
Lustre.

Service tags are provided for each MGS, MDS, OSS node and Lustre client. Using
service tags enables automatic discovery and tracking of these system components,
so administrators can better manage their Lustre environment.

Note – Service tags are used solely to provide an inventory list of system and
software information to Sun; they do not contain any personal information. Service
tag components that communicate information are read-only and contained. They are
not capable of accepting information and they cannot communicate with any other
services on your system.

For more information on service tags, see the Service Tag wiki and Service Tag FAQ.
5-1

http://wikis.sun.com/display/ServiceTag/Home
http://wikis.sun.com/display/ServiceTag/Sun+Service+Tag+FAQ

5.2 Using Service Tags
To begin using service tags with your Lustre system, download the service tag
package and registration client. The entire service tag process can be easily managed
from the Sun Inventory webpage.

5.2.1 Installing Service Tags
Service tag packages (for RedHat and SuSE Linux) are downloadable from the Sun
Lustre downloads page. To download and install the service tags package:

1. Navigate to the Sun Lustre download page and download the service tag
package, sun-servicetag-1.1.4-1.i386.rpm1, for Lustre.

2. Install the service tag package on all Lustre nodes (MGSs, MDSs, OSSs and
clients).

The service tag package includes several init.d scripts which are started on reboot
(/etc/init.d/stosreg and /etc/init.d/psn start).

This package also adds entries in the [x]inetd’s configuration scripts to provide
remote access to the nodes needed to collect information. The script restarts
[x]inetd (killall -HUP xinetd 1>/dev/null 2>&1).

3. If this is a new installation, format the OSTs, MDTs, MGSs and Lustre clients.

4. Mount the OSTs, MDTs, MGSs and Lustre clients, and verify that the Lustre file
system is running normally.

1. This is the current service tag package. The version number is subject to change.
5-2 Lustre 1.6 Operations Manual • May 2009

https://inventory.sun.com
http://www.sun.com/software/products/lustre/get.jsp

5.2.2 Discovering and Registering Lustre Components
After installing the service tag package on all of your Lustre nodes, discover and
register the Lustre components. To perform this procedure, Lustre must be fully
configured and running.

1. Navigate to the Sun Lustre download page and download the Registration client,
eis-regclient.jar.

2. Install the Registration client on one node (the collection node) that can reach
all Lustre clients and servers over a TCP/IP network.

3. Install Java Virtual Machine (Java VM) on the collection node.

Java VM is available at the Sun Java download site.

4. Start the Registration client, run:

$ java -jar eis-regclient.jar

The Registration Client utility launches.

FIGURE 5-1 Registration Client
Chapter 5 Service Tags 5-3

http://www.sun.com/software/products/lustre/get.jsp
http://www.java.com/en/download/index.jsp

Note – The Registration client requires an X display to run. If the node from which
you want to do the registration has no native X display, you can use SSH’s X
forwarding to display the Registration client interface on your local machine.

The registration process includes up to five steps. The first step is to discover the
service tags created when you started Lustre.

The Registration client looks for Sun products on your local subnet, by default.
Alternately, you can specify another subnet, specific hosts or IP addresses.

5. Select an option to locate service tags and click Next.

The Product Data screen displays Sun products (that support service tags) as they
are located. For each product, the system name, product name, and version (if
applicable) are listed.

FIGURE 5-2 Product Data

If the list of located products does not look complete, select Back and enter a more
accurate search.
5-4 Lustre 1.6 Operations Manual • May 2009

Note – Located service tags are not limited to Lustre components. The Registration
client locates any Sun product on your system that is supported in the Sun inventory
management program.

6. Register the service tags or save them for later use.

There are two options for registering service tags.

■ Click Next to continue with the remaining steps 3-5 of the registration process,
including authentication to the Inventory management website and uploading
your service tags.

■ Save the collected service tags and register them on another machine. This
option is good if the system used to collect the service tags does not have Web
access. Click Save As and enter a file where the tags should be saved. You can
then move this file (using network copy, a USB key, etc.) to a machine with Web
access.

On the Web-access machine, navigate to Sun Inventory and click Discover &
Register to start the Registration client. Select the ‘Locate Product on Other
Subnets, Specific System or Load Previously Saved Data’ option and check the
‘File Name’ box. Enter (or navigate to) the file where the collected service tags
were saved, click Next and follow the remaining steps 3-5 to complete the
registration process, including authentication to the Inventory management
website and uploading your service tags.

7. If you wish, navigate to Sun Inventory and log into your account to view and
manage your IT assets.

Note – For more information about service tags, see https://inventory.sun.com,
which links to the http://wikis.sun.com/display/ServiceTag/Home wiki. This wiki
includes an FAQ about Sun’s service tag program.
Chapter 5 Service Tags 5-5

https://inventory.sun.com
https://inventory.sun.com
https://inventory.sun.com
http://wikis.sun.com/display/ServiceTag/Hom

5.2.3 Information Registered with Sun
The service tag registration process collects the following product, registration
agentry and system information.

Data Name Description

Product Information

Lustre-specific information Node type (client, MDS, OSS or MGS)

Instance identifier Unique identifier for that instance of the gear

Product name Name of the gear

Product identifier Unique identifier for the gear being registered

Product vendor Vendor of the gear

Product version Version of the gear

Parent name Parent gear of the registered gear

Parent identifier Unique identifier for the parent of the gear

Customer tag Optional, customer-defined value

Time stamp Day and time that the gear is registered

Source Where the gear identifiers came from

Container Name of the gear's container

Registration Agentry Information

Agentry Identifier Unique value for that instance of the agentry

Agentry Version Value of the agentry

Registry Identifier File version containing product registration information

System Information

Host System hostname

System Operating System

Release Operating system version

Architecture Physical hardware architecture

Platform Hardware platform

Manufacturer Hardware manufacturer

CPU manufacturer CPU manufacturer

HostID System host ID

Serial number System chassis serial number
5-6 Lustre 1.6 Operations Manual • May 2009

CHAPTER 6

Configuring Lustre - Examples

This chapter provides Lustre configuration examples and includes the following
section:

■ Simple TCP Network

6.1 Simple TCP Network
This chapter presents several examples of Lustre configurations on a simple TCP
network.

6.1.1 Lustre with Combined MGS/MDT
Below is an example is of a Lustre setup “datafs” having combined MDT/MGS with
four OSTs and a number of Lustre clients.

6.1.1.1 Installation Summary
■ Combined (co-located) MDT/MGS

■ Four OSTs

■ Any number of Lustre clients
6-1

6.1.1.2 Configuration Generation and Application

1. Install the Lustre RPMS (per Lustre Installation) on all nodes that are going to be
part of the Lustre file system. Boot the nodes in Lustre kernel, including the
clients.

2. Change modprobe.conf by adding the following line to it.

options lnet networks=tcp

3. Configuring Lustre on MGS and MDT node.

$ mkfs.lustre --fsname datafs --mdt --mgs /dev/sda

4. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

5. Configuring Lustre on all four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdb

Note – While creating the file system, make sure you are not using disk with the
operating system.

6. Make a mount point on all the OSTs for the file system and mount it.

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdt16@tcp0:/datafs /mnt/datafs
6-2 Lustre 1.6 Operations Manual • May 2009

6.1.2 Lustre with Separate MGS and MDT
The following example describes a Lustre file system “datafs” having an MGS and an
MDT on separate nodes, four OSTs, and a number of Lustre clients.

6.1.2.1 Installation Summary
■ One MGS

■ One MDT

■ Four OSTs

■ Any number of Lustre clients

6.1.2.2 Configuration Generation and Application

1. Install the Lustre RPMs (per Lustre Installation) on all the nodes that are going
to be a part of the Lustre file system. Boot the nodes in the Lustre kernel,
including the clients.

2. Change the modprobe.conf by adding the following line to it.

options lnet networks=tcp

3. Start Lustre on the MGS node.

$ mkfs.lustre --mgs /dev/sda

4. Make a mount point on MGS for the file system and mount it.

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda1 /mnt/mgs

5. Start Lustre on the MDT node.

$ mkfs.lustre --fsname=datafs --mdt --mgsnode=mgsnode@tcp0 \
/dev/sda2

6. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

7. Start Lustre on all the four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdb
Chapter 6 Configuring Lustre - Examples 6-3

8. Make a mount point on all the OSTs for the file system and mount it

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdsnode@tcp0:/datafs /mnt/datafs

6.1.2.3 Configuring Lustre with a CSV File

A new utility (script) - /usr/sbin/lustre_config can be used to configure
Lustre 1.6. This script enables you to automate formatting and setup of disks on
multiple nodes.

Describe your entire installation in a Comma Separated Values (CSV) file and pass it
to the script. The script contacts multiple Lustre targets simultaneously, formats the
drives, updates modprobe.conf, and produces HA configuration files using
definitions in the CSV file. (The lustre_config -h option shows several samples
of CSV files.)

Note – The CSV file format is a file type that stores tabular data. Many popular
spreadsheet programs, such as Microsoft Excel, can read from/write to CSV files.

How lustre_config Works

The lustre_config script parses each line in the CSV file and executes remote
commands, like mkfs.lustre, to format each Lustre target in the Lustre cluster.

Optionally, the lustre_config script can also:

■ Verify network connectivity and hostnames in the cluster

■ Configure Linux MD/LVM devices

■ Modify /etc/modprobe.conf to add Lustre networking information

■ Add the Lustre server information to /etc/fstab

■ Produce configurations for Heartbeat or CluManager
6-4 Lustre 1.6 Operations Manual • May 2009

How to Create a CSV File

Five different types of line formats are available to create a CSV file. Each line format
represents a target. The list of targets with the respective line formats are described
below:

Linux MD device

The CSV line format is:

hostname, MD, md name, operation mode, options, raid level, component devices

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

MD Marker of the MD device line.

md name MD device name, for example: /dev/md0

operation mode Operations mode, either create or remove. Default is create.

options A ‘catchall’ for other mdadm options, for example, -c 128

raid level RAID level: 0, 1, 4, 5, 6, 10, linear and multipath.

hostname Hostname of the node in the cluster.

component devices Block devices to be combined into the MD device. Multiple devices are
separated by space or by using shell extensions, for example:
/dev/sd{a,b,c}
Chapter 6 Configuring Lustre - Examples 6-5

Linux LVM PV (Physical Volume)

The CSV line format is:

hostname, PV, pv names, operation mode, options

Where:

Linux LVM VG (Volume Group)

The CSV line format is:

hostname, VG, vg name, operation mode, options, pv paths

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

PV Marker of the PV line.

pv names Devices or loopback files to be initialized for later use by LVM or to
wipe the label, for example: /dev/sda
Multiple devices or files are separated by space or by using shell
expansions, for example: /dev/sd{a,b,c}

operation mode Operations mode, either create or remove. Default is create.

options A ‘catchall’ for other pvcreate/pvremove options, for example: -vv

Variable Supported Type

hostname Hostname of the node in the cluster.

VG Marker of the VG line.

vg name Name of the volume group, for example: ost_vg

operation mode Operations mode, either create or remove. Default is create.

options A ‘catchall’ for other vgcreate/rgremove options, for example: -s 32M

pv paths Physical volumes to construct this VG, required by the create mode;
multiple PVs are separated by space or by using shell expansions, for
example: /dev/sd[k-m]1
6-6 Lustre 1.6 Operations Manual • May 2009

Linux LVM LV (Logical Volume)

The CSV line format is:

hostname, LV, lv name, operation mode, options, lv size, vg name

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

LV Marker of the LV line.

lv name Name of the logical volume to be created (optional) or path of the logical
volume to be removed (required by the remove mode).

operation mode Operations mode, either create or remove. Default is create.

options A ‘catchall’ for other lvcreate/lvremove options, for example: -i 2 -l 128

lv size Size [kKmMgGtT] to be allocated for the new LV. Default is megabytes (MB).

vg name Name of the VG in which the new LV is created.
Chapter 6 Configuring Lustre - Examples 6-7

Lustre target

The CSV line format is:

hostname, module_opts, device name, mount point, device type, fsname, mgs nids, index,
format options, mkfs options, mount options, failover nids

Where:

Note – In one node, all NIDs are delimited by commas (','). To use comma-separated
NIDs in a CSV file, they must be enclosed in quotation marks, for example:
"lustre-mgs2,2@elan"

When multiple nodes are specified, they are delimited by a colon (':').

If you leave a blank, it is set to default.

Variable Supported Type

hostname Hostname of the node in the cluster. It must match uname -n

module_opts Lustre networking module options. Use the newline character (\n) to
delimit multiple options.

device name Lustre target (block device or loopback file).

mount point Lustre target mount point.

device type Lustre target type (mgs, mdt, ost, mgs|mdt, mdt|mgs).

fsname Lustre file system name (limit is 8 characters).

mgs nids NID(s) of the remote mgs node, required for MDT and OST targets; if
this item is not given for an MDT, it is assumed that the MDT is also an
MGS (according to mkfs.lustre).

index Lustre target index.

format options A ‘catchall’ contains options to be passed to mkfs.lustre. For example:
device-size, --param, and so on.

mkfs options Format options to be wrapped with --mkfsoptions= and passed to
mkfs.lustre.

mount options If this script is invoked with -m option, then the value of this item is
wrapped with --mountfsoptions= and passed to mkfs.lustre;
otherwise, the value is added into /etc/ fstab

failver nids NID(s) of the failover partner node.
6-8 Lustre 1.6 Operations Manual • May 2009

The lustre_config.csv file looks like:

{mdtname}.{domainname},options lnet networks=
tcp,/dev/sdb,/mnt/mdt,mgs|mdt

{ost2name}.{domainname},options lnet networks=
tcp,/dev/sda,/mnt/ost1,ost,,192.168.16.34@tcp0

{ost1name}.{domainname},options lnet networks=
tcp,/dev/sda,/mnt/ost0,ost,,192.168.16.34@tcp0

Note – Provide a Fully Qualified Domain Name (FQDN) for all nodes that are a part
of the file system in the first parameter of all the rows starting in a new line. For
example:

mdt1.clusterfs.com,options lnet networks=
tcp,/dev/sdb,/mnt/mdt,mgs|mdt

- AND -

ost1.clusterfs.com,options lnet\ networks=tcp,/dev/sda,/mnt/
ost1,ost,,192.168.16.34@tcp0
Chapter 6 Configuring Lustre - Examples 6-9

Using CSV with lustre_config

Once you created the CSV file, you can start to configure the file system by using the
lustre_config script.

1. List the available parameters. At the command prompt. Type:

$ lustre_config

lustre_config: Missing csv file!

Usage: lustre_config [options] <csv file>

This script is used to format and set up multiple lustre servers
from a csv file.

Options:

-h help and examples

-a select all the nodes from the csv file to operate on

-w hostname,hostname,...

select the specified list of nodes (separated by commas) to
operate on rather than all the nodes in the csv file

-x hostname,hostname,... exclude the specified list of
nodes (separated by commas)

-t HAtype produce High-Availability software
configurations

The argument following -t is used to indicate the
High-Availability software type. The HA software types which are
currently supported are: hbv1 (Heartbeat version 1) and hbv2
(Heartbeat version 2).

-n no net - don’t verify network connectivity and hostnames
in the cluster

-d configure Linux MD/LVM devices before formatting the
Lustre targets

-f force-format the Lustre targets using --reformat option
OR you can specify --reformat in the ninth field of the target
line in the csv file

-m no fstab change - don’t modify /etc/fstab to add the new
Lustre targets. If using this option, then the value of "mount
options" item in the csv file will be passed to mkfs.lustre,else
the value will be added into the /etc/fstab

-v verbose mode

csv file is a spreadsheet that contains configuration parameters
(separated by commas) for each target in a Lustre cluster
6-10 Lustre 1.6 Operations Manual • May 2009

Example 1: Simple Lustre configuration with CSV (use the following command):

$ lustre_config -v -a -f lustre_config.csv

This command starts the execution and configuration on the nodes or targets in
lustre_config.csv, prompting you for the password to log in with root access
to the nodes. To avoid this prompt, configure a shell like pdsh or SSH.

After completing the above steps, the script makes Lustre target entries in the
/etc/fstab file on Lustre server nodes, such as:

/dev/sdb /mnt/mdtlustre defaults 0 0

/dev/sda /mnt/ostlustre defaults 0 0

2. Run mount /dev/sdb and mount /dev/sda to start the Lustre services.

Note – Use the /usr/sbin/lustre_createcsv script to collect information on
Lustre targets from running a Lustre cluster and generating a CSV file. It is a reverse
utility (compared to lustre_config) and should be run on the MGS node.

Example 2: More complicated Lustre configuration with CSV:

For RAID and LVM-based configuration, the lustre_config.csv file looks like
this:

Configuring RAID 5 on mds16.clusterfs.com

mds16.clusterfs.com,MD,/dev/md0,,-c 128,5,/dev/sdb /dev/sdc
/dev/sdd

configuring multiple RAID5 on oss161.clusterfs.com

oss161.clusterfs.com,MD,/dev/md0,,-c 128,5,/dev/sdb /dev/sdc
/dev/sdd

oss161.clusterfs.com,MD,/dev/md1,,-c 128,5,/dev/sde /dev/sdf
/dev/sdg

configuring LVM2-PV from the RAID5 from the above steps on

oss161.clusterfs.com

oss161.clusterfs.com,PV,/dev/md0 /dev/md1

configuring LVM2-VG from the PV and RAID5 from the above steps on

oss161.clusterfs.com

oss161.clusterfs.com,VG,oss_data,,-s 32M,/dev/md0 /dev/md1

configuring LVM2-LV from the VG, PV and RAID5 from the above steps

on oss161.clusterfs.com

oss161.clusterfs.com,LV,ost0,,-i 2 -I 128,2G,oss_data

oss161.clusterfs.com,LV,ost1,,-i 2 -I 128,2G,oss_data
Chapter 6 Configuring Lustre - Examples 6-11

configuring LVM2-PV on oss162.clusterfs.com

oss162.clusterfs.com,PV, /dev/sdb /dev/sdc /dev/sdd /dev/sde

/dev/sdf /dev/sdg

configuring LVM2-VG from the PV from the above steps on

oss162.clusterfs.com

oss162.clusterfs.com,VG,vg_oss1,,-s 32M,/dev/sdb /dev/sdc /dev/sdd

oss162.clusterfs.com,VG,vg_oss2,,-s 32M,/dev/sde /dev/sdf /dev/sdg

configuring LVM2-LV from the VG and PV from the above steps on

oss162.clusterfs.com

oss162.clusterfs.com,LV,ost3,,-i 3 -I 64,1G,vg_oss2

oss162.clusterfs.com,LV,ost2,,-i 3 -I 64,1G,vg_oss1

#configuring Lustre file system on MDS/MGS, OSS and OST with RAID
and LVM created above

mds16.clusterfs.com,options lnet networks=
tcp,/dev/md0,/mnt/mdt,mgs|mdt,,,,,,,

oss161.clusterfs.com,options lnet networks=
tcp,/dev/oss_data/ost0,/mnt/ost0,ost,,192.168.16.34@tcp0,,,,

oss161.clusterfs.com,options lnet networks=
tcp,/dev/oss_data/ost1,/mnt/ost1,ost,,192.168.16.34@tcp0,,,,

oss162.clusterfs.com,options lnet networks=
tcp,/dev/pv_oss1/ost2,/mnt/ost2,ost,,192.168.16.34@tcp0,,,,

oss162.clusterfs.com,options lnet networks=
tcp,/dev/pv_oss2/ost3,/mnt/ost3,ost,,192.168.16.34@tcp0,,,,

$ lustre_config -v -a -d -f lustre_config.csv

This command creates RAID and LVM, and then configures Lustre on the nodes or
targets specified in lustre_config.csv. The script prompts you for the
password to log in with root access to the nodes.

After completing the above steps, the script makes Lustre target entries in the
/etc/fstab file on Lustre server nodes, such as:

For MDS | MDT:

/dev/md0 /mnt/mdtlustre defaults00

For OSS:

/pv_oss1/ost2 /mnt/ost2lustre defaults00

3. Start the Lustre services, run:

mount /dev/sdb

mount /dev/sda
6-12 Lustre 1.6 Operations Manual • May 2009

CHAPTER 7

More Complicated Configurations

This chapter describes more complicated Lustre configurations and includes the
following sections:

■ Multi-homed Servers

■ Elan to TCP Routing

■ Load Balancing with InfiniBand

■ Multi-Rail Configurations with LNET

7.1 Multi-homed Servers
If you are using multiple networks with Lustre, certain configuration settings are
required. Throughout this section, a worked example is used to illustrate these
settings.

In this example, servers megan and oscar each have three TCP NICs (eth0, eth1, and
eth2) and an Elan NIC. The eth2 NIC is used for management purposes and should
not be used by LNET. TCP clients have a single TCP interface and Elan clients have a
single Elan interface.

7.1.1 Modprobe.conf
Options under modprobe.conf are used to specify the networks available to a node.
You have the choice of two different options – the networks option, which explicitly
lists the networks available and the ip2nets option, which provides a list-matching
lookup. Only one option can be used at any one time. The order of LNET lines in
modprobe.conf is important when configuring multi-homed servers. If a server
node can be reached using more than one network, the first network specified in
modprobe.conf will be used.
7-1

Networks

On the servers:

options lnet networks=tcp0(eth0, eth1),elan0

Elan-only clients:

options lnet networks=elan0

TCP-only clients:

options lnet networks=tcp0

Note – In the case of TCP-only clients, the first available non-loopback IP interface is
used for tcp0 since the interfaces are not specified.

ip2nets

The ip2nets option is typically used to provide a single, universal modprobe.conf
file that can be run on all servers and clients. An individual node identifies the
locally available networks based on the listed IP address patterns that match the
node's local IP addresses. Note that the IP address patterns listed in the ip2nets
option are only used to identify the networks that an individual node should
instantiate. They are not used by LNET for any other communications purpose. The
servers megan and oscar have eth0 IP addresses 192.168.0.2 and .4. They also have
IP over Elan (eip) addresses of 132.6.1.2 and .4. TCP clients have IP addresses
192.168.0.5-255. Elan clients have eip addresses of 132.6.[2-3].2, .4, .6, .8.

modprobe.conf is identical on all nodes:

options lnet 'ip2nets="tcp0(eth0,eth1)192.168.0.[2,4]; tcp0 \
192.168.0.*; elan0 132.6.[1-3].[2-8/2]"'

Note – LNET lines in modprobe.conf are only used by the local node to determine
what to call its interfaces. They are not used for routing decisions.

Because megan and oscar match the first rule, LNET uses eth0 and eth1 for tcp0 on
those machines. Although they also match the second rule, it is the first matching
rule for a particular network that is used. The servers also match the (only) Elan rule.
The [2-8/2] format matches the range 2-8 stepping by 2; that is 2,4,6,8. For example,
clients at 132.6.3.5 would not find a matching Elan network.
7-2 Lustre 1.6 Operations Manual • May 2009

7.1.2 Start Servers
For the combined MGS/MDT with TCP network, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

- OR -

For the MGS on the separate node with TCP network, run:

$ mkfs.lustre --mgs /dev/sda

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda /mnt/mgs

For starting the MDT on node mds16 with MGS on node mgs16, run:

$ mkfs.lustre --fsname=spfs --mdt --mgsnode=mgs16@tcp0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda2 /mnt/test/mdt

For starting the OST on TCP-based network, run:

$ mkfs.lustre --fsname spfs --ost --mgsnode=mgs16@tcp0 /dev/sda$

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0
Chapter 7 More Complicated Configurations 7-3

7.1.3 Start Clients
TCP clients can use the host name or IP address of the MDS, run:

mount –t lustre megan@tcp0:/mdsA/client /mnt/lustre

Use this command to start the Elan clients, run:

mount –t lustre 2@elan0:/mdsA/client /mnt/lustre

Note – If the MGS node has multiple interfaces (for instance, cfs21 and 1@elan), only
the client mount command has to change. The MGS NID specifier must be an
appropriate nettype for the client (for example, a TCP client could use uml1@tcp0,
and an Elan client could use 1@elan). Alternatively, a list of all MGS NIDs can be
given, and the client chooses the correctd one. For example:

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs
7-4 Lustre 1.6 Operations Manual • May 2009

7.2 Elan to TCP Routing
Servers megan and oscar are on the Elan network with eip addresses 132.6.1.2 and
.4. Megan is also on the TCP network at 192.168.0.2 and routes between TCP and
Elan. There is also a standalone router (router1), at Elan 132.6.1.10 and TCP
192.168.0.10. Clients are on either Elan or TCP.

7.2.1 Modprobe.conf
modprobe.conf is identical on all nodes, run:

options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"'

7.2.2 Start servers
To start router1, run:

modprobe lnet

lctl network configure

To start megan and oscar, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs

7.2.3 Start clients
For the TCP client, run:

mount -t lustre megan:/mdsA/client /mnt/lustre/

For the Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Chapter 7 More Complicated Configurations 7-5

7.3 Load Balancing with InfiniBand
There is one OSS with two InfiniBand HCAs. Lustre clients have only one InfiniBand
HCA using native Lustre drivers of o2ibind. Load balancing is done on both HCAs
on the OSS with the help of LNET.

7.3.1 Modprobe.conf
Lustre users have options available on following networks.

■ Dual HCA OSS server

options lnet ip2nets= "o2ib0(ib0),o2ib1(ib1) 192.168.10.1.[101-102]

■ Client with the odd IP address

options lnet ip2nets=o2ib0(ib0) 192.168.10.[103-253/2]

■ Client with the even IP address

options lnet ip2nets=o2ib1(ib0) 192.168.10.[102-254/2]

7.3.2 Start servers
To start the MGS and MDT server, run:

modprobe lnet

To start MGS and MDT, run:

$ mkfs.lustre --fsname lustre --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ mount -t lustre mgs@o2ib0:/lustre /mnt/mdt

To start the OSS, run:

$ mkfs.lustre --fsname lustre --ost --mgsnode=mds@o2ib0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/ost

$ mount -t lustre mgs@o2ib0:/lustre /mnt/ost
7-6 Lustre 1.6 Operations Manual • May 2009

7.3.3 Start clients
For the IB client, run:

mount -t lustre

192.168.10.101@o2ib0,192.168.10.102@o2ib1:/mds/client /mnt/lustre

7.4 Multi-Rail Configurations with LNET
To aggregate bandwidth across both rails of a dual-rail IB cluster (o2iblnd)1 using
LNET, consider these points:

■ LNET can work with multiple rails, however, it does not load balance across them.
The actual rail used for any communication is determined by the peer NID.

■ Multi-rail LNET configurations do not provide an additional level of network fault
tolerance. The configurations described below are for bandwidth aggregation only.
Network interface failover is planned as an upcoming Lustre feature.

■ A Lustre node always uses the same local NID to communicate with a given peer
NID. The criteria used to determine the local NID are:

■ Fewest hops (to minimize routing), and

■ Appears first in the "networks" or "ip2nets" LNET configuration strings

As an example, consider a two-rail IB cluster running the OFA stack (OFED) with
these IPoIB address assignments.

ib0 ib1

Servers 192.168.0.* 192.168.1.*

Clients 192.168.[2-127].* 192.168.[128-253].*

1. Multi-rail configurations are only supported by o2iblnd; other IB LNDs do not support multiple interfaces.
Chapter 7 More Complicated Configurations 7-7

You could create these configurations:

■ A cluster with more clients than servers. The fact that an individual client cannot
get two rails of bandwith is unimportant because the servers are the actual
bottleneck.

ip2nets="o2ib0(ib0), o2ib1(ib1)192.168.[0-1].* #all servers;\
o2ib0(ib0) 192.168.[2-253].[0-252/2]#even clients;\
o2ib1(ib1) 192.168.[2-253].[1-253/2]#odd clients"

This configuration gives every server two NIDs, one on each network, and statically
load-balances clients between the rails.

■ A single client that must get two rails of bandwidth, and it does not matter if the
maximum aggregate bandwidth is only (# servers) * (1 rail).

ip2nets=" o2ib0(ib0) 192.168.[0-1].[0-252/2] #even servers;\
o2ib1(ib1) 192.168.[0-1].[1-253/2] #odd servers;\
o2ib0(ib0),o2ib1(ib1) 192.168.[2-253].* #clients"

This configuration gives every server a single NID on one rail or the other. Clients
have a NID on both rails.

■ All clients and all servers must get two rails of bandwidth.

ip2nets=” o2ib0(ib0),o2ib2(ib1) 192.168.[0-1].[0-252/2] #even servers;\
o2ib1(ib0),o2ib3(ib1) 192.168.[0-1].[1-253/2] #odd servers;\
o2ib0(ib0),o2ib3(ib1) 192.168.[2-253].[0-252/2)#even clients;\
o2ib1(ib0),o2ib2(ib1) 192.168.[2-253].[1-253/2)#odd clients"

This configuration includes two additional proxy o2ib networks to work around
Lustre's simplistic NID selection algorithm. It connects "even" clients to "even"
servers with o2ib0 on rail0, and "odd" servers with o2ib3 on rail1. Similarly, it
connects "odd" clients to "odd" servers with o2ib1 on rail0, and "even" servers with
o2ib2 on rail1.
7-8 Lustre 1.6 Operations Manual • May 2009

CHAPTER 8

Failover

This chapter describes failover in a Lustre system and includes the following
sections:

■ What is Failover?

■ OST Failover

■ MDS Failover

■ Configuring MDS and OSTs for Failover

■ Setting Up Failover with Heartbeat V1

■ Using MMP

■ Setting Up Failover with Heartbeat V2

■ Considerations with Failover Software and Solutions

8.1 What is Failover?
A computer system is “highly available” when the services it provides are available
with minimal downtime. In a highly-available system, if a failure condition occurs,
such as loss of a server or a network or software fault, the services provided remain
unaffected. Generally, we measure availability by the percentage of time the system is
required to be available.

Availability is accomplished by providing replicated hardware and/or software, so
failure of the system will be covered by a paired system. The concept of “failover” is
the method of switching an application and its resources to a standby server when
the primary system fails or is unavailable. Failover should be automatic and, in most
cases, completely application-transparent.
8-1

In Lustre, failover means that a client that tries to do I/O to a failed OST continues to
try (forever) until it gets an answer. A userspace sees nothing strange, other than that
I/O takes (potentially) a very long time to complete.

Lustre failover requires two nodes (a failover pair), which must be connected to a
shared storage device. Lustre supports failover for both metadata and object storage
servers. Failover is achieved most simply by powering off the node in failure (to be
absolutely sure of no multi-mounts of the MDT) and mounting the MDT on the
partner. When the primary comes back, it MUST NOT mount the MDT while
secondary has it mounted. The secondary can then unmount the MDT and the master
mount it.

The Lustre file system only supports failover at the server level. Lustre does not
provide the tool set for system-level components that is needed for a complete
failover solution (node failure detection, power control, and so on).1

Lustre failover is dependant on either a primary or backup OST to recover the file
system. You need to set up an external HA mechanism. The recommended choice is
the Heartbeat package, available at:

www.linux-ha.org

Heartbeat is responsible to detect failure of the primary server node and control the
failover. The HA software controls Lustre using its built-in "file system" mechanism
to unmount and mount file systems. Although Heartbeat is recommended, Lustre
works with any HA software that supports resource (I/O) fencing.

The hardware setup requires a pair of servers with a shared connection to a physical
storage (like SAN, NAS, hardware RAID, SCSI and FC). The method of sharing
storage should be essentially transparent at the device level, that is, the same
physical LUN should be visible from both nodes. To ensure high availability at the
level of physical storage, we encourage the use of RAID arrays to protect against
drive-level failures.

To have a fully-automated, highly-available Lustre system, you need power
management software and HA software, which must provide the following -

■ Resource fencing - Physical storage must be protected from simultaneous access
by two nodes.

■ Resource control - Starting and stopping the Lustre processes as a part of failover,
maintaining the cluster state, and so on.

■ Health monitoring - Verifying the availability of hardware and network resources,
responding to health indications given by Lustre.

1. This functionality has been available for some time in third-party tools.
8-2 Lustre 1.6 Operations Manual • May 2009

www.linux-ha.or

For proper resource fencing, the Heartbeat software must be able to completely
power off the server or disconnect it from the shared storage device. It is imperative
that no two active nodes access the same storage device, at the risk of severely
corrupting data. When Heartbeat detects a server failure, it calls a process
(STONITH) to power off the failed node; and then starts Lustre on the secondary
node using its built-in "file system" resource manager.

Servers providing Lustre resources are configured in primary/secondary pairs for the
purpose of failover. When a server umount command is issued, the disk device is set
read-only. This allows the second node to start service using that same disk, after the
command completes. This is known as a soft failover, in which case both the servers
can be running and connected to the net. Powering off the node is known as a hard
failover.

8.1.1 The Power Management Software
The Linux-HA package includes a set of power management tools, known as
STONITH (Shoot The Other Node In The Head). STONITH has native support for
many power control devices, and is extensible. It uses expect scripts to automate
control. PowerMan, by the Lawrence Livermore National Laboratory (LLNL), is a
tool for manipulating remote power control (RPC) devices from a central location.
Several RPC varieties are supported natively by PowerMan.

The latest versions of PowerMan are available at:

http://sourceforge.net/projects/powerman

For more information on PowerMan, go to:

https://computing.llnl.gov/linux/powerman.html

8.1.2 Power Equipment
A multi-port, Ethernet addressable RPC is relatively inexpensive. For recommended
products, refer to the list of supported hardware on the PowerMan site. Linux
Network Iceboxes are also very good tools. They combine the remote power control
and the remote serial console into a single unit.
Chapter 8 Failover 8-3

https://computing.llnl.gov/linux/powerman.html
http://sourceforge.net/projects/powerman

8.1.3 Heartbeat
The Heartbeat package is one of the core components of the Linux-HA project.
Heartbeat is highly-portable, and runs on every known Linux platform, as well as
FreeBSD and Solaris. For more information, see:

http://linux-ha.org/HeartbeatProgram

To download Linux-HA, go to:

http://linux-ha.org/download

Lustre supports both Heartbeat V1 and Heartbeat V2. V1 has a simpler configuration
and works very well. V2 adds monitoring and supports more complex cluster
topologies. For additional information, we recommend that you refer to the
Linux-HA website.

8.1.4 Connection Handling During Failover
A connection is alive when it is active and in operation. When a connection request is
sent, a connection is not established until either a reply arrives or a connection
disconnects or fails. If there is no traffic on a given connection, periodically check the
connection to ensure its status.

If an active connection disconnects, it leads to at least one timeout request. New and
old requests are in sleep until:

■ The reply arrives (in case of re-activation of the connection and during the re-send
request asynchronously).

■ The application gets a signal (such as TERM or KILL).

■ The server evicts the client, which gives an I/O error (EIO) for these requests or
the connection becomes "failed."

A timeout is effectively infinite. Lustre waits as long as it needs to avoid giving the
application an EIO.

Note – A client process waits indefinitely until the OST is back alive, unless either
the process is killed (which should be possible after the Lustre recovery timeout is
exceeded, 100s by default), or the OST is explicitly marked "inactive" on the clients:
lctl --device <failed OSC device on the client> deactivate

After the OSC is marked inactive, all I/O to this OST should immediately return with
-EIO, and not hang.
8-4 Lustre 1.6 Operations Manual • May 2009

http://linux-ha.org/download
http://linux-ha.org/HeartbeatProgram

Note – Under heavy load, clients may have to wait a long time for requests sent to
the server to complete (100s of seconds in some cases). It is difficult for clients to
distinguish between heavy server load (common) and server death (unlikely).

In the case where a server dies and fails over, the clients have to wait for their
requests to time out, then they resend and wait again (in the common case the server
is just overloaded), then they try to contact another server listed as a failover server
for that node.

If a connection goes to the "failed" condition, which happens immediately in "failout"
OST mode, new and old requests receive EIOs. In non-failout mode, a connection can
only get into this state by using lctl deactivate, which is the only option for the
client in the event of an OST failure.

Failout means that if an OST becomes unreachable (because it has failed, been taken
off the network, unmounted, turned off, etc.), then I/O to get objects from that OST
cause a Lustre client to get an EIO.

8.1.5 Roles of Nodes in a Failover
A failover pair of nodes can be configured in two ways – active / active and
active / passive. An active node actively serves data while a passive node is idle,
standing by to take over in the event of a failure. In the following example, using two
OSTs (both of which are attached to the same shared disk device), the following
failover configurations are possible:

■ active / passive - This configuration has two nodes out of which only one is
actively serving data all the time.

In case of a failure, the other node takes over.If the active node fails, the OST in
use by the active node will be taken over by the passive node, which now becomes
active. This node serves most services that were on the failed node.

■ active / active - This configuration has two nodes actively serving data all the
time. In case of a failure, one node takes over for the other.

To configure this for the shared disk, the shared disk must provide multiple
partitions; each OST is the primary server for one partition and the secondary server
for the other partition. The active / passive configuration doubles the hardware
cost without improving performance, and is seldom used for OST servers.
Chapter 8 Failover 8-5

8.2 OST Failover
The OST has two operating modes: failover and failout. The default mode is failover.
In this mode, the clients reconnect after a failure, and the transactions, which were in
progress, are completed. Data on the OST is written synchronously, and the client
replays uncommitted transactions after the failure.

In the failout mode, when any communication error occurs, the client attempts to
reconnect, but is unable to continue with the transactions that were in progress
during the failure. Also, if the OST actually fails, data that has not been written to the
disk (still cached on the client) is lost. Applications usually see an EIO for operations
done on that OST until the connection is reestablished. However, the LOV layer on
the client avoids using that OST. Hence, the operations such as file creates and fsstat
still succeed. The failover mode is the current default, while the failout mode is
seldom used.

8.3 MDS Failover
The MDS has only one failover mode: active/passive, as only one MDS may be active
at a given time. The failover setup is two MDSs, each with access to the same MDT.
Either MDS can mount the MDT, but not both at the same time.

8.4 Configuring MDS and OSTs for Failover

8.4.1 Configuring Lustre for Failover
To add a failover partner to a Lustre configuration, use the --failnode option. This
may be done at creation time with with mkfs.lustre or at a later time with
tunefs.lustre. For a failover example, see More Complicated Configurations. For
an explanation of the mkfs.lustre and tunefs.lustre utilities, see mkfs.lustre
and tunefs.lustre.
8-6 Lustre 1.6 Operations Manual • May 2009

8.4.2 Starting/Stopping a Resource
You can start a resource with the mount command and stop it with the umount
command. For details, see Unmounting a Server.

8.4.3 Active/Active Failover Configuration
With OST servers it is possible to have a load-balanced active/active configuration.
Each node is the primary node for a group of OSTs, and the failover node for other
groups. To expand the simple two-node example, we add ost2 which is primary on
nodeB, and is on the LUNs nodeB:/dev/sdc1 and nodeA:/dev/sdd1. This
demonstrates that the /dev/ identity can differ between nodes, but both devices
must map to the same physical LUN. In this type of failover configuration, you can
mount two OSTs on two different nodes, and format them from either node. With
failover, two OSSs provide the same service to the Lustre network in parallel. In case
of disaster or a failure in one of the nodes, the other OSS can provide uninterrupted
file system services.

For an active/active configuration, mount one OST on one node and another OST on
the other node. You can format them from either node.
Chapter 8 Failover 8-7

8.4.4 Hardware Requirements for Failover
This section describes hardware requirements that must be met to configure Lustre
for failover.

8.4.4.1 Hardware Preconditions
■ The setup must consist of a failover pair where each node of the pair has access to

shared storage. If possible, the storage paths should be identical
(nodeA:/dev/sda == nodeB:/dev/sda).

Note – A failover pair is a combination of two or more separate nodes. Each node
has access to the same shared disk.

■ Shared storage can be arranged in an active/passive (MDS, OSS) or active/active
(OSS only) configuration. Each shared resource has a primary (default) node.
Heartbeat assumes that the non-primary node is secondary for that resource.

■ The two nodes must have one or more communication paths for Heartbeat traffic.
A communication path can be:

■ Dedicated Ethernet

■ Serial live (serial crossover cable)

Failure of all Heartbeat communication is not good. This condition is called
“split-brain”. Heartbeat software resolves this situation by powering down one
node.

■ The two nodes must have a method to control one another's state; RPC hardware
is the best choice. There must be a script to start and stop a given node from the
other node. STONITH provides soft power control methods (SSH, meatware), but
these cannot be used in a production situation.

■ Heartbeat provides a remote ping service that is used to monitor the health of the
external network. If you wish to use the ipfail service, then you must have a very
reliable external address to use as the ping target. Typically, this is a firewall route
or another very reliable network endpoint external to the cluster.

In Lustre, a disk failure is an unrecoverable error. For this reason, you must have
reliable back-end storage with RAID.

Note – If a disk fails, requiring you to change the disk or resync the RAID, you can
deactivate the affected OST, using lctl on the clients and MDT. This allows access
functions to complete without errors (files on the affected OST will be of 0-length,
however, you can save rest of your files).
8-8 Lustre 1.6 Operations Manual • May 2009

8.5 Setting Up Failover with Heartbeat V1
This section describes how to set up failover with Heartbeat V1.

8.5.1 Installing the Software
1. Install Lustre (see Installing Lustre from RPMs).

2. Install the RPMs that are required to configure Heartbeat.

The following packages are needed for Heartbeat V1. We used the 1.2.3-1 version.
RedHat supplies v1.2.3-2. Heartbeat is available as an RPM or source.

These are the Heartbeat packages, in order:

■ heartbeat-stonith -> heartbeat-stonith-1.2.3-1.i586.rpm

■ heartbeat-pils -> heartbeat-pils-1.2.3-1.i586.rpm

■ heartbeat itself -> heartbeat-1.2.3-1.i586.rpm

You can find the above RPMs at:

http://linux-ha.org/download/index.html#1.2.3

3. Satisfy the installation prerequisites.

Heartbeat 1.2.3 installation requires following:

■ python

■ openssl

■ libnet-> libnet-1.1.2.1-19.i586.rpm

■ libpopt -> popt-1.7-274.i586.rpm

■ librpm -> rpm-4.1.1-222.i586.rpm

■ glib -> glib-2.6.1-2.i586.rpm

■ glib-devel -> glib-devel-2.6.1-2.i586.rpm
Chapter 8 Failover 8-9

http://linux-ha.org/download/index.html#1.2.3

8.5.1.1 Configuring Heartbeat

This section describes basic configuration of Heartbeat with and without STONITH.

Note – LNET does not support virtual IP addresses. The IP address specified in the
haresources file should be a 'dummy' address (valid, but unused). With later releases
of Heartbeat, you may avoid the use of virtual IPs, but it is required in earlier
releases.

Basic Configuration - Without STONITH

The http://linux-ha.org website has several guides covering basic setup and initial
testing of Heartbeat; We suggest that you read them.

1. Configure and test the Heartbeat setup before adding STONITH.

Let us assume there are two nodes, nodeA and nodeB. nodeA owns ost1 and
nodeB owns ost2. Both the nodes are with dedicated Ethernet – eth0 having serial
crossover link – /dev/ttySO. Consider that both nodes are pinging to a remote
host – 192.168.0.3 for health.

2. Create /etc/ha.d/ha.cf

■ This file must be identical on both the nodes.

■ Follow the specific order of the directives.

■ Sample ha.cf file

Suggested fields - logging

debugfile /var/log/ha-debug

logfile /var/log/ha-log

logfacility local0

Required fields - Timing

keepalive 2

deadtime 30

initdead 120

If using serial Heartbeat

baud 19200

serial /dev/ttyS0

For Ethernet broadcast

udpport 694

bcast eth0

Use manual failback

auto_failback off
8-10 Lustre 1.6 Operations Manual • May 2009

http://linux-ha.org

Cluster members - name must match `hostname`

node oss161.clusterfs.com oss162. clusterfs.com

remote health ping

ping 192.168.16.1

respawn hacluster /usr/lib/heartbeat/ipfail

3. Create /etc/ha.d/haresources

■ This file must be identical on both the nodes.

■ It specifies a virtual IP address and a service.

■ Sample haresources

oss161.clusterfs.com 192.168.16.35 \
Filesystem::/dev/sda::/ost1::lustre

oss162.clusterfs.com 192.168.16.36 \
Filesystem::/dev/sda::/ost1::lustre

4. Create /etc/ha.d/authkeys

■ Copy the example from /usr/share/doc/heartbeat-<version>.

■ chmod the file '0600' – Heartbeat does not start if the permissions on this file are
incorrect.

■ Sample authkeys files

auth 1

1 sha1 PutYourSuperSecretKeyHere

a. Start Heartbeat.

[root@oss161 ha.d]# service heartbeat start

Starting High-Availability services:
[OK]
Chapter 8 Failover 8-11

b. Monitor the syslog on both nodes. After the initial deadtime interval, you
should see the nodes discovering each other's state, and then they start the
Lustre resources they own. You should see the startup command in the log:

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Election check: vote from oss162.clusterfs.com

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_check:
Still waiting on 2 non-votes (2 total)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Updated voted hash for oss161.clusterfs.com to vote

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Election ignore: our vote (oss161.clusterfs.com)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_check:
Still waiting on 1 non-votes (2 total)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_state_transition:
State transition S_ELECTION -> S_PENDING [input=I_PENDING cause=
C_FSA_INTERNAL origin=do_election_count_vote]

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_dc_release: DC role
released

Aug 9 09:50:45 oss161 crmd: [4733]: info: do_election_count_vote:
Election check: vote from oss162.clusterfs.com

Aug 9 09:50:45 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:46 oss161 crmd: [4733]: info: update_dc: Set DC to
oss162.clusterfs.com (1.0.9)

Aug 9 09:50:47 oss161 crmd: [4733]: info: update_dc: Set DC to
oss161.clusterfs.com (1.0.9)

Aug 9 09:50:47 oss161 cib: [4729]: info: cib_replace_notify:
Local-only Replace: 0.0.1 from <null>

Aug 9 09:50:47 oss161 crmd: [4733]: info: do_state_transition:
State transition S_PENDING -> S_NOT_DC [input=I_NOT_DC cause=
C_HA_MESSAGE origin=do_cl_join_finalize_respond]

Aug 9 09:50:47 oss161 crmd: [4733]: info: populate_cib_nodes:
Requesting the list of configured nodes

Aug 9 09:50:48 oss161 crmd: [4733]: notice: populate_cib_nodes:
Node: oss162.clusterfs.com (uuid:
00e8c292-2a28-4492-bcfc-fb2625ab1c61)

Sep 7 10:42:40 d1_q_0 heartbeat: info: Running \
/etc/ha.d/resource.d/ost1 start
8-12 Lustre 1.6 Operations Manual • May 2009

In this example, ost1 is the shared resource. Common things to watch out for:

■ If you configure two nodes as primary for one resource, then you will see
both nodes attempt to start it. This is very bad. Shut down immediately and
correct your HA resources files.

■ If the commutation between nodes is not correct, both nodes may also
attempt to mount the same resource, or will attempt to STONITH each other.
There should be many error messages in syslog indicating a communication
fault.

■ When in doubt, you can set a Heartbeat debug level in ha.cf—levels above
5 produce huge volumes of data.

c. Try some manual failover/ failback. Heartbeat provides two tools for this
purpose (by default they are installed in /usr/lib/heartbeat) –

■ hb_standby [local|foreign] - Causes a node to yield resources to
another node—if a resource is running on its primary node it is local,
otherwise it is foreign.

■ hb_takeover [local|foreign] - Causes a node to grab resources from
another node.

Basic Configuration - With STONITH

STONITH automates the process of power control with the expect package. Expect
scripts are very dependent on the exact set of commands provided by each hardware
vendor, and as a result any change made in the power control hardware/firmware
requires tweaking STONITH.

Much must be deduced by running the STONITH package by hand. STONITH has
some supplied packages, but can also run with an external script. There are two
STONITH modes:

■ Single STONITH command for all nodes found in ha.cf:

-------/etc/ha.d/ha.cf-------------------

stonith <type> <config file>

■ STONITH command per-node:

-------/etc/ha.d/ha.cf--------------------

stonith_host <hostfrom> <stonith_type> <params...>

You can use an external script to kill each node:

stonith_host nodeA external foo /etc/ha.d/reset-nodeB

stonith_host nodeB external foo /etc/ha.d/reset-nodeA

Here, foo is a placeholder for an unused parameter.
Chapter 8 Failover 8-13

To get the proper syntax, run:

$ stonith -L

The above command lists supported models.

To list required parameters and specify the config file name, run:

$ stonith -l -t <model>

To attempt a test, run:

$ stonith -l -t <mode1> <fake host name>

This command also gives data on what is required. To test, use a real hostname. The
external STONITH scripts should take the parameters {start|stop|status} and
return 0 or 1.

STONITH _only happens when the cluster cannot do things in an orderly manner. If
two cluster nodes can communicate, they usually shut down properly. This means
many tests do not produce a STONITH, for example:

■ Calling init 0 or shutdown or reboot on a node, orderly halt, no STONITH

■ Stopping the heartbeat service on a node, again, orderly halt, no STONITH

You have to do something drastic (for example, killall -9 heartbeat) like pulling
cables, or so on before you trigger STONITH.

Also, the alert script does a software failover, which halts Lustre but does not halt or
STONITH the system. To use STONITH, edit the fail_lustre.alert script and
add your preferred shutdown command after the line:

`/usr/lib/heartbeat/hb_standby local &`;
8-14 Lustre 1.6 Operations Manual • May 2009

A simple method to halt the system is the sysrq method. Run:

$!/bin/bash

This script forces a boot. Run:

$ 'echo s' = sync

$ 'echo u' = remount read-only

$ 'echo b' = reboot

$

SYST="/proc/sysrq-trigger"

if [! -f $SYST]; then

echo "$SYST not found!"

exit 1

fi

$ sync, unmount, sync, reboot

echo s > $SYST

echo u > $SYST

echo s > $SYST

echo b > $SYST

exit 0
Chapter 8 Failover 8-15

8.6 Using MMP
The multiple mount protection (MMP) feature protects the file system from being
mounted more than one time simultaneously. If the file system is mounted, MMP
also protects changes by e2fsprogs to the file system. This feature is very important in
a shared storage environment (for example, when an OST and a failover OST share a
partition).

The backing file system for Lustre, ldiskfs, supports the MMP mechanism. A block
in the file system is updated by a kmmpd daemon at one second intervals, and a
monotonically increasing sequence number is written in this block. If the file system
is cleanly unmounted, then a special "clean" sequence is written in this block. When
mounting a file system, ldiskfs checks if the MMP block has a clean sequence or not.

Even if the MMP block holds a clean sequence, ldiskfs waits for some interval to
guard against the following situations:

■ Under heavy I/O, it may take longer for the MMP block to be updated

■ If another node is also trying to mount the same file system, there may be a ’race’

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file
system was not cleanly unmounted, then mounting the file system may require
additional time.

Note – The MMP feature is only supported on Linux kernel versions >= 2.6.9.

Note – The MMP feature is automatically enabled by mkfs.lustre for new file
systems at format time if failover is being used and the kernel and e2fsprogs support
it. Otherwise, the Lustre administrator has to manually enable this feature when the
file system is unmounted. If failover is being used, the MMP feature is automatically
enabled by mkfs.lustre.

- To determine if MMP is enabled: dumpe2fs -h <device>|grep features

Example: dumpe2fs -h /dev/{mdtdev} | grep 'Inode count'

- To manually disable MMP: tune2fs -O ^mmp <device>
- To manually enable MMP: tune2fs -O mmp <device>

If ldiskfs detects that a file system is being mounted multiple times, it reports the
time when the MMP block was last updated, the node name and the device name.
8-16 Lustre 1.6 Operations Manual • May 2009

8.7 Setting Up Failover with Heartbeat V2
This section describes how to set up failover with Heartbeat V2.

8.7.1 Installing the Software
1. Install Lustre (see Installing Lustre from RPMs).

2. Install RPMs required for configuring Heartbeat.

The following packages are needed for Heartbeat (v2). We used the 2.0.4 version of
Heartbeat.

Heartbeat packages, in order:

■ heartbeat-stonith -> heartbeat-stonith-2.0.4-1.i586.rpm

■ heartbeat-pils -> heartbeat-pils-2.0.4-1.i586.rpm

■ heartbeat itself -> heartbeat-2.0.4-1.i586.rpm

You can find all the RPMs at the following location:

http://linux-ha.org/download/index.html#2.0.4

3. Satisfy the installation prerequisites.

To install Heartbeat 2.0.4-1, you require:

■ Python

■ openssl

■ libnet-> libnet-1.1.2.1-19.i586.rpm

■ libpopt -> popt-1.7-274.i586.rpm

■ librpm -> rpm-4.1.1-222.i586.rpm

■ libtld- > libtool-ltdl-1.5.16.multilib2-3.i386.rpm

■ lingnutls -> gnutls-1.2.10-1.i386.rpm

■ Libzo -> lzo2-2.02-1.1.fc3.rf.i386.rpm

■ glib -> glib-2.6.1-2.i586.rpm

■ glib-devel -> glib-devel-2.6.1-2.i586.rpm
Chapter 8 Failover 8-17

http://linux-ha.org/download/index.html#2.0.4

8.7.2 Configuring the Hardware
Heartbeat v2 runs well with an un-altered v1 configuration. This makes upgrading
simple. You can test the basic function and quickly roll back if issues appear.
Heartbeat v2 does not require a virtual IP address to be associated with a resource.
This is good since we do not use virtual IPs.

Heartbeat v2 supports multi-node clusters (of more than two nodes), though it has
not been tested for a multi-node cluster. This section describes only the two-node
case. The multi-node setup adds a score value to the resource configuration. This
value is used to decide the proper node for a resource when failover occurs.

Heartbeat v2 adds a resource manager (crm). The resource configuration is
maintained as an XML file. This file is re-written by the cluster frequently. Any
alterations to the configuration should be made with the HA tools or when the
cluster is stopped.

8.7.2.1 Hardware Preconditions
■ The basic cluster assumptions are the same as those for Heartbeat v1. For the sake

of clarity, here are the preconditions:

■ The setup must consist of a failover pair where each node of the pair has access to
shared storage. If possible, the storage paths should be identical
(d1_q_0:/dev/sda == d2_q_0:/dev/sda).

■ Shared storage can be arranged in an active/passive (MDS,OSS) or active/active
(OSS only) configuration. Each shared resource will have a primary (default) node.
The secondary node is assumed.

■ The two nodes must have one or more communication paths for heartbeat traffic.
A communication path can be:

■ Dedicated Ethernet

■ Serial live (serial crossover cable)

Failure of all heartbeat communication is not good. This condition is called
“split-brain” and the heartbeat software will resolve this situation by powering
down one node.

■ The two nodes must have a method to control each other's state. The Remote
Power Control hardware is the best. There must be a script to start and stop a
given node from the other node. STONITH provides soft power control methods
(ssh, meatware) but these cannot be used in a production situation.

■ Heartbeat provides a remote ping service that is used to monitor the health of the
external network. If you wish to use the ipfail service, you must have a very
reliable external address to use as the ping target.
8-18 Lustre 1.6 Operations Manual • May 2009

8.7.2.2 Configuring Lustre

Configuring Lustre for Heartbeat V2 is identical to the V1 case.

8.7.2.3 Configuring Heartbeat

For details on all configuration options, refer to the Linux HA website:

http://linux-ha.org/ha.cf

As mentioned earlier, you can run Heartbeat V2 using the V1 configuration. To
convert from the V1 configuration to V2, use the haresources2cib.py script
(typically found in /usr/lib/heartbeat).

If you are starting with V2, we recommend that you create a V1-style configuration
and converting it, as the V1 style is human-readable. The heartbeat XML
configuration is located at /var/lib/heartbeat/cib.xml and the new resource
manager is enabled with the crm yes directive in /etc/ha.d/ha.cf. For additional
information on CiB, refer to:

http://linux-ha.org/ClusterInformationBase/UserGuide

Heartbeat log daemon

Heartbeat V2 adds a logging daemon, which manages logging on behalf of cluster
clients. The UNIX syslog API makes calls that can block, Heartbeat requires log
writes to complete as a sign of health. This daemon prevents a busy syslog from
triggering a false failover. The logging configuration has been moved to
/etc/logd.cf, while the directives are essentially unchanged.

Basic configuration (No STONITH or monitor)

Assuming two nodes, d1_q_0 and d21_q_0:

■ d1_q_0 owns ost-alpha

■ d2_q_0 owns ost-beta

■ dedicated Ethernet - eth0

■ serial crossover link - /dev/ttySO

■ remote host for health ping - 192.168.0.3
Chapter 8 Failover 8-19

http://linux-ha.org/ha.cf
http://linux-ha.org/ClusterInformationBase/UserGuide

Use this procedure:

1. Create the basic ha.cf and haresources files.

haresources no longer requires the dummy virtual IP address.

This is an example of /etc/ha.d/haresouces

oss161.clusterfs.com 192.168.16.35 \ Filesystem::/dev/sda::/ost1::lustre
oss162.clusterfs.com 192.168.16.36 \ Filesystem::/dev/sda::/ost1::lustre

Once you have these files created, you can run the conversion tool:

$ /usr/lib/heartbeat/haresources2cib.py -c basic.ha.cf \
basic.haresources > basic.cib.xml

2. Examine the cib.xml file

The first section in the XML file is <attributes>. The default values should be fine
for most installations.

The actual resources are defined in the <primitive> section. The default behavior
of Heartbeat is an automatic failback of resources when a server is restored. To
avoid this, you must add a parameter to the <primitive> definition. You may also
like to reduce the timeouts. In addition, the current version of the script does not
correctly name the parameters.

<cib generated="true" admin_epoch="0" epoch="0" num_updates="0" \

have_quorum="true" ignore_dtd="false" num_peers="2"
ccm_transition="1" cib-last- \ written="Thu Aug 9 09:50:12 2007">

<configuration>

<crm_config/>

<nodes>

<node id="00e8c292-2a28-4492-bcfs-fb2625ab1c61" \

uname="oss162.spsoftware.com" type="normal" />

<node id="e370be9a-24f4-46a5-99ac-41a88c5fa344" \

uname="oss161.spsoftware.com" type="normal"/>

</nodes>

<resources/>

<constraints/>

</configuration>

</cib>

a. Copy the modified resource file to /var/lib/heartbeat/crm/cib.xml

b. Start the Heartbeat software.

c. After startup, Heartbeat re-writes the cib.xml, adding a <node> section and
status information. Do not alter those fields.
8-20 Lustre 1.6 Operations Manual • May 2009

Basic Configuration – Adding STONITH

As per Basic configuration (No STONITH or monitor), the best way to do this is to
add the STONITH options to ha.cf and run the conversion script. For more
information, see:

http://linux-ha.org/ExternalStonithPlugins

8.7.3 Operation
In normal operation, Lustre should be controlled by the Heartbeat software. Start
Heartbeat at the boot time. It starts Lustre after the initial dead time.

8.7.3.1 Initial startup

1. Stop the Heartbeat software (if running).

If this is a new Lustre file system:

$ mkfs.lustre --fsname=spfs --ost --failnode=oss162 \
--mgsnode=mds16@tcp0 /dev/sdb (one)

2. mount -t lustre /dev/sdb /mnt/spfs/ost/

3. /etc/init.d/heartbeat start on one node.

4. tail -f /var/log/ha-log to see progress.

5. After initdead, this node should start all Lustre objects.

6. /etc/init.d/heartbeat start on second node.

7. After heartbeat is up on both the nodes, failback the resources to the second
node. On the second node, run:

$ /usr/lib/heartbeart/hb_takeover local

You should see the resources stop on the first node, and start up on the second
node
Chapter 8 Failover 8-21

http://linux-ha.org/ExternalStonithPlugins

8.7.3.2 Testing

1. Pull power from one node.

2. Pull networking from one node.

3. After Mon is setup, pull the connection between the OST and the backend
storage.

8.7.3.3 Failback

Normally, do the failback manually after determining that the failed node is now
good. Lustre clients can work during a failback, but they are momentarily blocked.

Note – When formatting the MGS, the --failnode option is not available. This is
because MGSs do not need to be told about a failover MGS; they do not communicate
with other MGSs at any time. However, OSSs, MDSs and Lustre clients need to know
about failover MGSs. MDSs and OSSs are told about failover MGSs with the
--mgsnode parameter and/or using multi-NID mgsspec specifications. At mount
time, clients are told about all MGSs with a multi-NID mgsspec specification. For
more details on the multi-NID mgsspec specification and how to tell clients about
failover MGSs, see the mount.lustre man page.

8.8 Considerations with Failover Software
and Solutions
The failover mechanisms used by Lustre and tools such as Hearbeat are soft failover
mechanisms. They check system and/or application health at a regular interval,
typically measured in seconds. This, combined with the data protection mechanisms
of Lustre, is usually sufficient for most user applications.

However, these soft mechanisms are not perfect. The Heartbeat poll interval is
typically 30 seconds. To avoid a false failover, Heartbeat waits for a deadtime interval
before triggering a failover. In normal case, a user I/O request should block and
recover after the failover completes. But this may not always be the case, given the
delay imposed by Heartbeat.
8-22 Lustre 1.6 Operations Manual • May 2009

Likewise, the Lustre health_check mechanism does not provide perfect protection
against any or all failures. It is a sample taken at a time interval, not something that
brackets each and every I/O request.2 There are a few places where health_check
could generate a bad status:

■ On a device basis if there are requests that have not been processed in a very long
time (more than the maximum allowed timeout), a CERROR is printed:

{service}: unhealthy - request has been waiting Ns

Ns is the number of seconds. The CERROR displays a true value for Ns, for
example ''... request has been waiting 100s''

■ If the backing file system has gone read-only due to file system errors

■ On a per-device basis if any of the above failed, it is reported in the
/proc/fs/lustre/health_check file:

device {device} reported unhealthy

■ If ANY device or service on the node is unhealthy, it also prints:

NOT HEALTHY

■ If ALL devices and services on the node are healthy, it prints:

healthy

There will be cases where a user job will die prior to the HA software triggering a
failover. You can certainly shorten timeouts, add monitoring, and take other steps to
decrease this probability. But there is a serious trade-off – shortening timeouts
increases the probability of false-triggering a busy system. Increasing monitoring
takes the system resources, and can likewise cause a false trigger.

Unfortunately, hard failover solutions capable of catching failures in the sub-second
range generally require special hardware. As a result, they are quite expensive.

Tip – Failover of the Lustre client is dependent on the obd_timeout parameter. The
Lustre client does not attempt failover until the request times out. Then, the client
tries resending the request to the original server (if again, an obd_timeout occurs).
After that, the Lustre client refers to the import list for that target and tries to connect
(in a round-robin manner) until one of the nodes replies. The timeouts for the
connection are much lower (obd_timeout / 20, 5).

2. This is true for every HA monitor, not just the Lustre health_check.
Chapter 8 Failover 8-23

8-24 Lustre 1.6 Operations Manual • May 2009

CHAPTER 9

Configuring Quotas

This chapter describes how to configure quotas and includes the following section:

■ Working with Quotas

9.1 Working with Quotas
Quotas allow a system administrator to limit the amount of disk space a user or
group can use in a directory. Quotas are set by root, and can be specified for
individual users and/or groups. Before a file is written to a partition where quotas
are set, the quota of the creator's group is checked. If a quota exists, then the file size
counts towards the group's quota. If no quota exists, then the owner's user quota is
checked before the file is written. Similarly, inode usage for specific functions can be
controlled if a user over-uses the allocated space.

Lustre quota enforcement differs from standard Linux quota support in several ways:

■ Quotas are administered via the lfs command (post-mount).

■ Quotas are distributed (as Lustre is a distributed file system), which has several
ramifications.

■ Quotas are allocated and consumed in a quantized fashion.

■ Client does not set the usrquota or grpquota options to mount. When a quota is
enabled, it is enabled for all clients of the file system and turned on automatically
at mount.
9-1

Caution – Although quotas are available in Lustre, root quotas are NOT enforced.

lfs setquota -u root (limits are not enforced)

lfs quota -u root (usage includes internal Lustre data that is dynamic in size
and does not accurately reflect mount point visible block and inode usage)

9.1.1 Enabling Disk Quotas
Use this procedure to enable (configure) disk quotas in Lustre. To enable quotas:

1. If you have re-complied your Linux kernel, be sure that CONFIG_QUOTA and
CONFIG_QUOTACTL are enabled (quota is enabled in all the Linux 2.6 kernels
supplied for Lustre).

2. Start the server.

3. Mount the Lustre file system on the client and verify that the lquota module has
loaded properly by using the lsmod ommand.

$ lsmod

[root@oss161 ~]# lsmod

Module Size Used by

obdfilter 220532 1

fsfilt_ldiskfs 52228 1

ost 96712 1

mgc 60384 1

ldiskfs 186896 2 fsfilt_ldiskfs

lustre 401744 0

lov 289064 1 lustre

lquota 107048 4 obdfilter

mdc 95016 1 lustre

ksocklnd 111812 1

The Lustre mount command no longer recognizes the usrquota and grpquota
options. If they were previously specified, remove them from /etc/fstab.

When quota is enabled on the file system, it is automatically enabled for all file
system clients.

Note – Lustre with the Linux kernel 2.4 does not support quotas.
9-2 Lustre 1.6 Operations Manual • May 2009

To enable quotas automatically when the file system is started, you must set the
mdt.quota_type and ost.quota_type parameters, respectively, on the MDT and
OSTs. The parameters can be set to the string u (user), g (group) or ug for both users
and groups.

You can enable quotas at mkfs time (mkfs.lustre --param mdt.quota_type=
ug) or with tunefs.lustre. As an example:

tunefs.lustre --param ost.quota_type=ug $ost_dev

9.1.1.1 Administrative and Operational Quotas

Lustre has two kinds of quota files:

■ Administrative quotas (for the MDT), which contain limits for users/groups for
the entire cluster.

■ Operational quotas (for the MDT and OSTs), which contain quota information
dedicated to a cluster node.

Lustre 1.6.5 introduces a new quota format (v2), for administrative quota files, with
continued support for the old quota format (v1).1 The mdt.quota_type parameter
also handles ‘1’ and ‘2’ options to specify the version of Lustre quota that will be
used. For example:

--param mdt.quota_type=ug1

--param mdt.quota_type=u2

In a future Lustre release, the v2 format will be added to operational quotas, with
continued support for the v1 format. When v2 support is added, then the
ost.quota_type parameter will handle the ‘1’ and ‘2’ options.

For more information about the v1 and v2 formats, see Quota File Formats.

1. By default, Lustre 1.6.5 uses the v2 format for administrative quotas. Previous releases use quota v1.
Chapter 9 Configuring Quotas 9-3

9.1.2 Creating Quota Files and Quota Administration
Once each quota-enabled file system is remounted, it is capable of working with disk
quotas. However, the file system is not yet ready to support quotas. If umount has
been done regularly, run the lfs command with the quotaon option. If umount has
not been done:

1. Take Lustre ''offline''. That is, verify that no write operations (append, write,
truncate, create or delete) are being performed (preparing to run lfs
quotacheck). Operations that do not change Lustre files (such as read or
mount) are okay to run.

Caution – When lfs quotacheck is run, Lustre must NOT be performing any
write operations. Failure to follow this caution may cause the statistic information of
quota to be inaccurate. For example, the number of blocks used by OSTs for users or
groups will be inaccurate, which can cause unexpected quota problems.

2. Run the lfs command with the quotacheck option:

lfs quotacheck -ug /mnt/lustre

By default, quota is turned on after quotacheck completes. Available options are:

■ u — checks the user disk quota information

■ g — checks the group disk quota information

The quotacheck command scans the entire file system (sub-quotachecks are run on
both the MDS and the OSTs) to recompute disk usage (for both inodes and blocks) on
a per-UID/GID basis. If there are many files in Lustre, quotacheck may take a long
time to complete.

Note – User and group quotas are separate. If either quota limit is reached, a process
with the corresponding UID/GID is not allowed to allocate more space on the file
system.

Note – For Lustre 1.6 releases prior to version 1.6.5, and 1.4 releases prior to version
1.4.12, if the underlying ldiskfs file system has not unmounted gracefully (due to a
crash, for example), re-run quotacheck to obtain accurate quota information. Lustre
1.6.5 and 1.4.12 use journaled quota, so it is not necessary to run quotacheck after
an unclean shutdown.

In certain failure situations (such as when a broken Lustre installation or build is
used), re-run quotacheck after examining the server kernel logs and fixing the root
problem.
9-4 Lustre 1.6 Operations Manual • May 2009

The lfs command now includes these command options to work with quotas:

■ quotaon — announces to the system that disk quotas should be enabled on one or
more file systems. The file system quota files must be present in the root directory
of the specified file system.

■ quotaoff — announces to the system that the specified file systems should have
all disk quotas turned off.

■ setquota — used to specify the quota limits and tune the grace period. By
default, the grace period is one week.

Usage:

setquota [-u | -g] <name> <block-softlimit> <block-hardlimit>
<inode-softlimit> <inode-hardlimit> <filesystem>

setquota -t [-u | -g] <block-grace> <inode-grace> <filesystem>

lfs > setquota -u bob 307200 309200 10000 11000 /mnt/lustre

In the above example, the quota is set to 300 MB (309200*1024) and the hard limit is
11,000 files on user bob. Therefore, the inode hard limit should be 11000.

Note – For the Lustre command $ lfs setquota/quota ... the qunit for block is
KB (1024) and the qunit for inode is 1.

Quota displays the quota allocated and consumed for each Lustre device. This
example shows the result of the previous setquota:

lfs quota -u bob /mnt/lustre Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota limit grace

/mnt/lustre 0 307200 309200 0 10000 11000

lustre-MDT0000_UUID 0 0 102400 0 0 5000

lustre-OST0000_UUID 0 0 102400

lustre-OST0001_UUID 0 0 102400
Chapter 9 Configuring Quotas 9-5

9.1.3 Resetting the Quota
To reset the quota that was previously established for a user, run:

setquota -u $user 0 0 0 0 /srv/testfs

Then run:

setquota -u $user a b c d /srv/testfs

Caution – Do not use # lfs setquota to reset the previously-established quota.

9.1.4 Quota Allocation
The Linux kernel sets a default quota size of 1 MB. (For a block, the default is 100
MB. For files, the default is 5000.) Lustre handles quota allocation in a different
manner. A quota must be properly set or users may experience unnecessary failures.
The file system block quota is divided up among the OSTs within the file system.
Each OST requests an allocation which is increased up to the quota limit. The quota
allocation is then quantized to reduce the number of quota-related request traffic. By
default, Lustre supports both user and group quotas to limit disk usage and file
counts.

The quota system in Lustre is completely compatible with the quota systems used on
other file systems. The Lustre quota system distributes quotas from the quota master.
Generally, the MDS is the quota master for both inodes and blocks. All OSTs and the
MDS are quota slaves to the OSS nodes. The minimum transfer unit is 100 MB, to
avoid performance impacts for quota adjustments. The file system block quota is
divided up among the OSTs and the MDS within the file system. Only the MDS uses
the file system inode quota.

This means that the minimum quota for block is 100 MB* (the number of OSTs + the
number of MDSs), which is 100 MB* (number of OSTs + 1). The minimum quota for
inode is the inode qunit. If you attempt to assign a smaller quota, users maybe not be
able to create files. The default is established at file system creation time, but can be
tuned via /proc values (described below). The inode quota is also allocated in a
quantized manner on the MDS.
9-6 Lustre 1.6 Operations Manual • May 2009

This sets a much smaller granularity. It is specified to request a new quota in units of
100 MB and 500 inodes, respectively. If we look at the example again:

lfs quota -u bob /mnt/lustre

Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota limit grace

/mnt/lustre 207432 307200 30920 1041 10000 11000

lustre-MDT0000_UUID 992 0 102400 1041 05000

lustre-OST0000_UUID 103204* 0 102400

lustre-OST0001_UUID 103236* 0 102400

The total quota of 30,920 is alloted to user bob, which is further disributed to two
OSTs and one MDS with a 102,400 block quota.

Note – Values appended with “*” show the limit that has been over-used (exceeding
the quota), and receives this message Disk quota exceeded. For example:
\
$ cp: writing `/mnt/lustre/var/cache/fontconfig/
beeeeb3dfe132a8a0633a017c99ce0-x86.cache’: Disk quota exceeded.

The requested quota of 300 MB is divided across the OSTs. Each OST has an initial
allocation of 100 MB blocks, with iunit limiting to 5000.

