

Liebert HPM "Digital"

13-85 kW Indoor Room Cooling Units with Modulating Capacity A/W/F/D/H Versions



# **PRODUCT DOCUMENTATION**





# Introduction

## **Liebert HPM**

**Liebert HPM** is the new serie of air conditioners developed by **Emerson Network Power** to allow maximum flexibility of application in technological environments, from data processing centers to manned control rooms and electronic centers for telecommunication. This series includes units with a rated cooling capacity ranging from 13 to 85 kW.

Complete environmental control and reliability are paramount to ensure faultless operation of computer rooms, telecom installations, data centres and technical applications. **Emerson Network Power** products have traditionally set the industry standards. But today's world requires more than just environmental control and reliability; it requires increasingly higher levels of overall performances. While still offering unmatched environmental control and reliability, the new Liebert HPM range raises the bar of performance in Precision Air Conditioning setting new standards in terms of Energy Efficiency, Compactness and Sound emissions.

The new Liebert HPM range is available in a number of airflow versions: with upflow, downflow and displacement airflow patterns across a full range of cooling modes: direct expansion, chilled water, freecooling, dual fluid and constant (for an ultra high temperature and humidity control and air filtration).





# Contents

The Quality Management System of Emerson Network Power S.r.l. High Performance Air Conditioning has been approved by Lloyd's Register Quality Assurance to the standard ISO 9001:2008



The product conforms to European Union directives 2006/42/EC; 2004/108/EC; 2006/95/EC; 97/23/EC. Units are supplied complete with a Test Certificate Conformity Declaration and Component List.

Liebert HPM units are CE marked as they comply with the European directives concerning mechanical, electrical, electromagnetic and pressure equipment safety.

| 1  | Features and Benefits                 |
|----|---------------------------------------|
| 2  | Model Configuration                   |
| 3  | Operating Range                       |
| 4  | Technical Data                        |
| 5  | Heat Rejection<br>(through condenser) |
| 6  | AirFlow Characteristics               |
| 7  | Sound Pressure Level                  |
| 8  | Technical Specifications              |
| 9  | Filter Section                        |
| 10 | Microprocessor Controls               |
| 11 | Humidair Humidifier                   |
| 12 | Dimensional Data /<br>Connections     |
| 13 | All Options / Accessories             |
| 14 | Refrigerant and<br>Hydraulic Circuits |

## **The new Liebert HPM**

The EC fan technology with generously dimensioned heat exchanger, scroll compressors and optimised cooling circuits, maximise efficiency by operating at low levels of energy consumption. We underline the complete range with all models in Displacement version and in Constant configuration.

The down—flow version achieves the highest levels of efficiency (EER is 20% better than industry average). The fan in this case is positioned upstream of the evaporator optimising airflow over the coil. Also in the Under versions, silencer cartridges can be used to further reduce the sound pressure level by up to a 5 dBA.

The new HPM Digital range equipped with "Digital" Scroll compressor and the electric expansion valve drive through a precise watching between load and cooling capacity.

The new Liebert HPM has been designed to have the smallest possible overall footprint. The compactness of the unit is fully evident for some capacities. For instance:

- in the D2E, where 23 kW in direct expansion mode have been reached with footprint of 750 x 750 mm;
- in the D3A, where 29 kW have been reached with footprint of 1000 x 850 mm
- in the D5D and D7L, where in the 1750 x 850 mm footprint we have upflow and downflow configurations for air and water cooled units.
- in the D8F, where in the 2550 x 890 mm footprint we have downflow configurations for air and water cooled units.

Low sound levels are the result of fan design, optimised airflows and doubled skin insulated panels. Attention to design detail means low operational costs including product maintenance through high levels of reliability and a service friendly design. As an example, all the crucial parts of the refrigeration circuit (i.e.: thermostatic valves, sight glasses and liquid line driers) are grouped together and accessible simply by opening the front door.

## **Energy Efficiency**

## EC Fan (Plug-in Electronically Commutated Fan)

Liebert HPM units are supplied with an exclusive fan type, this enables you to greatly increase the unit's efficiency and therefore significantly reduce operating costs.

EC fans [Electronically Commutated DC motors] have the added advantage of higher fan shaft motor efficiency: from 45% of 1– phase motors, to 65% of 3–phase motors and to 85–90% of EC fans.



Additional benefits are that, on start up, the Liebert HPM peak

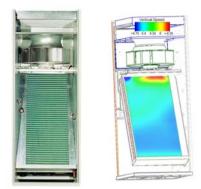
inrush current is lower than the operating current. This means the EC fan option features a true **soft start**. Also compared to AC fan supplied by the frequency converter, the advantages are evident and the input power is clearly inferior: from 13 to 38% as a function of the working point.

The internal electronics of the EC fan are integrated into Emerson Network Power' controls.

The EC fan design allows a new approach in regulating environmental parameters within HPAC applications. To name a few:

- constant air volume
- · constant external static pressure
- sound emission optimisation
- power input optimisation
- cooling capacity regulation (on request)

This enables each system to be optimized for the installation.


These features are available from standard Liebert HPM units supplied with the EC fan option and we can summarized that with two words: versatility and efficiency.

## Heat Exchanger Section: Net Sensible Capacity matters

Efficiency is a fundamental requirement in all applications today. Even more so for technological applications where the operational costs are by far the most significant consideration. Sensible Heat Ratio (SHR) values of greater than 0.90 are required to reduce to a minimum the energy spent controlling humidity during normal operating conditions.

Heat exchanger design and a correct air distribution within the unit are two of the most important factors required to achieve optimum performance.

Liebert HPM units feature a very high coil heat exchanger surface respect the exchanged power. Using the index [frontal Surface x Rows / refrigeration Power] values of over 100 mm2/W are obtained.



Study of the components of the vector velocity through the coil: vertical speed

Sophisticated design and development tools, such as Particle Image Velocimetry and Computational Fluid Dynamics are used by Emerson Network Power to identify the best components layout in order to achieve an even and pressure—equalised airflow distribution within the unit which optimises the entire coil surface area in the heat exchanging process.

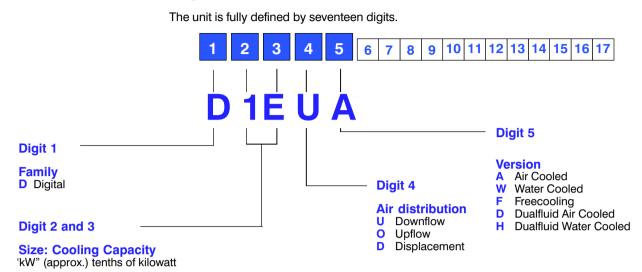
Access valve from liquid receiver

Access valve to air cooled condenser

## **Easy maintenance**

All components are easly accessible from the front of the room unit. The service compartment facilitates checking and setting of refrigeration circuit, without changing aeraulic conditions.

The access to the compressor is possible even when the unit is operating by removing the front panel. The access to the fan is executed with the greatest care for easier interventions (maintenance and/or fan replacement).


One very important feature, for example, is the possibility to check the total pressure drop of the high pressure piping using the schrader connections available in the front part of the machine(see below).

## Liebert HPM front view





## Digit Nomenclature



Digit 6 – Fan 1 EC fan

#### Digit 7 – Main Power Supply 400 V/3 Ph/50 Hz

#### Digit 8 – Electric heating

#### 0 None Electric heating 1

## Digit 9 - Humidification

- 0 None
- v Electrode humidifier

# Digit 10 – Microprocessor Control 2 ICOM & Inner Display with Temperature Control

- 3 ICOM & Inner Display with Temperature and Humidity Control
- Α ICOM & Coldfire Display Small with Temperature Control
- в ICOM & Coldfire Display Small with Temperature and Humidity Control
- ICOM & Coldfire Display Large with Temperature Control С ICOM & Coldfire Display Large with Temperature and D **Humidity Control**

## Digit 11 – Reheating System

- None 0
- Hot gas coil G
- w Hot water coil

## Digit 12 – Air Filter Efficiency

- 0 G4 1 F5
- G4; with Clogged Filter Pressure Switch 2
- 3 F5; with Clogged Filter Pressure Switch

# Digit 13 – Expansion valve 1 R410A (TXV)

- 3 R410A (EEV)

# Digit 14 – Paint 0 RAL 7035 Colour

- CHARCOAL GREY Colour 1
- 2 BLACK Emerson 7021 Colour

#### Digit 15 – On board MCB, for Remote Air Condenser

- No MCB 0
- 1 MCB 6 A single circuit condenser
- 2 MCB 10 A single circuit condenser

#### Digit 16 – Packing

- Ρ PLP and Pallet
- С Cardboard and Wooden Crate Š
- Seaworthy

## Digit 17 – Special Requirements

- Standard Emerson Network Power 0
- Special Emerson Network Power х

## Digital range (D as first digit)

Liebert HPM Dxxxx "Digital" is the new series of air conditioners developed by Emerson Network Power which are powered by the innovative Copeland's Digital Scroll.

This series includes units with a rated cooling capacity ranging from 13 to 85 kW.

Thanks to Digital scroll and electronic expansion valve, Liebert HPM Digital can achieve a continuous spectrum of capacity output, ensuring a very tight and precise control on room temperature.

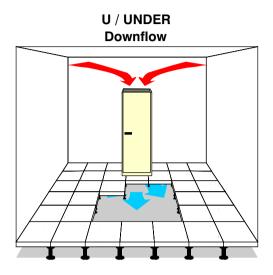
Liebert HPM Digital can rapidly change from one capacity duty to another. Therefore it controls environmental parameters even working with swiftly changing heat loads. The modulating capacity range is between 30 and 100% of the nominal capacity: even if the compressor could go down to 10%, the system control limits the capacity at the 30% to avoid decrease in efficiency.

Thanks to the capacity modulation we can reduce the starting and stopping the compressor which uses a lot of power and puts a great amount of stress on the components; therefore we can enhance efficiency and life of the system.

With the HPM Digital range we are able to manage unexpected very high ambient temperatures, maintaining the system active, reducing HP alarm and troublesome stops of the unit. Infact, when the discharge pressure reaches the limit value, the compressor capacity is limited to a fraction of the actual request, in this way restricting the heat rejection and allowing the system running without interruptions. If, after a defined time, the condensing pressure comes back within the limit, the capacity will be modulated in the usual way.

Reliability of the Liebert HPM D is also maximized, thanks to the fewer system parts and simple electronic controls which reduces as well unit maintenance.

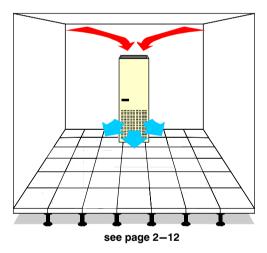
Digital Scroll motor runs at a constant speed throughout the operating range.


This unique feature increases the applicability of the Liebert HPM units into technological rooms, as it eliminates the need for expensive electromagnetic suppression electronics required to ensure electromagnetic compatibility.

The Digital function maintains the maximum refrigerant velocity through the pipes. As a result of these reasons, Liebert HPM units do not need oil return components.

# **Model Configuration**

## Air Distribution (4° Digit)


All units are available in the four configurations shown below.



Upflow with front air return

O / OVER

D / DISPLACEMENT Frontal air discharge at floor level



# Versions (5° Digit)

## **Version A**

#### Direct expansion units with air-cooled condenser

#### **Refrigeration circuit**

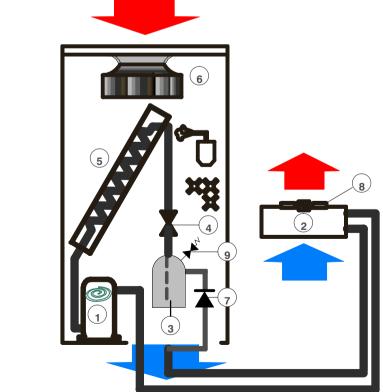
The compressor (1) pumps the hot gaseous refrigerant into an outdoor air—cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the thermostatic expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat — exchanged with the room air moved by the fan (6) — evaporates and returns to the compressor (1); from this, the refrigerant begins a new refrigeration cycle. To maintain the correct refrigerant discharge pressure, the speed of the motor fan (8) is controlled (on—off or proportional mode).

Shut-off valves are provided as standard to assist with routine maintenance.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser in summertime, thus protecting the compressor from undesired refrigerant slugging during the start up. A second non—return valve (7) is recommended to avoid — in wintertime — refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of low pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

#### External air-cooled condenser (2)


The units may be connected with a wide range of our condensers in standard or low noise version. For technical data and performance, refer to the relevant technical documentation. Chap. 5 gives the recommended matching condenser for Liebert HPM units as a function of outdoor air temperature.

Note 1. Units and external condensers are supplied separately.

**Note 2.** The room unit refrigeration circuit is pressurised with helium at 3 bar and the condenser refrigeration circuit at 2 bar with dry air.

**Note 3.** The customer is responsible for making connections between the Unit and the external condenser and for charging with refrigerant (standard R410A) and oil, when request.

Full instructions for these operations are given in the Service Manual.



DxxUA Units

## **Version W**

## Direct expansion units with water-cooled condenser

## **Refrigeration circuit**

The compressor (1) pumps the hot gaseous refrigerant into a water—cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the thermostatic expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat — exchanged with the room air moved by the fan (6) — evaporates and returns to the compressor (1); from this, the refrigerant begins a new refrigeration cycle. Shut—off valves are provided as standard to assist with routine maintenance.

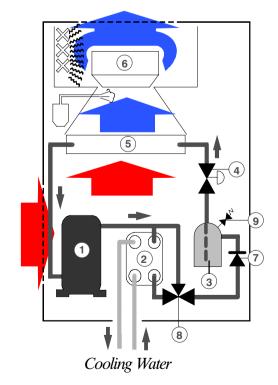
The compressor (1) has a built-in non-return valve to avoid return of liquid refrigerant from the

condenser, thus protecting the compressor from undesirable refrigerant slugging during the start up. A second non-return valve (7) is recommended to avoid refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of high pressure intervention at the start-up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

## Water-cooled condenser

These units are provided with one very efficient stainless steel brazed—plate water—cooled condenser (2). The condenser is fitted with an head—pressure regulating valve (8) for the automatic control of condensing pressure.


The units operate with **mains water** or **closed circuit with an external Dry Cooler**. When operating in a closed circuit, to avoid undesired ice formation in wintertime, it is advisable to use water/glycol mixture: refer to Chap. 5 for the percentages to be used at minimum ambient temperatures. Dry Coolers are available as an option; water-glycol mixture and circulation pump(s) are normally supplied by others.

If mains water is used, a mechanical filter must be fitted in the water circuit to protect the plate condenser (2) (for other information see the Service Manual).

To reduce water and energy consumption (pump), it's advisable to adopt a cooling water control valve (by the user), able to stop water feeding when unit is off.

Unit microprocessor control gives a 24V contact (10VA max, please refer to the relevant Wiring Diagram, 58 and G terminals) to drive that valve.

**Note.** The water—cooled Liebert HPM versions are filled with the complete charge of the requested refrigerant (standard R410A).



DxxOW Units

## **Version F**

## Freecooler units

#### **Freecooling mode**

The Freecooler unit cools the air flow by means of the air refrigerant coil (5) in direct expansion rows [direct expansion mode] or, as an alternative, the air/water coil (5) in freecooling rows [freecooling mode]. Whenever the outdoor temperature is at least 5 degrees below the indoor return temperature, the water flow is cooled by an external Dry Cooler (10) and passes through the coil (5). When the external temperature is higher than ZET (Zero Energy Temperature), the water exchanges heat with the refrigerant in the water–cooled plate condenser (2). When the external temperature is below ZET, the water is cooled as much as to cool the room air directly in the air/water coil (5, freecooling rows).

## **Refrigeration circuit**

The compressor pumps the hot gaseous refrigerant into a water-cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the thermostatic expansion valve (4) and then arrives to the direct expansion rows of the evaporator (5). Here the refrigerant, thanks to the heat – exchanged with the room air moved by the fan (6) – evaporates and returns to the compressor (1); from this, the refrigerant begins a new refrigeration cycle.

Shut-off valves are provided as standard to assist with routine maintenance.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser, thus protecting the compressor from undesired refrigerant slugging during the start up. A second non—return valve (7) is recommended to avoid refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of high pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

**Note.** The Liebert HPM Freecoolers are filled with the complete charge of the requested refrigerant (standard R410A).

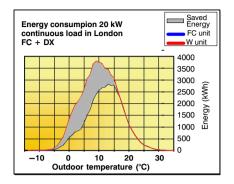
#### Water-cooled condenser

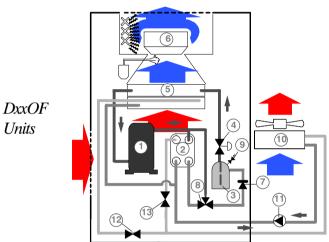
These units are provided with one very efficient stainless steel brazed-plate water-cooled condenser (2). The condenser is fitted with an head-pressure regulating valve (8) for the automatic control of condensing pressure.

To reduce water and energy consumption (pump), it's advisable to adopt a cooling water control valve (by the user), able to stop water feeding when unit is off.

Unit microprocessor control gives a 24V contact (10VA max, please refer to the relevant Wiring Diagram, 58 and G terminals) to drive that valve.

#### Water/glycol circuit


The units operate with **water in closed circuit with an external Dry Cooler** (10), cooled by the outside ambient air. To avoid undesired ice formation in wintertime, it is advisable to use water/glycol mixture: refer to the Service Manual for the percentages to be used at minimum ambient temperatures. The circulation of the water–glycol mixture is forced (the pump (11) and the water–glycol mixture are not supplied).


The unit is provided with 2—way modulating valve (12) to control the glycoled—water flow passing through the water/glycol coil. A solenoid valve (13) allows the water flow to the condenser.

The opening or closing signals, generated by the electronic controller, manage the valve actuator movement in order to maintain the desiderd conditions in the conditioned room.

## **Contemporary DX and FC operation**

In this way the air, before passing through the evaporating coil, is precooled in the the freecooling coil. Thanks to this feature the energy saving is considerably increased, during temperate seasons, exploiting the outdoor temperature that is a little bit inferior to indoor one. Furthermore the total cooling capacity is increased and can satisfy peak cooling requests. This function is not available in D8FU unit. Liebert HPM: Annual Energy Consumption F unit vs W unit. This diagram is referred to 365 days and 24 hours running time. The saved Energy in one year is equivalent to [61323 – 42328] = 18995 kWh





Units

## Version D

## Air—cooled condenser dualfluid units

#### **Dualfluid modes**

The Dualfluid unit cools the air flow by means of the air refrigerant coil (5) in direct expansion rows [direct expansion mode: see refrigeration circuit] or, as an alternative, the air/water coil (5) in the chilled water rows [chilled water mode].

## **Refrigeration circuit**

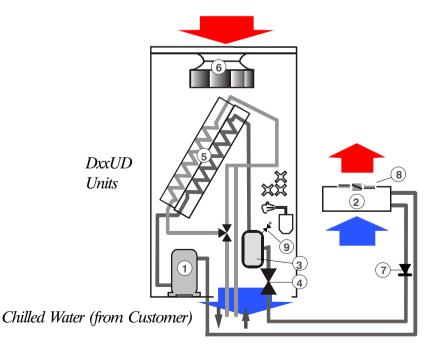
The compressor (1) pumps the hot gaseous refrigerant into an outdoor air—cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the thermostatic expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat — exchanged with the room air moved by the fan (6) — evaporates and returns to the compressor (1); from this, the refrigerant begins a new refrigeration cycle. To maintain the correct refrigerant discharge pressure, the speed of the motor fan (8) is controlled (on—off or proportional mode).

Shut-off valves are provided as standard to assist with routine maintenance.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser in summertime, thus protecting the compressor from undesired refrigerant slugging during the start up. A second non—return valve (7) is recommended to avoid — in wintertime — refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of low pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

## External air-cooled condenser (2)


The units may be connected with a wide range of our condensers in standard or low noise version. For technical data and performance, refer to the relevant technical documentation. Chap. 5 gives the recommended matching condenser for Liebert HPM units as a function of outdoor air temperature.

Note 1. Units and external condensers are supplied separately.

**Note 2.** The room unit refrigeration circuit is pressurised with helium at 3 bar and the condenser refrigeration circuit at 2 bar with dry air.

**Note 3.** The customer is responsible for making connections between the Unit and the external condenser and for charging with refrigerant (standard R410A).

Full instructions for these operations are given in the Service Manual.



## Version H

## Water-cooled condenser dualfluid units

#### **Dualfluid mode**

The Dualfluid unit cools the air flow by means of the air-refrigerant coil (5) in direct expansion rows [direct expansion mode: see refrigeration circuit] or, as an alternative, the air/water coil (5) in the chilled water rows [chilled water mode].

## **Refrigeration circuit**

The compressor (1) pumps the hot gaseous refrigerant into a water-cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the thermostatic expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat – exchanged with the room air moved by the fan (6) – evaporates and returns to the compressor (1); from this, the refrigerant begins a new refrigeration cycle.

Shut-off valves are provided as standard to assist with routine maintenance.

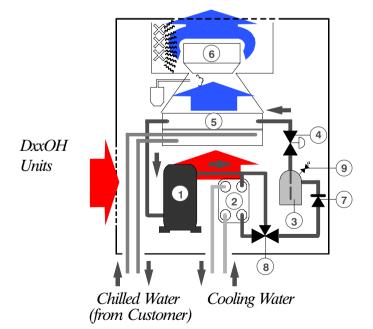
The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser, thus protecting the compressor from undesirable refrigerant slugging during the start up. The second non—return valve (7) avoids refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of high pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

#### Water-cooled condenser

These units are provided with one very efficient stainless steel brazed-plate water-cooled condenser (2). The condenser is fitted with an head-pressure regulating valve (8) for the automatic control of condensing pressure.

The units operate with mains water or open cooling tower water.


If mains water or open tower water are used, a mechanical filter must be fitted in the water circuit to protect the condenser (for other information see the Service Manual).

To reduce water and energy consumption (pump), it's advisable to adopt a cooling water control valve (by the user), able to stop water feeding when unit is off.

Unit microprocessor control gives a 24V contact (10VA max, please refer to the relevant Wiring Diagram, 58 and G terminals) to drive that valve.

**Note 1**. The water—cooled Dualfluid versions are filled with the complete charge of the requested refrigerant (standard R410A).

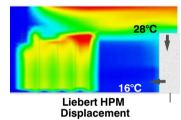
**Note 2.** To complete the Dualfluid system it is necessary to connect the chilled water coming from the external source to the air/water coil connections (5).



## **Displacement D**

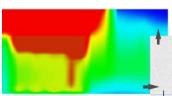
## Top air inlet, Front air discharge

The Packaged Indoor Liebert HPM Displacement units, inject air next to the floor at low speed and take it in again from above, in the room upper part. The injected air generates a fresh air front hitting and moving the existing room air. The heat sources, on their turn, originate hot air ascensional currents to the room upper part due to natural convection. The hot air, limited and stratified above, is then taken in again by the conditioner.

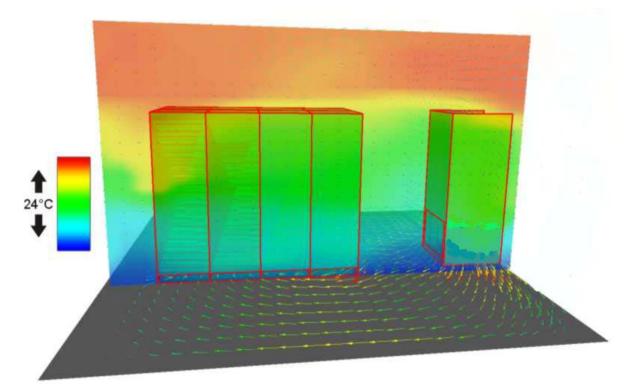

The air diffusion limits the mixing between injected air mass and existing air, causing a useful temperature stratification in the room.

The Displacement system is suitable for industrial rooms and for telecom unmanned sites with very high specific load  $[kW/m^2]$ .

The main advantages are:


- a better efficiency (more than 10%) of the cooling process 1, acting on air with temperature higher than the room average value;
- better efficiency of the ventilation process, needing lower exit speeds;
- lower installation costs: the false floor is not request as per Under units.
- lower operating costs: due to better efficiencies.

**Note.** Emerson Network Power has a Flovent simulation program (arrangeable on Customer request)




# Test simulation at Emerson Network Power facilities with CFD calculation code "Flovent" FLOMERICS<sup>tm</sup>

Room with 16 kW heat load. Air temperature distribution of Displacemetn configuration (top) versus Upflow configuration.



Liebert HPM Over



Liebert HPM units are provided for operating within the following working ranges (the limits concern new units on which correct installation have already been made):

#### **All versions**

| Room air conditions      | from:                   | 18°C, 45% R.H.<br>for D8FUx<br>21°C, 40% R.H. |
|--------------------------|-------------------------|-----------------------------------------------|
|                          | to:                     | 27°C, 55% R.H                                 |
| List water should        | inlet water temperature | max. 85°C                                     |
| Hot water circuit        | water pressure          | max. 8.5 bar                                  |
| Otana and a statistica a | from:                   | – 20°C                                        |
| Storage conditions       | to:                     | 50°C                                          |
| Power supply tolerances  |                         | V ± 10%, Hz ± 2                               |

## For A and D units

| Outdoor temperature: lower limit                                                                                                                                                                                            |                 |                                         |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|--|--|--|--|--|--|--|
| Exceeding of winter lower limits will temporarily cause a compressor stop.                                                                                                                                                  |                 |                                         |  |  |  |  |  |  |  |
| down to +10°C from +9°C to -20°C below -21°C                                                                                                                                                                                |                 |                                         |  |  |  |  |  |  |  |
| standard unit                                                                                                                                                                                                               | VARIEX required | Consult HPAC Technical Sales<br>Support |  |  |  |  |  |  |  |
| Outdoor temperature: higher limit                                                                                                                                                                                           |                 |                                         |  |  |  |  |  |  |  |
| This limit is determined by coupled condenser model. Exceeding of this limit (or a lack of maintenance), will caused a compressor stop by HP safety thermostat. Reset to normal operation can only be carried out manually. |                 |                                         |  |  |  |  |  |  |  |

| Relative position room unit vs. remote condenser                     |                              |                                      |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| From unit to condenser max distance                                  | up to 30 m equivalent length | from 30 to 50 m equivalent<br>length |  |  |  |  |  |  |  |
| From unit to condenser max geodetic height (1) (2)                   | from 20 m to -3 m            | from 30 m to -8 m                    |  |  |  |  |  |  |  |
| Requirements                                                         |                              |                                      |  |  |  |  |  |  |  |
| Pipe diameter                                                        | see Tab 12c                  | see Tab 12c                          |  |  |  |  |  |  |  |
| Oil traps on vertical line of gas refrigerant                        | every 6 m, max               | every 6 m, max                       |  |  |  |  |  |  |  |
| Extra oil charge                                                     | see Service Manual           | see Service Manual                   |  |  |  |  |  |  |  |
| Variex installation                                                  | as standard                  | as standard                          |  |  |  |  |  |  |  |
| Condenser                                                            | design                       | oversized +15%                       |  |  |  |  |  |  |  |
| Hot gas reheat                                                       | allowed                      | NOT allowed                          |  |  |  |  |  |  |  |
| Additional non return valve on delivery line, at 2 m from compressor | not<br>necessary             | mandatory                            |  |  |  |  |  |  |  |

# **Operating Range**

## For W, F and H units

| Water or mixture temperature to condenser, lower limit (other information Service Manual) | min. 5°C |
|-------------------------------------------------------------------------------------------|----------|
|-------------------------------------------------------------------------------------------|----------|

## For F, D and H units

| Chilled water circuit                                                                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| inlet water temperature min. 5°C                                                         |  |  |  |  |  |  |  |
| water pressure max. 16 bar                                                               |  |  |  |  |  |  |  |
| Max. differential pressures on the modulating valve (2 or 3 ways)                        |  |  |  |  |  |  |  |
| <ul> <li>Max. differential pressure through the closed valve: Ap<sub>a</sub>.</li> </ul> |  |  |  |  |  |  |  |

Max. differential pressure through the closed value:  $\Delta p_{cv}$ 

Max. differential pressure across the valve for modulating service:  $\Delta p_{\text{ms}}$ \_

| D models  | Δp <sub>cv</sub> (kPa) | Δp <sub>ms</sub> (kPa) |
|-----------|------------------------|------------------------|
| D1GxF/D/H | 300                    | 300                    |
| D2ExF/D/H | 300                    | 300                    |
| D3A×F/D/H | 300                    | 300                    |
| D3FxF/D/H | 175                    | 175                    |
| D3G×F/D/H | 175                    | 175                    |
| D4ExF/D/H | 175                    | 175                    |
| D4H×F/D/H | 175                    | 175                    |
| D5DxF/D/H | 175                    | 175                    |
| D8FUF/D/H | 175                    | 175                    |

(1) Positive difference in height: condenser above conditioner

(2) Negative difference in height: condenser below conditioner Other information in Service Manual.

## Tab. 4a - Digital direct expansion unit @ 100% cooling capacity

DxxU/O A/W series

| MODEL                                                |                   | D1E       | D1G        | D2E        | D3A    | D3G         | D4E       | D3F        | D4H      | D5D     | D7L     | D8F    |
|------------------------------------------------------|-------------------|-----------|------------|------------|--------|-------------|-----------|------------|----------|---------|---------|--------|
| Power supply voltage (V $\pm$ 10%)                   | V/Ph/Hz           |           |            |            |        |             | 400/3/50  |            |          |         |         |        |
| Refrigerant circuit                                  |                   | single    | single     | single     | single | single      | single    | double     | double   | double  | double  | double |
| PERFORMANCES <sup>(1)</sup>                          |                   |           |            |            |        |             |           |            |          |         |         | -      |
| air flow                                             | m <sup>3</sup> /h | 4200      | 4930       | 5750       | 7080   | 9540        | 11230     | 9490       | 11370    | 12910   | 13470   | 20020  |
| ESP (Under)                                          | Pa                | 20        | 20         | 20         | 20     | 20          | 20        | 20         | 20       | 20      | 20      | 20     |
| ESP max (Under) <sup>(2)</sup>                       | Pa                | 400       | 410        | 200        | 206    | 440         | 326       | 440        | 330      | 249     | 129     | 110    |
| ESP (Over)                                           | Pa                | 50        | 50         | 50         | 50     | 50          | 50        | 50         | 50       | 50      | 50      | -      |
| ESP max. (Over) <sup>(2)</sup>                       | Pa                | 420       | 430        | 220        | 245    | 450         | 277       | 476        | 330      | 204     | 137     | -      |
| SPL (Sound Pressure Level) <sup>(3)</sup><br>(Under) | dB(A)             | 46.4      | 49.2       | 50.0       | 55.4   | 55.8        | 57.4      | 56.0       | 58.3     | 58.7    | 60.0    | 67.4   |
| SPL (Sound Pressure Level) <sup>(3)</sup><br>(Over)  | dB(A)             | 51.2      | 50.2       | 52.9       | 57.1   | 55.2        | 58.7      | 55.3       | 61.2     | 59.9    | 59.8    | _      |
| Refrigerant                                          |                   |           |            |            |        |             |           |            |          |         |         |        |
| total cooling capacity                               | kW                | 16.1      | 18.1       | 24.0       | 29.7   | 36.8        | 46.1      | 37.1       | 46.5     | 60.1    | 70.0    | 85.5   |
| sensible cooling capacity                            | kW                | 14.7      | 16.8       | 21.8       | 26.9   | 35.1        | 43.2      | 34.9       | 43.8     | 52.3    | 58.4    | 77.7   |
| SHR (Sensible Heat Ratio)                            | -                 | 0.91      | 0.93       | 0.91       | 0.91   | 0.95        | 0.94      | 0.94       | 0.94     | 0.84    | 0.83    | 0.91   |
| compressor power input                               | kW                | 3.43      | 4.07       | 5.50       | 6.43   | 7.56        | 9.61      | 7.86       | 10.06    | 12.76   | 14.82   | 18.84  |
| fan power input                                      | kW                | 0.68      | 0.72       | 1.38       | 1.44   | 2x0.65      | 2x0.98    | 2x0.65     | 2x0.99   | 2x 1.52 | 2x1.94  | 2x2.70 |
| full power input (compressor + fan)                  | kW                | 4.11      | 4.79       | 6.88       | 7.87   | 8.86        | 11.57     | 9.16       | 12.04    | 15.80   | 18.70   | 24.24  |
| EER (Energy Efficiency Ratio-com-<br>pr. and fan)    |                   | 3.92      | 3.78       | 3.44       | 3.77   | 4.15        | 3.98      | 4.05       | 3.86     | 3.80    | 3.74    | 3.53   |
| Condensing section (W models only                    | /)                |           |            |            |        |             |           |            |          |         |         |        |
| water inlet temperature: 30°C – con                  | densatior         | n tempera | ture: 45°C | c (mid poi | nt)    |             |           |            |          |         |         |        |
| condenser type                                       |                   |           |            |            | p      | late type e | exchanger | in AISI 31 | 6        |         |         |        |
| water flow                                           | l/s               | 0.348     | 0.44       | 0.73       | 0.85   | 0.83        | 1.05      | 2x 0.45    | 2x 0.55  | 2x 0.83 | 2x 0.80 | 2x0.94 |
| water side pressure drop                             | kPa               | 16        | 24         | 52         | 43     | 22          | 26        | 22         | 31       | 42      | 20      | 20     |
| water connections                                    | inch              | 3⁄4 F     | 3⁄4 F      | 3⁄4 F      | 1F     | 1.¼ F       | 1.¼ F     | 2x ¾ F     | 2x 3/4 F | 2x1.¼ F | 2x1.¼ F | 1.¼ F  |

| water now                                | 1/3             | 0.040 | 0.44  | 0.75  | 0.00 | 0.00  | 1.05  | 27 0.40 | 2× 0.55 | 27 0.00 | 27 0.00 | 270.34 |
|------------------------------------------|-----------------|-------|-------|-------|------|-------|-------|---------|---------|---------|---------|--------|
| water side pressure drop                 | kPa             | 16    | 24    | 52    | 43   | 22    | 26    | 22      | 31      | 42      | 20      | 20     |
| water connections                        | inch            | 3⁄4 F | 3∕4 F | 3⁄4 F | 1F   | 1.¼ F | 1.¼ F | 2x ¾ F  | 2x ¾ F  | 2x1.¼ F | 2x1.¼ F | 1.¼ F  |
| CHILLED WATER CONTENT                    |                 |       |       |       |      |       |       |         |         |         |         |        |
| Total chilled water internal volume      | dm <sup>3</sup> | 1.52  | 1.52  | 1.52  | 1.73 | 2.89  | 3.76  | 2.89    | 2.58    | 3.46    | 5.79    | 7.9    |
| DIMENSIONS                               |                 |       |       |       |      |       |       |         |         |         |         |        |
| length                                   | mm              | 750   | 750   | 750   | 1000 | 1750  | 1750  | 1750    | 1750    | 1750    | 1750    | 2550   |
| depth                                    | mm              | 750   | 750   | 750   | 850  | 850   | 850   | 850     | 850     | 850     | 850     | 890    |
| height                                   | mm              | 1950  | 1950  | 1950  | 1950 | 1950  | 1950  | 1950    | 1950    | 1950    | 1950    | 1950   |
| footprint                                | m <sup>2</sup>  | 0.56  | 0.56  | 0.56  | 0.85 | 1.49  |       | 1.49    | 1.49    | 1.49    | 1.49    | 2.27   |
| WEIGHTS                                  |                 |       |       |       |      |       |       |         |         |         |         |        |
| net                                      | kg              | 240   | 260   | 270   | 425  | 580   | 600   | 590     | 600     | 635     | 670     | 950    |
| gross (standard packing see Fig.<br>12j) | kg              | 250   | 270   | 280   | 435  | 590   | 610   | 600     | 610     | 645     | 680     | 965    |

(1) ON THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C (mid point) – EER refers to the indoor unit only – Air flow of the units refers to the standard configuration with G4 class filter. Note: Cooling capacities are gross. To obtain the net cooling capacities the fan power input must be substracted.