Note – It is very important to note that the block quota is consumed per OST and
the MDS per block and inode (there is only one MDS for inodes). Therefore, when
the quota is consumed on one OST, the client may not be able to create files
regardless of the quota available on other OSTs.
Chapter 9 Configuring Quotas 9-7

Additional information:

Grace period — The period of time (in seconds) within which users are allowed to
exceed their soft limit. There are four types of grace periods:

■ user block soft limit

■ user inode soft limit

■ group block soft limit

■ group inode soft limit

The grace periods are applied to all users. The user block soft limit is for all users
who are using a blocks quota.

Soft limit — Once you are beyond the soft limit, the quota module begins to time,
but you still can write block and inode. When you are always beyond the soft limit
and use up your grace time, you get the same result as the hard limit. For inodes and
blocks, it is the same. Usually, the soft limit MUST be less than the hard limit; if not,
the quota module never triggers the timing. If the soft limit is not needed, leave it as
zero (0).

Hard limit — When you are beyond the hard limit, you get -EQUOTA and cannot
write inode/block any more. The hard limit is the absolute limit. When a grace
period is set, you can exceed the soft limit within the grace period if are under the
hard limits.

Lustre quota allocation is controlled by two values quota_bunit_sz and
quota_iunit_sz referring to KBs and inodes respectively. These values can be
accessed on the MDS as /proc/fs/lustre/mds/*/quota_* and on the OST as
/proc/fs/lustre/obdfilter/*/quota_*. The /proc values are bounded by
two other variables quota_btune_sz and quota_itune_sz. By default, the
*tune_sz variables are set at 1/2 the *unit_sz variables, and you cannot set
*tune_sz larger than *unit_sz. You must set bunit_sz first if it is increasing by
more than 2x, and btune_sz first if it is decreasing by more than 2x.

Total number of inodes — To determine the total number of inodes, use lfs df -i
(and also /proc/fs/lustre/*/*/filestotal). For more information on using
the lfs df -i command and the command output, see Querying File System Space.

Unfortunately, the statfs interface does not report the free inode count directly, but
instead reports the total inode and used inode counts. The free inode count is
calculated for df from (total inodes - used inodes).

It is not critical to know a file system’s total inode count. Instead, you should know
(accurately), the free inode count and the used inode count for a file system. Lustre
manipulates the total inode count in order to accurately report the other two values.

The values set for the MDS must match the values set on the OSTs.
9-8 Lustre 1.6 Operations Manual • May 2009

The quota_bunit_sz parameter displays bytes, however lfs setquota uses KBs.
The quota_bunit_sz parameter must be a multiple of 1024. A proper minimum KB
size for lfs setquota can be calculated as:

Size in KBs = (quota_bunit_sz * (number of OSTS + 1)) / 1024

We add one (1) to the number of OSTs as the MDS also consumes KBs. As inodes are
only consumed on the MDS, the minimum inode size for lfs setquota is equal to
quota_iunit_sz.

Note – Setting the quota below this limit may prevent the user from all file creation.

To turn on the quotas for a user and a group, run:

$ lfs quotaon -ug /mnt/lustre

To turn off the quotas for a user and a group, run:

$ lfs quotaoff -ug /mnt/lustre

To set the quotas for a user as 1 GB block quota and 10,000 file quota, run:

$ lfs setquota -u {username} 0 1000000 0 10000 /mnt/lustre

To list the quotas of a user, run:

$ lfs quota -u {username} /mnt/lustre

To see the grace time for quota, run:

$ lfs quota -t –{u|g} {quota user|group} /mnt/lustre
Chapter 9 Configuring Quotas 9-9

9.1.5 Known Issues with Quotas
Using quotas in Lustre can be complex and there are several known issues.

9.1.5.1 Granted Cache and Quota Limits

In Lustre, granted cache does not respect quota limits. In this situation, OSTs grant
cache to Lustre client to accelerate I/O. Granting cache causes writes to be successful
in OSTs, even if they exceed the quota limits, and will overwrite them.

The sequence is:

1. A user writes files to Lustre.

2. If the Lustre client has enough granted cache, then it returns ‘success’ to users
and arranges the writes to the OSTs.

3. Because Lustre clients have delivered success to users, the OSTs cannot fail
these writes.

Because of granted cache, writes always overwrite quota limitations. For example, if
you set a 400 GB quota on user A and use IOR to write for userA from a bundle of
clients, you will write much more data than 400 GB, and cause an out-of-quota error
(-EDQUOT).

Note – The effect of granted cache on quota limits can be mitigated, but not
eradicated. Reduce the max_dirty_buffer in the clients (just like echo XXXX >
/proc/fs/lustre/osc/lustre-OST*/max_dirty_mb).
9-10 Lustre 1.6 Operations Manual • May 2009

9.1.5.2 Quota Limits

Available quota limits depend on the Lustre version you are using.

■ Lustre version 1.4.11 and earlier (for 1.4.x releases) and Lustre version 1.6.4 and
earlier (for 1.6.x releases) support quota limits less than 4TB.

■ Lustre versions 1.4.12 and 1.6.5 support quota limits of 4TB and greater in Lustre
configurations with OST storage limits of 4TB and less.

■ Future Lustre versions are expected to support quota limits of 4TB and greater
with no OST storage limits.

9.1.5.3 Quota File Formats

Lustre 1.6.5 introduces a new quota file format (v2) for administrative quotas, with
64-bit limits that support large-limits handling. The old quota file format (v1), with
32-bit limits, is also supported. In a future Lustre release, the v2 format will be added
for operational quotas. A few notes regarding the current quota file formats:

■ Lustre 1.6 uses mdt.quota_type to force a specific quota version (2 or 1).2

■ For the v2 quota file format, (OBJECTS/admin_quotafile_v2.{usr,grp})

■ For the v1 quota file format, (OBJECTS/admin_quotafile.{usr,grp})

■ If quotas do not exist or look broken, quotacheck creates quota files of a required
name and format.

■ If Lustre is using the v2 quota file format, then quotacheck converts old v1
quota files to new v2 quota files. This conversion is triggered automatically and
is transparent to users. If an old quota file does not exist or looks broken, then
the new v2 quota file will be empty. In case of an error, details can be found in
the kernel log of the MDS.

■ During conversion of a v1 quota file to a v2 quota file, the v2 quota file is marked
as broken, to avoid its later usage in case of a crash.

■ Quota module refuses to use broken quota files (keeping quota off).

Lustre Version Quota Limit Per User/Per Group OST Storage Limit

1.4.11 and earlier < 4TB n/a

1.4.12 => 4TB <= 4TB of storage

1.6.4 and earlier < 4TB n/a

1.6.5 => 4TB <= 4TB of storage

Future Lustre versions => 4TB No storage limit

2. Lustre 1.4 uses a quota file dependent on quota32 configuration options.
Chapter 9 Configuring Quotas 9-11

9.1.6 Lustre Quota Statistics
Lustre includes statistics that monitor quota activity, such as the kinds of quota RPCs
sent during a specific period, the average time to complete the RPCs, etc. These
statistics are useful to measure performance of a Lustre file system.

Each quota statistic consists of a quota event and min_time, max_time and sum_time
values for the event.

Quota Event Description

sync_acq_req Quota slaves send a acquiring_quota request and
wait for its return.

sync_rel_req Quota slaves send a releasing_quota request and
wait for its return.

async_acq_req Quota slaves send an acquiring_quota request and
do not wait for its return.

async_rel_req Quota slaves send a releasing_quota request and do
not wait for its return.

wait_for_blk_quota
(lquota_chkquota)

Before data is written to OSTs, the OSTs check if the
remaining block quota is sufficient. This is done in
the lquota_chkquota function.

wait_for_ino_quota
(lquota_chkquota)

Before files are created on the MDS, the MDS checks
if the remaining inode quota is sufficient. This is
done in the lquota_chkquota function.

wait_for_blk_quota
(lquota_pending_commit)

After blocks are written to OSTs, relative quota
information is updated. This is done in the
lquota_pending_commit function.

wait_for_ino_quota
(lquota_pending_commit)

After files are created, relative quota information is
updated. This is done in the
lquota_pending_commit function.

wait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending a
quota request for a specific UID/GID for block
quota at any time. At that time, if other threads
need to do this too, they should wait. This is done
in the qctxt_wait_pending_dqacq function.

wait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a quota
request for a specific UID/GID for inode quota at
any time. If other threads need to do this too, they
should wait. This is done in the
qctxt_wait_pending_dqacq function.
9-12 Lustre 1.6 Operations Manual • May 2009

9.1.6.1 Interpreting Quota Statistics

Quota statistics are an important measure of a Lustre file system’s performance.
Interpreting these statistics correctly can help you diagnose problems with quotas,
and may indicate adjustments to improve system performance.

For example, if you run this command on the OSTs:

cat /proc/fs/lustre/lquota/lustre-OST0000/stats

You will get a result similar to this:

snapshot_time 1219908615.506895 secs.usecs
async_acq_req 1 samples [us]32 32 32
async_rel_req 1 samples [us]5 5 5
nowait_for_pending_blk_quota_req(qctxt_wait_pending_dqacq) 1 samples [us] 2 2 2
quota_ctl 4 samples [us]80 3470 4293
adjust_qunit 1 samples [us]70 70 70
....

In the first line, snapshot_time indicates when the statistics were taken. The
remaining lines list the quota events and their associated data.

In the second line, the async_acq_req event occurs one time. The min_time, max_time
and sum_time statistics for this event are 32, 32 and 32, respectively. The unit is
microseconds (µs).

In the fifth line, the quota_ctl event occurs four times. The min_time, max_time and
sum_time statistics for this event are 80, 3470 and 4293, respectively. The unit is
microseconds (µs).

nowait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending a
quota request for a specific UID/GID for block
quota at any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

nowait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a quota
req for a specific UID/GID for inode quota at any
time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

quota_ctl The quota_ctl statistic is generated when lfs
setquota, lfs quota and so on, are issued.

adjust_qunit Each time qunit is adjusted, it is counted.

Quota Event Description
Chapter 9 Configuring Quotas 9-13

Involving Lustre Support in Quotas Analysis

Quota statistics are collected in /proc/fs/lustre/lquota/.../stats. Each MDT and OST
has one statistics proc file. If you have a problem with quotas, but cannot successfully
diagnose the issue, send the statistics files in the folder to Lustre Support for analysis.
To prepare the files:

1. Initialize the statistics data to 0 (zero). Run:

lctl set_param lquota.${FSNAME}-MDT*.stats=0

lctl set_param lquota.${FSNAME}-OST*.stats=0

2. Perform the quota operation that causes the problem or degraded performance.

3. Collect all “stats” in /proc/fs/lustre/lquota/ and send them to Lustre Support.

Note – Proc quota entries are collected in
/proc/fs/lustre/obdfilter/lustre-OSTXXXX/quota* and
/proc/fs/lustre/mds/lustre-MDTXXXX/quota*, and copied to
/proc/fs/lustre/lquota. To maintain compatibility, the old quota proc entries in the
/proc/fs/lustre/obdfilter/lustre-OSTXXXX/ and
/proc/fs/lustre/mds/lustre-MDTXXXX/ folders are not deleted in the current
Lustre release, but they may be deprecated in the future. Only use the quota entries
in /proc/fs/lustre/lquota/
9-14 Lustre 1.6 Operations Manual • May 2009

CHAPTER 10

RAID

This chapter describes software and hardware RAID, and includes the following
sections:

■ Considerations for Backend Storage

■ Insights into Disk Performance Measurement

■ Lustre Software RAID Support

10.1 Considerations for Backend Storage
Lustre's architecture allows it to use any kind of block device as backend storage. The
characteristics of such devices, particularly in the case of failures vary significantly
and have an impact on configuration choices.

This section surveys issues and recommendations regarding backend storage.

10.1.1 Selecting Storage for the MDS and OSS

MDS

The MDS does a large amount of small writes. For this reason, we recommend that
you use RAID1 for MDT storage. If you require more capacity for an MDT than one
disk provides, we recommend RAID1 + 0 or RAID10. LVM is not recommended at
this time for performance reasons.
10-1

OSS

A quick calculation (shown below), makes it clear that without further redundancy,
RAID5 is not acceptable for large clusters and RAID6 is a must.

Take a 1 PB file system (2,000 disks of 500 GB capacity). The MTF1 of a disk is about
1,000 days. This means that the expected failure rate is 2000/1000 = 2 disks per day.
Repair time at 10% of disk bandwidth is close to 1 day (500 GB at 5 MB/sec = 100,000
sec = 1 day).

If we have a RAID 5 stripe that is 10 disks wide, then during 1 day of rebuilding, the
chance that a second disk in the same array fails is about 9 / 1000 ~= 1/100. This
means that, in the expected period of 50 days, a double failure in a RAID 5 stripe
leads to data loss.

So, RAID 6 or another double parity algorithm is necessary for OST storage.

For better performance, we recommend that you use many smaller OSTs, instead of
fewer, large-size OSTs. Following this recommendation will provide you with more
IOPS, by having independent RAID sets instead of a single one.

Suggestion: Use RAID 5 with 5 or 9 disks, or RAID 6 with 6 or 10 disks, each on a
different controller. Ideally, the RAID configuration should allow 1 MB Lustre RPCs
to fit evenly on one RAID stripe without requiring an expensive read-modify-write
cycle.

<stripe_width> = <chunk_size> * (<disks> - <parity_disks>) <=1 MB

where <parity_disks> is 1 for RAID 5 and 2 for RAID 6. If the RAID configuration
does not allow <chunk_size> to fit evenly into 1 MB, select <chunk_size>, such
that <stripe_width> is close to 1 MB, but not larger.

For example, RAID 6 with 6 disks has 4 data and 2 parity disks, so we get:

<chunksize> <=1024kB/4; either 256kB, 128kB or 64kB

The <stripe_width> value must equal <chunksize> * (<disks> -
<parity_disks>). Use it for OST file systems only (not MDT file systems).

$ mkfs.lustre --mountfsoptions="stripe=<stripe_width_blocks>" ...

1. Mean Time to Failure
10-2 Lustre 1.6 Operations Manual • May 2009

10.1.2 Reliability Best Practices
It is considered mandatory that you use disk monitoring software, so rebuilds
happen without any delay.

We recommend backups of the metadata file systems. This can be done with LVM
snapshots or using raw partition backups.

10.1.3 Understanding Double Failures with Hardware
and Software RAID5
Software RAID does not offer the hard consistency guarantees of top-end enterprise
RAID arrays. Hardware RAID guarantees that the value of any block is exactly the
before or after value and that ordering of writes is preserved. With software RAID,
an interrupted write operation that spans multiple blocks can frequently leave a
stripe in an inconsistent state that is not restored to either the old or the new value.
Normally, such interruptions are caused by an abrupt shutdown of the system.

If the array functions without disk failures, but experiences sudden power-down
incidents, such as interrupted writes on journal file systems, these events can affect
file data and data in the journal. Metadata itself is re-written from the journal during
recovery and is correct. Because the journal uses a single block to indicate a complete
transaction has committed after other journal writes have completed, the journal
remains valid. File data can be corrupted when overwriting file data; this is a known
problem with incomplete writes and caches. Recovery of the disk file systems with
software RAID is similar to recovery without software RAID. Using Lustre servers
with disk file systems does not change these guarantees.

Problems can arise if, after an abrupt shutdown, a disk fails on restart. In this case,
even single block writes provide no guarantee that (as an example), the journal will
not be corrupted. Follow these requirements:

■ If the power down of a system using software RAID is followed by a disk failure
before the RAID array can be resynchronized, the disk file system needs a file
system check and any data that was being written during the power loss may be
corrupted.

■ If a RAID array does not guarantee before/after semantics, the same requirement
holds.

We consider this to be a requirement for most arrays that are used with Lustre,
including the successful and popular DDN arrays.

With RAID6 this check is not required with a single disk failure, but is required
with a double failure upon reboot after an abrupt interruption of the system.
Chapter 10 RAID 10-3

10.1.4 Performance Tradeoffs
Writeback cache can dramatically increase write performance on any type of RAID
array2. Unfortunately, unless the RAID array has battery-backed cache (a feature only
found in some higher-priced hardware RAID arrays), interrupting the power to the
array may result in out-of-sequence writes. This causes problems for journaling.

If writeback cache is enabled, a file system check is required after the array loses
power. Data may also be lost because of this.

Therefore, we recommend against the use of writeback cache when data integrity is
critical. You should carefully consider whether the benefits of using writeback cache
outweigh the risks.

10.1.5 Formatting
When formatting a file system on a RAID device, it is beneficial to specify additional
parameters at the time of formatting. This ensures that the file system is optimized
for the underlying disk geometry. Use the --mkfsoptions parameter to specify
these options when formatting the OST or MDT.

For RAID 5, RAID 6, RAID 1+0 storage, specifying the -E stride = <chunksize>
option improves the layout of the file system metadata ensuring that no single disk
contains all of the allocation bitmaps. The <chunksize> parameter is in units of
4096-byte blocks and represents the amount of contiguous data written to a single
disk before moving to the next disk. This is applicable to both MDS and OST file
systems.

For more information on how to override the defaults while formatting MDS or OST
file systems, see Options to Format MDT and OST File Systems.

2. Client writeback cache improves performance for many small files or for a single, large file alike. However, if
the cache is filled with small files, cache flushing is likely to be much slower (because of less data being sent
per RPC), so there may be a drop-off in total throughput.
10-4 Lustre 1.6 Operations Manual • May 2009

10.1.5.1 Creating an External Journal

If you have configured a RAID array and use it directly as an OST, it houses both
data and metadata. For better performance3, we recommend putting OST metadata
on another journal device, by creating a small RAID 1 array and using it as an
external journal for the OST.

It is not known if external journals improve performance of MDTs. Currently, we
recommend against using them for MDTs to reduce complexity.

No more than 102,400 file system blocks will ever be used for a journal. For Lustre's
standard 4 KB block size, this corresponds to a 400 MB journal. A larger partition can
be created, but only the first 400 MB will be used. Additionally, a copy of the journal
is kept in RAM on the OSS. Therefore, make sure you have enough memory available
to hold copies of all the journals.

To create an external journal, perform these steps for each OST on the OSS:

1. Create a 400 MB (or larger) journal partition (RAID 1 is recommended).

In this example, /dev/sdb is a RAID 1 device, run:

$ sfdisk -uC /dev/sdb << EOF

> ,50,L

> EOF

2. Create a journal device on the partition. Run:

$ mke2fs -b 4096 -O journal_dev /dev/sdb1

3. Create the OST.

In this example, /dev/sdc is the RAID 6 device to be used as the OST, run:

$ mkfs.lustre --ost --mgsnode=mds@osib \
--mkfsoptions="-J device=/dev/sdb1" /dev/sdc

4. Mount the OST as usual.

3. Performance is affected because, while writing large sequential data, small I/O writes are done to update
metadata. This small-sized I/O can affect performance of large sequential I/O with disk seeks.
Chapter 10 RAID 10-5

10.2 Insights into Disk Performance
Measurement
Several tips and insights for disk performance measurement are provided below.
Some of this information is specific to RAID arrays and/or the Linux RAID
implementation.

■ Performance is limited by the slowest disk.

Before creating a software RAID array, benchmark all disks individually. We have
frequently encountered situations where drive performance was not consistent for
all devices in the array. Replace any disks that are significantly slower than the
rest.

■ Disks and arrays are very sensitive to request size.

To identify the optimal request size for a given disk, benchmark the disk with
different record sizes ranging from 4 KB to 1 to 2 MB.

Note – Try to avoid sync writes; probably subsequent write would make the stripe
full and no reads will be needed. Try to configure RAID arrays and the application so
that most of the writes are full-stripe and stripe-aligned.
10-6 Lustre 1.6 Operations Manual • May 2009

10.3 Lustre Software RAID Support
A number of Linux kernels offer software RAID support, by which the kernel
organizes disks into a RAID array. All Lustre-supported kernels have software RAID
capability, but Lustre has added performance improvements to the RHEL 4 and
RHEL 5 kernels that make operations even faster4. Therefore, if you are using
software RAID functionality, we recommend that you use a Lustre-patched RHEL 4
or 5 kernel to take advantage of these performance improvements, rather than a SLES
kernel.

10.3.0.1 Enabling Software RAID on Lustre

This procedure describes how to set up software RAID on a Lustre system. It requires
use of mdadm, a third-party tool to manage devices using software RAID.

1. Install Lustre, but do not configure it yet. See Lustre Installation.

2. Create the RAID array with the mdadm command.

The mdadm command is used to create and manage software RAID arrays in
Linux, as well as to monitor the arrays while they are running. To create a RAID
array, use the --create option and specify the MD device to create, the array
components, and the options appropriate to the array.

Note – For best performance, we generally recommend using disks from as many
controllers as possible in one RAID array.

To illustrate how to create a software RAID array for Lustre, the steps below
include a worked example that creates a 10-disk RAID 6 array from disks
/dev/dsk/c0t0d0 through c0tod4 and /dev/dsk/c1t0d0 through c1tod4. This
RAID array has no spares.

For the 10-disk RAID 6 array, there are 8 active disks. The chunk size must be
chosen such that <chunk_size> <= 1024KB/8. Therefore, the largest valid chunk
size is 128KB.

4. These enhancements have mostly improved write performance.
Chapter 10 RAID 10-7

a. Create a RAID array for an OST. On the OSS, run:

$ mdadm --create <array_device> -c <chunk_size> -l \
<raid_level> -n <active_disks> -x <spare_disks> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create /dev/md10 -c 128 -l 6 -n 10 -x 0 \
/dev/dsk/c0t0d[01234] /dev/dsk/c1t0d[01234]

This command output displays:

mdadm: array /dev/md10 started.

We also want an external journal on a RAID 1 device. We create this from two
400MB partitions on separate disks: /dev/dsk/c9t0d20p1 and
/dev/dsk/c1t0d20p1

<array_device> RAID array to create, in the form of /dev/mdX

<chunk_size> Size of each stripe piece on the array’s disks (in KB);
discussed above.

<raid_level> Architecture of the RAID array. RAID 5 and RAID 6 are
commonly used for OSTs.

<active_disks> Number of active disks in the array, including parity disks.

<spare_disks> Number of spare disks initially assigned to the array. More
disks may be brought in via spare pooling (see below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.
10-8 Lustre 1.6 Operations Manual • May 2009

b. Create a RAID array for an external journal. On the OSS, run:

$ mdadm --create <array_device> -l <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create /dev/md20 -l 1 -n 2 -x 0 /dev/dsk/c0t0d20p1 \
/dev/dsk/c1t0d20p1

This command output displays:

mdadm: array /dev/md20 started.

We now have two arrays - a RAID 6 array for the OST (/dev/md20), and a RAID
1 array for the external journal (/dev/md20).

The arrays will now be be resynced, a necessary process which resynchronizes the
various disks in the array so their contents match. The arrays may be used during
the resync process (including formatting the OSTs), but performance will not be as
high as usual. The resync progress may be monitored by reading the
/proc/mdstat file.

Next, you need to create a RAID array for an MDT. In this example, a RAID 10
array is created with 4 disks: /dev/dsk/c0t0d1, c0t0d3, c1t0d1, and c1t0d3. For
smaller arrays, RAID 1 could be used.

<array_device> RAID array to create, in the form of /dev/mdX

<raid_level> Architecture of the RAID array. RAID 1 is recommended
for external journals.

<active_devices> Number of active disks in the RAID array, including
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID
array. More disks may be brought in via spare pooling (see
below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.
Chapter 10 RAID 10-9

c. Create a RAID array for an MDT. On the MDT, run:

$ mdadm --create <array_device> -l <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create -l 10 -n 4 -x 0 /dev/md10 /dev/dsk/c[01]t0d[13]

This command output displays:

mdadm: array /dev/md10 started.

If you creating many arrays across many servers, we recommend scripting this
process.

Note – Do not use the --assume-clean option when creating arrays. This could
lead to data corruption on RAID 5 and will cause array checks to show errors with all
RAID types.

<array_device> RAID array to create, in the form of /dev/mdX

<raid_level> Architecture of the RAID array. RAID 1 or RAID 10 is
recommended for MDTs.

<active_devices> Number of active disks in the RAID array, including
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID
array. More disks may be brought in via spare pooling (see
below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.
10-10 Lustre 1.6 Operations Manual • May 2009

3. Set up the mdadm tool.

The mdadm tool enables you to monitor disks for failures (you will receive a
notification). It also enables you to manage spare disks. When a disk fails, you can
use mdadm to make a spare disk active, until such time as the failed disk is
replaced.

Here is an example mdadm.conf from an OSS with 7 OSTs including external
journals. Note how spare groups are configured, so that OSTs without spares still
benefit from the spare disks assigned to other OSTs.

ARRAY /dev/md10 level=raid6 num-devices=10

 UUID=e8926d28:0724ee29:65147008:b8df0bd1 spare-group=raids

ARRAY /dev/md11 level=raid6 num-devices=10 spares=1

 UUID=7b045948:ac4edfc4:f9d7a279:17b468cd spare-group=raids

ARRAY /dev/md12 level=raid6 num-devices=10 spares=1

 UUID=29d8c0f0:d9408537:39c8053e:bd476268 spare-group=raids

ARRAY /dev/md13 level=raid6 num-devices=10

 UUID=1753fa96:fd83a518:d49fc558:9ae3488c spare-group=raids

ARRAY /dev/md14 level=raid6 num-devices=10 spares=1

 UUID=7f0ad256:0b3459a4:d7366660:cf6c7249 spare-group=raids

ARRAY /dev/md15 level=raid6 num-devices=10

 UUID=09830fd2:1cac8625:182d9290:2b1ccf2a spare-group=raids

ARRAY /dev/md16 level=raid6 num-devices=10

 UUID=32bf1b12:4787d254:29e76bd7:684d7217 spare-group=raids

ARRAY /dev/md20 level=raid1 num-devices=2 spares=1

 UUID=bcfb5f40:7a2ebd50:b3111587:8b393b86 spare-group=journals

ARRAY /dev/md21 level=raid1 num-devices=2 spares=1

 UUID=6c82d034:3f5465ad:11663a04:58fbc2d1 spare-group=journals

ARRAY /dev/md22 level=raid1 num-devices=2 spares=1

 UUID=7c7274c5:8b970569:03c22c87:e7a40e11 spare-group=journals

ARRAY /dev/md23 level=raid1 num-devices=2 spares=1

 UUID=46ecd502:b39cd6d9:dd7e163b:dd9b2620 spare-group=journals

ARRAY /dev/md24 level=raid1 num-devices=2 spares=1

 UUID=5c099970:2a9919e6:28c9b741:3134be7e spare-group=journals

ARRAY /dev/md25 level=raid1 num-devices=2 spares=1

 UUID=b44a56c0:b1893164:4416e0b8:75beabc4 spare-group=journals

ARRAY /dev/md26 level=raid1 num-devices=2 spares=1

 UUID=2adf9d0f:2b7372c5:4e5f483f:3d9a0a25 spare-group=journals

Email address to notify of events (e.g. disk failures)

MAILADDR admin@example.com
Chapter 10 RAID 10-11

4. Set up periodic checks of the RAID array.

We recommend checking the software RAID arrays monthly for consistency. This
can be done using cron and should be scheduled for an idle period so performance
is not affected.

To start a check, write "check" into /sys/block/[ARRAY]/md/sync_action. For
example, to check /dev/md10, run this command on the Lustre server:

$ echo check > /sys/block/md10/md/sync_action

5. Format the OSTs and MDT, and continue with normal Lustre setup and
configuration.

For configuration information, see Configuring Lustre.

Note – Per Bugzilla 18475, we recommend that stripe_cache_size be set to 16KB
(instead of 2KB).

These additional resources may be helpful when enabling software RAID on Lustre:

■ md(4), mdadm(8), mdadm.conf(5) manual pages

■ Linux software RAID wiki: http://linux-raid.osdl.org/

■ Kernel documentation: Documentation/md.txt
10-12 Lustre 1.6 Operations Manual • May 2009

http://linux-raid.osdl.org/

CHAPTER 11

Kerberos

This chapter describes how to use Kerberos with Lustre and includes the following
sections:

■ What is Kerberos?

■ Lustre Setup with Kerberos

11.1 What is Kerberos?
Kerberos is a mechanism for authenticating all entities (such as users and services) on
an “unsafe” network. Users and services, known as "principals", share a secret
password (or key) with the Kerberos server. This key enables principals to verify that
messages from the Kerberos server are authentic. By trusting the Kerberos server,
users and services can authenticate one another.

Caution – Kerberos is a future Lustre feature that is not available in current
versions. If you want to test Kerberos with a pre-release version of Lustre, check out
the Lustre source from the CVS repository and build it. For more information on
checking out Lustre source code, see CVS.
11-1

http://wiki.lustre.org/index.php?title=Open_CVS

11.2 Lustre Setup with Kerberos
Setting up Lustre with Kerberos can provide advanced security protections for the
Lustre network. Broadly, Kerberos offers three types of benefit:

■ Allows Lustre connection peers (MDS, OSS and clients) to authenticate one
another.

■ Protects the integrity of the PTLRPC message from being modified during
network transfer.

■ Protects the privacy of the PTLRPC message from being eavesdropped during
network transfer.

Kerberos uses the “kernel keyring” client upcall mechanism.

11.2.1 Configuring Kerberos for Lustre
This section describes supported Kerberos distributions and how to set up and
configure Kerberos on Lustre.

11.2.1.1 Kerberos Distributions Supported on Lustre

Lustre supports the following Kerberos distributions:

■ MIT Kerberos 1.3.x

■ MIT Kerberos 1.4.x

■ MIT Kerberos 1.5.x

■ MIT Kerberos 1.6 (not yet verified)

On a number of operating systems, the Kerberos RPMs are installed when the
operating system is first installed. To determine if Kerberos RPMs are installed on
your OS, run:

rpm -qa | grep krb

If Kerberos is installed, the command returns a list like this:

krb5-devel-1.4.3-5.1

krb5-libs-1.4.3-5.1

krb5-workstation-1.4.3-5.1

pam_krb5-2.2.6-2.2
11-2 Lustre 1.6 Operations Manual • May 2009

Note – The Heimdal implementation of Kerberos is not currently supported on
Lustre, although it support will be added in an upcoming release.

11.2.1.2 Preparing to Set Up Lustre with Kerberos

To set up Lustre with Kerberos:

1. Configure NTP to synchronize time across all machines.

2. Configure DNS with zones.

3. Verify that there are fully-qualified domain names (FQDNs), that are resolvable
in both forward and reverse directions for all servers. This is required by
Kerberos.

4. On every node, install flowing packages:

■ libgssapi (version 0.10 or higher)

Some newer Linux distributions include libgssapi by default. If you do not have
libgssapi, build and install it from source:
http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libssapi-0.10.tar.gz

■ keyutils
Chapter 11 Kerberos 11-3

http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libgssapi-0.10.tar.gz

11.2.1.3 Configuring Lustre for Kerberos

To configure Lustre for Kerberos:

1. Configure the client nodes.

a. For each client node, create a lustre_root principal and generate the keytab.

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal lustre_root/client_host.domain@REALM

b. Install the keytab on the client node.

Note – For each client-OST pair, there is only one security context, shared by all
users on the client. This protects data written by one user to be passed to an OST by
another user due to asynchronous bulk I/O. The client-OST connection only
guarantees message integrity or privacy; it does not authenticate users.

2. Configure the MDS nodes.

a. For each MDS node, create a lustre_mds principal and generate the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM
kadmin> ktadd -e aes128-cts:normal lustre_mds/mdthost.domain@REALM

b. Install the keytabl on the MDS node.

3. Configure the OSS nodes.

a. For each OSS node, create a lustre_oss principal and generate the keytab.

kadmin> addprinc -randkey lustre_oss/osthost.domain@REALM
kadmin> ktadd -e aes128-cts:normal lustre_oss/osshost.domain@REALM

b. Install the keytab on the OSS node.

Tip – To avoid assigning a unique keytab to each client node, create a general
lustre_root principal and keytab, and install the keytab on as many client nodes as
needed.

kadmin> addprinc -randkey lustre_root@REALM
kadmin> ktadd -e aes128-cts:normal lustre_root@REALM

Remember that if you use a general keytab, then one compromised client means that
all client nodes are insecure.
11-4 Lustre 1.6 Operations Manual • May 2009

General Installation Notes
■ The host.domain should be the FQDN in your network. Otherwise, the server may

not recognize any GSS request.

■ To install a keytab entry on a node, use the ktutil1 utility.

■ Lustre supports these encryption types for MIT Kerberos 5, v1.4 and higher:

■ des-cbc-crc

■ des-cbc-md5

■ des3-hmac-sha1

■ aes128-cts

■ aes256-cts

■ arcfour-hmac-md5

For MIT Kerberos 1.3.x, only des-cbc-md5 works because of a known issue
between libgssapi and the Kerberos library.

Note – The encryption type (or enctype) is an identifier specifying the encryption,
mode and hash algorithms. Each Kerberos key has an associated enctype that
identifies the cryptographic algorithm and mode used when performing
cryptographic operations with the key. It is important that the enctypes requested by
the client are actually supported on the system hosting the client. This is the case if
the defaults that control enctypes are not overridden.

1. Kerberos keytab file maintenance utility.
Chapter 11 Kerberos 11-5

11.2.1.4 Configuring Kerberos

To configure Kerberos to work with Lustre:

1. Modify the files for Kerberos:

$ /etc/krb5.conf

[libdefaults]

default_realm = CLUSTERFS.COM

[realms]

CLUSTERFS.COM = {

kdc = mds16.clustrefs.com

admin_server = mds16.clustrefs.com

}

[domain_realm]

.clustrefs.com = CLUSTERFS.COM

clustrefs.com = CLSUTREFS.COM

[logging]

default = FILE:/var/log/kdc.log

2. Prepare the Kerberos database.

3. Create service principals so Lustre supports Kerberos authentication.

Note – You can create service principals when configuring your other services to
support Kerberos authentication.

4. Configure the client nodes. For each client node:

a. Create a lustre_root principal and generate the keytab:

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal

lustre_root/client_host.domain@REALM

This process populates /etc/krb5.keytab, which is not human-readable. Use
the ktutil program to read and modify it.
11-6 Lustre 1.6 Operations Manual • May 2009

b. Install the keytab.

Note – There is only one security context for each client-OST pair, shared by all users
on the client. This protects data written by one user to be passed to an OST by
another user due to asynchronous bulk I/O. The client-OST connection only
guarantees message integrity or privacy; it does not authenticate users.

5. Configure the MDS nodes. For each MDT node, create a lustre_mds principal,
and generate and install the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM

kadmin> ktadd -e aes128-cts:normal

lustre_mds/mdthost.domain@REALM

6. Configure the OSS nodes. For each OST node, create a lustre_oss principal, and
generate and install the keytab.

kadmin> addprinc -randkey lustre_oss/oss_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal
lustre_oss/oss_host.domain@REALM

To save the trouble of assigning a unique keytab for each client node, create a general
lustre_root principal and its keytab, and then install the keytab on as many client
nodes as needed.

kadmin> addprinc -randkey lustre_root@REALM

kadmin> ktadd -e aes128-cts:normal lustre_root@REALM

Note – If one client is compromised, all client nodes become insecure.

For more detailed information on installing and configuring Kerberos, see:

http://web.mit.edu/Kerberos/krb5-1.6/#documentation
Chapter 11 Kerberos 11-7

http://web.mit.edu/Kerberos/krb5-1.6/#documentation

11.2.1.5 Setting the Environment

Perform the following steps to configure the system and network to use Kerberos.

System-wide Configuration

1. On each MDT, OST, and client node, add the following line to /etc/fstab to
mount them automatically.

nfsd /proc/fs/nfsd nfsd defaults 0 0

2. On each MDT and client node, dd the following line to /etc/request-key.conf.

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

Networking

If your network is not using SOCKLND or InfiniBand (and uses Quadrics, Elan or
Myrinet, for example), configure a /etc/lustre/nid2hostname (simple script that
translates a NID to a hostname) on each server node (MDT and OST). This is an
example on an Elan cluster:

#!/bin/bash

set -x

exec 2>/tmp/$(basename $0).debug

convert a NID for a LND to a hostname, for GSS for example

called with three arguments: lnd netid nid

$lnd will be string "QSWLND", "GMLND", etc.

$netid will be number in hex string format, like "0x16", etc.

$nid has the same format as $netid

output the corresponding hostname, or error message leaded by a '@'
for error logging.

lnd=$1

netid=$2

nid=$3
11-8 Lustre 1.6 Operations Manual • May 2009

uppercase the hex

nid=$(echo $nid | tr '[abcdef]' '[ABCDEF]')

and convert to decimal

nid=$(echo -e "ibase=16\n${nid/#0x}" | bc)

case $lnd in

QSWLND) # simply stick "mtn" on the front

echo "mtn$nid"

;;

*) echo "@unknown LND: $lnd"

;;

esac

11.2.1.6 Building Lustre

If you are compiling the kernel from the source, enable GSS during configuration:

./configure --with-linux=path_to_linux_source --enable-gss - \
other-options

When you enable Lustre with GSS, the configuration script checks all dependencies,
like Kerberos and libgssapi installation, and in-kernel SUNRPC-related facilities.
When you install lustre-xxx.rpm on target machines, RPM again checks for
dependencies like Kerberos and libgssapi.
Chapter 11 Kerberos 11-9

11.2.1.7 Running GSS Daemons

If you turn on GSS between an MDT-OST or MDT-MDT, GSS treats the MDT as a
client. You should run lgssd on the MDT.

There are two types of GSS daemons: lgssd and lsvcgssd. Before starting Lustre,
make sure they are running on each node:

■ OST: lsvcgssd

■ MDT: lsvcgssd

■ CLI: none

Note – Verbose logging can help you make sure Kerberos is set up correctly. To use
verbose logging and run it in the foreground, run lsvcgssd -vvv -f

-v increases the verbose level of a debugging message by 1. For example, to set the
verbose level to 3, run lsvcgssd -v -v -v

-f runs lsvcgssd in the foreground, instead of as daemon.

We are maintaining a patch against nfs-utils, and bringing necessary patched files
into the Lustre tree. After a successful build, GSS daemons are built under
lustre/utils/gss and are part of lustre-xxxx.rpm.
11-10 Lustre 1.6 Operations Manual • May 2009

11.2.2 Types of Lustre-Kerberos Flavors
There are three major flavors in which you can configure Lustre with Kerberos:

■ Basic Flavors

■ Security Flavor

■ Customized Flavor

Select a flavor depending on your priorities and preferences.

11.2.2.1 Basic Flavors

Currently, we support six basic flavors: null, plain, krb5n, krb5a, krb5i, and krb5p.

Basic Flavor Authentication
RPC Message
Protection

Bulk Data
Protection Remarks

null N/A N/A N/A* Almost no performance
overhead. The on-wire RPC
data is compatible with old
versions of Lustre (1.4.x,
1.6.x).

plain N/A null checksum
(adler32)

Carries checksum (which
only protects data mutating
during transfer, cannot
guarantee the genuine
author because there is no
actual authentication).

krb5n GSS/Kerberos5 null checksum
(adler32)

No protection of the RPC
message, adler32 checksum
protection of bulk data;
light performance
overhead.
Chapter 11 Kerberos 11-11

11.2.2.2 Security Flavor

A security flavor is a string that describes what kind of security transform is
performed on a given PTLRPC connection. It covers two parts of messages, the RPC
message and BULK data. You can set either part in one of the following modes:

■ null – No protection

■ integrity – Data integrity protection (checksum or signature)

■ privacy – Data privacy protection (encryption)

krb5a GSS/Kerberos5 partial
integrity

checksum
(adler32)

Only the header of the RPC
message is integrity
protected, adler32
checksum protection of
bulk data, more
performance overhead
compared to krb5n.

krb5i GSS/Kerberos5 integrity integrity
[sha1]

RPC message integrity
protection algorithm is
determined by actual
Kerberos algorithms in use;
heavy performance
overhead.

krb5p GSS/Kerberos5 privacy privacy
[sha1/aes128]

RPC message privacy
protection algorithm is
determined by actual
Kerberos algorithms in use;
heaviest performance
overhead.

* In Lustre 1.6.5, bulk data checksumming is enabled (by default) to provide integrity checking using the adler32
mechanism if the OSTs support it. Adler32 checksums offer lower CPU overhead than CRC32.

Basic Flavor Authentication
RPC Message
Protection

Bulk Data
Protection Remarks
11-12 Lustre 1.6 Operations Manual • May 2009

11.2.2.3 Customized Flavor

In most situations, you do not need a customized flavor, a basic flavor is sufficient for
regular use. But to some extent, you can customize the flavor string. The flavor string
format is:

base_flavor[-bulk{nip}[:hash_alg[/cipher_alg]]]

Here are some examples of customized flavors:

plain-bulkn

Use plain on the RPC message (null protection), and no protection on the bulk
transfer.

krb5i-bulkn

Use krb5i on the RPC message, but do not protect the bulk transfer.

krb5p-bulki

Use krb5p on the RPC message, and protect data integrity of the bulk transfer.

krb5p-bulkp:sha512/aes256

Use krb5p on the RPC message, and protect data privacy of the bulk transfer by
algorithm SHA512 and AES256.

Currently, Lustre supports these bulk data cryptographic algorithms:

■ Hash:

■ adler32

■ crc32

■ md5

■ sha1 / sha256 / sha384 / sha512

■ wp256 / wp384 / wp512

■ Cipher:

■ arc4

■ aes128 / aes192 / aes256

■ cast128 / cast256

■ twofish128 / twofish256
Chapter 11 Kerberos 11-13

11.2.2.4 Specifying Security Flavors

If you have not specified a security flavor, the CLIENT-MDT connection defaults to
plain, and all other connections use null.

Specifying Flavors by Mount Options

When mounting OST or MDT devices, add the mount option (shown below) to
specify the security flavor:

mount -t lustre -o sec=plain /dev/sda1 /mnt/mdt/

This means all connections to this device will use the plain flavor. You can split this
sec=flavor as:

mount -t lustre -o sec_mdt={flavor1},sec_cli={flavor1}/dev/sda \
/mnt/mdt/

This means connections from other MDTs to this device will use flavor1, and
connections from all clients to this device will use flavor2.

Specifying Flavors by On-Disk Parameters

You can also specify the security flavors by specifying on-disk parameters on OST
and MDT devices:

tune2fs -o security.rpc.mdt=flavor1 -o security.rpc.cli=flavor2 \
device

On-disk parameters are overridden by mount options.

11.2.2.5 Mounting Clients

Root on client node mounts Lustre without any special tricks.
11-14 Lustre 1.6 Operations Manual • May 2009

11.2.2.6 Rules, Syntax and Examples

The general rules and syntax for using Kerberos are:

<target>.srpc.flavor.<network>[.<direction>]=flavor

■ <target>: This could be file system name or specific MDT/OST device name. For
example, lustre, lustre-MDT0000, lustre-OST0001.

■ <network>: LNET network name of the RPC initiator. For example, tcp0, elan1,
o2ib0.

■ <direction>: This could be one of cli2mdt, cli2ost, mdt2mdt, or mdt2ost. In
most cases, you do not need to specify the <direction> part.

Examples:

■ Apply krb5i on ALL connections:

mgs> lctl conf_param lustre.srpc.flavor.default=krb5i

■ For nodes in network tcp0, use krb5p. All other nodes use null.

mgs> lctl conf_param lustre.srpc.flavor.tcp0=krb5p

mgs> lctl conf_param lustre.srpc.flavor.default=null

■ For nodes in network tcp0, use krb5p; for nodes in elan1, use plain; Among other
nodes, clients use krb5i to MDT/OST, MDT use null to other MDTs, MDT use
plain to OSTs.

mgs> lctl conf_param lustre.srpc.flavor.tcp0=krb5p

mgs> lctl conf_param lustre.srpc.flavor.elan1=plain

mgs> lctl conf_param lustre.srpc.flavor.default.cli2mdt=krb5i

mgs> lctl conf_param lustre.srpc.flavor.default.cli2ost=krb5i

mgs> lctl conf_param lustre.srpc.flavor.default.mdt2mdt=null

mgs> lctl conf_param lustre.srpc.flavor.default.mdt2ost=plain
Chapter 11 Kerberos 11-15

11.2.2.7 Authenticating Normal Users

On client nodes, non-root users must use kinit to access Lustre (just like other
Kerberized applications). kinit is used to obtain and cache Kerberos ticket-granting
tickets. Two requirements to authenticating users:

■ Before kinit is run, the user must be registered as a principal with the Kerberos
server (the Key Distribution Center or KDC). In KDC, the username is noted as
username@REALM.

■ The client and MDT nodes should have the same user database.

To destroy the established security contexts before logging out, run lfs flushctx:

lfs flushctx [-k]

Here -k also means destroy the on-disk Kerberos credential cache. It is equivalent to
kdestroy. Otherwise, it only destroys established contexts in the Lustre kernel.
11-16 Lustre 1.6 Operations Manual • May 2009

CHAPTER 13

Bonding

This chapter describes how to set up bonding with Lustre, and includes the following
sections:

■ Network Bonding

■ Requirements

■ Using Lustre with Multiple NICs versus Bonding NICs

■ Bonding Module Parameters

■ Setting Up Bonding

■ Configuring Lustre with Bonding

13.1 Network Bonding
Bonding, also known as link aggregation, trunking and port trunking, is a method of
aggregating multiple physical network links into a single logical link for increased
bandwidth.

Several different types of bonding are supported in Linux. All these types are
referred to as “modes,” and use the bonding kernel module.

Modes 0 to 3 provide support for load balancing and fault tolerance by using
multiple interfaces. Mode 4 aggregates a group of interfaces into a single virtual
interface where all members of the group share the same speed and duplex settings.
This mode is described under IEEE spec 802.3ad, and it is referred to as either “mode
4” or “802.3ad.”

(802.3ad refers to mode 4 only. The detail is contained in Clause 43 of the IEEE 8 - the
larger 802.3 specification. For more information, consult IEEE.)
13-1

13.2 Requirements
The most basic requirement for successful bonding is that both endpoints of the
connection must support bonding. In a normal case, the non-server endpoint is a
switch. (Two systems connected via crossover cables can also use bonding.) Any
switch used must explicitly support 802.3ad Dynamic Link Aggregation.

The kernel must also support bonding. All supported Lustre kernels have bonding
functionality. The network driver for the interfaces to be bonded must have the
ethtool support. To determine slave speed and duplex settings, ethtool support is
necessary. All recent network drivers implement it.

To verify that your interface supports ethtool, run:

which ethtool

/sbin/ethtool

ethtool eth0

Settings for eth0:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full/

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 1

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000001 (1)

Link detected: yes
13-2 Lustre 1.6 Operations Manual • May 2009

ethtool eth1

Settings for eth1:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 32

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000007 (7)

Link detected: yes

To quickly check whether your kernel supports bonding, run:

grep ifenslave /sbin/ifup

which ifenslave

/sbin/ifenslave

Note – Bonding and ethtool have been available since 2000. All Lustre-supported
kernels include this functionality.
Chapter 13 Bonding 13-3

13.3 Using Lustre with Multiple NICs versus
Bonding NICs
Lustre can use multiple NICs without bonding. There is a difference in performance
when Lustre uses multiple NICs versus when it uses bonding NICs.

Whether an aggregated link actually yields a performance improvement proportional
to the number of links provided, depends on network traffic patterns and the
algorithm used by the devices to distribute frames among aggregated links.
Performance with bonding depends on:

■ Out-of-order packet delivery

This can trigger TCP congestion control. To avoid this, some bonding drivers
restrict a single TCP conversation to a single adapter within the bonded group.

■ Load balancing between devices in the bonded group.

Consider a scenario with a two CPU node with two NICs. If the NICs are bonded,
Lustre establishes a single bundle of sockets to each peer. Since ksocklnd bind
sockets to CPUs, only one CPU moves data in and out of the socket for a
uni-directional data flow to each peer. If the NICs are not bonded, Lustre
establishes two bundles of sockets to the peer. Since ksocklnd spreads traffic
between sockets, and sockets between CPUs, both CPUs move data.
13-4 Lustre 1.6 Operations Manual • May 2009

13.4 Bonding Module Parameters
Bonding module parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit hash
policy. For Lustre, we recommend that you set the xmit_hash_policy option to the
layer3+4 option for bonding. This policy uses upper layer protocol information if
available to generate the hash. This allows traffic to a particular network peer to span
multiple slaves, although a single connection does not span multiple slaves.

$ xmit_hash_policy=layer3+4

The miimon option enables users to monitor the link status. (The parameter is a time
interval in milliseconds.) It makes an interface failure transparent to avoid serious
network degradation during link failures. A reasonable default setting is 100
milliseconds; run:

$ miimon=100

For a busy network, increase the timeout.

13.5 Setting Up Bonding
To set up bonding:

1. Create a virtual 'bond' interface by creating a configuration file in:

/etc/sysconfig/network-scripts/ # vi /etc/sysconfig/ \
network-scripts/ifcfg-bond0

2. Append the following lines to the file.

DEVICE=bond0

IPADDR=192.168.10.79 # Use the free IP Address of your network

NETWORK=192.168.10.0

NETMASK=255.255.255.0

USERCTL=no

BOOTPROTO=none

ONBOOT=yes
Chapter 13 Bonding 13-5

3. Attach one or more slave interfaces to the bond interface. Modify the eth0 and
eth1 configuration files (using a VI text editor).

a. Use the VI text editor to open the eth0 configuration file.

vi /etc/sysconfig/network-scripts/ifcfg-eth0

b. Modify/append the eth0 file as follows:

DEVICE=eth0

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

c. Use the VI text editor to open the eth1 configuration file.

vi /etc/sysconfig/network-scripts/ifcfg-eth1

d. Modify/append the eth1 file as follows:

DEVICE=eth1

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

4. Set up the bond interface and its options in /etc/modprobe.conf. Start the slave
interfaces by your normal network method.

vi /etc/modprobe.conf

a. Append the following lines to the file.

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

b. Load the bonding module.

modprobe bonding

ifconfig bond0 up

ifenslave bond0 eth0 eth1

5. Start/restart the slave interfaces (using your normal network method).

Note – You must modprobe the bonding module for each bonded interface. If you
wish to create bond0 and bond1, two entries in modprobe.conf are required.
13-6 Lustre 1.6 Operations Manual • May 2009

The examples below are from RedHat systems. For setup use:
/etc/sysconfig/networking-scripts/ifcfg-* The OSDL website referenced
below includes detailed instructions for other configuration methods, instructions to
use DHCP with bonding, and other setup details. We strongly recommend you use
this website.

http://linux-net.osdl.org/index.php/Bonding

6. Check /proc/net/bonding to determine status on bonding. There should be a file
there for each bond interface.

cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth0

MII Status: up

Link Failure Count: 0

Permanent HW addr: 4c:00:10:ac:61:e0

Slave Interface: eth1

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:14:2a:7c:40:1d
Chapter 13 Bonding 13-7

http://linux-net.osdl.org/index.php/Bonding

7. Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded
interface as “bond0.”

ifconfig

bond0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet addr:192.168.10.79 Bcast:192.168.10.255 \
Mask:255.255.255.0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:3091 errors:0 dropped:0 overruns:0 frame:0

TX packets:880 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:314203 (306.8 KiB) TX bytes:129834 (126.7 KiB)

eth0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:1581 errors:0 dropped:0 overruns:0 frame:0

TX packets:448 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:162084 (158.2 KiB) TX bytes:67245 (65.6 KiB)

Interrupt:193 Base address:0x8c00

eth1 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:1513 errors:0 dropped:0 overruns:0 frame:0

TX packets:444 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:152299 (148.7 KiB) TX bytes:64517 (63.0 KiB)

Interrupt:185 Base address:0x6000
13-8 Lustre 1.6 Operations Manual • May 2009

13.5.1 Examples
This is an example of modprobe.conf for bonding Ethernet interfaces eth1 and eth2
to bond0:

cat /etc/modprobe.conf

alias eth0 8139too

alias scsi_hostadapter sata_via

alias scsi_hostadapter1 usb-storage

alias snd-card-0 snd-via82xx

options snd-card-0 index=0

options snd-via82xx index=0

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

options lnet networks=tcp

alias eth1 via-rhine

cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

BOOTPROTO=none

NETMASK=255.255.255.0

IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)

ONBOOT=yes

USERCTL=no

ifcfg-ethx

cat /etc/sysconfig/network-scripts/ifcfg-eth0

TYPE=Ethernet

DEVICE=eth0

HWADDR=4c:00:10:ac:61:e0

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

IPV6INIT=no

PEERDNS=yes

MASTER=bond0

SLAVE=yes
Chapter 13 Bonding 13-9

In the following example, the bond0 interface is the master (MASTER) while eth0 and
eth1 are slaves (SLAVE).

Note – All slaves of bond0 have the same MAC address (Hwaddr) – bond0. All
modes, except TLB and ALB, have this MAC address. TLB and ALB require a unique
MAC address for each slave.

$ /sbin/ifconfig

bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0

TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:0

eth0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:100

Interrupt:10 Base address:0x1080

eth1Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

Interrupt:9 Base address:0x1400
13-10 Lustre 1.6 Operations Manual • May 2009

13.6 Configuring Lustre with Bonding
Lustre uses the IP address of the bonded interfaces and requires no special
configuration. It treats the bonded interface as a regular TCP/IP interface. If needed,
specify “bond0” using the Lustre networks parameter in /etc/modprobe

options lnet networks=tcp(bond0)

13.6.1 Bonding References
We recommend the following bonding references:

In the Linux kernel source tree, see documentation/networking/bonding.txt

http://linux-ip.net/html/ether-bonding.html

http://www.sourceforge.net/projects/bonding

This is the bonding SourceForge website:

http://linux-net.osdl.org/index.php/Bonding

This is the most extensive reference and we highly recommend it. This website
includes explanations of more complicated setups, including the use of DHCP with
bonding.
Chapter 13 Bonding 13-11

http://www.sourceforge.net/projects/bonding
http://linux-net.osdl.org/index.php/Bonding
http://linux-ip.net/html/ether-bonding.html

13-12 Lustre 1.6 Operations Manual • May 2009

CHAPTER 14

Upgrading Lustre

The chapter describes how to upgrade and downgrade Lustre versions and includes
the following sections:

■ Lustre Interoperability

■ Upgrading from Lustre 1.4.12 to Latest 1.6.x Version

■ Upgrading Lustre 1.6.x to the Next Minor Version

■ Downgrading from Latest 1.6.x Version to Lustre 1.4.12

14.1 Lustre Interoperability
For Lustre 1.6.x, the following upgrades are supported:

■ Lustre 1.4.12 (latest 1.4.x version) to the latest Lustre 1.6.x (currently, 1.6.7.1).

■ One minor version to the next (for example, 1.6.6 > 1.6.7.1 and 1.4.11 > 1.4.12).

For Lustre 1.6.x, downgrades in the same ranges are supported.

■ If you upgrade from Lustre 1.4.12 > 1.6.x (latest version), you can downgrade to
version 1.4.12.

■ If you upgrade from one minor version to the next (for example Lustre 1.6.6 >
1.6.7.1), you can downgrade to earlier minor version (e.g., version 1.6.6).

Caution – A fresh installation of Lustre 1.6.x is not guaranteed to be downgradable
to an earlier Lustre version.
14-1

14.2 Upgrading from Lustre 1.4.12 to Latest
1.6.x Version
Use the procedures in this chapter to upgrade Lustre version 1.4.12 to the latest 1.6.x
version (for example, 1.4.12 > 1.6.7.1).

Note – In Lustre version 1.6 and later, the file system name (--fsname parameter) is
limited to 8 characters, so it fits on the disk label.

14.2.1 Prerequisites to Upgrading Lustre
Remember the following points before upgrading Lustre.

■ The MDT must be upgraded before the OSTs are upgraded.

1. Shut down lconf failover.

2. Install the new modules.

3. Run tunefs.lustre.

4. Mount startup.

■ A Lustre upgrade can be done across a failover pair.

1. On the backup server, install the new modules.

2. Shut down lconf failover.

3. On the new server, run tunefs.lustre.

4. On the new server, mount startup.

5. On the primary server, install the new modules.
14-2 Lustre 1.6 Operations Manual • May 2009

14.2.2 Supported Upgrade Paths
The following Lustre upgrade paths are supported.

Entire file system or individual servers / clients
■ Servers can undergo a "rolling upgrade", in which individual servers (or their

failover partners) and clients are upgraded one at a time and restarted, so that the
file system never goes down. This type of upgrade limits your ability to change
certain parameters.

■ The entire file system can be shut down, and all servers and clients upgraded at
once.

■ Any combination of the above two paths.

Interoperability between the nodes

This describes the interoperability between clients, OSTs, and MDTs.

Clients

■ Old live clients can continue to communicate with old/new/mixed servers.

■ Old clients can start up using old/new/mixed servers.

■ New clients can start up using old/new/mixed servers (use old mount format for
old MDT).

OSTs

■ New clients/MDTs can continue to communicate with old OSTs.

■ New OSTs can only be started after the MGS has been started (typically this means
"after the MDT has been upgraded.")

MDTs

■ New clients can communicate with old MDTs.

■ New co-located MGS/MDTs can be started at any point.

■ New non-MGS MDTs can be started after the MGS starts.

Note – The limitation with interoperability is that old clients cannot mount a file
system which was created by a new MDT.
Chapter 14 Upgrading Lustre 14-3

Note – If your system is upgraded from 1.4.x to 1.6.x, you can mount the Lustre
client on both Lustre versions. If the file system was originallycreated using Lustre
1.6.x, you will not be able to mount the file system created using an earlier Lustre
version.

14.2.3 Starting Clients
You can start a new client with an old MDT by using the old format of the client
mount command:

client# mount -t lustre <mdtnid>:/<mdtname>/client <mountpoint>

You can start a new client with an upgraded MDT by using the new format and
pointing it at the MGS, not the MDT (for co-located MDT/MGS, this is the same):

client# mount -t lustre <mgsnid>:/<fsname> <mountpoint>

Old clients always use the old format of the mount command, regardless of whether
the MDT has been upgraded or not.

14.2.4 Upgrading a Single File system
tunefs.lustre will find the old client log on an 1.4.x MDT that is being upgraded
to 1.6. (If the name of the client log is not "client", use the lustre_up14.sh script,
described in Step 2 and Step 3.)

1. Shut down the MDT.

mdt1# lconf --failover --cleanup config.xml

2. Install the new Lustre version and run tunefs.lustre to upgrade the
configuration.

There are two options:

■ Rolling upgrade keeps a copy of the original configuration log, allowing
immediate reintegration into a live file system, but prevents OSC parameter
and failover NID changes. (The writeconf procedure can be performed later to
eliminate these restrictions. For details, see Running the Writeconf Command.)

mdt1# tunefs.lustre --mgs --mdt --fsname=testfs /dev/sda1

■ i.--writeconf begins a new configuration log, allowing permanent modification
of all parameters (see Changing Parameters), but requiring all other servers and
clients to be stopped at this point. No clients can be started until all OSTs are
upgraded.
14-4 Lustre 1.6 Operations Manual • May 2009

[root@mds1]# tunefs.lustre --mgs --writeconf --mgs --mdt
--fsname=ldiskfs /dev/hda4

checking for existing Lustre data: found CONFIGS/mountdata

Reading CONFIGS/mountdata

Read previous values:

Target: testfs-MDT0000

Index: 0

UUID: mds-1_UUID

Lustre FS: testfs

Mount type: ldiskfs

Flags: 0x205

(MDT MGS upgrade1.4)

Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

Parameters:

Permanent disk data:

Target: ldiskfs-MDT0000

Index: 0

UUID: mds-1_UUID

Lustre FS: ldiskfs

Mount type: ldiskfs

Flags: 0x305

(MDT MGS writeconf upgrade1.4)

Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

Parameters:

Writing CONFIGS/mountdata

Copying old logs

3. Start the upgraded MDT.

mdt1# mkdir -p /mnt/test/mdt

mdt1# mount -t lustre /dev/hda4 /mnt/test/mdt

mdt1 # df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda2 10080520 4600820 4967632 49% /

/dev/hda1 101086 14787 81080 16% /boot

none 501000 0 501000 0% /dev/shm

/dev/hda4 23339176 455236 21550144 3% /mnt/test/mdt
Chapter 14 Upgrading Lustre 14-5

4. Upgrade and start the OSTs for the file system in a similar manner, except they
need the address of the MGS. Old installations may also need to specify the
OST index (for instance, --index=5).

ost1# tunefs.lustre --ost --fsname=lustre --mgsnode=mds /dev/sda4

checking for existing Lustre data: found last_rcvd

tunefs.lustre: Unable to read /tmp/dirQi2cwV/mountdata (No such
file or directory.)

Trying last_rcvd

Reading last_rcvd

Feature compat=2, incompat=0

Read previous values:

Target:

Index: 0

UUID: ost1_UUID

Lustre FS: lustre

Mount type: ldiskfs

Flags: 0x202

(OST upgrade1.4)

Persistent mount opts:

Parameters:

Permanent disk data:

Target: lustre-OST0000

Index: 0

UUID: ost1_UUID

Lustre FS: lustre

Mount type:ldiskfs

Flags: 0x202

(OST upgrade1.4)

Persistent mount opts: errors=remount-ro,extents,mballoc

Parameters: mgsnode=192.168.10.34@tcp

Writing CONFIGS/mountdata 11.1.5 Upgrading Multiple File Systems
with a Shared MGS

Ost-1# mount -t lustre /dev/sda4 /mnt/test/ost/

Ost1# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 10080520 3852036 5716416 41% /

/dev/sda1 101086 14964 80903 16% /boot

none 501000 0 501000 0% /dev/shm

/dev/sda4 101492248 471672 95781780 1% /mnt/test/ost
14-6 Lustre 1.6 Operations Manual • May 2009

14.2.5 Upgrading Multiple File Systems with a Shared
MGS
The upgrade order is: MGS first, then for any single file system the MDT must be
upgraded and mounted, and then the OSTs for that file system. If the MGS is
co-located with the MDT, the old configuration logs stored on the MDT are
automatically transferred to the MGS. If the MGS is not co-located with the MDT (for
a site with multiple file systems), the old config logs must be manually transferred to
the MGS.

1. Format the MGS node, but do not start it.

mgsnode# mkfs.lustre --mgs /dev/hda4

2. Mount the MGS disk as type ldiskfs.

mgsnode# mount -t ldiskfs /dev/hda4 /mnt/mgs

3. For each MDT, copy the MDT and client startup logs from the MDT to the
MGS, renaming them as needed. There is a script that helps automate this
process—lustre_up14.sh

mdt1# lustre_up14 /dev/hda4 lustre

debugfs 1.35 (28-Feb-2004)

/dev/hda4: catastrophic mode - not reading inode or group bitmaps

Copying log 'mds-1' to 'lustre-MDT0000'. Okay [y/n]?y

Copying log 'client' to 'lustre-client'. Okay [y/n]?y

ls -l /tmp/logs

total 24

-rw-r--r-- 1 root root 9448 Oct 22 17:46 lustre-client

-rw-r--r-- 1 root root 9080 Oct 22 17:46 lustre-MDT0000

mdt1# cp /tmp/logs/lustre-* /mnt/tmp/CONFIGS/

cp: overwrite `/mnt/tmp/CONFIGS/lustre-client'? y

cp: overwrite `/mnt/tmp/CONFIGS/lustre-MDT0000'? y

4. Unmount the MGS ldiskfs mount.

mgsnode# umount /mnt/mgs

5. Start the MGS.

mgsnode# mount -t lustre /dev/hda4 /mnt/mgs

6. Shut down one of the old MDTs.

mdt1# lconf --failover --cleanup config.xml
Chapter 14 Upgrading Lustre 14-7

7. Upgrade the old MDT.

install new Lustre 1.6

mdt1# tunefs.lustre --mdt --nomgs --fsname=testfs \

--mgsnode=mgsnode@tcp0 /dev/hda4

(--nomgs is required to upgrade a non-co-located MDT).

8. Start the upgraded MDT.

mdt1# mount -t lustre /dev/hda4 /mnt/test/mdt

9. Upgrade and start OSTs for this file system.

ost1# lconf --failover --cleanup config.xml

install new Lustre 1.6

ost1# tunefs.lustre --ost --fsname=lustre --mgsnode=mgsnode@tcp0 \
/dev/sdc

ost1# mount -t lustre /dev/sdc /mnt/test/ost1

10. Upgrade the other MDTs in a similar manner. Remember:

■ The MGS must not be running (mounted) when the backing disk is mounted as
ldiskfs.

■ The MGS must be running when first starting a newly-upgraded server (MDT
or OST).
14-8 Lustre 1.6 Operations Manual • May 2009

14.3 Upgrading Lustre 1.6.x to the Next Minor
Version
To upgrade Lustre 1.6.x to the next minor version (for example, Lustre 1.6.6 > 1.6.7.1),
perform these steps:

1. Check the current Lustre version on the MDS.

root@mds# uname -a

root@mds# Linux mds.sun.com 2.6.18-8.1.14.el5_lustre.1.6.4.2smp #1
SMP Wed Jan 16 20:49:25 EST 2008 i686 athlon i386 GNU/Linux

2. Check the name of the file system.

[root@mds ~]# cat /proc/fs/lustre/mgs/MGS/filesystems

sunfs

3. Umount the old file system in this order.

■ Client

■ OST

■ MDS

[root@client ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 6940516 4051136 2531132 62% /

/dev/sda1 101086 14484 81383 16% /boot

tmpfs 271844 0 271844 0% /dev/shm

mds@tcp0:/sunfs 4128416 291800 3626904 8% /mnt

[root@client ~]# umount /mnt

4. Cross-check the unmount. You must verify the unmount before upgrading the
Lustre version.

[root@client ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 6940516 4051136 2531132 62% /

/dev/sda1 101086 14484 81383 16% /boot

tmpfs 271844 0 271844 0% /dev/shm

5. Unmount the file system on the MDT and all OSTs in a similar manner.
Chapter 14 Upgrading Lustre 14-9

6. Install new Lustre version and restart the nodes with new kernel on the MGS
and MDT.

[root@mds ~]# tunefs.lustre --mgs --writeconf --mgs --mdt --fsname=
sunfs /dev/sdb

tunefs.lustre --mgs --writeconf --mgs --mdt --fsname=sunfs /dev/sdb

checking for existing Lustre data: found CONFIGS/mountdata

Reading CONFIGS/mountdata

Read previous values:

Target: sunfs-MDT0000

Index: 0

Lustre FS: sunfs

Mount type: ldiskfs

Flags: 0x5

 (MDT MGS)

Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

Parameters: mdt.group_upcall=/usr/sbin/l_getgroups

Permanent disk data:

Target: sunfs-MDT0000

Index: 0

Lustre FS: sunfs

Mount type: ldiskfs

Flags: 0x105

 (MDT MGS writeconf)

Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

Parameters: mdt.group_upcall=/usr/sbin/l_getgroups

7. Write configurations to mount data.

[root@mds ~]# mount -t lustre /dev/sdb /mnt/data/mdt/

[root@mds ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 6940516 4173316 2408952 64% /

/dev/sda1 101086 14548 81319 16% /boot

tmpfs 271804 0 271804 0% /dev/shm

/dev/sdb 1834832 90196 1639780 6% /mnt/data/mdt

8. Mount the OST.

oss # mount -t lustre /dev/sdb /mnt/ost

If an error occurs, use this command:

oss # tunefs.lustre --ost --fsname=sunfs --mgssnode=mds /dev/sdb

9. After installing the new Lustre modules, mount the file system on the client
side.

client # mount -t lustre mds@tcp0:/sunfs /mnt/client
14-10 Lustre 1.6 Operations Manual • May 2009

14.4 Downgrading from Latest 1.6.x Version
to Lustre 1.4.12
This section describes how to downgrade from the latest 1.6.x version to Lustre
1.4.12.

14.4.1 Downgrade Requirements
■ The file system must have been upgraded from 1.4.x. In other words, a file system

created or reformatted under Lustre 1.6.x cannot be downgraded.

■ Any new OSTs that were dynamically added to the file system will be unknown in
version 1.4.x. It is possible to add them back using lconf --write-conf, but
you must be careful to use the correct UUID of the new OSTs.

■ Downgrading an MDS that is also acting as an MGS prevents access to all other
file systems that the MGS serves.

14.4.2 Downgrading a File System
To downgrade a file system:

1. Shut down all clients.

2. Shut down all servers.

3. Install Lustre 1.4.x on the client and server nodes.

4. Restart the servers (OSTs, then MDT) and clients.

Caution – When you downgrade Lustre, all OST additions and parameter changes
made since the file system was upgraded are lost.
Chapter 14 Upgrading Lustre 14-11

14-12 Lustre 1.6 Operations Manual • May 2009

CHAPTER 14

Lustre SNMP Module

The Lustre SNMP module reports information about Lustre components and system
status, and generates traps if an LBUG occurs. The Lustre SNMP module works with
the net-snmp. The module consists of a plug-in (lustresnmp.so), which is loaded by
the snmpd daemon, and a MIB file (Lustre-MIB.txt).

This chapter describes how to install and use the Lustre SNMP module, and includes
the following sections:

■ Installing the Lustre SNMP Module

■ Building the Lustre SNMP Module

■ Using the Lustre SNMP Module
14-1

14.1 Installing the Lustre SNMP Module
To install the Lustre SNMP module:

1. Locate the SNMP plug-in (lustresnmp.so) in the base Lustre RPM and install it.

/usr/lib/lustre/snmp/lustresnmp.so

2. Locate the MIB (Lustre-MIB.txt) in /usr/share/lustre/snmp/mibs/Lustre-MIB.txt
and append the following line to snmpd.con.

dlmod lustresnmp /usr/lib/lustre/snmp/lustresnmp.so

3. You may need to copy Lustre-MIB.txt to a different location to use few tools. For
this, use either of these commands.

~/.snmp/mibs

/usr/local/share/snmp/mibs

14.2 Building the Lustre SNMP Module
To build the Lustre SNMP module, you need the net-snmp-devel package. The
default net-snmp install includes a snmpd.conf file.

1. Complete the net-snmp setup by checking and editing the snmpd.conf file,
located in /etc/snmp

/etc/snmp/snmpd.conf

2. Build the Lustre SNMP module from the Lustre src.rpm

■ Install the Lustre source

■ Run ./configure

■ Add the --enable-snmp option
14-2 Lustre 1.6 Operations Manual • May 2009

14.3 Using the Lustre SNMP Module
Once the Lustre SNMP module in installed and built, use it for purposes:

■ For all Lustre components, the SNMP module reports a number and total and free
capacity (usually in bytes).

■ Depending on the component type, SNMP also reports total or free numbers for
objects like OSD and OSC or other files (LOV, MDC, and so on).

■ The Lustre SNMP module provides one read/write variable, sysStatus, which
starts and stops Lustre.

■ The sysHealthCheck object reports status either as healthy' or 'not healthy' and
provides information for the failure.

■ The Lustre SNMP module generates traps on the detection of LBUG
(lustrePortalsCatastropeTrap), and detection of various OBD-specific healthchecks
(lustreOBDUnhealthyTrap).
Chapter 14 Lustre SNMP Module 14-3

14-4 Lustre 1.6 Operations Manual • May 2009

CHAPTER 15

Backup and Restore

This chapter describes how to perform backup and restore on Lustre, and includes
the following sections:

■ Lustre Backups

■ Restoring from a File-level Backup

■ LVM Snapshots on Lustre Target Disks

15.1 Lustre Backups
Lustre provides backups at several levels. Generally, file system-level backups are
recommended over device-level backups.

15.1.1 File System-level Backups
File system-level backups give you full control over the files to back up, and allow
restoration of individual files as needed. file system-level backups are also the easiest
to integrate into existing backup solutions.

File system backups are performed from a Lustre client (or many clients working
parallel in different directories) rather than on individual server nodes; this is no
different than backing up any other file system.

However, due to the large size of most Lustre file systems, it is not always possible to
get a complete backup. We recommend that you back up subsets of a file system. This
includes subdirectories of the entire directory, filesets for a single user, files
incremented by date, and so on.
15-1

15.1.2 Device-level Backups
Full, device-level backups of the MDS and OSTs should be done before replacing
hardware, performing maintenance, etc. A device-level backup of the MDS is
especially important because, if it fails permanently, the entire file system would
need to be restored.