(2) Max. external static pressure for the indicated air flow

(3) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with fan and compressor in operation. Ducted Over unit. (\*) To be defined

Follows Tab. 4a.

| MODEL                                    |                   | D1E  | D1G  | D2E     | D3A         | D3G        | D4E         | D3F        | D4H       | D5D         | D7L         | D8F    |
|------------------------------------------|-------------------|------|------|---------|-------------|------------|-------------|------------|-----------|-------------|-------------|--------|
| Power supply voltage (V ± 10%)           | V/Ph/Hz           |      |      |         |             |            | 400/3/50    |            |           |             |             |        |
| FAN <sup>(4)</sup>                       |                   |      |      |         |             |            |             |            |           |             |             |        |
| type                                     |                   |      |      |         |             | centrifuga | I with back | ward blade | es        |             |             |        |
| quantity                                 | no.               | 1    | 1    | 1       | 1           | 2          | 2           | 2          | 2         | 2           | 2           | 2      |
| poles                                    | no.               | 4    | 4    | 4       | 4           | 4          | 4           | 4          | 4         | 4           | 4           | 4      |
| fan FLA – EC fan                         | Α                 | 4.0  | 4.0  | 4.0     | 4.0         | 2x 4.0     | 2x 4.0      | 2x 4.0     | 2x 4.0    | 2x 4.0      | 2x 4.0      | 2x5.0  |
| fan LRA – EC fan                         | Α                 | 0.1  | 0.1  | 0.1     | 0.1         | 2x 0.1     | 2x 0.1      | 2x 0.1     | 2x 0.1    | 2x 0.1      | 2x 0.1      | 2x 0.1 |
| COMPRESSOR (5)                           |                   |      |      |         |             |            |             |            |           |             |             |        |
| quantity / type                          | no.               |      |      | 1 / Dig | ital Scroll |            |             |            | 1 / Scrol | l + 1 / Dig | ital Scroll |        |
| compressor OA                            | Α                 | 6.34 | 7.37 | 10.51   | 12.64       | 14.16      | 18.24       | 14.24      | 18.66     | 24.81       | 28.14       | 35.55  |
| compressor FLA                           | Α                 | 10.0 | 11.8 | 16.5    | 21          | 22         | 27          | 2x 11.8    | 2x 16.5   | 2x 21       | 2x 22       | 2x 31  |
| compressor LRA                           | Α                 | 62.0 | 64.0 | 101     | 111         | 118        | 140         | 2x 64      | 2x 101    | 2x 111      | 2x 118      | 2x 140 |
| EVAPORATING COIL                         |                   |      |      |         |             |            |             |            |           |             |             |        |
| quantity / configuration                 | no.               |      |      |         |             |            | 1 / incline | d          |           |             |             |        |
| pipes/fins                               |                   |      |      |         |             | Coppe      | r/treated a | lluminium  |           |             |             |        |
| pitch fins                               | mm                | 1.8  | 1.8  | 1.8     | 2.1         | 1.8        | 1.5         | 1.8        | 1.8       | 1.8         | 1.8         | 1.6    |
| rows                                     | no.               | 4    | 4    | 5       | 5           | 4          | 5           | 4          | 4         | 5           | 6           | 5      |
| front surface                            | m <sup>2</sup>    | 0.65 | 0.65 | 0.65    | 0.85        | 1.71       | 1.71        | 1.71       | 1.71      | 1.71        | 1.71        | 2.2    |
| REFRIGERANT CONNECTIO                    | NS <sup>(6)</sup> |      |      | Refrige | rant con    | necting p  | ipe diam    | eter: see  | Tab. 12c, | Chap. 12    | 2           |        |
| gas connect. (pipe to be welded, o.d.)   | mm                | 18   | 18   | 18      | 18          | 18         | 18          | 18         | 18        | 18          | 18          | 18     |
| liquid connec. (pipe to be welded, o.d.) | mm                | 16   | 16   | 16      | 16          | 16         | 16          | 16         | 16        | 16          | 16          | 16     |

(4) Fan OA is for standard unit operating at the standard pressure drop (Under 20 Pa, Over 50 Pa).
(5) Condensing temperature: 45°C (mid point).
(6) The refrigerant connections on the unit are closed with blind welded flanges.
(\*) To be defined

## Options (further information: Chap. 8)

| MODEL                                                        |         | D1E      | D1G      | D2E      | D3A      | D3G      | D4E      | D3F      | D4H      | D5D      | D7L      | D8F      |
|--------------------------------------------------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Power supply voltage (V ± 10%)                               | V/Ph/Hz | 230/1/50 | 230/1/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 |
| Electrical heating                                           |         |          |          |          |          |          |          |          |          |          |          |          |
| FLA                                                          | А       | 8.6      | 8.6      | 8.6      | 11.0     | 22.0     | 22.0     | 22.0     | 22.0     | 22.0     | 22.0     | 26.0     |
| total power / steps                                          | kW/no.  | 5.85/3   | 5.85/3   | 5.85/3   | 7.5/1    | 15.0/2   | 15.0/2   | 15.0/2   | 15.0/2   | 15.0/2   | 15.0/2   | 18.0/3   |
| Humidifier                                                   |         |          |          |          |          |          |          |          |          |          |          |          |
| FLA                                                          | А       | 9.0      | 9.0      | 9.0      | 9.0      | 13.0     | 13.0     | 13.0     | 13.0     | 13.0     | 13.0     | 13.0     |
| nominal power                                                | kW      | 5.8      | 5.8      | 5.8      | 5.8      | 9.0      | 9.0      | 9.0      | 9.0      | 9.0      | 9.0      | 9.0      |
| Re-heating mode                                              |         |          |          |          |          |          |          |          |          |          |          |          |
| Hot gas coil                                                 |         |          |          |          |          |          |          |          |          |          |          |          |
| heating capacity<br>(at 24°C, 50%, condensing<br>temp. 45°C) | kW      | 10.5     | 10.6     | 14.2     | 17.3     | 21.3     | 26.7     | 10.8     | 13.6     | 17.5     | 20.4     | 28.2.    |
| Hot water coil                                               |         |          |          |          |          |          |          |          |          |          |          |          |
| heating capacity<br>(at 24°C, 50%, water in/out<br>80/65°C)  | kW      | 10.3     | 11.4     | 12.1     | 16.3     | 34.5     | 38.4     | 34.2     | 38.3     | 40.8     | 43.9     | 32.2     |
| Heating mode                                                 |         |          |          |          |          |          |          |          |          |          |          |          |
| Hot water coil                                               |         |          |          |          |          |          |          |          |          |          |          |          |
| heating capacity<br>(at 24°C, 50%, water in/out<br>80/65°C)  | kW      | 7.7      | 8.6      | 8.9      | 12.4     | 27.4     | 30.2     | 27.3     | 30.5     | 31.8     | 33.7     | 25.6     |

| Tab. 4b - | Displacement, | digital direct | expansion unit, | DxxD A/W series |
|-----------|---------------|----------------|-----------------|-----------------|
|-----------|---------------|----------------|-----------------|-----------------|

| MODEL                                                                            |                      | D1ED               | D1GD               | D2ED               | D3AD                |
|----------------------------------------------------------------------------------|----------------------|--------------------|--------------------|--------------------|---------------------|
| power supply voltage (V ±10%)                                                    | V/Ph/Hz              |                    | 400/               | 3/50               |                     |
| PERFORMANCE (1)                                                                  |                      |                    |                    |                    |                     |
| airflow                                                                          | m <sup>3</sup> /h    | 3790               | 4430               | 5330               | 5780                |
| external static pressure ESP                                                     | Pa                   | 0                  | 0                  | 0                  | 0                   |
| sound pressure level (3)                                                         | dB(A)                | 73.7               | 73.6               | 77.3               | 7.5                 |
| Refrigerant                                                                      |                      |                    | R41                | 10A                |                     |
| total cooling capacity                                                           | kW                   | 15.9               | 17.7               | 23.6               | 28.8                |
| sensible cooling capacity                                                        | kW                   | 13.9               | 15.8               | 21.4               | 24.1                |
| SHR (sensible/total ratio)                                                       |                      | 0.87               | 0.89               | 0.91               | 0.84                |
| compressor absorbed power                                                        | kW                   | 3.43               | 4.07               | 5.49               | 6.42                |
| fan absorbed power                                                               | kW                   | 0.60               | 0.64               | 1.34               | 0.73                |
| unit absorbed power (compr. & fan)                                               | kW                   | 4.03               | 4.71               | 6.83               | 7.15                |
| EER (in/output energy) - (compr. and fan)                                        |                      | 3.96               | 3.76               | 3.46               | 4.63                |
| Condensing section (W model only)<br>water inlet temperature: 30°C – condensatio | n tomporoturo: 45°C  | (mid naint)        |                    |                    |                     |
| condenser type                                                                   | in temperature. 45 C |                    | plate type excha   | nger in AISI 316   |                     |
| water flow                                                                       | l/s                  | 0.345              | 0.43               | 0.72               | 0.83                |
| water now<br>water side pressure drop                                            | kPa                  | 15                 | 23                 | 51                 | 0.83<br>42          |
| water connections                                                                | inch                 | 15<br>¾ F          | 23<br>¾ F          | 34 F               | 42<br>1 F           |
| CHILLED WATER CONTENT                                                            | inch                 | ۳4 <b>Г</b>        | 74 F               | 74 <b>F</b>        | IF                  |
| Total chilled water internal volume                                              | dm <sup>3</sup>      | 1.52               | 1.52               | 1.52               | 1.73.               |
|                                                                                  | -                    | -                  | -                  |                    |                     |
| DIMENSIONS                                                                       |                      |                    |                    |                    |                     |
|                                                                                  | mm                   | 750                | 750                | 750                | 1000                |
| length                                                                           | mm                   |                    |                    |                    |                     |
| length<br>depth                                                                  |                      | 750<br>750<br>1950 | 750<br>750<br>1950 | 750<br>750<br>1950 | 1000<br>850<br>1950 |
| length<br>depth<br>height                                                        | mm                   | 750                | 750                | 750                | 850                 |
| length<br>depth                                                                  | mm<br>mm             | 750<br>1950        | 750<br>1950        | 750<br>1950        | 850<br>1950         |
| length<br>depth<br>height<br>footprint                                           | mm<br>mm             | 750<br>1950        | 750<br>1950        | 750<br>1950        | 850<br>1950         |

(1) ON THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C (mid point) – EER refers to the indoor unit only – Air flow of the units refers to the standard configuration with G4 class filter. Note: Cooling capacities are gross. To obtain the net cooling capacities the fan power input must be substracted.

(2) Max. external static pressure for the indicated air flow

(3) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with fan and compressor in operation. (\*) To be defined

Follows Tab. 4b.

| MODEL                         |         | D1ED  | D1GD               | D2ED            | D3AD  |
|-------------------------------|---------|-------|--------------------|-----------------|-------|
| power supply voltage (V ±10%) | V/Ph/Hz |       | 400/               | 3/50            |       |
| FANS <sup>(4)</sup>           |         |       |                    |                 |       |
| type                          |         |       | centrifugal with I | backward blades |       |
| quantity                      | no.     | 1     | 1                  | 1               | 1     |
| speed                         | RPM     | 9418  | 917                | 1200            | 988   |
| poles                         | no.     | 4     | 4                  | 4               | 4     |
| fan OA                        | А       | 0.96  | 1.02               | 2.15            | 1.19  |
| fan FLA                       | А       | 4.0   | 4                  | 4               | 4     |
| fan LRA                       | А       | 0.1   | 0.1                | 0.1             | 0.1   |
| COMPRESSOR <sup>(5)</sup>     |         |       |                    |                 |       |
| quantity / type               |         |       | 1 / Digit          | al Scroll       |       |
| Compressor rated power        | Нр      | 3.34  | 5.0                | 7.8             | 7.8   |
| compressor OA                 | А       | 5.59  | 7.36               | 10.51           | 16.62 |
| compressor FLA                | А       | 9.5   | 11.8               | 16.5            | 16.5  |
| compressor LRA                | А       | 52    | 64                 | 101             | 101   |
| EVAPORATING COIL              |         |       |                    |                 |       |
| Quantity                      | no.     | 1     | 1                  | 1               | 1     |
| pipes/fins                    |         |       | Copper/treate      | ed alluminium   |       |
| fin pitch / rows              | mm/no.  | 1.8/3 | 1.8/3              | 1.8/5           | 1.8/5 |
| front surface                 | m²      | 0.65  | 0.65               | 0.65            | 0.65  |

(4) Fan OA is for standard unit operating at the standard pressure drop (Under 20 Pa, Over 50 Pa).
(5) Condensing temperature: 45°C (mid point).

## **Options** (further information: Chap.8)

| MODEL                                                                                     |         | D1ED   | D1GD   | D2ED   | D3AD  |
|-------------------------------------------------------------------------------------------|---------|--------|--------|--------|-------|
| power supply voltage (V ±10%)                                                             | V/Ph/Hz |        | 400/   | 3/50   |       |
| Electrical heating                                                                        |         |        |        |        |       |
| FLA                                                                                       | А       | 8.6    | 8.6    | 8.6    | 11.0  |
| total power / steps                                                                       | kW/no.  | 5.85/3 | 5.85/3 | 5.85/3 | 7.5/1 |
| Re-heating mode                                                                           |         |        |        |        |       |
| Hot–gas coil                                                                              |         |        |        |        |       |
| heating capacity<br>(@24°C, 50%R.H., 45°C condens. temp.)                                 | kW      | 9.3    | 10.5   | 14     | 16.9  |
| Hot-water coil                                                                            |         |        |        |        |       |
| heating capacity<br>(@24°C, 50%R.H., 45°C condens. temper-<br>ature, 80/65°C water temp.) | kW      | 9.8    | 10.8   | 12.7   | 15.6  |
| Heating mode                                                                              |         |        |        |        |       |
| Hot-water coil                                                                            |         |        |        |        |       |
| heating capacity<br>(@24°C, 50%R.H., 80/65°C water temp.)                                 | kW      | 7.1    | 8.0    | 9.0    | 11.7  |

#### Tab. 4c - Freecooling, digital direct expansion unit

Dxx U/O F series

| MODEL                                                         |                   | D1GxF       | D2ExF       | D3AxF  | D3GxF   | D4ExF    | D3FxF  | D4HxF   | D5DxF   | D8FUF   |
|---------------------------------------------------------------|-------------------|-------------|-------------|--------|---------|----------|--------|---------|---------|---------|
| power supply voltage (V $\pm$ 10%)                            | V/Ph/Hz           |             |             |        |         | 400/3/50 |        |         |         |         |
| Refrigerant circuit                                           |                   | single      | single      | single | single  | single   | double | double  | double  | double  |
| PERFORMANCE <sup>(1)</sup>                                    |                   |             |             |        |         |          |        |         |         |         |
| airflow                                                       | m <sup>3</sup> /h | 4685        | 5460        | 7080   | 9540    | 11230    | 9490   | 11370   | 12910   | 19010   |
| external static pressure (Under) ESP                          | Pa                | 20          | 20          | 20     | 20      | 20       | 20     | 20      | 20      | 20      |
| max available external static pressure (Under) <sup>(2)</sup> | Pa                | 382         | 195         | 101    | 407     | 279      | 414    | 268     | 136     | 242     |
| external static pressure (Over) ESP                           | Pa                | 50          | 50          | 50     | 50      | 50       | 50     | 50      | 50      | -       |
| max available external static pressure (Over) <sup>(2)</sup>  | Pa                | 410         | 214         | 130    | 421     | 274      | 426    | 262     | 133     | -       |
| unti power input (compressor and EC fan)                      | kW                | 5.82        | 7.97        | 8.18   | 10.78   | 14.17    | 11.19  | 14.83   | 18.54   | 2.50    |
| ethylene glycol                                               | %                 | 30          | 30          | 30     | 30      | 30       | 30     | 30      | 30      | 30      |
| proposed Dry Cooler                                           |                   | ESM018      | EST028      | EST028 | EST028  | EST040   | EST028 | EST040  | EST060  | EST080  |
| SPL sound pressure level <sup>(3)</sup> Under                 | dB(A)             | 49.5        | 52.0        | 53.1   | 57.2    | 57.7     | 57.3   | 54.7    | 57.7    | 65.0    |
| SPL sound pressure level <sup>(4)</sup> Under                 | dB(A)             | 49.2        | 51.5        | 52.8   | 56.9    | 57.4     | 57.0   | 54.3    | 57.3    | 64.8    |
| SPL sound pressure level <sup>(3)</sup> Over                  | dB(A)             | 51.0        | 53.7        | 54.3   | 56.8    | 58.4     | 56.5   | 57.9    | 60.8    | -       |
| SPL sound pressure level <sup>(4)</sup> Over                  | dB(A)             | 50.3        | 52.5        | 52.7   | 55.1    | 56.7     | 55.7   | 57.1    | 59.0    | -       |
| MECHANICAL COOLING PERFORMANC                                 | CE (@ 35.0°       | C outdoor   | air tempera | ature) |         |          |        |         |         |         |
| Refrigerant                                                   |                   |             |             |        |         | R410A    |        |         |         |         |
| total cooling capacity                                        | kW                | 16.0        | 19.9        | 21.7   | 31.8    | 39.4     | 31.5   | 38.5    | 52.1    | 76.2    |
| sensible cooling capacity                                     | kW                | 15.3        | 18.8        | 21.3   | 31.1    | 38.2     | 30.7   | 37.8    | 46.4    | 68.8    |
| SHR (sensible/total ratio)                                    |                   | 0.96        | 0.94        | 0.98   | 0.98    | 0.97     | 0.97   | 0.98    | 0.89    | 0.90    |
| compressors absorbed power                                    | kW                | 5.11        | 6.62        | 6.21   | 9.36    | 12.05    | 9.77   | 12.69   | 15.50   | 21.64   |
| EC fans absorbed power                                        | kW                | 0.71        | 1.35        | 1.97   | 2x 0.71 | 2x1.06   | 2x0.71 | 2x1.07  | 2x 1.52 | 2x 1.93 |
| EER (Energy Efficiency Ratio – compr.<br>and EC fan)          |                   | 2.75        | 2.50        | 2.65   | 2.85    | 2.78     | 2.82   | 2.38    | 2.81    | 2.99    |
| mixture flow                                                  | l/s               | 0.58        | 0.69        | 1.01   | 1.26    | 1.60     | 2x0.65 | 2x 0.78 | 2x 0.97 | 2x 1.81 |
| mixture condenser pressure drop                               | kPa               | 35          | 47          | 55     | 33      | 32       | 34     | 47      | 51      | 37      |
| Unit total pressure drop                                      | kPa               | 46          | 53          | 69     | 54      | 66       | 48     | 67      | 64      | 80      |
| FREECOOLING PERFORMANCE (@ 5.0                                | °C outdoor a      | air tempera | ture)       |        |         |          |        |         |         |         |
| total cooling capacity                                        | kW                | 9.8         | 12.5        | 20.3   | 25.6    | 32.3     | 25.8   | 33.1    | 36.9    | 68.3    |
| sensible cooling capacity                                     | kW                | 9.8         | 12.5        | 20.3   | 25.1    | 32.3     | 25.8   | 33.1    | 36.9    | 64.9    |
| SHR (sensible/total ratio)                                    |                   | 1.00        | 1.00        | 1.00   | 1.00    | 1.00     | 1.00   | 1.00    | 1.00    | 0.95    |
| mixture flow                                                  | l/s               | 0.58        | 0.69        | 1.01   | 1.36    | 1.60     | 1.30   | 1.56    | 1.94    | 3.61    |
| unit total pressure drop                                      | kPa               | 79          | 83          | 69     | 47      | 46       | 50     | 58      | 86      | 62      |
| dry-cooler pressure drop                                      | kPa               | 25          | 17          | 43     | 53      | 60       | 56     | 27      | 10      | 20      |
| CHILLED WATER CONTENT                                         |                   |             |             |        |         |          |        |         |         |         |
| Total chilled water internal volume                           | dm <sup>3</sup>   | 10.4        | 12.7        | 21.1   | 36.8    | 45.1     | 36.2   | 43.6    | 44.5    | 93.0    |
| DIMENSIONS                                                    |                   |             |             |        |         |          |        |         | -       |         |
| length                                                        | mm                | 750         | 750         | 1000   | 1750    | 1750     | 1750   | 1750    | 1750    | 2250    |
| depth                                                         | mm                | 750         | 750         | 850    | 850     | 850      | 850    | 850     | 850     | 890     |
| height                                                        | mm                | 1950        | 1950        | 1950   | 1950    | 1950     | 1950   | 1950    | 1950    | 1950    |
| footprint                                                     | m <sup>2</sup>    | 0.56        | 0.56        | 0.85   | 1.49    | 1.49     | 1.49   | 1.49    | 1.49    | 2.27    |
| WEIGHTS                                                       |                   |             |             |        |         |          |        |         |         |         |
| net                                                           | kg                | 290         | 320         | 510    | 720     | 730      | 725    | 745     | 755     | 1115    |
| gross (std. packing see Fig. 12j)                             | kg                | 300         | 330         | 520    | 730     | 740      | 735    | 755     | 765     | 1125    |
| gross (std. packing see rig. 12)                              | ку                | 500         | 000         | 520    | 750     | 740      | 755    | 755     | 705     | 1120    |

(1) ON THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) - EER refers to the indoor unit only - Air flow of the units refers to the standard configuration with G4 class filter.

Note: Cooling capacities are gross. To obtain the net cooling capacities the fan power input must be substracted.

(2) Max. external static pressure for the indicated air flow

(3) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with fan and compressor in operation.
(4) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with only fan in operation.

Follows Tab. 4c.

| MODEL                         |                | D1GxF    | D2ExF    | D3AxF         | D3GxF      | D4ExF         | D3FxF      | D4HxF          | D5DxF        | D8FUF    |
|-------------------------------|----------------|----------|----------|---------------|------------|---------------|------------|----------------|--------------|----------|
| power supply voltage (V ±10%) | V/Ph/Hz        | 400/3/50 | 400/3/50 | 400/3/50      | 400/3/50   | 400/3/50      | 400/3/50   | 400/3/50       | 400/3/50     | 400/3/50 |
| FAN <sup>(5)</sup>            |                |          |          |               |            |               |            |                |              |          |
| type                          |                |          |          |               | centrifuga | l with backw  | ard blades |                |              |          |
| quantity                      | no.            | 1        | 1        | 1             | 2          | 2             | 2          | 2              | 2            | 2        |
| speed                         | RPM            | 990      | 1200     | 1339          | 1003/989   | 1129          | 989        | 1200           | 1200         | 1079     |
| poles                         | no.            |          |          |               |            | 4             |            |                |              |          |
| fan OA                        | А              | 1,15     | 2,17     | 3.17          | 2x 1.16    | 2x 1.73       | 2x 1.15    | 2x 2.20        | 2x 3.08      | 2x 2.98  |
| fan FLA                       | А              | 4.0      | 4.0      | 4.0           | 2x 4.0     | 2x 4.0        | 2x 4.0     | 2x 4.0         | 2x 4.0       | 2x 5.0   |
| fan LRA                       | А              | 0.1      | 0.1      | 0.1           | 2x 0.1     | 2x 0.1        | 2x 0.1     | 2x 0.1         | 2x 0.1       | 2x 0.10  |
| COMPRESSOR (6)                |                |          |          |               |            |               |            |                |              |          |
| quantity / type               |                |          | 1        | / Digital Scr | oll        |               | 2/1[       | Digital Scroll | + 1 fixed ca | apacity  |
| Compressor rated power        | Hp             | 5,1      | 7.8      | 7.8           | 7.55       | 9.59          | 2x 3.9     | 2x 5.0         | 2x 6.37      | 2x 9.39  |
| compressor OA (R410A)         | А              | 8.69     | 10.48    | 10.50         | 14.15      | 18.20         | 14.27      | 18.63          | 24.78        | 35.47    |
| compressor FLA                | А              | 12.8     | 16.5     | 16.5          | 22.0       | 27.0          | 2x12.8     | 2x16.5         | 2x23.0       | 2x31.0   |
| compressor LRA                | А              | 64       | 101.0    | 101.0         | 125        | 140           | 2x64       | 2x101.0        | 2x86         | 2x140    |
| EVAPORATING COIL              |                |          |          |               |            |               |            |                |              |          |
| quantity / position           | no.            |          |          |               |            | 1 / inclined  |            |                |              |          |
| pipes/fins                    |                |          |          |               | Copper     | / treated all | uminium    |                |              |          |
| fin pitch / rows              | no.            | 2,1 / 4  | 2,1 / 5  | 2,1 / 5       | 2.1/4      | 2.1/5         | 2.1/4      | 2.1/5          | 2.1/5        | 1.8/5    |
| front surface                 | m <sup>2</sup> |          | 0,56     |               | 1.51       | 1.51          | 1.51       | 1.51           | 1.51         | 2.1      |
| CHILLED WATER COIL            |                |          |          |               |            |               |            |                |              |          |
| quantity / position           |                |          |          |               |            | 1 / inclined  |            |                |              |          |
| pipes/fins                    |                |          |          |               | Copper     | / treated all | uminium    |                |              |          |
| fin pitch / rows              | no.            | 2,1/3    | 2,1 / 4  | 2.1 / 6       | 2.1/5      | 2.1/6         | 2.1/5      | 2.1/6          | 2.1/6        | 1.875    |
| front surface                 | m <sup>2</sup> |          | 0,56     |               | 1.51       | 1.51          | 1.51       | 1.51           | 1.51         | 2.1      |

(5) Fan OA is for standard unit operating at the standard pressure drop (Under 20 Pa, Over 50 Pa).
(6) Condensing temperature: 45°C (mid point).

## Tab. 4d – Dualfluid air–cooled, digital direct expansion unit

Dxx U/O D series

| MODEL                                                              |                 | D1GxD    | D2ExD    | D3AxD    | D3GxD    | D4ExD    | D3FxD    | D4HxD    | D5DxD    | D8FUD    |
|--------------------------------------------------------------------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| power supply voltage (V ±10%)                                      | V/Ph/<br>Hz     | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 |
| Refrigerant circuit                                                |                 | single   | single   | single   | single   | single   | double   | double   | double   | double   |
| PERFORMANCE <sup>(1)</sup>                                         |                 |          |          |          |          |          |          |          |          |          |
| airflow                                                            | m³/h            | 4685     | 5460     | 7080     | 9540     | 11230    | 9490     | 11370    | 12910    | 19010    |
| external static pressure (Under) ESP                               | Pa              | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       | 20       |
| max available external static pres-<br>sure (Under) <sup>(2)</sup> | Pa              | 380      | 193      | 91       | 406      | 269      | 408      | 257      | 124      | 237      |
| external static pressure (Over) ESP                                | Pa              | 50       | 50       | 50       | 50       | 50       | 50       | 50       | 50       | -        |
| max available external static pres-<br>sure (Over) <sup>(2)</sup>  | Pa              | 408      | 214      | 126      | 415      | 272      | 420      | 261      | 131      | -        |
| unit power input                                                   | kW              | 4.78     | 6.91     | 7.45     | 8.97     | 11.71    | 9.29     | 12.17    | 12.17    | 22.64    |
| ethylene glycol                                                    | %               | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| SPL sound pressure level <sup>(3)</sup> Under                      | dB(A)           | 49.5     | 52.0     | 53.1     | 57.2     | 57.7     | 57.3     | 55.9     | 59.1     | 65.0     |
| SPL sound pressure level <sup>(4)</sup> Under                      | dB(A)           | 49.2     | 51.5     | 52.8     | 56.9     | 57.4     | 57.0     | 55.5     | 58.7     | 64.8     |
| SPL sound pressure level <sup>(3)</sup> Over                       | dB(A)           | 51.0     | 51.8     | 52.8     | 54.9     | 57.3     | 54.5     | 57.9     | 60.8     | -        |
| SPL sound pressure level <sup>(4)</sup> Over                       | dB(A)           | 50.3     | 50.3     | 51.2     | 53.2     | 55.6     | 53.7     | 55.9     | 59.0     | -        |
| MECHANICAL COOLING PERFORM                                         | ANCE (1)        |          |          |          |          |          |          |          |          |          |
| Refrigerant                                                        |                 |          |          |          |          | R410A    |          |          |          |          |
| total cooling capacity                                             | kW              | 17.9     | 22.0     | 22.6     | 35.1     | 44.2     | 34.9     | 43.4     | 57.1     | 81.0     |
| sensible cooling capacity                                          | kW              | 16.1     | 19.7     | 22.3     | 32.5     | 40.4     | 32.2     | 39.9     | 48.7     | 70.9     |
| SHR (sensible/total ratio)                                         |                 | 0.90     | 0.90     | 0.99     | 0.93     | 0.91     | 0.92     | 0.92     | 0.85     | 0.88     |
| compressor absorbed power                                          | kW              | 4.07     | 5.46     | 5.48     | 7.55     | 9.59     | 7.87     | 10.3     | 12.74    | 18.78    |
| EC fans absorbed power                                             | kW              | 0.71     | 1.45     | 1.97     | 2x0.71   | 2x1.06   | 2x0.71   | 2x1.07   | 2x 1.91  | 2x 1.93  |
| EER (Energy Efficiency Ratio – compr. and EC fan)                  |                 | 3.74     | 3.18     | 3.03     | 3.91     | 3.77     | 3.76     | 3.57     | 3.44     | 3.58     |
| CHILLED WATER PERFORMANCE (                                        | 1)              |          |          |          |          |          |          |          |          |          |
| total cooling capacity                                             | kW              | 8.5      | 12.5     | 31.8     | 45.0     | 56.3     | 44.8     | 56.8     | 62.5     | 83.7     |
| sensible cooling capacity                                          | kW              | 8.5      | 12.5     | 27.2     | 37.8     | 46.1     | 37.6     | 46.6     | 51.9     | 72.3     |
| SHR (sensible/total ratio)                                         |                 | 1.00     | 1        | 0.86     | 0.84     | 0.82     | 0.84     | 0.82     | 0.83     | 0.86     |
| water flow                                                         | l/s             | 0.40     | 0.60     | 1.52     | 2.14     | 2.69     | 2.14     | 2.71     | 2.98     | 3.99     |
| unit total pressure drop                                           | kPa             | 34       | 54       | 121      | 106      | 132      | 105      | 135      | 160      | 61       |
| CHILLED WATER CONTENT                                              |                 |          |          |          |          |          |          |          |          |          |
| Total chilled water internal volume                                | dm <sup>3</sup> | 8.5      | 11.2     | 19.2     | 33.6     | 41.0     | 33.6     | 41.0     | 41.0     | 85.0     |
| DIMENSIONS                                                         |                 |          |          |          |          |          |          |          |          |          |
| length                                                             | mm              | 750      | 750      | 1000     | 1750     | 1750     | 1750     | 1750     | 1750     | 2550     |
| depth                                                              | mm              | 750      | 750      | 850      | 850      | 850      | 850      | 850      | 850      | 890      |
| height                                                             | mm              | 1950     | 1950     | 1950     | 1950     | 1950     | 1950     | 1950     | 1950     | 1950     |
| footprint                                                          | m <sup>2</sup>  | 0.56     | 0.56     | 0.85     | 1.49     | 1.49     | 1.49     | 1.49     | 1.49     | 2.27     |
| WEIGHTS                                                            |                 |          |          |          |          |          |          |          |          |          |
| net                                                                | kg              | 290      | 320      | 510      | 720      | 715      | 725      | 745      | 755      | 1115     |
| gross (std. packing see Fig. 12j)                                  | kg              | 300      | 330      | 520      | 730      | 725      | 735      | 755      | 765      | 1125     |

(1) ON THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C (mid point) – CW mode water temperature inlet/outlet 7/12 °C – **EER** refers to the indoor unit only – Air flow of the units refers to the standard configuration with G4 class filter.

Note: Cooling capacities are gross. To obtain the net cooling capacities the fan power input must be substracted.

(2) Max. external static pressure for the indicated air flow

(3) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with fan and compressor in operation. Ducted unit.

(4) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with only fan in operation. Ducted unit.

## Tab. 4e - Dualfluid water-cooled, digital direct expansion unit

Dxx U/O H series

| MODEL                                                         |                 | D1GxH      | D2ExH    | D3AxH    | D3GxH    | D4ExH      | D3FxH    | D4HxH      | D5DxH      | D8FUH    |
|---------------------------------------------------------------|-----------------|------------|----------|----------|----------|------------|----------|------------|------------|----------|
| power supply voltage (V ±10%)                                 | V/Ph/Hz         | 400/3/50   | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50   | 400/3/50 | 400/3/50   | 400/3/50   | 400/3/50 |
| Refrigerant circuit                                           |                 | single     | single   | single   | single   | single     | double   | double     | double     | double   |
| PERFORMANCE <sup>(1)</sup>                                    |                 |            |          |          |          |            |          |            |            |          |
| airflow                                                       | m³/h            | 4685       | 5460     | 7080     | 9540     | 11230      | 9490     | 11370      | 12910      | 19010    |
| external static pressure (Under) ESP                          | Pa              | 20         | 20       | 20       | 20       | 20         | 20       | 20         | 20         | 20       |
| max available external static pressure (Under) <sup>(2)</sup> | Pa              | 380        | 192      | 88       | 406      | 269        | 408      | 257        | 124        | 236      |
| external static pressure (Over) ESP                           | Pa              | 50         | 50       | 50       | 50       | 50         | 50       | 50         | 50         | -        |
| max available external static pressure (Over) <sup>(2)</sup>  | Pa              | 408        | 214      | 126      | 415      | 272        | 420      | 261        | 131        | -        |
| unit power input                                              | kW              | 4.78       | 6.91     | 7.46     | 8.97     | 11.71      | 9.29     | 12.17      | 16.58      | 22.64    |
| ethylene glycol                                               | %               | 0          | 0        | 0        | 0        | 0          | 0        | 0          | 0          | 0        |
| SPL sound pressure level <sup>(3)</sup> Under                 | dB(A)           | 49.5       | 52.0     | 53.1     | 57.2     | 57.7       | 57.3     | 55.9       | 59.1       | 65.0     |
| SPL sound pressure level <sup>(4)</sup> Under                 | dB(A)           | 49.2       | 51.5     | 52.8     | 56.9     | 57.4       | 57.0     | 55.5       | 58.7       | 64.8     |
| SPL sound pressure level <sup>(3)</sup> Over                  | dB(A)           | 51.0       | 51.8     | 52.8     | 54.9     | 57.3       | 54.5     | 57.9       | 60.8       | _        |
| SPL sound pressure level <sup>(4)</sup> Over                  | dB(A)           | 50.3       | 50.3     | 51.2     | 53.2     | 55.6       | 53.7     | 55.9       | 59.0       | _        |
| MECHANICAL COOLING PERFORMANC                                 | E               |            |          |          |          |            |          |            |            |          |
| Refrigerant                                                   |                 |            |          |          | R4       | 10A        |          |            |            |          |
| total cooling capacity                                        | kW              | 17.9       | 22.0     | 23.2     | 35.1     | 44.2       | 34.9     | 43.3       | 57.1       | 81.0     |
| sensible cooling capacity                                     | kW              | 16.1       | 19.7     | 21.9     | 32.5     | 40.3       | 32.2     | 39.9       | 48.7       | 70.8     |
| SHR (sensible/total ratio)                                    |                 | 0.90       | 0.90     | 0.94     | 0.93     | 0.91       | 0.92     | 0.92       | 0.85       | 0.87     |
| compressor absorbed power                                     | kW              | 4.07       | 5.46     | 5.49     | 7.55     | 9.59       | 7.87     | 10.03      | 12.74      | 18.78    |
| EC fans absorbed power                                        | kW              | 0.71       | 1.45     | 1.97     | 2x0.71   | 2x 1.06    | 2x 071   | 2x 1.07    | 2x 1.92    | 2x 1.93  |
| EER (Energy Efficiency Ratio – compr.<br>and EC fan)          |                 | 3.74       | 3.18     | 3.11     | 3.91     | 3.77       | 3.76     | 3.56       | 3.44       | 3.58     |
| water inlet temperature                                       | °C              | 30         | 30       | 30       | 30       | 30         | 30       | 30         | 30         | 30       |
| water flow                                                    | l/s             | 0.47       | 0.62     | 0.57     | 0.80     | 1.15       | 2x 0.43  | 2x 0.62    | 2x 0.80    | 2x 0.95  |
| water condenser pressure drop                                 | kPa             | 19         | 17       | 16       | 12       | 15         | 13       | 26         | 30         | 10       |
| unit total pressure drop                                      | kPa             | 26         | 22       | 20       | 20       | 15         | 19       | 38         | 38         | 10       |
| CHILLED WATER PERFORMANCE                                     |                 |            |          |          |          |            |          |            |            |          |
| total cooling capacity                                        | kW              | 12.2       | 18.2     | 31.8     | 45.0     | 56.3       | 44.8     | 56.8       | 62.5       | 83.7     |
| sensible cooling capacity                                     | kW              | 12.2       | 17.7     | 27.2     | 37.8     | 46.1       | 37.6     | 46.6       | 51.9       | 72.3     |
| SHR (sensible/total ratio)                                    |                 | 1.00       | 0.97     | 0.86     | 0.84     | 0.82       | 0.84     | 0.82       | 0.83       | 0.86     |
| water inlet temperature                                       | °C              | 7          | 7        | 7        | 7        | 7          | 7        | 7          | 7          | 7        |
| water flow                                                    | l/s             | 0.58       | 0.87     | 1.52     | 2.14     | 2.69       | 2.14     | 2.71       | 2.98       | 3.99     |
| unit total pressure drop                                      | kPa             | 65         | 98       | 121      | 106      | 132        | 105      | 135        | 160        | 61       |
| CHILLED WATER CONTENT                                         |                 |            |          |          |          |            |          |            |            |          |
| Total chilled water internal volume                           | dm <sup>3</sup> | 10.4       | 12.7     | 21.1     | 36.8     | 45.1       | 36.2     | 43.6       | 44.5       | 93.0     |
| DIMENSIONS                                                    | um              |            |          |          | 00.0     |            | 00.2     |            |            | 00.0     |
| length                                                        | mm              | 750        | 750      | 1000     | 1750     | 1750       | 1750     | 1750       | 1750       | 2550     |
| depth                                                         | mm              | 750        | 750      | 850      | 850      | 850        | 850      | 850        | 850        | 890      |
| height                                                        | mm              | 1950       | 1950     | 1950     | 1950     | 1950       | 1950     | 1950       | 1950       | 1950     |
| footprint                                                     | m <sup>2</sup>  | 0.56       | 0.56     | 0.85     | 1.49     | 1.49       | 1.49     | 1.49       | 1.49       | 2.27     |
| WEIGHTS                                                       |                 | 0.50       | 0.00     | 0.00     | 1.43     | 1.40       | 1.43     | 1.40       | 1.43       | 2.21     |
| net                                                           | kg              | 290        | 320      | 510      | 720      | 730        | 725      | 745        | 755        | 1115     |
|                                                               | 0               | 290<br>300 | 320      | 520      | 720      | 730<br>740 | 725      | 745<br>755 | 755<br>765 | 1125     |
| Gross (std. packing see Fig. 12j)                             | kg              | 300        | 330      | 520      | 730      | 740        | 135      | 100        | 100        | 1120     |

(1) ON THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C (mid point) – EER refers to the indoor unit only – Air flow of the units refers to the standard configuration with G4 class filter. Note: Cooling capacities are gross. To obtain the net cooling capacities the fan power input must be substracted.

(2) Max. external static pressure for the indicated air flow

(3) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with fan and compressor in operation. Ducted Over unit.

(4) Measured in the front part at 1.5 m height, 2 m distance, referred to free field, with only fan in operation. Ducted Over unit.

| MODEL                                                                                  |         | D1G      | D2E      | D3A      | D3G      | D4E      | D3F      | D4H      | D5D      | D8F      |
|----------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| power supply voltage (V ±10%)                                                          | V/Ph/Hz | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 | 400/3/50 |
| Electrical heating (opt.)                                                              |         |          |          |          |          |          |          |          |          |          |
| FLA                                                                                    | А       | 8,6      | 8,6      | 11.0     | 22.0     | 22.0     | 22.0     | 22.0     | 22.0     | 26       |
| total power / steps                                                                    | kW/no.  | 5.85/3   | 5.85/3   | 7.5/1    | 15.0/2   | 15.0/2   | 15.0/2   | 15.0/2   | 15.0/2   | 18.0/3   |
| Humidifier                                                                             |         |          |          |          |          |          |          |          |          |          |
| FLA                                                                                    | А       | 9.0      | 9.0      | 9.0      | 13.0     | 13.0     | 13.0     | 13.0     | 13.0     | 13.0     |
| nominal power                                                                          | kW      | 5.8      | 5.8      | 5.8      | 9.0      | 9.0      | 9.0      | 9.0      | 9.0      | 9.0      |
| Re-heating mode                                                                        |         |          |          |          |          |          |          |          |          |          |
| Hot–gas coil – R410A                                                                   |         |          |          |          |          |          |          |          |          |          |
| heating capacity<br>(@24°C, 50%R.H., 45°C con-<br>dens.temp.)                          | kW      | 10.6     | 13.2     | 13.8     | 20.5     | 25.9     | 5.2      | 6.4      | 8.4      | 13.5     |
| Hot-water coil - DX mode - R410                                                        | A       |          |          |          |          |          |          |          |          |          |
| heating capacity – 45°C con-<br>dens.temp.<br>(@24°C, 50%R.H., 80/65°C water<br>temp.) | kW      | 12,1     | 13,8     | 16.3     | 34.5     | 34.4     | 34.2     | 38.3     | 40.8     | 32.2     |
| Heating mode                                                                           |         |          |          |          |          |          |          |          |          |          |
| Hot-water coil                                                                         |         |          |          |          |          |          |          |          |          |          |
| heating capacity<br>(@24°C, 50%R.H., 80/65°C water<br>temp.)                           | kW      | 9,1      | 10,0     | 12.4     | 27.4     | 30.2     | 27.3     | 30.5     | 31.8     | 25.6     |

## **Options** (further information: Cap.8)

## Coupling of room units with remote air-cooled condensers

The units should be connected to **Liebert HPA**, single circuit. The following paragraphs describe the suggested coupling of **Liebert HPM** units. The data given below are approximate and must always be verified on the basis of the other specific operating conditions.