In case of hardware replacement, if the spare storage device is available, then it is
possible to take a raw copy of the MDS or OST from one block device to the other, as
long as the new device is at least as large as the original device. To do this, run:

dd if=/dev/{original} of=/dev/{new} bs=1M

If there are problems while reading the data on the original device due to hardware
errors, then run the following command to read the data and skip sections with
errors.

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror

In spite of hardware errors, the ext3 file system is very robust and it may be possible
to recover the file system data after running e2fsck on the new device.

15.1.3 Performing File-level Backups
In some situations, you may want to back up data from a single file on the MDS or an
OST file system, rather than back up the entire device. This may be a preferred
backup strategy if the storage device is large but has relatively little data, parameter
configurations on the ext3 file system need to be changed, or to use less space for
backup.

You can mount the ext3 file system directly from the storage device and do a
file-level backup. However you MUST STOP Lustre on that node.

To do this, back up the Extended Attributes (EAs)1 stored in the file system. As the
current backup tools do not properly save this data, perform the following
procedure.

1. Lustre uses EAs to store striping information (location of file data on OSTs).
15-2 Lustre 1.6 Operations Manual • May 2009

15.1.3.1 Backing Up an MDS File

To back up a file on the MDS:

1. Make a mount point for the file system "mkdir /mnt/mds" and mount the file
system at that location.

■ For 2.4 kernels, run:

mount -t ext3 {dev} /mnt/mds

■ For 2.6 kernels, run:

mount -t ldiskfs {dev} /mnt/mds

2. Change to the mount point being backed up "cd /mnt/mds"

3. Back up the EAs, run:

getfattr -R -d -m '.*' -P . > ea.bak

Note – The getfattr command is part of the "attr" package in most distributions. If
the getfattr command returns errors like Operation not supported, then the
kernel does not correctly support EAs. STOP and use a different backup method or
contact us for assistance.

4. Verify that the ea.bak file has properly backed up the EA data on the MDS.
Without this EA data, the backup is not useful. Look at this file with "more" or
a text editor. It should have an item for each file like:

file: ROOT/mds_md5sum3.txt

trusted.lov=
0s0AvRCwEAAABXoKUCAAAAAAAAAAAAAAAAAAAQAAEAAADD5QoAAAAAAAAAAAAAAAAA
AAAAAAEAAAA=

5. Back up all file system data, run:

tar czvf {backup file}.tgz

6. Change directory out of the mounted file system, run:

cd -

7. Unmount the file system, run:

umount /mnt/mds
Chapter 15 Backup and Restore 15-3

15.1.3.2 Backing Up an OST File

Follow the same procedure as Backing Up an MDS File (except skip Step 4) and, for
each OST device file system, replace mds with ost in the commands.

15.2 Restoring from a File-level Backup
To restore data from a file-level backup, you need to format the device, restore the
file data and then restore the EA data.

1. Format the device. To get the optimal ext3 parameters, run:

$ mkfs.lustre --fsname {fsname} --reformat --mgs|mdt|ost /dev/sda

Caution – Only reformat the node which is being restored. If there are multiple
services on the node, do not perform this step as it can cause all devices on the node
to be reformatted. In that situation, follow these steps:

For MDS file systems, run:

mke2fs -j -J size=400 -I {inode_size} -i 4096 {dev}

where {inode_size} is at least 512 and possibly larger if the default stripe count is
> 10 (inode_size = power_of_2_>=_than(384 + stripe_count * 24))2

For OST file systems, run:

mke2fs -j -J size=400 -I 256 -i 16384 {dev}”

2. Enable ext3 file system directory indexing.

tune2fs -O dir_index {dev}

2. In the mke2fs command, the -I option is the size of the inode and the -i option is the ratio of inodes to space in
the file system: inode_count = device_size / inode_ratio. Set the -i option to 4096 so Extended Attributes (EAs)
can fit on the inode as well. Otherwise, you have to make an indirect allocation to hold the EAs, which impacts
performance owing to the additional seeks.
15-4 Lustre 1.6 Operations Manual • May 2009

3. Mount the file system.

■ For 2.4 kernels, run:

mount -t ext3 {dev} /mnt/mds

■ For 2.6 kernels, run:

mount -t ldiskfs {dev} /mnt/mds

4. Change to the new file system mount point, run:

cd /mnt/mds

5. Restore the file system backup, run:

tar xzvpf {backup file}

6. Restore the file system EAs, run:

setfattr --restore=ea.bak (not required for OST devices)

7. Remove the recovery logs (now invalid), run:

rm OBJECTS/* CATALOGS

Note – If the file system is in use during the restore process, run the lfsck tool (part
of e2fsprogs) to ensure that the file system is coherent.

It is not necessary to run this tool if the backup of all device file systems occurs at the
same time after stopping the entire Lustre file system. After completing the file
system should be immediately usable without running lfsck. There may be few I/O
errors reading from files that are present on the MDS, but not on the OSTs. However,
the files that are created after the MDS backup are not visible or accessible.
Chapter 15 Backup and Restore 15-5

15.3 LVM Snapshots on Lustre Target Disks
Another disk-based backup option is to leverage the Linux LVM snapshot
mechanism to maintain multiple incremental backups of a Lustre file system. But
LVM snapshots cost CPU cycles as new files are written, so taking snapshots of the
main Lustre file system will probably result in unacceptable performance losses.

To get around this problem, create a new, backup file system and periodically back
up new/changed files. Take periodic snapshots of this backup file system to create a
series of compact "full" backups.

15.3.1 Creating LVM-based Lustre File System As a
Backup
To create an LVM-based backup Lustre file system.

1. Create LVM volumes for the MDT and OSTs.

First, create LVM devices for your MDT and OST targets. Do not use the entire
disk for the targets, as some space is required for the snapshots. The snapshots
size start out as 0, but they increase in size as you make changes to the backup file
system. In general, if you expect to change 20% of your file system between
backups, then the most recent snapshot will be 20% of your target size, the next
older one will be 40%, and so on.

cfs21:~# pvcreate /dev/sda1

Physical volume "/dev/sda1" successfully created

cfs21:~# vgcreate volgroup /dev/sda1

Volume group "volgroup" successfully created

cfs21:~# lvcreate -L200M -nMDT volgroup

Logical volume "MDT" created

cfs21:~# lvcreate -L200M -nOST0 volgroup

Logical volume "OST0" created

cfs21:~# lvscan

ACTIVE '/dev/volgroup/MDT' [200.00 MB] inherit

ACTIVE '/dev/volgroup/OST0' [200.00 MB] inherit
15-6 Lustre 1.6 Operations Manual • May 2009

2. Format LVM volumes as Lustre targets.

In this example, the backup file system is called “main” and designates the
current, most up-to-date backup.

cfs21:~# mkfs.lustre --mdt --fsname=main /dev/volgroup/MDT

 No management node specified, adding MGS to this MDT.

 Permanent disk data:

 Target: main-MDTffff

 Index: unassigned

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x75

 (MDT MGS needs_index first_time update)

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

checking for existing Lustre data

 device size = 200MB

 formatting backing filesystem ldiskfs on /dev/volgroup/MDT

 target name main-MDTffff

 4k blocks 0

 options -i 4096 -I 512 -q -O dir_index -F

 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-MDTffff -i 4096 -I 512 -q
-O dir_index -F /dev/volgroup/MDT

 Writing CONFIGS/mountdata

cfs21:~# mkfs.lustre --ost --mgsnode=cfs21 --fsname=main
/dev/volgroup/OST0

 Permanent disk data:

 Target: main-OSTffff

 Index: unassigned

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x72

 (OST needs_index first_time update)

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

checking for existing Lustre data

 device size = 200MB

 formatting backing filesystem ldiskfs on /dev/volgroup/OST0

 target name main-OSTffff

 4k blocks 0

 options -I 256 -q -O dir_index -F

 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-OSTffff -I 256 -q -O
dir_index -F /dev/ volgroup/OST0

 Writing CONFIGS/mountdata

cfs21:~# mount -t lustre /dev/volgroup/MDT /mnt/mdt
Chapter 15 Backup and Restore 15-7

cfs21:~# mount -t lustre /dev/volgroup/OST0 /mnt/ost

cfs21:~# mount -t lustre cfs21:/main /mnt/main

15.3.2 Backing Up New Files to the Backup File System
This is your nightly backups of your real on-line Lustre file system.

cfs21:~# cp /etc/passwd /mnt/main

cfs21:~# cp /etc/fstab /mnt/main

cfs21:~# ls /mnt/main

 fstab passwd

15.3.3 Creating LVM Snapshot Volumes
Whenever you want to make a "checkpoint" of your Lustre file system, you create
LVM snapshots of all the target disks in "main". You must decide the maximum size
of a snapshot ahead of time,however you can dynamically change this later. The size
of a daily snapshot is dependent on the amount of data you change daily in your
on-line file system. It is also likely that a two-day old snapshot will be twice as big as
a one-day old snapshot.

You can create as many snapshots as you have room for in your volume group. You
can also dynamically add disks to the volume group if needed.

The snapshots of the target disks (MDT, OSTs) should be taken at the same point in
time, making sure that cronjob updating "main" is not running, since that is the only
job writing to the disks.

cfs21:~# modprobe dm-snapshot

cfs21:~# lvcreate -L50M -s -n MDTb1 /dev/volgroup/MDT

 Rounding up size to full physical extent 52.00 MB

 Logical volume "MDTb1" created

cfs21:~# lvcreate -L50M -s -n OSTb1 /dev/volgroup/OST0

 Rounding up size to full physical extent 52.00 MB

 Logical volume "OSTb1" created

After the snapshots are taken, you can continue to back up new/changed files to
"main". The snapshots will not contain the new files.

cfs21:~# cp /etc/termcap /mnt/main

cfs21:~# ls /mnt/main

 fstab passwd termcap
15-8 Lustre 1.6 Operations Manual • May 2009

15.3.4 Restoring From Old Snapshot
1. Rename the snapshot

Rename the snapshot file system from "main" to "back" so that you can mount it
without unmounting "main". This is not a requirement. Use the --reformat flag
to tunefs.lustre to force the name change.

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf
/dev/volgroup/MDTb1

 checking for existing Lustre data

 found Lustre data

 Reading CONFIGS/mountdata

Read previous values:

 Target: main-MDT0000

 Index: 0

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x5

 (MDT MGS)

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

Permanent disk data:

 Target: back-MDT0000

 Index: 0

 Lustre FS: back

 Mount type: ldiskfs

 Flags: 0x105

 (MDT MGS writeconf)

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

Writing CONFIGS/mountdata

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf
/dev/volgroup/OSTb1

 checking for existing Lustre data

 found Lustre data

 Reading CONFIGS/mountdata

Read previous values:

 Target: main-OST0000

 Index: 0

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x2

 (OST)

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp
Chapter 15 Backup and Restore 15-9

Permanent disk data:

 Target: back-OST0000

 Index: 0

 Lustre FS: back

 Mount type: ldiskfs

 Flags: 0x102

 (OST writeconf)

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

Writing CONFIGS/mountdata

When renaming an FS, we must also erase the last_rcvd file from the
snapshots

cfs21:~# mount -t ldiskfs /dev/volgroup/MDTb1 /mnt/mdtback

 cfs21:~# rm /mnt/mdtback/last_rcvd

 cfs21:~# umount /mnt/mdtback

 cfs21:~# mount -t ldiskfs /dev/volgroup/OSTb1 /mnt/ostback

 cfs21:~# rm /mnt/ostback/last_rcvd

 cfs21:~# umount /mnt/ostback

2. Mount the snapshot file system

 cfs21:~# mount -t lustre /dev/volgroup/MDTb1 /mnt/mdtback

 cfs21:~# mount -t lustre /dev/volgroup/OSTb1 /mnt/ostback

 cfs21:~# mount -t lustre cfs21:/back /mnt/back

Note the old directory contents, as of the snapshot time.

cfs21:~/cfs/b1_5/lustre/utils# ls /mnt/back

 fstab passwds

15.3.5 Delete Old Snapshots
To reclaim disk space, you can erase old snapshots, as your backup policy dictates.

lvremove /dev/volgroup/MDTb1

\You can also extend or shrink snapshot volumes if you find your daily deltas are
smaller or larger than you had planned for.

lvextend -L10G /dev/volgroup/MDTb1
15-10 Lustre 1.6 Operations Manual • May 2009

CHAPTER 16

POSIX

This chapter describes POSIX and includes the following sections:

■ Installing POSIX

■ Running POSIX Tests Against Lustre

■ Isolating and Debugging Failures

Portable Operating System Interface (POSIX) is a set of standard, operating system
interfaces based on the Unix OS. POSIX defines file system behavior on single Unix
node. It is not a standard for clusters.

POSIX specifies the user and software interfaces to the OS. Required program-level
services include basic I/O (file, terminal, and network) services. POSIX also defines a
standard threading library API which is supported by most modern operating
systems.

POSIX in a cluster means that most of the operations are atomic. Clients can not see
the metadata. POSIX offers strict mandatory locking which gives guarantee of
semantics. Users do not have control on these locks.

The current Lustre POSIX is comparable with NFS. Lustre 1.8 promises strong
security with features like GSS/Kerberos 5. This enables graceful handling of users
from multiple realms which, in turn, introduce multiple UID and GID databases.

Note – Although used mainly with UNIX systems, the POSIX standard can apply to
any operating system.
16-1

16.1 Installing POSIX
To install POSIX (used for testing Lustre):

1. Download all POSIX files from:

http://downloads.clusterfs.com/public/tools/benchmarks/posix/

■ lts_vsx-pcts-1.0.1.2.tgz

■ install.sh

■ myscen.bld

■ myscen.exec

Caution – Do not configure or mount a Lustre file system yet.

2. Run the install.sh script and select /home/tet for the root directory for the test
suite installation.

3. Install users and groups. Accept the defaults for the packages to be installed.

4. To avoid a bug in the installation scripts where the test directory is not created
properly, create a temporary directory to hold the POSIX tests when they are
built.

$ mkdir -p /mnt/lustre/TESTROOT;chown vsx0.vsxg0

5. Log in as the test user.

su - vsx0

6. Build the test suite, run:

../setup.sh

Most of the defaults are correct, except the root directory from which to run the
test sets. For this setting, specify /mnt/lustre/TESTROOT. Do NOT install
pseudo languages.
16-2 Lustre 1.6 Operations Manual • May 2009

http://downloads.clusterfs.com/public/tools/benchmarks/posix/

7. When the system displays this prompt:

Install scripts into TESTROOT/BIN..?

Do not immediately respond. Using another terminal (as stopping the script does
not work), replace the files /home/tet/test_sets/scen.exec and
/home/tet/test_sets/scen.bld with myscen.exec and myscen.bld
(downloaded earlier).

$ cp .../myscen.bld /home/tet/test_sets/scen.bld

$ cp .../myscen.exec /home/tet/test_sets/scen.exec

This limits the tests run only to the relevant file systems and avoids additional
hours of other tests on sockets, math, stdio, libc, shell, and so on.

8. Continue with the installation.

a. Build the test sets.

It proceeds to build and install all of the file system tests.

b. Run the test sets.

Even though it is running them on a local file system, this is a valuable baseline
to compare with the behavior of Lustre. It should put the results into
/home/tet/test_sets/results/0002e/journal. Rename or symlink this
directory to /home/tet/test_sets/results/ext3/journal (or to the
name of the local file system on which the test was run).

Running the full test takes about five minutes. Do not re-run any failed test.
Results are in a lengthy table at /home/tet/test_sets/results/report.

9. Save the test suite to run further tests on a Lustre file system. Tar up the tests, so
that you do not have to rebuild each time.
Chapter 16 POSIX 16-3

16.2 Running POSIX Tests Against Lustre
To run the POSIX tests against Lustre:

1. As root, set up your Lustre file system, mounted on /mnt/lustre (for instance, sh
llmount.sh) and untar the POSIX tests back to their home.

$ tar --same-owner -xzpvf /path/to/tarball/TESTROOT.tgz -C \
/mnt/lustre

As the vsx0 user, you can re-run the tests as many times as you want. If you are
newly logged in as the vsx0 user, you need to source the environment with '.
profile' so that your path and environment is set up correctly.

2. Run the POSIX tests, run:

$. /home/tet/profile

$ tcc -e -s scen.exec -a /mnt/lustre/TESTROOT -p

New results are placed in new directories at /home/tet/test_sets/results
Each result is given a directory name similar to 0004e (an incrementing number
which ends with e (for test execution) or b (for building tests).

3. To look at a formatted report, run:

$ vrpt results/0004e/journal | less

Some tests are "Unsupported", "Untested" or "Not In Use", which does not
necessarily indicate a problem.

4. To compare two test results, run:

$ vrptm results/ext3/journal results/0004e/journal | less

This is more interesting than looking at the result of a single test as it helps to find
test failures that are specific to the file system, instead of the Linux VFS or kernel.
Up to six test results can be compared at one time. It is often useful to rename the
results directory to have more interesting names so that they are meaningful in the
future.
16-4 Lustre 1.6 Operations Manual • May 2009

16.3 Isolating and Debugging Failures
In the case of Lustre failures, you need to capture information about what is
happening at runtime. For example some tests may cause kernel panics, depending
on your Lustre configuration. By default, debugging is not enabled in the POSIX test
suite. You need to turn on the VSX debugging options. There are two debug options
of note in the config file tetexec.cfg, under the TESTROOT directory:

VSX_DBUG_FILE=output_file

If you are running the test under UML with hostfs support, use a file on the hostfs as
the debug output file. In the case of a crash, the debug output can be safely written to
the debug file.

Note – The default value for this option puts the debug log under your test directory
in /mnt/lustre/TESTROOT, which is not useful in case of kernel panic and Lustre
(or your machine) crashes.

VSX_DBUG_FLAGS=xxxxx

The following example makes VSX output all debug messages:

VSX_DBUG_FLAGS=t:d:n:f:F:L:l,2:p:P

VSX is based on the TET framework which provides common libraries for VSX. You
can also have TET print out verbose debug messages by inserting the -T option when
running the tests. For example:

$ tcc -Tall5 -e -s scen.exec -a /mnt/lustre/TESTROOT -p 2>&1 | tee
/tmp/POSIX-command-line-output.log

VSX prints out detailed messages in the report for failed tests. This includes the test
strategy, operations done by the test suite, and the failures. Each subtest (for instance,
'access', 'create') usually contains many single tests. The report shows exactly which
single testing fails. In this case, you can find more information directly from the VSX
source code.
Chapter 16 POSIX 16-5

For example, if the fifth single test of subtest chmod failed; you could look at the
source:

$ /home/tet/test_sets/tset/POSIX.os/files/chmod/chmod.c

Which contains a single test array:

public struct tet_testlist tet_testlist[] = {

test1, 1,

test2, 2,

test3, 3,

test4, 4,

test5, 5,

test6, 6,

test7, 7,

test8, 8,

test9, 9,

test10, 10,

test11, 11,

test12, 12,

test13, 13,

test14, 14,

test15, 15,

test16, 16,

test17, 17,

test18, 18,

test19, 19,

test20, 20,

test21, 21,

test22, 22,

test23, 23,

NULL, 0

};
16-6 Lustre 1.6 Operations Manual • May 2009

If this single test is causing problems (as in the case of a kernel panic) or if you are
trying to isolate a single failure, it may be useful to narrow the tet_testlist array down
to the single test in question and then recompile the test suite. Then, you can create a
new tarball of the resulting TESTROOT directory, with an appropriate name (like
TESTROOT-chmod-5-only.tgz) and re-run the POSIX suite. It may also be helpful
to edit the scen.exec file to run only test set in question.

 "total tests in POSIX.os 1"

/tset/POSIX.os/files/chmod/T.chmod

Note – Rebuilding individual POSIX tests is not straightforward due to the reliance
on tcc. You may have to substitute the edited source files into the source tree
(following the installation described above) and let the existing POSIX install scripts
do the work.

The installation scripts (specifically, /home/tet/test_sets/run_testsets.sh)
contain relevant commands to build the test suite, similar to tcc -p -b -s
$HOME/scen.bld $* but it does not work outside the script.
Chapter 16 POSIX 16-7

16-8 Lustre 1.6 Operations Manual • May 2009

CHAPTER 17

Benchmarking

The benchmarking process involves identifying the highest standard of excellence
and performance, learning and understanding these standards, and finally adapting
and applying them to improve the performance. Benchmarks are most often used to
provide an idea of how fast any software or hardware runs.

Complex interactions between I/O devices, caches, kernel daemons, and other OS
components result in behavior that is difficult to analyze. Moreover, systems have
different features and optimizations, so no single benchmark is always suitable. The
variety of workloads that these systems experience also adds in to this difficulty. One
of the most widely researched areas in storage subsystem is file system design,
implementation, and performance.

This chapter describes benchmark suites to test Lustre and includes the following
sections:

■ Bonnie++ Benchmark

■ IOR Benchmark

■ IOzone Benchmark
17-1

17.1 Bonnie++ Benchmark
Bonnie++ is a benchmark suite that having aim of performing a number of simple
tests of hard drive and file system performance. Then you can decide which test is
important and decide how to compare different systems after running it. Each
Bonnie++ test gives a result of the amount of work done per second and the
percentage of CPU time utilized.

There are two sections to the program's operations. The first is to test the I/O
throughput in a fashion that is designed to simulate some types of database
applications. The second is to test creation, reading, and deleting many small files in
a fashion similar to the usage patterns.

Bonnie++ is a benchmark tool that test hard drive and file system performance by
sequential I/O and random seeks. Bonnie++ tests file system activity that has been
known to cause bottlenecks in I/O-intensive applications.

To install and run the Bonnie++ benchmark:

1. Download the most recent version of the Bonnie++ software:

http://www.coker.com.au/bonnie++/

2. Install and run the Bonnie++ software (per the ReadMe file accompanying the
software).

Sample output:

Version 1.03 --Sequential Output-- --Sequential Input- --Random--

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

MachineSize K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec
%CP

mds 2G 3811822 21245 10 51967 10 90.00

------Sequential Create------ --------Random Create--------

-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP

16 510 0 +++++ +++ 283 1 465 0 +++++ +++ 291 1

mds,2G,,,38118,22,21245,10,,,51967,10,90.0,0,16,510,0,+++++,+++,28
3,1,465,0,+++++,+++,291,1
17-2 Lustre 1.6 Operations Manual • May 2009

http://www.coker.com.au/bonnie++/

Version 1.03 --Sequential Output-- --Sequential Input- --Random--

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

MachineSize K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec
%CP

mds 2G 27460 92 41450 25 21474 10 19673 60 52871
10 88.0 0

------Sequential Create------ --------Random Create--------

-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP

16 29681 99 +++++ +++ 30412 90 29568 99 +++++ +++ 28077 82

mds,2G,27460,92,41450,25,21474,10,19673,60,52871,10,88.0,0,16,2968
1,99,+++++,+++,30412,90,29568,99,+++++,+++,28077,82

17.2 IOR Benchmark
Use the IOR_Survey script to test the performance of Lustre file systems. It uses IOR
(Interleaved or Random), a script used for testing performance of parallel file
systems using various interfaces and access patterns. IOR uses MPI for process
synchronization.

Under the control of compile-time defined constants (and, to a lesser extent,
environment variables), I/O is done via MPI-IO. The data are written and read using
independent parallel transfers of equal-sized blocks of contiguous bytes that cover
the file with no gaps and that do not overlap each other. The test consists of creating
a new file, writing it with data, then reading the data back.

The IOR benchmark, developed by LLNL, tests system performance by focusing on
parallel/sequential read/write operations that are typical of scientific applications.

To install and run the IOR benchmark:

1. Satisfy the prerequisites to run IOR.

a. Download lam 7.0.6 (local area multi-computer):

http://www.lam-mpi.org/7.0/download.php

b. Obtain a Fortran compiler for the Fedora Core 4 operating system.

c. Download the most recent version of the IOR software:

http://sourceforge.net/projects/ior-sio
Chapter 17 Benchmarking 17-3

http://www.lam-mpi.org/7.0/download.php
http://sourceforge.net/projects/ior-sio

2. Install the IOR software (per the ReadMe file and User Guide accompanying
the software).

3. Run the IOR software. In user mode, use the lamboot command to start the lam
service and use appropriate Lustre-specific commands to run IOR (described in
the IOR User Guide).

Sample Output:

IOR-2.9.0: MPI Coordinated Test of Parallel I/O

Run began: Fri Sep 29 11:43:56 2006

Command line used: ./IOR -w -r -k -O lustrestripecount 10 –o test

Machine: Linux mds

Summary:

api = POSIX

test filename = test

access = single-shared-file

clients = 1 (1 per node)

repetitions = 1

xfersize = 262144 bytes

blocksize = 1 MiB

aggregate filesize= 1 MiB

access bw(MiB/s) block(KiB)xfer(KiB) open(s)wr/rd(s)close(s)iter

------ --------- --------- -------- --------------------------

write 173.89 1024.00 256.00 0.0000300.0057010.0000160

read 278.49 1024.00 256.00 0.0000090.0035660.0000120

Max Write: 173.89 MiB/sec (182.33 MB/sec)

Max Read: 278.49 MiB/sec (292.02 MB/sec)

Run finished: Fri Sep 29 11:43:56 2006
17-4 Lustre 1.6 Operations Manual • May 2009

17.3 IOzone Benchmark
IOZone is a file system benchmark tool which generates and measures a variety of
file operations. Iozone has been ported to many machines and runs under many
operating systems. Iozone is useful to perform a broad file system analysis of a
vendor’s computer platform. The benchmark tests file I/O performance for the
operations like read, write, re-read, re-write, read backwards, read strided, fread,
fwrite, random read/write, pread/pwrite variants, aio_read, aio_write, mm, etc.

The IOzone benchmark tests file I/O performance for the following operations: read,
write, re-read, re-write, read backwards, read strided, fread, fwrite, random
read/write, pread/pwrite variants, aio_read, aio_write, and mmap.

To install and run the IOzone benchmark:

1. Download the most recent version of the IOZone software from this location:

http://www.iozone.org

2. Install the IOZone software (per the ReadMe file accompanying the IOZone
software).
Chapter 17 Benchmarking 17-5

http://www.lam-mpi.org/7.0/download.php

3. Run the IOZone software (per the ReadMe file accompanied with the IOZone
software).

Sample Output

Iozone: Performance Test of File I/O

Version $Revision: 3.263 $

Compiled for 32 bit mode.

Build: linux

Contributors:William Norcott, Don Capps, Isom Crawford,

Kirby Collins, Al Slater, Scott Rhine, Mike Wisner,

Ken Goss, Steve Landherr, Brad Smith, Mark Kelly,

Dr. Alain CYR, Randy Dunlap, Mark Montague, Dan Million,

Jean-Marc Zucconi, Jeff Blomberg, Erik Habbinga,

Kris Strecker, Walter Wong.

Run began: Fri Sep 29 15:37:07 2006

Network distribution mode enabled.

Command line used: ./iozone -+m test.txt

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

random random bkwd record stride KB reclen write
rewrite read reread read write read rewrite read
fwrite frewrite fread freread

512 4 194309 406651 728276 792701 715002 498592
638351 700365 587235 190554 378448 686267 765201

iozone test complete.
17-6 Lustre 1.6 Operations Manual • May 2009

CHAPTER 18

Lustre I/O Kit

This chapter describes the Lustre I/O kit and PIOS performance tool, and includes
the following sections:

■ Lustre I/O Kit Description and Prerequisites

■ Running I/O Kit Tests

■ PIOS Test Tool

■ LNET Self-Test

18.1 Lustre I/O Kit Description and
Prerequisites
The Lustre I/O kit is a collection of benchmark tools for a Lustre cluster. The I/O kit
can be used to validate the performance of the various hardware and software layers
in the cluster and also as a way to find and troubleshoot I/O issues.

The I/O kit contains three tests. The first surveys basic performance of the device
and bypasses the kernel block device layers, buffer cache and file system. The
subsequent tests survey progressively higher layers of the Lustre stack. Typically
with these tests, Lustre should deliver 85-90% of the raw device performance.

It is very important to establish performance from the “bottom up” perspective. First,
the performance of a single raw device should be verified. Once this is complete,
verify that performance is stable within a larger number of devices. Frequently, while
troubleshooting such performance issues, we find that array performance with all
LUNs loaded does not always match the performance of a single LUN when tested in
isolation. After the raw performance has been established, other software layers can
be added and tested in an incremental manner.
18-1

18.1.1 Downloading an I/O Kit
You can download the I/O kit from:

http://downloads.clusterfs.com/public/tools/lustre-iokit/

In this directory, you will find two packages:

■ lustre-iokit consists of a set of developed and supported by the Lustre group.

■ scali-lustre-iokit is a Python tool maintained by Scali team, and is not
discussed in this manual.

18.1.2 Prerequisites to Using an I/O Kit
The following prerequisites must be met to use the Lustre I/O kit:

■ password-free remote access to nodes in the system (normally obtained via ssh or
rsh)

■ Lustre file system software

■ sg3_utils for the sgp_dd utility

18.2 Running I/O Kit Tests
As mentioned above, the I/O kit contains these test tools:

■ sgpdd_survey

■ obdfilter_survey

■ ost_survey
18-2 Lustre 1.6 Operations Manual • May 2009

http://downloads.clusterfs.com/public/tools/lustre-iokit/

18.2.1 sgpdd_survey
Use the sgpdd_survey tool to test bare metal performance, while bypassing as
much of the kernel as possible. This script requires the sgp_dd package, although it
does not require Lustre software. This survey may be used to characterize the
performance of a SCSI device by simulating an OST serving multiple stripe files. The
data gathered by this survey can help set expectations for the performance of a
Lustre OST exporting the device.

The script uses sgp_dd to carry out raw sequential disk I/O. It runs with variable
numbers of sgp_dd threads to show how performance varies with different request
queue depths.

The script spawns variable numbers of sgp_dd instances, each reading or writing a
separate area of the disk to demonstrate performance variance within a number of
concurrent stripe files.

The device(s) used must meet one of the two tests described below:

SCSI device:

Must appear in the output of sg_map (make sure the kernel module "sg" is loaded)

Raw device:

Must appear in the output of raw -qa

If you need to create raw devices in order to use the sgpdd_survey tool, note that raw
device 0 cannot be used due to a bug in certain versions of the "raw" utility
(including that shipped with RHEL4U4.)

You may not mix raw and SCSI devices in the test specification.

Caution – The sgpdd_survey script overwrites the device being tested, which
results in the LOSS OF ALL DATA on that device. Exercise caution when selecting
the device to be tested.
Chapter 18 Lustre I/O Kit 18-3

The sgpdd_survey script must be customized according to the particular device
being tested and also according to the location where it should keep its working files.
Customization variables are described explicitly at the start of the script.

When the sgpdd_survey script runs, it creates a number of working files and a pair
of result files. All files start with the prefix given by the script variable ${rslt}.

${rslt}_<date/time>.summary same as stdout

${rslt}_<date/time>_* tmp files

${rslt}_<date/time>.detail collected tmp files for post-mortem

The summary file and stdout should contain lines like this:

total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
=/ 180.50 MB/s

The number immediately before the first MB/s is bandwidth, computed by
measuring total data and elapsed time. The remaining numbers are a check on the
bandwidths reported by the individual sgp_dd instances.

If there are so many threads that the sgp_dd script is unlikely to be able to allocate
I/O buffers, then "ENOMEM" is printed.

If one or more sgp_dd instances do not successfully report a bandwidth number,
then "failed" is printed.
18-4 Lustre 1.6 Operations Manual • May 2009

18.2.2 obdfilter_survey
The obdfilter_survey script processes sequential I/O with varying numbers of
threads and objects (files) by using lctl to drive the echo_client connected to
local or remote obdfilter instances or remote obdecho instances. It can be used to
characterize the performance of the following Lustre components:

OSTs

The script exercises one or more instances of obdfilter directly. The script may run on
one or more nodes, for example, when the nodes are all attached to the same
multi-ported disk subsystem.

Tell the script the names of all obdfilter instances (which should be up and running
already). If some instances are on different nodes, specify their hostnames too (for
example, node1:ost1). Alternately, you can pass parameter case=disk to the
script. (The script automatically detects the local obdfilter instances.)

All obdfilter instances are driven directly. The script automatically loads the obdecho
module (if required) and creates one instance of echo_client for each obdfilter
instance.

Network

The script drives one or more instances of the obdecho server via instances of
echo_client running on one or more nodes. Pass the parameters case=network
and target=''<hostname/ip_of_server>'' to the script. For each nework case,
the script does the required setup.

Striped File System Over the Network

The script drives one or more instances of obdfilter via instances of echo_client
running on one or more nodes.

Tell the script the names of the OSCs (which should be up and running). Alternately,
you can pass the parameter case=netdisk to the script. The script will use all of the
local OSCs.

Note – The obdfilter_survey script is NOT scalable to 100s of nodes since it is
only intended to measure individual servers, not the scalability of the entire system.
Chapter 18 Lustre I/O Kit 18-5

Note – The obdfilter_survey script must be customized, depending on the
components under test and where the script’s working files should be kept.
Customization variables are clearly described in the script (Customization Variables
section). In particular, refer to the maximum supported value ranges for
customization variables.

18.2.2.1 Running obdfilter_survey Against a Local Disk

The obdfilter_survey script can be run automatically or manually against a local disk.
Obdfilter-survey profiles the overall throughput of storage hardware1, by sending
ranges of workloads to the OSTs (that vary in thread counts and I/O sizes).

When the obdfilter_survey script is complete, it provides information on the
performance abilities of the storage hardware and shows the saturation points. If you
use plot scripts on the data, this information is shown graphically.

To run the obdfilter_survey script, create a Lustre configuration using normal
methods; no special setup is needed.

To perform an automatic run:

1. Set up the Lustre file system with the required OSTs.

2. Verify that the obdecho.ko module is present.

3. Run the obdfilter_survey script with the parameter case=disk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=disk sh obdfilter-survey

To perform a manual run:

1. List all OSTs you want to test. (You do not have to specify an MDS or LOV.)

2. On all OSSs, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

Caution – Write tests are destructive. This test should be run before the Lustre file
system is started. If you do this, you will not need to reformat to restart Lustre
system. However, if the obdfilter_survey test is terminated before it completes, you
may have to remove objects from the disk.

1. The sgpdd-survey profiles individual disks. This script is destructive, and should not be run anywhere you
want to preserve existing data.
18-6 Lustre 1.6 Operations Manual • May 2009

3. Determine the obdfilter instance names on all Lustre clients. The device names
appear in the fourth column of the lctl dl command output. For example:

$ pdsh -w oss[01-02] lctl dl |grep obdfilter |sort

oss01: 0 UP obdfilter oss01-sdb oss01-sdb_UUID 3

oss01: 2 UP obdfilter oss01-sdd oss01-sdd_UUID 3

oss02: 0 UP obdfilter oss02-sdi oss02-sdi_UUID 3

...

In this example, the obdfilter instance names are oss01-sdb, oss01-sdd, and
oss02-sdi. Since you are driving obdfilter instances directly, set the shell array
variable, targets, to the names of the obdfilter instances. For example:

targets='oss01:oss01-sdb oss01:oss01-sdd oss02:oss02-sdi'\
./obdfilter-survey

18.2.2.2 Running obdfilter_survey Against a Network

The obdfilter_survey script can only be run automatically against a network; no
manual test is supported.

To run the network test, a specific Lustre setup is needed. Make sure that these
configuration requirements have been met.

■ Install all Lustre modules, including obdecho.

■ Start lctl and check the device list, which must be empty.

■ Use a password-less entry between the client and server machines, to avoid
having to type the password.

To perform an automatic run:

1. Run the obdfilter_survey script with the parameters case=netdisk and targets=
''<hostname/ip_of_server>''. For example:

$ nobjhi=2 thrhi=2 size=1024 targets="<hostname/ip_of_server>" \
case=network sh obdfilter-survey

On the server side, you can see the statistics at:

/proc/fs/lustre/obdecho/<echo_srv>/stats

where 'echo_srv' is the obdecho server created by the script.
Chapter 18 Lustre I/O Kit 18-7

18.2.2.3 Running obdfilter_survey Against a Network Disk

The obdfilter_survey script can be run automatically or manually against a network
disk.

To run the network disk test, create a Lustre configuration using normal methods; no
special setup is needed.

To perform an automatic run:

1. Set up the Lustre file system with the required OSTs.

2. Verify that the obdecho.ko module is present.

3. Run the obdfilter_survey script with the parameter case=netdisk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=netdisk sh obdfilter-survey

To perform a manual run:

1. Run the obdfilter_survey script and tell the script the names of all echo_client
instances (which should be up and running already).

$ nobjhi=2 thrhi=2 size=1024 targets="<osc_name> ..." \ sh
obdfilter-survey
18-8 Lustre 1.6 Operations Manual • May 2009

18.2.2.4 Output Files

When the obdfilter_survey script runs, it creates a number of working files and a pair
of result files. All files start with the prefix given by ${rslt}.

The obdfilter_survey script iterates over the given number of threads and objects
performing the specified tests and checks that all test processes have completed
successfully.

Note – The obdfilter_survey script may not clean up properly if it is aborted or
if it encounters an unrecoverable error. In this case, a manual cleanup may be
required, possibly including killing any running instances of 'lctl' (local or remote),
removing echo_client instances created by the script and unloading obdecho.

File Description

${rslt}.summary Same as stdout

${rslt}.script_* Per-host test script files

${rslt}.detail_tmp* Per-OST result files

${rslt}.detail Collected result files for post-mortem
Chapter 18 Lustre I/O Kit 18-9

18.2.2.5 Script Output

The summary file and stdout of the obdfilter_survey script contain lines such as:

ost 8 sz 67108864K rsz 1024 obj 8 thr 8 write 613.54 [64.00, 82.00]

Where:

Note – Although the numbers of threads and objects are specified per-OST in the
customization section of the script, the reported results are aggregated over all OSTs.

18.2.2.6 Visualizing Results

It is useful to import the obdfilter_survey script summary data (it is fixed width) into
Excel (or any graphing package) and graph the bandwidth versus the number of
threads for varying numbers of concurrent regions. This shows how the OSS
performs for a given number of concurrently-accessed objects (files) with varying
numbers of I/Os in flight.

It is also extremely useful to record average disk I/O sizes during each test. These
numbers help locate pathologies in the system when the file system block allocator
and the block device elevator.

The plot-obdfilter script (included) is an example of processing output files to a
.csv format and plotting a graph using gnuplot.

Variable Supported Type

ost8 Total number of OSTs being tested.

sz 67108864K Total amount of data read or written (in KB).

rsz 1024 Record size (size of each echo_client I/O, in KB).

obj 8 Total number of objects over all OSTs.

thr 8 Total number of threads over all OSTs and objects.

write Test name. If more tests have been specified, they all appear on the same
line.

613.54 Aggregate bandwidth over all OSTs (measured by dividing the total
number of MB by the elapsed time).

[64, 82.00] Minimum and maximum instantaneous bandwidths on an individual OST.
18-10 Lustre 1.6 Operations Manual • May 2009

18.2.3 ost_survey
The ost_survey tool is a shell script that uses lfs setstripe to perform I/O
against a single OST. The script writes a file (currently using dd) to each OST in the
Lustre file system, and compares read and write speeds. The ost_survey tool is
used to detect misbehaving disk subsystems.

Note – We have frequently discovered wide performance variations across all LUNs
in a cluster.

To run the ost_survey script, supply a file size (in KB) and the Lustre mount point.
For example, run:

$./ost-survey.sh 10 /mnt/lustre

Average read Speed: 6.73

Average write Speed: 5.41

read - Worst OST indx 0 5.84 MB/s

write - Worst OST indx 0 3.77 MB/s

read - Best OST indx 1 7.38 MB/s

write - Best OST indx 1 6.31 MB/s

3 OST devices found

Ost index 0 Read speed 5.84 Write speed 3.77

Ost index 0 Read time 0.17 Write time 0.27

Ost index 1 Read speed 7.38 Write speed 6.31

Ost index 1 Read time 0.14 Write time 0.16

Ost index 2 Read speed 6.98 Write speed 6.16

Ost index 2 Read time 0.14 Write time 0.16
Chapter 18 Lustre I/O Kit 18-11

18.3 PIOS Test Tool
The PIOS test tool is a parallel I/O simulator for Linux and Solaris. PIOS generates
I/O on file systems, block devices and zpools similar to what can be expected from a
large Lustre OSS server when handling the load from many clients. The program
generates and executes the I/O load in a manner substantially similar to an OSS, that
is, multiple threads take work items from a simulated request queue. It forks a CPU
load generator to simulate running on a system with additional load.

PIOS can read/write data to a single shared file or multiple files (default is a single
file). To specify multiple files, use the --fpp option. (It is better to measure with both
single and multiple files.) If the final argument is a file, block device or zpool, PIOS
writes to RegionCount regions in one file. PIOS issues I/O commands of size
ChunkSize. The regions are spaced apart Offset bytes (or, in the case of many files,
the region starts at Offset bytes). In each region, RegionSize bytes are written or
read, one ChunkSize I/O at a time. Note that:

ChunkSize <= Regionsize <= Offset

Multiple runs can be specified with comma separated lists of values for ChunkSize,
Offset, RegionCount, ThreadCount, and RegionSize. Multiple runs can also be
specified by giving a starting (low) value, increase (in percent) and high value for
each of these arguments. If a low value is given, no value list or value may be
supplied.

Every run is given a timestamp, and the timestamp and offset are written with every
chunk (to allow verification). Before every run, PIOS executes the pre-run shell
command. After every run, PIOS executes the post-run command. Typically, this is
used to clear and collect statistics for the run, or to start and stop statistics gathering
during the run. The timestamp is passed to both pre-run and post-run.

For convenience, PIOS understands byte specifiers and uses:

K,k for kilobytes (2<<10)

M,m for megabytes (2<<20)

G,g for gigabytes (2<<30)

T,t for terabytes (2<<40)

Download the PIOS test tool at:

http://downloads.clusterfs.com/public/tools/benchmarks/pios/
18-12 Lustre 1.6 Operations Manual • May 2009

http://downloads.clusterfs.com/public/tools/benchmarks/pios/

18.3.1 Synopsis
pios

[--chunksize|-c =values, (--chunksize_low|-a =value

--chunksize_high|-b =value --chunksize_incr|-g =value)]

[--offset|-o =values, (--offset_low|-m =value --offset_high|-q =value

--offset_incr|-r =value)]

[--regioncount|-n =values, (--regioncount_low|-i =value

--regioncount_high|-j =value --regioncount_incr|-k =value)]

[--threadcount|-t =values, (--threadcount_low|-l =value

--threadcount_high|-h =value --threadcount_incr|-e =value)]

[--regionsize|-s =values, (--regionsize_low|-A =value

--regionsize_high|-B =value --regionsize_incr|-C =value)]

[--directio|-d, --posixio|-x, --cowio|-w} [--cleanup|-L

--threaddelay|-T =ms --regionnoise|-I ==shift

--chunknoise|-N =bytes -fpp|-F]

[--verify|-V =values]

[--prerun|-P =pre-command --postrun|-R =post-command]

[--path|-p =output-file-path]
Chapter 18 Lustre I/O Kit 18-13

18.3.2 PIOS I/O Modes
There are several supported PIOS I/O modes:

POSIX I/O:

This is the default operational mode where I/O is done using standard POSIX calls,
such as pwrite/pread. This mode is valid on both Linux and Solaris.

DIRECT I/O:

This mode corresponds to the O_DIRECT flag in open(2) system call, and it is
currently applicable only to Linux. Use this mode when using PIOS on the ldiskfs file
system on an OSS.

COW I/O:

This mode corresponds to the copy overwrite operation where file system blocks that
are being overwritten were copied to shadow files. Only use this mode if you want to
see overhead of preserving existing data (in case of overwrite). This mode is valid on
both Linux and Solaris.
18-14 Lustre 1.6 Operations Manual • May 2009

18.3.3 PIOS Parameters
PIOS has five basic parameters to determine the amount of data that is being written.

ChunkSize(c):

Amount of data that a thread writes in one attempt. ChunkSize should be a multiple
of file system block size.

RegionSize(s):

Amount of data required to fill up a region. PIOS writes a chunksize of data
continuously until it fills the regionsize. RegionSize should be a multiple of
ChunkSize.

RegionCount(n):

Number of regions to write in one or multiple files. The total amount of data written
by PIOS is RegionSize x RegionCount.

ThreadCount(t):

Number of threads working on regions.
Chapter 18 Lustre I/O Kit 18-15

Offset(o):

Distance between two successive regions when all threads are writing to the same
file. In the case of multiple files, threads start writing in files at Offset bytes.

Parameter Description

--chunknoise = N N is a byte specifier. When performing an I/O task, add a
random signed integer in the range [-N,N] to the chunksize.
All regions are still fully written. This randomizes the I/O
size to some extent.

--chunksize = N[,N2,N3...] N is a byte specifier and performs I/O in chunks of N kilo-,
mega-, giga- or terabyte. You can give a comma separated
list of multiple values. This argument is mutually exclusive
with --chunksize_low. Note that each thread allocates a
buffer of size chunksize + chunknoise for use during the
run.

--chunksize_low=L
--chunksize_high=H
--chunksize_incr=F

Performs a sequence of operations starting with a chunksize
of L, increasing it by F% each time until chunksize exceeds
H.

--cleanup Removes files that were created during the run. If there is an
encounter for existing files, they are over-written.

--directio
--posixio
--cowio

One of these arguments must be passed to indicate if
DIRECT I/O, POSIX I/O or COW I/O is used.

--offset=O[,O2,O3...] The argument is a byte specifier or a list of specifiers. Each
run uses regions at offset multiple of O in a single file. If the
run targets multiple files, then the I/O writes at offset O in
each file.

--offset_low=OL
--offset_high=OH
--offset_inc=PH

The arguments are byte specifiers. They generate runs with a
range of offsets starting at OL, increasing P% until the
region size exceeds OH. Each of these arguments is
exclusive with the offset argument.

--prerun=”pre-command” Before each run, executes the pre-command as a shell
command through the system(3) call. The timestamp of the
run is appended as the last argument to the pre-command
string. Typically, this is used to clear statistics or start a data
collection script when the run starts.

--postrun=”post-command” After each run, executes the post-command as a shell
command through the system(3) call. The timestamp of the
run is appended as the last argument to the pre-command
string. Typically, this is used to append statistics for the run
or close an open data collection script when the run
completes.
18-16 Lustre 1.6 Operations Manual • May 2009

--regioncount=N[,N2,N3...] PIOS writes to N regions in a single file or block device or to
N files.

--regioncount_low=RL
--regioncount_high=RH
--regioncount_inc=P

Generate runs with a range of region counts starting at TL,
increasing P% until the thread count exceeds RH. Each of
these arguments is exclusive with the regioncount argument.

--regionnoise=k When generating the next I/O task, do not select the next
chunk in the next stream, but shift a random number with a
maximum noise of shifting k regions ahead. The run will
complete when all regions are fully written or read. This
merely introduces a randomization of the ordering.

--regionsize=S[,S2,S3...] The argument is a byte specifier or a list of byte specifiers.
During the run(s), write S bytes to each region.

--regionsize_low=RL
--regionsize_high=RH
--regionsize_inc=P

The arguments are byte specifiers. Generate runs with a
range of region sizes starting at TL, increasing P% until the
region size exceeds RH. Each argument is exclusive with the
regionsize argument.

--threadcount=T[,T2,T3...] PIOS runs with T threads performing I/O. A sequence of
values may be given.

--threadcount_low=TL
--threadcount_high=TH
--threadcount_inc=TP

Generate runs with a range of thread counts starting at TL,
increasing TP% until the thread count exceeds TH. Each of
these arguments is exclusive with the threadcount argument.

--threaddelay=ms A random amount of noise not exceeding ms is inserted
between the time that a thread identifies as the next chunk it
needs to read or write and the time it starts the I/O.

--fpp Where threads write to files:
• fpp indicates files per process behavior where threads

write to multiple files.
• sff indicates single shared files where all threads write to

the same file.

--verify-V=timestamp
[,timestamp2,timestamp3]|-
-verify|-V

Verify a written file or set of files. A single timestamp or
sequence of timestamps can be given for each run,
respectively. If no argument is passed, the verification is
done from timestamps read from the first location of files
previously written in the test. If sequence is given, then each
run verifies the timestamp accordingly. If a single timestamp
is given, then it is verified with all files written.

Parameter Description
Chapter 18 Lustre I/O Kit 18-17

18.3.4 PIOS Examples
To create a 1 GB load with a different number of threads:

In one file:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \
--load=posixio -p /mnt/lustre

In multiple files:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \
--load=posixio,fpp -p /mnt/lustre

To create a 1 GB load with a different number of chunksizes on ldiskfs with direct
I/O:

In one file:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \
--load=directio -p /mnt/lustre

In multiple files:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \
--load=directio,fpp -p /mnt/lustre

To create a 32 MB to 128 MB load with different RegionSizes on a Solaris zpool:

In one file:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio -p \
/myzpool/

In multiple files:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio, \
fpp -p /myzpool/

To read and verify timestamps:

Create a load with PIOS:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p
/mnt/lustre

Keep the same parameters to read:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p \
/mnt/lustre --verify
18-18 Lustre 1.6 Operations Manual • May 2009

18.4 LNET Self-Test
LNET self-test helps site administrators confirm that Lustre Networking (LNET) has
been properly installed and configured, and that underlying network software and
hardware are performing according to expectations.

LNET self-test is a kernel module that runs over LNET and LNDs. It is designed to:

■ Test the connection ability of the Lustre network

■ Run regression tests of the Lustre network

■ Test performance of the Lustre network

18.4.1 Basic Concepts of LNET Self-Test
This section describes basic concepts of LNET self-test, utilities and a sample script.

18.4.1.1 Modules

To run LNET self-test, these modules must be loaded: libcfs, lnet, lnet_selftest and
one of the klnds (i.e, ksocklnd, ko2iblnd...). To load all necessary modules, run
modprobe lnet_selftest (recursively loads the modules on which LNET self-test
depends.

The LNET self-test cluster has two types of nodes:

■ Console node - A single node that controls and monitors the test cluster. It can be
any node in the test cluster.

■ Test nodes - The nodes that run tests. Test nodes are controlled by the user via the
console node; the user does not need to log into them directly.

The console and test nodes require all previously-listed modules to be loaded. (The
userspace test node does not require these modules.)

Note – Test nodes can be in either kernel or userspace. A console user can invite a
kernel test node to join the test session by running lst add_group NID, but the
user cannot actively add a userspace test node to the test-session. However, the
console user can passively accept a test node to the test session while the test node
runs lstclient to connect to the console.
Chapter 18 Lustre I/O Kit 18-19

18.4.1.2 Utilities

LNET self-test has two user utilities, lst and lstclient.

■ lst - The user interface for the self-test console (run on the console node). It
provides a list of commands to control the entire test system, such as create
session, create test groups, etc.

■ lstclient - The userspace LNET self-test program (run on a test node). lstclient is
linked with userspace LNDs and LNET. lstclient is not needed if a user just wants
to use kernel space LNET and LNDs.

18.4.1.3 Session

In the context of LNET self-test, a session is a test node that can be associated with
only one session at a time, to ensure that the session has exclusive use. Almost all
operations should be performed in a session context. From the console node, a user
can only operate nodes in his own session. If a session ends, the session context in all
test nodes is destroyed.

The console node can be used to create, change or destroy a session (new_session,
end_session, show_session). For more information, see Session.

18.4.1.4 Console

The console node is the user interface of the LNET self-test system, and can be any
node in the test cluster. All self-test commands are entered from the console node.
From the console node, a user can control and monitor the status of the entire test
cluster (session). The console node is exclusive, meaning that a user cannot control
two different sessions (LNET self-test clusters) on one node.

18.4.1.5 Group

A user can only control nodes in his/her session. To allocate nodes to the session, the
user needs to add nodes to a group (of the session). All nodes in a group can be
referenced by group's name. A node can be allocated to multiple groups of a session.

Note – A console user can associate kernel space test nodes with the session by
running lst add_group NIDs, but a userspace test node cannot be actively added
to the session. However, the console user can passively "accept" a test node to
associate with test session while the test node running lstclient connects to the
console node, i.e: lstclient --sesid CONSOLE_NID --group NAME).
18-20 Lustre 1.6 Operations Manual • May 2009

18.4.1.6 Test

A test is a configuration of a test case, which defines individual point-to-pointer
network conversation all running in parallel. A user can specify test properties, such
as RDMA operation type, source group, target group, distribution of test nodes,
concurrency of test, etc.

18.4.1.7 Batch

A test batch is a named collection of tests. All tests in a batch run in parallel. Each
test should belong to a batch; tests should not exist individually. Users can control a
test batch (run, stop); they cannot control individual tests.

18.4.1.8 Sample Script

These are the steps to run a sample LNET self-test script simulating the traffic pattern
of a set of Lustre servers on a TCP network, accessed by Lustre clients on an
InfiniBand network (connected via LNET routers). In this example, half the clients
are reading and half the clients are writing.

1. Load libcfs.ko, lnet.ko, ksocklnd.ko and lnet_selftest.ko on all test nodes and
the console node.

2. Run this script on the console node:

#!/bin/bash

export LST_SESSION=$$

lst new_session read/write

lst add_group servers 192.168.10.[8,10,12-16]@tcp

lst add_group readers 192.168.1.[1-253/2]@o2ib

lst add_group writers 192.168.1.[2-254/2]@o2ib

lst add_batch bulk_rw

lst add_test --batch bulk_rw --from readers --to servers \

brw read check=simple size=1M

lst add_test --batch bulk_rw --from writers --to servers \

brw write check=full size=4K

start running

lst run bulk_rw

display server stats for 30 seconds

lst stat servers & sleep 30; kill $?

tear down

lst end_session
Chapter 18 Lustre I/O Kit 18-21

Note – This script can be easily adapted to pass the group NIDs by shell variables or
command line arguments (making it good for general-purpose use).

18.4.2 LNET Self-Test Concepts
This section describes the fundamental concepts of LNET self-test.

18.4.3 LNET Self-Test Commands
The LNET self-test (lst) utility is used to issue LNET self-test commands. The lst
utility takes a number of command line arguments. The first argument is the
command name and subsequent arguments are command-specific.

18.4.3.1 Session

This section lists lst session commands.

Process Environment (LST_SESSION)

The lst utility uses the LST_SESSION environmental variable to identify the session
locally on the self-test console node. This should be a numeric value that uniquely
identifies all session processes on the node. It is convenient to set this to the process
ID of the shell both for interactive use and in shell scripts. Almost all lst commands
require LST_SESSION to be set.
18-22 Lustre 1.6 Operations Manual • May 2009

new_session [--timeout SECONDS] [--force] NAME

Creates a new session.

end_session

Stops all operations and tests in the current session and clears the session’s status.

$ lst end_session

show_session

Shows the session information. This command prints information about the current
session. It does not require LST_SESSION to be defined in the process environment.

$ lst show_session

–-timeout SECONDS Console timeout value of the session. The session ends
automatically if it remains idle (i.e., no commands are issued) for
this period.

--force Ends conflicting sessions. This determines who “wins” when one
session conflicts with another. For example, if there is already an
active session on this node, then this attempt to create a new
session fails unless the -force flag is specified. However, if the
-force flag is specified, then the other session is ended. Similarly,
if this session attempts to add a node that is already “owned” by
another session, the -force flag allows this session to “steal” the
node.

name A human-readable string to print when listing sessions or
reporting session conflicts.

$ export LST_SESSION=$$

$ lst new_session --force liangzhen
Chapter 18 Lustre I/O Kit 18-23

18.4.3.2 Group

This section lists lst group commands.

add_group NAME NIDs [NIDs...]

Creates the group and adds a list of test nodes to the group.

update_group NAME [--refresh] [--clean STATE] [--remove NIDs]

Updates the state of nodes in a group or adjusts a group’s membership. This
command is useful if some nodes have crashed and should be excluded from the
group.

NAME Name of the group.

NIDs A string that may be expanded into one or more LNET NIDs.

$ lst add_group servers 192.168.10.[35,40-45]@tcp
$ lst add_group clients 192.168.1.[10-100]@tcp 192.168.[2,4].\
[10-20]@tcp

–-refresh Refreshes the state of all inactive nodes in the group.

–-clean STATUS Removes nodes with a specified status from the group. Status may be:

active The node is in the current session.

busy The node is now owned by another session.

down The node has been marked down.

unknown The node’s status has yet to be determined.

invalid Any state but active.

–-remove NIDs Removes specified nodes from the group.

$ lst update_group clients --refresh
$ lst update_group clients --clean busy
$ lst update_group clients --clean invalid // \
invalid == busy || down || unknown
$ lst update_group clients --remove 192.168.1.[10-20]@tcp
18-24 Lustre 1.6 Operations Manual • May 2009

list_group [NAME] [--active] [--busy] [--down] [--unknown] [--all]

Prints information about a group or lists all groups in the current session if no group
is specified.

NAME The name of the group.

–-active Lists the active nodes.

–-busy Lists the busy nodes.

–-down Lists the down nodes.

–-unknown Lists unknown nodes.

–-all Lists all nodes.

$ lst list_group

1) clients

2) servers

Total 2 groups

$ lst list_group clients

ACTIVE BUSY DOWN UNKNOWN TOTAL

3 1 2 0 6

$ lst list_group clients --all

192.168.1.10@tcp Active

192.168.1.11@tcp Active

192.168.1.12@tcp Busy

192.168.1.13@tcp Active

192.168.1.14@tcp DOWN

192.168.1.15@tcp DOWN

Total 6 nodes

$ lst list_group clients --busy

192.168.1.12@tcp Busy

Total 1 node
Chapter 18 Lustre I/O Kit 18-25

del_group NAME

Removes a group from the session. If the group is referred to by any test, then the
operation fails. If nodes in the group are referred to only by this group, then they are
kicked out from the current session; otherwise, they are still in the current session.

$ lst del_group clients

Userland client (lstclient --sesid NID --group NAME)

Use lstclient to run the userland self-test client. lstclient should be executed after
creating a session on the console. There are only two mandatory options for lstclient:

Also, lstclient has a mandatory option that enforces LNET to behave as a server (start
acceptor if the underlying NID needs it, use privileged ports, etc.):

--server_mode

For example:

Client1 $ lstclient --sesid 192.168.1.52@tcp |--group clients --server_mode

Note – Only the super user is allowed to use the --server_mode option.

–-sesid NID The first console’s NID.

–-group NAME The test group to join.

Console $ lst new_session testsession
Client1 $ lstclient --sesid 192.168.1.52@tcp --group clients
18-26 Lustre 1.6 Operations Manual • May 2009

18.4.3.3 Batch and Test

This section lists lst batch and test commands.

add_batch NAME

The default batch (named “batch”) is created when the session is started. However,
the user can specify a batch name by using add_batch:

$ lst add_batch bulkperf

add_test --batch BATCH [--loop #] [--concurrency #] [--distribute #:#]
from GROUP --to GROUP TEST ...

Adds a test to batch. For now, TEST can be brw and ping:

–-loop # Loop count of the test.

–-concurrency # Concurrency of the test.

–-from GROUP The source group (test client).

–-to GROUP The target group (test server).

–-distribute #:# The distribution of nodes in clients and servers. The first number of
distribute is a subset of client (count of nodes in the “from” group). The
second number of distribute is a subset of server (count of nodes in the
“to” group); only nodes in two correlative subsets will talk. The
following examples are illustrative:

Clients: (C1, C2, C3, C4, C5, C6)

Server: (S1, S2, S3)

--distribute 1:1

(C1->S1), (C2->S2), (C3->S3), (C4->S1), (C5->S2), (C6->S3)
\ /* -> means test conversation */
--distribute 2:1

(C1,C2->S1), (C3,C4->S2), (C5,C6->S3)

--distribute 3:1

(C1,C2,C3->S1), (C4,C5,C6->S2), (NULL->S3)

--distribute 3:2

(C1,C2,C3->S1,S2), (C4,C5,C6->S3,S1)

--distribute 4:1

(C1,C2,C3,C4->S1), (C5,C6->S2), (NULL->S3)

--distribute 4:2

(C1,C2,C3,C4->S1,S2), (C5, C6->S3, S1)

--distribute 6:3

(C1,C2,C3,C4,C5,C6->S1,S2,S3)
Chapter 18 Lustre I/O Kit 18-27

There are only two test types:

list_batch [NAME] [--test INDEX] [--active] [--invalid] [--server]

Lists batches in the current session or lists client|server nodes in a batch or a test.

–-ping There are no private parameters for the ping test.

–-brw The brw test can have several options:

read | write Read or write. The default is read.

size=# | #K | #M I/O size can be bytes, KB or MB (i.e., size=1024, size=4K,
size=1M. The default is 4K bytes.

check=full | simple A data validation check (checksum of data). The default is
no-check. As an example:

$ lst add_group clients 192.168.1.[10-17]@tcp
$ lst add_group servers 192.168.10.[100-103]@tcp
$ lst add_batch bulkperf
$ lst add_test --batch bulkperf --loop 100 \
--concurrency 4 --distribute 4:2 --from clients \
brw WRITE size=16K
// add brw (WRITE, 16 KB) test to batch bulkperf, \
the test will run in 4 workitem, each
// 192.168.1.[10-13] will write to
192.168.10.[100,101]
// 192.168.1.[14-17] will write to
192.168.10.[102,103]

–-test INDEX Lists tests in a batch. If no option is used, all tests in the batch are listed. If
the option is used, only specified tests in the batch are listed.

$ lst list_batch

bulkperf

$ lst list_batch bulkperf

Batch: bulkperf Tests: 1 State: Idle

ACTIVE BUSY DOWN UNKNOWN TOTAL

client 8 0 0 0 8

server 4 0 0 0 4

Test 1(brw) (loop: 100, concurrency: 4)

ACTIVE BUSY DOWN UNKNOWN TOTAL

client 8 0 0 0 8

server 4 0 0 0 4

$ lst list_batch bulkperf --server --active

192.168.10.100@tcp Active

192.168.10.101@tcp Active

192.168.10.102@tcp Active

192.168.10.103@tcp Active
18-28 Lustre 1.6 Operations Manual • May 2009

run NAME

Runs the batch.

$ lst run bulkperf

stop NAME

Stops the batch.

$ lst stop bulkperf

query NAME [--test INDEX] [--timeout #] [--loop #] [--delay #] [--all]

Queries the batch status.

–-test INDEX Only queries the specified test. The test INDEX starts from 1.

–-timeout # The timeout value to wait for RPC. The default is 5 seconds.

–-loop # The loop count of the query.

–-delay # The interval of each query. The default is 5 seconds.

–-all The list status of all nodes in a batch or a test.

$ lst run bulkperf

$ lst query bulkperf --loop 5 --delay 3

Batch is running

Batch is running

Batch is running

Batch is running

Batch is running

$ lst query bulkperf --all

192.168.1.10@tcp Running

192.168.1.11@tcp Running

192.168.1.12@tcp Running

192.168.1.13@tcp Running

192.168.1.14@tcp Running

192.168.1.15@tcp Running

192.168.1.16@tcp Running

192.168.1.17@tcp Running

$ lst stop bulkperf

$ lst query bulkperf

Batch is idle
Chapter 18 Lustre I/O Kit 18-29

18.4.3.4 Other Commands

This section lists other lst commands.

ping [-session] [--group NAME] [--nodes NIDs] [--batch name] [--server] [--timeout #]

Sends a “hello” query to the nodes.

–-session Pings all nodes in the current session.

–-group NAME Pings all nodes in a specified group.

–-nodes NIDs Pings all specified nodes.

–-batch NAME Pings all client nodes in a batch.

–-server Sends RPC to all server nodes instead of client nodes. This option is only
used with batch NAME.

–-timeout # The RPC timeout value.

$ lst ping 192.168.10.[15-20]@tcp
192.168.1.15@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.16@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.17@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.18@tcp Busy [session: Isaac id: 192.168.10.10@tcp]
192.168.1.19@tcp Down [session: <NULL> id: LNET_NID_ANY]
192.168.1.20@tcp Down [session: <NULL> id: LNET_NID_ANY]
18-30 Lustre 1.6 Operations Manual • May 2009

stat [--bw] [--rate] [--read] [--write] [--max] [--min] [--avg] " " [--timeout #] [--delay #]
GROUP|NIDs [GROUP|NIDs]

The collection performance and RPC statistics of one or more nodes.

Specifying a group name (GROUP) causes statistics to be gathered for all nodes in a
test group. For example:

$ lst stat servers

where servers is the name of a test group created by lst add_group

Specifying a NID range (NIDs) causes statistics to be gathered for selected nodes. For
example:

$ lst stat 192.168.0.[1-100/2]@tcp

Currently, only LNET performance statistics are available.2 By default, all statistics
information is displayed. Users can specify additional information with these
options.

2. In the future, more statistics will be supported.

–-bw Displays the bandwidth of the specified group/nodes.

–-rate Displays the rate of RPCs of the specified group/nodes.

–-read Displays the read statistics of the specified group/nodes.

–-write Displays the write statistics of the specified group/nodes.

–-max Displays the maximum value of the statistics.

–-min Displays the minimum value of the statistics.

–-avg Displays the average of the statistics.

–-timeout # The timeout of the statistics RPC. The default is 5 seconds.

–-delay # The interval of the statistics (in seconds).

$ lst run bulkperf
$ lst stat clients
[LNet Rates of clients]
[W] Avg: 1108 RPC/s Min: 1060 RPC/s Max: 1155 RPC/s
[R] Avg: 2215 RPC/s Min: 2121 RPC/s Max: 2310 RPC/s
[LNet Bandwidth of clients]
[W] Avg: 16.60 MB/s Min: 16.10 MB/s Max: 17.1 MB/s
[R] Avg: 40.49 MB/s Min: 40.30 MB/s Max: 40.68 MB/s
Chapter 18 Lustre I/O Kit 18-31

show_error [--session] [GROUP]|[NIDs] ...

Lists the number of failed RPCs on test nodes.

–-session Lists errors in the current test session. With this option, historical RPC errors are
not listed.
$ lst show_error clients
clients

12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors] \
[RPC: 20 errors, 0 dropped,
12345-192.168.1.16@tcp: [Session: 0 brw errors, 0 ping errors] \
[RPC: 1 errors, 0 dropped, Total 2 error nodes in clients

$ lst show_error --session clients

clients

12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors]

Total 1 error nodes in clients
18-32 Lustre 1.6 Operations Manual • May 2009

CHAPTER 19

Lustre Recovery

This chapter describes how to recover Lustre, and includes the following sections:

■ Recovering Lustre

■ Types of Failure

Lustre offers substantial recovery support to deal with node or network failure, and
returns the cluster to a reliable, functional state. When Lustre is in recovery mode, it
means that the servers (MDS/OSS), judge there is a stop of file system in an unclean
state. In other words, unsaved data may be in the client cache. To save this data, the
file system re-starts in recovery mode and makes the clients write the data to disk.

19.1 Recovering Lustre
In Lustre recovery mode, the servers attempt to contact all clients and request they
replay their transactions.

If all clients are contacted and they are recoverable (they have not rebooted), then
recovery proceeds and the file system comes back with the cached client-side data
safely saved to disk.

If one or more clients are not able to reconnect (due to hardware failures or client
reboots), then the recovery process times out, which causes all clients to be expelled.
In this case, if there is any unsaved data in the client cache, it is not saved to disk and
is lost. This is an unfortunate side effect of allowing Lustre to keep data consistent on
disk.
19-1

19.2 Types of Failure
Different types of failure can cause Lustre to enter recovery mode:

Client (compute node) failure

■ MDS failure (and failover)

■ OST failure

■ Transient network partition

■ Network failure

■ Disk state loss

■ Down node

■ Disk state of multiple, out-of-sync systems

Currently, all failure and recovery operations are based on the notion of connection
failure. All imports or exports associated with a given connection are considered as
failed if any of them do.

19.2.1 Client Failure
Lustre supports for recovery from client failure based on the revocation of locks and
other resources, so surviving clients can continue their work uninterrupted. If a client
fails to timely respond to a blocking AST from the Distributed Lock Manager or a
bulk data operation times out, the system removes the client from the cluster. This
action allows other clients to acquire locks blocked by the dead client, and it also
frees resources (such as file handles and export data) associated with the client. This
scenario can be caused by a client node system failure or a network partition.
19-2 Lustre 1.6 Operations Manual • May 2009

19.2.2 MDS Failure (and Failover)
Reliable Lustre operation requires that the MDS have a peer configured for failover,
including the use of a shared storage device for the MDS backing file system. When a
client detects an MDS failure, it connects to the new MDS and launches the
MetadataReplay function. MetadataReplay ensures that the replacement MDS
re-accumulates the state resulting from transactions whose effects were visible to
clients, but which were not committed to disk. Transaction numbers ensure that the
operations replay occurs in the same order as the original integration. Additionally,
clients inform the new server of their existing lock state (including locks that have
not yet been granted). All metadata and lock replay must complete before new,
non-recovery operations are permitted. During the recovery window, only clients
that were connected at the time of MDS failure are permitted to reconnect.

ClientUpcall, a user-space policy program, manages the re-connection to a new or
rebooted MDS. ClientUpcall is responsible to set up necessary portals, routes and
connections, and indicates which connection UUID should replace the failed one.

19.2.3 OST Failure
When an OST fails or is severed from the client, Lustre marks the corresponding OSC
as inactive, and the LOV avoids making stripes for new files on that OST. Operations
that operate on the "whole file", such as determining file size or unlinking, skips
inactive OSCs (and OSCs that become inactive during the operation). Attempts to
read from or write to an inactive stripe result in an -EIO error being returned to the
client.

As with the MDS failover case, Lustre invokes the ClientUpcall when it detects an
OST failure. If and when the upcall indicates that the OST is functioning again,
Lustre reactivates an OSC in question and makes file data from stripes on the
newly-returned OST available for reading and writing.

To force an OST recovery, unmount the OST and then mount it again. If the OST was
connected to clients before it failed, then a recovery process starts after the remount,
enabling clients to reconnect to the OST and replay transactions in their queue. When
the OST is in recovery mode, all new client connections are refused until the recovery
finishes. The recovery is complete when either all previously-connected clients
reconnect and their transactions are replayed or a client connection attempt times
out. If a connection attempt times out, then all clients waiting to reconnect (and their
transactions) are lost.
Chapter 19 Lustre Recovery 19-3

Note – If you know an OST will not recover a previously-connected client (if, for
example, the client has crashed), you can manually abort the recovery using this
command:

lctl --device <OST device number> abort_recovery

To determine an OST’s device number and device name, run the lctl dl command.
Sample lctl dl command output is shown below:

7 UP obdfilter ddn_data-OST0009 ddn_data-OST0009_UUID 1159

In this example, 7 is the OST device number. The device name is
ddn_data-OST0009. In most instances, the device name can be used in place of the
device number.

19.2.4 Network Partition
The partition can be transient. Lustre recovery occurs in following sequence:

■ Clients can detect "harmless partition" upon reconnecting. Dropped-reply cases
require ReplyReconstruction.

■ Servers evict clients.

■ ClientUpcall may try other routers. The arbitrary configuration change is possible
the message ’Failed Recovery - ENOTCONN’ is given for evicted clients.

■ Process invalidates all entries and locks. Eventually, the file system finishes
recovering and returns to normal operation. You may check the progress of Lustre
recovery by looking at the recovery_status proc entry for each device on the OSSs,
for example: cat /proc/fs/lustre/obdfilter/ost1/recovery_status

■ The file system may get stuck in recovery if any servers are down or if any servers
have thrown a Lustre bug (LBUG); check /proc/fs/lustre/health_check.
19-4 Lustre 1.6 Operations Manual • May 2009

PART III Lustre Tuning, Monitoring and
Troubleshooting

The part includes chapters describing how to tune, debutg and troubleshoot Lustre.