## Tab. 5f - Coupling of Condensers with Liebert HPM A-D

| MODEL   | External temperature up to 35°C | External temperature up to<br>40°C | External temperature up to<br>46°C |
|---------|---------------------------------|------------------------------------|------------------------------------|
| D1ExA   | 1 x HCR24                       | 1 x HCR24                          | 1 x HCR33                          |
| D1GxA/D | 1 x HCR24                       | 1 x HCR24                          | 1 x HCR33                          |
| D2ExA/D | 1 x HCR33                       | 1 x HCR43                          | 1 x HCR51                          |
| D3AxA/D | 1 x HCR33                       | 1 x HCR43                          | 1 x HCR59                          |
| D3FxA/D | 2 x HCR24                       | 2 x HCR24                          | 2 x HCR33                          |
| D3GxA/D | 1 x HCR33                       | 1 x HCR43                          | 1 x HCR76                          |
| D4ExA/D | 1 x HCR43                       | 1 x HCR59                          | 1 x HCR76                          |
| D4HxA/D | 2 x HCR24                       | 2 x HCR33                          | 2 x HCR43                          |
| D5DxA/D | 2 x HCR33                       | 2 x HCR43                          | 2 x HCR59                          |
| D7LxA   | 2 x HCR33                       | 2 x HCR43                          | 2 x HCR76                          |
| D8FUA/D | 2 x HCR43                       | 2 x HCR51                          | 2 x HCR76                          |

## Tab. 5g - Technical data and performance of Air condenser

|        | Power                      | Total Heat<br>Rejection<br>(THR)* | Air              | Noise<br>Level ** | Input         | Current           | FLA  | Refrigerant<br>connections<br>[mm] |                     | Unit with packing         |                |
|--------|----------------------------|-----------------------------------|------------------|-------------------|---------------|-------------------|------|------------------------------------|---------------------|---------------------------|----------------|
| Model  | <b>supply</b><br>[V/Ph/Hz] | <b>R410A</b><br>[kW]              | Volume<br>[m³/h] | [dB(A)] @<br>5 m  | Power<br>[kW] | Absorption<br>[A] | [A]  | Gas line<br>[mm]                   | Liquid line<br>[mm] | Dimen-<br>sions<br>[mm]   | Weight<br>[kg] |
| HCR 24 | 230/1/50                   | 24,0                              | 8.600            | 51,0              | 0,55          | 2,5               | 2,5  | 16                                 | 16                  | L 1112<br>W 1340<br>H 907 | 60             |
| HCR 33 | 230/1/50                   | 32,2                              | 7.400            | 51,0              | 0,55          | 2,5               | 2,5  | 16                                 | 16                  | L 1112<br>W 1340<br>H 907 | 75             |
| HCR 43 | 230/1/50                   | 46,0                              | 17.000           | 54,0              | 1,10          | 5,0               | 5,0  | 16                                 | 16                  | L 1112<br>W 2340<br>H 907 | 92             |
| HCR 51 | 230/1/50                   | 52,0                              | 17.000           | 54,0              | 1,10          | 5,0               | 5,0  | 22                                 | 16                  | L 1112<br>W 2340<br>H 907 | 93             |
| HCR 59 | 230/1/50                   | 62,0                              | 15.600           | 54,0              | 1,10          | 5,0               | 5,0  | 22                                 | 16                  | L 1112<br>W 2340<br>H 907 | 102            |
| HCR 76 | 230/1/50                   | 78,0                              | 25.500           | 56,0              | 1,65          | 7,5               | 7,5  | 22                                 | 16                  | L=1112<br>W=3340<br>H=907 | 136            |
| HCR 88 | 230/1/50                   | 92,0                              | 23.400           | 56,0              | 1,65          | 7,5               | 7,5  | 22                                 | 16                  | L=1112<br>W=3340<br>H=907 | 165            |
| HCR 99 | 230/1/50                   | 130,0                             | 32.000           | 57,0              | 2,20          | 10,0              | 10,0 | 28                                 | 22                  | L=1112<br>W=4338<br>H=907 | 220            |

(\*) The nominal capacities refer to the following operative conditions:

· refrigerant as indicated

- (R410A).
- temperature differences: 15 K
- (T condensation Toutdoor).
- height of the installation = 0 m, above the sea level. For different altitudes, see Hirating program.
- clean exchange surfaces.

(\*\*) The levels of sound pressure here included are measured in the same operative conditions, and are referred to 5 m far from the unit, at 1.5 m in height in free field conditions.

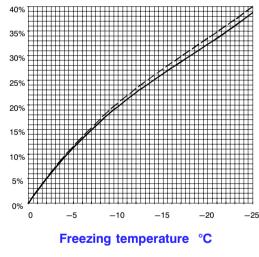
## Coupling of water cooled units with remote Dry Coolers

The water—condensed units are provided with a water/refrigerant exchanger with braze—welded **plates** made of **stainless steel**; this advanced exchanger type gives the highest efficiency in heat exchange. In addition, a certain oversizing of the exchanger has been provided so as to reduce pressure drops (and energy consumption of the water pump) as much as possible and thus to allow the unit to operate with the external chiller in closed circuit, even at high outdoor temperatures.



The Over/Under units type W/H are designed for operating with mains water or water in closed circuit with an external chiller. The

Over/Under units type F are designed for operating with water in closed circuit with a remote Dry Cooler (or other suitable external device).


When operating in a closed circuit, the water is cooled by the outdoor air in a heat exchanger; in this case, to avoid unwanted ice formation during winter, it is advisable to use a water/glycol mixture.

The circulation of the water—glycol mixture is forced (the pump is not supplied). If mains water or tower water is used, when installing the unit fit a mechanical filter on the water line to protect the condenser against possible impurities contained in the water (for condenser cleaning see the service manual).

## **Dry Coolers**

Our Dry Coolers are built with a copper/aluminium cooling coil and axial fan(s). The main data on Dry Coolers is shown in the following table:

#### Percentage of ethylene glycol mixed with water



--- % in weight % in volume

## Note:

In the closed circuits to avoid water freezing in the cold seasons, it is strictly recommended to mix water with ethylene glycol. The suggested percentage is given in the Diagram. For safety reason, calculate the percentage at least at 5°C below the minimum ambient temperature.

It is also recommended to check periodically the mixture: in case of leackage of the circuit, the sanitary water, used at compensation, reduces progressively the glycol percentage and increases the freezing point of the mixture!

#### Features and benefits

Liebert HPD Dry Coolers are the new range of liquid coolers, able to cover rated heat exchange capacities from 8 to 400 kW.

They excel above all for their efficiency, versatility and reliability, thanks to the following features:

- possibility of installation with horizontal or vertical air flow with simple operations on site, with the same model of Dry Cooler, without needing any wiring or re—wiring inside the unit.
- modulating fan speed regulator with phase (optional), for a continuous modulation of the fan speed, installed on the machine, wired and factory—set, thus making the connection steps on site and the unit start—up extremely easy; the fan speed regulator with phase cutoff can be selected to control up to two set—point values for the water delivery temperature of the Dry Cooler. Do not use fan speed regulator other than the approved one supplied by the manufacturer. When the Dry Cooler is ordered without temperature control, an outer on/off type control (to be arranged by the customer) is anyway allowed and must be connected on site with the suitable terminals available in the electric board Q of the unit (see wiring diagram enclosed to the unit).

# Heat Rejections (W – F – H versions)

- The axial fans are equipped with protection grid and are statically and dynamically balanced; they can guarantee high efficiency and a low emitted noise level (above all in the low noise version); further, they are equipped with motors able to operate within a wide range of outdoor working temperatures. Protection degree IP 54. Single-phase fans feature an electric condenser incorporated in the terminal board.
- Heat exchanger with oval—geometry tubes ensuring the best air flow and thus an increase in the
  efficiency of the heat exchange, for a lower emitted noise level.
  Tubes are in copper and fins in aluminum, with wide heat exchange surface.
  Upon request (optional), the unit can be ordered with fins in epoxy—coated aluminum, with a
  better protection. The coil manifolds are in copper, with flanged connections in AISI 304 stainless
  steel for the models with three—phase power supply and male gas threaded connections for the
  single—phase models.
- · the power supply is:

 $230\,\text{V}$  single phase 50 Hz in the ESM models (standard noise level) and ELM models (low noise level).

400 V three-phase 50 Hz in the EST models (standard noise level) and ELT models (low noise level).

- · Electrical boxes and accessories are water proof IP55.
- The frame is made up of a sturdy structure in galvanized steel, totally painted.
- The units are equipped with protection electric board Q, with main disconnector and safety device for fan motors.
- The most important technical data are gathered in Tab. 5i.

Tests on thermal performance have been carried out at IMQ laboratories, according to the norm UNI EN 1048:2000, at the following special operating conditions:

Air inlet T  $= 35^{\circ}C$ 

Water inlet T =  $45^{\circ}C$ 

Water outlet T =  $40^{\circ}$ C

Sound pressure levels have been evaluated according to the norm EN13487, at a 10-m distance, with free field.

 The working pressure depends on the circuit where the Dry Cooler is connected. Dry Cooler max working pressure = 16 bar.

#### All Dry Coolers are CE marking.

Dry Cooler units are conform to the following directives:

- 2006/42/EC;
- 2004/108/EC;
- 2006/95/EC;
- 97/23/EC.

#### Tab. 5h - Coupling of Dry Coolers

| Model     | External tempera | ture up to 30°C | External tempera | ture up to 35°C | External tempera | ature up to 40°C |
|-----------|------------------|-----------------|------------------|-----------------|------------------|------------------|
| Model     | Standard         | Low noise       | Standard         | Low noise       | Standard         | Low noise        |
| D1E W     | 1 x ESM009       | 1 x ELM011      | 1 x ESM013       | 1 x ELM011      | 1 x ESM022       | 1 x ELM018       |
| D1G W/H/F | 1 x ESM009       | 1 x ELM011      | 1 x ESM018       | 1 x ELM015      | 1 x ESM022       | 1 x ELM027       |
| D2E W/H/F | 1 x ESM018       | 1 x ELM018      | 1 x EST028       | 1 x ELM027      | 1 x EST050       | 1 x ELT040       |
| D3A W/H/F | 1 x ESM018       | 1 x ELM018      | 1 x EST028       | 1 x ELM027      | 1 x EST050       | 1 x ELT040       |
| D3F W/H/F | 1 x ESM022       | 1 x ELM018      | 1 x EST028       | 1 x ELM027      | 1 x EST050       | 1 x ELT047       |
| D3G W/H/F | 1 x ESM022       | 1 x ELM027      | 1 x EST028       | 1 x ELM027      | 1 x EST050       | 1 x ELT055       |
| D4E W/H/F | 1 x EST028       | 1 x ELM027      | 1 x EST040       | 1 x ELT040      | 1 x EST060       | 1 x ELT065       |
| D4H W/H/F | 1 x EST028       | 1 x ELM027      | 1 x EST040       | 1 x ELT040      | 1 x EST060       | 1 x ELT065       |
| D5D W/H/F | 1 x EST040       | 1 x ELT040      | 1 x EST050       | 1 x ELT047      | 1 x EST080       | 1 x ELT065       |
| D7L W     | 1 x EST050       | 1 x ELT047      | 1 x EST060       | 1 x ELT055      | 1 x EST080       | 1 x ELT085       |
| D8F W/H/F | 1 x EST060       | 1 x ELT055      | 1 x EST080       | 1 x ELT065      | 1 x EST125       | 1 x ELT100       |

The table shows the recommended combinations of the Dry Coolers Liebert HPD with the air conditioners Liebert HPM, according to the external air temperature. The combinations have been evaluated considering a mixture of water and ethylene glycol up to 30% as thermal exchange fluid.

The above indications are approximate and must be checked on the basis of other specific operating conditions. For operating conditions other than those indicated in the table, refer to the New Hirating calculation software and to the Dry Coolers service manual.

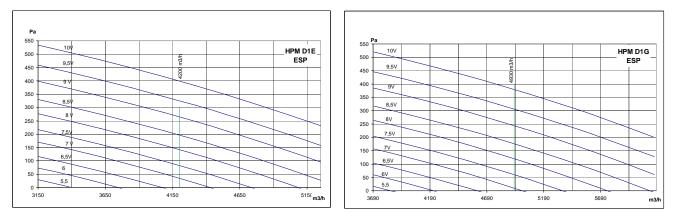
# Heat Rejections (W – F – H versions)

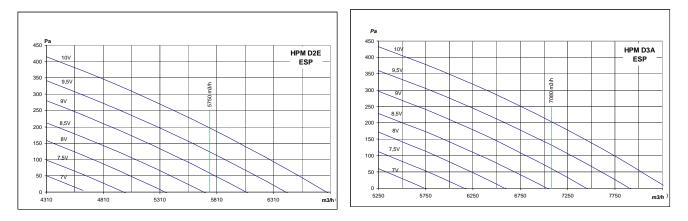
## Tab. 5i - Technical data and performance of Dry Coolers

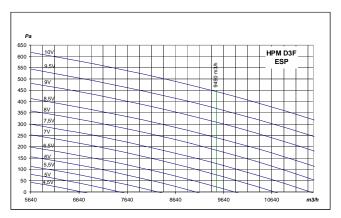
|                   |          | Performances      | 6                  |          | Electric data  |                            | 0     | verall dimensio | ns            |
|-------------------|----------|-------------------|--------------------|----------|----------------|----------------------------|-------|-----------------|---------------|
| Standard<br>Model | Duty (a) | Air flow          | Noise<br>level (c) | Supply   | Number of fans | Total<br>absorbed<br>power | Width | Depth           | Height<br>(b) |
|                   | kW       | m <sup>3</sup> /h | db(A)              | V/ph/Hz  | nº             | kW                         | mm    | mm              | mm            |
| ESM009            | 10.8     | 7100              | 46                 | 230/1/50 | 1              | 0.78                       | 1336  | 820             | 1030          |
| ESM013            | 12.8     | 6700              | 46                 | 230/1/50 | 1              | 0.78                       | 1336  | 820             | 1030          |
| ESM018            | 16.1     | 15000             | 49                 | 230/1/50 | 2              | 1.56                       | 2236  | 820             | 1030          |
| ESM022            | 22.0     | 14200             | 49                 | 230/1/50 | 2              | 1.56                       | 2236  | 820             | 1030          |
| EST028            | 28.0     | 20000             | 49                 | 400/3/50 | 2              | 1.38                       | 2866  | 1250            | 1070          |
| EST040            | 36.4     | 19400             | 49                 | 400/3/50 | 2              | 1.38                       | 2866  | 1250            | 1070          |
| EST050            | 46.1     | 18400             | 49                 | 400/3/50 | 2              | 1.38                       | 2866  | 1250            | 1070          |
| EST060            | 62.8     | 28200             | 51                 | 400/3/50 | 3              | 2.07                       | 4066  | 1250            | 1070          |
| EST070            | 69.5     | 27600             | 51                 | 400/3/50 | 3              | 2.07                       | 4066  | 1250            | 1070          |
| EST080            | 84.8     | 37600             | 52                 | 400/3/50 | 4              | 2.76                       | 5266  | 1250            | 1070          |
| EST125            | 128.9    | 63000             | 50                 | 400/3/50 | 3              | 6.00                       | 5276  | 1620            | 1650          |
| EST175            | 168.1    | 84000             | 51                 | 400/3/50 | 4              | 8.00                       | 6826  | 1620            | 1650          |
| EST220            | 217.6    | 118800            | 53                 | 400/3/50 | 6              | 12.00                      | 5576  | 2340            | 1650          |
| EST270            | 265.4    | 109200            | 53                 | 400/3/50 | 6              | 12.00                      | 5576  | 2340            | 1650          |
| EST330            | 327.2    | 151600            | 54                 | 400/3/50 | 8              | 16.00                      | 7226  | 2340            | 1650          |
| EST400            | 414.1    | 189500            | 54                 | 400/3/50 | 10             | 20.00                      | 8876  | 2340            | 1650          |

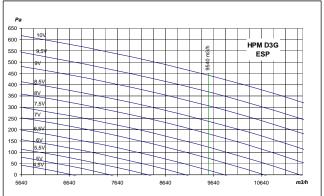
| Low Noise<br>Model |          | Performance       | s                  |          | Electric data     | Overall dimensions         |       |       |            |
|--------------------|----------|-------------------|--------------------|----------|-------------------|----------------------------|-------|-------|------------|
|                    | Duty (a) | Air flow          | Noise<br>level (c) | Supply   | Number of<br>fans | Total<br>absorbed<br>power | Width | Depth | Height (b) |
|                    | kW       | m <sup>3</sup> /h | db(A)              | V/ph/Hz  | n <sup>o</sup>    | kW                         | mm    | mm    | mm         |
| ELM008             | 6.8      | 5200              | 40                 | 230/1/50 | 1                 | 0.29                       | 1336  | 820   | 1030       |
| ELM011             | 10.3     | 4700              | 40                 | 230/1/50 | 1                 | 0.29                       | 1336  | 820   | 1030       |
| ELM015             | 13.9     | 10400             | 43                 | 230/1/50 | 2                 | 0.58                       | 2236  | 820   | 1030       |
| ELM018             | 17.9     | 9800              | 43                 | 230/1/50 | 2                 | 0.58                       | 2236  | 820   | 1030       |
| ELM027             | 27.0     | 14700             | 44                 | 230/1/50 | 3                 | 0.87                       | 3136  | 820   | 1030       |
| ELT040             | 36.9     | 15400             | 43                 | 400/3/50 | 2                 | 0.96                       | 2866  | 1250  | 1070       |
| ELT047             | 44.5     | 21000             | 44                 | 400/3/50 | 3                 | 0.99                       | 4066  | 1250  | 1070       |
| ELT055             | 55.7     | 23100             | 45                 | 400/3/50 | 3                 | 1.44                       | 4066  | 1250  | 1070       |
| ELT065             | 65.6     | 32000             | 46                 | 400/3/50 | 4                 | 1.92                       | 5266  | 1250  | 1070       |
| ELT085             | 80.8     | 28800             | 46                 | 400/3/50 | 4                 | 1.92                       | 5266  | 1250  | 1070       |
| ELT100             | 96.7     | 40800             | 41                 | 400/3/50 | 3                 | 2.49                       | 5276  | 1620  | 1650       |
| ELT130             | 128.7    | 62800             | 44                 | 400/3/50 | 4                 | 4.92                       | 3926  | 2340  | 1650       |
| ELT160             | 158.2    | 65200             | 44                 | 400/3/50 | 4                 | 4.92                       | 6826  | 1620  | 1650       |
| ELT210             | 212.3    | 89100             | 46                 | 400/3/50 | 6                 | 7.38                       | 5576  | 2340  | 1650       |
| ELT270             | 277.5    | 118800            | 47                 | 400/3/50 | 8                 | 9.84                       | 7226  | 2340  | 1650       |
| ELT350             | 351.0    | 148500            | 47                 | 400/3/50 | 10                | 12.30                      | 8876  | 2340  | 1650       |

(a): at the following operative conditions: at the following operature conductors. outdoor temperature = 35°C, inlet/outlet water temperature = 45°C/40°C, fluid is pure water, slm zero meters. For different conditions refer to NewHirating program.

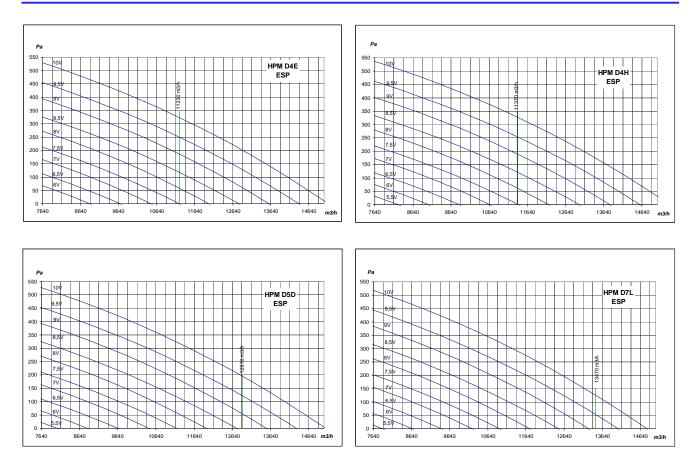

(b): vertical flow installation.
(c): sound pressure level, free field, at 10 m distance, according to EN13487.

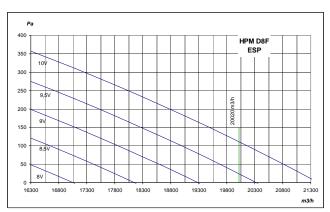

The graphs give the available and allowed external static pressure against airflow at different motor supply voltages for all units, with G4 air filter, standard configuration.


## Useful available heads with standard fan

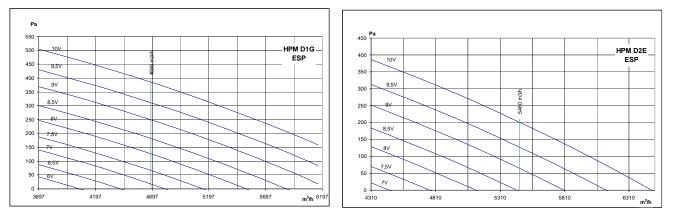

The air conditioners of the Liebert HPM series are supplied with electric fans sized for 20 Pa Available External Static Pressure (ESP) for the models Under, 50 Pa for the models Over. **ESP:** Available External Static Pressure

## Liebert HPM – A/W versions and U/O configurations

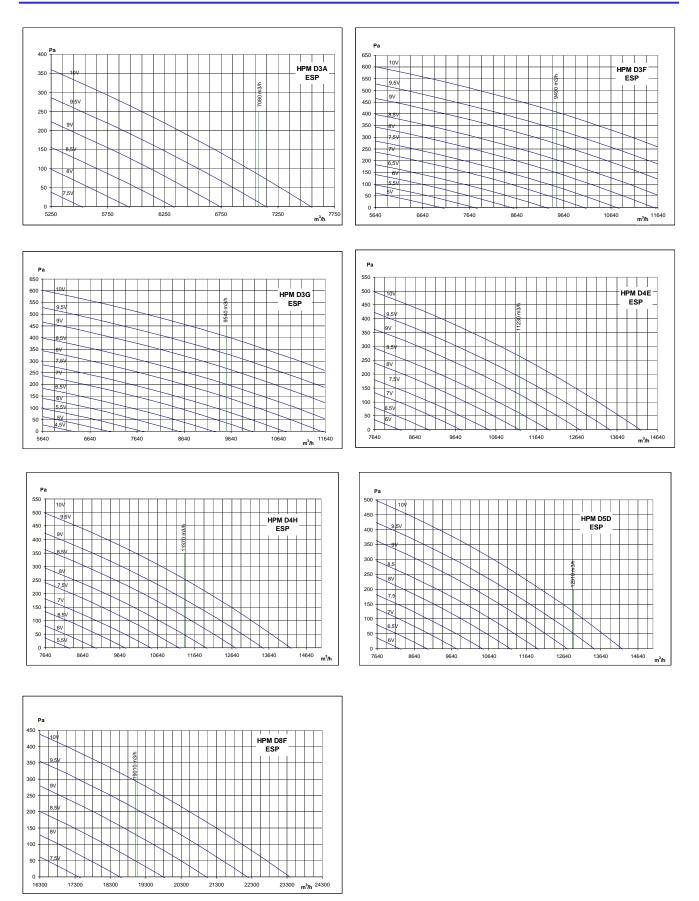




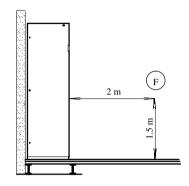

# **Airflow characteristics**











# **Airflow characteristics**



Liebert HPM units have been designed with particular care for sound and vibration problems. The complete mechanical insulation of the ventilating section, combined with the special study of the aeraulic circuit as a consequence of accurate researches made in our thermodynamical laboratories and the oversizing of the components crossed by air offer the highest ventilation efficiency with the lowest sound emission.

## Sound emission spectra

All tests are performed in our laboratories under the described conditions. The instrument is placed in (F) point, at 1.5 m from the ground in front of the machine at 2 m distance. Test conditions: Under unit with underflow air discharge and 20 Pa available external static pressure; Over unit with ducted air discharge and 50 Pa available external static pressure. Standard air flow with clean G4 filters. Ambient temperature  $24^{\circ}$ C and relative humidity 50%. Condensing temperature  $45^{\circ}$ C. The noise levels refer to free field conditions.



# **Sound Pressure Level**

## Sound emission spectra

The following tables show sound levels for every octave band frequency.

Tab. 7a – A/W versions and Under configuration

| MODEL   | Mode | Level | Octave band frequency (Hz) |      |      |      |      |      |      |      |      | Sound Level |
|---------|------|-------|----------------------------|------|------|------|------|------|------|------|------|-------------|
|         |      |       | 31.5                       | 63   | 125  | 250  | 500  | 1000 | 2000 | 4000 | 8000 | [dB(A)]     |
| D1EUA/W | (1)  | SPL   | 42.0                       | 42.0 | 49   | 54.5 | 44.8 | 39.3 | 36.9 | 30.1 | 23.4 | 48.6        |
|         | (2)  | SPL   | 42.7                       | 42.7 | 49.6 | 54.6 | 45.4 | 39.4 | 37   | 32.3 | 24.7 | 48.8        |
|         | (3)  | PWL   | 68.2                       | 68.2 | 74.4 | 74.3 | 71.6 | 66.8 | 64   | 62   | 55.6 | 73.4        |
| D1GUA/W | (1)  | SPL   | 42.2                       | 42.2 | 48.2 | 55.3 | 44.9 | 39.2 | 36.6 | 30.1 | 23.5 | 49.0        |
|         | (2)  | SPL   | 42.9                       | 42.9 | 49.0 | 55.4 | 45.5 | 39.3 | 36.7 | 32.3 | 24.8 | 49.2        |
|         | (3)  | PWL   | 66.3                       | 66.3 | 72.7 | 72.4 | 69.7 | 64.9 | 62.1 | 60.1 | 53.7 | 71.5        |
| D2EUA/W | (1)  | SPL   | 45.2                       | 45.2 | 54.7 | 52.5 | 45.3 | 43.2 | 40.9 | 34.1 | 31.0 | 49.5        |
|         | (2)  | SPL   | 46.1                       | 46.1 | 55.2 | 52.7 | 46.6 | 43.3 | 41.0 | 36.3 | 31.6 | 50.0        |
|         | (3)  | PWL   | 66.8                       | 66.8 | 74.3 | 77.4 | 70.8 | 67.8 | 65.7 | 63.1 | 57.8 | 74.5        |
| D3AUA/W | (1)  | SPL   | 53.6                       | 53.6 | 52.2 | 56.1 | 52.2 | 49.2 | 48.2 | 40.9 | 38.6 | 55.2        |
|         | (2)  | SPL   | 59.2                       | 59.2 | 52.6 | 57.1 | 52.2 | 49.2 | 48.2 | 40.9 | 39.2 | 55.4        |
|         | (3)  | PWL   | 74.3                       | 74.3 | 77.2 | 81.0 | 72.9 | 71.1 | 69.0 | 64.3 | 60.6 | 77.5        |
| D3FUA/W | (1)  | SPL   | 51.0                       | 51.0 | 53.9 | 59.8 | 51.7 | 49.8 | 46.9 | 41.6 | 34.1 | 55.9        |
|         | (2)  | SPL   | 56.7                       | 56.7 | 54.0 | 60.1 | 51.7 | 49.8 | 46.9 | 41.6 | 34.4 | 56.0        |
|         | (3)  | PWL   | 51.5                       | 52.3 | 66.4 | 71.3 | 65.3 | 69.2 | 68.2 | 63.3 | 58.0 | 73.8        |
| D3GUA/W | (1)  | SPL   | 50.7                       | 50.7 | 53.6 | 59.5 | 51.4 | 49.5 | 46.6 | 41.3 | 33.8 | 55.6        |
|         | (2)  | SPL   | 56.5                       | 56.5 | 53.8 | 59.9 | 51.5 | 49.5 | 46.6 | 41.4 | 34.2 | 55.8        |
|         | (3)  | PWL   | 51.6                       | 52.4 | 66.5 | 71.4 | 65.4 | 69.2 | 68.2 | 63.4 | 58.1 | 73.8        |
| D4EUA/W | (1)  | SPL   | 52.3                       | 52.3 | 55.2 | 61.1 | 53.0 | 51.1 | 48.2 | 42.9 | 35.4 | 57.2        |
|         | (2)  | SPL   | 58.1                       | 58.1 | 55.4 | 61.5 | 53.1 | 51.1 | 48.2 | 43.0 | 35.8 | 57.4        |
|         | (3)  | PWL   | 53.2                       | 54.0 | 68.1 | 73.0 | 67.0 | 70.8 | 69.8 | 65.0 | 59.7 | 75.4        |
| D4HUA/W | (1)  | SPL   | 53.8                       | 53.8 | 56.8 | 57.2 | 55.2 | 54.1 | 49.3 | 42.7 | 36.0 | 58.1        |
|         | (2)  | SPL   | 65.3                       | 65.3 | 58.0 | 57.5 | 55.3 | 54.2 | 49.4 | 42.8 | 36.1 | 58.3        |
|         | (3)  | PWL   | 82.3                       | 82.3 | 79.9 | 82.4 | 74.5 | 72.7 | 70.6 | 65.9 | 62.2 | 79.0        |
| D5DUA/W | (1)  | SPL   | 58.7                       | 57.7 | 57.6 | 61.2 | 53.3 | 53.2 | 50.9 | 43.1 | 38.6 | 58.5        |
|         | (2)  | SPL   | 58.7                       | 57.7 | 58.5 | 61.4 | 54.1 | 53.3 | 51.0 | 43.1 | 38.6 | 58.7        |
|         | (3)  | PWL   | 72.4                       | 72.4 | 81.1 | 83.8 | 76.7 | 74.2 | 72.1 | 67.4 | 63.7 | 80.6        |
| D7LUA/W | (1)  | SPL   | 60.0                       | 59.0 | 58.9 | 62.5 | 54.6 | 54.5 | 52.2 | 44.4 | 39.9 | 59.8        |
|         | (2)  | SPL   | 60.0                       | 59.0 | 59.8 | 62.7 | 55.4 | 54.6 | 52.3 | 44.4 | 39.9 | 60.0        |
|         | (3)  | PWL   | 73.7                       | 73.7 | 82.4 | 85.1 | 78.0 | 75.5 | 73.4 | 68.7 | 65.0 | 81.9        |
| D8FUA/W | (1)  | SPL   | 66.6                       | 66.6 | 73.7 | 70.9 | 63.0 | 61.1 | 57.0 | 49.3 | 39.5 | 67.2        |
|         | (2)  | SPL   | 66.8                       | 66.8 | 73.8 | 71.0 | 63.3 | 61.3 | 57.3 | 49.8 | 41.3 | 67.4        |
|         | (3)  | PWL   | 83.8                       | 83.8 | 93.7 | 91.6 | 83.8 | 79.2 | 78.4 | 69.4 | 61.6 | 87.5        |

# **Sound Pressure Level**

| MODEL     | Mode | Level |      |      | (    | Octave ba | and frequ | ency (Hz | )    |      |      | Sound Level |
|-----------|------|-------|------|------|------|-----------|-----------|----------|------|------|------|-------------|
| WODEL     | wode | Levei | 31.5 | 63   | 125  | 250       | 500       | 1000     | 2000 | 4000 | 8000 | [dB(A)]     |
|           | (1)  | SPL   | 42.5 | 42.5 | 48.5 | 55.6      | 45.2      | 39.5     | 36.9 | 30.4 | 23.8 | 49.3        |
| D1GUF/D/H | (2)  | SPL   | 43.2 | 43.2 | 49.3 | 55.7      | 45.8      | 39.6     | 37.0 | 32.5 | 25.1 | 49.5        |
|           | (3)  | PWL   | 66.5 | 66.5 | 72.9 | 72.6      | 69.9      | 65.1     | 62.3 | 60.2 | 53.9 | 71.7        |
|           | (1)  | SPL   | 47.2 | 47.2 | 56.7 | 54.5      | 47.3      | 45.2     | 42.9 | 36.1 | 33   | 51.5        |
| D2EUF/D/H | (2)  | SPL   | 48.0 | 48.0 | 57.1 | 54.7      | 48.5      | 45.3     | 43.0 | 38.2 | 33.6 | 52.0        |
|           | (3)  | PWL   | 68.7 | 68.7 | 76.2 | 79.4      | 72.7      | 69.8     | 67.7 | 65   | 59.8 | 76.4        |
|           | (1)  | SPL   | 51.2 | 51.2 | 49.8 | 53.7      | 49.8      | 46.8     | 45.8 | 38.5 | 36.2 | 52.8        |
| D3AUF/D/H | (2)  | SPL   | 57.0 | 57.0 | 50.4 | 54.9      | 50        | 46.8     | 45.8 | 38.5 | 37.0 | 53.1        |
|           | (3)  | PWL   | 72.3 | 72.3 | 75.0 | 79.0      | 70.5      | 68.7     | 66.6 | 61.9 | 58.6 | 75.2        |
|           | (1)  | SPL   | 52.1 | 52.1 | 55.0 | 60.9      | 52.8      | 50.9     | 48.0 | 42.7 | 35.2 | 57.0        |
| D3FUF/D/H | (2)  | SPL   | 58.0 | 58.0 | 55.3 | 61.4      | 53.0      | 50.9     | 48.1 | 42.9 | 35.7 | 57.3        |
|           | (3)  | PWL   | 53.0 | 53.8 | 67.9 | 72.8      | 66.8      | 70.5     | 69.6 | 64.8 | 59.5 | 75.2        |
|           | (1)  | SPL   | 52.0 | 52.0 | 54.9 | 60.8      | 52.7      | 50.8     | 47.9 | 42.6 | 35.1 | 56.9        |
| D3GUF/D/H | (2)  | SPL   | 57.9 | 57.9 | 55.2 | 61.3      | 52.9      | 50.8     | 48.0 | 42.8 | 35.6 | 57.2        |
|           | (3)  | PWL   | 53.1 | 53.9 | 68.0 | 72.9      | 66.9      | 70.6     | 69.7 | 64.9 | 59.6 | 75.3        |
|           | (1)  | SPL   | 52.5 | 52.5 | 55.4 | 61.3      | 53.2      | 51.3     | 48.4 | 43.1 | 35.6 | 57.4        |
| D4EUF/D/H | (2)  | SPL   | 58.4 | 58.4 | 55.7 | 61.8      | 53.4      | 51.3     | 48.5 | 43.3 | 36.1 | 57.7        |
|           | (3)  | PWL   | 53.6 | 54.4 | 68.5 | 73.4      | 67.4      | 71.1     | 70.2 | 65.4 | 60.1 | 75.8        |
|           | (1)  | SPL   | 50.0 | 50.0 | 53.0 | 53.4      | 51.4      | 50.3     | 45.5 | 38.9 | 32.2 | 54.3        |
| D4HUF/D/H | (2)  | SPL   | 61.7 | 61.7 | 54.4 | 53.9      | 51.7      | 50.6     | 45.8 | 39.2 | 32.5 | 54.7        |
|           | (3)  | PWL   | 78.9 | 78.9 | 76.5 | 79.0      | 71.1      | 69.3     | 67.2 | 62.5 | 58.8 | 75.6        |
|           | (1)  | SPL   | 54.4 | 54.4 | 57.4 | 57.8      | 55.8      | 54.7     | 49.9 | 43.3 | 36.6 | 58.7        |
| D5DUF/D/H | (2)  | SPL   | 66.1 | 66.1 | 58.8 | 58.3      | 56.1      | 55.0     | 50.2 | 43.6 | 36.9 | 59.1        |
|           | (3)  | PWL   | 84.1 | 84.1 | 81.7 | 84.2      | 76.3      | 74.5     | 72.4 | 67.7 | 64.0 | 80.8        |
|           | (1)  | SPL   | 64.2 | 64.2 | 71.3 | 68.5      | 60.6      | 58.7     | 54.6 | 46.9 | 37.1 | 64.8        |
| D8FUF/D/H | (2)  | SPL   | 64.4 | 64.4 | 71.4 | 68.6      | 60.9      | 58.9     | 54.9 | 47.4 | 38.9 | 65.0        |
|           | (3)  | PWL   | 81.4 | 81.4 | 91.3 | 89.2      | 81.4      | 76.8     | 76.0 | 67.0 | 59.2 | 85.1        |