CHAPTER 20

Lustre Tuning

This chapter contains information to tune Lustre for better performance and includes
the following sections:

■ Module Options

■ LNET Tunables

■ Options to Format MDT and OST File Systems

■ Network Tuning

■ DDN Tuning

■ Large-Scale Tuning for Cray XT and Equivalents

20.1 Module Options
Many options in Lustre are set by means of kernel module parameters. These
parameters are contained in the modprobe.conf file (On SuSE, this may be
modprobe.conf.local).
20-1

20.1.0.1 OSS Service Thread Count

The oss_num_threads parameter allows the number of OST service threads to be
specified at module load time on the OSS nodes:

options ost oss_num_threads={N}

An OSS can have a maximum of 512 service threads and a minimum of 2 service
threads. The number of service threads is a function of how much RAM and how
many CPUs are on each OSS node (1 thread / 128MB * num_cpus). If the load on the
OSS node is high, new service threads will be started in order to process more
requests concurrently, up to 4x the initial number of threads (subject to the maximum
of 512). For a 2GB 2-CPU system, the default thread count is 32 and the maximum
thread count is 128.

Increasing the size of the thread pool may help when:

■ Several OSTs are exported from a single OSS

■ Back-end storage is running synchronously

■ I/O completions take excessive time

In such cases, a larger number of I/O threads allows the kernel and storage to
aggregate many writes together for more efficient disk I/O. The OSS thread pool is
shared—each thread allocates approximately 1.5 MB (maximum RPC size + 0.5 MB)
for internal I/O buffers.

It is very important to consider memory consumption when increasing the thread
pool size. Drives are only able to sustain a certain amount of parallel I/O activity
before performance is degraded due to the high number of seeks and the OST
threads just waiting for I/O. In this situation, it may be advisible to decrease the load
by decreasing the number of OST threads (ost_num_threads module parameter to
ost.ko module).

Determining the optimum number of OST threads is a process of trial and error. You
may want to start with a number of OST threads equal to the number of actual disk
spindles on the node. If you use RAID5+, subtract any dead spindles not used for
actual data (e.g., 1/3 of spindles for RAID5), and monitor the performance of clients
during usual workloads. If performance is degraded, increase the thread count and
see how that works until performance is degraded again or you reach satisfactory
performance.1

1. If your disk configuration does not have writeback cache enabled and your activity is mostly writes, consider
trying the patch in bug 16919 (Bugzilla). It removes synchronous journal commit requirements, and should
speed up OST writes (unless you already use fast external journal or writeback cache is enabled that mitigates
the synchronousness of the journal commit).
20-2 Lustre 1.6 Operations Manual • May 2009

20.1.1 MDS Threads
There is a similar parameter for the number of MDS service threads:

options mds mds_num_threads={N}

At this time, we have not tested to determine the optimal number of MDS threads.
The default value varies, based on server size, up to a maximum of 32. The maximum
number of threads (MDS_MAX_THREADS) is 512.

Note – The OSS and MDS automatically start new service threads dynamically in
response to server loading within a factor of 4. The default is calculated the same
way as before (as explained in OSS Service Thread Count).

Setting the *_num_threads module parameter disables the automatic thread
creation behavior.

20.1.1.1 I/O Scheduler

Select the best I/O scheduler for your setup.

Try different I/O schedulers (kernel parameter elevator=on old kernels or echo
<scheduler> >/sys/block/<dev>/queue/scheduler), because they behave differently
depending on storage and load. Benchmark all I/O schedulers and select the best one
for your setup. For more information on I/O schedulers, see:

http://www.linuxjournal.com/article/6931

http://www.redhat.com/magazine/008jun05/features/schedulers/
Chapter 20 Lustre Tuning 20-3

http://www.linuxjournal.com/article/6931
http://www.redhat.com/magazine/008jun05/features/schedulers/

20.2 LNET Tunables
This section describes LNET tunables.

20.2.0.1 Transmit and receive buffer size:

With Lustre release 1.4.7 and later, ksocklnd now has separate parameters for the
transmit and receive buffers.

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default value (0), the system automatically tunes
the transmit and receive buffer size. In almost every case, this default produces the
best performance. Do not attempt to tune these parameters unless you are a network
expert.

20.2.0.2 enable_irq_affinity

By default, this parameter is OFF. In the normal case on an SMP system, we would
like network traffic to remain local to a single CPU. This helps to keep the processor
cache warm, and minimizes the impact of context switches. This is especially helpful
when an SMP system has more than one network interface, and ideal when the
number of interfaces equals the number of CPUs.

If you have an SMP platform with a single fast interface such as 10 GB Ethernet and
more than 2 CPUs, you may see improved performance by turning this parameter to
OFF. You should, as always, test to compare the performance impact.
20-4 Lustre 1.6 Operations Manual • May 2009

20.3 Options to Format MDT and OST File
Systems
The backing file systems on an MDT and OSTs are independent of one another, so the
formatting parameters for them should not be same. Sizing the MDT depends solely
on how many inodes you want in the entire Lustre file system. This is not related to
the size of the aggregate OST space.

20.3.1 Planning for Inodes
Each time you create a file on a Lustre file system, it consumes one inode on the MDT
and one inode for each OST object that the file is striped over. Normally, it is based
on the default stripe count option -c; but this may change on a per-file basis. In
ext3/ldiskfs file systems, inodes are pre-allocated, so creating a new file does not
consume any of the free blocks. However, this also means that the format-time
options should be conservative, as it is not possible to increase the number of inodes
after the file system is formatted. If there is a shortage of inodes or space on the OSTs,
it is possible to add OSTs to the file system.

To be on the safe side, plan for 4 KB per inode on the MDT (the default). For the OST,
the amount of space taken by each object depends entirely upon the usage pattern of
the users/applications running on the system. Lustre, by necessity, defaults to a very
conservative estimate for the object size (16 KB per object). You can almost always
increase this value for file system installations. Many Lustre file systems have
average file sizes over 1 MB per object.

20.3.2 Sizing the MDT
When calculating the MDT size, the only important factor is the average size of files
to be stored in the file system. If the average file size is, for example, 5 MB and you
have 100 TB of usable OST space, then you need at least (100 TB * 1024 GB/TB * 1024
MB/GB / 5 MB/inode) = 20 million inodes. Sun recommends that you have twice
the minimum (40 million inodes in this example). At the default 4 KB per inode, this
works out to only 160 GB of space for the MDT.

Conversely, if you have a very small average file size (4 KB for example), Lustre is
not very efficient. This is because you consume as much space on the MDT as on the
OSTs. This is not a very common configuration for Lustre.
Chapter 20 Lustre Tuning 20-5

20.3.3 Overriding Default Formatting Options
To override the default formatting options for any of the Lustre backing file systems,
use the --mkfsoptions='backing fs options' argument to mkfs.lustre, to
pass formatting options to the backing mkfs. For all options to format backing ext3
and ldiskfs file systems, see the mke2fs(8) man page; this section only discusses
several Lustre-specific options.

20.3.3.1 Number of Inodes for MDT

To override the inode ratio, use the option -i <bytes per inode> (for example)
--mkfsoptions=-i 4096 to create 1 inode per 4096 bytes of file system space).

Note – Use this ratio to make sure that Extended Attributes (EAs) can fit on the
inode as well. Otherwise, you have to make an indirect allocation to hold the EAs,
which impacts performance owing to the additional seeks.

Alternately, if you are specifying some absolute number of inodes, use the
-N<number of inodes> option. To avoid unintentional mistakes, do not specify
the -i option with an inode ratio below one inode per 1024 bytes. Use the -N option
instead.

By default, a 2 TB MDT has 512M inodes. Currently, the largest supported file system
size is 8 TB, which holds 2B inodes. With an MDT inode ratio of 1024 bytes per inode,
a 2 TB MDT holds 2B inodes and a 4 TB MDT holds 4B inodes (the maximum number
of inodes currently supported by ext3).

20.3.3.2 Inode Size for MDT

Lustre uses "large" inodes on backing file systems to efficiently store Lustre metadata
with each file. On the MDT, each inode is at least 512 bytes in size (by default), while
on the OST each inode is 256 bytes in size. Lustre (or more specifically the backing
ext3 file system), also needs sufficient space for other metadata, like the journal (up
to 400 MB), bitmaps and directories. There are also a few regular files that Lustre uses
to maintain cluster consistency.

To specify a larger inode size, use the -I<inodesize> option. We do NOT
recommend specifying a smaller-than-default inode size, as this can lead to serious
performance problems; you cannot change this parameter after formatting the file
system. The inode ratio must always be larger than the inode size.
20-6 Lustre 1.6 Operations Manual • May 2009

20.3.3.3 Number of Inodes for OST

For OST file systems, it is normally advantageous to take local file system usage into
account. Try to minimize the number of inodes created on each OST. This helps
reduce the format and e2fsck time, and makes more space available for data.

Presently, Lustre has 1 inode per 16 KB of space in the OST file system (by default).
In many environments, this is far too many inodes for the average file size. As a
general guideline, the OSTs should have at least a number of inodes indicated by this
formula:

num_ost_inodes = 4 * <num_mds_inodes> * <default_stripe_count> / <number_osts>

To specify the number of inodes on OST file systems, use the -N<num_inodes>
option to --mkfsoptions. Alternately, if you know the average file size, you can
also specify the OST inode count for the OST file systems using: -i <average_file_size
/ (number_of_stripes * 4)>. For example, if the average file size is 16 MB and there
are, by default, 4 stripes per file then --mkfsoptions=-i 1048576 would be
appropriate.)

For more details on formatting MDT and OST file systems, see Formatting.

20.4 Network Tuning
During IOR runs, especially reads, one or more nodes may become CPU-bound
(which may slow down the remaining nodes and compromise read rates). This issue
is likely related to RX overflow errors on the nodes (caused by an upstream e1000
driver). To resolve this issue, increase the RX ring buffer size (default is 256). Use
either:

■ /sbin/ethtool -G ethX rx 4096

■ e1000 module option 'RxDescriptors=4096'
Chapter 20 Lustre Tuning 20-7

20.5 DDN Tuning
This section provides guidelines to configure DDN storage arrays for use with
Lustre. For more complete information on DDN tuning, refer to the performance
management section of the DDN manual of your product, available at:

http://www.ddnsupport.com/manuals.html

This section covers the following DDN arrays:

■ S2A 8500

■ S2A 9500

■ S2A 9550

20.5.1 Setting Readahead and MF
For the S2A DDN 8500 storage array, we recommend that you disable the readahead.
In a 1000-client system, if each client has up to 8 read RPCs in flight, then this is 8 *
1000 * 1 MB = 8 GB of reads in flight. With a DDN cache in the range of 2 to 5 GB
(depending on the model), it is unlikely that the LUN-based readahead would have
ANY cache hits even if the file data were contiguous on disk (generally, file data is
not contiguous). The Multiplication Factor (MF) also influences the readahead; you
should disable it.

CLI commands for the DDN are:

cache prefetch=0

cache MF=off

For the S2A 9500 and S2A 9550 DDN storage arrays, we recommend that you use the
above commands to disable readahead.
20-8 Lustre 1.6 Operations Manual • May 2009

http://www.ddnsupport.com/manuals.html

20.5.2 Setting Segment Size
The cache segment size noticeably affects I/O performance. Set the cache segment
size differently on the MDT (which does small, random I/O) and on the OST (which
does large, contiguous I/O). In customer testing, we have found the optimal values
to be 64 KB for the MDT and 1 MB for the OST.

Note – The cache size parameter is common to all LUNs on a single DDN and
cannot be changed on a per-LUN basis.

These are CLI commands for the DDN.

■ For the MDT LUN:

$ cache size=64

size is in KB, 64, 128, 256, 512, 1024, and 2048. Default 128

■ For the OST LUN:

$ cache size=1024

20.5.3 Setting Write-Back Cache
Performance is noticeably improved by running Lustre with write-back cache turned
on. However, there is a risk that when the DDN controller crashes you need to run
e2fsck. Still, it takes less time than the performance hit from running with the
write-back cache turned off.

For increased data security and in failover configurations, you may prefer to run
with write-back cache off. However, you might experience performance problems
with the small writes during journal flush. In this mode, it is highly beneficial to
increase the number of OST service threads options ost ost_num_threads=512 in
/etc/modprobe.conf. The OST should have enough RAM (about 1.5 MB /thread
is preallocated for I/O buffers). Having more I/O threads allows you to have more
I/O requests in flight, waiting for the disk to complete the synchronous write.

You have to decide whether performance is more important than the slight risk of
data loss and downtime in case of a hardware/software problem on the DDN.

Note – There is no risk from an OSS/MDS node crashing, only if the DDN itself
fails.
Chapter 20 Lustre Tuning 20-9

20.5.4 Setting maxcmds
For S2A DDN 8500 array, changing maxcmds to 4 (from the default 2) improved
write performance by as much as 30% in a particular case. This only works with
SATA-based disks and when only one controller of the pair is actually accessing the
shared LUNs.

However, this setting comes with a warning. DDN support does not recommend
changing this setting from the default. By increasing the value to 5, the same setup
experienced some serious problems.

The CLI command for the DDN client is provided below (default value is 2).

$ diskmaxcmds=3

For S2A DDN 9500/9550 hardware, you can safely change the default from 6 to 16.
Although the maximum value is 32, values higher than 16 are not currently
recommended by DDN support.

20.5.5 Further Tuning Tips
Here are some tips we have drawn from testing at a large installation:

■ Use the full device instead of a partition (sda vs sda1). When using the full device,
Lustre writes nicely-aligned 1 MB chunks to disk. Partitioning the disk can destroy
this alignment and will noticeably impact performance.

■ Separate the ext3 OST into two LUNs, a small LUN for the ext3 journal and a big
one for the "data".

■ Since Lustre 1.0.4, we supply ext3 mkfs options when we create the OST like
-j, -J and so on in the following manner (where /dev/sdj has been formatted
before as a journal). The journal size should not be larger than 1 GB (262144 4 KB
blocks) as it can consume up to this amount of RAM on the OSS node per OST.

$ mke2fs -O journal_dev -b 4096 /dev/sdj [optional size]
20-10 Lustre 1.6 Operations Manual • May 2009

Tip – A very important tip—on the S2A DDN 8500 storage array, you need to create
one OST per TIER, especially in write through (see output below). This is of concern
if you have 16 tiers. Create 16 OSTs consisting of one tier each, instead of eight made
of two tiers each.

- Performance is significantly better on the S2A DDN 9500 and 9550 storage arrays
with two tiers per LUN.

- Do NOT partition the DDN LUNs, as this causes all I/O to the LUNs to be
misaligned by 512 bytes. The DDN RAID stripes and cachelines are aligned on 1 MB
boundaries. Having the partition table on the LUN causes all 1 MB writes to do a
read-modify-write on an extra chunk, and ALL 1 MB reads to, instead, read 2 MB
from disk into the cache, causing a noticeable performance loss.

- You are not obliged to lock in cache the small LUNs.

- Configure the MDT on a separate volume that is configured as RAID 1+0. This
reduces the MDT I/O and doubles the seek speed.

For example, one OST per tier:

LUNLabel Owner Status Capacity Block Tiers Tier list
(Mbytes) Size

0 1 Ready 102400 512 1 1

1 1 Ready 102400 512 1 2

2 1 Ready 102400 512 1 3

3 1 Ready 102400 512 1 4

4 2 Ready [GHS] 102400 4096 1 5

5 2 Ready [GHS] 102400 4096 1 6

6 2 Critical 102400 512 1 7

7 2 Critical 102400 4096 1 8

10 1 Cache Locked 64 512 1 1

11 1 Ready 64 512 1 2

12 1 Cache Locked 64 512 1 3

13 1 Cache Locked 64 512 1 4

14 2 Ready [GHS] 64 512 1 5

15 2 Ready [GHS] 64 512 1 6

16 2 Ready [GHS] 64 4096 1 7

17 2 Ready [GHS] 64 4096 1 8

System verify extent: 16 Mbytes

System verify delay: 30
Chapter 20 Lustre Tuning 20-11

20.6 Large-Scale Tuning for Cray XT and
Equivalents
This section only applies to Cray XT3 Catamount nodes, and explains parameters
used with the kptllnd module. If it does not apply to your setup, ignore it.

20.6.1 Network Tunables
With a large number of clients and servers possible on these systems, tuning various
request pools becomes important. We are making changes to the ptllnd module.

Parameter Description

max_nodes max_nodes is the maximum number of queue pairs, and, therefore,
the maximum number of peers with which the LND instance can
communicate. Set max_nodes to a value higher than the product of
the total number of nodes and maximum processes per node.
Max nodes > (Total # Nodes) * (max_procs_per_node)
Setting max_nodes to a lower value than described causes Lustre to
throw an error. Setting max_nodes to a higher value, causes excess
memory to be consumed.

max_procs_per_node max_procs_per_node is the maximum number of cores (CPUs), on a
single Catamount node. Portals must know this value to properly
clean up various queues. LNET is not notified directly when a
Catamount process aborts. The first information LNET receives is
when a new Catamount process with the same Cray portals NID
starts and sends a connection request. If the number of processes
with that Cray portals NID exceeds the max_procs_per_node
value, LNET removes the oldest one to make space for the new one.
20-12 Lustre 1.6 Operations Manual • May 2009

These two tunables combine to set the size of the ptllnd request buffer pool. The buffer pool
must never drop an incoming message, so proper sizing is very important.

Ntx Ntx helps to size the transmit (tx) descriptor pool. A tx descriptor is
used for each send and each passive RDMA. The max number of
concurrent sends == 'credits'. Passive RDMA is a response to a PUT
or GET of a payload that is too big to fit in a small message buffer.
For servers, this only happens on large RPCs (for instance, where a
long file name is included), so the MDS could be under pressure in
a large cluster. For routers, this is bounded by the number of
servers. If the tx pool is exhausted, a console error message appears.

Credits Credits determine how many sends are in-flight at once on ptllnd.
Optimally, there are 8 requests in-flight per server. The default
value is 128, which should be adequate for most applications.

Parameter Description
Chapter 20 Lustre Tuning 20-13

20.7 Lockless I/O Tunables
The lockless I/O tunable feature allows servers to ask clients to do lockless I/O
(liblustre-style where the server does the locking) on contended files.

The lockless I/O patch introduces these tunables:

■ OST-side:

/proc/fs/lustre/ldlm/namespaces/filter-lustre-*

contended_locks - If the number of lock conflicts in the scan of granted and
waiting queues at contended_locks is exceeded, the resource is considered to be
contended.

contention_seconds - The resource keeps itself in a contended state as set in
the parameter.

max_nolock_bytes - Server-side locking set only for requests less than the
blocks set in the max_nolock_bytes parameter. If this tunable is set to zero (0), it
disables server-side locking for read/write requests.

■ Client-side:

/proc/fs/lustre/llite/lustre-*

contention_seconds - llite inode remembers its contended state for the time
specified in this parameter.

■ Client-side statistics:

The /proc/fs/lustre/llite/lustre-*/stats file has new rows for lockless
I/O statistics.

lockless_read_bytes and lockless_write_bytes - To count the total bytes
read or written, the client makes its own decisions based on the request size. The
client does not communicate with the server if the request size is smaller than the
min_nolock_size, without acquiring locks by the client.

20.8 Data Checksums
To avoid the risk of data corruption on the network, a Lustre client can perform
end-to-end data checksums2. Be aware that at high data rates, checksumming can
impact Lustre performance.

2. This feature computes a 32-bit checksum of data read or written on both the client and server, and ensures that
the data has not been corrupted in transit over the network.
20-14 Lustre 1.6 Operations Manual • May 2009

CHAPTER 21

Lustre Monitoring and
Troubleshooting

This chapter provides information to troubleshoot Lustre, submit a Lustre bug, and
Lustre performand tips. It includes the following sections:

■ Monitoring Lustre

■ Troubleshooting Lustre

■ Submitting a Lustre Bug

■ Common Lustre Problems and Performance Tips

21.1 Monitoring Lustre
Several tools are available to monitor a Lustre cluster:

Lustre Monitoring Tool

The Lustre Monitoring Tool (LMT1) is a Python-based, distributed system that
provides a ''top'' like display of activity on server-side nodes2 (MDS, OSS and portals
routers) on one or more Lustre file systems.

LMT provides a Java-based GUI that reports data for each file system. A tab is
presented for each Lustre file system that is being monitored. Within each tab, there
are panes presenting the server-side node information (MDS, OSS or portals routers).
There is also a tab that presents a multi-level outline view of the sub-components of

1. LMT was developed by Lawrence Livermore National Lab (LLNL) and continues to be maintained by LLNL.

2. Lustre client monitoring is not supported.
21-1

each file system component. Data is displayed for OSTs and file systems. For each
OST, the current read rate/write rate (in MB/s), % CPU, and % full are displayed.
For each file system basis, aggregate MB/s is shown. This is a sample LMT screen:

FIGURE 21-1 LMT sample screen

For more information on LMT, including the setup procedure, see:

http://sourceforge.net/projects/lmt

Red Hat Cluster Manager

The Red Hat Cluster Manager provides high availability features that are essential
for data integrity, application availability and uninterrupted service under various
failure conditions. You can use the Cluster Manager to test MDS/OST failure in
Lustre clusters.

To use Cluster Manager to test MDS failover, specific hardware is required - a
compute node, OSTs and two machines (to act as the active and failover MDSs). The
MDS nodes need to be able to see the same shared storage, so you need to prepare a
shared disk for the Cluster Manager and the MDSs. Several RPM packages are also
required3, along with certain configuration changes.

3. The Lustre Group has made several scripts available for MDS failover testing.
21-2 Lustre 1.6 Operations Manual • May 2009

http://sourceforge.net/projects/lmt/

For more information on the Cluster Manager (bundled in the Red Hat Cluster Suite),
see the Red Hat Cluster Suite. Supporting documentation is available to the Red Hat
Cluster Suite Overview.

For more information on installing and configuring Cluster Manager for Lustre
failover, and testing MDS failover, see Cluster Manager.

SNMP Monitoring

Lustre has a native SNMP module, which enables you to use various standard SNMP
monitoring packages (anything using RRDTool as a backend) to track performance.
For more information in installing, building and using the SNMP module, see Lustre
SNMP Module.

CollectL

CollectL is another tool that can be used to monitor Lustre. You can run CollectL on
a Lustre system that has any combination of MDSs, OSTs and clients. The collected
data can be written to a file for continuous logging and played back at a later time. It
can also be converted to a format suitable for plotting.

For more information about CollectL, see:

http://collectl.sourceforge.net

Lustre-specific documentation is also available. See:

http://collectl.sourceforge.net/Tutorial-Lustre.html

Other Monitoring Options

Another option is to script a simple monitoring solution which looks at various
reports from ifconfig, as well as the procfs files generated by Lustre.
Chapter 21 Lustre Monitoring and Troubleshooting 21-3

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Cluster_Suite_Overview/index.html
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Cluster_Suite_Overview/index.html
http://wiki.lustre.org/index.php?title=Clu_Manager
http://www.redhat.com/cluster_suite/
http://collectl.sourceforge.net
http://collectl.sourceforge.net/Tutorial-Lustre.html

21.2 Troubleshooting Lustre
Several resouces are available to help use troublshoot Lustre. This section describes
error numbers, error messages and logs.

21.2.1 Error Numbers
Error numbers for Lustre come from the Linux errno.h, and are located in
/usr/include/asm/errno.h. Lustre does not use all of the available Linux error
numbers. The exact meaning of an error number depends on where it is used. Here is
a summary of the basic errors that Lustre users may encounter.

Error Number Error Name Description

-1 -EPERM Permission is denied.

-2 -ENOENT The requested file or directory does not exist.

-4 -EINTR The operation was interrupted (usually CTRL-C or a killing
process).

-5 -EIO The operation failed with a read or write error.

-19 -ENODEV No such device is available. The server stopped or failed
over.

-22 -EINVAL The parameter contains an invalid value.

-28 -ENOSPC The file system is out-of-space or out of inodes. Use lfs df
(query the amount of file system space) or lfs df -i
(query the number of inodes).

-30 -EROFS The file system is read-only, likely due to a detected error.

-43 -EIDRM The UID/GID does not match any known UID/GID on the
MDS. Update etc/hosts and etc/group on the MDS to add
the missing user or group.

-107 -ENOTCONN The client is not connected to this server.

-110 ETIMEDOUT The operation took too long and timed out.
21-4 Lustre 1.6 Operations Manual • May 2009

21.2.2 Error Messages
As Lustre code runs on the kernel, single-digit error codes display to the application;
these error codes are an indication of the problem. Refer to the kernel console log
(dmesg) for all recent kernel messages from that node. On the node,
/var/log/messages holds a log of all messages for at least the past day.

21.2.3 Lustre Logs
The error message initiates with "LustreError" in the console log and provides a short
description of:

■ What the problem is

■ Which process ID had trouble

■ Which server node it was communicating with, and so on.

Collect the first group of messages related to a problem, and any messages that
precede "LBUG" or "assertion failure" errors. Messages that mention server nodes
(OST or MDS) are specific to that server; you must collect similar messages from the
relevant server console logs.

Another Lustre debug log holds information for Lustre action for a short period of
time which, in turn, depends on the processes on the node to use Lustre. Use the
following command to extract debug logs on each of the nodes, run

$ lctl dk <filename>

Note – LBUG freezes the thread to allow capture of the panic stack. A system reboot
is needed to clear the thread.
Chapter 21 Lustre Monitoring and Troubleshooting 21-5

21.3 Submitting a Lustre Bug
If, after troubleshooting your Lustre system, you cannot resolve the problem,
consider submitting a Lustre bug. To do this, you will need an account on Bugzilla
(defect tracking system used for Lustre), and download the Lustre diagnostics tool to
run and capture the diagnostics output.

Note – Create a Lustre Bugzilla account. Download the Lustre diagnostics tool and
install it on the affected nodes. Make sure you are using the most recent version of
the diagnostics tool.

1. Once you have a Lustre Bugzilla account, open a new bug and describe the
problem you having.

2. Run the Lustre diagnostics tool, using one of the following commands:

lustre-diagnostics -t <bugzilla bug #>

lustre-diagnostics.

In case you need to use it later, the output of the bug is sent directly to the terminal.
Normal file redirection can be used to send the output to a file which you can
manually attach to this bug, if necessary.
21-6 Lustre 1.6 Operations Manual • May 2009

https://bugzilla.lustre.org/createaccount.cgi
http://downloads.lustre.org/public/tools/lustre-diagnostics/

21.4 Common Lustre Problems and
Performance Tips
This section describes common issues encountered with Lustre, as well as tips to
improve Lustre performance.

21.4.1 Recovering from an Unavailable OST
One of the most common problems encountered in a Lustre environment is when an
OST becomes unavailable, because of a network partition, OSS node crash, etc. When
this happens, the OST’s clients pause and wait for the OST to become available again,
either on the primary OSS or a failover OSS. When the OST comes back online,
Lustre starts a recovery process to enable clients to reconnect to the OST. Lustre
servers put a limit on the time they will wait in recovery for clients to reconnect4.

During recovery, clients reconnect and replay their requests, serially, in the same
order they were done originally.5 Periodically, a progress message prints to the log,
stating how_many/expected clients have reconnected. If the recovery is aborted, this
log shows how many clients managed to reconnect. When all clients have completed
recovery, or if the recovery timeout is reached, the recovery period ends and the OST
resumes normal request processing.

If some clients fail to replay their requests during the recovery period, this will not
stop the recovery from completing. You may have a situation where the OST
recovers, but some clients are not able to participate in recovery (e.g. network
problems or client failure), so they are evicted and their requests are not replayed.
This would result in any operations on the evicted clients failing, including
in-progress writes, which would cause cached writes to be lost. This is a normal
outcome; the recovery cannot wait indefinitely, or the file system would be hung any
time a client failed. The lost transactions are an unfortunate result of the recovery
process.

4. The timeout length is determined by the obd_timeout parameter.

5. Until a client receives a confirmation that a given transaction has been written to stable storage, the client
holds on to the transaction, in case it needs to be replayed.
Chapter 21 Lustre Monitoring and Troubleshooting 21-7

Note – In Lustre 1.6 and earlier releases, the success of the recovery process is
limited by uncommitted client requests that are unable to be replayed. Because
clients attempt to replay their requests to the OST and MDT in serial order, a client
that cannot replay its requsts causes the recovery stream to stop, and leaves the
remaining clients without an opportunity to reconnect and replay their requests.

Lustre 1.8 will introduce the version-based recovery (VBR) feature, which will enable
a failed client to be ''skipped'', so the remaining clients can replay their requests,
resulting in a more successful recovery from a downed OST.

21.4.2 Write Performance Better Than Read Performance
Typically, the performance of write operations on a Lustre cluster is better than read
operations. When doing writes, all clients are sending write RPCs asynchronously.
The RPCs are allocated, and written to disk in the order they arrive. In many cases,
this allows the back-end storage to aggregate writes efficiently.

In the case of read operations, the reads from clients may come in a different order
and need a lot of seeking to get read from the disk. This noticeably hampers the read
throughput.

Currently, there is no readahead on the OSTs themselves, though the clients do
readahead. If there are lots of clients doing reads it would not be possible to do any
readahead in any case because of memory consumption (consider that even a single
RPC (1 MB) readahead for 1000 clients would consume 1 GB of RAM).

For file systems that use socklnd (TCP, Ethernet) as interconnect, there is also
additional CPU overhead because the client cannot receive data without copying it
from the network buffers. In the write case, the client CAN send data without the
additional data copy. This means that the client is more likely to become CPU-bound
during reads than writes.

21.4.3 OST Object is Missing or Damaged
If the OSS fails to find an object or finds a damaged object, this message appears:

OST object missing or damaged (OST "ost1", object 98148, error -2)

If the reported error is -2 (-ENOENT, or "No such file or directory"), then the object is
missing. This can occur either because the MDS and OST are out of sync, or because
an OST object was corrupted and deleted.
21-8 Lustre 1.6 Operations Manual • May 2009

If you have recovered the file system from a disk failure by using e2fsck, then
unrecoverable objects may have been deleted or moved to /lost+found on the raw
OST partition. Because files on the MDS still reference these objects, attempts to
access them produce this error.

If you have recovered a backup of the raw MDS or OST partition, then the restored
partition is very likely to be out of sync with the rest of your cluster. No matter which
server partition you restored from backup, files on the MDS may reference objects
which no longer exist (or did not exist when the backup was taken); accessing those
files produces this error.

If neither of those descriptions is applicable to your situation, then it is possible that
you have discovered a programming error that allowed the servers to get out of sync.
Please report this condition to the Lustre group, and we will investigate.

If the reported error is anything else (such as -5, "I/O error"), it likely indicates a
storage failure. The low-level file system returns this error if it is unable to read from
the storage device.

Suggested Action

If the reported error is -2, you can consider checking in /lost+found on your raw
OST device, to see if the missing object is there. However, it is likely that this object
is lost forever, and that the file that references the object is now partially or
completely lost. Restore this file from backup, or salvage what you can and delete it.

If the reported error is anything else, then you should immediately inspect this server
for storage problems.
Chapter 21 Lustre Monitoring and Troubleshooting 21-9

21.4.4 OSTs Become Read-Only
If the SCSI devices are inaccessible to Lustre at the block device level, then ext3
remounts the device read-only to prevent file system corruption. This is a normal
behavior. The status in /proc/fs/lustre/healthcheck also shows "not healthy"
on the affected nodes.

To determine what caused the "not healthy" condition:

■ Examine the consoles of all servers for any error indications

■ Examine the syslogs of all servers for any LustreErrors or LBUG

■ Check the health of your system hardware and network. (Are the disks working as
expected, is the network dropping packets?)

■ Consider what was happening on the cluster at the time. Does this relate to a
specific user workload or a system load condition? Is the condition reproducible?
Does it happen at a specific time (day, week or month)?

To recover from this problem, you must restart Lustre services using these file
systems. There is no other way to know that the I/O made it to disk, and the state of
the cache may be inconsistent with what is on disk.

21.4.5 Identifying a Missing OST
If an OST is missing for any reason, you may need to know what files are affected.
Although an OST is missing, the files system should be operational. From any
mounted client node, generate a list of files that reside on the affected OST. It is
advisable to mark the missing OST as ’unavailable’ so clients and the MDS do not
time out trying to contact it.

1. Generate a list of devices and determine the OST’s device number. Run:

$ lctl dl

The lctl dl command output lists the device name and number, along with the
device UUID and the number of references on the device.

2. Deactivate the OST (on the OSS at the MDS). Run:

$ lctl --device <OST device name or number> deactivate

The OST device number or device name is generated by the lctl dl command.

The deactivate command prevents clients from creating new objects on the
specified OST, although you can still access the OST for reading.
21-10 Lustre 1.6 Operations Manual • May 2009

Note – If the OST later becomes available it needs to be reactivated, run:

lctl --device <OST device name or number> activate

3. Determine all the files that are striped over the missing OST, run:

lfs find -R -o {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

4. If necessary, you can read the valid parts of a striped file, run:

dd if=filename of=new_filename bs=4k conv=sync,noerror

5. You can delete these files with the unlink or munlink command.

unlink|munlink filename {filename ...}

Note – There is no functional difference between the unlink and munlink
commands. The unlink command is for newer Linux distributions. You can run
munlink if unlink is not available.

When you run the unlink or munlink command, the file on the MDS is
permanently removed.

6. If you need to know, specifically, which parts of the file are missing data, then
you first need to determine the file layout (striping pattern), which includes the
index of the missing OST). Run:

lfs getstripe -v {filename}

7. Use this computation is to determine which offsets in the file are affected: [(C*N
+ X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

where:

C = stripe count

S = stripe size

X = index of bad OST for this file

For example, for a 2 stripe file, stripe size = 1M, the bad OST is at index 0, and you
have holes in the file at: [(2*N + 0)*1M, (2*N + 0)*1M + 1M - 1], N = { 0, 1, 2, ...}

If the file system cannot be mounted, currently there is no way that parses metadata
directly from an MDS. If the bad OST does not start, options to mount the file system
are to provide a loop device OST in its place or replace it with a newly-formatted
OST. In that case, the missing objects are created and are read as zero-filled.

In Lustre 1.6 you can mount a file system with a missing OST.
Chapter 21 Lustre Monitoring and Troubleshooting 21-11

21.4.6 Changing Parameters
You can set the following parameters at the mkfs time, on a non-running target disk,
via tunefs.lustre or via a live MGS using the lctl command.

With mkfs.lustre

While you are using the mkfs command and creating the file system, you can add
parameters with the --param option:

$ mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

With tunefs.lustre

If a server is stopped, you can add the parameters via tunefs.lustre with the
same --param option:

$ tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

With tunefs.lustre, parameters are "additive" -- to erase all old parameters and just
use the newly-specified parameters, use tunefs.lustre --erase-params
--param=....

With lctl

While a server is running, you can change many parameters via lctl conf_param:

$ mgs> lctl conf_param testfs-MDT0000.sys.timeout=40

$ anynode> cat /proc/sys/lustre/timeout

Note – The lctl conf_param command permanently sets parameters in the file
system configuration.
21-12 Lustre 1.6 Operations Manual • May 2009

21.4.7 Viewing Parameters
To view the parameters set in the configuration log:

1. Unmount the MGS.

2. Mount the MGS disk as

 # mount -t ldiskfs /dev/sda /mnt/mgs

3. Use the llog-reader utility to display the contents of the various configuration
logs under the CONFIGS directory.

/usr/sbin/llog-reader /mnt/mgs/CONFIGS/testfs-client

4. Look for items marked "param".

5. Check the other logs for parameters that affect those targets, e.g.
testfs-MDT0000 for MDT settings.

The current settings allow you to easily change a parameter. However, there is no
simple way to delete a parameter. Shut down all targets and enter the --writeconf
command to regenerate the logs. Then, add back all of your modified settings.

When you enter the --writeconf command, you can set modified settings for each
device using following commands.

mdt# tunefs.lustre --writeconf --param="failover.mode=failout" /dev/sda
ost1# tunefs.lustre --writeconf --erase-params
--param="failover.node=192.168.0.13@tcp0"
--param="osc.max_dirty_mb=29.15" /dev/sda

Use the --erase-params flag to clear old paramers from the tunefs list. Without the
--writeconf command, clearing the parameters has no effect.

If you change the parameters exclusively via tunefs (not using lctl), then
tunefs.lustre --print shows you the list of parameters. For production
systems, this is the preferred way to set parameters, as the parameters sustain
--writeconf. Parameters set via lctl conf_param do not sustain --writeconf.

You can also perform similar operations without unmounting the file system. Run:

debugfs -c -R 'dump CONFIGS/testfs-client /tmp/testfs-client' /dev/sda
llog_reader /tmp/testfs-client
Chapter 21 Lustre Monitoring and Troubleshooting 21-13

21.4.8 Default Striping
These are the default striping settings:

lov.stripesize=<bytes>

lov.stripecount=<count>

lov.stripeoffset=<offset>

To change the default striping information.

■ On the MGS:

$ lctl conf_param testfs-MDT0000.lov.stripesize=4M

■ On the MDT and clients:

$ mdt/cli> cat /proc/fs/lustre/lov/testfs-{mdt|cli}lov/stripe*

21.4.9 Erasing a File System
If you want to erase a file system, run this command on your targets:

$ "mkfs.lustre –reformat"

If you are using a separate MGS and want to keep other file systems defined on that
MGS, then set the writeconf flag on the MDT for that file system. The writeconf
flag causes the configuration logs to be erased; they are regenerated the next time the
servers start.

To set the writeconf flag on the MDT:

1. Unmount all clients/servers using this file system, run:

$ umount /mnt/lustre

2. Erase the file system and, presumably, replace it with another file system, run:

$ mkfs.lustre –reformat --fsname spfs --mdt --mgs /dev/sda
21-14 Lustre 1.6 Operations Manual • May 2009

3. If you have a separate MGS (that you do not want to reformat), then add the
"writeconf" flag to mkfs.lustre on the MDT, run:

$ mkfs.lustre --reformat --writeconf –fsname spfs --mdt \
--mgs /dev/sda

Note – If you have a combined MGS/MDT, reformatting the MDT reformats the
MGS as well, causing all configuration information to be lost; you can start building
your new file system. Nothing needs to be done with old disks that will not be part
of the new file system, just do not mount them.

21.4.10 Reclaiming Reserved Disk Space
All current Lustre installations run the ext3 file system internally on service nodes.
By default, the ext3 reserves 5% of the disk space for the root user. In order to reclaim
this space, run the following command on your OSSs:

tune2fs [-m reserved_blocks_percent] [device]

You do not need to shut down Lustre before running this command or restart it
afterwards.

21.4.11 Considerations in Connecting a SAN with Lustre
Depending on your cluster size and workload, you may want to connect a SAN with
Lustre. Before making this connection, consider the following:

■ In many SAN file systems without Lustre, clients allocate and lock blocks or
inodes individually as they are updated. The Lustre design avoids the high
contention that some of these blocks and inodes may have.

■ Lustre is highly scalable and can have a very large number of clients. SAN
switches do not scale to a large number of nodes, and the cost per port of a SAN is
generally higher than other networking.

■ File systems that allow direct-to-SAN access from the clients have a security risk
because clients can potentially read any data on the SAN disks, and misbehaving
clients can corrupt the file system for many reasons like improper file system,
network, or other kernel software, bad cabling, bad memory, and so on. The risk
increases with increase in the number of clients directly accessing the storage.
Chapter 21 Lustre Monitoring and Troubleshooting 21-15

21.4.12 Handling/Debugging "Bind: Address already in
use" Error
During startup, Lustre may report a bind: Address already in use error and
reject to start the operation. This is caused by a portmap service (often NFS locking)
which starts before Lustre and binds to the default port 988. You must have port 988
open from firewall or IP tables for incoming connections on the client, OSS, and MDS
nodes. LNET will create three outgoing connections on available, reserved ports to
each client-server pair, starting with 1023, 1022 and 1021.

Unfortunately, you cannot set sunprc to avoid port 988. If you receive this error, do
the following:

■ Start Lustre before starting any service that uses sunrpc.

■ Use a port other than 988 for Lustre. This is configured in /etc/modprobe.conf
as an option to the LNET module. For example:

options lnet accept_port=988

■ Add modprobe ptlrpc to your system startup scripts before the service that
uses sunrpc. This causes Lustre to bind to port 988 and sunrpc to select a different
port.

Note – You can also use the sysctl command to mitigate the NFS client from
grabbing the Lustre service port. However, this is a partial workaround as other
user-space RPC servers still have the ability to grab the port.
21-16 Lustre 1.6 Operations Manual • May 2009

21.4.13 Replacing An Existing OST or MDS
The OST file system is an ldiskfs file system, which is simply a normal ext3 file
system plus some performance enhancements—making if very close, in fact, to ext4.
To copy the contents of an existing OST to a new OST (or an old MDS to a new MDS),
use one of these methods:

■ Connect the old OST disk and new OST disk to a single machine, mount both, and
use rsync to copy all data between the OST file systems.

For example:

mount -t ldiskfs /dev/old /mnt/ost_old

mount -t ldiskfs /dev/new /mnt/ost_new

rsync -aSv /mnt/ost_old/ /mnt/ost_new

note trailing slash on ost_old/

■ If you are unable to connect both sets of disk to the same computer, use rsync to
copy over the network using rsh (or ssh with -e ssh):

rsync -aSvz /mnt/ost_old/ new_ost_node:/mnt/ost_new

■ Use the same procedure for the MDS, with one additional step:

cd /mnt/mds_old; getfattr -R -e base64 -d . > /tmp/mdsea; \
<copy all MDS files as above>; cd /mnt/mds_new; setfattr \
--restore=/tmp/mdsea

21.4.14 Handling/Debugging Error "- 28"
Linux error -28 is -ENOSPC and indicates that the file system has run out of space.
You need to create larger file systems for the OSTs. Normally, Lustre reports this to
your application. If the application is checking the return code from its function calls,
then it decodes it into a textual error message like "No space left on device." It also
appears in the system log messages.

During a "write" or "sync" operation, the file in question resides on an OST which is
already full. New files that are created do not use full OSTs, but existing files
continue to use the same OST. You need to expand the specific OST or copy/stripe
the file over to an OST with more space available. You encounter this situation
occasionally when creating files, which may indicate that your MDS has run out of
inodes and needs to be enlarged. To check this, use df -i
Chapter 21 Lustre Monitoring and Troubleshooting 21-17

You may also receive this error if the MDS runs out of free blocks. Since the output of
df is an aggregate of the data from the MDS and all of the OSTs, it may not show that
the file system is full when one of the OSTs has run out of space. To determine which
OST or MDS is running out of space, check the free space and inodes on a client:

grep '[0-9]' /proc/fs/lustre/osc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/osc/*/files{free,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/files{free,total}

You can find other numeric error codes in /usr/include/asm/errno.h along with
their short name and text description.

21.4.15 Triggering Watchdog for PID NNN
In some cases, a server node triggers a watchdog timer and this causes a process
stack to be dumped to the console along with a Lustre kernel debug log being
dumped into /tmp (by default). The presence of a watchdog timer does NOT mean
that the thread OOPSed, but rather that it is taking longer time than expected to
complete a given operation. In some cases, this situation is expected.

For example, if a RAID rebuild is really slowing down I/O on an OST, it might
trigger watchdog timers to trip. But another message follows shortly thereafter,
indicating that the thread in question has completed processing (after some number
of seconds). Generally, this indicates a transient problem. In other cases, it may
legitimately signal that a thread is stuck because of a software error (lock inversion,
for example).

Lustre: 0:0:(watchdog.c:122:lcw_cb())

The above message indicates that the watchdog is active for pid 933:

It was inactive for 100000ms:

Lustre: 0:0:(linux-debug.c:132:portals_debug_dumpstack())

Showing stack for process:

933 ll_ost_25 D F896071A 0 933 1 934 932 (L-TLB)
f6d87c60 00000046 00000000 f896071a f8def7cc 00002710 00001822 2da48cae
0008cf1a f6d7c220 f6d7c3d0 f6d86000 f3529648 f6d87cc4 f3529640 f8961d3d
00000010 f6d87c9c ca65a13c 00001fff 00000001 00000001 00000000 00000001
21-18 Lustre 1.6 Operations Manual • May 2009

Call trace:

filter_do_bio+0x3dd/0xb90 [obdfilter]

default_wake_function+0x0/0x20

filter_direct_io+0x2fb/0x990 [obdfilter]

filter_preprw_read+0x5c5/0xe00 [obdfilter]

lustre_swab_niobuf_remote+0x0/0x30 [ptlrpc]

ost_brw_read+0x18df/0x2400 [ost]

ost_handle+0x14c2/0x42d0 [ost]

ptlrpc_server_handle_request+0x870/0x10b0 [ptlrpc]

ptlrpc_main+0x42e/0x7c0 [ptlrpc]

21.4.16 Handling Timeouts on Initial Lustre Setup
If you come across timeouts or hangs on the initial setup of your Lustre system,
verify that name resolution for servers and clients is working correctly. Some
distributions configure /etc/hosts sts so the name of the local machine (as
reported by the 'hostname' command) is mapped to local host (127.0.0.1) instead of a
proper IP address.

This might produce this error:

LustreError:(ldlm_handle_cancel()) received cancel for unknown lock cookie
0xe74021a4b41b954e from nid 0x7f000001 (0:127.0.0.1)
Chapter 21 Lustre Monitoring and Troubleshooting 21-19

21.4.17 Handling/Debugging "LustreError: xxx went back
in time"
Each time Lustre changes the state of the disk file system, it records a unique
transaction number. Occasionally, when committing these transactions to the disk,
the last committed transaction number displays to other nodes in the cluster to assist
the recovery. Therefore, the promised transactions remain absolutely safe on the
disappeared disk.

This situation arises when:

■ You are using a disk device that claims to have data written to disk before it
actually does, as in case of a device with a large cache. If that disk device crashes
or loses power in a way that causes the loss of the cache, there can be a loss of
transactions that you believe are committed. This is a very serious event, and you
should run e2fsck against that storage before restarting Lustre.

■ As per the Lustre requirement, the shared storage used for failover is completely
cache-coherent. This ensures that if one server takes over for another, it sees the
most up-to-date and accurate copy of the data. In case of the failover of the server,
if the shared storage does not provide cache coherency between all of its ports,
then Lustre can produce an error.

If you know the exact reason for the error, then it is safe to proceed with no further
action. If you do not know the reason, then this is a serious issue and you should
explore it with your disk vendor.

If the error occurs during failover, examine your disk cache settings. If it occurs after
a restart without failover, try to determine how the disk can report that a write
succeeded, then lose the Data Device corruption or Disk Errors.

21.4.18 Lustre Error: "Slow Start_Page_Write"
The slow start_page_write message appears when the operation takes an
extremely long time to allocate a batch of memory pages. Use these pages to receive
network traffic first, and then write to disk.
21-20 Lustre 1.6 Operations Manual • May 2009

21.4.19 Drawbacks in Doing Multi-client O_APPEND
Writes
It is possible to do multi-client O_APPEND writes to a single file, but there are few
drawbacks that may make this a sub-optimal solution. These drawbacks are:

■ Each client needs to take an EOF lock on all the OSTs, as it is difficult to know
which OST holds the end of the file until you check all the OSTs. As all the clients
are using the same O_APPEND, there is significant locking overhead.

■ The second client cannot get all locks until the end of the writing of the first client,
as the taking serializes all writes from the clients.

■ To avoid deadlocks, the taking of these locks occurs in a known, consistent order.
As a client cannot know which OST holds the next piece of the file until the client
has locks on all OSTS, there is a need of these locks in case of a striped file.

21.4.20 Slowdown Occurs During Lustre Startup
When Lustre starts, the Lustre file system needs to read in data from the disk. For the
very first mdsrate run after the reboot, the MDS needs to wait on all the OSTs for
object precreation. This causes a slowdown to occur when Lustre starts up.

After the file system has been running for some time, it contains more data in cache
and hence, the variability caused by reading critical metadata from disk is mostly
eliminated. The file system now reads data from the cache.

21.4.21 Log Message ‘Out of Memory’ on OST
When planning the hardware for an OSS node, consider the memory usage of several
components in the Lustre system. If insufficient memory is available, an ‘out of
memory’ message can be logged.

During normal operation, several conditions indicate insufficient RAM on a server
node:

■ kernel "Out of memory" and/or "oom-killer" messages

■ Lustre "kmalloc of 'mmm' (NNNN bytes) failed..." messages

■ Lustre or kernel stack traces showing processes stuck in "try_to_free_pages"

For information on determining the MDS’s memory and OSS memory requirements,
see Memory Requirements.
Chapter 21 Lustre Monitoring and Troubleshooting 21-21

21.4.22 Number of OSTs Needed for Sustained
Throughput
The number of OSTs required for sustained throughput depends on your hardware
configuration. If you are adding an OST that is identical to an existing OST, you can
use the speed of the existing OST to determine how many more OSTs to add.

Keep in mind that adding OSTs affects resource limitations, such as bus bandwidth in
the OSS and network bandwidth of the OSS interconnect. You need to understand the
performance capability of all system components to develop an overall design that
meets your performance goals and scales to future system requirements.

Note – For best performance, put the MGS and MDT on separate devices.

21.4.23 Setting SCSI I/O Sizes
Some SCSI drivers default to a maximum I/O size that is too small for good Lustre
performance. we have fixed quite a few drivers, but you may still find that some
drivers give unsatisfactory performance with Lustre. As the default value is
hard-coded, you need to recompile the drivers to change their default. On the other
hand, some drivers may have a wrong default set.

If you suspect bad I/O performance and an analysis of Lustre statistics indicates that
I/O is not 1 MB, check /sys/block/<device>/queue/max_sectors_kb. If it is
less than 1024, set it to 1024 to improve the performance. If changing this setting does
not change the I/O size as reported by Lustre, you may want to examine the SCSI
driver code.
21-22 Lustre 1.6 Operations Manual • May 2009

CHAPTER 22

LustreProc

This chapter describes Lustre /proc entries and includes the following sections:

■ /proc Entries for Lustre

■ Lustre I/O Tunables

■ Debug Support

The proc file system acts as an interface to internal data structures in the kernel. It
can be used to obtain information about the system and to change certain kernel
parameters at runtime (sysctl).

The Lustre file system provides several proc file system variables that control aspects
of Lustre performance and provide information.

The proc variables are classified based on the subsystem they affect.
22-1

22.1 /proc Entries for Lustre
This section describes /proc entries for Lustre.

22.1.1 Finding Lustre
Use the proc files on the MGS to see the following:

■ All known file systems

cat /proc/fs/lustre/mgs/MGS/filesystems

spfs

lustre

■ The server names participating in a file system (for each file system that has at
least one server running)

cat /proc/fs/lustre/mgs/MGS/live/spfs

fsname: spfs

flags: 0x0 gen: 7

spfs-MDT0000

spfs-OST0000

All servers are named according to this convention: <fsname>-<MDT|OST><XXXX>
This can be shown for live servers under /proc/fs/lustre/devices:

cat /proc/fs/lustre/devices

0 UP mgs MGS MGS 11

1 UP mgc MGC192.168.10.34@tcp 1f45bb57-d9be-2ddb-c0b0-5431a49226705

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 7

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 UP lov lustre-clilov-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa04

8 UP mdc lustre-MDT0000-mdc-ce63ca00
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

9 UP osc lustre-OST0000-osc-ce63ca00
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

10 UP osc lustre-OST0001-osc-ce63ca00
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
22-2 Lustre 1.6 Operations Manual • May 2009

Or from the device label at any time:

e2label /dev/sda

lustre-MDT0000

22.1.2 Lustre Timeouts
Lustre uses two types of timeouts.

■ LND timeouts that ensure point-to-point communications complete in finite time
in the presence of failures. These timeouts are logged with the S_LND flag set.
They may not be printed as console messages, so you should check the Lustre log
for D_NETERROR messages, or enable printing of D_NETERROR messages to the
console (echo + neterror > /proc/sys/lnet/printk).

Congested routers can be a source of spurious LND timeouts. To avoid this,
increase the number of LNET router buffers to reduce back-pressure and/or
increase LND timeouts on all nodes on all connected networks. You should also
consider increasing the total number of LNET router nodes in the system so that
the aggregate router bandwidth matches the aggregate server bandwidth.

■ Lustre timeouts that ensure Lustre RPCs complete in finite time in the presence of
failures. These timeouts should always be printed as console messages. If Lustre
timeouts are not accompanied by LNET timeouts, then you need to increase the
lustre timeout on both servers and clients.

Specific Lustre timeouts are described below.

/proc/sys/lustre/timeout

This is the time period that a client waits for a server to complete an RPC (default is
100s). Servers wait half of this time for a normal client RPC to complete and a quarter
of this time for a single bulk request (read or write of up to 1 MB) to complete. The
client pings recoverable targets (MDS and OSTs) at one quarter of the timeout, and
the server waits one and a half times the timeout before evicting a client for being
"stale."

Note – Lustre sends periodic ‘PING’ messages to servers with which it had no
communication for a specified period of time. Any network activity on the file
system that triggers network traffic toward servers also works as a health check.

/proc/sys/lustre/ldlm_timeout

This is the time period for which a server will wait for a client to reply to an initial
AST (lock cancellation request) where default is 20s for an OST and 6s for an MDS. If
the client replies to the AST, the server will give it a normal timeout (half of the client
timeout) to flush any dirty data and release the lock.
Chapter 22 LustreProc 22-3

/proc/sys/lustre/fail_loc

This is the internal debugging failure hook.

See lustre/include/linux/obd_support.h for the definitions of individual
failure locations. The default value is 0 (zero).

sysctl -w lustre.fail_loc=0x80000122 # drop a single reply

/proc/sys/lustre/dump_on_timeout

This triggers dumps of the Lustre debug log when timeouts occur. The default value
is 0 (zero).

/proc/sys/lustre/dump_on_eviction

This triggers dumps of the Lustre debug log when an eviction occurs. The default
value is 0 (zero). By default, debug logs are dumped to the /tmp folder; this location
can be changed via /proc.
22-4 Lustre 1.6 Operations Manual • May 2009

22.1.3 Adaptive Timeouts in Lustre
Lustre 1.6.5 introduces an adaptive mechanism to set RPC timeouts. This feature
causes servers to track actual RPC completion times, and to report estimated
completion times for future RPCs back to clients. The clients use these estimates to
set their future RPC timeout values. If server request processing slows down for any
reason, the RPC completion estimates increase, and the clients allow more time for
RPC completion.

If RPCs queued on the server approach their timeouts, then the server sends an early
reply to the client, telling the client to allow more time. In this manner, clients avoid
RPC timeouts and disconnect/reconnect cycles. Conversely, as a server speeds up,
RPC timeout values decrease, allowing faster detection of non-responsive servers and
faster attempts to reconnect to a server's failover partner.

Caution – In Lustre 1.6.5, adaptive timeouts are disabled, by default, in order not to
require users applying this maintenance release to use adaptive timeouts. Adaptive
timeouts will be enabled, by default, in Lustre 1.8.

In previous Lustre versions, the static obd_timeout (/proc/sys/lustre/timeout)
value was used as the maximum completion time for all RPCs; this value also
affected the client-server ping interval and initial recovery timer. Now, with adaptive
timeouts, obd_timeout is only used for the ping interval and initial recovery
estimate. When a client reconnects during recovery, the server uses the client's
timeout value to reset the recovery wait period; i.e., the server learns how long the
client had been willing to wait, and takes this into account when adjusting the
recovery period.
Chapter 22 LustreProc 22-5

22.1.3.1 Configuring Adaptive Timeouts

One of the goals of adaptive timeouts is to relieve users from having to tune the
obd_timeout value. In general, obd_timeout should no longer need to be
changed. However, there are several parameters related to adaptive timeouts that
users can set. Keep in mind that in most situations, the default values will be usable.

The following parameters can be set as module parameters in modprobe.conf or at
runtime in /sys/module/ptlrpc.1

Note – This directory path may be different on some systems.

1. The specific sub-directory in ptlrpc containing the parameters is system dependent.

Parameter Description

at_min Sets the minimum adaptive timeout (in seconds). Default value is 0.
The at_min parameter is the minimum processing time that a server
will report. Clients base their timeouts on this value, but they do not
use this value directly. If you experience cases in which, for unknown
reasons, the adaptive timeout value is too short and clients time out
their RPCs, then you can increase the at_min value to compensate
for this. Ideally, users should leave at_min set to its default.

at_max Sets the maximum adaptive timeout (in seconds). In Lustre 1.6.5, the
default value is 0*. This setting causes adaptive timeouts to be
disabled and the old fixed-timeout method (obd_timeout) to be
used. The at_max parameter is an upper-limit on the service time
estimate, and is used as a ‘failsafe’ in case of rogue/bad/buggy code
that would lead to never-ending estimate increases. If at_max is
reached, an RPC request is considered ‘broken’ and it should time
out.

NOTE: It is possible that slow hardware might validly cause the
service estimate to increase beyond the default value of at_max. In
this case, you should increase at_max to the maximum time you are
willing to wait for an RPC completion.

at_history Sets a time period (in seconds) within which adaptive timeouts
remember the slowest event that occurred. Default value is 600.
22-6 Lustre 1.6 Operations Manual • May 2009

In Lustre 1.6.5, adaptive timeouts are disabled, by default.2 To enable adaptive
timeouts, do one of the following:

■ At compile time, rebuild Lustre with:

--enable-adaptive-timeouts

■ At run time, set at_max to 600 on all nodes.

$ echo 600 > /sys/module/ptlrpc/at_max

■ In modprobe.conf, run:

options ptlrpc at_max=600

The modprobe.conf line should be added (s/run/add) on all nodes before Lustre
modules are loaded.

To disable adaptive timeouts, at run time, set at_max to 0 on all nodes.

$ echo 0 > /sys/module/ptlrpc/at_max

at_early_margin Sets how far before the deadline Lustre sends an early reply. Default
value is 5†.

at_extra Sets the incremental amount of time that a server asks for with each
early reply. The server does not know how much time the RPC will
take, so it asks for a fixed value. Default value is 30‡. When a server
finds a queued request about to time out (and needs to send an early
reply out), the server adds the at_extra value (up to its estimate). If
the time expires, the Lustre client will enter recovery status and
reconnect to restore it to normal status.
If you see multiple early replies for the same RPC asking for multiple
30-second increases, change the at_extra value to a larger number
to cut down on early replies sent and, therefore, network load.

ldlm_enqueue_min Sets the minimum lock enqueue time. Default value is 100. The
ldlm_enqueue time is the maximum of the measured enqueue
estimate (influenced by at_min and at_max parameters), multiplied
by a weighting factor, and the ldlm_enqueue_min setting. LDLM
lock enqueues were based on the obd_timeout value; now they
have a dedicated minimum value. Lock enqueues increase as the
measured enqueue times increase (similar to adaptive timeouts).

* In future releases, the default will be 600 (adaptive timeouts will be enabled).

† This default was chosen as a reasonable time in which to send a reply from the point at which it was sent.

‡ This default was chosen as a balance between sending too many early replies for the same RPC and overesti-
mating the actual completion time.

2. In Lustre 1.8, adaptive timeouts will be enabled, by default.

Parameter Description
Chapter 22 LustreProc 22-7

Note – Changing adaptive timeouts status at runtime may cause transient timeout,
reconnect, recovery, etc.

22.1.3.2 Interpreting Adaptive Timeout Information

Adaptive timeout information can be read from /proc/fs/lustre/*/timeouts files (for
each service and client) or with the lctl command.

This is an example from /proc/fs/lustre/*/timeouts files:

cfs21:~# cat /proc/fs/lustre/ost/OSS/ost_io/timeouts

This is an example using the lctl command:

$ lctl get_param -n ost.*.ost_io.timeouts

This is the sample output:

service : cur 33 worst 34 (at 1193427052, 0d0h26m40s ago) 1 1 33 2

The ost_io service on this node is currently reporting an estimate of 33 seconds. The
worst RPC service time was 34 seconds, and it happened 26 minutes ago.

The output also provides a history of service times. In the example, there are 4 "bins"
of adaptive_timeout_history, with the maximum RPC time in each bin
reported. In 0-150 seconds, the maximum RPC time was 1, with the same result in
150-300 seconds. From 300-450 seconds, the worst (maximum) RPC time was 33
seconds, and from 450-600s the worst time was 2 seconds. The current estimated
service time is the maximum value of the 4 bins (33 seconds in this example).

Service times (as reported by the servers) are also tracked in the client OBDs:

cfs21:~# cat /proc/fs/lustre/osc/lustre-OST0001-osc-ce129800/timeouts
last reply : 1193428639, 0d0h00m00s ago
network : cur 1 worst 2 (at 1193427053, 0d0h26m26s ago) 1 1 1 1
portal 6 : cur 33 worst 34 (at 1193427052, 0d0h26m27s ago) 33 33 33 2
portal 28 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 1 1 1
portal 7 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 0 1 1
portal 17 : cur 1 worst 1 (at 1193426177, 0d0h41m02s ago) 1 0 0 1

In this case, RPCs to portal 6, the OST_IO_PORTAL (see
lustre/include/lustre/lustre_idl.h), shows the history of what the ost_io
portal has reported as the service estimate.
22-8 Lustre 1.6 Operations Manual • May 2009

Server statistic files also show the range of estimates in the normal
min/max/sum/sumsq manner.

cfs21:~# cat /proc/fs/lustre/mdt/MDS/mds/stats

...

req_timeout 6 samples [sec] 1 10 15 105

...

22.1.4 LNET Information
This section describes /proc entries for LNET information.

/proc/sys/lnet/peers

Shows all NIDs known to this node and also gives information on the queue state.

cat /proc/sys/lnet/peers

nid refs state max rtr min tx min queue

0@lo 1 ~rtr 0 0 0 0 0 0

192.168.10.35@tcp1 ~rtr 8 8 8 8 6 0

192.168.10.36@tcp1 ~rtr 8 8 8 8 6 0

192.168.10.37@tcp1 ~rtr 8 8 8 8 6 0

The fields are explained below:

Field Description

refs A reference count (principally used for debugging)

state Only valid to refer to routers. Possible values:
• ~ rtr (indicates this node is not a router)
• up/down (indicates this node is a router)
• auto_fail must be enabled

max Maximum number of concurrent sends from this peer

rtr Routing buffer credits.

min Minimum routing buffer credits seen.

tx Send credits.

min Minimum send credits seen.

queue Total bytes in active/queued sends.
Chapter 22 LustreProc 22-9

Credits work like a semaphore. At start they are initialized to allow a certain number
of operations (8 in this example). LNET keeps a track of the minimum value so that
you can see how congested a resource was.

If rtr/tx is less than max, there are operations in progress. The number of
operations is equal to rtr or tx subtracted from max.

If rtr/tx is greater that max, there are operations blocking.

LNET also limits concurrent sends and router buffers allocated to a single peer so
that no peer can occupy all these resources.

/proc/sys/lnet/nis

cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 3 0 0 0 0

192.168.10.34@tcp 4 8 256 256 252

Shows the current queue health on this node. The fields are explained below:

Subtracting max – tx yields the number of sends currently active. A large or
increasing number of active sends may indicate a problem.

cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 2 0 0 0 0

10.67.73.173@tcp 4 8 256 256 253

Field Description

nid Network interface

refs Internal reference counter

peer Number of peer-to-peer send credits on this NID. Credits are used to
size buffer pools

max Total number of send credits on this NID.

tx Current number of send credits available on this NID.

min Lowest number of send credits available on this NID.

queue Total bytes in active/queued sends.
22-10 Lustre 1.6 Operations Manual • May 2009

22.1.5 Free Space Distribution
Free-space stripe weighting, as set, gives a priority of "0" to free space (versus trying
to place the stripes "widely" -- nicely distributed across OSSs and OSTs to maximize
network balancing). To adjust this priority (as a percentage), use the
qos_prio_free proc tunable:

$ cat /proc/fs/lustre/lov/<fsname>-mdtlov/qos_prio_free

Currently, the default is 90%. You can permanently set this value by running this
command on the MGS:

$ ctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Setting the priority to 100% means that OSS distribution does not count in the
weighting, but the stripe assignment is still done via weighting. If OST 2 has twice as
much free space as OST 1, it is twice as likely to be used, but it is NOT guaranteed to
be used.

22.1.5.1 Managing Stripe Allocation

The MDS uses two methods to manage stripe allocation and determine which OSTs
to use for file object storage:

■ QOS

Quality of Service (QOS) considers OSTs’ available blocks, speed, and the number
of existing objects, etc. Using these criteria, the MDS chooses or avoids some OSTs
for file object storage.

■ RR

Round-Robin (RR) allocates objects evenly across all OSTs. The round-robin stripe
allocator is faster than QOS, and maximizes network balancing and improved
performance.

Whether QOS or RR is used depends on the setting of the qos_threshold_rr proc
tunable. The qos_threshold_rr variable specifies a percentage threshold where
the use of QOS or RR becomes more/less likely. The qos_threshold_rr tunable
can be set as an integer, from 0 to 100, and results in this stripe allocation behavior:

■ If qos_threshold_rr is set to 0, then QOS is always used

■ If qos_threshold_rr is set to 100, then RR is always used

■ The larger the qos_threshold_rr setting, the greater the possibility that RR is
used instead of QOS
Chapter 22 LustreProc 22-11

22.2 Lustre I/O Tunables
The section describes I/O tunables.

/proc/fs/lustre/llite/<fsname>-<uid>/max_cache_mb

cat /proc/fs/lustre/llite/lustre-ce63ca00/max_cached_mb 128

This tunable is the maximum amount of inactive data cached by the client (default is
3/4 of RAM).

22.2.1 Client I/O RPC Stream Tunables
The Lustre engine always attempts to pack an optimal amount of data into each I/O
RPC and attempts to keep a consistent number of issued RPCs in progress at a time.
Lustre exposes several tuning variables to adjust behavior according to network
conditions and cluster size. Each OSC has its own tree of these tunables. For example:

$ ls -d /proc/fs/lustre/osc/OSC_client_ost1_MNT_client_2 /localhost

/proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost2_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost3_MNT_localhost

$ ls /proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

blocksizefilesfreemax_dirty_mb ost_server_uuid stats

... and so on.

RPC stream tunables are described below.

/proc/fs/lustre/osc/<object name>/max_dirty_mb

This tunable controls how many MBs of dirty data can be written and queued up in
the OSC. POSIX file writes that are cached contribute to this count. When the limit is
reached, additional writes stall until previously-cached writes are written to the
server. This may be changed by writing a single ASCII integer to the file. Only values
between 0 and 512 are allowable. If 0 is given, no writes are cached. Performance
suffers noticeably unless you use large writes (1 MB or more).

/proc/fs/lustre/osc/<object name>/cur_dirty_bytes

This tunable is a read-only value that returns the current amount of bytes written and
cached on this OSC.
22-12 Lustre 1.6 Operations Manual • May 2009

/proc/fs/lustre/osc/<object name>/max_pages_per_rpc

This tunable is the maximum number of pages that will undergo I/O in a single RPC
to the OST. The minimum is a single page and the maximum for this setting is
platform dependent (256 for i386/x86_64, possibly less for ia64/PPC with larger
PAGE_SIZE), though generally amounts to a total of 1 MB in the RPC.

/proc/fs/lustre/osc/<object name>/max_rpcs_in_flight

This tunable is the maximum number of concurrent RPCs in flight from an OSC to its
OST. If the OSC tries to initiate an RPC but finds that it already has the same number
of RPCs outstanding, it will wait to issue further RPCs until some complete. The
minimum setting is 1 and maximum setting is 32. If you are looking to improve small
file I/O performance, increase the max_rpcs_in_flight value.

To maximize performace, the value for max_dirty_mb is recommended to be 4 *
max_pages_per_rpc * max_rpcs_in_flight.

Note – The <object name> varies depending on the specific Lustre configuration.
For <object name> examples, refer to the sample command output.
Chapter 22 LustreProc 22-13

22.2.2 Watching the Client RPC Stream
In the same directory is a file that gives a histogram of the make-up of previous
RPCs.

cat /proc/fs/lustre/osc/spfs-OST0000-osc-c45f9c00/rpc_stats

snapshot_time: 1174867307.156604 (secs.usecs)

read RPCs in flight: 0

write RPCs in flight: 0

pending write pages: 0

pending read pages: 0

read write

pages per rpc rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

rpcs in flight rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

read write

offset rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

RPCs in flight

This represents the number of RPCs that are issued by the OSC but are not complete
at the time of the snapshot. It should always be less than or equal to
max_rpcs_in_flight.

pending {read,write} pages

These fields show the number of pages that have been queued for I/O in the OSC.

other RPCs in flight when a new RPC is sent

When an RPC is sent, it records the number of other RPCs that were pending in this
table. When the first RPC is sent, the 0: row will be incremented. If the first RPC is
sent while another is pending the 1: row will be incremented and so on. The number
of RPCs that are pending as each RPC *completes* is not tabulated. This table is a
good way of visualizing the concurrency of the RPC stream. Ideally you will see a
large clump around the max_rpcs_in_flight value which shows that the network
is being kept busy.

pages in each RPC

As an RPC is sent, the number of pages it is made of is recorded in order in this table.
A single page RPC increments the 0: row, 128 pages the 7: row and so on.

These histograms can be cleared by writing any value into the rpc_stats file.
22-14 Lustre 1.6 Operations Manual • May 2009

22.2.3 Client Read-Write Offset Survey
The offset_stats parameter maintains statistics for occurrences where a series of
read or write calls from a process did not access the next sequential location. The
offset field is reset to 0 (zero) whenever a different file is read/written.

Read/write offset statistics are off, by default. The statistics can be activated by
writing anything into the offset_stats file.

Example:

cat /proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats

snapshot_time: 1155748884.591028 (secs.usecs)

R/W PID RANGE STARTRANGE ENDSMALLEST EXTENTLARGEST EXTENTOFFSET

R 8385 0 128 128 128 0

R 8385 0 224 224 224 -128

W 8385 0 250 50 100 0

W 8385 100 1110 10 500 -150

W 8384 0 5233 5233 5233 0

R 8385 500 600 100 100 -610

Where:

Field Description

R/W Whether the non-sequential call was a read or write

PID Process ID which made the read/write call.

Range Start/Range End Range in which the read/write calls were sequential.

Smallest Extent Smallest extent (single read/write) in the corresponding range.

Largest Extent Largest extent (single read/write) in the corresponding range.

Offset Difference from the previous range end to the current range start.
For example, Smallest-Extent indicates that the writes in the
range 100 to 1110 were sequential, with a minimum write of 10
and a maximum write of 500. This range was started with an
offset of -150. That means this is the difference between the last
entry’s range-end and this entry’s range-start for the same file.
The rw_offset_stats file can be cleared by writing to it:

echo >
/proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats
Chapter 22 LustreProc 22-15

22.2.4 Client Read-Write Extents Survey
Client-Based I/O Extent Size Survey

The rw_extent_stats histogram in the llite directory shows you the statistics for
the sizes of the read-write I/O extents. This file does not maintain the per-process
statistics.

Example:

$ cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats

snapshot_time: 1213828728.348516 (secs.usecs)

read | write

extents calls % cum% | calls % cum%

0K - 4K : 0 0 0 | 2 2 2

4K - 8K : 0 0 0 | 0 0 2

8K - 16K : 0 0 0 | 0 0 2

16K - 32K : 0 0 0 | 20 23 26

32K - 64K : 0 0 0 | 0 0 26

64K - 128K : 0 0 0 | 51 60 86

128K - 256K : 0 0 0 | 0 0 86

256K - 512K : 0 0 0 | 0 0 86

512K - 1024K : 0 0 0 | 0 0 86

1M - 2M : 0 0 0 | 11 13 100

The file can be cleared by issuing the following command:

$ echo > cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats
22-16 Lustre 1.6 Operations Manual • May 2009

Per-Process Client I/O Statistics

The extents_stats_per_process file maintains the I/O extent size statistics on a
per-process basis. So you can track the per-process statistics for the last
MAX_PER_PROCESS_HIST processes.

Example:

$ cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats_per_process

snapshot_time: 1213828762.204440 (secs.usecs)

read | write

extents calls % cum% | calls % cum%

PID: 11488

0K - 4K : 0 0 0 | 0 0 0

4K - 8K : 0 0 0 | 0 0 0

8K - 16K : 0 0 0 | 0 0 0

16K - 32K : 0 0 0 | 0 0 0

32K - 64K : 0 0 0 | 0 0 0

64K - 128K : 0 0 0 | 0 0 0

128K - 256K : 0 0 0 | 0 0 0

256K - 512K : 0 0 0 | 0 0 0

512K - 1024K :0 0 0 | 0 0 0

1M - 2M : 0 0 0 | 10 100 100

PID: 11491

0K - 4K : 0 0 0 | 0 0 0

4K - 8K : 0 0 0 | 0 0 0

8K - 16K : 0 0 0 | 0 0 0

16K - 32K : 0 0 0 | 20 100 100

PID: 11424

0K - 4K : 0 0 0 | 0 0 0

4K - 8K : 0 0 0 | 0 0 0

8K - 16K : 0 0 0 | 0 0 0

16K - 32K : 0 0 0 | 0 0 0

32K - 64K : 0 0 0 | 0 0 0

64K - 128K : 0 0 0 | 16 100 100

PID: 11426

0K - 4K : 0 0 0 | 1 100 100

PID: 11429

0K - 4K : 0 0 0 | 1 100 100
Chapter 22 LustreProc 22-17

22.2.5 Watching the OST Block I/O Stream
Similarly, there is a brw_stats histogram in the obdfilter directory which shows you
the statistics for number of I/O requests sent to the disk, their size and whether they
are contiguous on the disk or not.

cat /proc/fs/lustre/obdfilter/lustre-OST0000/brw_stats

snapshot_time: 1174875636.764630 (secs:usecs)

read write

pages per brw brws % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont pages rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont blocks rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

dio frags rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk ios in flight rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

io time (1/1000s) rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk io size rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

The fields are explained below:

Field Description

pages per brw Number of pages per RPC request, which should match aggregate client
rpc_stats.

discont pages Number of discontinuities in the logical file offset of each page in a
single RPC.

discont blocks Number of discontinuities in the physical block allocation in the file
system for a single RPC.
22-18 Lustre 1.6 Operations Manual • May 2009

22.2.6 Using File Readahead and Directory Statahead
Lustre 1.6.5.1 introduces file readahead and directory statahead functionality that
read data into memory in anticipation of a process actually requesting the data. File
readahead functionality reads file content data into memory. Directory statahead
functionality reads metadata into memory. When readahead and/or statahead work
well, a data-consuming process finds that the information it needs is available when
requested, and it is unnecessary to wait for network I/O.

22.2.6.1 Tuning File Readahead

File readahead is triggered when two or more sequential reads by an application fail
to be satisfied by the Linux buffer cache. The size of the initial readahead is 1 MB.
Additional readaheads grow linearly, and increment until the readahead cache on the
client is full at 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_mb

This tunable controls the maximum amount of data readahead on a file. Files are read
ahead in RPC-sized chunks (1 MB or the size of read() call, if larger) after the second
sequential read on a file descriptor. Random reads are done at the size of the read()
call only (no readahead). Reads to non-contiguous regions of the file reset the
readahead algorithm, and readahead is not triggered again until there are sequential
reads again. To disable readahead, set this tunable to 0. The default value is 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_whole_mb

This tunable controls the maximum size of a file that is read in its entirety, regardless
of the size of the read().
Chapter 22 LustreProc 22-19

22.2.6.2 Tuning Directory Statahead

When the ls -l process opens a directory, its process ID is recorded. When the first
directory entry is ''stated'' with this recorded process ID, a statahead thread is
triggered which stats ahead all of the directory entries, in order. The ls -l process
can use the stated directory entries directly, improving performance.

/proc/fs/lustre/llite/*/statahead_max

This tunable controls whether directory statahead is enabled and the maximum
statahead count. By default, statahead is active.

To disable statahead, set this tunable to:

echo 0 > /proc/fs/lustre/llite/*/statahead_max

To set the maximum statahead count (n), set this tunable to:

echo n > /proc/fs/lustre/llite/*/statahead_max

The maximum value of n is 8192.

/proc/fs/lustre/llite/*/statahead_status

This is a read-only interface that indicates the current statahead status.
22-20 Lustre 1.6 Operations Manual • May 2009

22.2.7 mballoc History
/proc/fs/ldiskfs/sda/mb_history

mballoc stands for Multi-Block-Allocate. It is Lustre’s ability to ask ext3 to allocate
multiple blocks with a single request to the block allocator. Normally, an ext3 file
system can allocate only one block per time. Each mballoc-enabled partition has this
file. Sample output:

pid inode goal result found grpscr \ merge tailbroken
2838 139267 17/12288/1 17/12288/1 1 0 0 \ M 1 8192
2838 139267 17/12289/1 17/12289/1 1 0 0 \ M 0 0
2838 139267 17/12290/1 17/12290/1 1 0 0 \ M 1 2
2838 24577 3/12288/1 3/12288/1 1 0 0 \ M 1 8192
2838 24578 3/12288/1 3/771/1 1 1 1 \ 0 0
2838 32769 4/12288/1 4/12288/1 1 0 0 \ M 1 8192
2838 32770 4/12288/1 4/12289/1 13 1 1 \ 0 0
2838 32771 4/12288/1 5/771/1 26 2 1 \ 0 0
2838 32772 4/12288/1 5/896/1 31 2 1 \ 1 128
2838 32773 4/12288/1 5/897/1 31 2 1 \ 0 0
2828 32774 4/12288/1 5/898/1 31 2 1 \ 1 2
2838 32775 4/12288/1 5/899/1 31 2 1 \ 0 0
2838 32776 4/12288/1 5/900/1 31 2 1 \ 1 4
2838 32777 4/12288/1 5/901/1 31 2 1 \ 0 0
2838 32778 4/12288/1 5/902/1 31 2 1 \ 1 2
2838 32779 4/12288/1 5/903/1 31 2 1 \ 0 0

pid inode goal result found grpscr \ merge tailbroken
2838 32780 4/12288/1 5/904/1 31 2 1 \ 1 8
2838 32781 4/12288/1 5/905/1 31 2 1 \ 0 0
2838 32782 4/12288/1 5/906/1 31 2 1 \ 1 2
2838 32783 4/12288/1 5/907/1 31 2 1 \ 0 0
2838 32784 4/12288/1 5/908/1 31 2 1 \ 1 4
2838 32785 4/12288/1 5/909/1 31 2 1 \ 0 0
2838 32786 4/12288/1 5/910/1 31 2 1 \ 1 2
2838 32787 4/12288/1 5/911/1 31 2 1 \ 0 0
2838 32788 4/12288/1 5/912/1 31 2 1 \ 1 16
2838 32789 4/12288/1 5/913/1 31 2 1 \ 0 0
2828 32790 4/12288/1 5/914/1 31 2 0 \ 1 2
2838 32791 4/12288/1 5/915/1 31 2 1 \ 0 0
2838 32792 4/12288/1 5/916/1 31 2 1 \ 1 4
2838 32793 4/12288/1 5/917/1 31 2 1 \ 0 0
2838 32794 4/12288/1 5/918/1 31 2 1 \ 1 2
2838 32795 4/12288/1 5/919/1 31 2 1 \ 0 0
2828 32796 4/12288/1 5/920/1 31 2 1 \ 1 8
2838 32797 4/12288/1 5/921/1 31 2 1 \ 0 0
2838 32798 4/12288/1 5/922/1 31 2 1 \ 1 2
2838 32799 4/12288/1 5/923/1 31 2 1 \ 0 0
2838 32800 4/12288/1 5/924/1 31 2 1 \ 1 4
Chapter 22 LustreProc 22-21

pid inode goal result foundgrps cr \ merge tailbroken
2838 32801 4/12288/1 5/925/1 31 2 1 \ 0 0
2838 32802 4/12288/1 5/926/1 31 2 1 \ 1 2
2838 32803 4/12288/1 5/927/1 31 2 1 \ 0 0
2838 32804 4/12288/1 5/928/1 31 2 1 \ 1 32
2838 32805 4/12288/1 5/929/1 31 2 1 \ 0 0
2838 32806 4/12288/1 5/930/1 31 2 1 \ 1 2
2838 32807 4/12288/1 5/931/1 31 2 1 \ 0 0
2838 24579 3/12288/1 3/12289/1 11 1 1 \ 0 0

The parameters are described below:

Most customers are probably interested in found/cr. If cr is 0 1 and found is less
than 100, then mballoc is doing quite well.

Also, number-of-blocks-in-request (third number in the goal triple) can tell the
number of blocks requested by the obdfilter. If the obdfilter is doing a lot of small
requests (just few blocks), then either the client is processing input/output to a lot of
small files, or something may be wrong with the client (because it is better if client
sends large input/output requests). This can be investigated with the OSC
rpc_stats or OST brw_stats mentioned above.

Parameter Description

pid Process that made the allocation.

inode inode number allocated blocks

goal Initial request that came to mballoc (group/block-in-group/number-of-blocks)

result What mballoc actually found for this request.

found Number of free chunks mballoc found and measured before the final decision.

grps Number of groups mballoc scanned to satisfy the request.

cr Stage at which mballoc found the result:
0 - best in terms of resource allocation. The request was 1MB or larger and was
satisfied directly via the kernel buddy allocator.
1 - regular stage (good at resource consumption)
2 - fs is quite fragmented (not that bad at resource consumption)
3 - fs is very fragmented (worst at resource consumption)

queue Total bytes in active/queued sends.

merge Whether the request hit the goal. This is good as extents code can now merge
new blocks to existing extent, eliminating the need for extents tree growth.

tail Number of blocks left free after the allocation breaks large free chunks.

broken How large the broken chunk was.
22-22 Lustre 1.6 Operations Manual • May 2009

Number of groups scanned (grps column) should be small. If it reaches a few dozen
often, then either your disk file system is pretty fragmented or mballoc is doing
something wrong in the group selection part.

22.2.8 mballoc3 Tunables
Lustre version 1.6.1 and later includes mballoc3, which was built on top of mballoc2.
By default, mballoc3 is enabled, and adds these features:

■ Pre-allocation for single files (helps to resist fragmentation)

■ Pre-allocation for a group of files (helps to pack small files into large, contiguous
chunks)

■ Stream allocation (helps to decrease the seek rate)

The following mballoc3 tunables are currently available:

Field Description

stats Enables/disables the collection of statistics. Collected statistics can be found
in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final decision
to avoid livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final decision.
This is useful for a very small request, to resist fragmentation of big free
chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via
buddy structures is used.

stream_req Requests smaller or equal to this value are packed together to form large
write I/Os.
Chapter 22 LustreProc 22-23

The following tunables, providing more control over allocation policy, will be
available in the next version:

Field Description

stats Enables/disables the collection of statistics. Collected statistics can be
found in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final
decision to avoid livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final
decision. This is useful for a very small request, to resist fragmentation of
big free chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via
buddy structures is used.

small_req All requests are divided into 3 categories:
< small_req (packed together to form large, aggregated requests)
< large_req (allocated mostly in linearly)
> large_req (very large requests so the arm seek does not matter)

The idea is that we try to pack small requests to form large requests, and
then place all large requests (including compound from the small ones)
close to one another, causing as few arm seeks as possible.

large_req

prealloc_table The amount of space to preallocate depends on the current file size. The
idea is that for small files we do not need 1 MB preallocations and for
large files, 1 MB preallocations are not large enough; it is better to
preallocate 4 MB.

group_prealloc The amount of space preallocated for small requests to be grouped.
22-24 Lustre 1.6 Operations Manual • May 2009

22.2.9 Locking
/proc/fs/lustre/ldlm/ldlm/namespaces/<OSC name|MDCname>/lru_size

The lru_size parameter is used to control the number of client-side locks in an LRU
queue. LRU size is dynamic, based on load. This optimizes the number of locks
available to nodes that have different workloads (e.g., login/build nodes vs. compute
nodes vs. backup nodes).

The total number of locks available is a function of the server’s RAM. The maximum
is 50 locks/MB. If there is too much memory pressure, then the LRU size is shrunk.

■ To enable automatic LRU sizing, set the lru_size parameter to 0. In this case, the
lru_size parameter shows the current number of locks being used on the export.
(In Lustre 1.6.5.1 and later, LRU sizing is enabled by default.)

■ To specify a maximum number of locks, set the lru_size parameter to a value > 0
(former numbers are okay, 100 * CPU_NR). We recommend that you only increase
the LRU size on a few login nodes where users access the file system interactively.

To clear the LRU on a single client, and as a result flush client cache, without
changing the lru_size value:

$ lctl set_param ldlm.namespaces.<osc_name|mdc_name>.lru_size=clear

If you shrink the LRU size below the number of existing unused locks, then the
unused locks are canceled immediately. Use echo clear to cancel all locks without
changing the value.

To disable LRU sizing, run this command on the Lustre clients:

$ lctl set_param ldlm.namespaces.*osc*.lru_size=$((NR_CPU*100))

Replace NR_CPU value with the number of CPUs on the node.
Chapter 22 LustreProc 22-25

22.3 Debug Support
/proc/sys/lnet/debug

By default, Lustre generates a detailed log of all its operations to aid in debugging.
The level of debugging can affect the performance or speed you achieve with Lustre.
Therefore, it is useful to reduce this overhead by turning down the debug level3 to
improve performance. Raise the debug level when you need to collect the logs for
debugging problems.

You can verify the debug level used by examining the sysctl that controls the
debugging as shown below:

sysctl lnet.debug

lnet.debug = -1

In the above example, -1 indicates full debugging; it is a bitmask. You can disable
debugging completely by running the following command on all the concerned
nodes:

sysctl -w lnet.debug=0

lnet.debug = 0

The appropriate debug level for a production environment is 0x3f0400. It collects
enough high-level information to aid debugging, but it does not cause any serious
performance impact.

You can also verify and change the debug level using the /proc interface in Lustre as
shown below:

cat /proc/sys/lnet/debug

And change it to:

echo 0x3f0400 > /proc/sys/lnet/debug

/proc/sys/lnet/subsystem_debug

This controls the debug logs3 for subsystems (see S_* definitions).

/proc/sys/lnet/debug_path

This indicates the location where debugging symbols should be stored for gdb. The
default is set to /r/tmp/lustre-log-localhost.localdomain.

These values can also be set via sysctl -w lnet.debug={value}

3. This controls the level of Lustre debugging kept in the internal log buffer. It does not alter the level of
debugging that goes to syslog.
22-26 Lustre 1.6 Operations Manual • May 2009

Note – The above entries only exist when Lustre has already been loaded.

/proc/sys/lnet/panic_on_lbug

This causes Lustre to call ''panic'' when it detects an internal problem (an LBUG);
panic crashes the node. This is particularly useful when a kernel crash dump utility
is configured. The crash dump is triggered when the internal inconsistency is
detected by Lustre.

/proc/sys/lnet/upcall

This allows you to specify the path to the binary which will be invoked when an
LBUG is encountered. This binary is called with four parameters. The first one is the
string ''LBUG''. The second one is the file where the LBUG occurred. The third one is
the function name. The fourth one is the line number in the file.

22.3.1 RPC Information for Other OBD Devices
Some OBD devices maintain a count of the number of RPC events that they process.
Sometimes these events are more specific to operations of the device, like llite, than
actual raw RPC counts.

$ find /proc/fs/lustre/ -name stats

/proc/fs/lustre/osc/lustre-OST0001-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0000-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0001-osc/stats

/proc/fs/lustre/osc/lustre-OST0000-osc/stats

/proc/fs/lustre/mdt/MDS/mds_readpage/stats

/proc/fs/lustre/mdt/MDS/mds_setattr/stats

/proc/fs/lustre/mdt/MDS/mds/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/ab206805-0630-6647-8543-d
24265c91a3d/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/08ac6584-6c4a-3536-2c6d-b
36cf9cbdaa0/stats

/proc/fs/lustre/mds/lustre-MDT0000/stats

/proc/fs/lustre/ldlm/services/ldlm_canceld/stats

/proc/fs/lustre/ldlm/services/ldlm_cbd/stats

/proc/fs/lustre/llite/lustre-ce63ca00/stats
Chapter 22 LustreProc 22-27

The OST .../stats files can be used to track the performance of RPCs that the OST
gets from all clients. It is possible to get a periodic dump of values from these files,
for instance every 10s, that show the RPC rates (similar to iostat) by using the
llstat.pl tool like:

llstat /proc/fs/lustre/osc/lustre-OST0000-osc/stats

/usr/bin/llstat: STATS on 09/14/07
/proc/fs/lustre/osc/lustre-OST0000-osc/stats on 192.168.10.34@tcp

snapshot_time 1189732762.835363

ost_create 1

ost_get_info 1

ost_connect 1

ost_set_info 1

obd_ping 212

You can clear the stats by giving the -c option to llstat.pl. You can also mention
how frequently (after how many seconds) it should clear the stats by mentioning an
integer in -i option. For example, following is the output with -c and -i10 (stats
for every 10 seconds):

$ llstat -c -i10 /proc/fs/lustre/ost/OSS/ost_io/stats

/usr/bin/llstat: STATS on 06/06/07 /proc/fs/lustre/ost/OSS/ost_io/ \
stats on 192.168.16.35@tcp
snapshot_time 1181074093.276072

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074103.284895
Name Cur.CountCur.Rate#EventsUnit\ last min avg max stddev
req_waittime8 0 8 [usec] 2078\ 34 259.75 868 317.49
req_qdepth 8 0 8 [reqs] 1\ 0 0.12 1 0.35
req_active 8 0 8 [reqs] 11\ 1 1.38 2 0.52
reqbuf_avail8 0 8 [bufs] 511\ 63 63.88 64 0.35
ost_write 8 0 8 [bytes]1697677\72914212209.6238757991874.29

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074113.290180
Name Cur.CountCur.Rate#EventsUnit \ lastmin avg max stddev
req_waittime31 3 39 [usec] 30011\ 34 822.79 12245 2047.71
req_qdepth 31 3 39 [reqs] 0\ 0 0.03 1 0.16
req_active 31 3 39 [reqs] 58\ 1 1.77 3 0.74
reqbuf_avail31 3 39 [bufs] 1977\ 63 63.79 64 0.41
ost_write 30 3 38 [bytes]10284679\15019315325.16910694197776.51

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074123.325560
Name Cur.CountCur.Rate#Events Unit \ last minavgmax stddev
req_waittime21 2 60 [usec] 14970\ 34784.32122451878.66
req_qdepth 21 2 60 [reqs] 0\ 0 0.02 1 0.13
req_active 21 2 60 [reqs] 33\ 1 1.70 3 0.70
reqbuf_avail21 2 60 [bufs] 1341\ 6363.82 64 0.39
ost_write 21 2 59 [bytes]7648424\ 15019332725.08910694
180397.87
22-28 Lustre 1.6 Operations Manual • May 2009

Where:

The events common to all services are:

Some service-specific events of interest are:

Parameter Description

Cur. Count Number of events of each type sent in the last interval (in this example,
10s)

Cur. Rate Number of events per second in the last interval

#Events Total number of such events since the system started

Unit Unit of measurement for that statistic (microseconds, requests, buffers)

last Average rate of these events (in units/event) for the last interval during
which they arrived. For instance, in the above mentioned case of
ost_destroy it took an average of 736 microseconds per destroy for the 400
object destroys in the previous 10 seconds.

min Minimum rate (in units/events) since the service started

avg Average rate

max Maximum rate

stddev Standard deviation (not measured in all cases)

Parameter Description

req_waittime Amount of time a request waited in the queue before being handled by an
available server thread.

req_qdepth Number of requests waiting to be handled in the queue for this service.

req_active Number of requests currently being handled.

reqbuf_avail Number of unsolicited lnet request buffers for this service.

Parameter Description

ldlm_enqueue Time it takes to enqueue a lock (this includes file open on the MDS)

mds_reint Time it takes to process an MDS modification record (includes create,
mkdir, unlink, rename and setattr)
Chapter 22 LustreProc 22-29

22.3.1.1 llobdstat

The llobdstat utility parses obdfilter statistics files located at:

/proc/fs/lustre/<ostname>/stats

Use llobdstat to monitor changes in statistics over time, and I/O rates for all OSTs
on a server. the llobdstat utility provides utilization graphs for selectable
time-scales.

Usage:

#llobdstat <ost_name> [<interval>]

Example:

llobdstat lustre-OST0000 2

Parameter Description

ost_name The OST name under /proc/fs/lustre/obdfilter

interval Sample interval (in seconds)
22-30 Lustre 1.6 Operations Manual • May 2009

CHAPTER 23

Lustre Debugging

This chapter describes tips and information to debug Lustre, and includes the
following sections:

■ Lustre Debug Messages

■ Tools for Lustre Debugging

■ Troubleshooting with strace

■ Looking at Disk Content

■ Ptlrpc Request History

Lustre is a complex system that requires a rich debugging environment to help locate
problems.
23-1

23.1 Lustre Debug Messages
Each Lustre debug message has the tag of the subsystem it originated in, the message
type, and the location in the source code. The subsystems and debug types used in
Lustre are as follows:

■ Standard Subsystems:

mdc, mds, osc, ost, obdclass, obdfilter, llite, ptlrpc, portals, lnd, ldlm, lov

■ Debug Types:

Types Description

trace Entry/Exit markers

dlmtrace Locking-related information

inode

super

ext2 Anything from the ext2_debug

malloc Print malloc or free information

cache Cache-related information

info General information

ioctl IOCTL-related information

blocks Ext2 block allocation information

net Networking

warning

buffs

other

dentry

portals Entry/Exit markers

page Bulk page handling

error Error messages

emerg

rpctrace For distributed debugging

ha Failover and recovery-related information
23-2 Lustre 1.6 Operations Manual • May 2009

23.1.1 Format of Lustre Debug Messages
Lustre uses the CDEBUG and CERROR macros to print the debug or error messages.
To print the message, the CDEBUG macro uses portals_debug_msg
(portals/linux/oslib/debug.c). The message format is described below, along
with an example.

Parameter Description

subsystem 800000

debug mask 000010

smp_processor_id 0

sec.used 10818808
47.677302

stack size 1204:

pid 2973:

host pid (if uml) or zero 31070:

(file:line #:functional()) (as_dev.c:144:create_write_buffers())

debug message kmalloced '*obj': 24 at a375571c (tot 17447717)
Chapter 23 Lustre Debugging 23-3

23.2 Tools for Lustre Debugging
The Lustre system offers debugging tools combined by the operating system and
Lustre itself. These tools are:

■ Debug logs: A circular debug buffer holds a substantial amount of debugging
information (MBs or more) during the first insertion of the kernel module. When
this buffer fills up, it wraps and discards the oldest information. Lustre offers
additional debug messages that can be written out to this kernel log.

The debug log holds Lustre internal logging, separate from the error messages
printed to syslog or console. Entries to the Lustre debug log are controlled by the
mask set by /proc/sys/lnet/debug. The log defaults to 5 MB per CPU, and is
a ring buffer. Newer messages overwrite older ones. The default log size can be
increased, as a busy system will quickly overwrite the 5 MB default.

■ Debug daemon: The debug daemon controls logging of debug messages.

■ /proc/sys/lnet/debug: This log contains a mask that can be used to delimit the
debugging information written out to the kernel debug logs.

■ lctl: This tool is used to manually dump the log and post-process logs that are
dumped automatically.

■ leak_finder.pl: This is useful program which helps find memory leaks in the code.

■ strace: This tool allows a system call to be traced.

■ /var/log/messages: syslogd prints fatal or serious messages at this log.

■ Crash dumps: On crash-dump enabled kernels, sysrq c produces a crash dump.
Lustre enhances this crash dump with a log dump (the last 64 KB of the log) to the
console.

■ debugfs: Interactive file system debugger.

■ Lustre subsystem asserts: In case of asserts, a log writes at
/tmp/lustre_log.<timestamp>.

■ lfs: This Lustre utility helps get to the extended attributes of a Lustre file (among
other things).

■ Lustre diagnostic tool: This utility helps users report and create logs for Lustre
bugs.
23-4 Lustre 1.6 Operations Manual • May 2009

■ GNU tar (gtar): This modified version of the gtar utility can back up and restore
extended attributes (i.e. file striping) for Lustre. Files backed up using gtar are
restored per the backed up striping information. The backup procedure does not
use default striping rules.

Note – Normal gtar does not store/restore Lustre attributes. To use this
functionality, you must download the Lustre-patched tar utility (modified gtar),
available here:

http://downloads.lustre.org/public/tools/lustre-tar/

23.2.1 Debug Daemon Option to lctl
The debug_daemon allows users to control the Lustre kernel debug daemon to
dump the debug_kernel buffer to a user-specified file. This functionality uses a
kernel thread on top of debug_kernel. debug_kernel, another sub-command of
lctl, continues to work in parallel with debug_daemon command.

Debug_daemon is highly dependent on file system write speed. File system writes
operation may not be fast enough to flush out all the debug_buffer if Lustre file
system is under heavy system load and continue to CDEBUG to the debug_buffer.
Debug_daemon put ’DEBUG MARKER: Trace buffer full’ into the debug_buffer to
indicate debug_buffer is overlapping itself before debug_daemon flush data to a file.

Users can use lctl control to start or stop Lustre daemon from dumping the
debug_buffer to a file. Users can also temporarily hold daemon from dumping the
file. Use of the debug_daemon sub-command to lctl can provide the same
function.

23.2.1.1 lctl Debug Daemon Commands

This section describes lctl daemon debug commands.

$ lctl debug_daemon start [{file} {megabytes}]

Initiates the debug_daemon to start dumping debug_buffer into a file. The file can be
a system default file,as shown in /proc/sys/lnet/debug_path. The default patch
after Lustre boots is /tmp/lustre-log-$HOSTNAME. Users can specify a new
filename for debug_daemon to output debug_buffer. The new file name shows up
in /proc/sys/lnet/debug_path. Megabytes is the limitation of the file size in
MBs. The daemon wraps around and dumps data to the beginning of the file when
the output file size is over the limit of the user-specified file size. To decode the
dumped file to ASCII and order the log entries by time, run:
Chapter 23 Lustre Debugging 23-5

http://downloads.lustre.org/public/tools/lustre-tar/

lctl debug_file {file} > {newfile}

The output is internally sorted by the lctl command using quicksort.
23-6 Lustre 1.6 Operations Manual • May 2009

debug_daemon stop

Completely shuts down the debug_daemon operation and flushes the file output.
Otherwise, debug_daemon is shut down as part of Lustre file system shutdown
process. Users can restart debug_daemon by using start command after each stop
command issued.

This is an example using debug_daemon with the interactive mode of lctl to dump
debug logs to a 10 MB file.

#~/utils/lctl

To start daemon to dump debug_buffer into a 40 MB /tmp/dump file.

lctl > debug_daemon start /trace/log 40

To completely shut down the daemon.

lctl > debug_daemon stop

To start another daemon with an unlimited file size.

lctl > debug_daemon start /tmp/unlimited

The text message *** End of debug_daemon trace log *** appears at the
end of each output file.

23.2.2 Controlling the Kernel Debug Log
Masks in /proc/sys/portals/subsystem_debug and
/proc/sys/portals/debug controls the amount of information printed to the
kernel debug logs. The subsystem_debug mask controls the subsystems (example:
obdfilter, net, portals, OSC, etc.) and the debug mask controls the debug types
written out to the log (example: info, error, trace, alloc, etc.).

To turn off Lustre debugging:

sysctl -w lnet.debug=0

To turn on full Lustre debugging:

sysctl -w lnet.debug=-1

To turn on logging of messages related to network communications:

sysctl -w lnet.debug=net

To turn on logging of messages related to network communications and existing
debug flags:

sysctl -w lnet.debug=+net
Chapter 23 Lustre Debugging 23-7

To turn off network logging with changing existing flags:

sysctl -w lnet.debug=-net

The various options available to print to kernel debug logs are listed in
lnet/include/libcfs/libcfs.h

23.2.3 The lctl Tool
Lustre’s source code includes debug messages which are very useful for
troubleshooting. As described above, debug messages are subdivided into a number
of subsystems and types. This subdivision allows messages to be filtered, so that only
messages of interest to the user are displayed. The lctl tool is useful to enable this
filtering and manipulate the logs to extract the useful information from it. Use lctl
to obtain the necessary debug messages:

1. To obtain a list of all the types and subsystems:

lctl > debug_list <subs | types>

2. To filter the debug log:

lctl > filter <subsystem name | debug type>

Note – When lctl filters, it removes unwanted lines from the displayed output.
This does not affect the contents of the debug log in the kernel's memory. As a result,
you can print the log many times with different filtering levels without worrying
about losing data.

3. To show debug messages belonging to certain subsystem or type:

lctl > show <subsystem name | debug type>

debug_kernel pulls the data from the kernel logs, filters it appropriately, and
displays or saves it as per the specified options

lctl > debug_kernel [output filename]

If the debugging is being done on User Mode Linux (UML), it might be useful to
save the logs on the host machine so that they can be used at a later time.
23-8 Lustre 1.6 Operations Manual • May 2009

4. If you already have a debug log saved to disk (likely from a crash), to filter a log
on disk:

lctl > debug_file <input filename> [output filename]

During the debug session, you can add markers or breaks to the log for any
reason:

lctl > mark [marker text]

The marker text defaults to the current date and time in the debug log (similar to
the example shown below):

DEBUG MARKER: Tue Mar 5 16:06:44 EST 2002

5. To completely flush the kernel debug buffer:

lctl > clear

Note – Debug messages displayed with lctl are also subject to the kernel debug
masks; the filters are additive.

23.2.4 Finding Memory Leaks
Memory leaks can occur in a code where you allocate a memory, but forget to free it
when it becomes non-essential. You can use the leak_finder.pl tool to find
memory leaks. Before running this program, you must turn on the debugging to
collect all malloc and free entries. Run:

sysctl -w lnet.debug=+malloc

Dump the log into a user-specified log file using lctl (as shown in The lctl Tool). Run
the leak finder on the newly-created log dump:

perl leak_finder.pl <logname>

The output is:

malloced 8bytes at a3116744 (called pathcopy)

(lprocfs_status.c:lprocfs_add_vars:80)

freed 8bytes at a3116744 (called pathcopy)

(lprocfs_status.c:lprocfs_add_vars:80)

The tool displays the following output to show the leaks found:

Leak:32bytes allocated at a23a8fc
(service.c:ptlrpc_init_svc:144,debug file line 241)
Chapter 23 Lustre Debugging 23-9

23.2.5 Printing to /var/log/messages
To dump debug messages to the console, set the corresponding debug mask in the
printk flag:

sysctl -w lnet.printk=-1

This slows down the system dramatically. It is also possible to selectively enable or
disable this for particular flags using:

sysctl -w lnet.printk=+vfstrace

sysctl -w lnet.printk=-vfstrace

23.2.6 Tracing Lock Traffic
Lustre has a specific debug type category for tracing lock traffic. Use:

lctl> filter all_types

lctl> show dlmtrace

lctl> debug_kernel [filename]

23.2.7 Sample lctl Run
bash-2.04# ./lctl

lctl > debug_kernel /tmp/lustre_logs/log_all

Debug log: 324 lines, 324 kept, 0 dropped.

lctl > filter trace

Disabling output of type "trace"

lctl > debug_kernel /tmp/lustre_logs/log_notrace

Debug log: 324 lines, 282 kept, 42 dropped.

lctl > show trace

Enabling output of type "trace"

lctl > filter portals

Disabling output from subsystem "portals"

lctl > debug_kernel /tmp/lustre_logs/log_noportals

Debug log: 324 lines, 258 kept, 66 dropped.
23-10 Lustre 1.6 Operations Manual • May 2009

23.2.8 Adding Debugging to the Lustre Source Code
In the Lustre source code, the debug infrastructure provides a number of macros
which aid in debugging or reporting serious errors. All of these macros depend on
having the DEBUG_SUBSYSTEM variable set at the top of the file:

#define DEBUG_SUBSYSTEM S_PORTALS

Macro Description

LBUG A panic-style assertion in the kernel which causes Lustre to
dump its circular log to the /tmp/lustre-log file. This file can
be retrieved after a reboot. LBUG freezes the thread to allow
capture of the panic stack. A system reboot is needed to clear
the thread.

LASSERT Validates a given expression as true, otherwise calls LBUG.
The failed expression is printed on the console, although the
values that make up the expression are not printed.

LASSERTF Similar to LASSERT but allows a free-format message to be
printed, like printf/printk.

CDEBUG The basic, most commonly used debug macro that takes just
one more argument than standard printf - the debug type.
This message adds to the debug log with the debug mask set
accordingly. Later, when a user retrieves the log for
troubleshooting, they can filter based on this type.
CDEBUG(D_INFO, "This is my debug message: the number is
%d\n", number).

CERROR Behaves similarly to CDEBUG, but unconditionally prints the
message in the debug log and to the console. This is
appropriate for serious errors or fatal conditions:
CERROR("Something very bad has happened, and the return
code is %d.\n", rc);

ENTRY and EXIT Add messages to aid in call tracing (takes no arguments).
When using these macros, cover all exit conditions to avoid
confusion when the debug log reports that a function was
entered, but never exited.

LDLM_DEBUG and
LDLM_DEBUG_NOLOCK

Used when tracing MDS and VFS operations for locking.
These macros build a thin trace that shows the protocol
exchanges between nodes.

DEBUG_REQ Prints information about the given ptlrpc_request structure.

OBD_FAIL_CHECK Allows insertion of failure points into the Lustre code. This is
useful to generate regression tests that can hit a very specific
sequence of events. This works in conjunction with "sysctl -w
lustre.fail_loc={fail_loc}" to set a specific failure point for
which a given OBD_FAIL_CHECK will test.
Chapter 23 Lustre Debugging 23-11

23.2.9 Debugging in UML
Lustre developers use gdb in User Mode Linux (UML) to debug Lustre. The lmc and
lconf tools can be used to configure a Lustre cluster, load the required modules,
start the services, and set up all the devices. lconf puts the debug symbols for the
newly-loaded module into /tmp/gdb-localhost.localdomain on the host
machine. These symbols can be loaded into gdb using the source command in gdb.

symbol-file

delete

symbol-file /usr/src/lum/linux

source /tmp/gdb-{hostname}

b panic

b stop

OBD_FAIL_TIMEOUT Similar to OBD_FAIL_CHECK. Useful to simulate
hung, blocked or busy processes or network devices. If
the given fail_loc is hit, OBD_FAIL_TIMEOUT waits
for the specified number of seconds.

OBD_RACE Similar to OBD_FAIL_CHECK. Useful to have multiple
processes execute the same code concurrently to
provoke locking races. The first process to hit
OBD_RACE sleeps until a second process hits
OBD_RACE, then both processes continue.

OBD_FAIL_ONCE A flag set on a lustre.fail_loc breakpoint to cause the
OBD_FAIL_CHECK condition to be hit only one time.
Otherwise, a fail_loc is permanent until it is cleared
with "sysctl -w lustre.fail_loc=0".

OBD_FAIL_RAND Has OBD_FAIL_CHECK fail randomly; on average
every (1 / lustre.fail_val) times.

OBD_FAIL_SKIP Has OBD_FAIL_CHECK succeed lustre.fail_val times,
and then fail permanently or once with
OBD_FAIL_ONCE.

OBD_FAIL_SOME Has OBD_FAIL_CHECK fail lustre.fail_val times, and then
succeed.

Macro Description
23-12 Lustre 1.6 Operations Manual • May 2009

23.3 Troubleshooting with strace
The operating system makes strace (program trace utility) available. Use strace to
trace program execution. The strace utility pauses programs made by a process and
records the system call, arguments, and return values. This is a very useful tool,
especially when you try to troubleshoot a failed system call.

To invoke strace on a program:

$ strace <program> <args>

Sometimes, a system call may fork child processes. In this situation, use the -f
option of strace to trace the child processes:

$ strace -f <program> <args>

To redirect the strace output to a file (to review at a later time):

$ strace -o <filename> <program> <args>

Use the -ff option, along with -o, to save the trace output in filename.pid, where
pid is the process ID of the process being traced. Use the -ttt option to timestamp
all lines in the strace output, so they can be correlated to operations in the lustre
kernel debug log.

If the debugging is done in UML, save the traces on the host machine. In this
example, hostfs is mounted on /r:

$ strace -o /r/tmp/vi.strace
Chapter 23 Lustre Debugging 23-13

23.4 Looking at Disk Content
In Lustre, the inodes on the metadata server contain extended attributes (EAs) that
store information about file striping. EAs contain a list of all object IDs and their
locations (that is, the OST that stores them). The lfs tool can be used to obtain this
information for a given file via the getstripe sub-command. Use a corresponding
lfs setstripe command to specify striping attributes for a new file or directory.

The lfs getstripe utility is written in C; it takes a Lustre filename as input and
lists all the objects that form a part of this file. To obtain this information for the file
/mnt/lustre/frog in Lustre file system, run:

$ lfs getstripe /mnt/lustre/frog

$

OBDs:

0 : OSC_localhost_UUID

1: OSC_localhost_2_UUID

2: OSC_localhost_3_UUID

obdix objid

0 17

1 4

The debugfs tool is provided by the e2fsprogs package. It can be used for interactive
debugging of an ext3/ldiskfs file system. The debugfs tool can either be used to
check status or modify information in the file system. In Lustre, all objects that
belong to a file are stored in an underlying ldiskfs file system on the OST's. The file
system uses the object IDs as the file names. Once the object IDs are known, the
debugfs tool can be used to obtain the attributes of all objects from different OST's. A
sample run for the /mnt/lustre/frog file used in the example above is shown here:

$ debugfs -c /tmp/ost1

debugfs: cd O

debugfs: cd 0 /* for files in group 0 */

debugfs: cd d<objid % 32>

debugfs: stat <objid> /* for getattr on object */

debugfs: quit

Suppose object id is 36, then follow the steps below:

$ debugfs /tmp/ost1

debugfs: cd O

debugfs: cd 0

debugfs: cd d4 /* objid % 32 */

debugfs: stat 36 /* for getattr on obj 4*/

debugfs: dump 36 /tmp/obj.36 /* dump contents of obj 4 */

debugfs: quit
23-14 Lustre 1.6 Operations Manual • May 2009

23.4.1 Determine the Lustre UUID of an OST
To determine the Lustre UUID of an obdfilter disk (for example, if you mix up the
cables on your OST devices or the SCSI bus numbering suddenly changes and the
SCSI devices get new names), use debugfs to get the last_rcvd file.

23.4.2 Tcpdump
Lustre provides a modified version of tcpdump which helps to decode the complete
Lustre message packet. This tool has more support to read packets from clients to
OSTs, than to decode packets between clients and MDSs. The tcpdump module is
available from Lustre CVS at www.sourceforge.net

It can be checked out as:

cvs co -d :ext:<username>@cvs.lustre.org:/cvsroot/lustre tcpdump

23.5 Ptlrpc Request History
Each service always maintains request history, which is useful for first occurrence
troubleshooting. Ptlrpc history works as follows:

1. Request_in_callback() adds the new request to the service's request history.

2. When a request buffer becomes idle, add it to the service's request buffer
history list.

3. Cull buffers from the service's request buffer history if it has grown above

"req_buffer_history_max" and remove its reqs from the service's request history.

Request history is accessed/controlled via the following /proc files under the
service directory.

■ req_buffer_history_len

Number of request buffers currently in the history

■ req_buffer_history_max

Maximum number of request buffers to keep

■ req_history

The request history
Chapter 23 Lustre Debugging 23-15

www.sourceforge.net

Requests in the history include "live" requests that are actually being handled. Each
line in "req_history" looks like:

<seq>:<target NID>:<client ID>:<xid>:<length>:<phase> <svc specific>

23.6 Using LWT Tracing
Lustre offers a very lightweight tracing facility called LWT. It prints fixed size
requests into a buffer and is much faster than LDEBUG. The LWT tracking facility is
very successful to debug difficult problems.

LWT trace-based records that are dumped contain:

■ Current CPU

■ Process counter

■ Pointer to file

■ Pointer to line in the file

■ 4 void * pointers

An lctl command dumps the logs to files.

Parameter Description

seq Request sequence number

target NID Destination NID of the incoming request

client ID Client PID and NID

xid rq_xid

length Size of the request message

phase • New (waiting to be handled or could not be unpacked)
• Interpret (unpacked or being handled)
• Complete (handled)

svc specific Service-specific request printout. Currently, the only service that does this is
the OST (which prints the opcode if the message has been unpacked
successfully
23-16 Lustre 1.6 Operations Manual • May 2009

PART IV Lustre for Users

This part includes chapters on Lustre striping and I/O options, security and
operating tips.

CHAPTER 24

Free Space and Quotas

This chapter describes free space and using quotas, and includes the following
sections:

■ Querying File System Space

■ Using Quotas
24-1

24.1 Querying File System Space
The lfs df command is used to determine available disk space on a file system. It
displays the amount of available disk space on the mounted Lustre file system and
shows space consumption per OST. If multiple Lustre file systems are mounted, a
path may be specified, but is not required.

Note – The df -i and fs df -i commands show the minimum number of inodes
that can be created in the file system. Depending on the configuration, it may be
possible to create more inodes than initially reported by df -i. Later, df -i
operations will show the current, estimated free inode count.

If the underlying file system has fewer free blocks than inodes, then the total inode
count for the file system reports only as many inodes as there are free blocks. This is
done because Lustre may need to store an external attribute for each new inode, and
it is better to report a free inode count that is the guaranteed, minimum number of
inodes that can be created.

Option Description

-h Human-readable print sizes in human readable format (for example:
1K, 234M, 5G).

-i, --inodes Lists inodes instead of block usage.
24-2 Lustre 1.6 Operations Manual • May 2009

Examples

[lin-cli1] $ lfs df
UUID 1K-blockS Used Available Use% Mounted on
mds-lustre-0_UUID 9174328 1020024 8154304 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 94181368 56330708 37850660 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 94181368 56385748 37795620 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 94181368 54352012 39829356 57% /mnt/lustre[OST:2]
filesystem summary:282544104167068468 39829356 57% /mnt/lustre

[lin-cli1] $ lfs df -h
UUID bytes Used Available Use% Mounted on
mds-lustre-0_UUID 8.7G 996.1M 7.8G 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 89.8G 53.7G 36.1G 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 89.8G 53.8G 36.0G 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 89.8G 51.8G 38.0G 57% /mnt/lustre[OST:2]
filesystem summary: 269.5G 159.3G 110.1G 59% /mnt/lustre

[lin-cli1] $ lfs df -i
UUID Inodes IUsed IFree IUse% Mounted on
mds-lustre-0_UUID 2211572 41924 2169648 1% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 737280 12183 725097 1% /mnt/lustre[OST:0]
ost-lustre-1_UUID 737280 12232 725048 1% /mnt/lustre[OST:1]
ost-lustre-2_UUID 737280 12214 725066 1% /mnt/lustre[OST:2]
filesystem summary: 2211572 41924 2169648 1% /mnt/lustre[OST:2]
Chapter 24 Free Space and Quotas 24-3

24.2 Using Quotas
The lfs quota command displays disk usage and quotas. By default, only user
quotas are displayed (or with the -u flag).

A root user can use the -u flag, with the optional user parameter, to view the limits
of other users. Users without root user authority can use the -g flag, with the
optional group parameter, to view the limits of groups of which they are members.

Note – If a user has no files in a file system on which they have a quota, the lfs
quota command shows quota: none for the user. The user's actual quota is
displayed when the user has files in the file system.

Examples

To display quotas as user “bob,” run:

$ lfs quota -u /mnt/lustre

The above command displays disk usage and limits for user "bob."

To display quotas as root user for user “bob,” run:

$ lfs quota -u bob /mnt/lustre

The system can also show the below information about disk usage by “bob.”

To display your group's quota as “tom”:

$ lfs -g tom /mnt/lustre

To display the group's quota of “tom”:

$ lfs quota -g tom /mnt/lustre

Note – As for ext3, Lustre makes a sparse file in case you truncate at an offset past
the end of the file. Space is utilized in the file system only when you actually write
the data to these blocks.
24-4 Lustre 1.6 Operations Manual • May 2009

CHAPTER 25

Striping and I/O Options

This chapter describes file striping and I/O options, and includes the following
sections:

■ File Striping

■ Displaying Files and Directories with lfs getstripe

■ lfs setstripe – Setting File Layouts

■ Free Space Management

■ Performing Direct I/O

■ Other I/O Options

■ Striping Using llapi

25.1 File Striping
Lustre stores files of one or more objects on OSTs. When a file is comprised of more
than one object, Lustre stripes the file data across them in a round-robin fashion.
Users can configure the number of stripes, the size of each stripe, and the servers that
are used.

One of the most frequently-asked Lustre questions is “How should I stripe my files, and
what is a good default?” The short answer is that it depends on your needs. A good
rule of thumb is to stripe over as few objects as will meet those needs and no more.
25-1

25.1.1 Advantages of Striping
There are two reasons to create files of multiple stripes: bandwidth and size.

25.1.1.1 Bandwidth

There are many applications which require high-bandwidth access to a single file –
more bandwidth than can be provided by a single OSS. For example, scientific
applications which write to a single file from hundreds of nodes or a binary
executable which is loaded by many nodes when an application starts.

In cases like these, stripe your file over as many OSSs as it takes to achieve the
required peak aggregate bandwidth for that file. In our experience, the requirement is
“as quickly as possible,” which usually means all OSSs.

Note – This assumes that your application is using enough client nodes, and can
read/write data fast enough to take advantage of this much OSS bandwidth. The
largest useful stripe count is bounded by the I/O rate of your clients/jobs divided by
the performance per OSS.

25.1.1.2 Size

The second reason to stripe is when a single OST does not have enough free space to
hold the entire file.

There is never an exact, one-to-one mapping between clients and OSTs. Lustre uses a
round-robin algorithm for OST stripe selection until free space on OSTs differ by
more than 20%. However, depending on actual file sizes, some stripes may be mostly
empty, while others are more full. For a more detailed description of stripe
assignments, see Free Space Management.

After every ostcount+1 objects, Lustre skips an OST. This causes Lustre’s "starting
point" to precess around, eliminating some degenerated cases where applications that
create very regular file layouts (striping patterns) would have preferentially used a
particular OST in the sequence.
25-2 Lustre 1.6 Operations Manual • May 2009

25.1.2 Disadvantages of Striping
There are two disadvantages to striping which should deter you from choosing a
default policy that stripes over all OSTs unless you really need it: increased overhead
and increased risk.

25.1.2.1 Increased Overhead

Increased overhead comes in the form of extra network operations during common
operations such as stat and unlink, and more locks. Even when these operations are
performed in parallel, there is a big difference between doing 1 network operation
and 100 operations.

Increased overhead also comes in the form of server contention. Consider a cluster
with 100 clients and 100 OSSs, each with one OST. If each file has exactly one object
and the load is distributed evenly, there is no contention and the disks on each server
can manage sequential I/O. If each file has 100 objects, then the clients all compete
with one another for the attention of the servers, and the disks on each node seek in
100 different directions. In this case, there is needless contention.

25.1.2.2 Increased Risk

Increased risk is evident when you consider the example of striping each file across
all servers. In this case, if any one OSS catches on-fire, a small part of every file is
lost. By comparison, if each file has exactly one stripe, you lose fewer files, but you
lose them in their entirety. Most users would rather lose some of their files entirely
than all of their files partially.

25.1.3 Stripe Size
Choosing a stripe size is a small balancing act, but there are reasonable defaults. The
stripe size must be a multiple of the page size. For safety, Lustre’s tools enforce a
multiple of 64 KB (the maximum page size on ia64 and PPC64 nodes), so users on
platforms with smaller pages do not accidentally create files which might cause
problems for ia64 clients.

Although you can create files with a stripe size of 64 KB, this is a poor choice.
Practically, the smallest recommended stripe size is 512 KB because Lustre sends 1
MB chunks over the network. This is a good amount of data to transfer at one time.
Choosing a smaller stripe size may hinder the batching.
Chapter 25 Striping and I/O Options 25-3

Generally, a good stripe size for sequential I/O using high-speed networks is
between 1 MB and 4 MB. Stripe sizes larger than 4 MB do not parallelize as
effectively because Lustre tries to keep the amount of dirty cached data below 32 MB
per server (with the default configuration).

Writes which cross an object boundary are slightly less efficient than writes which go
entirely to one server. Depending on your application's write patterns, you can assist
it by choosing a stripe size with that in mind. If the file is written in a very consistent
and aligned way, make the stripe size a multiple of the write() size.

The choice of stripe size has no effect on a single-stripe file.

25.2 Displaying Files and Directories with lfs
getstripe
Use lfs to print the index and UUID for each OST in the file system, along with the
OST index and object ID for each stripe in the file. For directories, the default settings
for files created in that directory are printed.

lfs getstripe <filename>

Use lfs find to inspect an entire tree of files.

lfs find [--recursive | -r] <file or directory> ...

If a process creates a file, use the lfs getstripe command to determine which
OST(s) the file resides on.

Using ‘cat’ as an example, run:

$ cat > foo

In another terminal, run:

$ lfs getstripe /barn/users/jacob/tmp/foo

OBDS
25-4 Lustre 1.6 Operations Manual • May 2009

You can also use ls -l /proc/<pid>/fd/ to find open files using Lustre, run:

$ lfs getstripe $(readlink /proc/$(pidof cat)/fd/1)

OBDS:
0: databarn-ost1_UUID ACTIVE

1: databarn-ost2_UUID ACTIVE

2: databarn-ost3_UUID ACTIVE

3: databarn-ost4_UUID ACTIVE

/barn/users/jacob/tmp/foo

obdidx objid objid group

2 835487 0xcbf9f 0

This shows that the file lives on obdidx 2, which is databarn-ost3. To see which node
is serving that OST, run:

$ cat /proc/fs/lustre/osc/*databarn-ost3*/ost_conn_uuid

NID_oss1.databarn.87k.net_UUID

The above condition/operation also works with connections to the MDS. For that,
replace osc with mdc and ost with mds in the above commands.
Chapter 25 Striping and I/O Options 25-5

25.3 lfs setstripe – Setting File Layouts
Use the lfs setstripe command to create new files with a specific file layout
(stripe pattern) configuration.

lfs setstripe [--size|-s stripe-size] [--count|-c stripe-cnt]

[--index|-i start-ost] <filename|dirname>

stripe-size

If you pass a stripe-size of 0, the file system’s default stripe size is used. Otherwise,
the stripe-size must be a multiple of 64 KB.

stripe-start

If you pass a starting-ost of -1, a random first OST is chosen. Otherwise, the file starts
on the specified OST index, starting at zero (0).

stripe-count

If you pass a stripe-count of 0, the file system’s default number of OSTs is used. A
stripe-count of -1 means that all available OSTs should be used.

Note – If you pass a starting-ost of 0 and a stripe-count of 1, all files are written to
OST #0, until space is exhausted. This is probably not what you meant to do. If you
only want to adjust the stripe-count and keep the other parameters at their default
settings, do not specify any of the other parameters:

lfs setstripe -c <stripe-count> <file>
25-6 Lustre 1.6 Operations Manual • May 2009

25.3.1 Changing Striping for a Subdirectory
In a directory, the lfs setstripe command sets a default striping configuration
for files created in the directory. The usage is the same as lfs setstripe for a
regular file, except that the directory must exist prior to setting the default striping
configuration. If a file is created in a directory with a default stripe configuration
(without otherwise specifying striping), Lustre uses those striping parameters instead
of the file system default for the new file.

To change the striping pattern (file layout) for a sub-directory, create a directory with
desired file layout as described above. Sub-directories inherit the file layout of the
root/parent directory.

Note – Striping of new files and sub-directories is done per the striping parameter
settings of the root directory. Once you set striping on the root directory, then, by
default, it applies to any new child directories created in that root directory (unless
they have their own striping settings).

25.3.2 Using a Specific Striping Pattern/File Layout for a
Single File
To use a specific striping pattern (file layout) for a specific file:

lfs setstripe creates a file with a given stripe pattern (file layout)

lfs setstripe fails if the file already exists
Chapter 25 Striping and I/O Options 25-7

25.3.3 Creating a File on a Specific OST
You can use lfs setstripe to create a file on a specific OST. In the following
example, the file "bob" will be created on the first OST (id 0).

$ lfs setstripe --count 1 --index 0 bob

$ dd if=/dev/zero of=bob count=1 bs=100M

1+0 records in

1+0 records out

$ lfs getstripe bob

OBDS:

0: home-OST0000_UUID ACTIVE

[...]

bob

obdidx objid objid group

0 33459243 0x1fe8c2b 0

25.4 Free Space Management
In Lustre 1.6, the MDT assigns file stripes to OSTs based on location (which OSS) and
size considerations (free space) to optimize file system performance. Emptier OSTs
are preferentially selected for stripes, and stripes are preferentially spread out
between OSSs to increase network bandwidth utilization. The weighting factor
between these two optimizations is user-adjustable.

There are two stripe allocation methods, round-robin and weighted. The allocation
method is determined by the amount of free-space imbalance on the OSTs. The
weighted allocator is used when any two OSTs are imbalanced by more than 20%.
Until then, a faster round-robin allocator is used. (The round-robin order maximizes
network balancing.)
25-8 Lustre 1.6 Operations Manual • May 2009

25.4.1 Round-Robin Allocator
When OSTs have approximately the same amount of free space (within 20%), an
efficient round-robin allocator is used. The round-robin allocator alternates stripes
between OSTs on different OSSs. Here are several sample round-robin stripe orders
(the same letter represents the different OSTs on a single OSS):

25.4.2 Weighted Allocator
When the free space difference between the OSTs is significant, then a weighting
algorithm is used to influence OST ordering based on size and location. Note that
these are weightings for a random algorithm, so the "emptiest" OST is not,
necessarily, chosen every time. On average, the weighted allocator fills the emptier
OSTs faster.

25.4.3 Adjusting the Weighting Between Free Space and
Location
This priority can be adjusted via the
/proc/fs/lustre/lov/lustre-mdtlov/qos_prio_free proc file. The default
is 90%. Use the following command to permanently change this weighting on the
MGS:

lctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Increasing the value puts more weighting on free space. When the free space priority
is set to 100%, then location is no longer used in stripe-ordering calculations, and
weighting is based entirely on free space.

3: AAA one 3-OST OSS

3x3: ABABAB two 3-OST OSSs

3x4: BBABABA one 3-OST OSS (A) and one 4-OST OSS (B)

3x5: BBABBABA

3x5x1: BBABABABC

3x5x2: BABABCBABC

4x6x2: BABABCBABABC
Chapter 25 Striping and I/O Options 25-9

Note that setting the priority to 100% means that OSS distribution does not count in
the weighting, but the stripe assignment is still done via a weighting—if OST2 has
twice as much free space as OST1, then OST2 is twice as likely to be used, but it is not
guaranteed to be used.

25.5 Performing Direct I/O
Starting with 1.4.7, Lustre supports the O_DIRECT flag to open.

Applications using the read() and write() calls must supply buffers aligned on a page
boundary (usually 4 K). If the alignment is not correct, the call returns -EINVAL.
Direct I/O may help performance in cases where the client is doing a large amount of
I/O and is CPU-bound (CPU utilization 100%).

25.5.1 Making File System Objects Immutable
An immutable file or directory is one that cannot be modified, renamed or removed.
To do this:

chattr +i <file>

To remove this flag, use chattr –i
25-10 Lustre 1.6 Operations Manual • May 2009

25.6 Other I/O Options
This section describes other I/O options, including end-to-end client checksums.

25.6.1 End-to-End Client Checksums
To guard against data corruption on the network, a Lustre client can perform
end-to-end data checksums. This computes a 32-bit checksum of the data read or
written on both the client and server, and ensures that the data has not been
corrupted in transit over the network. The ldiskfs backing file system does NOT do
any persistent checksumming, so it does not detect corruption of data in the OST file
system.

In Lustre 1.6.5, the checksumming feature is enabled, by default, on individual client
nodes. If the client or OST detects a checksum mismatch, then an error is logged in
the syslog of the form:

LustreError: BAD WRITE CHECKSUM: changed in transit before arrival at
OST: from 192.168.1.1@tcp inum 8991479/2386814769 object 1127239/0
extent [102400-106495]

If this happens, the client will re-read or re-write the affected data up to 5 times to
get a good copy of the data over the network. If it is still not possible, then an I/O
error is returned to the application.

To enable checksums on a client, run:

echo 1 > /proc/fs/lustre/llite/<fsname>/checksum_pages

To disable checksums on a client, run:

echo 0 > /proc/fs/lustre/llite/<fsname>/checksum_pages

To check the status of checksum, run:

lctl get_param osc.*.checksums

If it is set to 1, checksumming is enabled. If it is set to 0, checksumming is disabled.
Chapter 25 Striping and I/O Options 25-11

25.6.1.1 Changing Checksum Algorithms

By default, Lustre uses the adler32 checksum algorithm, because it is robust and has
a lower impact on performance than crc32. The Lustre administrator can change the
checksum algorithm via /proc, depending on what is supported in the kernel.

To check which checksum algorithm is being used by Lustre, run:

$ cat /proc/fs/lustre/osc/<fsname>-OST<index>-osc-*/checksum_type

To change the checksum algorithm being used by Lustre, run:

$ echo <algorithm name> /proc/fs/lustre/osc/<fsname>-OST<index>- \
osc-*/checksum_type

In the following example, the cat command is used to determine that Lustre is using
the adler32 checksum algorithm. Then the echo command is used to change the
checksum algorithm to crc32. A second cat command confirms that the crc32
checksum algorithm is now in use.

$ cat /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

crc32 [adler]

$ echo crc32 > /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

$ cat /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

[crc32] adler
25-12 Lustre 1.6 Operations Manual • May 2009

25.7 Striping Using llapi
Use llapi_file_create to set Lustre properties for a new file. For a synopsis and
description of llapi_file_create and examples of how to use it, see Setting
Lustre Properties (man3).

You can set striping from inside programs like ioctl. To compile the sample program,
you need to download libtest.c and liblustreapi.c files from the Lustre
source tree.

A simple C program to demonstrate striping API – libtest.c

/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
 * vim:expandtab:shiftwidth=8:tabstop=8:
 *
 * lustredemo - simple code examples of liblustreapi functions
 */

#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>

#include <lustre/liblustreapi.h>
#include <lustre/lustre_user.h>
#define MAX_OSTS 1024
#define LOV_EA_SIZE(lum, num) (sizeof(*lum) + num * sizeof(*lum->lmm_objects))
#define LOV_EA_MAX(lum) LOV_EA_SIZE(lum, MAX_OSTS)

/*
This program provides crude examples of using the liblustre API functions
*/

/* Change these definitions to suit */

#define TESTDIR "/tmp" /* Results directory */
#define TESTFILE "lustre_dummy" /* Name for the file we create/destroy */
#define FILESIZE 262144 /* Size of the file in words */
#define DUMWORD "DEADBEEF" /* Dummy word used to fill files */
#define MY_STRIPE_WIDTH 2 /* Set this to the number of OST required */
#define MY_LUSTRE_DIR "/mnt/lustre/ftest"

int close_file(int fd)
{
Chapter 25 Striping and I/O Options 25-13

if (close(fd) < 0) {
fprintf(stderr, "File close failed: %d (%s)\n", errno,

strerror(errno));
return -1;

}
return 0;

}

int write_file(int fd)
{

char *stng = DUMWORD;
int cnt = 0;

for(cnt = 0; cnt < FILESIZE; cnt++) {
 write(fd, stng, sizeof(stng));

}
return 0;

}
/* Open a file, set a specific stripe count, size and starting OST
 Adjust the parameters to suit */

int open_stripe_file()
{

char *tfile = TESTFILE;
int stripe_size = 65536; /* System default is 4M */
int stripe_offset = -1; /* Start at default */
int stripe_count = MY_STRIPE_WIDTH; /*Single stripe for this

demo*/
int stripe_pattern = 0; /* only RAID 0 at this time

*/
int rc, fd;
/*
*/
rc = llapi_file_create(tfile,

stripe_size,stripe_offset,stripe_count,stripe_pattern);
/* result code is inverted, we may return -EINVAL or an ioctl error.
We borrow an error message from sanity.c
*/
if (rc) {

 fprintf(stderr,"llapi_file_create failed: %d (%s) \n", rc,
strerror(-rc));
 return -1;
 }
 /* llapi_file_create closes the file descriptor, we must re-open */
 fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
 if (fd < 0) {
 fprintf(stderr, "Can't open %s file: %d (%s)\n", tfile, errno,
strerror(errno));

return -1;
 }
 return fd;
}

/* output a list of uuids for this file */
25-14 Lustre 1.6 Operations Manual • May 2009

int get_my_uuids(int fd)
{

struct obd_uuid uuids[1024], *uuidp; /* Output var */
int obdcount = 1024;
int rc,i;

rc = llapi_lov_get_uuids(fd, uuids, &obdcount);
if (rc != 0) {

fprintf(stderr, "get uuids failed: %d (%s)\n",errno,
strerror(errno));
 }
 printf("This file system has %d obds\n", obdcount);
 for (i = 0, uuidp = uuids; i < obdcount; i++, uuidp++) {

printf("UUID %d is %s\n",i, uuidp->uuid);
 }
 return 0;
}

/* Print out some LOV attributes. List our objects */
int get_file_info(char *path)
{

struct lov_user_md *lump;
int rc;
int i;

lump = malloc(LOV_EA_MAX(lump));
if (lump == NULL) {

return -1;
 }

 rc = llapi_file_get_stripe(path, lump);

 if (rc != 0) {

fprintf(stderr, "get_stripe failed: %d (%s)\n",errno,
strerror(errno));

return -1;
 }

printf("Lov magic %u\n", lump->lmm_magic);
printf("Lov pattern %u\n", lump->lmm_pattern);
printf("Lov object id %llu\n", lump->lmm_object_id);
printf("Lov object group %llu\n", lump->lmm_object_gr);
printf("Lov stripe size %u\n", lump->lmm_stripe_size);
printf("Lov stripe count %hu\n", lump->lmm_stripe_count);
printf("Lov stripe offset %u\n", lump->lmm_stripe_offset);
for (i = 0; i < lump->lmm_stripe_count; i++) {

printf("Object index %d Objid %llu\n",
lump->lmm_objects[i].l_ost_idx, lump->lmm_objects[i].l_object_id);
 }

free(lump);
return rc;
Chapter 25 Striping and I/O Options 25-15

}
/* Ping all OSTs that belong to this filesysem */

int ping_osts()
{

DIR *dir;
struct dirent *d;
char osc_dir[100];
int rc;

sprintf(osc_dir, "/proc/fs/lustre/osc");
dir = opendir(osc_dir);
if (dir == NULL) {

printf("Can't open dir\n");
return -1;

}
while((d = readdir(dir)) != NULL) {

if (d->d_type == DT_DIR) {
if (! strncmp(d->d_name, "OSC", 3)) {

printf("Pinging OSC %s ", d->d_name);
rc = llapi_ping("osc", d->d_name);
if (rc) {

printf(" bad\n");
} else {

printf(" good\n");
}

}
}

}
return 0;

}

int main()
{

int file;
int rc;
char filename[100];
char sys_cmd[100];

sprintf(filename, "%s/%s",MY_LUSTRE_DIR, TESTFILE);

printf("Open a file with striping\n");
file = open_stripe_file();
if (file < 0) {

printf("Exiting\n");
exit(1);

}
printf("Getting uuid list\n");
25-16 Lustre 1.6 Operations Manual • May 2009

rc = get_my_uuids(file);
rintf("Write to the file\n");
rc = write_file(file);
rc = close_file(file);
printf("Listing LOV data\n");
rc = get_file_info(filename);
printf("Ping our OSTs\n");
rc = ping_osts();

/* the results should match lfs getstripe */
printf("Confirming our results with lfs getsrtipe\n");
sprintf(sys_cmd, "/usr/bin/lfs getstripe %s/%s", MY_LUSTRE_DIR,

TESTFILE);
system(sys_cmd);

printf("All done\n");
exit(rc);

}

Makefile for sample application:

gcc -g -O2 -Wall -o lustredemo libtest.c -llustreapi
clean:
rm -f core lustredemo *.o
run:
make
rm -f /mnt/lustre/ftest/lustredemo
rm -f /mnt/lustre/ftest/lustre_dummy
cp lustredemo /mnt/lustre/ftest/
Chapter 25 Striping and I/O Options 25-17

25-18 Lustre 1.6 Operations Manual • May 2009

CHAPTER 26

Lustre Security

This chapter describes Lustre security and includes the following section:

■ Using ACLs

■ Using Root Squash

26.1 Using ACLs
An access control list (ACL), is a set of data that informs an operating system about
permissions or access rights that each user or group has to specific system objects,
such as directories or files. Each object has a unique security attribute that identifies
users who have access to it. The ACL lists each object and user access privileges such
as read, write or execute.

26.1.1 How ACLs Work
Implementing ACLs varies between operating systems. Systems that support the
Portable Operating System Interface (POSIX) family of standards share a simple yet
powerful file system permission model, which should be well-known to the
Linux/Unix administrator. ACLs add finer-grained permissions to this model,
allowing for more complicated permission schemes. For a detailed explanation of
ACLs on Linux, refer to the SuSE Labs article, Posix Access Control Lists on Linux:

http://www.suse.de/~agruen/acl/linux-acls/online/

We have implemented ACLs according to this model. Lustre supports the standard
Linux ACL tools, setfacl, getfacl, and the historical chacl, normally installed with the
ACL package.
26-1

http://www.suse.de/~agruen/acl/linux-acls/online/

Note – ACL support is a system-range feature, meaning that all clients have ACL
enabled or not. You cannot specify which clients should enable ACL.

26.1.2 Using ACLs with Lustre
Lustre supports POSIX Access Control Lists (ACLs). An ACL consists of file entries
representing permissions based on standard POSIX file system object permissions
that define three classes of user (owner, group and other). Each class is associated
with a set of permissions [read (r), write (w) and execute (x)].

■ Owner class permissions define access privileges of the file owner.

■ Group class permissions define access privileges of the owning group.

■ Other class permissions define access privileges of all users not in the owner or
group class.

The ls -l command displays the owner, group, and other class permissions in the
first column of its output (for example, -rw-r- -- for a regular file with read and
write access for the owner class, read access for the group class, and no access for
others).

Minimal ACLs have three entries. Extended ACLs have more than the three entries.
Extended ACLs also contain a mask entry and may contain any number of named
user and named group entries.

Lustre ACL support depends on the MDS, which needs to be configured to enable
ACLs. Use --mountfsoptions to enable ACL support when creating your
configuration:

$ mkfs.lustre --fsname spfs --mountfsoptions=acl --mdt –mgs /dev/sda

Alternately, you can enable ACLs at run time by using the --acl option with
mkfs.lustre:

$ mount -t lustre -o acl /dev/sda /mnt/mdt

To check ACLs on the MDS:

$ lctl get_param -n mdc.home-MDT0000-mdc-*.connect_flags | grep acl
acl

To mount the client with no ACLs:

$ mount -t lustre -o noacl ibmds2@o2ib:/home /home
26-2 Lustre 1.6 Operations Manual • May 2009

Lustre ACL support is a system-wide feature; either all clients enable ACLs or none
do. Activating ACLs is controlled by MDS mount options acl / noacl
(enable/disableACLs). Client-side mount options acl/noacl are ignored. You do
not need to change the client configuration, and the “acl” string will not appear in
the client /etc/mtab. The client acl mount option is no longer needed. If a client is
mounted with that option, then this message appears in the MDS syslog:

...MDS requires ACL support but client does not

The message is harmless but indicates a configuration issue, which should be
corrected.

If ACLs are not enabled on the MDS, then any attempts to reference an ACL on a
client return an Operation not supported error.

26.1.3 Examples
These examples are taken directly from the POSIX paper referenced above. ACLs on
a Lustre file system work exactly like ACLs on any Linux file system. They are
manipulated with the standard tools in the standard manner. Below, we create a
directory and allow a specific user access.

[root@client lustre]# umask 027

[root@client lustre]# mkdir rain

[root@client lustre]# ls -ld rain

drwxr-x--- 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl rain

file: rain

owner: root

group: root

user::rwx

group::r-x

other::---

[root@client lustre]# setfacl -m user:chirag:rwx rain

[root@client lustre]# ls -ld rain

drwxrwx---+ 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl --omit-heade rain

user::rwx

user:chirag:rwx

group::r-x

mask::rwx

other::---
Chapter 26 Lustre Security 26-3

26.2 Using Root Squash
Lustre 1.6 introduces root squash functionality, a security feature which controls
super user access rights to an Lustre file system. Before the root squash feature was
added, Lustre users could run rm -rf * as root, and remove data which should not
be deleted. Using the root squash feature prevents this outcome.

The root squash feature works by re-mapping the user ID (UID) and group ID (GID)
of the root user to a UID and GID specified by the system administrator, via the
Lusre cofiguration management server (MGS). The root squash feature also enables
the Lustre administrator to specify a set of client for which UID/GID re-mapping
does not apply.

26.2.1 Configuring Root Squash
Root squash functionality is managed by two configuration parameters,
root_squash and nosquash_nids.

■ The root_squash parameter specifies the UID and GID with which the root user
accesses the Lustre file system.

■ The nosquash_nids parameter specifies the set of clients to which root squash
does not apply. LNET NID range syntax is used for this parameter (see the NID
range syntax rules described in Enabling and Tuning Root Squash). For example:

nosquash_nids=172.16.245.[0-255/2]@tcp

In this example, root squash does not apply to TCP clients on subnet 172.16.245.0
that have an even number as the last component of their IP address.

26.2.2 Enabling and Tuning Root Squash
The default value for nosquash_nids is NULL, which means that root squashing
applies to all clients. Setting the root squash UID and GID to 0 turns root squash off.

Root squash parameters can be set when the MDT is created (mkfs.lustre --mdt).
For example:

mkfs.lustre--reformat --fsname=Lustre --mdt --mgs \
--param "mdt.root_squash=500:501" \
--param "mdt.nosquash_nids='0@elan1 192.168.1.[10,11]'" /dev/sda1
26-4 Lustre 1.6 Operations Manual • May 2009

Root squash parameters can also be changed on an umounted device with
tunefs.lustre. For example:

tunefs.lustre --param "mdt.root_squash=65534:65534" \
--param "mdt.nosquash_nids=192.168.0.13@tcp0" /dev/sda1

Root squash parameters can also be changed with the lctl conf_param command.
For example:

lctl conf_param Lustre.mdt.root_squash="1000:100"

lctl conf_param Lustre.mdt.nosquash_nids="*@tcp"

Note – When using the lctl conf_param command, keep in mind:

* lctl conf_param must be run on a live MGS
* lctl conf_param causes the parameter to change on all MDSs
* lctl conf_param is to be used once per a parameter

The nosquash_nids list can be cleared with:

lctl conf_param Lustre.mdt.nosquash_nids="NONE"

- OR -

lctl conf_param Lustre.mdt.nosquash_nids="clear"

If the nosquash_nids value consists of several NID ranges (e.g. 0@elan, 1@elan1),
the list of NID ranges must be quoted with single (') or double ('') quotation marks.
List elements must be separated with a space. For example:

mkfs.lustre ... --param "mdt.nosquash_nids='0@elan1 1@elan2'" /dev/sda1
lctl conf_param Lustre.mdt.nosquash_nids="24@elan 15@elan1"

These are examples of incorrect syntax:

mkfs.lustre ... --param "mdt.nosquash_nids=0@elan1 1@elan2" /dev/sda1
lctl conf_param Lustre.mdt.nosquash_nids=24@elan 15@elan1

To check root squash parameters, use the lctl get_param command:

lctl get_param mdt.Lustre-MDT0000.root_squash

lctl get_param mdt.Lustre-MDT000*.nosquash_nids

Note – An empty nosquash_nids list is reported as NONE.
Chapter 26 Lustre Security 26-5

26.2.3 Tips on Using Root Squash
Lustre configuration management limits root squash in several ways.

■ The lctl conf_param value overwrites the parameter’s previous value. If the
new value uses an incorrect syntax, then the system continues with the old
parameters and the previously-correct value is lost on remount. That is, be careful
doing root squash tuning.

■ mkfs.lustre and tunefs.lustre do not perform syntax checking. If the root squash
parameters are incorrect, they are ignored on mount and the default values are
used instead.

■ Root squash parameters are parsed with rigorous syntax checking. The
root_squash parameter should be specified as <decnum>':'<decnum>. The
nosquash_nids parameter should follow LNET NID range list syntax.