#### Tab. 7b - F/D/H versions and Under configuration

#### LEGENDA

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

#### Level

SPL sound pressure level

PWLsound power level

# **Sound Pressure Level**

| MODEL   | Mode | Level |      |      | 1    | Octave ba | and frequ | ency (Hz | )    |      |      | Sound Level |
|---------|------|-------|------|------|------|-----------|-----------|----------|------|------|------|-------------|
| MODEL   | wode | Levei | 31.5 | 63   | 125  | 250       | 500       | 1000     | 2000 | 4000 | 8000 | [dB(A)]     |
|         | (1)  | SPL   | 50.6 | 50.6 | 54.8 | 50.2      | 49.1      | 44.1     | 40.3 | 33.7 | 24.0 | 50.2        |
| D1EOA/W | (2)  | SPL   | 59.1 | 54.8 | 55.7 | 51.4      | 49.8      | 45.5     | 41.2 | 34.9 | 25.5 | 51.2        |
|         | (3)  | PWL   | 76.9 | 72.6 | 76.6 | 77.3      | 73.6      | 71       | 67.7 | 63.9 | 59.7 | 76.4        |
|         | (1)  | SPL   | 50.2 | 50.2 | 54.4 | 49.8      | 48.7      | 43.7     | 39.9 | 33.3 | 23.6 | 49.8        |
| D1GOA/W | (2)  | SPL   | 56.3 | 53.6 | 55   | 50.7      | 49.2      | 44.8     | 40.6 | 34.2 | 24.7 | 50.5        |
|         | (3)  | PWL   | 73.9 | 71.2 | 75.7 | 76.4      | 72.8      | 70.1     | 66.9 | 63.0 | 58.7 | 75.5        |
|         | (1)  | SPL   | 51.7 | 51.7 | 55.9 | 51.9      | 49.2      | 45.8     | 42.4 | 36.3 | 26.5 | 51.4        |
| D2EOA/W | (2)  | SPL   | 56.5 | 57.4 | 57.2 | 53.5      | 50.5      | 47.6     | 43.5 | 37.7 | 28.2 | 52.9        |
|         | (3)  | PWL   | 74.5 | 75.4 | 79.9 | 83.6      | 75.6      | 75.3     | 72.5 | 68.1 | 65.7 | 80.8        |
|         | (1)  | SPL   | 58.4 | 58.4 | 57.9 | 57.7      | 56.1      | 49.9     | 45.7 | 38.1 | 28.9 | 56.5        |
| D3AOA/W | (2)  | SPL   | 60.6 | 59.8 | 57.9 | 57.7      | 56.1      | 51.1     | 47   | 42   | 35.6 | 57.1        |
|         | (3)  | PWL   | 68.8 | 68.4 | 77.3 | 80.7      | 73.0      | 72.2     | 70.1 | 67.5 | 67.6 | 78.4        |
|         | (1)  | SPL   | 47.3 | 47.0 | 50.6 | 52.1      | 53.6      | 51.0     | 45.0 | 36.1 | 29.9 | 54.9        |
| D3FOA/W | (2)  | SPL   | 58.8 | 58.0 | 54.6 | 53.9      | 53.6      | 51.0     | 45.2 | 40.2 | 33.8 | 55.3        |
|         | (3)  | PWL   | 80.7 | 80.2 | 83.1 | 78.8      | 70.8      | 66.2     | 65.4 | 58.9 | 50.9 | 75.0        |
|         | (1)  | SPL   | 46.8 | 46.5 | 50.1 | 51.6      | 53.1      | 50.5     | 44.5 | 35.6 | 29.4 | 54.4        |
| D3GOA/W | (2)  | SPL   | 59.2 | 58.4 | 55.0 | 54.3      | 53.5      | 50.5     | 45.6 | 40.6 | 34.2 | 55.2        |
|         | (3)  | PWL   | 80.1 | 79.6 | 82.5 | 78.2      | 69.9      | 65.3     | 64.5 | 58.3 | 50.3 | 74.2        |
|         | (1)  | SPL   | 50.3 | 50.0 | 53.6 | 55.1      | 56.6      | 54.0     | 48.0 | 39.1 | 32.9 | 57.9        |
| D4EOA/W | (2)  | SPL   | 62.7 | 61.9 | 58.5 | 57.8      | 57.0      | 54.0     | 49.1 | 44.1 | 37.7 | 58.7        |
|         | (3)  | PWL   | 83.6 | 83.1 | 86   | 81.7      | 73.4      | 68.8     | 68   | 61.8 | 53.8 | 77.7        |
|         | (1)  | SPL   | 63.5 | 58.4 | 62.4 | 58.0      | 56.8      | 55.5     | 50.0 | 43.5 | 39.4 | 59.5        |
| D4HOA/W | (2)  | SPL   | 63.5 | 59.1 | 62.4 | 58.0      | 60.3      | 56.8     | 50.5 | 43.5 | 39.4 | 61.2        |
|         | (3)  | PWL   | 71.6 | 71.6 | 80.5 | 83.9      | 78.5      | 75.5     | 73.3 | 68.6 | 65.9 | 81.7        |
|         | (1)  | SPL   | 61.5 | 56.4 | 60.4 | 56.0      | 54.8      | 53.5     | 48.0 | 41.5 | 37.4 | 57.5        |
| D5DOA/W | (2)  | SPL   | 61.5 | 57.9 | 60.4 | 56.0      | 59.1      | 55.6     | 49.3 | 41.5 | 37.4 | 59.9        |
|         | (3)  | PWL   | 70.1 | 70.1 | 79   | 82.4      | 76.8      | 73.9     | 71.8 | 67.1 | 64.4 | 80.1        |
|         | (1)  | SPL   | 62.2 | 57.1 | 61.1 | 56.7      | 55.5      | 54.2     | 48.7 | 42.2 | 38.1 | 58.2        |
| D7LOA/W | (2)  | SPL   | 62.2 | 57.7 | 61.1 | 56.7      | 58.9      | 55.4     | 49.1 | 42.2 | 38.1 | 59.8        |
|         | (3)  | PWL   | 71.1 | 71.1 | 80.0 | 83.4      | 77.5      | 74.9     | 72.8 | 68.1 | 65.4 | 81.0        |

# **Sound Pressure Level**

| MODEL     | Mode | Level |      |      |      | Octave ba | and frequ | ency (Hz) |      |      |      | Sound Level |
|-----------|------|-------|------|------|------|-----------|-----------|-----------|------|------|------|-------------|
| MODEL     | wode | Level | 31.5 | 63   | 125  | 250       | 500       | 1000      | 2000 | 4000 | 8000 | [dB(A)]     |
|           | (1)  | SPL   | 50.7 | 50.7 | 54.9 | 50.3      | 49.2      | 44.2      | 40.4 | 33.8 | 24.1 | 50.3        |
| D1GOF/D/H | (2)  | SPL   | 56.5 | 53.9 | 55.5 | 51.1      | 49.7      | 45.2      | 41.0 | 34.7 | 25.2 | 51.0        |
|           | (3)  | PWL   | 73.9 | 71.3 | 76.0 | 76.6      | 73.1      | 70.3      | 67.1 | 63.3 | 59.0 | 75.8        |
|           | (1)  | SPL   | 52.5 | 52.5 | 56.7 | 52.7      | 50.0      | 46.6      | 43.2 | 37.1 | 27.3 | 52.2        |
| D2EOF/D/H | (2)  | SPL   | 57.0 | 58.0 | 58.0 | 54.2      | 51.3      | 48.4      | 44.3 | 38.4 | 28.9 | 53.7        |
|           | (3)  | PWL   | 74.4 | 75.4 | 80.1 | 83.7      | 75.8      | 75.5      | 72.7 | 68.2 | 65.8 | 81.0        |
|           | (1)  | SPL   | 54.6 | 54.6 | 54.1 | 53.9      | 52.3      | 46.1      | 41.9 | 34.3 | 25.1 | 52.7        |
| D3AOF/D/H | (2)  | SPL   | 58.5 | 57.7 | 54.3 | 53.9      | 52.8      | 49.0      | 44.9 | 39.9 | 33.5 | 54.3        |
|           | (3)  | PWL   | 68.1 | 67.3 | 73.5 | 76.9      | 69.3      | 70.9      | 68.9 | 66.8 | 66.9 | 76.4        |
|           | (1)  | SPL   | 48.1 | 47.8 | 51.4 | 52.9      | 54.4      | 51.8      | 45.8 | 36.9 | 30.7 | 55.7        |
| D3FOF/D/H | (2)  | SPL   | 60.5 | 59.7 | 56.3 | 55.6      | 54.8      | 51.8      | 46.9 | 41.9 | 35.5 | 56.5        |
|           | (3)  | PWL   | 83.1 | 82.6 | 85.5 | 81.2      | 71.6      | 67.0      | 66.4 | 61.3 | 53.3 | 76.7        |
|           | (1)  | SPL   | 47.5 | 47.2 | 50.8 | 52.3      | 53.8      | 51.2      | 45.2 | 36.3 | 30.1 | 55.1        |
| D3GOF/D/H | (2)  | SPL   | 61.1 | 60.3 | 56.9 | 56.2      | 55.4      | 51.6      | 47.5 | 42.5 | 36.1 | 56.8        |
|           | (3)  | PWL   | 83.0 | 82.5 | 85.4 | 81.1      | 71.0      | 66.0      | 66.3 | 61.2 | 53.2 | 76.5        |
|           | (1)  | SPL   | 49.1 | 48.8 | 52.4 | 53.9      | 55.4      | 52.8      | 46.8 | 37.9 | 31.7 | 56.7        |
| D4EOF/D/H | (2)  | SPL   | 62.7 | 61.9 | 58.5 | 57.8      | 57.0      | 53.2      | 49.1 | 44.1 | 37.7 | 58.4        |
|           | (3)  | PWL   | 84.6 | 84.1 | 87.0 | 82.7      | 72.6      | 67.6      | 67.9 | 62.8 | 54.8 | 78.1        |
|           | (1)  | SPL   | 59.9 | 54.8 | 58.8 | 54.4      | 53.2      | 51.9      | 46.4 | 39.9 | 35.8 | 55.9        |
| D4HOF/D/H | (2)  | SPL   | 59.9 | 55.9 | 58.8 | 54.4      | 57.1      | 53.6      | 47.3 | 39.9 | 35.8 | 57.9        |
|           | (3)  | PWL   | 68.0 | 68.3 | 76.9 | 80.3      | 75.7      | 72.7      | 69.8 | 65.0 | 62.3 | 78.5        |
|           | (1)  | SPL   | 63.0 | 57.9 | 61.9 | 57.5      | 56.3      | 55.0      | 49.5 | 43.0 | 38.9 | 59.0        |
| D5DOF/D/H | (2)  | SPL   | 63.0 | 58.8 | 61.9 | 57.5      | 60.0      | 56.5      | 50.2 | 43.0 | 38.9 | 60.8        |
|           | (3)  | PWL   | 71.7 | 71.7 | 80.6 | 84.0      | 76.3      | 75.5      | 73.4 | 68.7 | 66.0 | 81.3        |

#### Tab. 7d - F/D/H versions, Over configuration

#### LEGENDA

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level

SPL sound pressure level

PWLsound power level

## Tab. 7e - A/W versions and Displacement configuration

| MODEL   | Mode | Loval |      |      | 1    | Octave ba | and frequ | ency (Hz | )    |      |      | Sound Level |
|---------|------|-------|------|------|------|-----------|-----------|----------|------|------|------|-------------|
| WODEL   | woue | Level | 31.5 | 63   | 125  | 250       | 500       | 1000     | 2000 | 4000 | 8000 | [dB(A)]     |
|         | (1)  | SPL   | 59.1 | 59.1 | 61.8 | 55.2      | 52.5      | 53.2     | 47.4 | 37.4 | 30.6 | 56.6        |
| D1EDA/W | (2)  | SPL   | 59.3 | 66   | 62.2 | 55.4      | 53.2      | 54.7     | 50.1 | 46.9 | 38.5 | 58.4        |
|         | (3)  | PWL   | 66.7 | 73.4 | 73.2 | 73.4      | 70.7      | 67.2     | 65.6 | 68.3 | 61.2 | 74.6        |
|         | (1)  | SPL   | 57.4 | 57.4 | 60.1 | 53.5      | 50.8      | 51.5     | 45.7 | 35.7 | 28.9 | 54.9        |
| D1GDA/W | (2)  | SPL   | 57.4 | 64.2 | 60.5 | 53.7      | 51.5      | 53.0     | 48.3 | 45.0 | 36.7 | 56.7        |
|         | (3)  | PWL   | 65.1 | 71.9 | 71.8 | 72.0      | 69.3      | 65.8     | 64.1 | 66.7 | 59.7 | 73.1        |
|         | (1)  | SPL   | 60.9 | 60.9 | 63.6 | 57.0      | 54.3      | 55       | 49.2 | 39.2 | 32.4 | 58.4        |
| D2EDA/W | (2)  | SPL   | 60.9 | 67   | 63.9 | 57.1      | 54.9      | 56.3     | 51.5 | 47.8 | 39.5 | 59.9        |
|         | (3)  | PWL   | 67.4 | 73.5 | 75.6 | 78.8      | 71.6      | 70.5     | 69.4 | 71   | 65.8 | 77.8        |
|         | (1)  | SPL   | 64.3 | 64.3 | 63.8 | 63.6      | 62.0      | 55.8     | 51.6 | 44.0 | 34.8 | 62.4        |
| D3ADA/W | (2)  | SPL   | 66.6 | 65.8 | 63.8 | 63.6      | 62.0      | 57.1     | 53.0 | 48.0 | 41.6 | 63.0        |
|         | (3)  | PWL   | 75.6 | 74.8 | 83.2 | 86.6      | 78.9      | 78.4     | 76.4 | 74.3 | 74.4 | 84.6        |

#### LEGENDA

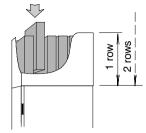
The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (0 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (0 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level


SPL sound pressure level

PWLsound power level

## Silencing cartridges (option) - for supply (Over) and suction (Under)

These are special cartridges made of self—extinguishing material with a high noise attenuation capacity. They are guaranteed against disintegration and release of particles do to friction of the air.

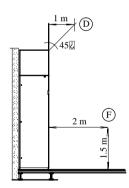
It is possible to install **one** or **two** rows of cartridges in the supply hood by inserting them through the top: one single row for  $\geq$  600 mm height hood, two rows for a hood height 1200 mm. Despite a small additional pressure drop, these cartridges provide a remarkable sound power level reduction (see tab. 7d).



#### Tab. 7f - Features of silencing cartridges

| Madala  | Dimensions      | Free Section | Cartridge Numbe |        |  |  |
|---------|-----------------|--------------|-----------------|--------|--|--|
| Models  | [mm]            | [mm]         | 1 row           | 2 rows |  |  |
| D1E D2E | 500 x 195 x 500 | 400 x 100    | 4               | 8      |  |  |
| D3A     | 500 x 195 x 500 | 400 x 100    | 5               | 10     |  |  |
| D3F D7L | 500 x 195 x 500 | 400 x 100    | 11              | 22     |  |  |
| D8F     | 500 x 195 x 500 | 400 x 100    | 16              | 32     |  |  |

#### Tab. 7g - Attenuation in dB


|         |    | A   | ttenuatio | n in dB at | different fre | equency valu | ies (Hz) |      |
|---------|----|-----|-----------|------------|---------------|--------------|----------|------|
| row no. | 63 | 125 | 250       | 500        | 1000          | 2000         | 4000     | 8000 |
| 1       | 1  | 4   | 7         | 15         | 26            | 28           | 27       | 14   |
| 2       | 1  | 6   | 12        | 27         | 49            | 53           | 49       | 23   |

#### Tab. 7h – Pressure drops

|         | Press | ure drops (Pa) f | or each module a | at different air flow | ws (m <sup>3</sup> /s) |
|---------|-------|------------------|------------------|-----------------------|------------------------|
| row no. | 0.2   | 0.3              | 0.4              | 0.5                   | 0.6                    |
| 1       | 1     | 2                | 4                | 7                     | 9                      |
| 2       | 3     | 6                | 11               | 18                    | 26                     |

#### Tab. 7i – Approximate variations of Sound Pressure Level

Variations compared to values measured without noise reduction duct: free discharge (for Over units) or free suction (Under units). Position **F**: 2 meters from the front, 1.5 meter from the ground Position **D**: 1 meter from the front, 45° from the top



|                    | Diaman Halaht | Cartridge Rows | Position |          |  |
|--------------------|---------------|----------------|----------|----------|--|
| Unit Configuration | Plenum Height | Number         | F        | D        |  |
| Under              | 600 mm        | 1              | -4.0 dB  | -7.0 dB  |  |
| Under              | 1200 mm       | 2              | -5.0 dB  | -8.0 dB  |  |
| 2                  | 600 mm        | 1              | —7.5 dB  | -12.0 dB |  |
| Over               | 1200 mm       | 2              | -9.5 dB  | -14.0 dB |  |

## Fan (room unit)

Innovative application of single inlet centrifugal fans incorporating an impeller with curved blades corrosion resistant made of aluminium with new design to get increased performances and sound radiation free of tonal noise.

High efficiency.

The motor is three-phase with IP54 protection; provided with internal thermal protection. The fan wheel is statically and dynamically

balanced; the bearings are self-lubricating.



The fan is mounted on anti-vibration rubber supports to reduce the mechanical contact with the frame and hence minimize vibration.

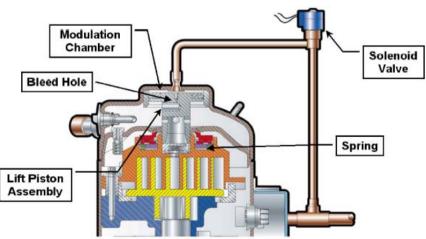
Available head up to 350 Pa.

Modularity.

Variable speed: several different settings; possibility to optimize air flow, available head, dehumidification operation.

Other information: see Chap. 1.

## Air filters (see Chap. 9)


## Compressor

## Digital Scroll compressor [Digital range]

When it is mandatory to have a precise and continuous equivalence between the load and the cooling capacity. We get this through the innovative compressor: the Copeland Digital Scroll. It uses a simple and effective method to modulate the capacity, giving unparalleled performance in the modulation field.

The controlled separation of the scrolls is achieved using a solenoid valve and a bypass connection between the discharge chamber and the intake gas (See Fig.8.a). The scrolls are designed so that the upper scroll can separate from the bottom scroll by 1mm vertically. A piston is attached on top of the upper scroll and will lift up the upper scroll when it moves up. When the solenoid valve is closed, the Digital Scroll operates as a normal scroll compressor and the compressed gas is discharged at high pressure through the normal piping. When the solenoid valve is opened, the discharge pressure. This leads to less pressure becomes connected, thereby releasing some of the discharge pressure. This leads to less pressure holding the piston down thereby causing the piston to shift upwards, which in turn lifts the upper scroll. Once the scrolls separate, any gas passing through is no longer compressed.

The Digital Scroll operates in two stages – the "loaded state", when the solenoid valve is normally closed and "unloaded state", when the solenoid valve is open. During the loaded state the compressor operates like a standard scroll and delivers full capacity and mass flow. However, during the unloaded state, there is no capacity and no mass flow through the compressor.



#### Fig. 8.a

At this stage, let us introduce the concept of a cycle time. A cycle time consists of a "Loaded State" time and "Unloaded State" time. The duration of these 2–time segments determine the capacity modulation of the compressor. Example: In a 20 seconds cycle time, if the loaded state time is 10 seconds and the unloaded state time is 10 seconds, the compressor modulation is 50%. If for the same cycle time, the loaded state time is 15 seconds and the unloaded state time is 5 seconds, the compressor modulation is 75%. The capacity is a time averaged summation of the loaded state and unloaded state. By varying the loaded state time and unloaded state time, any capacity between 10% and 100% can be delivered by the compressor. Hence, the Copeland Digital Scroll can achieve a continuous modulation of AC capacity to suit the system's needs precisely.

We could vary the cycle time and still achieve the same effective capacity, but Copeland and Liebert they have done extensive testing to optimize the cycle time in this application.