LNET NID range syntax:

<nidlist> :== <nidrange> [' ' <nidrange>]

<nidrange> :== <addrrange> '@' <net>

<addrrange>:== '*' |

<ipaddr_range> |

<numaddr_range>

<ipaddr_range>:==

<numaddr_range>.<numaddr_range>.<numaddr_range>.<numaddr_range>

<numaddr_range>:== <number> |

<expr_list>

<expr_list>:== '[' <range_expr> [',' <range_expr>] ']'

<range_expr>:== <number> |

<number> '-' <number> |

<number> '-' <number> '/' <number>

<net> :== <netname> | <netname><number>

<netname> :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |

"vib" | "ra" | "elan" | "gm" | "mx" | "ptl"

<number> :== <nonnegative decimal> | <hexadecimal>

Note – For networks using numeric addresses (e.g. elan), the address range must be
specified in the <numaddr_range> syntax. For networks using IP addresses, the
address range must be in the <ipaddr_range>. For example, if elan is using numeric
addresses, 1.2.3.4@elan is incorrect.
26-6 Lustre 1.6 Operations Manual • May 2009

CHAPTER 27

Lustre Operating Tips

This chapter describes tips to improve Lustre operations and includes the following
sections:

■ Adding an OST to a Lustre File System

■ A Simple Data Migration Script

■ Adding Multiple SCSI LUNs on Single HBA

■ Failures Running a Client and OST on the Same Machine

■ Improving Lustre Metadata Performance While Using Large Directories
27-1

27.1 Adding an OST to a Lustre File System
To add an OST to existing Lustre file system:

1. Add a new OST by passing on the following commands, run:

$ mkfs.lustre --fsname=spfs --ost --mgsnode=mds16@tcp0 /dev/sda

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0

2. Migrate the data (possibly).

The file system is quite unbalanced when new empty OSTs are added. New file
creations are automatically balanced. If this is a scratch file system or files are
pruned at a regular interval, then no further work may be needed. Files existing
prior to the expansion can be rebalanced with an in-place copy, which can be done
with a simple script.

The basic method is to copy existing files to a temporary file, then move the temp
file over the old one. This should not be attempted with files which are currently
being written to by users or applications. This operation redistributes the stripes
over the entire set of OSTs. For a sample data migration script, see A Simple Data
Migration Script.

A very clever migration script would do the following:

■ Examine the current distribution of data.

■ Calculate how much data should move from each full OST to the empty ones.

■ Search for files on a given full OST (using lfs getstripe).

■ Force the new destination OST (using lfs setstripe).

■ Copy only enough files to address the imbalance.

If a Lustre administrator wants to explore this approach further, per-OST
disk-usage statistics can be found under /proc/fs/lustre/osc/*/rpc_stats
27-2 Lustre 1.6 Operations Manual • May 2009

27.2 A Simple Data Migration Script
#!/bin/bash

set -x

A script to copy and check files.

To avoid allocating objects on one or more OSTs, they should be

deactivated on the MDS via "lctl --device {device_number}
deactivate",

where {device_number} is from the output of "lctl dl" on the MDS.

To guard against corruption, the file is chksum'd

before and after the operation.

CKSUM=${CKSUM:-md5sum}

usage() {

 echo "usage: $0 [-O <OST_UUID-to-empty>] <dir>" 1>&2

 echo " -O can be specified multiple times" 1>&2

 exit 1

}

while getopts "O:" opt $*; do

 case $opt in

 O) OST_PARAM="$OST_PARAM -O $OPTARG";;

 \?) usage;;

 esac

done

shift $((OPTIND - 1))

MVDIR=$1

if [$# -ne 1 -o ! -d $MVDIR]; then

 usage

fi

lfs find -type f $OST_PARAM $MVDIR | while read OLDNAME; do

 echo -n "$OLDNAME: "

 if [! -w "$OLDNAME"]; then

 echo "No write permission, skipping"

 continue

 fi
Chapter 27 Lustre Operating Tips 27-3

 OLDCHK=$($CKSUM "$OLDNAME" | awk '{print $1}')

 if [-z "$OLDCHK"]; then

 echo "checksum error - exiting" 1>&2

exit 1

 fi

 NEWNAME=$(mktemp "$OLDNAME.tmp.XXXXXX")

 if [$? -ne 0 -o -z "$NEWNAME"]; then

 echo "unable to create temp file - exiting" 1>&2

exit 2

 fi

 cp -a "$OLDNAME" "$NEWNAME"

 if [$? -ne 0]; then

 echo "copy error - exiting" 1>&2

 rm -f "$NEWNAME"

 exit 4

 fi

 NEWCHK=$($CKSUM "$NEWNAME" | awk '{print $1}')

 if [-z "$NEWCHK"]; then

 echo "'$NEWNAME' checksum error - exiting" 1>&2

exit 6

 fi

 if [$OLDCHK != $NEWCHK]; then

 echo "'$NEWNAME' bad checksum - "$OLDNAME" not moved, exiting"
1>&2

 rm -f "$NEWNAME"

 exit 8

 else

 mv "$NEWNAME" "$OLDNAME"

 if [$? -ne 0]; then

 echo "rename error - exiting" 1>&2

 rm -f "$NEWNAME"

 exit 12

 fi

 fi

 echo "done"

done
27-4 Lustre 1.6 Operations Manual • May 2009

27.3 Adding Multiple SCSI LUNs on Single
HBA
The configuration of the kernels packaged by the Lustre group is similar to that of
the upstream RedHat and SuSE packages. Currently, RHEL does not enable
CONFIG_SCSI_MULTI_LUN because it can cause problems with SCSI hardware.

To enable this, set the scsi_mod max_scsi_luns=xx option (typically, xx is 128) in
either modprobe.conf (2.6 kernel) or modules.conf (2.4 kernel).

To pass this option as a kernel boot argument (in grub.conf or lilo.conf),
compile the kernel with CONFIG_SCSI_MULT_LUN=y

27.4 Failures Running a Client and OST on the
Same Machine
There are inherent problems if a client and OST share the same machine (and the
same memory pool). An effort to relieve memory pressure (by the client), requires
memory to be available to the OST. If the client is experiencing memory pressure,
then the OST is as well. The OST may not get the memory it needs to help the client
get the memory it needs because it is all one memory pool; this results in deadlock.

Running a client and an OST on the same machine can cause these failures:

■ If the client contains a dirty file system in memory and memory pressure, a kernel
thread flushes dirty pages to the file system, and it writes to a local OST. To
complete the write, the OST needs to do an allocation. Then the blocking of
allocation occurs while waiting for the above kernel thread to complete the write
process and free up some memory. This is a deadlock condition.

■ If the node with both a client and OST crashes, then the OST waits for the
mounted client on that node to recover. However, since the client is now in
crashed state, the OST considers it to be a new client and blocks it from mounting
until the recovery completes.

As a result, running OST and client on same machine can cause a double failure and
prevent a complete recovery.
Chapter 27 Lustre Operating Tips 27-5

27.5 Improving Lustre Metadata Performance
While Using Large Directories
To improve metadata performance while using large directories, follow these tips:

■ Have more RAM on the MDS – On the MDS, more memory translates into bigger
caches, thereby increasing the metadata performance.

■ Patch the core kernel on the MDS with the 3G/1G patch (if not running a 64-bit
kernel), which increases the available kernel address space. This translates into
support for bigger caches on the MDS.
27-6 Lustre 1.6 Operations Manual • May 2009

PART V Reference

This part includes reference information on Lustre user utilities, configuration files
and module parameters, programming interfaces, system configuration utilities, and
system limits.

CHAPTER 28

User Utilities (man1)

This chapter describes user utilities and includes the following sections:

■ lfs

■ lfsck

■ Filefrag

■ Handling Timeouts
28-1

28.1 lfs
The lfs utility can be used to create a new file with a specific striping pattern,
determine the default striping pattern, and gather the extended attributes (object
numbers and location) of a specific file.

Synopsis

lfs

lfs check <mds|osts|servers>

lfs df [-i] [-h] [path]

lfs find [[!] --atime|-A [-+]N] [[!] --mtime|-M [-+]N]

[[!] --ctime|-C [-+]N] [--maxdepth|-D N] [--name|-n pattern]

[--print|-p] [--print0|-P] [--obd|-O <uuid[s]>]

[[!] --size|-S [-+]N[kMGTPE]] [--type |-t {bcdflpsD}]

[[!] --gid|-g N] [[!] --group|-G <name>]

[[!] --uid|-u N] [[!] --user|-U <name>]

[[!] --pool <name>]

<dirname|filename>

lfs getstripe [--obd|-O <uuid>] [--quiet|-q] [--verbose|-v]

[--recursive|-r] <dirname|filename>

lfs setstripe [--size|-s stripe-size] [--count|-c stripe-count]

[--offset|-o start-ost] [--pool|-p pool-name]

<dirname|filename>

lfs setstripe -d <dirname>

lfs poollist <filename[.<pool>] | <pathname>

lfs quota [-v][-o obd_uuid] [-u|-g] <username|groupname> <filesystem>

lfs quota <filesystem>

lfs quota -t [-u|-g] <filesystem>

lfs quotacheck [-ug] <filesystem>

lfs quotachown [-i] <filesystem>

lfs quotaon [-ugf] <filesystem>

lfs quotaoff [-ug] <filesystem>

lfs quotainv [-ug] <filesystem>

lfs quotaver [-on] <filesystem>

lfs setquota [-u|--user|-g|--group] <username|groupname>

[--block-softlimit <block-softlimit>]

[--block-hardlimit <block-hardlimit>]

[--inode-softlimit <inode-softlimit>]

[--inode-hardlimit <inode-hardlimit>]

<filesystem>
28-2 Lustre 1.6 Operations Manual • May 2009

lfs setquota [-u|--user|-g|--group] <username|groupname>

[-b <block-softlimit>] [-B <block-hardlimit>]

[-i <inode-softlimit>] [-I <inode-hardlimit>]

<filesystem>

lfs setquota -t [-u|-g]

[--block-grace <block-grace>]

[--inode-grace <inode-grace>]

<filesystem>

lfs setquota -t [-u|-g]

[-b <block-grace>] [-i <inode-grace>]

<filesystem>

lfs help

Note – In the above example, <filesystem> refers to the mount point of the Lustre
file system. The default is /mnt/lustre.

Note – The old lfs quota output was very detailed and contained clusterwide
quota statistics (including clusterwide limits for a user/group and clusterwide usage
for a user/group), as well as statistics for each MDS/OST. Now, lfs quota has
been updated to provide only clusterwide statistics, by default. To obtain the full
report of clusterwide limits, usage and statistics, use the -v option with lfs quota.

Description

The lfs utility is used to create a file with a specific pattern. It can be invoked
interactively without any arguments or in a non-interactive mode with one of the
arguments supported.
Chapter 28 User Utilities (man1) 28-3

Options

The various lfs options are listed and described below. For a complete list of available
options, type help at the lfs prompt.

Option Description

check

Displays the status of MDS or OSTs (as specified in the command) or
all of the servers (MDS and OSTs).

df

Reports file system disk space usage or inode usage of each
MDT/OST.

find

Searches the directory tree rooted at the given directory/filename for
files that match the given parameters.
Using ! before an option negates its meaning (files NOT matching the
parameter). Using + before a numeric value means files with the
parameter OR MORE. Using - before a numeric value means files
with the parameter OR LESS.

--atime

File was last accessed N*24 hours ago. (There is no guarantee that
atime is kept coherent across the cluster.)

OSTs store a transient atime that is updated when clients do read
requests. Permanent atime is written to the MDS when the file is
closed. However, on-disk atime is only updated if it is more than 60
seconds old (/proc/fs/lustre/mds/*/max_atime_diff). Lustre
considers the latest atime from all OSTs. If a setattr is set by user,
then it is updated on both the MDS and OST, allowing the atime to
go backward.

--mtime

File status was last modified N*24 hours ago.

--ctime

File data was last changed N*24 hours ago.

--maxdepth

Allows the find command to descend at most N levels of the
directory tree.

--print

Prints the full filename, followed by a new line.
28-4 Lustre 1.6 Operations Manual • May 2009

--print0

Prints the full filename, followed by a null (\0) character.

--obd

File has an object on a specific OST(s).

--size

File has a size in bytes or kilo-, Mega-, Giga-, Tera-, Peta- or Exabytes
if a suffix is given.

--type

File has a type (block, character, directory, pipe, file, symlink, socket
or Door [for Solaris]).

--gid

File has a specific group ID.

--group

File belongs to a specific group (numeric group ID allowed).

--uid

File has a specific numeric user ID.

--user

File owned by a specific user (numeric user ID allowed).

--pool

Specifies a pool to which a file must belong.
Use --pool='' to find files that are not in any pool.
Use --pool='*' to find files that are in any pool, excluding files that are
not in a pool.

getstripe

Lists the striping information for a given filename or files in a
directory (optionally recursive) for all files in a directory tree.

--quiet

Does not print object IDs.

--verbose

Prints striping parameters.

--recursive

Recurses into sub-directories.

Option Description
Chapter 28 User Utilities (man1) 28-5

setstripe

Create a new file or sets the directory default with the specified
striping parameters.†

stripe-size*

Number of bytes to store on an OST before moving to the next OST.
A stripe size of 0 uses the file system’s default stripe size, 1MB. Can
be specified with k, m or g (in KB, MB or GB, respectively).

stripe-count

Number of OSTs to stripe a file over. A stripe count of 0 uses the file
system-wide default stripe count (1). A stripe count of -1 stripes over
all available OSTs.

stripe-ost *

The OST index (base 10, starting at 0) on which to start striping for
this file. A start-ost of -1 allows the MDS the choose the starting
index. Selecting this value is strongly recommended, as this allows
space and load balancing to be done by the MDS as needed.

pool-name

Name of the pre-defined pool of OSTs (see lctl) that will be used for
striping. The stripe-count, stripe-size and start-ost values are used
as well. The start-ost must be part of the pool or an error is returned.

setstripe -d Deletes default striping on the specified directory.

poollist <filesystem>[.<pool>] | <pathname>

Lists pools in the file system or pathname, or OSTs in the file
system’s pool.

quota [-v] [-o obd_uuid] [-u|-g] <username|groupname> <filesystem>

Displays disk usage and limits, either for the full file system or for
objexts on a specific OBD. A user or group name can be specified. If
both user and group are omitted, quotas for the current UID/GID are
shown. The -v option provides more verbose (with per-OBD
statistics) output.

quota -t [-u|-g] <filesystem>

Displays block and inode grace times for user (-u) or group (-g)
quotas.

quotacheck [-ugf] <filesystem>

Scans the specified file system for disk usage, and creates or updates
quota files. Options specify quota for users (-u), groups (-g), and
force (-f).

quotachown [-i] <filesystem>

Option Description
28-6 Lustre 1.6 Operations Manual • May 2009

Changes the file’s owner and group on OSTs of the specified file
system.

quotaon [-ugf] <filesystem>

Turns on file system quotas. Options specify quota for users (-u),
groups (-g), and force (-f).

quotaoff [-ugf] <filesystem>

Turns off file system quotas. Options specify quota for users (-u),
groups (-g), and force (-f).

quotainv [-ug] [-f] <filesystem>

Clears quota files (administrative quota files if used without -f,
operational quota files otherwise), all of their quota entries for users
(-u) or groups (-g). After running quotainv, you must run quotacheck
before using quotas.
CAUTION: Use extreme caution when using this command; its
results cannot be undone.

quotaver

Switches to new quota mode (-n) or old quota mode (-o).

setquota [-u|-g] <name>
[--block-softlimit <block-softlimit>]
[--block-hardlimit <block-hardlimit>]
[--inode-softlimit <inode-softlimit>]
[--inode-hardlimit <inode-hardlimit>]
<filesystem>

Sets file system quotas for users or groups. Limits can be specified
with --{block|inode}-{softlimit|hardlimit} or their short equivalents
-b, -B, -i, -I. Users can set 1, 2, 3 or 4 limits.‡ Also, limits can be
specified with special suffixes, -b, -k, -m, -g, -t, and -p to indicate
units of 1, 2^10, 2^20, 2^30, 2^40 and 2^50, respectively. By default,
the block limits unit is 1 kilobyte (1,024), and block limits are always
kilobyte-grained (even if specified in bytes). See Examples.

setquota -t [-u|-g]
[--block-grace <block-grace>]
[--inode-grace <inode-grace>]
<filesystem>

Sets file system quota grace times for users or groups. Grace time is
specified in “XXwXXdXXhXXmXXs” format or as an integer seconds
value. See Examples.

help

Option Description
Chapter 28 User Utilities (man1) 28-7

Examples

$ lfs setstripe -s 128k -c 2 /mnt/lustre/file

Creates a file striped on two OSTs with 128 KB on each stripe.

$ lfs setstripe -d /mnt/lustre/dir

Deletes a default stripe pattern on a given directory. New files will use the default
striping pattern.

$ lfs setstripe --pool my_pool /mnt/lustre/dir

Associates a directory with the pool my_pool, so all new files and directories are
created in the pool.

$ lfs setstripe --pool my_pool -c 2 /mnt/lustre/file

Creates a file striped on two OSTs from the pool my_pool

$ lfs pool_list /mnt/lustre/

Lists the pools defined for the mounted Lustre file system /mnt/lustre

$ lfs pool_list my_fs.my_pool

Lists the OSTs which are members of the pool my_pool in file system my_fs

$ lfs getstripe -v /mnt/lustre/file1

Lists the detailed object allocation of a given file.

$ lfs find /mnt/lustre

Provides brief help on various lfs arguments.

exit/quit

Quits the interactive lfs session.

* The default stripe-size is 0. The default stripe-start is -1. Do NOT confuse them! If you set stripe-start to 0, all
new file creations occur on OST 0 (seldom a good idea).

† The file cannot exist prior to using setstripe. A directory must exist prior to using setstripe.

‡ The old setquota interface is supported, but it may be removed in a future Lustre release.

Option Description
28-8 Lustre 1.6 Operations Manual • May 2009

Efficiently lists all files in a given directory and its sub-directories.

$ lfs find /mnt/lustre -mtime +30 -type f -print

Recursively lists all regular files in a given directory that are more than 30 days
old.

$ lfs find --obd OST2-UUID /mnt/lustre/

Recursively lists all files in a given directory that have objects on OST2-UUID.

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files associated with poolA.

$ lfs find /mnt//lustre --pool ""

Finds all directories/files not associated with a pool.

$ lfs find /mnt/lustre ! --pool ""

Finds all directories/files associated with pool.

$ lfs check servers

Checks the status of all servers (MDT, OST)

$ lfs osts

Lists all of the OSTs.

$ lfs df -h

Lists space usage per OST and MDT in human-readable format.

$ lfs df -i

Lists inode usage per OST and MDT.

$ lfs quotacheck -ug /mnt/lustre
Chapter 28 User Utilities (man1) 28-9

Checks quotas for user and group. Turns on quotas after making the check.

$ lfs quotaon -ug /mnt/lustre

Turns on quotas of user and group.

$ lfs quotaoff -ug /mnt/lustre

Turns off quotas of user and group.

$ lfs setquota -u bob --block-softlimit 2000000 --block-hardlimit
1000000 /mnt/lustre

Sets quotas of user ‘bob’, with a 1 GB block quota hardlimit and a 2 GB block
quota softlimit.

$ lfs setquota -t -u --block-grace 1000 --inode-grace 1w4d /mnt/lustre

Sets grace times for user quotas: 1000 seconds for block quotas, 1 week and 4 days
for inode quotas.

$ lfs quota -u bob /mnt/lustre

List quotas of user ‘bob’.

$ lfs quota -t -u /mnt/lustre

Show grace times for user quotas on /mnt/lustre.
28-10 Lustre 1.6 Operations Manual • May 2009

28.2 lfsck
The e2fsprogs package contains an lfsck tool which does distributed coherency
checking for the Lustre file system after e2fsck is run. In most cases, e2fsck is
sufficient to repair any file system issues and lfsck is not required. To avoid lengthy
downtime, you can also run lfsck once Lustre is already started.

Synopsis

lfsck [-h|--help] [-n|--nofix] [-l|--lostfound][-d|--delete] [-f|
--force] [-v|--verbose] --mdsdb mdsdb --ostdb ost1db [ost2db...]
<filesystem>

Note – As shown, <filesystem> refers to the Lustre file system mount point. The
default is /mnt/lustre.
Chapter 28 User Utilities (man1) 28-11

Options

The options and descriptions for the lfsck command are listed below.

Option Description

-n

Performs a read-only check; does not repair the file system.

-l

Puts orphaned objects into a lost+found directory in the root of the file system.

-d

Deletes orphaned objects from the file system. Since objects on the OST are usually
only one of several stripes of a file, it is often difficult to put multiple objects back
together into a single usable file.

-h

Prints a brief help message.

--mdsdb ms_database_file

MDS database file created by running e2fsck --mdsdb mds_database_file device on
the MDS backing device.

--ostdb ost1_database_file[,ost2_database_file,...]

OST database files created by running e2fsck --ostdb ost_database_file device on
each OST backing device.
28-12 Lustre 1.6 Operations Manual • May 2009

Description

If an MDS or an OST becomes corrupt, you can run a distributed check on the file
system to determine what sort of problems exist.

1. Run 'e2fsck -f' on the individual MDS / OST that had problems to fix any local
file system damage.

It is a very good idea to run this e2fsck under "script" so you have a log of
whatever changes it made to the file system (in case this is needed later). After this
is complete, you can bring the file system up if necessary to reduce the outage
window.

2. Run a full e2fsck of the MDS to create a database for lfsck.

The -n option is critical for a mounted file system, otherwise you might corrupt
your file system. The mdsdb file can grow fairly large, depending on the number
of files in the file system (10 GB or more for millions of files, though the actual file
size is larger because the file is sparse). It is fastest if this is written to a local file
system because of the seeking and small writes. Depending on the number of files,
this step can take several hours to complete. In the following example,
/tmp/mdsdb is the database file.

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/{mdsdev}
Chapter 28 User Utilities (man1) 28-13

Example

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/sdb

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only
filesystem check.

lustre-MDT0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

MDS: ost_idx 0 max_id 288

MDS: got 8 bytes = 1 entries in lov_objids

MDS: max_files = 13

MDS: num_osts = 1

mds info db file written

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (656160, counted=656058).

Fix? no

Free inodes count wrong (786419, counted=786036).

Fix? no

Pass 6: Acquiring information for lfsck

MDS: max_files = 13

MDS: num_osts = 1

MDS: 'lustre-MDT0000_UUID' mdt idx 0: compat 0x4 rocomp 0x1 incomp
0x4

lustre-MDT0000: ******* WARNING: Filesystem still has errors

13 inodes used (0%)

2 non-contiguous inodes (15.4%)

of inodes with ind/dind/tind blocks: 0/0/0

130272 blocks used (16%)

0 bad blocks

1 large file

296 regular files

91 directories

0 character device files

0 block device files

0 fifos

0 links

0 symbolic links (0 fast symbolic links)

0 sockets

387 files
28-14 Lustre 1.6 Operations Manual • May 2009

3. Make this file accessible on all OSTs (either via a shared file system or by
copying it to the OSTs – pdcp is very useful here. It copies files to groups of
hosts and in parallel, it gets installed with pdsh. You can download it at:

http://sourceforge.net/projects/pdsh)

Run a similar e2fsck step on the OSTs. You can run this step simultaneously on OSTs.
The mdsdb is read-only in this step—a single copy can be shared by all OSTs.

e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ostNdb} /dev/{ostNdev}

Example:

[root@oss161 ~]# e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb \
/tmp/ostdb /dev/sda

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only
filesystem check.

lustre-OST0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (989015, counted=817968).

Fix? no

Free inodes count wrong (262088, counted=261767).

Fix? no

Pass 6: Acquiring information for lfsck

OST: 'lustre-OST0000_UUID' ost idx 0: compat 0x2 rocomp 0 incomp 0x2

OST: num files = 321

OST: last_id = 321
Chapter 28 User Utilities (man1) 28-15

http://sourceforge.net/projects/pdsh)

lustre-OST0000: ******* WARNING: Filesystem still has errors *******

56 inodes used (0%)

27 non-contiguous inodes (48.2%)

of inodes with ind/dind/tind blocks: 13/0/0

59561 blocks used (5%)

0 bad blocks

1 large file

329 regular files

39 directories

0 character device files

0 block device files

0 fifos

0 links

0 symbolic links (0 fast symbolic links)

0 sockets

368 files

Make the mdsdb and all of the ostdb files available on a mounted client so lfsck can
be run to examine the file system and, optionally, correct defects that it finds.

lfsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ost1db},{ost2db},... \
/lustre/mount/point
28-16 Lustre 1.6 Operations Manual • May 2009

Example:

lfsck -n -v --mdsdb /home/mdsdb --ostdb /home/ostdb \
/mnt/lustre/client/

MDSDB: /home/mdsdb

OSTDB[0]: /home/ostdb

MOUNTPOINT: /mnt/lustre/client/

MDS: max_id 288 OST: max_id 321

lfsck: ost_idx 0: pass1: check for duplicate objects

lfsck: ost_idx 0: pass1 OK (287 files total)

lfsck: ost_idx 0: pass2: check for missing inode objects

lfsck: ost_idx 0: pass2 OK (287 objects)

lfsck: ost_idx 0: pass3: check for orphan objects

[0] uuid lustre-OST0000_UUID

[0] last_id 288

[0] zero-length orphan objid 1

lfsck: ost_idx 0: pass3 OK (321 files total)

lfsck: pass4: check for duplicate object references

lfsck: pass4 OK (no duplicates)

lfsck: fixed 0 errors

By default, lfsck does not repair any inconsistencies it finds, it only reports errors.
It checks for three kinds of inconsistencies:

■ Inode exists but has missing objects = dangling inode. Normally, this happens if
there was a problem with an OST.

■ Inode is missing but the OST has unreferenced objects = orphan object. Normally,
this happens if there was a problem with the MDS.

■ Multiple inodes reference the same objects. This happens if there was corruption
on the MDS or if the MDS storage is cached and loses some, but not all, writes.

If the file system is busy, lfsck may report inconsistencies where none exist because
of files and objects being created/removed after the database files were collected.
Examined the results closely; you probably want to contact Lustre Support for
guidance.

The easiest problem to resolve is orphaned objects. Use the -l option to lfsck so it
links these objects to new files and puts them into lost+found in the Lustre file
system, where they can be examined and saved or deleted as necessary. If you are
certain that the objects are not necessary, lfsck can run with the -d option to delete
orphaned objects and free up any space they are using.
Chapter 28 User Utilities (man1) 28-17

To fix dangling inodes, lfsck creates new zero-length objects on the OSTs if the -c
option is given. These files read back with binary zeros for the stripes that had
objects recreated. Such files can also be read even without lfsck repair by using this
command, run:

$ dd if=/lustre/bad/file of=/new/file bs=4k conv=sync,noerror.

Because it is rarely useful to have files with large holes in them, most users delete
these files after reading them (if useful) and/or restoring them from backup.

Note – You cannot write to the holes of such files without having lfsck recreate the
objects. Generally, it is easier to delete these files and restore them from backup.

To fix inodes with duplicate objects, lfsck copies the duplicate object to a new
object, and assign that to one of the files if the -c option is given. One of the files will
be okay, and one will likely contain garbage; lfsck cannot, by itself, tell which one
is correct.
28-18 Lustre 1.6 Operations Manual • May 2009

28.3 Filefrag
The e2fsprogs package contains the filefrag tool which reports the extent of file
fragmentation.

Synopsis

filefrag [-belsv] [files...]

Description

The filefrag utility reports the extent of fragmentation in a given file. Initially, filefrag
attempts to obtain extent information using FIEMAP ioctl, which is efficient and fast.
If FIEMAP is not supported, then filefrag uses FIBMAP.

Note – Lustre only supports FIEMAP ioctl. FIBMAP ioctl is not supported.

In default mode1, filefrag returns the number of physically discontiguous extents in
the file. In extent or verbose mode, each extent is printed with details. For Lustre, the
extents are printed in device offset order, not logical offset order.

1. The default mode is faster than the verbose/extent mode.
Chapter 28 User Utilities (man1) 28-19

Options

The options and descriptions for the filefrag utility are listed below.

Examples

Lists default output.

$ filefrag /mnt/lustre/foo

/mnt/lustre/foo: 6 extents found

Lists verbose output in extent format.

$ filefrag -ve /mnt/lustre/foo
Checking /mnt/lustre/foo
Filesystem type is: bd00bd0
Filesystem cylinder groups is approximately 5
File size of /mnt/lustre/foo is 157286400 (153600 blocks)
ext:device_logical:start..end physical: start..end:length: device:flags:
0: 0.. 49151: 212992.. 262144: 49152: 0: remote
1: 49152.. 73727: 270336.. 294912: 24576: 0: remote
2: 73728.. 76799: 24576.. 27648: 3072: 0: remote
3: 0.. 57343: 196608.. 253952: 57344: 1: remote
4: 57344.. 65535: 139264.. 147456: 8192: 1: remote
5: 65536.. 76799: 163840.. 175104: 11264: 1: remote
/mnt/lustre/foo: 6 extents found

Option Description

-b

Uses the 1024-byte blocksize for the output. By default, this blocksize is used by
Lustre, since OSTs may use different block sizes.

-e

Uses the extent mode when printing the output.

-l

Displays extents in LUN offset order.

-s

Synchronizes the file before requesting the mapping.

--v

Uses the verbose mode when checking file fragmentation.
28-20 Lustre 1.6 Operations Manual • May 2009

28.4 Mount
Lustre uses the standard Linux mount command, and also supports a few extra
options. For Lustre 1.4, the server-side options should be added to the XML
configuration with the –mountfsoptions= argument.

Here are the Lustre-specific options:

Sever options Description

extents Use extent-mapped files

mballoc Use Lustre file system allocator (required)

Lustre 1.6 server options Description

abort_recov Abort recovery when starting a target (currently an lconf option)

nosvc Start only MGS/MGC servers

exclude Start with a dead OST

Client options Description

flock Enable/disable flock support

user_xattr/nouser_xattr Enable/disable user-extended attributes

retry= Number of times a client will retry mount
Chapter 28 User Utilities (man1) 28-21

28.5 Handling Timeouts
Timeouts are the most common cause of hung applications. After a timeout involving
an MDS or failover OST, applications attempting to access the disconnected resource
wait until the connection gets established.

When a client performs any remote operation, it gives the server a reasonable
amount of time to respond. If a server does not reply either due to a down network,
hung server, or any other reason, a timeout occurs which requires a recovery.

If a timeout occurs, a message (similar to this one), appears on the console of the
client, and in /var/log/messages:

LustreError: 26597:(client.c:810:ptlrpc_expire_one_request()) @@@ timeout

req@a2d45200 x5886/t0 o38->mds_svc_UUID@NID_mds_UUID:12 lens 168/64 ref 1 fl

RPC:/0/0 rc 0
28-22 Lustre 1.6 Operations Manual • May 2009

CHAPTER 29

Lustre Programming Interfaces
(man2)

This chapter describes public programming interfaces to control various aspects of
Lustre from userspace. These interfaces are generally not guaranteed to remain
unchanged over time, although we will make an effort to notify the user community
well in advance of major changes. This chapter includes the following section:

■ User/Group Cache Upcall

29.1 User/Group Cache Upcall
This section describes user and group upcall.

Note – For information on a universal UID/GID, see Universal UID / GID.

29.1.1 Name
Use /proc/fs/lustre/mds/mds-service/group_upcall to look up a given
user’s group membership.
29-1

29.1.2 Description
The group upcall file contains the path to an executable that, when properly
installed, is invoked to resolve a numeric UID to a group membership list. This
utility should complete the mds_grp_downcall_data data structure (see Data
structures) and write it to the /proc/fs/lustre/mds/mds-service/group_info
pseudo-file.

For a sample upcall program, see lustre/utils/l_getgroups.c in the Lustre
source distribution.

29.1.2.1 Primary and Secondary Groups

The mechanism for the primary/secondary group is as follows:

■ The MDS issues an upcall (set per MDS) to map the numeric UID to the
supplementary group(s).

■ If there is no upcall or if there is an upcall and it fails, supplementary groups will
be added as supplied by the client (as they are now).

■ The default upcall is /usr/sbin/l_getgroups, which uses the Lustre
group-supplied upcall. It looks up the UID in /etc/passwd, and if it finds the
UID, it looks for supplementary groups in /etc/group for that username. You
are free to enhance l_getgroups to look at an external database for
supplementary groups information.

■ The default group upcall is set by mkfs.lustre. To set the upcall, use echo {path}
> /proc/fs/lustre/mds/{mdsname}/group_upcall or tunefs.lustre
--param.

■ To avoid repeated upcalls, the supplementary group information is cached by the
MDS. The default cache time is 300 seconds, but can be changed via
/proc/fs/lustre/mds/{mdsname}/group_expire. The kernel waits, at most,
5 seconds (by default,
/proc/fs/lustre/mds/{mdsname}/group_acquire_expire changes) for
the upcall to complete and will take the "failure" behavior as described above. It is
possible to flush cached entries by writing to the
/proc/fs/lustre/mds/{mdsname}/group_flush file.
29-2 Lustre 1.6 Operations Manual • May 2009

29.1.3 Parameters
■ Name of the MDS service

■ Numeric UID

29.1.4 Data structures
#include <lustre/lustre_user.h>

#define MDS_GRP_DOWNCALL_MAGIC 0x6d6dd620

struct mds_grp_downcall_data {

__u32 mgd_magic;

__u32 mgd_err;

__u32 mgd_uid;

__u32 mgd_gid;

__u32 mgd_ngroups;

__u32 mgd_groups[0];

};
Chapter 29 Lustre Programming Interfaces (man2) 29-3

29-4 Lustre 1.6 Operations Manual • May 2009

CHAPTER 30

Setting Lustre Properties (man3)

This chapter describes how to use llapi to set Lustre file properties.

30.1 Using llapi
Several llapi commands are available to set Lustre properties, llapi_file_create,
llapi_file_get_stripe, and llapi_file_open. These commands are described
in the following sections:

llapi_file_create

llapi_file_get_stripe

llapi_file_open

llapi_quotactl

30.1.1 llapi_file_create
Use llapi_file_create to set Lustre properties for a new file.

Synopsis

#include <lustre/liblustreapi.h>
#include <lustre/lustre_user.h>

int llapi_file_create(char *name, long stripe_size,
int stripe_offset, int stripe_count, int stripe_pattern);
30-1

Description

The llapi_file_create() function sets a file descriptor’s Lustre striping
information. The file descriptor is then accessed with open ().

Note – Currently, only RAID 0 is supported. To use the system defaults, set these
values: stripe_size = 0, stripe_offset = -1, stripe_count = 0, stripe_pattern = 0

Option Description

llapi_file_create()

If the file already exists, this parameter returns to ‘EEXIST’.
If the stripe parameters are invalid, this parameter returns to ‘EINVAL’.

stripe_size

This value must be an even multiple of system page size, as shown by getpagesize
(). The default Lustre stripe size is 4MB.

stripe_offset

Indicates the starting OST for this file.

stripe_count

Indicates the number of OSTs that this file will be striped across.

stripe_pattern

Indicates the RAID pattern.
30-2 Lustre 1.6 Operations Manual • May 2009

Examples

System default size is 4MB.

char *tfile = TESTFILE;

int stripe_size = 65536

To start at default, run:

int stripe_offset = -1

To start at the default, run:
int stripe_count = 1

To set a single stripe for this example, run:

int stripe_pattern = 0

Currently, only RAID 0 is supported.

int stripe_pattern = 0;

int rc, fd;

rc = llapi_file_create(tfile,
stripe_size,stripe_offset, stripe_count,stripe_pattern);

Result code is inverted, you may return with ’EINVAL’ or an ioctl error.

if (rc) {

fprintf(stderr,"llapi_file_create failed: %d (%s) 0, rc,
strerror(-rc));
return -1;
}

llapi_file_create closes the file descriptor. You must re-open the descriptor. To
do this, run:

fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
if (fd < 0) \ {
fprintf(stderr, "Can’t open %s file: %s0, tfile,

str-

error(errno));

return -1;

}

Chapter 30 Setting Lustre Properties (man3) 30-3

30.1.2 llapi_file_get_stripe
Use llapi_file_get_stripe to get striping information.

Synopsis

int llapi_file_get_stripe(const char *path, struct lov_user_md *lum)

Description

The llapi_file_get_stripe function returns the striping information to the
caller. If it returns a zero (0), the operation was successful; a negative number means
there was a failure.

Option Description

path

The path of the file.

lum

The returned striping information.

return

A value of zero (0) mean the operation was successful.
A value of a negative number means there was a failure.

stripe_count

Indicates the number of OSTs that this file will be striped across.

stripe_pattern

Indicates the RAID pattern.
30-4 Lustre 1.6 Operations Manual • May 2009

30.1.3 llapi_file_open
The llapi_file_open command opens or creates a file with the specified striping
parameters.

Synopsis

int llapi_file_open(const char *name, int flags, int mode, unsigned
long stripe_size, int stripe_offset, int stripe_count, int
stripe_pattern)

Description

The llapi_file_open function opens or creates a file with the specified striping
parameters. If it returns a zero (0), the operation was successful; a negative number
means there was a failure.

Option Description

name

The name of the file.

flags

This opens flags.

mode

This opens modes.

stripe_size

The stripe size of the file.

stripe_offset

The stripe offset (stripe_index) of the file.

stripe_count

The stripe count of the file.

stripe_pattern

The stripe pattern of the file.
Chapter 30 Setting Lustre Properties (man3) 30-5

30.1.4 llapi_quotactl
Use llapi_quotactl to manipulate disk quotas on a Lustre file system.

Synopsis

#include <liblustre.h>

#include <lustre/lustre_idl.h>

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

int llapi_quotactl(char" " *mnt," " struct if_quotactl" " *qctl)

struct if_quotactl {

 __u32 qc_cmd;

 __u32 qc_type;

 __u32 qc_id;

 __u32 qc_stat;

 struct obd_dqinfo qc_dqinfo;

 struct obd_dqblk qc_dqblk;

 char obd_type[16];

 struct obd_uuid obd_uuid;

};

struct obd_dqblk {

 __u64 dqb_bhardlimit;

 __u64 dqb_bsoftlimit;

 __u64 dqb_curspace;

 __u64 dqb_ihardlimit;

 __u64 dqb_isoftlimit;

 __u64 dqb_curinodes;

 __u64 dqb_btime;

 __u64 dqb_itime;

 __u32 dqb_valid;

 __u32 padding;

};

struct obd_dqinfo {

 __u64 dqi_bgrace;

 __u64 dqi_igrace;

 __u32 dqi_flags;

 __u32 dqi_valid;

};

struct obd_uuid {

 char uuid[40];

};
30-6 Lustre 1.6 Operations Manual • May 2009

Description

The llapi_quotactl() command manipulates disk quotas on a Lustre file system
mount. qc_cmd indicates a command to be applied to UID qc_id or GID qc_id.

Option Description

LUSTRE_Q_QUOTAON

Turns on quotas for a Lustre file system. qc_type is USRQUOTA, GRPQUOTA or
UGQUOTA (both user and group quota). The quota files must exist. They are
normally created with the llapi_quotacheck(3) call. This call is restricted to the
super user privilege.

LUSTRE_Q_QUOTAOFF

Turns off quotas for a Lustre file system. qc_type is USRQUOTA, GRPQUOTA or
UGQUOTA (both user and group quota). This call is restricted to the super user
privilege.

LUSTRE_Q_GETQUOTA

Gets disk quota limits and current usage for user or group qc_id. qc_type is
USRQUOTA or GRPQUOTA. UUID may be filled with OBD UUID string to query
quota information from a specific node. dqb_valid may be set nonzero to query
information only from MDS. If UUID is an empty string and dqb_valid is zero then
clusterwide limits and usage are returned. On return, obd_dqblk contains the
requested information (block limits unit is kilobyte). Quotas must be turned on
before using this command.

LUSTRE_Q_SETQUOTA

Sets disk quota limits for user or group qc_id. qc_type is USRQUOTA or
GRPQUOTA. dqb_valid mus be set to QIF_ILIMITS, QIF_BLIMITS or
QIF_LIMITS (both inode limits and block limits) dependent on updating limits.
obd_dqblk must be filled with limits values (as set in dqb_valid, block limits unit is
kilobyte). Quotas must be turned on before using this command.

LUSTRE_Q_GETINFO

Gets information about quotas. qc_type is either USRQUOTA or GRPQUOTA. On
return, dqi_igrace is inode grace time (in seconds), dqi_bgrace is block grace time
(in seconds), dqi_flags is not used by the current Lustre version.

LUSTRE_Q_SETINFO

Sets quota information (like grace times). qc_type is either USRQUOTA or
GRPQUOTA. dqi_igrace is inode grace time (in seconds), dqi_bgrace is block grace
time (in seconds), dqi_flags is not used by the current Lustre version and must be
zeroed.
Chapter 30 Setting Lustre Properties (man3) 30-7

Return Values

llapi_quotactl() returns:

0 on success

-1 on failure and sets the error number to indicate the error

llapi Errors

llapi errors are described below.

Errors Description

EFAULT qctl is invalid.

ENOSYS Kernel or Lustre modules have not been compiled with the QUOTA option.

ENOMEM Insufficient memory to complete operation.

ENOTTY qc_cmd is invalid.

EBUSY Cannot process during quotacheck.

ENOENT UUID does not correspond to OBD or mnt does not exist.

EPERM The call is privileged and the caller is not the super user.

ESRCH No disk quota is found for the indicated user. Quotas have not been turned
on for this file system.
30-8 Lustre 1.6 Operations Manual • May 2009

30.1.5 llapi_path2fid
Use llapi_path2fid to get the FID from the pathname.

Synopsis

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

int llapi_path2fid(const char *path, unsigned long long *seq, unsigned
long *oid, unsigned long *ver)

Description

The llapi_path2fid function returns the FID (sequence : object ID : version) for
the pathname.

Return Values

llapi_path2fid returns:

0 on success

non-zero value on failure
Chapter 30 Setting Lustre Properties (man3) 30-9

30-10 Lustre 1.6 Operations Manual • May 2009

CHAPTER 31

Configuration Files and Module
Parameters (man5)

This section describes configuration files and module parameters and includes the
following sections:

■ Introduction

■ Module Options

31.1 Introduction
LNET network hardware and routing are now configured via module parameters.
Parameters should be specified in the /etc/modprobe.conf file, for example:

alias lustre llite

options lnet networks=tcp0,elan0

The above option specifies that this node should use all the available TCP and Elan
interfaces.

Module parameters are read when the module is first loaded. Type-specific LND
modules (for instance, ksocklnd) are loaded automatically by the LNET module
when LNET starts (typically upon modprobe ptlrpc).

Under Linux 2.6, LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under LNET, and LND-specific
parameters under the name of the corresponding LND.

Under Linux 2.4, sysfs is not available, but the LND-specific parameters are
accessible via equivalent paths under /proc.
31-1

Important: All old (pre v.1.4.6) Lustre configuration lines should be removed from
the module configuration files and replaced with the following. Make sure that
CONFIG_KMOD is set in your linux.config so LNET can load the following modules
it needs. The basic module files are:

modprobe.conf (for Linux 2.6)

alias lustre llite

options lnet networks=tcp0,elan0

modules.conf (for Linux 2.4)

alias lustre llite

options lnet networks=tcp0,elan0

For the following parameters, default option settings are shown in parenthesis.
Changes to parameters marked with a W affect running systems. (Unmarked
parameters can only be set when LNET loads for the first time.) Changes to
parameters marked with Wc only have effect when connections are established
(existing connections are not affected by these changes.)

31.2 Module Options
■ With routed or other multi-network configurations, use ip2nets rather than

networks, so all nodes can use the same configuration.

■ For a routed network, use the same “routes” configuration everywhere. Nodes
specified as routers automatically enable forwarding and any routes that are not
relevant to a particular node are ignored. Keep a common configuration to
guarantee that all nodes have consistent routing tables.

■ A separate modprobe.conf.lnet included from modprobe.conf makes distributing
the configuration much easier.

■ If you set config_on_load=1, LNET starts at modprobe time rather than waiting
for Lustre to start. This ensures routers start working at module load time.

lctl

lctl> net down

■ Remember the lctl ping {nid} command - it is a handy way to check your
LNET configuration.
31-2 Lustre 1.6 Operations Manual • May 2009

31.2.1 LNET Options
This section describes LNET options.

31.2.1.1 Network Topology

Network topology module parameters determine which networks a node should
join, whether it should route between these networks, and how it communicates with
non-local networks.

Here is a list of various networks and the supported software stacks:

Note – Lustre ignores the loopback interface (lo0), but Lustre use any IP addresses
aliased to the loopback (by default). When in doubt, explicitly specify networks.

Network Software Stack

openib OpenIB gen1/Mellanox Gold

iib Silverstorm (Infinicon)

vib Voltaire

o2ib OpenIB gen2

cib Cisco

mx Myrinet MX

gm Myrinet GM-2

elan Quadrics QSNet
Chapter 31 Configuration Files and Module Parameters (man5) 31-3

ip2nets ("") is a string that lists globally-available networks, each with a set of IP
address ranges. LNET determines the locally-available networks from this list by
matching the IP address ranges with the local IPs of a node. The purpose of this
option is to be able to use the same modules.conf file across a variety of nodes on
different networks. The string has the following syntax.

<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }

<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> }

[<w>]

<net-spec> :== <network> ["(" <interface-list> ")"]

<network> :== <nettype> [<number>]

<nettype> :== "tcp" | "elan" | "openib" | ...

<iface-list> :== <interface> ["," <iface-list>]

<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>

<r-expr> :== <number> | "*" | "[" <r-list> "]"

<r-list> :== <range> ["," <r-list>]

<range> :== <number> ["-" <number> ["/" <number>]]

<comment :== "#" { <non-net-sep-chars> }

<net-sep> :== ";" | "\n"

<w> :== <whitespace-chars> { <whitespace-chars> }

<net-spec> contains enough information to uniquely identify the network and load
an appropriate LND. The LND determines the missing "address-within-network"
part of the NID based on the interfaces it can use.

<iface-list> specifies which hardware interface the network can use. If omitted, all
interfaces are used. LNDs that do not support the <iface-list> syntax cannot be
configured to use particular interfaces and just use what is there. Only a single
instance of these LNDs can exist on a node at any time, and <iface-list> must be
omitted.

<net-match> entries are scanned in the order declared to see if one of the node's IP
addresses matches one of the <ip-range> expressions. If there is a match, <net-spec>
specifies the network to instantiate. Note that it is the first match for a particular
network that counts. This can be used to simplify the match expression for the
general case by placing it after the special cases. For example:

ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

4 nodes on the 134.32.1.* network have 2 interfaces (134.32.1.{4,6,8,10}) but all the rest
have 1.

ip2nets="vib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]"

This describes an IB cluster on 192.168.0.*. Four of these nodes also have IP
interfaces; these four could be used as routers.

Note that match-all expressions (For instance, *.*.*.*) effectively mask all other
<net-match> entries specified after them. They should be used with caution.
31-4 Lustre 1.6 Operations Manual • May 2009

Here is a more complicated situation, the route parameter is explained below. We
have:

■ Two TCP subnets

■ One Elan subnet

■ One machine set up as a router, with both TCP and Elan interfaces

■ IP over Elan configured, but only IP will be used to label the nodes.

options lnet ip2nets=”tcp198.129.135.* 192.128.88.98; \
elan 198.128.88.98 198.129.135.3;” \
routes=”tcp 1022@elan# Elan NID of router;\
elan 198.128.88.98@tcp # TCP NID of router “

31.2.1.2 networks ("tcp")

This is an alternative to "ip2nets" which can be used to specify the networks to be
instantiated explicitly. The syntax is a simple comma separated list of <net-spec>s
(see above). The default is only used if neither “ip2nets” nor “networks” is specified.

31.2.1.3 routes (“”)

This is a string that lists networks and the NIDs of routers that forward to them.

It has the following syntax (<w> is one or more whitespace characters):

<routes> :== <route>{ ; <route> }

<route> :== [<net>[<w><hopcount>]<w><nid>{<w><nid>}

So a node on the network tcp1 that needs to go through a router to get to the Elan
network:

options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcp1”

The hopcount is used to help choose the best path between multiply-routed
configurations.

A simple but powerful expansion syntax is provided, both for target networks and
router NIDs as follows.

<expansion> :== "[" <entry> { "," <entry> } "]"

<entry> :== <numeric range> | <non-numeric item>

<numeric range> :== <number> ["-" <number> ["/" <number>]]
Chapter 31 Configuration Files and Module Parameters (man5) 31-5

The expansion is a list enclosed in square brackets. Numeric items in the list may be
a single number, a contiguous range of numbers, or a strided range of numbers. For
example, routes="elan 192.168.1.[22-24]@tcp" says that network elan0 is adjacent
(hopcount defaults to 1); and is accessible via 3 routers on the tcp0 network
(192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.1.24@tcp).

routes="[tcp,vib] 2 [8-14/2]@elan" says that 2 networks (tcp0 and vib0) are accessible
through 4 routers (8@elan, 10@elan, 12@elan and 14@elan). The hopcount of 2 means
that traffic to both these networks will be traversed 2 routers - first one of the routers
specified in this entry, then one more.

Duplicate entries, entries that route to a local network, and entries that specify
routers on a non-local network are ignored.

Equivalent entries are resolved in favor of the route with the shorter hopcount. The
hopcount, if omitted, defaults to 1 (the remote network is adjacent).

It is an error to specify routes to the same destination with routers on different local
networks.

If the target network string contains no expansions, then the hopcount defaults to 1
and may be omitted (that is, the remote network is adjacent). In practice, this is true
for most multi-network configurations. It is an error to specify an inconsistent hop
count for a given target network. This is why an explicit hopcount is required if the
target network string specifies more than one network.
31-6 Lustre 1.6 Operations Manual • May 2009

31.2.1.4 forwarding ("")

This is a string that can be set either to "enabled" or "disabled" for explicit control of
whether this node should act as a router, forwarding communications between all
local networks.

A standalone router can be started by simply starting LNET (“modprobe ptlrpc”)
with appropriate network topology options.

Variable Description

acceptor The acceptor is a TCP/IP service that some LNDs use to establish
communications. If a local network requires it and it has not been
disabled, the acceptor listens on a single port for connection
requests that it redirects to the appropriate local network. The
acceptor is part of the LNET module and configured by the
following options:
• secure - Accept connections only from reserved TCP ports (<

1023).
• all - Accept connections from any TCP port. NOTE: this is

required for liblustre clients to allow connections on
non-privileged ports.

• none - Do not run the acceptor.

accept_port
(988)

Port number on which the acceptor should listen for connection
requests. All nodes in a site configuration that require an acceptor
must use the same port.

accept_backlog
(127)

Maximum length that the queue of pending connections may grow
to (see listen(2)).

accept_timeout
(5, W)

Maximum time in seconds the acceptor is allowed to block while
communicating with a peer.

accept_proto_version Version of the acceptor protocol that should be used by outgoing
connection requests. It defaults to the most recent acceptor protocol
version, but it may be set to the previous version to allow the node
to initiate connections with nodes that only understand that
version of the acceptor protocol. The acceptor can, with some
restrictions, handle either version (that is, it can accept connections
from both 'old' and 'new' peers). For the current version of the
acceptor protocol (version 1), the acceptor is compatible with old
peers if it is only required by a single local network.
Chapter 31 Configuration Files and Module Parameters (man5) 31-7

31.2.2 SOCKLND Kernel TCP/IP LND
The SOCKLND kernel TCP/IP LND (socklnd) is connection-based and uses the
acceptor to establish communications via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple
interfaces. If no interfaces are specified by the ip2nets or networks module parameter,
all non-loopback IP interfaces are used. The address-within-network is determined
by the address of the first IP interface an instance of the socklnd encounters.

Consider a node on the “edge” of an InfiniBand network, with a low-bandwidth
management Ethernet (eth0), IP over IB configured (ipoib0), and a pair of GigE NICs
(eth1,eth2) providing off-cluster connectivity. This node should be configured with
"networks=vib,tcp(eth1,eth2)” to ensure that the socklnd ignores the management
Ethernet and IPoIB.

Variable Description

timeout
(50,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

nconnds
(4)

Sets the number of connection daemons.

min_reconnectms
(1000,W)

Minimum connection retry interval (in milliseconds). After a failed
connection attempt, this is the time that must elapse before the first
retry. As connections attempts fail, this time is doubled on each
successive retry up to a maximum of 'max_reconnectms'.

max_reconnectms
(6000,W)

Maximum connection retry interval (in milliseconds).

eager_ack
(0 on linux,
1 on darwin,W)

Boolean that determines whether the socklnd should attempt to
flush sends on message boundaries.

typed_conns
(1,Wc)

Boolean that determines whether the socklnd should use different
sockets for different types of messages. When clear, all
communication with a particular peer takes place on the same
socket. Otherwise, separate sockets are used for bulk sends, bulk
receives and everything else.

min_bulk
(1024,W)

Determines when a message is considered "bulk".

tx_buffer_size,
rx_buffer_size
(8388608,Wc)

Socket buffer sizes. Setting this option to zero (0), allows the
system to auto-tune buffer sizes. WARNING: Be very careful
changing this value as improper sizing can harm performance.

nagle
(0,Wc)

Boolean that determines if nagle should be enabled. It should never
be set in production systems.
31-8 Lustre 1.6 Operations Manual • May 2009

keepalive_idle
(30,Wc)

Time (in seconds) that a socket can remain idle before a keepalive
probe is sent. Setting this value to zero (0) disables keepalives.

keepalive_intvl
(2,Wc)

Time (in seconds) to repeat unanswered keepalive probes. Setting
this value to zero (0) disables keepalives.

keepalive_count
(10,Wc)

Number of unanswered keepalive probes before pronouncing
socket (hence peer) death.

enable_irq_affinity
(0,Wc)

Boolean that determines whether to enable IRQ affinity. The
default is zero (0).
When set, socklnd attempts to maximize performance by handling
device interrupts and data movement for particular (hardware)
interfaces on particular CPUs. This option is not available on all
platforms. This option requires an SMP system to exist and
produces best performance with multiple NICs. Systems with
multiple CPUs and a single NIC may see increase in the
performance with this parameter disabled.

zc_min_frag
(2048,W)

Determines the minimum message fragment that should be
considered for zero-copy sends. Increasing it above the platform's
PAGE_SIZE disables all zero copy sends. This option is not
available on all platforms.

Variable Description
Chapter 31 Configuration Files and Module Parameters (man5) 31-9

31.2.3 QSW LND
The QSW LND (qswlnd) is connection-less and, therefore, does not need the acceptor.
It is limited to a single instance, which uses all Elan "rails" that are present and
dynamically load balances over them.

The address-with-network is the node's Elan ID. A specific interface cannot be
selected in the "networks" module parameter.

Variable Description

tx_maxcontig
(1024)

Integer that specifies the maximum message payload (in bytes) to
copy into a pre-mapped transmit buffer

mtxmsgs
(8)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

nnblk_txmsg
(512 with a 4K page
size, 256 otherwise)

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

nrxmsg_small
(256)

Number of "small" receive buffers to post (typically everything
apart from bulk data).

ep_envelopes_small
(2048)

Number of message envelopes to reserve for the "small" receive
buffer queue. This determines a breakpoint in the number of
concurrent senders. Below this number, communication attempts
are queued, but above this number, the pre-allocated envelope
queue will fill, causing senders to back off and retry. This can have
the unfortunate side effect of starving arbitrary senders, who
continually find the envelope queue is full when they retry. This
parameter should therefore be increased if envelope queue
overflow is suspected.

nrxmsg_large
(64)

Number of "large" receive buffers to post (typically for routed bulk
data).

ep_envelopes_large
(256)

Number of message envelopes to reserve for the "large" receive
buffer queue. For more information on message envelopes, see the
ep_envelopes_small option (above).

optimized_puts
(32768,W)

Smallest non-routed PUT that will be RDMA’d.

optimized_gets
(1,W)

Smallest non-routed GET that will be RDMA’d.
31-10 Lustre 1.6 Operations Manual • May 2009

31.2.4 RapidArray LND
The RapidArray LND (ralnd) is connection-based and uses the acceptor to establish
connections with its peers. It is limited to a single instance, which uses all (both)
RapidArray devices present. It load balances over them using the XOR of the source
and destination NIDs to determine which device to use for communication.

The address-within-network is determined by the address of the single IP interface
that may be specified by the "networks" module parameter. If this is omitted, then the
first non-loopback IP interface that is up is used instead.

Variable Description

n_connd
(4)

Sets the number of connection daemons.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed
connection attempt, this sets the time that must elapse before the
first retry. As connections attempts fail, this time is doubled on
each successive retry, up to a maximum of the
max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(30,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

fma_cq_size
(8192)

Number of entries in the RapidArray FMA completion queue to
allocate. It should be increased if the ralnd starts to issue
warnings that the FMA CQ has overflowed. This is only a
performance issue.

max_immediate
(2048,W)

Size (in bytes) of the smallest message that will be RDMA’d,
rather than being included as immediate data in an FMA. All
messages greater than 6912 bytes must be RDMA’d (FMA limit).
Chapter 31 Configuration Files and Module Parameters (man5) 31-11

31.2.5 VIB LND
The VIB LND is connection-based, establishing reliable queue-pairs over InfiniBand
with its peers. It does not use the acceptor. It is limited to a single instance, using a
single HCA that can be specified via the "networks" module parameter. If this is
omitted, it uses the first HCA in numerical order it can open. The
address-within-network is determined by the IPoIB interface corresponding to the
HCA used.

Variable Description

service_number
(0x11b9a2)

Fixed IB service number on which the LND listens for incoming
connection requests. NOTE: All instances of the viblnd on the
same network must have the same setting for this parameter.

arp_retries
(3,W)

Number of times the LND will retry ARP while it establishes
communications with a peer.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed
connection attempt, this sets the time that must elapse before the
first retry. As connections attempts fail, this time is doubled on
each successive retry, up to a maximum of the
max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

ntx
(32)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

ntx_nblk
(256

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

concurrent_peers
(1152)

Maximum number of queue pairs and, therefore, the maximum
number of peers that the instance of the LND may communicate
with.

hca_basename
("InfiniHost")

Used to construct HCA device names by appending the device
number.

ipif_basename
("ipoib")

Used to construct IPoIB interface names by appending the same
device number as is used to generate the HCA device name.

local_ack_timeout
(0x12,Wc)

Used to construct IPoIB interface names by appending the same
device number as is used to generate the HCA device name.

retry_cnt
(7,Wc)

Low-level QP parameter. Only change it from the default value if
so advised.
31-12 Lustre 1.6 Operations Manual • May 2009

rnr_cnt
(6,Wc)

Low-level QP parameter. Only change it from the default value if
so advised.

rnr_nak_timer
(0x10,Wc)

Low-level QP parameter. Only change it from the default value if
so advised.

fmr_remaps
(1000)

Controls how often FMR mappings may be reused before they
must be unmapped. Only change it from the default value if so
advised

cksum
(0,W)

Boolean that determines if messages (NB not RDMAs) should be
check-summed. This is a diagnostic feature that should not
normally be enabled.

Variable Description
Chapter 31 Configuration Files and Module Parameters (man5) 31-13

31.2.6 OpenIB LND
The OpenIB LND is connection-based and uses the acceptor to establish reliable
queue-pairs over InfiniBand with its peers. It is limited to a single instance that uses
only IB device '0'.

The address-within-network is determined by the address of the single IP interface
that may be specified by the "networks" module parameter. If this is omitted, the first
non-loopback IP interface that is up, is used instead. It uses the acceptor to establish
connections with its peers.

Variable Description

n_connd
(4)

Sets the number of connection daemons. The default value is 4.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed
connection attempt, this sets the time that must elapse before the
first retry. As connections attempts fail, this time is doubled on
each successive retry, up to a maximum of
'max_reconnect_interval'.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

concurrent_peers
(1024)

Maximum number of queue pairs and, therefore, the maximum
number of peers that the instance of the LND may communicate
with.

cksum
(0,W)

Boolean that determines whether messages (NB not RDMAs)
should be check-summed. This is a diagnostic feature that should
not normally be enabled.
31-14 Lustre 1.6 Operations Manual • May 2009

31.2.7 Portals LND (Linux)
The Portals LND Linux (ptllnd) can be used as a interface layer to communicate with
Sandia Portals networking devices. This version is intended to work on Cray XT3
Linux nodes that use Cray Portals as a network transport.

Message Buffers

When ptllnd starts up, it allocates and posts sufficient message buffers to allow all
expected peers (set by concurrent_peers) to send one unsolicited message. The
first message that a peer actually sends is a

(so-called) "HELLO" message, used to negotiate how much additional buffering to
setup (typically 8 messages). If 10000 peers actually exist, then enough buffers are
posted for 80000 messages.

The maximum message size is set by the max_msg_size module parameter (default
value is 512). This parameter sets the bulk transfer breakpoint. Below this breakpoint,
payload data is sent in the message itself. Above this breakpoint, a buffer descriptor
is sent and the receiver gets the actual payload.

The buffer size is set by the rxb_npages module parameter (default value is 1). The
default conservatively avoids allocation problems due to kernel memory
fragmentation. However, increasing this value to 2 is probably not risky.

The ptllnd also keeps an additional rxb_nspare buffers (default value is 8) posted to
account for full buffers being handled.

Assuming a 4K page size with 10000 peers, 1258 buffers can be expected to be posted
at startup, increasing to a maximum of 10008 as peers that are actually connected. By
doubling rxb_npages halving max_msg_size, this number can be reduced by a
factor of 4.
Chapter 31 Configuration Files and Module Parameters (man5) 31-15

ME/MD Queue Length

The ptllnd uses a single portal set by the portal module parameter (default value of
9) for both message and bulk buffers. Message buffers are always attached with
PTL_INS_AFTER and match anything sent with "message" matchbits. Bulk buffers
are always attached with PTL_INS_BEFORE and match only specific matchbits for
that particular bulk transfer.

This scheme assumes that the majority of ME / MDs posted are for "message"
buffers, and that the overhead of searching through the preceding "bulk" buffers is
acceptable. Since the number of "bulk" buffers posted at any time is also dependent
on the bulk transfer breakpoint set by max_msg_size, this seems like an issue worth
measuring at scale.

TX Descriptors

The ptllnd has a pool of so-called "tx descriptors", which it uses not only for outgoing
messages, but also to hold state for bulk transfers requested by incoming messages.
This pool should scale with the total number of peers.

To enable the building of the Portals LND (ptllnd.ko) configure with this option:

./configure --with-portals=<path-to-portals-headers>

Variable Description

ntx
(256)

Total number of messaging descriptors.

concurrent_peers
(1152)

Maximum number of concurrent peers. Peers that attempt to
connect beyond the maximum are not allowed.

peer_hash_table_size
(101)

Number of hash table slots for the peers. This number should scale
with concurrent_peers. The size of the peer hash table is set by the
module parameter peer_hash_table_size which defaults to a value
of 101. This number should be prime to ensure the peer hash table
is populated evenly. It is advisable to increase this value to 1001 for
~10000 peers.

cksum
(0)

Set to non-zero to enable message (not RDMA) checksums for
outgoing packets. Incoming packets are always check-summed if
necessary, independent of this value.

timeout
(50)

Amount of time (in seconds) that a request can linger in a
peers-active queue before the peer is considered dead.

portal
(9)

Portal ID to use for the ptllnd traffic.

rxb_npages
(64 * #cpus)

Number of pages in an RX buffer.
31-16 Lustre 1.6 Operations Manual • May 2009

credits
(128)

Maximum total number of concurrent sends that are outstanding to
a single peer at a given time.

peercredits
(8)

Maximum number of concurrent sends that are outstanding to a
single peer at a given time.

max_msg_size
(512)

Maximum immediate message size. This MUST be the same on all
nodes in a cluster. A peer that connects with a different
max_msg_size value will be rejected.

Variable Description
Chapter 31 Configuration Files and Module Parameters (man5) 31-17

31.2.8 Portals LND (Catamount)
The Portals LND Catamount (ptllnd) can be used as a interface layer to communicate
with Sandia Portals networking devices. This version is intended to work on the Cray
XT3 Catamount nodes using Cray Portals as a network transport.

To enable the building of the Portals LND configure with this option:

./configure --with-portals=<path-to-portals-headers>

The following PTLLND tunables are currently available:

Variable Description

PTLLND_DEBUG
(boolean, dflt 0)

Enables or disables debug features.

PTLLND_TX_HISTORY
(int, dflt debug?1024:0)

Sets the size of the history buffer.

PTLLND_ABORT_ON_PROT
OCOL_MISMATCH
(boolean, dflt 1)

Calls abort action on connecting to a peer running a
different version of the ptllnd protocol.

PTLLND_ABORT_ON_NAK
(boolean, dflt 0)

Calls abort action when a peer sends a NAK. (Example:
When it has timed out this node.)

PTLLND_DUMP_ON_NAK
(boolean, dflt debug?1:0)

Dumps peer debug and the history on receiving a NAK.

PTLLND_WATCHDOG_INTE
RVAL
(int, dflt 1)

Sets intervals to check some peers for timed out
communications while the application blocks for
communications to complete.

PTLLND_TIMEOUT
(int, dflt 50)

The communications timeout (in seconds).

PTLLND_LONG_WAIT
(int, dflt
debug?5:PTLLND_TIMEOUT)

The time (in seconds) after which the ptllnd prints a
warning if it blocks for a longer time during connection
establishment, cleanup after an error, or cleanup during
shutdown.
31-18 Lustre 1.6 Operations Manual • May 2009

The following environment variables can be set to configure the PTLLND’s behavior.

Variable Description

PTLLND_PORTAL
(9)

The portal ID (PID) to use for the ptllnd traffic.

PTLLND_PID
(9)

The virtual PID on which to contact servers.

PTLLND_PEERCREDITS
(8)

The maximum number of concurrent sends that are
outstanding to a single peer at any given instant.

PTLLND_MAX_MESSAGE_SIZE
(512)

The maximum messages size. This MUST be the
same on all nodes in a cluster.

PTLLND_MAX_MSGS_PER_BUFFER
(64)

The number of messages in a receive buffer.
Receive buffer will be allocated of size
PTLLND_MAX_MSGS_PER_BUFFER times
PTLLND_MAX_MESSAGE_SIZE.

PTLLND_MSG_SPARE
(256)

Additional receive buffers posted to portals.

PTLLND_PEER_HASH_SIZE
(101)

Number of hash table slots for the peers.

PTLLND_EQ_SIZE
(1024)

Size of the Portals event queue (that is, maximum
number of events in the queue).
Chapter 31 Configuration Files and Module Parameters (man5) 31-19

31.2.9 MX LND
MXLND supports a number of load-time parameters using Linux's module
parameter system. The following variables are available:

Of the described variables, only hosts is required. It must be the absolute path to the
MXLND hosts file.

For example:

options kmxlnd hosts=/etc/hosts.mxlnd

The file format for the hosts file is:

IP HOST BOARD EP_ID

The values must be space and/or tab separated where:

IP is a valid IPv4 address

HOST is the name returned by `hostname` on that machine

BOARD is the index of the Myricom NIC (0 for the first card, etc.)

EP_ID is the MX endpoint ID

Variable Description

n_waitd Number of completion daemons.

max_peers Maximum number of peers that may connect.

cksum Enables small message (< 4 KB) checksums if set to a non-zero value.

ntx Number of total tx message descriptors.

credits Number of concurrent sends to a single peer.

board Index value of the Myrinet board (NIC).

ep_id MX endpoint ID.

polling Use zero (0) to block (wait). A value > 0 will poll that many times
before blocking.

hosts IP-to-hostname resolution file.
31-20 Lustre 1.6 Operations Manual • May 2009

To obtain the optimal performance for your platform, you may want to vary the
remaining options.

n_waitd (1) sets the number of threads that process completed MX requests (sends
and receives).

max_peers (1024) tells MXLND the upper limit of machines that it will need to
communicate with. This affects how many receives it will pre-post and each receive
will use one page of memory. Ideally, on clients, this value will be equal to the total
number of Lustre servers (MDS and OSS). On servers, it needs to equal the total
number of machines in the storage system. cksum (0) turns on small message
checksums. It can be used to aid in troubleshooting. MX also provides an optional
checksumming feature which can check all messages (large and small). For details,
see the MX README.

ntx (256) is the number of total sends in flight from this machine. In actuality,
MXLND reserves half of them for connect messages so make this value twice as large
as you want for the total number of sends in flight.

credits (8) is the number of in-flight messages for a specific peer. This is part of the
flow-control system in Lustre. Increasing this value may improve performance but it
requires more memory because each message requires at least one page.

board (0) is the index of the Myricom NIC. Hosts can have multiple Myricom NICs
and this identifies which one MXLND should use. This value must match the board
value in your MXLND hosts file for this host.

ep_id (3) is the MX endpoint ID. Each process that uses MX is required to have at
least one MX endpoint to access the MX library and NIC. The ID is a simple index
starting at zero (0). This value must match the endpoint ID value in your MXLND
hosts file for this host.

polling (0) determines whether this host will poll or block for MX request
completions. A value of 0 blocks and any positive value will poll that many times
before blocking. Since polling increases CPU usage, we suggest that you set this to
zero (0) on the client and experiment with different values for servers.
Chapter 31 Configuration Files and Module Parameters (man5) 31-21

31-22 Lustre 1.6 Operations Manual • May 2009

CHAPTER 32

System Configuration Utilities
(man8)

This chapter includes system configuration utilities and includes the following
sections:

■ mkfs.lustre

■ tunefs.lustre

■ lctl

■ mount.lustre

■ New Utilities in Lustre 1.6
32-1

32.1 mkfs.lustre
The mkfs.lustre utility formats a disk for a Lustre service.

Synopsis

mkfs.lustre <target_type> [options] device

where <target_type> is one of the following:

Description

mkfs.lustre is used to format a disk device for use as part of a Lustre file system.
After formatting, a disk can be mounted to start the Lustre service defined by this
command.

Option Description

--ost

Object Storage Target (OST)

--mdt

Metadata Storage Target (MDT)

--mgs

Configuration Management Service (MGS), one per site. This service can be
combined with one --mdt service by specifying both types.

Option Description

--backfstype=fstype

Forces a particular format for the backing file system (such as ext3,
ldiskfs).

--comment=comment

Sets a user comment about this disk, ignored by Lustre.

--device-size=KB

Sets the device size for loop and non-loop devices.

--dryrun

Only prints what would be done; it does not affect the disk.
32-2 Lustre 1.6 Operations Manual • May 2009

--failnode=nid,...

Sets the NID(s) of a failover partner. This option can be repeated as
needed.

--fsname=filesystem_name

The Lustre file system of which this service/node will be a part. The
default file system name is “lustre”.

NOTE: The file system name is limited to 8 characters.

--index=index

Forces a particular OST or MDT index.

--mkfsoptions=opts

Formats options for the backing file system. For example, ext3
options could be set here.

--mountfsoptions=opts

Sets permanent mount options. This is equivalent to the setting in
/etc/fstab.

--mgsnode=nid,...

Sets the NIDs of the MGS node, required for all targets other than the
MGS.

--param key=value

Sets the permanent parameter key to value. This option can be
repeated as desired. Typical options might include:

--param sys.timeout=40

System obd timeout.

--param lov.stripesize=2M

Default stripe size.

--param lov.stripecount=2

Default stripe count.

--param failover.mode=failout

Returns errors instead of waiting for recovery.

--quiet

Prints less information.

--reformat

Reformats an existing Lustre disk.

Option Description
Chapter 32 System Configuration Utilities (man8) 32-3

Examples

Creates a combined MGS and MDT for file system testfs on node cfs21:

mkfs.lustre --fsname=testfs --mdt --mgs /dev/sda1

Creates an OST for file system testfs on any node (using the above MGS):

mkfs.lustre --fsname=testfs --ost --mgsnode=cfs21@tcp0 /dev/sdb

Creates a standalone MGS on, e.g., node cfs22:

mkfs.lustre --mgs /dev/sda1

Creates an MDT for file system myfs1 on any node (using the above MGS):

mkfs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2

--stripe-count-hint=stripes

Used to optimize the MDT’s inode size.

--verbose

Prints more information.

Option Description
32-4 Lustre 1.6 Operations Manual • May 2009

32.2 tunefs.lustre
The tunefs.lustre utility modifies configuration information on a Lustre target
disk.

Synopsis

tunefs.lustre [options] device

Description

tunefs.lustre is used to modify configuration information on a Lustre target disk.
This includes upgrading old (pre-Lustre 1.6) disks. This does not reformat the disk or
erase the target information, but modifying the configuration information can result
in an unusable file system.

Caution – Changes made here affect a file system when the target is mounted the
next time.

Options

The tunefs.lustre options are listed and explained below.

Option Description

--comment=comment

Sets a user comment about this disk, ignored by Lustre.

--dryrun

Only prints what would be done; does not affect the disk.

--erase-params

Removes all previous parameter information.

--failnode=nid,...

Sets the NID(s) of a failover partner. This option can be repeated as needed.

--fsname=filesystem_name
Chapter 32 System Configuration Utilities (man8) 32-5

The Lustre file system of which this service will be a part. The default file system
name is “lustre”.

--index=index

Forces a particular OST or MDT index.

--mountfsoptions=opts

Sets permanent mount options; equivalent to the setting in /etc/fstab.

--mgs

Adds a configuration management service to this target.

--msgnode=nid,...

Sets the NID(s) of the MGS node; required for all targets other than the MGS.

--nomgs

Removes a configuration management service to this target.

--quiet

Prints less information.

--verbose

Prints more information.

tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

Upgrades an old 1.4.x Lustre MDT to Lustre 1.6. The new file system name is
"testfs".

 tunefs.lustre --writeconf --mgs --mdt --fsname=testfs /dev/sda1

Upgrades an old 1.4.x Lustre MDT to Lustre 1.6, and starts with brand-new 1.6
configuration logs. All old servers and clients must be stopped.

Option Description
32-6 Lustre 1.6 Operations Manual • May 2009

Examples

Changing the MGS’s NID address. (This should be done on each target disk, since
they should all contact the same MGS.)

tunefs.lustre --erase-param --mgsnode=<new_nid> --writeconf /dev/sda

Adding a failover NID location for this target.

tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

Upgrading an old 1.4.x Lustre MDT to 1.6. The name of the new file system is
testfs.

tunefs.lustre --mgs --mdt --fsname=testfs /dev/sda

Upgrading an old 1.4.x Lustre MDT to 1.6, and start with brand-new 1.6
configuration logs. All old servers and clients must be stopped.

tunefs.lustre --writeconf --mgs --mdt --fsname=testfs /dev/sda1
Chapter 32 System Configuration Utilities (man8) 32-7

32.3 lctl
The lctl utility is used to directly control Lustre via an ioctl interface, allowing
various configuration, maintenance and debugging features to be accessed.

Synopsis

lctl

lctl --device <OST device number> <command [args]>

Description

The lctl utility can be invoked in interactive mode by issuing the lctl command. After
that, commands are issued as shown below. The most common lctl commands are:

dl

device

network <up/down>

list_nids

ping {nid}

help

quit

For a complete list of available commands, type help at the lctl prompt. To get
basic help on command meaning and syntax, type help command

For non-interactive use, use the second invocation, which runs the command after
connecting to the device.
32-8 Lustre 1.6 Operations Manual • May 2009

Network Configuration

Option Description

network <up/down>|<tcp/elan/myrinet>

Starts or stops LNET. Or, select a network type for other lctl LNET commands.

list_nids

Prints all NIDs on the local node. LNET must be running.

which_nid <nidlist>

From a list of NIDs for a remote node, identifies the NID on which interface
communication will occur.

ping {nid}

Check’s LNET connectivity via an LNET ping. This uses the fabric appropriate to
the specified NID.

interface_list

Prints the network interface information for a given network type.

peer_list

Prints the known peers for a given network type.

conn_list

Prints all the connected remote NIDs for a given network type.

active_tx

This command prints active transmits. It is only used for the Elan network type.
Chapter 32 System Configuration Utilities (man8) 32-9

Device Operations

Note – Lustre tunables are not always accessible using procfs interface, as it is
platform-specific. As a solution, lctl {get,set}_param has been introduced as a
platform-independent interface to the Lustre tunables. Avoid direct references to
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param instead.

Option Description

lctl get_param [-n] <path_name>

Gets the Lustre or LNET parameters from the specified <path_name>. Use the -n
option to get only the parameter value and skip the pathname in the output.

lctl set_param [-n] <path_name>

Sets the specified value to the Lustre or LNET parameter indicated by the
pathname. Use the -n option to skip the pathname in the output.

conf_param <device> <parameter>

Sets a permanent configuration parameter for any device via the MGS. This
command must be run on the MGS node.

activate

Re-activates an import after the de-activate operation.

deactivate

Running lctl deactivate on the MDS stops new objects from being allocated
on the OST. Running lctl deactivate on Lustre clients causes them to return
-EIO when accessing objects on the OST instead of waiting for recovery.

abort_recovery

Aborts the recovery process on a re-starting MDT or OST device.
32-10 Lustre 1.6 Operations Manual • May 2009

Virtual Block Device Operations

Lustre can emulate a virtual block device upon a regular file. This emulation is
needed when you are trying to set up a swap space via the file.

Debug

Option Description

blockdev_attach <file name> <device node>

Attaches a regular Lustre file to a block device. If the device node is non-existent,
lctl creates it. We recommend that you create the device node by lctl since the
emulator uses a dynamical major number.

blockdev_detach <device node>

Detaches the virtual block device.

blockdev_info <device node>

Provides information on which Lustre file is attached to the device node.

Option Description

debug_daemon

Starts and stops the debug daemon, and controls the output filename and size.

debug_kernel [file] [raw]

Dumps the kernel debug buffer to stdout or a file.

debug_file <input> [output]

Converts the kernel-dumped debug log from binary to plain text format.

clear

Clears the kernel debug buffer.

mark <text>

Inserts marker text in the kernel debug buffer.
Chapter 32 System Configuration Utilities (man8) 32-11

Options

Use the following options to invoke lctl.

Examples

lctl

$ lctl

lctl > dl

0 UP mgc MGC192.168.0.20@tcp bfbb24e3-7deb-2ffa-

eab0-44dffe00f692 5

1 UP ost OSS OSS_uuid 3

2 UP obdfilter testfs-OST0000 testfs-OST0000_UUID 3

lctl > dk /tmp/log Debug log: 87 lines, 87 kept, 0 dropped.

lctl > quit

$ lctl conf_param testfs-MDT0000 sys.timeout=40

get_param

$ lctl

lctl > get_param obdfilter.lustre-OST0000.kbytesavail

obdfilter.lustre-OST0000.kbytesavail=249364

lctl > get_param -n obdfilter.lustre-OST0000.kbytesavail

249364

lctl > get_param timeout

timeout=20

lctl > get_param -n timeout

20

lctl > get_param obdfilter.*.kbytesavail

obdfilter.lustre-OST0000.kbytesavail=249364

obdfilter.lustre-OST0001.kbytesavail=249364

lctl >

Option Description

--device

Device to be used for the operation (specified by name or number). See device_list.

--ignore_errors | ignore_errors

Ignores errors during script processing.
32-12 Lustre 1.6 Operations Manual • May 2009

set_param

$ lctl > set_param obdfilter.*.kbytesavail=0

obdfilter.lustre-OST0000.kbytesavail=0

obdfilter.lustre-OST0001.kbytesavail=0

lctl > set_param -n obdfilter.*.kbytesavail=0

lctl > set_param fail_loc=0

fail_loc=0

32.4 mount.lustre
The mount.lustre utility starts a Lustre client or target service.

Synopsis

mount -t lustre [-o options] device dir

Description

The mount.lustre utility starts a Lustre client or target service. This program should
not be called directly; rather, it is a helper program invoked through mount(8), as
shown above. Use the umount(8) command to stop Lustre clients and targets.

There are two forms for the device option, depending on whether a client or a target
service is started:

Option Description

<mgsspec>:/<fsname>

This is a client mount command used to mount the Lustre file system named
<fsname> by contacting the Management Service at <mgsspec>. The format for
<mgsspec> is defined below.

<disk_device>

This starts the target service defined by the mkfs.lustre command on the physical
disk <disk_device>.
Chapter 32 System Configuration Utilities (man8) 32-13

Options

In addition to the standard mount options, Lustre understands the following
client-specific options:

Option Description

<mgsspec>:=<mgsnode>[:<mgsnode>]

The MGS specification may be a colon-separated list of nodes.

<mgsnode>:=<mgsnid>[,<mgsnid>]

Each node may be specified by a comma-separated list of NIDs.

Option Description

flock

Enables flock support.

noflock

Disables flock support.

user_xattr

Enables get/set user xattr.

nouser_xattr

Disables user xattr.

acl

Enables ACL support.

noacl

Disables ACL support.
32-14 Lustre 1.6 Operations Manual • May 2009

In addition to the standard mount options and backing disk type (e.g. LDISKFS)
options, Lustre understands the following server-specific options:

Examples

Starts a client for the Lustre file system testfs at mount point
/mnt/myfilesystem. The Management Service is running on a node reachable
from this client via the NID cfs21@tcp0.

mount -t lustre cfs21@tcp0:/testfs /mnt/myfilesystem

Starts the Lustre target service on /dev/sda1.

mount -t lustre /dev/sda1 /mnt/test/mdt

Starts the testfs-MDT0000 service (using the disk label), but aborts the recovery
process.

mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

Option Description

nosvc

Starts the MGC (and MGS, if co-located) for a target service, not the actual service.

mount -t lustre /dev/sda1 /mnt/test/mdt

Starts the Lustre target service on /dev/sda1.

mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

Starts the testfs-MDT0000 service (by using the disk label), but aborts the recovery
process.
Chapter 32 System Configuration Utilities (man8) 32-15

32.5 New Utilities in Lustre 1.6
This section describes new utilities available in Lustre 1.6.

32.5.1 lustre_rmmod.sh
The lustre_rmmod.sh utility removes all Lustre and LNET modules (assuming no
Lustre services are running). It is located in /usr/bin.

Note – The lustre_rmmod.sh utility does not work if Lustre modules are being
used or if you have manually run the lctl network up command.

32.5.2 e2scan
The e2scan utility is an ext2 file system-modified inode scan program. The e2scan
program uses libext2fs to find inodes with ctime or mtime newer than a given time
and prints out their pathname. Use e2scan to efficiently generate lists of files that
have been modified. The e2scan tool is included in e2fsprogs, located at:

http://downloads.clusterfs.com/public/tools/e2fsprogs/latest

Synopsis

e2scan [options] [-f file] block_device

Description

When invoked, the e2scan utility iterates all inodes on the block device, finds
modified inodes, and prints their inode numbers. A similar iterator, using
libext2fs(5), builds a table (called parent database) which lists the parent node for
each inode. With a lookup function, you can reconstruct modified pathnames from
root.
32-16 Lustre 1.6 Operations Manual • May 2009

http://downloads.clusterfs.com/public/tools/e2fsprogs/latest

Options

32.5.3 Utilities to Manage Large Clusters
The following utilities are located in /usr/bin.

lustre_config.sh

The lustre_config.sh utility helps automate the formatting and setup of disks on
multiple nodes. An entire installation is described in a comma-separated file and
passed to this script, which then formats the drives, updates modprobe.conf and
produces high-availability (HA) configuration files.

lustre_createcsv.sh

The lustre_createcsv.sh utility generates a CSV file describing the currently-running
installation.

lustre_up14.sh

The lustre_up14.sh utility grabs client configuration files from old MDTs. When
upgrading Lustre from 1.4.x to 1.6.x, if the MGS is not co-located with the MDT or
the client name is non-standard, this utility is used to retrieve the old client log. For
more information, see Upgrading Lustre.

Option Description

-b inode buffer blocks

Sets the readahead inode blocks to get excellent performance when scanning the
block device.

-o output file

If an output file is specified, modified pathnames are written to this file. Otherwise,
modified parameters are written to stdout.

-t inode | pathname

Sets the e2scan type if type is inode. The e2scan utility prints modified inode
numbers to stdout. By default, the type is set as pathname.
The e2scan utility lists modified pathnames based on modified inode numbers.

-u

Rebuilds the parent database from scratch. Otherwise, the current parent database
is used.
Chapter 32 System Configuration Utilities (man8) 32-17

32.5.4 Application Profiling Utilities
The following utilities are located in /usr/bin.

lustre_req_history.sh

The lustre_req_history.sh utility (run from a client), assembles as much Lustre
RPC request history as possible from the local node and from the servers that were
contacted, providing a better picture of the coordinated network activity.

llstat.sh

The llstat.sh utility (improved in Lustre 1.6), handles a wider range of /proc
files, and has command line switches to produce more graphable output.

plot-llstat.sh

The plot-llstat.sh utility plots the output from llstat.sh using gnuplot.

32.5.5 More /proc Statistics for Application Profiling
The following utilities provide additional statistics.

vfs_ops_stats

The client vfs_ops_stats utility tracks Linux VFS operation calls into Lustre for a
single PID, PPID, GID or everything.

/proc/fs/lustre/llite/*/vfs_ops_stats

/proc/fs/lustre/llite/*/vfs_track_[pid|ppid|gid]

extents_stats

The client extents_stats utility shows the size distribution of I/O calls from the
client (cumulative and by process).

/proc/fs/lustre/llite/*/extents_stats, extents_stats_per_process
32-18 Lustre 1.6 Operations Manual • May 2009

offset_stats

The client offset_stats utility shows the read/write seek activity of a client by
offsets and ranges.

/proc/fs/lustre/llite/*/offset_stats

Lustre 1.6 also includes per-client and improved MDT statistics:

■ Per-client statistics tracked on the servers

Each MDT and OST now tracks LDLM and operations statistics for every
connected client, for comparisons and simpler collection of distributed job
statistics.

/proc/fs/lustre/mds|obdfilter/*/exports/

■ Improved MDT statistics

More detailed MDT operations statistics are collected for better profiling.

/proc/fs/lustre/mds/*/stats

32.5.6 Testing / Debugging Utilities
The following utilities are located in /usr/bin.

loadgen

The loadgen utility is a test program you can use to generate large loads on local or
remote OSTs or echo servers. For more information on loadgen and its usage, refer to:

https://mail.clusterfs.com/wikis/lustre/LoadGen

llog_reader

The llog_reader utility translates a Lustre configuration log into human-readable
form.

lr_reader

The lr_reader utility translates a last received (last_rcvd) file into
human-readable form.
Chapter 32 System Configuration Utilities (man8) 32-19

https://mail.clusterfs.com/wikis/lustre/LoadGen

32.5.7 Flock Feature
Lustre now includes the flock feature, which provides file locking support. Flock
describes classes of file locks known as ‘flocks’. Flock can apply or remove a lock on
an open file as specified by the user. However, a single file may not, simultaneously,
have both shared and exclusive locks.

By default, the flock utility is disabled on Lustre. Two modes are available.

A call to use flock may be blocked if another process is holding an incompatible lock.
Locks created using flock are applicable for an open file table entry. Therefore, a
single process may hold only one type of lock (shared or exclusive) on a single file.
Subsequent flock calls on a file that is already locked converts the existing lock to the
new lock mode.

32.5.7.1 Example

$ mount -t lustre –o flock mds@tcp0:/lustre /mnt/client

You can check it in /etc/mtab. It should look like,

mds@tcp0:/lustre /mnt/client lustre rw,flock 00

local mode In this mode, locks are coherent on one node (a single-node flock), but
not across all clients. To enable it, use -o localflock.
This is a client-mount option.

NOTE: This mode does not impact performance and is appropriate for
single-node databases.

consistent mode In this mode, locks are coherent across all clients.
To enable it, use the -o flock. This is a client-mount option.

CAUTION: This mode has a noticeable performance impact and may
affect stability, depending on the Lustre version used. Consider using a
newer Lustre version which is more stable.
32-20 Lustre 1.6 Operations Manual • May 2009

32.5.8 l_getgroups
The l_getgroups utility handles Lustre user / group cache upcall.

Synopsis

l_getgroups [-v] [-d | mdsname] uid

l_getgroups [-v] -s

Options

Description

The group upcall file contains the path to an executable file that, when properly
installed, is invoked to resolve a numeric UID to a group membership list. This
utility should complete the mds_grp_downcall_data structure and write it to the
/proc/fs/lustre/mds/mds service/group_info pseudo-file.

The l_getgroups utility is the reference implementation of the user or group cache
upcall.

Files

The l_getgroups files are located at:

/proc/fs/lustre/mds/mds-service/group_upcall

Option Description

--d

Debug - prints values to stdout instead of Lustre.

-s

Sleep - mlock memory in core and sleeps forever.

-v

Verbose - Logs start/stop to syslog.

mdsname

MDS device name.
Chapter 32 System Configuration Utilities (man8) 32-21

32.5.9 llobdstat
The llobdstat utility displays OST statistics.

Synopsis

llobdstat ost_name [interval]

Description

The llobdstat utility displays a line of OST statistics for a given OST at specified
intervals (in seconds).

Example
llobdstat liane-OST0002 1
/usr/bin/llobdstat on /proc/fs/lustre/obdfilter/liane-OST0002/stats
Processor counters run at 2800.189 MHz
Read: 1.21431e+07, Write: 9.93363e+08, create/destroy: 24/1499, stat: 34,
punch: 18
[NOTE: cx: create, dx: destroy, st: statfs, pu: punch]
Timestamp Read-delta ReadRate Write-delta WriteRate
--
1217026053 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026054 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026055 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026056 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026057 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026058 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026059 0.00MB 0.00MB/s 0.00MB 0.00MB/s st:1

Files

The llobdstat files are located at:

/proc/fs/lustre/obdfilter/<ostname>/stats

Option Description

ost_name

Name of the OBD for which statistics are requested.

interval

Time interval (in seconds) after which statistics are refreshed.
32-22 Lustre 1.6 Operations Manual • May 2009

32.5.10 llstat
The llstat utility displays Lustre statistics.

Synopsis

llstat [-c] [-g] [-i interval] stats_file

Description

The llstat utility displays statistics from any of the Lustre statistics files that share a
common format and are updated at a specified interval (in seconds). To stop statistics
printing, type CTRL-C.h

Options

Option Description

-c

Clears the statistics file.

-i

Specifies the interval polling period (in seconds).

-g

Specifies graphable output format.

-h

Displays help information.

stats_file

Specifies either the full path to a statistics file or a shorthand reference, mds or ost
Chapter 32 System Configuration Utilities (man8) 32-23

Example

To monitor /proc/fs/lustre/ost/OSS/ost/stats at 1 second intervals, run;

llstat -i 1 ost

Files

The llstat files are located at:

/proc/fs/lustre/mdt/MDS/*/stats

/proc/fs/lustre/mds/*/exports/*/stats

/proc/fs/lustre/mdc/*/stats

/proc/fs/lustre/ldlm/services/*/stats

/proc/fs/lustre/ldlm/namespaces/*/pool/stats

/proc/fs/lustre/mgs/MGS/exports/*/stats

/proc/fs/lustre/ost/OSS/*/stats

/proc/fs/lustre/osc/*/stats

/proc/fs/lustre/obdfilter/*/exports/*/stats

/proc/fs/lustre/obdfilter/*/stats

/proc/fs/lustre/llite/*/stats
32-24 Lustre 1.6 Operations Manual • May 2009

32.5.11 lst
The lst utility starts LNET self-test.

Synopsis

lst

Description

LNET self-test helps site administrators confirm that Lustre Networking (LNET) has
been correctly installed and configured. The self-test also confirms that LNET, the
network software and the underlying hardware are performing as expected.

Each LNET self-test runs in the context of a session. A node can be associated with
only one session at a time, to ensure that the session has exclusive use of the nodes
on which it is running. A single node creates, controls and monitors a single session.
This node is referred to as the self-test console.

Any node may act as the self-test console. Nodes are named and allocated to a
self-test session in groups. This allows all nodes in a group to be referenced by a
single name.

Test configurations are built by describing and running test batches. A test batch is a
named collection of tests, with each test composed of a number of individual
point-to-point tests running in parallel. These individual point-to-point tests are
instantiated according to the test type, source group, target group and distribution
specified when the test is added to the test batch.

Modules

To run LNET self-test, load following modules: libcfs, lnet, lnet_selftest and any one
of the klnds (ksocklnd, ko2iblnd...). To load all necessary modules, run modprobe
lnet_selftest, which recursively loads the modules on which lnet_selftest depends.

There are two types of nodes for LNET self-test: console and test. Both node types
require all previously-specified modules to be loaded. (The userspace test node does
not require these modules).

Test nodes can either be in kernel or in userspace. A console user can invite a kernel
test node to join the test session by running lst add_group NID, but the user cannot
actively add a userspace test node to the test-session. However, the console user can
passively accept a test node to the test session while the test node runs lst client to
connect to the console.
Chapter 32 System Configuration Utilities (man8) 32-25

Utilities

LNET self-test includes two user utilities, lst and lstclient.

lst is the user interface for the self-test console (run on console node). It provides a
list of commands to control the entire test system, such as create session, create test
groups, etc.

lstclient is the userspace self-test program which is linked with userspace LNDs and
LNET. A user can invoke lstclient to join a self-test session:

lstclient -sesid CONSOLE_NID group NAME

Example

This is an example of an LNET self-test script which simulates the traffic pattern of a
set of Lustre servers on a TCP network, accessed by Lustre clients on an IB network
(connected via LNET routers), with half the clients reading and half the clients
writing.

#!/bin/bash

export LST_SESSION=$$

lst new_session read/write

lst add_group servers 192.168.10.[8,10,12-16]@tcp

lst add_group readers 192.168.1.[1-253/2]@o2ib

lst add_group writers 192.168.1.[2-254/2]@o2ib

lst add_batch bulk_rw

lst add_test --batch bulk_rw --from readers --to servers brw read
check=simple size=1M

lst add_test --batch bulk_rw --from writers --to servers brw write
check=full size=4K

start running

lst run bulk_rw

display server stats for 30 seconds

lst stat servers & sleep 30; kill $?

tear down

lst end_session
32-26 Lustre 1.6 Operations Manual • May 2009

32.5.12 plot-llstat
The plot-llstat utility plots Lustre statistics.

Synopsis

plot-llstat results_filename [parameter_index]

Description

The plot-llstat utility generates a CSV file and instruction files for gnuplot from llstat
output. Since llstat is generic in nature, plot-llstat is also a generic script. The value of
parameter_index can be 1 for count per interval, 2 for count per second (default
setting) or 3 for total count.

The plot-llstat utility creates a .dat (CSV) file using the number of operations
specified by the user. The number of operations equals the number of columns in the
CSV file. The values in those columns are equal to the corresponding value of
parameter_index in the output file.

The plot-llstat utility also creates a .scr file that contains instructions for gnuplot to
plot the graph. After generating the .dat and .scr files, the plot llstat tool invokes
gnuplot to display the graph.

Options

Example

llstat -i2 -g -c lustre-OST0000 > log

plot-llstat log 3

Option Description

results_filename

Output generated by plot-llstat

parameter_index

Value of parameter_index can be:
1 - count per interval
2 - count per second (default setting)
3 - total count
Chapter 32 System Configuration Utilities (man8) 32-27

32.5.13 routerstat
The routerstat utility prints Lustre router statistics.

Synopsis

routerstat [interval]

Description

The routerstat utility watches LNET router statistics. If no interval is specified, then
statistics are sampled and printed only one time. Otherwise, statistics are sampled
and printed at the specified interval (in seconds).

Options

The routerstat output includes the following fields:

Files

Routerstat extracts statistics data from:

/proc/sys/lnet/stats

Field Description

M msgs_alloc(msgs_max)

E errors

S send_length/send_count

R recv_length/recv_count

F route_length/route_count

D drop_length/drop_count
32-28 Lustre 1.6 Operations Manual • May 2009

32.5.14 ll_recover_lost_found_objs
The ll_recover_lost_found_objs utility helps recover Lustre OST objects from
a lost and found directory.

Synopsis

$ ll_recover_lost_found_objs [-hv] -d directory

Description

The ll_recover_lost_found_objs utility recovers objects from a lost and found
directory that might be created if an OST has a corrupted directory. Running e2fsck
fixes the corrupted OST directory, but it puts all of the objects into a lost and found
directory, where they are inaccessible to Lustre. Using
ll_recover_lost_found_objs enables you to recover these objects.

Options

Example

ll_recover_lost_found_objs -d /mnt/ost/lost+found

Field Description

-h Prints a help message

-v Increases verbosity

-d directory Sets the lost and found directory path
Chapter 32 System Configuration Utilities (man8) 32-29

32-30 Lustre 1.6 Operations Manual • May 2009

CHAPTER 33

System Limits

This chapter describes various limits on the size of files and file systems. These limits
are imposed by either the Lustre architecture or the Linux VFS and VM subsystems.
In a few cases, a limit is defined within the code and could be changed by
re-compiling Lustre. In those cases, the selected limit is supported by Lustre testing
and may change in future releases. This chapter includes the following sections:

■ Maximum Stripe Count

■ Maximum Stripe Size

■ Minimum Stripe Size

■ Maximum Number of OSTs and MDTs

■ Maximum Number of Clients

■ Maximum Size of a File System

■ Maximum File Size

■ Maximum Number of Files or Subdirectories in a Single Directory

■ MDS Space Consumption

■ Maximum Length of a Filename and Pathname

■ Maximum Number of Open Files for Lustre File Systems

■ OSS RAM Size for a Single OST

33.1 Maximum Stripe Count
The maximum number of stripe count is 160. This limit is hard-coded, but is near the
upper limit imposed by the underlying ext3 file system. It may be increased in future
releases. Under normal circumstances, the stripe count is not affected by ACLs.
33-1

33.2 Maximum Stripe Size
For a 32-bit machine, the product of stripe size and stripe count (stripe_size *
stripe_count) must be less than 2^32. The ext3 limit of 2TB for a single file applies for
a 64-bit machine. (Lustre can support 160 stripes of 2 TB each on a 64-bit system.)

33.3 Minimum Stripe Size
Due to the 64 KB PAGE_SIZE on some 64-bit machines, the minimum stripe size is
set to 64 KB.

33.4 Maximum Number of OSTs and MDTs
You can set the maximum number of OSTs by a compile option. The limit of 1020
OSTs in Lustre release 1.4.7 is increased to a maximum of 8150 OSTs in 1.6.0. Testing
is in progress to move the limit to 4000 OSTs.

The maximum number of MDSs will be determined after accomplishing MDS
clustering.

33.5 Maximum Number of Clients
Currently, the number of clients is limited to 131072. We have tested up to 22000
clients.
33-2 Lustre 1.6 Operations Manual • May 2009

33.6 Maximum Size of a File System
For i386 systems with 2.6 kernels, the block devices are limited to 16 TB. Each OST or
MDT can have a file system up to 8 TB, regardless of whether 32-bit or 64-bit kernels
are on the server. (For 2.6 kernels, the 8 TB limit is imposed by ext3). Currently,
testing is underway to allow file systems up to 16 TB.

You can have multiple OST file systems on a single node. Currently, the largest
production Lustre file system has 448 OSTs in a single file system. There is a
compile-time limit of 8150 OSTs in a single file system, giving a theoretical file
system limit of nearly 64 PB.

Several production Lustre file systems have around 200 OSTs in a single file system.
The largest file system in production is at least 1.3 PB (184 OSTs). All these facts
indicate that Lustre would scale just fine if more hardware is made available.

33.7 Maximum File Size
Individual files have a hard limit of nearly 16 TB on 32-bit systems imposed by the
kernel memory subsystem. On 64-bit systems this limit does not exist. Hence, files
can be 64-bits in size. Lustre imposes an additional size limit of up to the number of
stripes, where each stripe is 2 TB. A single file can have a maximum of 160 stripes,
which gives an upper single file limit of 320 TB for 64-bit systems. The actual amount
of data that can be stored in a file depends upon the amount of free space in each
OST on which the file is striped.

33.8 Maximum Number of Files or
Subdirectories in a Single Directory
Lustre uses the ext3 hashed directory code, which has a limit of about 25 million files.
On reaching this limit, the directory grows to more than 2 GB depending on the
length of the filenames. The limit on subdirectories is the same as the limit on regular
files in all later versions of Lustre due to a small ext3 format change.

In fact, Lustre is tested with ten million files in a single directory. On a
properly-configured dual-CPU MDS with 4 GB RAM, random lookups in such a
directory are possible at a rate of 5,000 files / second.
Chapter 33 System Limits 33-3

33.9 MDS Space Consumption
A single MDS imposes an upper limit of 4 billion inodes. The default limit is slightly
less than the device size of 4 KB, meaning 512 MB inodes for a file system with MDS
of 2 TB. This can be increased initially, at the time of MDS file system creation, by
specifying the --mkfsoptions='-i 2048' option on the --add mds config line
for the MDS.

For newer releases of e2fsprogs, you can specify '-i 1024' to create 1 inode for
every 1 KB disk space. You can also specify '-N {num inodes}' to set a specific
number of inodes. The inode size (-I) should not be larger than half the inode ratio
(-i). Otherwise, mke2fs will spin trying to write more number of inodes than the
inodes that can fit into the device.

For more information, see Options to Format MDT and OST File Systems.

33.10 Maximum Length of a Filename and
Pathname
This limit is 255 bytes for a single filename, the same as in an ext3 file system. The
Linux VFS imposes a full pathname length of 4096 bytes.

33.11 Maximum Number of Open Files for
Lustre File Systems
Lustre does not impose maximum number of open files, but practically it depends on
amount of RAM on the MDS. There are no "tables" for open files on the MDS, as they
are only linked in a list to a given client's export. Each client process probably has a
limit of several thousands of open files which depends on the ulimit.
33-4 Lustre 1.6 Operations Manual • May 2009

33.12 OSS RAM Size for a Single OST
For a single OST, there is no strict rule to size the OSS RAM. However, as a guideline,
1GB per OST is a reasonable RAM size. This provides sufficient RAM for the OS, and
an appropriate amount (600 MB) for the metadata cache, which is very important for
efficient object creation/lookup when there are many objects.

The minimum, recommended RAM size is 600 MB per OST, plus 500 MB for the
metadata cache. In a failover scenario, you should double these sizes (therefore 1.2
GB per OST).

In this case, you have about 1.2GB/OST. It might be difficult to work with
1GB/primary OST as it gives 800MB/2OST which leaves only 100MB for a working
set for each OST. This ends up as a maximum of ~ 2.4 million objects on the OST
before it starts getting thrashed.
Chapter 33 System Limits 33-5

33-6 Lustre 1.6 Operations Manual • May 2009

APPENDIX A

Version Log

Manual Version Date Details of Edits Bug

1.16 04/20/09 1. Section 29.1.2.1 incorrect - default upcall changed 17571

2. Lustre-1.6_man_v1.13, Section 19.2.2
(obdfilter_survey) is out of date

16697

3. Lockless I/O tunables 17984

4. Service Tags additions to the manual. 16032

5. lst stat command syntax needs more details 17989

6. Replace “star” references in Lustre documentation
with “GNU tar”.

18354

7. Update 'Removing on OST' procedure in the Lustre
manual.

18263

8. Request information concerning health check
values.

18110

9. Monitoring tools. 18242

10. Document file readahead and directory statahead. 18542

11. Document the root squash feature. 16519

12. Some errors in “32.5.13 routerstat” of the Lustre
Operations Manual

18712

13. Kernel-ib must be installed on patchless clients 19300

14. 22.1.5 Free Space Distribution of Lustre manual
needs updating and clarification.

18543

15. LNET routes statements of any significant size
cause errors.

18766

1.15 11/21/08 1. Section 3.3.3 can be extended. 17268

2. Lustre-1.6_man_v1.13 Section 19.2.2 is out of date. 16697
A-1

3. /proc/sys/lnet/upcall - threat or menace? 16629

4. Section 29.1.2.1 incorrect - default upcall changed. 17571

1.14 09/19/08 1. Update example “routes” parameters in Sec. 5.2.2. 16269

2. URLs for Lustre kernel downloads are unwieldy. 15850

3. mount-by-disklabel: add warning not to use in
multipath environment.

16370

4. Document file system incompatibility when using
ldiskfs2.

12479

5. Manual update may be needed for change in
maximum number of clients.

16484

6. lfs syntax updates in documentation. 16485

7. Errors in 1.6 manual in 10.3 Creating an External
Journal.

16543

8. Re-word MGS failover note in 8.7.3.3 Failback. 16552

9. Add statistics to monitor quota activity. 15058

10. Documentation for filefrag using FIEMAP. 16708

11. Document man pages for llobdstat(8), llstat(8),
plot-llstat(8), l_getgroups(8), lst(8) and routerstat(8).

16725

12. Update Lustre manual re: lru_size parameter. 16843

13. LBUG information missing. 16820

14. Re-write LNET self-test topic. 16567

15. Update Lustre manual for “lctl{set,get}_param” 15171

1.13 07/03/08 1. fsname maximum length not documented. 15486

2. Granted cache affects accuracy of lquota, record it
in the manual.

15438

3. Replace ‘striping pattern’ instances with ‘file
layout’

15755

4. Update manual content re: forced umount of OST
in failover case.

15854

5. Verify URL for PIOS in manual section 19.3 PIOS
test tool.

15955

6. Adaptive timeout documentation corrections. 16039

7. mkfs.lustre man page may contain a small error 15832

8. Missing parameters in lctl document. 13477

9. Merge Lustre debugging information. 12046

Manual Version Date Details of Edits Bug
A-2 Lustre 1.6 Operations Manual • May 2009

10. Need to add Lustre mount parameters to manual. 14514

11. Multi-rail LNET configuration. 14534

12. Lustre protocols and Wireshark 12161

13. Loading lnet_selftest modules. 16233

14. DRBD + Lustre performance measurements 14701

15. Many documentation errors. 13554

1.12 04/21/08 1. Additional Lustre manual content - /proc entries. 15039

2. Additional Lustre manual content - atime. 15042

3. Additional Lustre manual content - building
kernels.

15047

4. Additional Lustre manual content - Lustre clients. 15048

5. Additional Lustre manual content - compilation. 15050

6. Additional Lustre manual content - Lustre
configuration.

15051

7. Additional Lustre manual content - Lustre
debugging.

15053

8. Additional Lustre manual content - e2fsck. 15054

9. Additional Lustre manual content - failover. 15074

10. Additional Lustre manual content - evictions. 15071

11. Additional Lustre manual content - file systems. 15079

12. Additional Lustre manual content - hardware. 15080

13. Additional Lustre manual content - kernels. 15085

14. Additional Lustre manual content - network
issues.

15102

15. Additional Lustre manual content - Lustre
performance.

15108

16. Additional Lustre manual content - quotas. 15110

17. Update the Lustre manual for heartbeat content. 15158

18. ksocklnd module parameter enable_irq_affinity
now defaults to zero

15174

19. Multiple mentions of /etc/init.d/lustre in
manual.

15510

20. Incorrect flag for tune2fs 15522

1.11 3/11/08 1. Updated content in Failover chapter. 12143

Manual Version Date Details of Edits Bug
Appendix A Version Log A-3

2. Man pages for llapi_ functions. 12043

3. DDN updates to the manual. 12173

4. DDN configuration. 12142

5. Update Lustre manual according to changes in
BZ 12786.

13475

6. Add lockless I/O tunables content to the Lustre
manual.

13833

7. Small error in LNET self-test documentation
sample script.

14680

8. LNET self-test 10916

9. Documentation for Lustre checksumming feature. 12399

10. Ltest OSTs seeing out-of-memory condition. 11176

11. Section 7.1.3 Quota Allocation 14372

12. localflock not documented. 13141

13. Lustre group file quota does not error, allows files
up to the hard limit.

13459

14. Changing the quota of a user doesn’t work. 14513

15. Documentation errors. 13554

16. Need details about old clients and new file
systems.

14696

17. Missing build instructions. 14913

18. Update ip2nets section in Lustre manual and add
example shown

12382

19. Free space management 12175

1.10 12/18/07 1. Updated content in Disk Performance
Measurement section of the RAID chapter.

12140

2. Added lfs option to User Utilities chapter. 14024/
12186

3. Added supplementary group upcall content to the
Lustre Programming Interfaces chapter

12680

4. Added content (new section, Network Tuning) to
the Lustre Tuning chapter.

10077

5. Added new chapter, Lustre Debugging, to the
Lustre manual

12046/
13618

Manual Version Date Details of Edits Bug
A-4 Lustre 1.6 Operations Manual • May 2009

6. Updated unlink and munlink command
information in the Identifying a Missing OST topic in
the Lustre Troubleshooting and Tips chapter.

14239

7. Minor error in manual Chapter III - 3.2.3.3 14414

1.9 11/2/07 1. Updated content in the Bonding chapter. n/a

2. Updated content in the Lustre Troubleshooting and
Tips chapter.

n/a

3. Updated content in the Lustre Security chapter. n/a

4. Added PIOS Test Tool topic to the Lustre I/O Kit
chapter.

11810

5. Updated content in Chapter IV - 2. Striping and
Other I/O Options, Striping Using ioctl section.

12032

6. Updated content in Chapter III - 2. LustreProc,
Section 2.2.3 Client Read-Write Offset Survey and
Section 2.2.4 Client Read-Write Extents Survey.

12033

7. Updated content in Chapter V - 4. System
Configuration Utilities (man8), Section 4.3.4 Network
commands.

12034

8. Updated content in the Lustre Installation chapter. 12035

9. Updated content in Chapter V - 1. User Utilities
(man1), Section 1.2 fsck.

12036

10. Updated content in RAID chapter. 12040/
12070

11. Updated content in Striping and Other I/O
Options, lfs setstripe - Setting Striping Patterns
section.

12042

12. Updated content in Configuring the Lustre
Network chapter.

12426

13. Updated content in the System Limits chapter. 12492

14. Updated content in the User Utilities (man1
chapter.

12799

15. Updated content in the Lustre Configuration
chapter.

13529

16. Updated content in Section 4.1.11 of the Lustre
Troubleshooting and Tips chapte.r

13810/
11325/
12164

17. Updated content in Prerequisites and Lustre
Installation chapters.

13851

Manual Version Date Details of Edits Bug
Appendix A Version Log A-5

18. Updated content in the Starting LNET section,
Configuring the Lustre Network chapter.

14024

1.8 09/29/07 1. Added new chapter (POSIX) to manual. 12048

2. Added new chapter (Benchmarking) to manual. 12026

3. Added new chapter (Lustre Recovery) to manual. 12049/
12141

4. Updated content in the Configuring Quotas
chapter.

13433

5. Updated content in the More Complicated
Configurations chapter.

12169

6. Updated content in the LustreProc chapter. 12385/
12383/
12039

7. Corrected errors in Section 4.1.1.2. 12981

8. Merged MXLND information from Myricom. 12158

9. Updated content in the Configuring Lustre
Examples chapter.

12136

10. Updated content in the RAID chapter. 12170/
12140

11. Updated content in the Configuration Files
Module Parameters chapter.

12299

1.7 08/30/07 1. Added mballoc3 content to the LustreProc chapter. 12384/
10816

1.6 08/23/07 1. Updated content in the Expanding the file system
by Adding OSTs section.

13118

2. Updated content in the Failover chapter. 13022/
12168/
12143

3. Added Mechanics of Lustre Readahead content. 13022

4. Updated content in the Lustre Troubleshooting and
Tips chapter.

12164/
12037/
12047/
12045

5. Updated content in the Free Space and Quotas
chapter.

12037

6. Updated content in the Lustre Operating Tips
chapter.

12037

7. Added a new appendix - Knowledge Base chapter. 12037

Manual Version Date Details of Edits Bug
A-6 Lustre 1.6 Operations Manual • May 2009

1.5 07/20/07 1. Updated content in the Lustre Installation chapter. 12037

2. Updated content in the Failover chapter. 12037

3. Updated content in the Bonding chapter. 12037

4. Updated content in the Striping and I/O Options
chapter.

12037/
12025

5. Updated content in the Lustre Operating Tips
chapter.

12037

6. Developmental edit of remaining chapters in
semiannual.

11417

7. Added new chapter (Lustre SNMP Module) to the
manual.

12037

8. Added new chapter (Backup and Recovery) to the
manual.

12037

1.4 07/08/07 1. Added content to the Configuring Lustre Network
chapter.

12037

2. Added content to the LustreProc chapter. 12037

3. Added content to the Lustre Troubleshooting and
Tips chapter.

12037

4. Added content to the Lustre Tuning chapter. 12037

5. Added content to the Prerequisites chapter. 12037

6. Completed re-development of index in manual. 11417

7. Developmental edit of select chapters in manual. 11417

1.3 06/08/07 1. Updated section 2.2.1.1. 12483

2. Added enhancements to the DDN Tuning chapter. 12173

3. Updated the User Utilities (man1) chapter. n/a

4. Added lfsck and e2fsck content to the Lustre
Programming Interfaces (man2) chapter.

12036

5. Removed MDS Space Utilization content. 12483

6. Added training slide updates to the manual. 12478

7. Added enhancements to 8.1.5 Formatting section. n/a

1.2 05/25/07 1. Added striping Using ioctl (Part IV, Chapter 2) 12032

2. Added Client Read/Write Offset and Extents
content (Part III, Chapter 2)

12033

3. Added Building RPMs content (Part II, Chapter 2) 12035

Manual Version Date Details of Edits Bug
Appendix A Version Log A-7

4. Added Setting the Striping Pattern content and
I/O (Part IV, Chapter 2 - lfs setstripe)

12036

5. Added Free Space Management content (Part III,
Chapter 2 - 2.1.1/proc entries)

12175/
12039/
12028

6. Added /proc content and I/O (Part III, Chapter 2 -
2.1.1 /proc entries)

12172

1.1 02/03/07 1. Upgraded all chapters Lustre 1.4 to 1.6.

2. Introduction and information of new features of
Lustre 1.6 like MountConf, MGS, MGC, and so on.

3. Introduction and information of mkfs.lustre,
mount.lustre, and tunefs.lustre utilities.

4. Removed lmc and lconf utilities.

5. Added Chapter II - 10. Upgrading Lustre from 1.4
to 1.6.

6. Removed Appendix Upgrading 1.4.5 to 1.4.6.

7. Added content on permanently removing an OST.

Manual Version Date Details of Edits Bug
A-8 Lustre 1.6 Operations Manual • May 2009

APPENDIX B

Lustre Knowledge Base

The Knowledge Base is a collection of tips and general information regarding Lustre.

How can I check if a file system is active (the MGS, MDT and OSTs are all online)?

How to reclaim the 5 percent of disk space reserved for root?

Why are applications hanging?

How do I abort recovery? Why would I want to?

What does "denying connection for new client" mean?

How do I set a default debug level for clients?

How can I improve Lustre metadata performance when using large directories (> 0.5
million files)?

File system refuses to mount because of UUID mismatch

How do I set up multiple Lustre file systems on the same node?

Is it possible to change the IP address of a OST? MDS? Change the UUID?

How do I replace an OST or MDS?

How do I configure recoverable / failover object servers?

How do I resize an MDS / OST file system?

How do I backup / restore a Lustre file system?

How do I control multiple services on one node independently?

What extra resources are required for automated failover?

Is there a way to tell which OST is being used by a client process?

I need multiple SCSI LUNs per HBA - what is the best way to do this?
B-1

Can I run Lustre in a heterogeneous environment (32-and 64-bit machines)?

How to build and configure Infiniband support for Lustre

Can the same Lustre file system be mounted at multiple mount points on the same
client system?

How do I identify files affected by a missing OST?

How-To: New Lustre network configuration

How to fix bad LAST_ID on an OST

Why can't I run an OST and a client on the same machine?

Information on the Socket LND (socklnd) protocol

Information on the Lustre Networking (LNET) protocol

Explanation of: '... previously skipped # similar messages' in Lustre logs

What should I do if I suspect device corruption (Example: disk errors)

How do I clean up a device with lctl?

What is the default block size for Lustre?

How do I determine which Lustre server (MDS/OST) was connected to a particular
storage device?

Does the mount option "--bind" allow mounting a Lustre file system to multiple
directories on the same client system?

What operations take place in Lustre when a new file is created?

Questions about using Lustre quotas

When mounting an MDT filesystm, the kernel crashes. What do I do?

How do I determine which Ethernet interfaces Lustre uses?
B-2 Lustre 1.6 Operations Manual • May 2009

How can I check if a file system is active (the MGS, MDT and OSTs are
all online)?

You can look at /proc/fs/lustre/lov/*/target_obds for "ACTIVE" vs "INACTIVE" on
MDS/clients.

How to reclaim the 5 percent of disk space reserved for root?

If your file system normally looks like this:

$ df -h /mnt/lustre

Filesystem Size Used Avail Use% Mounted on

databarn 100G 81G 14G 81% /mnt/lustre

You might be wondering: where did the other 5 percent go? This space is reserved for
the root user.

Currently, all Lustre installations run the ext3 file system internally on service nodes.
By default, ext3 reserves 5 percent of the disk for the root user.

To reclaim this space for use by all users, run this command on your OSSs:

tune2fs [-m reserved_blocks_percent] [device]

This command takes effect immediately. You do not need to shut down Lustre
beforehand or restart Lustre afterwards.

Why are applications hanging?

The most common cause of hung applications is a timeout. For a timeout involving
an MDS or failover OST, applications attempting to access the disconnected resource
wait until the connection is re-established.

In most cases, applications can be interrupted after a timeout with the KILL, INT,
TERM, QUIT, or ALRM signals. In some cases, for a command which communicates
with multiple services in a single system call, you may have to wait for multiple
timeouts.
Appendix B Lustre Knowledge Base B-3

How do I abort recovery? Why would I want to?

If an MDS or OST is not gracefully shut down, for example a crash or power outage
occurs, the next time the service starts it is in "recovery" mode.

This provides a window for any existing clients to re-connect and re-establish any
state which may have been lost in the interruption. By doing so, the Lustre software
can completely hide failure from user applications.

The recovery window ends when either:

■ All clients which were present before the crash have reconnected; or

■ A recovery timeout expires

This timeout must be long enough to for all clients to detect that the node failed and
reconnect. If the window is too short, some critical state may be lost, and any in-
progress applications receive an error. To avoid this, the recovery window of Lustre
1.x is conservatively long.

If a client which was not present before the failure attempts to connect, it receives an
error, and a message about recovery displays on the console of the client and the
server. New clients may only connect after the recovery window ends.

If the administrator knows that recovery will not succeed, because the entire cluster
was rebooted or because there was an unsupported failure of multiple nodes
simultaneously, then the administrator can abort recovery.

With Lustre 1.4.2 and later, you can abort recovery when starting a service by adding
--abort-recovery to the lconf command line. For earlier Lustre versions, or if the
service has already started, follow these steps:

1. Find the correct device. The server console displays a message similar to:

"RECOVERY: service mds1, 10 recoverable clients, last_transno 1664606"

2. Obtain a list of all Lustre devices. On the MDS or OST, run:

lctl device_list

3. Look for the name of the recovering service, in this case "mds1":

3 UP mds mds1 mds1_UUID 2

4. Instruct Lustre to abort recovery, run:

lctl --device <OST device number> abort_recovery

The device number is on the left.
B-4 Lustre 1.6 Operations Manual • May 2009

What does "denying connection for new client" mean?

When service nodes are performing recovery after a failure, only clients which were
connected before the failure are allowed to connect. This enables the cluster to first
re-establish its pre-failure state, before normal operation continues and new clients
are allowed to connect.

How do I set a default debug level for clients?

If using zeroconf (mount -t lustre), you can add a line similar to the following to your
modules.conf:

post-install portals sysctl -w lnet.debug=0x3f0400

This sets the debug level, whenever the portals module is loaded, to whatever value
you specify. The value specified above is a good starting choice, and will become the
in-code default in Lustre 1.0.2, as it provides useful information for diagnosing
problems without materially impairing the performance of Lustre.)

How can I improve Lustre metadata performance when using large
directories (> 0.5 million files)?

On the MDS, more memory translates into bigger caches and, therefore, higher
performance. One of the requirements for higher metadata performance is to have
lots of RAM on the MDS.

The other requirement (if not running a 64-bit kernel) is to patch the core kernel on
the MDS with the

3G/1G patch to increase the available kernel address space. This, again, translates
into having support for bigger caches on the MDS.

Usually the address space is split in a 3:1 ratio (3G for userspace and 1G for kernel).
The 3G/1G patch changes this ratio to 3G for kernel/1G for user (3:1) or 2G for
kernel and 2G for user (2:2).
Appendix B Lustre Knowledge Base B-5

File system refuses to mount because of UUID mismatch

When Lustre exports a device for the first time on a target (MDS or OST), it writes a
randomly-generated unique identifier (UUID) to the disk from the .xml configuration
file. On subsequent exports of that device, the Lustre code verifies that the UUID on
disk matches the UUID in the .xml configuration file.

This is a safety feature which avoids many potential configuration errors, such as
devices being renamed after the addition of new disks or controller cards to the
system, cabling errors, etc. This results in messages, such as the following, appearing
on the system console, which normally indicates a system configuration error:

af0ac_mds_scratch_2b27fc413e does not match last_rcvd UUID

8a9c5_mds_scratch_8d2422aa88

In some cases, it is possible to get the incorrect UUID in the configuration file, for
example by regenerating the .xml configuration file a second time. In this case, you
must specify the device UUIDs when the configuration file is built with the --ostuuid
or --mdsuuid options to match the original UUIDs instead of generating new ones
each time.

lmc -add ost --node ostnode --lov lov1 --dev /dev/sdc --ostuuid

3dbf8_OST_ostnode_ddd780786b

lmc -add mds --node mdsnode --mds mds_scratch --dev /dev/sdc --mdsuuid

8a9c5_mds_scratch_8d2422aa88

How do I set up multiple Lustre file systems on the same node?

Assuming you want to have separate file systems with different mount locations, you
need a dedicated MDS partition and Logical Object Volume (LOV) for each file
system. Each LOV requires a dedicated OST(s).

For example, if you have an MDS server node, mds_server, and want to have mount
points /mnt/foo and /mnt/bar, the following lines are an example of the setup
(leaving out the --add net lines):

Two MDS servers using distinct disks:

lmc -m test.xml --add mds --node mds_server --mds foo-mds --group \
foo-mds --fstype ldiskfs --dev /dev/sda

lmc -m test.xml --add mds --node mds_server --mds bar-mds --group \
bar-mds --fstype ldiskfs --dev /dev/sdb
B-6 Lustre 1.6 Operations Manual • May 2009

Now for the LOVs:

lmc -m test.xml --add lov --lov foo-lov --mds foo-mds \

--stripe_sz 1048576 --stripe_cnt 1 --stripe_pattern 0

lmc -m test.xml --add lov --lov bar-lov --mds bar-mds \
--stripe_sz 1048576 --stripe_cnt 1 --stripe_pattern 0

Each LOV needs at least one OST:

lmc -m test.xml --add ost --node ost_server --lov foo-lov \
--ost foo-ost1 --group foo-ost1 --fstype ldiskfs --dev /dev/sdc

lmc -m test.xml --add ost --node ost_server --lov bar-lov \
--ost bar-ost1 --group

bar-ost1 --fstype ldiskfs --dev /dev/sdd

Set up the client mount points:

lmc -m test.xml --add mtpt --node foo-client --path /mnt/foo \
--mds foo-mds --lov foo-lov

lmc -m test.xml --add mtpt --node bar-client --path /mnt/bar \
--mds bar-mds --lov bar-lov

If the Lustre file system "foo" already exists, and you want to add the file system
"bar" without reformatting foo, use the group designator to reformat only the new
disks:

ost_server> lconf --group bar-ost1 --select bar-ost1 \
--reformat test.xml

mds_server> lconf --group bar-mds --select bar-mds \
--reformat test.xml

If you change the --dev that foo-mds uses, you also need to commit that new
configuration (foo-mds must not be running):

mds_server> lconf --group foo-mds --select foo-mds --write_conf
test.xml

Note – If you want both mount points on a client, you can use the same client node
name for both mount points.
Appendix B Lustre Knowledge Base B-7

Is it possible to change the IP address of a OST? MDS?
Change the UUID?

The IP address of any node can be changed, as long as the rest of the machines in the
cluster are updated to reflect the new location. Even if you used hostnames in the
xml config file, you need to regenerate the configuration logs on your metadata
server.

It is also possible to change the UUID, but unfortunately it is not very easy as two
binary files would need editing.

How do I set striping on a file?

To stripe a file across <n> OSTs with stripesize of blocks per stripe, run:

lfs setstripe <new_filename> <stripe_size> <stripe_offset>
<stripe_count>

This creates "new_filename" (which must not already exist).

We strongly recommend that the stripe_size value be 1MB or larger (size in bytes).
Best performance is seen with one or two stripes per file unless it is a file that has
shared IO from a large number of clients, when the maximum number of stripes is
best (pass -1 as the stripe count to get maximum striping).

The stripe_offset (OST index which holds the first stripe, subsequent stripes are
created on sequential stripes) should be "-1" which means allocate stripes in a round-
robin manner. Abusing the stripe_offset value leads to uneven usage of the OSTs and
premature file system usage.

Most users want to use:

lfs setstripe <new_filename> 2097152 -1 N

Or use system-wide default stripe size:

lfs setstripe <new_filename> 0 -1 N

You may want to make a simple wrapper script that only accepts the <stripe_count>
parameter. Usage info via "lfs help setstripe".
B-8 Lustre 1.6 Operations Manual • May 2009

How do I set striping for a large number of files at one time?

You can set a default striping on a directory, and then any regular files created within
that directory inherit the default striping configuration. To do this, first create a
directory if necessary and then set the default striping in the same manner as you do
for a regular file:

lfs setstripe <directory> <stripe_size> -1 <stripe_count>

If the stripe_size value is zero (0), it uses the system-wide stripe size. If the
stripe_count value is zero (0), it uses the default stripe count. If the stripe_count
value is -1, it stripes across all available OSTs. The best performance for many clients
writing to individual files is at 1 or 2 stripes per file, and maximum stripes for large
shared-I/O files (i.e. many clients reading or writing the same file at one time).

If I set the striping of N and B for a directory, do files in that directory
inherit the striping or revert to the default?

All new files get the new striping parameters, and existing files will keep their
current striping (even if overwritten). To "undo" the default striping on a directory (to
use system-wide defaults again) set the striping to "0 -1 0".
Appendix B Lustre Knowledge Base B-9

Can I change the striping of a file or directory after it is created?

You cannot change the striping of a file after it is created. If this is important (e.g.,
performance of reads on some widely-shared large input file) you need to create a
new file with the desired striping and copy the data into the old file. It is possible to
change the default striping on a directory at any time, although you must have write
permission on this directory to change the striping parameters.

How do I replace an OST or MDS?

The OST file system is simply a normal ext3 file system, so you can use any number
of methods to copy the contents to the new OST.

If possible, connect both the old OST disk and new OST disk to a single machine,
mount them, and then use rsync to copy all of the data between the OST file systems.
For example:

mount -t ldiskfs /dev/old /mnt/ost_old

mount -t ldiskfs /dev/new /mnt/ost_new

rsync -aSv /mnt/ost_old/ /mnt/ost_new

note trailing slash on ost_old/

If you are unable to connect both sets of disk to the same computer, use:

rsync to copy over the network using rsh (or ssh with "-e ssh"):

rsync -aSvz /mnt/ost_old/ new_ost_node:/mnt/ost_new

The same can be done for the MDS, but it needs an additional step:

cd /mnt/mds_old; getfattr -R -e base64 -d . > /tmp/mdsea;

<copy all MDS files as above>; cd /mnt/mds_new; setfattr \
--restore=/tmp/mdsea
B-10 Lustre 1.6 Operations Manual • May 2009

How do I configure recoverable / failover object servers?

There are two object server modes: the default failover (recoverable) mode, and the
fail-out mode. In fail-out mode, if a client becomes disconnected from an object
server because of a server or network failure, applications which try to use that object
server will receive immediate errors.

In failover mode, applications attempting to use that resource pause until the
connection is restored, which is what most people want. This is the default mode in
Lustre 1.4.3 and later.

To disable failover mode:

1. If this is an existing Lustre configuration, shut down all client, MDS, and OSS
nodes.

2. Change the configuration script to add --failover to all "ost" lines.

Change lines like:

lmc --add ost ...

to:

lmc --add ost ... --failover

and regenerate your Lustre configuration file.

3. Start your object servers.

They should report that recovery is enabled to syslog:

Lustre: 1394:0:(filter.c:1205:filter_common_setup()) \
databarn-ost3: recovery enabled

4. Update the MDS and client configuration logs. On the MDS, run:

lconf --write_conf /path/to/lustre.xml

5. Start the MDS as usual.

6. Mount Lustre on the clients.
Appendix B Lustre Knowledge Base B-11

How do I resize an MDS / OST file system?

This is a method to back up the MDS, including the extended attributes containing
the striping data. If something goes wrong, you can restore it to a newly-formatted
larger file system, without having to back up and restore all OSS data.

Caution – If this data is very important to you, we strongly recommend that you try
to back it up before you proceed.

It is possible to run out of space or inodes in both the MDS and OST file systems. If
these file systems reside on some sort of virtual storage device (e.g., LVM Logical
Volume, RAID, etc.) it may be possible to increase the storage device size (this is
device-specific) and then grow the file system to use this increased space.

1. Prior to doing any sort of low-level changes like this, back up the file system
and/or device. See How do I backup / restore a Lustre file system?

2. After the file system or device has been backed up, increase the size of the
storage device as necessary. For LVM this would be:

lvextend -L {new size} /dev/{vgname}/{lvname}

or

lvextend -L +{size increase} /dev/{vgname}/{lvname}

3. Run a full e2fsck on the file system, using the Lustre e2fsprogs (available at the
Lustre download site or http://downloads.clusterfs.com/public/tools/e2fsprogs/.
Run:

e2fsck -f {dev}

4. Resize the file system to use the increased size of the device. Run:

resize2fs -p {dev}
B-12 Lustre 1.6 Operations Manual • May 2009

http://downloads.clusterfs.com/public/tools/e2fsprogs/

How do I backup / restore a Lustre file system?

Several types of Lustre backups are available.

CLIENT FILE SYSTEM-LEVEL BACKUPS

It is possible to back up Lustre file systems from a client (or many clients in parallel
working in different directories), via any number of user-level backup tools like tar,
cpio, Amanda, and many enterprise-level backup tools. However, due to the very
large size of most Lustre file systems, full backups are not always possible. Doing
backups of subsets of the file system (subdirectories, per user, incremental by date,
etc.) using normal file backup tools is still recommended, as this is the easiest method
from which to restore data.

TARGET RAW DEVICE-LEVEL BACKUPS

In some cases, it is desirable to do full device-level backups of an individual MDS or
OST storage device for various reasons (before hardware replacement, maintenance
or such). Doing full device-level backups ensures that all of the data is preserved in
the original state and is the easiest method of doing a backup.

If hardware replacement is the reason for the backup or if there is a spare storage
device then it is possible to just do a raw copy of the MDS/OST from one block
device to the other as long as the new device is at least as large as the original device
using the command:

dd if=/dev/{original} of=/dev/{new} bs=1M

If hardware errors are causing read problems on the original device then using the
command below allows as much data as possible to be read from the original device
while skipping sections of the disk with errors:

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror

Even in the face of hardware errors, the ext3 file system is very robust and it may be
possible to recover file system data after e2fsck is run on the new device.

TARGET FILE SYSTEM-LEVEL BACKUPS

In other cases, it is desirable to make a backup of just the file data in an MDS or OST
file system instead of backing up the entire device (e.g., if the device is very large but
has little data in it, if the configuration of the parameters of the ext3 file system need
to be changed, to use less space for the backup, etc).

In this case it is possible to mount the ext3 file system directly from the storage
device and do a file-level backup. Lustre MUST BE STOPPED ON THAT NODE.

To back up such a file system properly also requires that any extended attributes
(EAs) stored in the file system be backed up, but unfortunately current backup tools
do not properly save this data so an extra step is required.
Appendix B Lustre Knowledge Base B-13

1. Make a mountpoint for the mkdir /mnt/mds file system.

2. Mount the file system there.

■ For 2.4 kernels, run:

mount -t ext3 {dev} /mnt/mds

■ For 2.6 kernels, run:

mount -t ldiskfs {dev} /mnt/mds

3. Change to the mount point being backed up. Type:

cd /mnt/mds

4. Back up the EAs. Type:

getfattr -R -d -m '.*' -P . > ea.bak

The getfattr command is part of the "attr" package in most distributions.

If the getfattr command returns errors like "Operation not supported" then your
kernel does not support EAs correctly. STOP and use a different backup method,
or contact us for assistance.

5. Verify that the ea.bak file has properly backed up your EA data on the MDS.

Without this EA data your backup is not useful. You can look at this file with "more"
or a text editor, and it should have an item for each file like:

file: ROOT/mds_md5sum3.txt

trusted.lov0s0AvRCwEAAABXoKUCAAAAAAAAAAAAAAAAAAAQAAEAAADD5QoAAAAAA
AAAAAAAAAAAAAAAAAEAAAA=

6. Back up all file system data. Type:

tar czvf {backup file}.tgz

7. Change out of the mounted file system. Type.

cd -

8. Unmount the file system. Type:

umount /mnt/mds

Follow the same process on each of the OST device file systems. The backup of the
EAs (described in Step 4), is not currently required for OST devices, but this may
change in the future.

To restore the file-level backup you need to format the device, restore the file data,
and then restore the EA data.
B-14 Lustre 1.6 Operations Manual • May 2009

9. Format the new device. The easiest way to get the optimal ext3 parameters is to
use lconf --reformat {config}.xml ONLY ON THE NODE being restored.

If there are multiple services on the node, then this reformats all of the devices on
that node and should NOT be used. Instead, use the step below:

■ For MDS file systems, use: mke2fs -j -J size=400 -I {inode_size} -i 4096 {dev}
where {inode_size} is at least 512, and possibly larger if you have a default,
stripe count > 10 (inode_size = power_of_2_>=_than(384 + stripe_count * 24)).

■ For OST file systems, use: mke2fs -j -J size=400 -I 256 -i 16384 {dev}

10. Enable ext3 file system directory indexing. Type:

tune2fs -O dir_index {dev}

11. Mount the file system. Type:

■ For 2.4 kernels, run:

mount -t ext3 {dev} /mnt/mds

■ For 2.6 kernels, run:

mount -t ldiskfs {dev} /mnt/mds

12. Change to the new file system mount point. Type:

cd /mnt/mds

13. Restore the file system backup. Type:

tar xzvpf {backup file}

14. Restore the file system EAs. Type:

setfattr --restore=ea.bak

15. Remove the (now invalid) recovery logs. Type:

rm OBJECTS/* CATALOGS

Again, the restore of the EAs (described in Step 6) is not currently required for OST
devices, but this may change in the future.

If the file system was used between the time the backup was made and when it was
restored, then the "lfsck" tool (part of Lustre e2fsprogs) can be run to ensure the file
system is coherent. If all of the device file systems were backed up at the same time
after the whole Lustre file system was stopped this is not necessary. The file system
should be immediately usable even if lfsck is not run, though there will be IO errors
reading from files that are present on the MDS but not the OSTs, and files that were
created after the MDS backup will not be accessible/visible.
Appendix B Lustre Knowledge Base B-15

How do I control multiple services on one node independently?

You can do this by assigning an OST (or MDS) to a specific group, often with a name
that relates to the service itself (e.g. ost1a, ost1b, ...). In the lmc configuration script,
put each OST into a separate group, use:

lmc --add ost --group <name> ...

When starting up each OST use:

lconf --group <name> {--reformat,--cleanup,etc} foo.xml

to start up each one individually.

Unless a group is specified all of the services on the that node will be affected by the
command.

Beginning with Lustre 1.4.4, managing individual services has been substantially
simplified.

The group / select mechanics are gone, and you can operate purely on the basis of
service names:

lconf --service <service> [--reformat --cleanup ...] foo.xml

For example, if you add the service ost1-home, type:

lmc --add ost --ost ost1-home ...

You can start it with:

lconf --service ost1-home foo.xml

As before, if you do not specify a service, all services configured for that node will be
affected by your command.
B-16 Lustre 1.6 Operations Manual • May 2009

What extra resources are required for automated failover?

To automate failover with Lustre, you need power management software, remote
control power equipment, and cluster management software.

Power Management Software

PowerMan, by the Lawrence Livermore National Laboratory, is a tool that
manipulates remote power control (RPC) devices from a central location. PowerMan
natively supports several RPC varieties. Expect-like configurability simplifies the
addition of new devices. For more information about PowerMan, go to:

http://www.llnl.gov/linux/powerman.html

Other power management software is available, but PowerMan is the best we have
used so far, and the one with which we are most familiar.

Power Equipment

A multi-port, Ethernet-addressable RPC is relatively inexpensive. For recommended
products, see the list of supported hardware on the PowerMan website.

If you can afford them, Linux Network ICEboxes are very good tools. They combine
both remote power control and remote serial console in a single unit.

Cluster management software

There are two options for cluster management software that have been implemented
successfully by Lustre customers. Both software options are open source and
available free for download.

■ Heartbeat

The Heartbeat program is one of the core components of the High-Availability Linux
(Linux-HA) project. Heartbeat is highly-portable, and runs on every known Linux
platform, as well as FreeBSD and Solaris.

For information, see: http://linux-ha.org/heartbeat/

To download, see: http://linux-ha.org/download/

■ Red Hat Cluster Manager (CluManager)

Red Hat Cluster Manager allows administrators to connect separate systems (called
members or nodes) together to create failover clusters that ensure application
availability and data integrity under several failure conditions.

Administrators can use Red Hat Cluster Manager with database applications, file
sharing services, web servers, and more.
Appendix B Lustre Knowledge Base B-17

http://linux-ha.org/heartbeat/
http://linux-ha.org/download/
http://www.llnl.gov/linux/powerman.html

Note – CluManager requires two 10M LUNs visible to each member of a failover
group.

For more information, see:
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-
Manual/cluster-suite/

For more download, see:
http://ftp.redhat.com/pub/redhat/linux/enterprise/3/en/RHCS/i386
/SRPMS/

In the future, we hope to publish more information and sample scripts to configure
Heartbeat and CluManager with Lustre.

Is there a way to tell which OST is being used by a client process?

If a process is doing I/O to a file, use the lfs getstripe command to see the OST to
which it is writing.

Using cat as an example, run:

$ cat > foo

While that is running, on another terminal, run:

$ readlink /proc/$(pidof cat)/fd/1

/barn/users/jacob/tmp/foo

You can also ls -l /proc/<pid>/fd/ to find open files using Lustre.

$ lfs getstripe $(readlink /proc/$(pidof cat)/fd/1)
OBDS:
0: databarn-ost1_UUID ACTIVE
1: databarn-ost2_UUID ACTIVE
2: databarn-ost3_UUID ACTIVE
3: databarn-ost4_UUID ACTIVE

/barn/users/jacob/tmp/foo

obdidx objid objid group

2 835487 0xcbf9f 0

The output shows that this file lives on obdidx 2, which is databarn-ost3.
B-18 Lustre 1.6 Operations Manual • May 2009

http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/cluster-suite/
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/cluster-suite/
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/cluster-suite/
http://ftp.redhat.com/pub/redhat/linux/enterprise/3/en/RHCS/i386/SRPMS/

To see which node is serving that OST, run:

$ cat /proc/fs/lustre/osc/*databarn-ost3*/ost_conn_uuid

NID_oss1.databarn.87k.net_UUID

The above also works with connections to the MDS - just replace osc with mdc and
ost with mds in the above command.

I need multiple SCSI LUNs per HBA - what is the best way to do this?

The packaged kernels are configured approximately the same as the upstream
RedHat and SuSE packages.

Currently, RHEL does not enable CONFIG_SCSI_MULTI_LUN because it is said to
causes problems with some SCSI hardware.

If you need to enable this, you must set 'option scsi_mod max_scsi_luns=xx' (xx is
typically 128) in either modprobe.conf (2.6 kernel) or modules.conf (2.4 kernel).

Passing this option as a kernel boot argument (in grub.conf or lilo.conf) will not work
unless the kernel is compiled with CONFIG_SCSI_MULT_LUN=y

Can I run Lustre in a heterogeneous environment (32-and 64-bit
machines)?

As of Lustre v1.4.2, this is supported with different word sizes. It is also supported
for clients with different endianness (for example, i368 and PPC).

One limitation is that the PAGE_SIZE on the client must be at least as large as the
PAGE_SIZE of the server.

In particular, ia64 clients with large pages (up to 64KB pages) can run with i386
servers (4KB pages). If i386 clients are running with ia64 servers, the ia64 kernel must
be compiled with 4kB PAGE_SIZE.

How do I clean up a device with lctl?

How do I destroy this object using lctl based on the following information:

lctl > device_list

0 UP obdfilter ost003_s1 ost003_s1_UUID 3

1 UP ost OSS OSS_UUID 2

2 UP echo_client ost003_s1_client 2b98ad95-28a6-ebb2-10e4-46a3ceef9007
Appendix B Lustre Knowledge Base B-19

1. Try:

lconf --cleanup --force

2. If that does not work, start lctl (if it is not running already). Then, starting with
the highest-numbered device and working backward, clean up each device:

root# lctl

lctl> cfg_device ost003_s1_client

lctl> cleanup force

lctl> detach

lctl> cfg_device OSS

lctl> cleanup force

lctl> detach

lctl> cfg_device ost003_s1

lctl> cleanup force

lctl> detach

At this point it should also be possible to unload the Lustre modules.

How to build and configure Infiniband support for Lustre

The distributed kernels do not yet include 3rd-party Infiniband modules. As a result,
our Lustre packages can not include IB network drivers for Lustre either, however we
do distribute the source code. You will need to build your Infiniband software stack
against the supplied kernel, and then build new Lustre packages. If this is outside
your realm of expertise, and you are a Lustre enterprise-support customer, we can
help.

■ Volatire

To build Lustre with Voltaire Infiniband sources, add: --with-vib=<path-to-
voltaire-sources> as an argument to the configure script.

To configure Lustre, use: --nettype vib --nid <IPoIB address>

■ OpenIB generation 1 / Mellanox Gold

To build Lustre with OpenIB Infiniband sources, add --with-openib=
<path_to_openib sources> as an argument to the configure script.

To configure Lustre, use: --nettype openib --nid <IPoIB address>

■ Silverstorm

A Silverstorm driver for Lustre is available.

■ OpenIB 1.0

An OpenIB 1.0 driver for Lustre is available.
B-20 Lustre 1.6 Operations Manual • May 2009

Currently (v1.4.5) the Voltaire IB module (kvibnal) will _not work on the Altix
system. This is due to hardware differences in the Altix system.

To build Silverstorm with Lustre, configure Lustre with:

--with-iib=<path to silverstorm sources>

Can the same Lustre file system be mounted at multiple mount points on
the same client system?

Yes, this is perfectly safe.

How do I identify files affected by a missing OST?

If an OST is missing for any reason, you may need to know what files are affected.

The file system should still be operational, even though one OST is missing, so from
any mounted client node it is possible to generate a list of files that reside on that
OST.

In such situations, we recommend marking the missing OST as unavailable, so clients
and the MDS do not time out trying to contact it. On mixed MDS/client nodes:

1. Generate a list of devices and determine the OST’s device number.

$ lctl dl

2. Deactivate the OST (on the OSS at the MDS).

$ lctl --device <OST device name or number> deactivate

If the OST later becomes available it needs to be reactivated. Run:

$ lctl --device <OST device number> activate

Determine all files striped over the missing OST. Run:

$ lfs find -R -o {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

It is possible to read the valid parts of a striped file (if necessary):

$ dd if=filename of=new_filename bs=4k conv=sync,noerror

Otherwise, it is possible to delete these files with "unlink" or "munlink".

If you need to need to know specifically which parts of the file are missing data you
first need to determine the file layout (striping pattern), which includes the index of
the missing OST:
Appendix B Lustre Knowledge Base B-21

$ lfs getstripe -v {filename}

The following computation is used to determine which offsets in the file are affected:

[(C*N + X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

where:

C = stripe count

S = stripe size

X = index of bad ost for this file

Example: for a file with 2 stripes, stripe size = 1M, bad OST is index 0 you would
have holes in your file at:

[(2*N + 0)*1M, (2*N + 0)*1M + 1M - 1], N = { 0, 1, 2, ...}

If the file system can't be mounted, there isn't anything currently that would parse
metadata directly from an MDS. If the bad OST is definitely not starting, options for
mounting the file system anyway are to provide a loop device OST in its place, or to
replace it with a newly formatted OST. In that case the missing objects are created
and will read as zero-filled.

How-To: New Lustre network configuration

Updating Lustre's network configuration during an upgrade to version 1.4.6.

Outline necessary changes to Lustre configuration for the new networking features in
v. 1.4.6. Further details may be found in the Lustre manual excerpts found at:

https://wiki.clusterfs.com/cfs/intra/FrontPage?action=AttachFile&do=get&target=
LustreManual.pdf

Backwards Compatibility

The 1.4.6 version of Lustre itself uses the same wire protocols as the previous release,
but has a different network addressing scheme and a much simpler configuration for
routing.

In single-network configurations, LNET can be configured to work with the 1.4.5
networking (portals) so that rolling upgrades can be performed on a cluster. See the
'portals_compatibility' parameter below.

When 'portals_compatibility' is enabled, old XML configuration files remain
compatible. lconf automatically converts old-style network addresses to the new
LNET style.

If a rolling upgrade is not required (that is, all clients and servers can be stopped at
one time), then follow the standard procedure:
B-22 Lustre 1.6 Operations Manual • May 2009

1. Shut down all clients and servers

2. Install new packages everywhere

3. Edit the Lustre configuration

4. Update the configuration on the MDS with 'lconf --write_conf'

5. Restart

New Network Addressing

A NID is a Lustre network address. Every node has one NID for each network to
which it is attached.

The NID has the form <address>[@<network>], where the <address> is the network
address and <network> is an identifier for the network. (network type + instance)

Examples:

First TCP network: 192.73.220.107@tcp0

Second TCP network: 10.10.1.50@tcp1

Elan: 2@elan

The "--nid '*' " syntax for the generic client is still valid.

Modules/modprobe.conf

Network hardware and routing are now configured via module parameters, specified
in the usual locations. Depending on your kernel version and Linux distribution, this
may be /etc/modules.conf,

/etc/modprobe.conf, or /etc/modprobe.conf.local.

All old Lustre configuration lines should be removed from the module configuration
file. The RPM install should do this, but check to be certain.

The base module configuration requires two lines:

alias lustre llite

options lnet networks=tcp0

A full list of options can be found at Module Parameters on page 37. Detailed
examples can be found in the section, 'Configuring the Lustre Network'. Some brief
examples:

Example 1: Use eth1 instead of eth0:

options lnet networks="tcp0(eth1)"
Appendix B Lustre Knowledge Base B-23

Example 2: Servers have two tcp networks and one Elan network. Clients are either
TCP or Elan.

Servers: options lnet 'networks="tcp0(eth0,eth1),elan0"

Elan clients: options lnet networks=elan0

TCP clients: options lnet networks=tcp0

Portals Compatibility

If you are upgrading Lustre on all clients and servers at the same time, then you may
skip this section.

If you need to keep the file system running while some clients are upgraded, the
following module parameter controls interoperability with pre-1.4.6 Lustre.

Compatibility between versions is not possible if you are using portals
routers/gateways. If you use gateways, you must update the clients, gateways, and
servers at the same time.

portals_compatibility="strong"|"weak"|"none"

"strong" is compatible with Lustre 1.4.5, and 1.4.6 running in either 'strong' or 'weak'
compatibility mode.

Since this is the only mode compatible with 1.4.5, all 1.4.6 nodes in the cluster must
use "strong" until the last 1.4.5 node has been upgraded.

"weak" is not compatible with 1.4.5, or with 1.4.6 running in "none" mode.

"none" is not compatible with 1.4.5, or with 1.4.6 running in 'strong' mode.

For more information, see Upgrading Lustre on page 117.

Note – Lustre v.1.4.2 through v.1.4.5 clients are only compatible zero-conf mounting
from a 1.4.6 MDS if the MDS was originally formatted with Lustre 1.4.5 or earlier. If
the file system was formatted with v.1.4.6 on the MDS, or "lconf --write-conf" was run
on the MDS then the backward compatibility is lost. It is still possible to mount 1.4.2
through 1.4.5 clients with "lconf --node {client_node} {config}.xml".
B-24 Lustre 1.6 Operations Manual • May 2009

How to fix bad LAST_ID on an OST

The file system must be stopped on all servers prior to performing this procedure.

For hex <–> decimal translations:

Use GDB:

(gdb) p /x 15028

$2 = 0x3ab4

Or bc:

echo "obase=16; 15028" | bc

1. Determine a reasonable value for LAST_ID. Check on the MDS:

mount -t ldiskfs /dev/<mdsdev> /mnt/mds

od -Ax -td8 /mnt/mds/lov_objid

There is one entry for each OST, in OST index order. This is what the MDS thinks the
last in-use object is.

2. Determine the OST index for this OST.

od -Ax -td4 /mnt/ost/last_rcvd

It will have it at offset 0x8c.

3. Check on the OST. With debugfs, check LAST_ID:

debugfs -c -R 'dump /O/0/LAST_ID /tmp/LAST_ID' /dev/XXX ; od -Ax -td8
/tmp/LAST_ID"

4. Check objects on the OST:

mount -rt ldiskfs /dev/{ostdev} /mnt/ost

note the ls below is a number one and not a letter L

ls -1s /mnt/ost/O/0/d* | grep -v [a-z] |

sort -k2 -n > /tmp/objects.{diskname}

tail -30 /tmp/objects.{diskname}

This shows you the OST state. There may be some pre-created orphans, check for
zero-length objects. Any zero-length objects with IDs higher than LAST_ID should be
deleted. New objects will be pre-created.

If the OST LAST_ID value matches that for the objects existing on the OST, then it is
possible the lov_objid file on the MDS is incorrect. Delete the lov_objid file on the
MDS and it will be re-created from the LAST_ID on the OSTs.
Appendix B Lustre Knowledge Base B-25

If you determine the LAST_ID file on the OST is incorrect (that is, it does not match
what objects exist, does not match the MDS lov_objid value), then you have decided
on a proper value for LAST_ID.

Once you have decided on a proper value for LAST_ID, use this repair procedure.

1. Access:

mount -t ldiskfs /dev/{ostdev} /mnt/ost

2. Check the current:

od -Ax -td8 /mnt/ost/O/0/LAST_ID

3. Be very safe, only work on backups:

cp /mnt/ost/O/0/LAST_ID /tmp/LAST_ID

4. Convert binary to text:

xxd /tmp/LAST_ID /tmp/LAST_ID.asc

5. Fix:

vi /tmp/LAST_ID.asc

6. Convert to binary:

xxd -r /tmp/LAST_ID.asc /tmp/LAST_ID.new

7. Verify:

od -Ax -td8 /tmp/LAST_ID.new

8. Replace:

cp /tmp/LAST_ID.new /mnt/ost/O/0/LAST_ID

9. Clean up:

umount /mnt/ost
B-26 Lustre 1.6 Operations Manual • May 2009

Why can't I run an OST and a client on the same machine?

Consider the case of a "client" with dirty file system pages in memory and memory
pressure. A kernel thread is woken to flush dirty pages to the file system, and it
writes to local OST. The OST needs to do an allocation in order to complete the write.
The allocation is blocked, waiting for the above kernel thread to complete the write
and free up some memory. This is a deadlock.

Also, if the node with both a client and OST crash, then the OST waits, during
recovery, for the client that was mounted on that node to recover. However, since the
client crashed, it is considered a new client to the OST, and is blocked from mounting
until recovery completes. As a result, this is currently considered a double failure and
recovery cannot complete successfully.
Appendix B Lustre Knowledge Base B-27

Information on the Socket LND (socklnd) protocol

Lustre layers the socket LND (socklnd) protocol above TCP/IP. The first message
sent on the TCP/IP bytestream is HELLO, which is used to negotiate connection
attributes. The protocol version is determined by looking at the first 4+4 bytes of the
hello message, which contain a magic number and the protocol version

In KSOCK_PROTO_V1, the hello message is an lnet_hdr_t of type
LNET_MSG_HELLO, with the dest_nid (Destination Server/Machine) replaced by
net_magicversion_t. This is followed by 'payload_length' bytes of IP addresses (each
4 bytes) which list the interfaces that the sending socklnd owns. The whole message
is sent in little-endian (LE) byte order. There is no socklnd level V1 protocol after the
initial HELLO meaning everything that follows is unencapsulated LNET messages.

In KSOCK_PROTO_V2, the hello message is a ksock_hello_msg_t. The whole
message is sent in byte order of sender and the bytesex of 'kshm_magic' is used on
arrival to determine if the receiver needs to flip. From then on, every message is a
ksock_msg_t also sent in the byte order by sender. This either encapsulates an LNET
message (ksm_type == KSOCK_MSG_LNET) or is a NOOP. Every message includes
zero-copy request and ACK cookies in every message so that a zero-copy sender can
determine when the source buffer can be released without resorting to a kernel patch.
The NOOP is provided for delivering a zero-copy ACK when there is no LNET
message to back it on.

Note that socklnd may connect to its peers via a "bundle" of sockets - one for
bidirectional "ping-pong" data and the other two for unidirectional bulk data.
However the message protocol on every socket is as described earlier.
B-28 Lustre 1.6 Operations Manual • May 2009

Information on the Lustre Networking (LNET) protocol

Lustre layers the socket LND (socklnd) protocol above TCP/IP. Every LNET message
is an lnet_hdr_t sent in (little-endian (LE) byte order followed by 'payload_length'
bytes of opaque payload data. There are four types of messages.

■ PUT - request to send data contained in the payload

■ ACK - response to a PUT with ack_wmd != LNET_WIRE_HANDLE_NONE

■ GET - request to fetch data

■ REPLY - response to a GET with data in the payload

Typically, ACK and GET messages have 0 bytes of payload.

Explanation of: '... previously skipped # similar messages' in Lustre logs

Unlike syslog, which occupies exactly identical lines, the space for Lustre messages is
occupied if there are bursts of messages from the same line of code, even if they are
not sequential. This avoids duplication of the same event from different clients, or in
cases where two or more messages are repeated.

All messages are kept in the Lustre kernel debug log, so "lctl dk" at that time would
show all messages (in case they are not wrapped).

Printing a large number of messages to the kernel console can dramatically slow
down the system. As this happens with IRQs disabled and for a slow console, it
severely impacts overall system performance when there are large number of
messages.

For example:

LustreError: 559:0:(genops.c:1292:obd_export_evict_by_nid())
evicting

b155f37b-b426-ccc2-f0a9-bfbf00000000 at adminstrative request

LustreError: 559:0:(genops.c:1292:obd_export_evict_by_nid())
previously skipped 2 similar messages

In this case, the 'similar' messages are reported for the exact line of source, without
matching the text. Therefore, this is expected output for evictions of more than one
client.
Appendix B Lustre Knowledge Base B-29

What should I do if I suspect device corruption (Example: disk errors)

Keep these points in mind when trying to recover from device-induced corruption.

■ Stop using the device as soon as possible (if you have a choice).

The longer corruption is present on a device, the greater the risk that it will cause
further corruption. Normally, ext3 marks the file system read-only if any
corruption is detected or if there are I/O errors when reading or writing metadata
to the file system. This can only be cleared by shutting down Lustre on the device
(use --force or reboot if necessary).

■ Proceed carefully

If you take incorrect action, you can make an otherwise-recoverable situation
worse. ext3 has very robust metadata formats and can often recover a large
amount of data even when a significant portion of the device is bad.

■ Keep a log of all actions and output in a safe place.

If you perform multiple file system checks and/or actions to repair the file system,
save all logs. They may provide valuable insight into problems encountered.

Normally, the first thing to do is a read-only file system check, after the Lustre
service (MDS or OST) has been stopped. If it is not possible to stop the service,
you can run a read-only file system check when the device is in use. If running a
file system check while the device is in use, e2fsck cannot always coordinate data
gathered at the start of the run with data gathered later in the run and will report
incorrect file system errors. The number of errors is dependent upon the length of
check (approximately equal to the device size) and the load on the file system. In
this situation, you should run e2fsck multiple times on the device and look for
errors that are persistent across runs, and ignore transient errors.

To run a read-only file system check, we recommend that you use the latest e2fsck,
available at http://www.sun.com/software/products/lustre/get.jsp.

On the system with the suspected bad device (in the example below, /dev/sda is
used), run:

[root@mds]# script /root/e2fsck-1.sda

Script started, file is /root/e2fsck-1.sda

[root@mds]# e2fsck -fn /dev/sda

e2fsck 1.35-lfck8 (05-Feb-2005)

Warning: skipping journal recovery because doing a read-only
filesystem check

Pass 1: Checking inodes, blocks, and sizes

[root@mds]# exit

Script done, file is /tmp/foo
B-30 Lustre 1.6 Operations Manual • May 2009

http://www.sun.com/software/products/lustre/get.jsp

In many cases, the extent of corruption is small (some unlinked files or directories,
or perhaps some parts of an inode table have been wiped out). If there are serious
file system problems, e2fsck may need to use a backup superblock (reports if it
does). This causes all of the "group summary" information to be incorrect. In and
of itself, this is not a serious error as this information is redundant and e2fsck can
reconstruct this data. If the primary superblock is not valid, then there is some
corruption at the start of the device and some amount of data may be lost. The
data is somewhat protected from beginning-of-device corruption (which is one of
the more common cases) because of the large journal placed at the start of the file
system.

The amount of time taken to run such a check is usually 4 hours for a 1 TB MDS
device or a 2 TB OST device, but varies with the number of files and the amount of
data in the file system. If there are severe problems with the file system, it can take
8-12 hours to complete the check.

Depending on the type of corruption, it is sometimes helpful to use debugfs to
examine the file system directly and learn more about the corruption.

[root@mds]# script /root/debugfs.sda

[root@mds]# debugfs /dev/sda

debugfs 1.35-lfsk8 (05-Feb-2005)

debugfs> stats

{shows superblock and group summary information}

debugfs> ls

{shows directory listing}

debugfs> stat <inum>

{shows inode information for inode number <inum>}

debugfs> stat name

{shows inode information for inode "name"}

debugfs> cd dir

{change into directory "dir", "ROOT" is start of Lustre-visible namespace}

debugfs> quit

Once you have assessed the damage (possibly with the assistance of Lustre
Support, depending on the nature of the corruption), then fixing it is the next step.
Often, it is prudent to make a backup of the file system metadata (time and space
permitting) in case there is a problem or if it is unclear whether e2fsck will make
the correct action (in most cases it will). To make a metadata backup, run:

[root@mds]# e2image /dev/sda /bigplace/sda.e2image
Appendix B Lustre Knowledge Base B-31

In most cases, running e2fsck -fp $device will fix most types of corruption.
The e2fsck program has been used for many years and has been tested with a huge
number of different corruption scenarios. If you suspect serious corruption, or do
not expect e2fsck to fix the problem, then consider running a manual check,
e2fsck -f $device. The limitation of the manual check is that it is interactive
and can be quite lengthy if there are a lot of problems.

How do I clean up a device with lctl?

1. Run:

lconf --cleanup --force

2. If that does not work, then start lctl (if it is not already started).

3. Then starting with the highest-numbered device and working backward, clean
up each device.

root# clctl

lctl> cfg_device ost003_s1_client

lctl> cleanup force

lctl> detach

lctl> cfg_device OSS

lctl> cleanup force

lctl> detach

lctl> cfg_device ost003_s1

lctl> cleanup force

lctl> detach

At this point, you should be possible to unload the Lustre modules.

What is the default block size for Lustre?
The on-disk block size for Lustre is 4 KB (same as ext3). Nevertheless, Lustre goes
to great lengths to do 1 MB reads and writes to the disk, as large requests are a key
to getting very high performance.
B-32 Lustre 1.6 Operations Manual • May 2009

How do I determine which Lustre server (MDS/OST) was connected to a
particular storage device

In instances when the hardware configuration has changed (e.g., moving
equipment and re-connecting it), it is important to connect the right storage
devices to the associated Lustre servers.

Lustre writes a UUID to every OST and MDS. To view this information:

1. Mount the storage device as ldiskfs

mount -t ldiskfs /dev/foo /mnt/tmp

2. Inspect the contents of the last_rcvd file in the root directory

strings /mnt/tmp/last_rcvd

The MDS/OST UUID is the first element in the last_rcvd file and is in a human
readable form (e.g. mds1_UUID).

3. Unmount the storage device and connect it to the appropriate Lustre server.

umount /mnt/tmp

Note – It is not possible to mismatch storage devices with their Lustre servers. If
Lustre tries to mount such devices incorrectly, it would report a UUID mismatch to
the syslog and refuse to mount.

Does the mount option "--bind" allow mounting a Lustre file system to
multiple directories on the same client system?

Yes, this is supported. In fact, it is entirely handled by the VFS. No special file
system support is required.
Appendix B Lustre Knowledge Base B-33

What operations take place in Lustre when a new file is created?

This is a high level description of what operations take place in Lustre when a new
file is created. It corresponds to Lustre version 1.4.5.

■ On the Lustre client:

1. Create (/path/file, mode).

2. For every component in path, execute IT_LOOKUP intent (LDLM_ENQUEUE
RPC) to MDS.

3. Execute IT_OPEN intent (LDLM_ENQUEUE RPC) to MDS.

■ On the MDS:

1. Lock the parent directory.

2. Create the file.

3. Setattr on the file to set desired owner/mode.

4. Setattr on parent to update ATIME/CTIME.

5. Determine the default striping pattern.

6. Set the file's extended attribute to the desired stripping pattern.

7. For every OST that this file will have stripes on, see if there is a spare.

8. Assign precreated objects (if any) to the file.

9. Update the extended attribute holding OST oids.

10. Reply to client with no lock in reply.
B-34 Lustre 1.6 Operations Manual • May 2009

■ On the journal:

ext3 journaling is asynchronous unless a handle specifically requests a
synchronous operation. file system-modifying operations on the MDS that make
up a single file create operation are:

■ Allocate inode (inode bitmap, group descriptor, new inode)

■ Create directory entry (directory block, parent inode for timestamps)

■ Update lov_objids file (Lustre file)

■ Update last_rcvd file (Lustre file)

For a single inode, each of the above items dirties a single block in the journal (7
blocks = 28 KB in total). When many new files are created at one time, dirty blocks
are merged in the journal, because each block needs to be dirtied only once per
transaction (5s or 1/4 of full journal, whichever occurs earlier). For 1,000 files
created in a single directory, this works out to 516 KB, if they are all created within
the same transaction.

In 2.6 kernels it is possible to tune the ext3 journal commit interval with "-o
commit={seconds}". This may be desirable for performance testing.

ext3 code reserves a lot more blocks (about 70) for worst-case scenarios (e.g.,
growing a directory which also results in a split of the directory index, quota
updates, adding new indirect blocks for each of the Lustre files modified). These
are returned to the journal when the transaction is complete; most are returned
unused.

To avoid spurious journal commits due to these temporary reservations, calculate
the journal size based on this formula (assuming a default of 32 MDS threads):

70 blocks/thread * 32 threads * 4 KB/block * 4 = 35840 KB
Appendix B Lustre Knowledge Base B-35

What is the Lustre data path?

On the OST, data is read directly from the disk into pre-allocated network I/O
buffers, in chunks up to 1 MB in size. This data is sent (zero-copy where possible) to
the clients, where it is put (again, zero-copy where possible) into the file's data
mapping. The clients maintain local writeback and readahead caches for Lustre.

On the OST, the file system metadata such as inodes, bitmaps and file allocation
information is cached in RAM (up to the maximum amount that the kernel allows).
No user data is currently cached on the OST.

In cases where only few files are read by many clients, it makes sense to use a RAID
device with a lot of local RAM cache so that the multiple read requests can skip the
disk access.

The networking code bundles up page requests into a maximum of 1 MB in a single
RPC to minimize overhead. In each client OSC, this is controlled by the
/proc/fs/lustre/osc/*/max_pages_per_rpc field. The size of the writeback
cache can be tuned via /proc/fs/lustre/osc/*/max_dirty_mb. The size of the
readahead can be tuned via /proc/fs/lustre/llite/max_read_ahead_mb.
Total client side cache usage can be limited via
/proc/fs/lustre/llite/max_cached_mb.

Questions about using Lustre quotas

This section covers various aspects of using Lustre quotas.

When I enable quotas with lfs quotaon, will it automatically set default quotas for
all users or do I have to set them for each user/group individually?

In that case, the default limit will be 0, which means no limit.

What happens if a user/group has already more files/disk usage than his quotas
allows?

Given that it will be 0 initially, no users will be over quotas. To preempt the next
question, if a user has a limit set that is less than his existing usage, he will simply
start to get -EDQUOT errors on subsequent attempts to write data.

We only want group quotas, do we have to enable user quotas as well?

We do not know of any particular failure if only group quotas are enabled, but the
more your use cases match our testing then the better off you will be.

For user quotas, even if you do not want to enforce limits, you can enable quotas
but not set any limits. Doing this makes future operation of enabling limits on
users easier (when/if you decide to) as usage will already be tracked and
accounted for (saving you the need to do that initial accounting). It also provides
you with a means to quickly assess how much space is being consumed on a user-
by-user basis.
B-36 Lustre 1.6 Operations Manual • May 2009

When mounting an MDT filesystm, the kernel crashes. What do I do?

On Lustre versions prior to 1.6.5, use this procedure:

1. Try to mount the file system with o abort_recovery as an option.

2. If this does not work, try to mount the file system as -t ldiskfs.

mount -t ldiskfs

3. If that works, try to truncate the last_rcvd file.

mount -t ldiskfs /dev/MDSDEV /mnt/mds

cp /mnt/mds/last_rcvd /mnt/mds/last_rcvd.sav

cp /mnt/mds/last_rcvd /tmp/last_rcvd.sav

dd if=/mnt/mds/last_rcvd.sav of=/mnt/mds/last_rcvd bs=8k count=1

umount /mnt/mds

mount -t lustre /dev/MSDDEV /mnt/mds

Lustre version 1.6.5 and later should not encounter this problem.

How do I determine which Ethernet interfaces Lustre uses?

Use the lctl list_nids command to show the interfaces that Lustre is using.
Keep in mind that when socklnd bonding is used (e.g., networks="tcp0(eth0,eth1)"),
the LNET NID only picks up the IP address of the first interface in the network’s
specification (e.g., the IP address of eth0@tcp), despite LNET trying to make use of
both interfaces.

Moreover, the Ethernet interface in use is solely determined by the Linux IP routing.
For example, if you have two Ethernet interfaces (eth0 and eth1), and you direct
LNET to use eth0 only (e.g. networks="tcp(eth0)"), traffic can still use eth1 if Linux IP
routing selects it because of misconfigured routing (both interfaces are in the same IP
network, the routing table entry for eth1 comes first or by mistake).
Appendix B Lustre Knowledge Base B-37

B-38 Lustre 1.6 Operations Manual • May 2009

Glossary

A
ACL Access Control List - An extended attribute associated with a file which

contains authorization directives.

Administrative
OST failure

A configuration directive given to a cluster to declare that an OST has failed,
so errors can be immediately returned.

C
CFS Cluster File Systems, Inc., a United States corporation founded in 2001 by

Peter J. Braam to develop, maintain and support Lustre.

CMD Clustered metadata, a collection of metadata targets implementing a single
file system namespace.

CMOBD Cache Management OBD. A special device which implements remote cache
flushed and migration among devices.

COBD Caching OBD. A driver which decides when to use a proxy or a
locally-running cache and when to go to a master server. Formerly, this
abbreviation was used for the term ‘collaborative cache’.

Collaborative Cache A read cache instantiated on nodes that can be clients or dedicated systems.
It enables client-to-client data transfer, thereby enabling enormous
scalability benefits for mostly read-only situations. A collaborative cache is
not currently implemented in Lustre.
Glossary-1

Completion Callback An RPC made by an OST or MDT to another system, usually a client, to
indicate that the lock request is now granted.

Configlog An llog file used in a node, or retrieved from a management server over the
network with configuration instructions for Lustre systems at startup time.

Configuration Lock A lock held by every node in the cluster to control configuration changes.
When callbacks are received, the nodes quiesce their traffic, cancel the lock
and await configuration changes after which they reacquire the lock before
resuming normal operation.

D
Default stripe pattern Information in the LOV descriptor that describes the default stripe count

used for new files in a file system. This can be amended by using a directory
stripe descriptor or a per-file stripe descriptor.

Direct I/O A mechanism which can be used during read and write system calls. It
bypasses the kernel. I/O cache to memory copy of data between kernel and
application memory address spaces.

Directory stripe
descriptor

An extended attribute that describes the default stripe pattern for files
underneath that directory.

E
EA Extended Attribute. A small amount of data which can be retrieved through

a name associated with a particular inode. Lustre uses EAa to store striping
information (location of file data on OSTs). Examples of extended attributes
are ACLs, striping information, and crypto keys.

Eviction The process of eliminating server state for a client that is not returning to the
cluster after a timeout or if server failures have occurred.

Export The state held by a server for a client that is sufficient to transparently
recover all in-flight operations when a single failure occurs.

Extent Lock A lock used by the OSC to protect an extent in a storage object for
concurrent control of read/write, file size acquisition and truncation
operations.
Glossary-2 Lustre 1.6 Operations Manual • May 2009

F
Failback The failover process in which the default active server regains control over

the service.

Failout OST An OST which is not expected to recover if it fails to answer client requests.
A failout OST can be administratively failed, thereby enabling clients to
return errors when accessing data on the failed OST without making
additional network requests.

Failover The process by which a standby computer server system takes over for an
active computer server after a failure of the active node. Typically, the
standby computer server gains exclusive access to a shared storage device
between the two servers.

FID Lustre File Identifier. A collection of integers which uniquely identify a file
or object. The FID structure contains a sequence, identity and version
number.

Fileset A group of files that are defined through a directory that represents a file
system’s start point.

FLDB FID Location Database. This database maps a sequence of FIDs to a server
which is managing the objects in the sequence.

Flight Group Group or I/O transfer operations initiated in the OSC, which is
simultaneously going between two endpoints. Tuning the flight group size
correctly leads to a full pipe.

G
Glimpse callback An RPC made by an OST or MDT to another system, usually a client, to

indicate to tthat an extent lock it is holding should be surrendered if it is not
in use. If the system is using the lock, then the system should report the
object size in the reply to the glimpse callback. Glimpses are introduced to
optimize the acquisition of file sizes.

GNS Global Namespace. A GNS enables clients to access files without knowing
their location. It also enables an administrator to aggregate file storage across
distributed storage devices and manage it as a single file system.

Group Lock

Group upcall
Glossary-3

GSS Group Sweeping Scheduling. A disk sched uling strategy in which requests
are served in cycles, in a round-robin manner.

I
Import The state held by a client to fully recover a transaction sequence after a

server failure and restart.

Intent Lock A special locking operation introduced by Lustre into the Linux kernel. An
intent lock combines a request for a lock, with the full information to
perform the operation(s) for which the lock was requested. This offers the
server the option of granting the lock or performing the operation and
informing the client of the operation result without granting a lock. The use
of intent locks enables metadata operations (even complicated ones), to be
implemented with a single RPC from the client to the server.

IOV I/O vector. A buffer destined for transport across the network which
contains a collection (a/k/a as a vector) of blocks with data.

J
Join File

K
Kerberos An authentication mechanism, optionally available in Lustre 1.8 as a GSS

backend.

L
LAID Lustre RAID. A mechanism whereby the LOV stripes I/O over a number of

OSTs with redundancy. This functionality is expected to be introduced in
Lustre 2.0.

LBUG A bug that Lustre writes into a log indicating a serious system failure.
Glossary-4 Lustre 1.6 Operations Manual • May 2009

LDLM Lustre Distributed Lock Manager.

lfind A subcommand of lfs to find inodes associated with objects.

lfs A Lustre file system utility named after fs (AFS), cfs (CODA), and lfs
(Intermezzo).

lfsck Lustre File System Check. A distributed version of a disk file system checker.
Normally, lfsck does not need to be run, except when file systems are
damaged through multiple disk failures and other means that cannot be
recovered using file system journal recovery.

liblustre Lustre library. A user-mode Lustre client linked into a user program for
Lustre fs access. liblustre clients cache no data, do not need to give back
locks on time, and can recover safely from an eviction. They should not
participate in recovery.

Llite Lustre lite. This term is in use inside the code and module names to indicate
that code elements are related to the Lustre file system.

Llog Lustre log. A log of entries used internally by Lustre. An llog is suitable for
rapid transactional appends of records and cheap cancellation of records
through a bitmap.

Llog Catalog Lustre log catalog. An llog with records that each point at an llog. Catalogs
were introduced to give llogs almost infinite size. llogs have an originator
which writes records and a replicator which cancels record (usually through
an RPC), when the records are not needed.

LMV Logical Metadata Volume. A driver to abstract in the Lustre client that it is
working with a metadata cluster instead of a single metadata server.

LND Lustre Network Driver. A code module that enables LNET support over a
particular transport, such as TCP and various kinds of InfiniBand, Elan or
Myrinet.

LNET Lustre Networking. A message passing network protocol capable of running
and routing through various physical layers. LNET forms the underpinning
of LNETrpc.

LNETrpc An RPC protocol layered on LNET. This protocol deals with stateful servers
and has exactly-once semantics and built in support for recovery.

Load-balancing MDSs A cluster of MDSs that perform load balancing of on system requests.

Lock Client A module that makes lock RPCs to a lock server and handles revocations
from the server.

Lock Server A system that manages locks on certain objects. It also issues lock callback
requests, calls while servicing or, for objects that are already locked,
completes lock requests.
Glossary-5

LOV Logical Object Volume. The object storage analog of a logical volume in a
block device volume management system, such as LVM or EVMS. The LOV
is primarily used to present a collection of OSTs as a single device to the
MDT and client file system drivers.

LOV descriptor A set of configuration directives which describes which nodes are OSS
systems in the Lustre cluster, providing names for their OSTs.

Lustre The name of the project chosen by Peter Braam in 1999 for an object-based
storage architecture. Now the name is commonly associated with the Lustre
file system.

Lustre client An operating instance with a mounted Lustre file system.

Lustre file A file in the Lustre file system. The implementation of a Lustre file is
through an inode on a metadata server which contains references to a
storage object on OSSs.

Lustre lite A preliminary version of Lustre developed for LLNL in 2002. With the
release of Lustre 1.0 in late 2003, Lustre Lite became obsolete.

Lvfs A library that provides an interface between Lustre OSD and MDD drivers
and file systems; this avoids introducing file system-specific abstractions
into the OSD and MDD drivers.

M
Mballoc An operating instance with a mounted Lustre file system.

MDC An operating instance with a mounted Lustre file system.

MDD An operating instance with a mounted Lustre file system.

MDS An operating instance with a mounted Lustre file system.

MDS client Same as MDC.

MDS server Same as MDS.

MDT Metadata Target. A metadata device made available through the Lustre
meta-data network protocol.

Metadata Write-back
Cache

A cache of metadata updates (mkdir, create, setattr, other operations) which
an application has performed, but ave not yet been flushed to a storage
device or server. InterMezzo is one of the first network file systems to have
a metadata write-back cache.
Glossary-6 Lustre 1.6 Operations Manual • May 2009

MGS Management Service. A software module that manages the startup
configuration and changes to the configuration. Also, the server node on
which this system runs.

Mount object

Mountconf The Lustre configuration protocol (introduced in version 1.6) which formats
disk file systems on servers with the mkfs.lustre program, and prepares
them for automatic incorporation into a Lustre cluster.

N
NAL An older, obsolete term for LND.

NID Network Identifier. Encodes the type, network number and network address
of a network interface on a node for use by Lustre.

NIO API A subset of the LNET RPC module that implements a library for sending
large network requests, moving buffers with RDMA.

O
OBD Object Device. The base class of layering software constructs that provides

Lustre functionality.

OBD API See Storage Object API.

OBD type Module that can implement the Lustre object or metadata APIs. Examples of
OBD types include the LOV, OSC and OSD.

Obdfilter An older name for the OSD device driver.

OBDFS Object Based File System. A now obsolete single node object file system that
stores data and metadata on object devices.

Object device An instance of an object that exports the OBD API.

Object storage Refers to a storage-device API or protocol involving storage objects. The two
most well known instances of object storage are the T10 iSCSI storage object
protocol and the Lustre object storage protocol (a network implementation of
the Lustre object API). The principal difference between the Lustre and T10
protocols is that Lustre includes locking and recovery control in the protocol
and is not tied to a SCSI transport layer.
Glossary-7

opencache A cache of open file handles. This is a performance enhancement for NFS.

Orphan objects Storage objects for which there is no Lustre file pointing at them. Orphan
objects can arise from crashes and are automatically removed by an llog
recovery. When a client deletes a file, the MDT gives back a cookie for each
stripe. The client then sends the cookie and directs the OST to delete the
stripe. Finally, the OST sends the cookie back to the MDT to cancel it.

Orphan handling A component of the metadata service which allows for recovery of open,
unlinked files after a server crash. The implementation of this feature retains
open, unlinked files as orphan objects until it is determined that no clients
are using them.

OSC Object Storage Client. The client unit talking to an OST (via an OSS).

OSD Object Storage Device. A generic, industry term for storage devices with
more extended interface than block-oriented devices, such as disks. Lustre
uses this name to describe to a software module that implements an object
storage API in the kernel. Lustre also uses this name to refer to an instance
of an object storage device created by that driver. The OSD device is layered
on a file system, with methods that mimic create, destroy and I/O
operations on file inodes.

OSS Object Storage Server). A system that runs an object storage service software
stack.

OSS Object Storage Server. A server OBD that provides access to local OSTs.

OST Object Storage Target). An OSD made accessible through a network protocol.
Typically, an OST is associated with a unique OSD which, in turn is
associated with a formatted disk file system on the server containing the
storage objects.

P

Pdirops A locking protocol introduced in the VFS by CFS to allow for concurrent
operations on a single directory inode.

pool A group of OSTs can be combined into a pool with unique access
permissions and stripe characteristics. Each OST is a member of only one
pool, while an MDT can serve files from multiple pools. A client accesses
one pool on the the file system; the MDT stores files from / for that client
only on that pool's OSTs.
Glossary-8 Lustre 1.6 Operations Manual • May 2009

Portal A concept used by LNET. LNET messages are sent to a portal on a NID.
Portals can receive packets when a memory descriptor is attached to the
portal. Portals are implemented as integers.

Examples of portals are the portals on which certain groups of object,
metadata, configuration and locking requests and replies are received.

Ptlrpc An older term for LNETrpc.

R
Raw operations VFS operations introduced by Lustre to implement operations such as mkdir,

rmdir, link, rename with a single RPC to the server. Other file systems would
typically use more operations. The expense of the raw operation is omitting
the update of client namespace caches after obtaining a successful result.

Remote user handling

Reply The concept of re-executing a server request after the server lost information
in its memory caches and shut down. The replay requests are retained by
clients until the server(s) have confirmed that the data is persistent on disk.
Only requests for which a client has received a reply are replayed.

Re-sent request A request that has seen no reply can be re-sent after a server reboot.

Revocation Callback An RPC made by an OST or MDT to another system, usually a client, to
revoke a granted lock.

Rollback The concept that server state is in a crash lost because it was cached in
memory and not yet persistent on disk.

Root squash A mechanism whereby the identity of a root user on a client system is
mapped to a different identity on the server to avoid root users on clients
gaining broad permissions on servers. Typically, for management purposes,
at least one client system should not be subject to root squash.

routing LNET routing between different networks and LNDs.

RPC Remote Procedure Call. A network encoding of a request.
Glossary-9

S
Storage Object API The API that manipulates storage objects. This API is richer than that of

block devices and includes the create/delete of storage objects, read/write
of buffers from and to certain offsets, set attributes and other storage object
metadata.

Storage Objects A generic concept referring to data containers, similar/identical to file
inodes.

Stride A contiguous, logical extent of a Lustre file written to a single OST.

Stride size The maximum size of a stride, typically 4 MB.

Stripe count The number of OSTs holding objects for a RAID0-striped Lustre file.

Striping metadata The extended attribute associated with a file that describes how its data is
distributed over storage objects. See also default stripe pattern.

T
T10 object protocol An object storage protocol tied to the SCSI transport layer.
Glossary-10 Lustre 1.6 Operations Manual • May 2009

W
Wide striping Strategy of using many OSTs to store stripes of a single file. This obtains

maximum bandwidth to a single file through parallel utilization of many
OSTs.

Z
zeroconf A method to start a client without an XML file. The mount command gets a

client startup llog from a specified MDS. This is an obsolete method in
Lustre 1.6 and later.
Glossary-11

Glossary-12 Lustre 1.6 Operations Manual • May 2009

Index
Numerics
1.6 utilities, 32-16

A
access control list (ACL), 26-1
ACL, using, 26-1
ACLs

examples, 26-3
Lustre support, 26-2

active / active configuration, failover, 8-7
adaptive timeouts, 22-5

configuring, 22-6
interpreting, 22-8

adding multiple LUNs on a single HBA, 27-5
allocating quotas, 9-6

B
backing up

MDS file, 15-3
OST file, 15-4

backup
device-level, 15-2
file-level, 15-2
filesystem-level, 15-1

backup and restore, 15-1
benchmark

Bonnie++, 17-2
IOR, 17-3
IOzone, 17-5

bonding, 13-1
configuring Lustre, 13-11
module parameters, 13-5

references, 13-11
requirements, 13-2
setting up, 13-5

bonding NICs, 13-4
Bonnie++ benchmark, 17-2
building, 14-2
building a kernel, 3-12
building the Lustre SNMP module, 14-2

C
client read/write

extents survey, 22-16
offset survey, 22-15

command
lfsck, 28-11
mount, 28-21

command lfs, 28-2
complicated configurations, multihomed servers, 7-

1
configuration

module setup, 4-9
configuration example, Lustre, 4-4
configuration, more complex

failover, 4-21
configuring

adaptive timeouts, 22-6
root squash, 26-4

configuring Lustre, 4-2
COW I/O, 18-14
Index-1

D
DDN tuning, 20-7

setting maxcmds, 20-10
setting readahead and MF, 20-8
setting segment size, 20-9
setting write-back cache, 20-9

debugging
adding debugging to source code, 23-11
controlling the kernel debug log, 23-7
daemon, 23-5
debugging in UML, 23-12
finding Lustre UUID of an OST, 23-15
finding memory leaks, 23-9
lctl tool, 23-8
looking at disk content, 23-14
messages, 23-2
printing to /var/log/messages, 23-10
Ptlrpc request history, 23-15
sample lctl run, 23-10
tcpdump, 23-15
tools, 23-4
tracing lock traffic, 23-10

debugging tools, 3-4
designing a Lustre network, 2-3
device-level backup, 15-2
device-level restore, 15-4
DIRECT I/O, 18-14
Directory statahead, using, 22-19
downgrade

filesystem, 14-11
requirements, 14-11

E
Elan (Quadrics Elan), 2-2
Elan to TCP routing

modprobe.conf, 7-5, 7-6
start clients, 7-5, 7-7
start servers, 7-5, 7-6

end-to-end client checksums, 25-11
error messages, 21-5

F
failover, 8-1

active / active configuration, 8-7
configuring, 4-21
configuring MDS and OSTs, 8-6
connection handling, 8-4

hardware requirements, 8-8
Heartbeat, 8-4
MDS, 8-6
OST, 8-6
power equipment, 8-3
power management software, 8-3
role of nodes, 8-5
setup with Heartbeat V1, 8-9
setup with Heartbeat V2, 8-17
software, considerations, 8-22
starting / stopping a resource, 8-7

failover, Heartbeat V1
configuring Heartbeat, 8-10
installing software, 8-9

failover, Heartbeat V2
configuring hardware, 8-18
installing software, 8-17
operating, 8-21

file formats, quotas, 9-11
File readahead, using, 22-19
file striping, 25-1
file-level backup, 15-2
filesystem

name, 4-11
filesystem-level backup, 15-1
flock utility, 32-20
free space

querying, 24-2
free space management

adjusting weighting between free space and
location, 25-9

round-robin allocator, 25-9
weighted allocator, 25-9

G
GID, 3-5
GM and MX (Myrinet), 2-2
group ID (GID), 3-5

H
handling timeouts, 28-22
HBA, adding SCSI LUNs, 27-5
Heartbeat configuration

with STONITH, 8-13
without STONITH, 8-10

Heartbeat V1, failover setup, 8-9
Index-2 Lustre 1.6 Operations Manual • May 2009

Heartbeat V2, failover setup, 8-17

I
I/O options

end-to-end client checksums, 25-11
I/O tunables, 22-12
improving Lustre metadata performance with large

directories, 27-6
Infinicon InfiniBand (iib), 2-2
installing, 14-2

POSIX, 16-2
installing Lustre, required software

debugging tools, 3-4
installing the Lustre SNMP module, 14-2
interoperability, lustre, 14-1
interpreting

adaptive timeouts, 22-8
IOR benchmark, 17-3
IOzone benchmark, 17-5

K
Kerberos

Lustre setup, 11-2
Lustre-Kerberos flavors, 11-11

kernel
building, 3-12

L
lctl, 32-8

lustre-.rpm, 3-3
lctl tool, 23-8
lfs

lustre-.rpm, 3-3
lfs command, 28-2
lfs getstripe

display files and directories, 25-4
setting file layouts, 25-6

lfsck command, 28-11
llog_reader utility, 32-19
llstat.sh utility, 32-18
LND, 2-1
LNET

routers, 2-11
starting, 2-13

loadgen utility, 32-19

locking proc entries, 22-25
lockless tunables, 20-14
logs, 21-5
lr_reader utility, 32-19
LUNs, adding, 27-5
Lustre

administration, abort recovery, 4-20
administration, changing a server NID, 4-19
administration, failout mode for an OST, 4-15
administration, filesystem name, 4-11
administration, finding nodes in the

filesystem, 4-14
administration, removing an OST, 4-18
administration, running multiple Lustre

filesystems, 4-16
administration, start a server without Lustre

service, 4-15
administration, starting a server, 4-12
administration, working with inactive OSTs, 4-

13
adminstration, running the writeconf

command, 4-17
adminstration, stopping a server, 4-13
configuration example, 4-4
configuring, 4-2
memory requirements, 3-6
operational scenarios, 4-22
recovering, 19-1

lustre
downgrading, 14-1
interoperability, 14-1
upgrading, 14-1

Lustre client node, 1-6
Lustre I/O kit

downloading, 18-2
obdfilter_survey tool, 18-5
ost_survey tool, 18-11
PIOS I/O modes, 18-14
PIOS tool, 18-12
prerequisites to using, 18-2
running tests, 18-2
sgpdd_survey tool, 18-3

Lustre Network Driver (LND), 2-1
Lustre SNMP module, 14-2, 14-3
lustre-.rpm

lctl, 3-3
lfs, 3-3
Index-3

mkfs.lustre, 3-3
mount.lustre, 3-3

lustre_config.sh utility, 32-17
lustre_createcsv.sh utility, 32-17
lustre_req_history.sh utility, 32-18
lustre_up14.sh utility, 32-17

M
man1

lfs, 28-2
lfsck, 28-11
mount, 28-21

man3
user/group cache upcall, 29-1

man5
LNET options, 31-3
module options, 31-2
MX LND, 31-20
OpenIB LND, 31-14
Portals LND (Catamount), 31-18
Portals LND (Linux), 31-15
QSW LND, 31-10
RapidArray LND, 31-11
VIB LND, 31-12

man8
extents_stats utility extents_stats utility, 32-18
lctl, 32-8
llog_reader utility, 32-19
llstat.sh, 32-18
loadgen utility, 32-19
lr_reader utility, 32-19
lustre_config.sh, 32-17
lustre_createcsv.sh utility, 32-17
lustre_req_history.sh, 32-18
lustre_up14.sh utility, 32-17
mkfs.lustre, 32-2
mount.lustre, 32-13
offset_stats utility, 32-19
plot-llstat.sh, 32-18
tunefs.lustre, 32-5
vfs_ops_stats utility vfs_ops_stats utility, 32-18

Management Server (MGS), 1-6
mballoc

history, 22-21
mballoc3

tunables, 22-23
MDS

failover, 8-6
failover configuration, 8-6
memory, determining, 3-6

MDS file, backing up, 15-3
MDT, 1-5
MDT/OST formatting

overriding default formatting options, 20-6
planning for inodes, 20-5
sizing the MDT, 20-5

Mellanox-Gold InfiniBand, 2-2
memory requirements, 3-6
Metadata Target (MDT), 1-5
MGS, 1-6
mkfs.lustre, 32-2

lustre-.rpm, 3-3
MMP, using, 8-16
mod5

SOCKLND kernel TCP/IP LND, 31-8
modprobe.conf, 7-1, 7-5, 7-6
module setup, 4-9
mount command, 28-21
mount.lustre, 32-13

lustre-.rpm, 3-3
multihomed server

Lustre complicated configurations, 7-1
modprobe.conf, 7-1
start clients, 7-4
start server, 7-3

multiple mount protection, see MMP, 8-16
multiple NICs, 13-4
MX LND, 31-20
Myrinet, 2-2

N
network

bonding, 13-1
networks, supported

Elan (Quadrics Elan), 2-2
GM and MX (Myrinet), 2-2
iib (Infinicon InfiniBand), 2-2
o2ib (OFED), 2-2
openlib (Mellanox-Gold InfiniBand), 2-2
ra (RapidArray), 2-2
vib (Voltaire InfiniBand), 2-2

NIC
bonding, 13-4
Index-4 Lustre 1.6 Operations Manual • May 2009

multiple, 13-4
NID, server, changing, 4-19
node

active / active, 8-5
active / passive, 8-5

O
o2ib (OFED), 2-2
obdfilter_survey tool, 18-5
Object Storage Target (OST), 1-5
OFED, 2-2
offset_stats utility, 32-19
OpenIB LND, 31-14
openlib (Mellanox-Gold InfiniBand), 2-2
operating tips

data migration script, simple, 27-3
Operational scenarios, 4-22
OSS

memory, requirements, 3-7
OST, 1-5

failover, 8-6
failover configuration, 8-6

OST block I/O stream, watching, 22-18
OST file, backing up, 15-4
OST, removing, 4-18
ost_survey tool, 18-11

P
performance tips, 21-7
performing direct I/O, 25-10
PIOS

examples, 18-18
PIOS I/O mode

COW I/O, 18-14
DIRECT I/O, 18-14
POSIX I/O, 18-14

PIOS I/O modes, 18-14
PIOS parameter

ChunkSize(c), 18-15
Offset(o), 18-16
RegionCount(n), 18-15
RegionSize(s), 18-15
ThreadCount(t), 18-15

PIOS tool, 18-12
plot-llstat.sh utility, 32-18

Portals LND
Catamount, 31-18
Linux, 31-15

POSIX
debugging, VSX_DBUG_FILE=output_file, 16-5
debugging, VSX_DBUG_FLAGS=xxxxx, 16-5
installing, 16-2
running tests against Lustre, 16-4

POSIX I/O, 18-14
power equipment, 8-3
power management software, 8-3
proc entries

debug support, 22-26
introduction, 22-2
locking, 22-25

Q
QSW LND, 31-10
Quadrics Elan, 2-2
querying filesystem space, 24-2
quota limits, 9-11
quota statistics, 9-12
quotas

administering, 9-4
allocating, 9-6
creating files, 9-4
enabling, 9-2
file formats, 9-11
granted cache, 9-10
known issues, 9-10
limits, 9-11
resetting, 9-6
statistics, 9-12
working with, 9-1

R
ra (RapidArray), 2-2
RAID

considerations for backend storage, 10-1
selecting storage for the MDS and OSS, 10-1

RapidArray, 2-2
RapidArray LND, 31-11
readahead, tuning, 22-19
recovering Lustre, 19-1
recovery mode, failure types

client failure, 19-2
Index-5

MDS failure/failover, 19-3
network partition, 19-4
OST failure, 19-3

recovery, aborting, 4-20
resetting quota, 9-6
restore

device-level, 15-4
root squash

configuring, 26-4
tips, 26-6
tuning, 26-4

root squash, using, 26-4
round-robin allocator, 25-9
routers, LNET, 2-11
routing, elan to TCP, 7-5
RPC stream tunables, 22-12
RPC stream, watching, 22-14
running a client and OST on the same machine, 27-5

S
server

starting, 4-12
stopping, 4-13

server NID, changing, 4-19
setting

maxcmds, 20-10
readahead and MF, 20-8
SCSI I/O sizes, 21-22
segment size, 20-9
write-back cache, 20-9

sgpdd_survey tool, 18-3
simple configuration

CSV file, configuring Lustre, 6-4
network, combined MGS/MDT, 6-1
network, separate MGS/MDT, 6-3
TCP network, Lustre simple configurations, 6-1

SOCKLND kernel TCP/IP LND, 31-8
starting

LNET, 2-13
statahead, tuning, 22-20
striping

advantages, 25-2
disadvantages, 25-3
lfs getstripe, display files and directories, 25-4
lfs getstripe, set file layout, 25-6
size, 25-3

supported networks
Elan (Quadrics Elan), 2-2
GM and MX (Myrinet), 2-2
iib (Infinicon InfiniBand), 2-2
o2ib (OFED), 2-2
openlib (Mellanox-Gold InfiniBand), 2-2
ra (RapidArray), 2-2
vib (Voltaire InfiniBand), 2-2

T
timeouts, handling, 28-22
tips

root squash, 26-6
Troubleshooting

number of OSTs needed for sustained
throughput, 21-22

troubleshooting
changing parameters, 21-12
consideration in connecting a SAN with

Lustre, 21-15
default striping, 21-14
drawbacks in doing multi-client O_APPEND

writes, 21-21
erasing a file system, 21-14
error messages, 21-5
handling timeouts on initial Lustre setup, 21-19
handling/debugging "bind

address already in use" error, 21-16
handling/debugging "Lustre Error

xxx went back in time", 21-20
handling/debugging error "28", 21-17
identifying a missing OST, 21-10
log message ’out of memory’ on OST, 21-21
logs, 21-5
Lustre Error

"slow start_page_write", 21-20
OST object missing or damaged, 21-8
OSTs become read-only, 21-10
reclaiming reserved disk space, 21-15
replacing an existing OST or MDS, 21-17
setting SCSI I/O sizes, 21-22
slowdown occurs during Lustre startup, 21-21
triggering watchdog for PID NNN, 21-18
viewing parameters, 21-13
write performance better than read

performance, 21-8
tunables

RPC stream, 22-12
Index-6 Lustre 1.6 Operations Manual • May 2009

tunables, lockless, 20-14
tunefs.lustre, 32-5
Tuning

directory statahead, 22-20
file readahead, 22-19

tuning
DDN, 20-7
formatting the MDT and OST, 20-5
large-scale, 20-12
LNET tunables, 20-4
module options, 20-1
module threads, 20-3
root squash, 26-4

U
UID, 3-5
upgrade

multiple filesystems (shared MGS), 14-7
single filesystem, 14-4
supported paths, 14-3

upgrading
starting clients, 14-4

user ID (UID), 3-5
using, 14-3

quotas, 24-4
using the Lustre SNMP module, 14-3
using usocklnd, 2-7
usocklng, using, 2-7
utilities

new, v1.6, 32-16

V
VIB LND, 31-12
Voltaire InfiniBand (vib), 2-2
VSX_DBUG_FILE=output_file, 16-5
VSX_DBUG_FLAGS=xxxxx, 16-5

W
weighted allocator, 25-9
weighting, adjusting between free space and

location, 25-9
writeconf, 4-17
Index-7

Index-8 Lustre 1.6 Operations Manual • May 2009

	Lustre™ 1.6 Operations Manual
	Contents
	Preface
	Using UNIX Commands
	Shell Prompts
	Typographic Conventions
	Third-Party Web Sites

	Revision History
	I Lustre Architecture
	Introduction to Lustre
	1.1 Introducing the Lustre File System
	1.1.1 Lustre Key Features

	1.2 Lustre Components
	1.2.1 MDS
	1.2.2 MDT
	1.2.3 OSS
	1.2.4 OST
	1.2.5 Lustre Clients
	1.2.6 LNET
	1.2.7 MGS

	1.3 Lustre Systems
	1.4 Files in the Lustre File System
	1.4.1 Lustre File System and Striping
	1.4.2 Lustre Storage
	1.4.2.1 OSS Storage
	1.4.2.2 MDS Storage

	1.4.3 Lustre System Capacity

	1.5 Lustre Configurations
	1.6 Lustre Networking
	1.7 Lustre Failover and Rolling Upgrades
	1.8 Additional Lustre Features

	Understanding Lustre Networking
	2.1 Introduction to LNET
	2.2 Supported Network Types
	2.3 Designing Your Lustre Network
	2.3.1 Identify All Lustre Networks
	2.3.2 Identify Nodes to Route Between Networks
	2.3.3 Identify Network Interfaces to Include/Exclude from LNET
	2.3.4 Determine Cluster-wide Module Configuration
	2.3.5 Determine Appropriate Mount Parameters for Clients

	2.4 Configuring LNET
	2.4.1 Module Parameters
	2.4.1.1 Using Usocklnd
	2.4.1.2 OFED InfiniBand Options

	2.4.2 Module Parameters - Routing
	2.4.2.1 LNET Routers

	2.4.3 Downed Routers

	2.5 Starting and Stopping LNET
	2.5.1 Starting LNET
	2.5.1.1 Starting Clients

	2.5.2 Stopping LNET

	II Lustre Administration
	Lustre Installation
	3.1 Preparing to Install Lustre
	3.1.1 Supported Operating System, Platform and Interconnect
	3.1.2 Required Tools and Utilities
	3.1.3 High-Availability Software
	3.1.4 Debugging Tools
	3.1.5 Environmental Requirements
	3.1.6 Memory Requirements
	3.1.6.1 Determining the MDS’s Memory
	3.1.6.2 OSS Memory Requirements

	3.2 Installing Lustre from RPMs
	3.3 Installing Lustre from Source Code
	3.3.1 Patching the Kernel
	3.3.1.1 Introducing the Quilt Utility
	3.3.1.2 Get the Lustre Source and Unpatched Kernel
	3.3.1.3 Patch the Kernel

	3.3.2 Create and Install the Lustre Packages
	3.3.3 Installing Lustre with a Third-Party Network Stack

	Configuring Lustre
	4.1 Configuring Lustre
	4.1.0.1 Simple Lustre Configuration Example
	4.1.0.2 Module Setup
	4.1.0.3 Lustre Configuration Utilities

	4.2 Basic Lustre Administration
	4.2.1 Specifying the File System Name
	4.2.2 Mounting a Server
	4.2.3 Unmounting a Server
	4.2.4 Working with Inactive OSTs
	4.2.5 Finding Nodes in the Lustre File System
	4.2.6 Mounting a Server Without Lustre Service
	4.2.7 Specifying Failout/Failover Mode for OSTs
	4.2.8 Running Multiple Lustre File Systems
	4.2.9 Running the Writeconf Command
	4.2.10 Removing and Restoring OSTs
	4.2.10.1 Removing an OST from the File System
	4.2.10.2 Restoring an OST to the File System

	4.2.11 Changing a Server NID
	4.2.12 Aborting Recovery

	4.3 More Complex Configurations
	4.3.1 Failover

	4.4 Operational Scenarios
	4.4.1 Unmounting a Server (without Failover)
	4.4.2 Unmounting a Server (with Failover)
	4.4.3 Changing the Address of a Failover Node

	Service Tags
	5.1 Introduction to Service Tags
	5.2 Using Service Tags
	5.2.1 Installing Service Tags
	5.2.2 Discovering and Registering Lustre Components
	5.2.3 Information Registered with Sun

	Configuring Lustre - Examples
	6.1 Simple TCP Network
	6.1.1 Lustre with Combined MGS/MDT
	6.1.1.1 Installation Summary
	6.1.1.2 Configuration Generation and Application

	6.1.2 Lustre with Separate MGS and MDT
	6.1.2.1 Installation Summary
	6.1.2.2 Configuration Generation and Application
	6.1.2.3 Configuring Lustre with a CSV File

	More Complicated Configurations
	7.1 Multi-homed Servers
	7.1.1 Modprobe.conf
	7.1.2 Start Servers
	7.1.3 Start Clients

	7.2 Elan to TCP Routing
	7.2.1 Modprobe.conf
	7.2.2 Start servers
	7.2.3 Start clients

	7.3 Load Balancing with InfiniBand
	7.3.1 Modprobe.conf
	7.3.2 Start servers
	7.3.3 Start clients

	7.4 Multi-Rail Configurations with LNET

	Failover
	8.1 What is Failover?
	8.1.1 The Power Management Software
	8.1.2 Power Equipment
	8.1.3 Heartbeat
	8.1.4 Connection Handling During Failover
	8.1.5 Roles of Nodes in a Failover

	8.2 OST Failover
	8.3 MDS Failover
	8.4 Configuring MDS and OSTs for Failover
	8.4.1 Configuring Lustre for Failover
	8.4.2 Starting/Stopping a Resource
	8.4.3 Active/Active Failover Configuration
	8.4.4 Hardware Requirements for Failover
	8.4.4.1 Hardware Preconditions

	8.5 Setting Up Failover with Heartbeat V1
	8.5.1 Installing the Software
	8.5.1.1 Configuring Heartbeat

	8.6 Using MMP
	8.7 Setting Up Failover with Heartbeat V2
	8.7.1 Installing the Software
	8.7.2 Configuring the Hardware
	8.7.2.1 Hardware Preconditions
	8.7.2.2 Configuring Lustre
	8.7.2.3 Configuring Heartbeat

	8.7.3 Operation
	8.7.3.1 Initial startup
	8.7.3.2 Testing
	8.7.3.3 Failback

	8.8 Considerations with Failover Software and Solutions

	Configuring Quotas
	9.1 Working with Quotas
	9.1.1 Enabling Disk Quotas
	9.1.1.1 Administrative and Operational Quotas

	9.1.2 Creating Quota Files and Quota Administration
	9.1.3 Resetting the Quota
	9.1.4 Quota Allocation
	9.1.5 Known Issues with Quotas
	9.1.5.1 Granted Cache and Quota Limits
	9.1.5.2 Quota Limits
	9.1.5.3 Quota File Formats

	9.1.6 Lustre Quota Statistics
	9.1.6.1 Interpreting Quota Statistics

	RAID
	10.1 Considerations for Backend Storage
	10.1.1 Selecting Storage for the MDS and OSS
	10.1.2 Reliability Best Practices
	10.1.3 Understanding Double Failures with Hardware and Software RAID5
	10.1.4 Performance Tradeoffs
	10.1.5 Formatting
	10.1.5.1 Creating an External Journal

	10.2 Insights into Disk Performance Measurement
	10.3 Lustre Software RAID Support
	10.3.0.1 Enabling Software RAID on Lustre

	Kerberos
	11.1 What is Kerberos?
	11.2 Lustre Setup with Kerberos
	11.2.1 Configuring Kerberos for Lustre
	11.2.1.1 Kerberos Distributions Supported on Lustre
	11.2.1.2 Preparing to Set Up Lustre with Kerberos
	11.2.1.3 Configuring Lustre for Kerberos
	11.2.1.4 Configuring Kerberos
	11.2.1.5 Setting the Environment
	11.2.1.6 Building Lustre
	11.2.1.7 Running GSS Daemons

	11.2.2 Types of Lustre-Kerberos Flavors
	11.2.2.1 Basic Flavors
	11.2.2.2 Security Flavor
	11.2.2.3 Customized Flavor
	11.2.2.4 Specifying Security Flavors
	11.2.2.5 Mounting Clients
	11.2.2.6 Rules, Syntax and Examples
	11.2.2.7 Authenticating Normal Users

	Bonding
	13.1 Network Bonding
	13.2 Requirements
	13.3 Using Lustre with Multiple NICs versus Bonding NICs
	13.4 Bonding Module Parameters
	13.5 Setting Up Bonding
	13.5.1 Examples

	13.6 Configuring Lustre with Bonding
	13.6.1 Bonding References

	Upgrading Lustre
	14.1 Lustre Interoperability
	14.2 Upgrading from Lustre 1.4.12 to Latest 1.6.x Version
	14.2.1 Prerequisites to Upgrading Lustre
	14.2.2 Supported Upgrade Paths
	14.2.3 Starting Clients
	14.2.4 Upgrading a Single File system
	14.2.5 Upgrading Multiple File Systems with a Shared MGS

	14.3 Upgrading Lustre 1.6.x to the Next Minor Version
	14.4 Downgrading from Latest 1.6.x Version to Lustre 1.4.12
	14.4.1 Downgrade Requirements
	14.4.2 Downgrading a File System

	Lustre SNMP Module
	14.1 Installing the Lustre SNMP Module
	14.2 Building the Lustre SNMP Module
	14.3 Using the Lustre SNMP Module

	Backup and Restore
	15.1 Lustre Backups
	15.1.1 File System-level Backups
	15.1.2 Device-level Backups
	15.1.3 Performing File-level Backups
	15.1.3.1 Backing Up an MDS File
	15.1.3.2 Backing Up an OST File

	15.2 Restoring from a File-level Backup
	15.3 LVM Snapshots on Lustre Target Disks
	15.3.1 Creating LVM-based Lustre File System As a Backup
	15.3.2 Backing Up New Files to the Backup File System
	15.3.3 Creating LVM Snapshot Volumes
	15.3.4 Restoring From Old Snapshot
	15.3.5 Delete Old Snapshots

	POSIX
	16.1 Installing POSIX
	16.2 Running POSIX Tests Against Lustre
	16.3 Isolating and Debugging Failures

	Benchmarking
	17.1 Bonnie++ Benchmark
	17.2 IOR Benchmark
	17.3 IOzone Benchmark

	Lustre I/O Kit
	18.1 Lustre I/O Kit Description and Prerequisites
	18.1.1 Downloading an I/O Kit
	18.1.2 Prerequisites to Using an I/O Kit

	18.2 Running I/O Kit Tests
	18.2.1 sgpdd_survey
	18.2.2 obdfilter_survey
	18.2.2.1 Running obdfilter_survey Against a Local Disk
	18.2.2.2 Running obdfilter_survey Against a Network
	18.2.2.3 Running obdfilter_survey Against a Network Disk
	18.2.2.4 Output Files
	18.2.2.5 Script Output
	18.2.2.6 Visualizing Results

	18.2.3 ost_survey

	18.3 PIOS Test Tool
	18.3.1 Synopsis
	18.3.2 PIOS I/O Modes
	18.3.3 PIOS Parameters
	18.3.4 PIOS Examples

	18.4 LNET Self-Test
	18.4.1 Basic Concepts of LNET Self-Test
	18.4.1.1 Modules
	18.4.1.2 Utilities
	18.4.1.3 Session
	18.4.1.4 Console
	18.4.1.5 Group
	18.4.1.6 Test
	18.4.1.7 Batch
	18.4.1.8 Sample Script

	18.4.2 LNET Self-Test Concepts
	18.4.3 LNET Self-Test Commands
	18.4.3.1 Session
	18.4.3.2 Group
	18.4.3.3 Batch and Test
	18.4.3.4 Other Commands

	Lustre Recovery
	19.1 Recovering Lustre
	19.2 Types of Failure
	19.2.1 Client Failure
	19.2.2 MDS Failure (and Failover)
	19.2.3 OST Failure
	19.2.4 Network Partition

	III Lustre Tuning, Monitoring and Troubleshooting
	Lustre Tuning
	20.1 Module Options
	20.1.0.1 OSS Service Thread Count
	20.1.1 MDS Threads
	20.1.1.1 I/O Scheduler

	20.2 LNET Tunables
	20.2.0.1 Transmit and receive buffer size:
	20.2.0.2 enable_irq_affinity

	20.3 Options to Format MDT and OST File Systems
	20.3.1 Planning for Inodes
	20.3.2 Sizing the MDT
	20.3.3 Overriding Default Formatting Options
	20.3.3.1 Number of Inodes for MDT
	20.3.3.2 Inode Size for MDT
	20.3.3.3 Number of Inodes for OST

	20.4 Network Tuning
	20.5 DDN Tuning
	20.5.1 Setting Readahead and MF
	20.5.2 Setting Segment Size
	20.5.3 Setting Write-Back Cache
	20.5.4 Setting maxcmds
	20.5.5 Further Tuning Tips

	20.6 Large-Scale Tuning for Cray XT and Equivalents
	20.6.1 Network Tunables

	20.7 Lockless I/O Tunables
	20.8 Data Checksums

	Lustre Monitoring and Troubleshooting
	21.1 Monitoring Lustre
	21.2 Troubleshooting Lustre
	21.2.1 Error Numbers
	21.2.2 Error Messages
	21.2.3 Lustre Logs

	21.3 Submitting a Lustre Bug
	21.4 Common Lustre Problems and Performance Tips
	21.4.1 Recovering from an Unavailable OST
	21.4.2 Write Performance Better Than Read Performance
	21.4.3 OST Object is Missing or Damaged
	21.4.4 OSTs Become Read-Only
	21.4.5 Identifying a Missing OST
	21.4.6 Changing Parameters
	21.4.7 Viewing Parameters
	21.4.8 Default Striping
	21.4.9 Erasing a File System
	21.4.10 Reclaiming Reserved Disk Space
	21.4.11 Considerations in Connecting a SAN with Lustre
	21.4.12 Handling/Debugging "Bind: Address already in use" Error
	21.4.13 Replacing An Existing OST or MDS
	21.4.14 Handling/Debugging Error "- 28"
	21.4.15 Triggering Watchdog for PID NNN
	21.4.16 Handling Timeouts on Initial Lustre Setup
	21.4.17 Handling/Debugging "LustreError: xxx went back in time"
	21.4.18 Lustre Error: "Slow Start_Page_Write"
	21.4.19 Drawbacks in Doing Multi-client O_APPEND Writes
	21.4.20 Slowdown Occurs During Lustre Startup
	21.4.21 Log Message ‘Out of Memory’ on OST
	21.4.22 Number of OSTs Needed for Sustained Throughput
	21.4.23 Setting SCSI I/O Sizes

	LustreProc
	22.1 /proc Entries for Lustre
	22.1.1 Finding Lustre
	22.1.2 Lustre Timeouts
	22.1.3 Adaptive Timeouts in Lustre
	22.1.3.1 Configuring Adaptive Timeouts
	22.1.3.2 Interpreting Adaptive Timeout Information

	22.1.4 LNET Information
	22.1.5 Free Space Distribution
	22.1.5.1 Managing Stripe Allocation

	22.2 Lustre I/O Tunables
	22.2.1 Client I/O RPC Stream Tunables
	22.2.2 Watching the Client RPC Stream
	22.2.3 Client Read-Write Offset Survey
	22.2.4 Client Read-Write Extents Survey
	22.2.5 Watching the OST Block I/O Stream
	22.2.6 Using File Readahead and Directory Statahead
	22.2.6.1 Tuning File Readahead
	22.2.6.2 Tuning Directory Statahead

	22.2.7 mballoc History
	22.2.8 mballoc3 Tunables
	22.2.9 Locking

	22.3 Debug Support
	22.3.1 RPC Information for Other OBD Devices
	22.3.1.1 llobdstat

	Lustre Debugging
	23.1 Lustre Debug Messages
	23.1.1 Format of Lustre Debug Messages

	23.2 Tools for Lustre Debugging
	23.2.1 Debug Daemon Option to lctl
	23.2.1.1 lctl Debug Daemon Commands

	23.2.2 Controlling the Kernel Debug Log
	23.2.3 The lctl Tool
	23.2.4 Finding Memory Leaks
	23.2.5 Printing to /var/log/messages
	23.2.6 Tracing Lock Traffic
	23.2.7 Sample lctl Run
	23.2.8 Adding Debugging to the Lustre Source Code
	23.2.9 Debugging in UML

	23.3 Troubleshooting with strace
	23.4 Looking at Disk Content
	23.4.1 Determine the Lustre UUID of an OST
	23.4.2 Tcpdump

	23.5 Ptlrpc Request History
	23.6 Using LWT Tracing

	IV Lustre for Users
	Free Space and Quotas
	24.1 Querying File System Space
	24.2 Using Quotas

	Striping and I/O Options
	25.1 File Striping
	25.1.1 Advantages of Striping
	25.1.1.1 Bandwidth
	25.1.1.2 Size

	25.1.2 Disadvantages of Striping
	25.1.2.1 Increased Overhead
	25.1.2.2 Increased Risk

	25.1.3 Stripe Size

	25.2 Displaying Files and Directories with lfs getstripe
	25.3 lfs setstripe - Setting File Layouts
	25.3.1 Changing Striping for a Subdirectory
	25.3.2 Using a Specific Striping Pattern/File Layout for a Single File
	25.3.3 Creating a File on a Specific OST

	25.4 Free Space Management
	25.4.1 Round-Robin Allocator
	25.4.2 Weighted Allocator
	25.4.3 Adjusting the Weighting Between Free Space and Location

	25.5 Performing Direct I/O
	25.5.1 Making File System Objects Immutable

	25.6 Other I/O Options
	25.6.1 End-to-End Client Checksums
	25.6.1.1 Changing Checksum Algorithms

	25.7 Striping Using llapi

	Lustre Security
	26.1 Using ACLs
	26.1.1 How ACLs Work
	26.1.2 Using ACLs with Lustre
	26.1.3 Examples

	26.2 Using Root Squash
	26.2.1 Configuring Root Squash
	26.2.2 Enabling and Tuning Root Squash
	26.2.3 Tips on Using Root Squash

	Lustre Operating Tips
	27.1 Adding an OST to a Lustre File System
	27.2 A Simple Data Migration Script
	27.3 Adding Multiple SCSI LUNs on Single HBA
	27.4 Failures Running a Client and OST on the Same Machine
	27.5 Improving Lustre Metadata Performance While Using Large Directories

	V Reference
	User Utilities (man1)
	28.1 lfs
	28.2 lfsck
	28.3 Filefrag
	28.4 Mount
	28.5 Handling Timeouts

	Lustre Programming Interfaces (man2)
	29.1 User/Group Cache Upcall
	29.1.1 Name
	29.1.2 Description
	29.1.2.1 Primary and Secondary Groups

	29.1.3 Parameters
	29.1.4 Data structures

	Setting Lustre Properties (man3)
	30.1 Using llapi
	30.1.1 llapi_file_create
	30.1.2 llapi_file_get_stripe
	30.1.3 llapi_file_open
	30.1.4 llapi_quotactl
	30.1.5 llapi_path2fid

	Configuration Files and Module Parameters (man5)
	31.1 Introduction
	31.2 Module Options
	31.2.1 LNET Options
	31.2.1.1 Network Topology
	31.2.1.2 networks ("tcp")
	31.2.1.3 routes (“”)
	31.2.1.4 forwarding ("")

	31.2.2 SOCKLND Kernel TCP/IP LND
	31.2.3 QSW LND
	31.2.4 RapidArray LND
	31.2.5 VIB LND
	31.2.6 OpenIB LND
	31.2.7 Portals LND (Linux)
	31.2.8 Portals LND (Catamount)
	31.2.9 MX LND

	System Configuration Utilities (man8)
	32.1 mkfs.lustre
	32.2 tunefs.lustre
	32.3 lctl
	32.4 mount.lustre
	32.5 New Utilities in Lustre 1.6
	32.5.1 lustre_rmmod.sh
	32.5.2 e2scan
	32.5.3 Utilities to Manage Large Clusters
	32.5.4 Application Profiling Utilities
	32.5.5 More /proc Statistics for Application Profiling
	32.5.6 Testing / Debugging Utilities
	32.5.7 Flock Feature
	32.5.7.1 Example

	32.5.8 l_getgroups
	32.5.9 llobdstat
	32.5.10 llstat
	32.5.11 lst
	32.5.12 plot-llstat
	32.5.13 routerstat
	32.5.14 ll_recover_lost_found_objs

	System Limits
	33.1 Maximum Stripe Count
	33.2 Maximum Stripe Size
	33.3 Minimum Stripe Size
	33.4 Maximum Number of OSTs and MDTs
	33.5 Maximum Number of Clients
	33.6 Maximum Size of a File System
	33.7 Maximum File Size
	33.8 Maximum Number of Files or Subdirectories in a Single Directory
	33.9 MDS Space Consumption
	33.10 Maximum Length of a Filename and Pathname
	33.11 Maximum Number of Open Files for Lustre File Systems
	33.12 OSS RAM Size for a Single OST

	Version Log
	Lustre Knowledge Base
	Glossary
	A
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Z

	Index