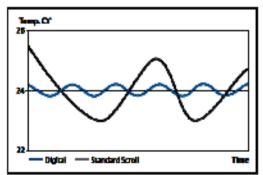
### Electric expansion valve device [optional]

The valve is designed for modulating control of refrigerant circuits with high speed and high precision. It is suitable for use as expansion device in refrigerant circuits with Copeland Digital Scroll compressor, with organic safety refrigerants (i.e. R410A). For variable capacity systems, an EXV provides superior performance as compared to a thermostatic expansion valve (TXV), due to:

- · Precise flow control
- · Positioning time

Electronic expansion valve ensure a better control on super heating at the end of the evaporator, ensuring at same that compressor will never be filled by liquid from the 10% to 110% of its nominal capacity, instead a mechanical one can't ensure it. It has to be calibrate and then it will work properly but only around the calibration point.

This means that a TXV works better (i.e. better control, longer life) with a condensing pressure as much as possible constant. For such reason with TXV the condensing temperature is kept around  $45^{\circ}$ C as set point. But during the coldest period the condensing temperature can be lowered and the electronic expansion valve adapts to this new situation. This permits an increase of the cooling capacity of the unit, decrease the power input of the unit and so increase the energy efficiency of the entire Liebert HPM Digital unit. Basically this on a standard unit with standard Scroll compressor has the negative effect of decreasing the SHR of the unit (common competitors' application), while on Liebert HPM Digital thanks to Digital Scroll modulation this negative effect disappears. So for such reason to have the biggest advantage from the electronic expansion valve use a different set point for the fan speed controller of the condenser coupled with Liebert HPM Digital ( $33^{\circ}C - P1$ )


### Digital range – Major Benefits

Emerson Network Power is proud to offer a new possibility to have the best technologic evolutions in your cooling unit, adding to an already optimum product a wide range of benefits: Modulation (as explained in Digital Scroll Chapter):

- Perfect match between Cooling Capacity and Heat Load.
- · Lower power input partial load.
- Quick adaptation to changing heat load.
- · Possibility to size cooling system to overcome to future heat load growth.
- Precision Control:
- More precise room temperature control.

Once you make a direct comparisons between standard units using standard scroll compressors and Liebert HPM Digital, is necessary to notice that Liebert HPM Digital has a very high precision in control room temperature; so all the advantages exponentially increase comparing Liebert HPM Digital to a standard unit with the same tolerances on controlling the temperature.





# **Technical Specifications**

In fact to guarantee the same precision, standard scroll technology has to use additional technologies, like hot gas by pass or hot gas injection, and others, to avoid the compressor shut off, and to avoid loosing temperature control. All these techniques are very energy expensive, and for this reason we can say that Liebert HPM Digital offers more requiring less.

Availability & Reliability:

- Less number of start/stop cycling means longer unit life.
  - As described previously at partial load, a Digital scroll doesn't work with ON OFF configuration. This avoids peaks in adsorbed power, and reduces stress on components. This increases the life of the unit, greatly reducing failure due to fatigue.
- Wide operational limits for higher availability.

To maximise the possible advantages coming from the thermodynamic functioning of Liebert HPM Digital Emerson Network Power has developed special software; with an additional pressure transducer the control, when external air temperature increases over standard functioning limits, commands the compressor to modulate his capacity. Forcing the condensing temperature to decrease under the limit, even when at partial load, the unit guarantees refrigeration; standard units in the same condition would fail. So when you size your requested unit you consider the worst external conditions; it can happen that occasionally during the year it will be hotter than your design ambient temperature. In this case a standard unit will shut down due to high condensing temperatures, leaving your Data Center without cooling when the requirement is at its highest, however your Liebert HPM Digital will guarantee a partial cooling capacity. So System availability is guaranteed even during extreme operating conditions.

Increased Efficiency thanks to:

• COP and SHR Effect.

At partial load alternation between loaded and unloaded states involves a reduction on nominal mass flow both on the evaporator and on the condenser. This gives digital technology two important thermodynamic advantages: higher evaporating temperatures, and lower condensing temperatures. These are both important characteristics, the evaporating temperature is directly related to cooling capacity, and a higher evaporating temperature means a higher cooling capacity. Condensing temperature is directly related to power input, and lower it is the lower the power consumption of the compressor. Consequently the Digital scroll increases its COP at partial load (higher then 75%) in fact the higher evaporating temperature and lower condensing temperature gives higher cooling capacity and lower power input.

- Electronic Expansion Valve Effect (as explained in the proper Chapter).
- EC Fan Effect (as explained in the proper Chapter).

Thanks to all these effects we can have a reduction up to 50% on the yearly energy consumption and a return of investment lower then half a year (considering a comparison versus a standard Room Cooling Unit with standard Scroll, standard AC Fan and standard Thermostatic Expansion Valve, placed in a city in the centre of Europe).

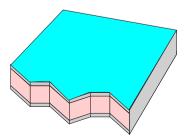
underfloor air delivery, whereas in machines with upward air delivery it returns through the metal grid

## Coils

#### DX Refrigerant/room air

In such a way we can increase the global efficiency to the biggest value. High front surface. Made of copper pipes and aluminium fins. Fins treated with hydrofile styrol acrylic paints to withstand corrosive atmospheres. Low pressure drop.

High SHR (Sensible Heat Ratio).


## **Frame and panels**

The sheet steel structure, painted with epoxy-polyester powders, is assembled by stainless steel rivets; the paneling system ensures higher stiffness; there will also be some pluggings (compressor space and fan) for guaranteeing both safety and high acoustic absorption.

The frontal panel is assembled on hinges to make the access easier; this can be opened by the fast closing lock.

The rear and side panels are screwed to the supports. The rear panel is screwed directly to the frame.

The air returns from the machine top in machines with



on the front panel.

## **Technical Specifications**

The compressor section can be reached even during the unit operation by removing the front panel and the protection plugging.

The panels are lined with thermoacoustic insulating material - class 0 (ISO 11822).

## Refrigerant

The units are designed for being used with refrigerant R410A.

## Humidifier (option) see Chap. 11

## Electrical Heaters (option) for Heating Mode

The heaters are made of:

- aluminium with high efficiency fins for D1E,D1G,D2E and D8F models
- finned armored stainless steel AISI 304 for D3A,D3F,D3G,D4E,D4H,D5D and D7L models:

to maintain a low surfaces power density. Ionization effects are eliminated owing to the low heater surface temperature. Each stage of electric heating is distributed across the three phases so to avoid balancing problems.

There an ON–OFF type electronic temperature controller, a safety thermostat with manual reset, a miniature circuit breaker for short–circuit protection and harness protection from possible accidental contact.

When electrical heating is installed, the dehumidification system can be also activated and humidity sensor and indicator provided, if especially ordered (see "humidification and dehumidification system" for the dehumidification function). Electric heating can be installed combined with hot gas or hot water heating.

## Hot Gas Coil (option)

## DX units for Reheating Mode only (versions A/W/F/D/H)

Liebert HPM can be supplied with a reheating system that uses the heat which is normally transferred to the condenser, thus saving energy.

This system is activated during the dehumidification phase, when the temperature is below its setpoint. A control valve prevents the refrigerant from flowing into the reheat coil when not required. Hot gas reheat is available as an alternative to hot water reheat.

|  | MODELS | DIE | DIC | DOE | D2A | D2E | D20 |
|--|--------|-----|-----|-----|-----|-----|-----|

Tab 8a - Features of hot gas reheat system at nominal airflow

| MODELS<br>U/O A/W/F/D/H                                                |     | D1E  | D1G  | D2E  | D3A  | D3F  | D3G  | D4E  | D4H  | D5D  | D7L  | D8F  |
|------------------------------------------------------------------------|-----|------|------|------|------|------|------|------|------|------|------|------|
| rows                                                                   | no. | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| surface                                                                | m²  | 0.37 | 0.37 | 0.37 | 0.47 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.29 |
| reheating capacity<br>(at 24°C, 50%, condensing temperat-<br>ure 45°C) | kW  | 8.9  | 10.6 | 14.2 | 17.3 | 21.3 | 26.7 | 10.8 | 13.6 | 17.5 | 20.4 | 28.2 |

#### Tab. 8b - Reheating mode during the dehumidifications

|             | Hot gas reheat (HG) | + Heaters (H1, H2) during | J Dehumidification mode |
|-------------|---------------------|---------------------------|-------------------------|
|             | ON                  | OFF                       | Functions               |
| first step  | HG + H1             | =                         | Reheating + Heater      |
| second step | HG + H2             | HG + H1                   | Reheating + Heater      |

## Hot Water Coil (for heating and reheating mode and dehumidification system)

The hot water heating coil is made of copper pipes and aluminium fins, with one row, test pressure 30 bar and includes an exhaust valve. A three-way on-off valve directly driven by the microprocessorcontroller is supplied as standard.

A hot water thermostat (provided by the customer) is installed to indicate the presence of hot water at the correct temperature. When hot water heating is installed, the dehumidification system can also activated and a humidity sensor and indicator provided, if especially ordered (see "humidification and dehumidification system" for the dehumidification function).

The hot water heating/reheat system can be installed as an alternative to the hot gas reheat system.

D2E

1

| MODELS<br>U/O A/W/F/D/H |                | DIE                          | DIG                     |
|-------------------------|----------------|------------------------------|-------------------------|
| rows                    | no.            | 1                            | 1                       |
| surface                 | m²             | 0.37                         | 0.37                    |
| indoor temp. 2          | 4°C, 50% R.H.; | water inlet/outlet temperatu | ire 80/65°C; condensing |
| power (re-heating)      | kW             | 10.4                         | 11.5                    |
| water flow              | l/e            | 0.17                         | 0.10                    |

#### Tab. 8c - Features of hot water reheat system at nominal airflow

|                          |                |               | •             |               | •           |             |          |       |  |
|--------------------------|----------------|---------------|---------------|---------------|-------------|-------------|----------|-------|--|
| surface                  | m²             |               | 0.37          |               | 0.37        |             | 0.37     | ,     |  |
| indoor temp. 24°C        | C, 50% R.H.; v | water inlet/  | outlet temper | rature 80/65° | C; condensi | ng temperat | ure 45°C |       |  |
| power (re-heating)       | kW             |               | 10.4          |               | 11.5        | -           | 12.9     |       |  |
| water flow               | l/s            |               | 0.17          |               | 0.19        |             | 0.21     |       |  |
| coil side pressure drops | kPa            |               | 1             |               | 1           |             | 1        |       |  |
| total pressure drops     | kPa            |               | 4             |               | 5           |             | 3        | 1     |  |
| indoor temp. 20°0        | C, 50% R.H.; v | water inlet/o | •             | rature 80/65° |             | ng temperat | ure 45°C |       |  |
| power (re-heating)       | kW             |               | 11.3          |               | 12.4        |             | 13.9     |       |  |
| water flow               | l/s            |               | 0.18          |               | 0.20        |             | 0.23     |       |  |
| coil side pressure drops | kPa            |               | 1             |               | 1           |             | 1        |       |  |
| total pressure drops     | kPa            |               | 4             |               | 5           |             | 3        |       |  |
| MODELS<br>U/O A/W/F/D/H  |                | D3A           | D3F           | D3G           | D4E         | D4H         | D5D      | D7L   |  |
| rows                     | no.            | 1             | 1             | 1             | 1           | 1           | 1        | 1     |  |
| surface                  | m <sup>2</sup> | 0.47          | 1.07          | 1.07          | 1.07        | 1.07        | 1.07     | 1.07  |  |
| indoor temp. 24°C        | C, 50% R.H.; v | water inlet/  | outlet temper | rature 80/65° | C; condensi | ng temperat | ure 45°C |       |  |
| power (re-heating)       | kW             | 17.2          | 34.4          | 34.5          | 38.4        | 38.6        | 42.1     | 43.8  |  |
| water flow               | l/s            | 0.28          | 0.56          | 0.563         | 0.627       | 0.63        | 0.686    | 0.714 |  |
| coil side pressure drops | kPa            | 1             | 2             | 2             | 3           | 3           | 3        | 4     |  |
| total pressure drops     | kPa            | 4             | 15            | 15            | 19          | 20          | 23       | 25    |  |
| indoor temp. 20°C        | C, 50% R.H.; v | water inlet/  | outlet temper | rature 80/65° | C; condensi | ng temperat | ure 45°C |       |  |
| power (re-heating)       | kW             | 18.4          | 36.6          | 36.7          | 40.8        | 41          | 44.7     | 46.5  |  |
| water flow               | l/s            | 0.3           | 0.596         | 0.598         | 0.665       | 0.668       | 0.729    | 0.758 |  |
| coil side pressure drops | kPa            | 1             | 3             | 3             | 3           | 3           | 4        | 4     |  |
| total pressure drops     | kPa            | 5             | 18            | 18            | 22          | 22          | 26       | 28    |  |
| MODELS<br>U A/W/F/D/H    |                |               |               |               | D8F         |             |          |       |  |
| rows                     | no.            |               |               |               | 1           |             |          |       |  |
| surface                  | m²             |               |               |               | 1.29        |             |          |       |  |
| indoor temp. 24°C        | C, 50% R.H.; v | water inlet/  | outlet temper | rature 80/65° | C; condensi | ng temperat | ure 45°C |       |  |
| power (re-heating)       | kW             |               |               |               | 32.0        |             |          |       |  |
| water flow               | l/s            |               |               |               | 0.522       |             |          |       |  |
| coil side pressure drops | kPa            |               |               |               | 5           |             |          |       |  |
| total pressure drops     |                |               |               |               |             |             |          |       |  |

| een ende procedire drope |                 | ·                                                                  |
|--------------------------|-----------------|--------------------------------------------------------------------|
| total pressure drops     | kPa             | 10                                                                 |
| indoor temp. 20          | °C, 50% R.H.; w | ater inlet/outlet temperature 80/65°C; condensing temperature 45°C |
| power (re-heating)       | kW              | 33.9                                                               |
| water flow               | l/s             | 0.553                                                              |
| coil side pressure drops | kPa             | 6                                                                  |
| total pressure drops     | kPa             | 11                                                                 |

# **Technical Specifications**

#### Tab. 8d - Reheating mode during the dehumidifications

| Hot water reheat (HW) + Heaters (H1, H2) during Dehumidification mode |                  |   |                    |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------|---|--------------------|--|--|--|--|--|
|                                                                       | ON OFF Functions |   |                    |  |  |  |  |  |
| first step                                                            | HW + H1          | = | Reheating + Heater |  |  |  |  |  |
| second step HW + H2 HW + H1 Reheating + Heater                        |                  |   |                    |  |  |  |  |  |

#### Tab. 8e - Features of hot water heating system at nominal airflow

| MODELS<br>U/O A/W/F/D/H  |                |           | D1E            |                 | D1G           |        | D2E   |       |
|--------------------------|----------------|-----------|----------------|-----------------|---------------|--------|-------|-------|
| rows                     | no.            | 1 1       |                |                 |               | 1      |       |       |
| surface                  | m²             | 0.37      |                |                 | 0.37          |        | 0.37  | •     |
|                          | indoor temp.   | 24°C, 50% | R.H.; water in | nlet/outlet ter | nperature 80  | ′65°C. |       |       |
| power (heating)          | kW             |           | 7.7            |                 | 8.6           |        | 9.5   |       |
| water flow               | l/s            |           | 0.125          |                 | 0.14          |        | 0.15  |       |
| coil side pressure drops | kPa            |           | 1              |                 | 1             |        | 1     |       |
| total pressure drops     | kPa            |           | 3              |                 | 3             |        | 2     |       |
|                          | indoor temp.   | 20°C, 50% | R.H.; water in | nlet/outlet ter | nperature 80/ | ′65°C. |       |       |
| power (heating)          | kW             |           | 8.8            |                 | 9.7           |        | 10.7  | ,     |
| water flow               | l/s            |           | 0.14           |                 | 0.159         |        | 0.174 | 4     |
| coil side pressure drops | kPa            |           | 1              |                 | 1             |        | 1     |       |
| total pressure drops     | kPa            |           | 3              |                 | 4             |        | 2     |       |
| MODELS<br>U/O A/W/F/D/H  |                | D3A       | D3F            | D3G             | D4E           | D4H    | D5D   | D7L   |
| rows                     | no.            | 1         | 1              | 1               | 1             | 1      | 1     | 1     |
| surface                  | m²             | 0.47      | 1.07           | 1.07            | 1.07          | 1.07   | 1.07  | 1.07  |
|                          | indoor temp.   | 24°C, 50% | R.H.; water in | nlet/outlet ter | nperature 80  | 65°C.  |       |       |
| power (heating)          | kW             | 13.1      | 27.2           | 27.3            | 30.4          | 30.5   | 32.7  | 33.6  |
| water flow               | l/s            | 0.213     | 0.444          | 0.446           | 0.495         | 0.497  | 0.534 | 0.547 |
| coil side pressure drops | kPa            | 1         | 2              | 2               | 2             | 2      | 2     | 2     |
| total pressure drops     | kPa            | 3         | 10             | 10              | 12            | 12     | 14    | 15    |
| · ·                      | indoor temp.   | 20°C, 50% | R.H.; water in | nlet/outlet ter | nperature 80/ | 65°C.  |       |       |
| power (heating)          | kW             | 14.5      | 29.8           | 29.9            | . 33.2        | 33.2   | 35.8  | 36.7  |
| water flow               | l/s            | 0.237     | 0.486          | 0.487           | 0.542         | 0.542  | 0.584 | 0.598 |
| coil side pressure drops | kPa            | 1         | 2              | 2               | 2             | 2      | 2     | 3     |
| total pressure drops     | kPa            | 3         | 12             | 12              | 14            | 14     | 16    | 18    |
| MODELS<br>U A/W/F/D/H    |                |           |                |                 | D8F           |        |       |       |
| rows                     | no.            |           |                |                 | 1             |        |       |       |
| surface                  | m <sup>2</sup> |           |                |                 | 1.29          |        |       |       |
| Sundoo                   | indoor temp.   | 24°C. 50% | R.H.: water in | nlet/outlet ter | -             | 65°C.  |       |       |
| power (heating)          | kW             | ,         | ,              |                 | 25.4          |        |       |       |
| water flow               | l/s            |           |                |                 | 0.415         |        |       |       |
| coil side pressure drops | kPa            |           |                |                 | 3             |        |       |       |
| total pressure drops     | kPa            |           |                |                 | 6             |        |       |       |
| 1                        | indoor temp.   | 20°C, 50% | R.H.: water in | let/outlet ter  | nperature 80  | 65°C.  |       |       |
| power (heating)          | kW             | ,,        |                |                 | 27.7          | ••     |       |       |
| water flow               | l/s            |           |                |                 | 0.451         |        |       |       |
| coil side pressure drops | kPa            |           |                |                 | 4             |        |       |       |
| total pressure drops     | kPa            |           |                |                 | 7             |        |       |       |

## Water-cooled Condenser

DX – W/F/H units (see Chap. 5)

## **Electric board**

The electric board is housed in the front part in a space insulated against the air flow and protected by a cover, so as to avoid tampering by non-authorized personnel and to protect the electric board parts supplied with a voltage higher than 24 V.

The electric board complies with the norm 204-1 IEC.

The air conditioners have been provided for operating at 400 V $\sim$ /3/50 Hz+N+G.

Magnetothermal switches are supplied as protection of every electric component. A single—phase transformer has been provided for supplying power to the secondary circuit at 24 V.

A main switch with door—locking handle is installed to prevent it from being removed when the switch is in the operating position.

There will be an automatic start-up after a possible stop due to power supply lack.

Additional terminals for remote start—up and carry of some operating conditions (fans and compressors) or connection of additional devices (Liquistat, Firestat, Smokestat, clogged filters) are available on the terminal block of the electric board. On the terminal block there is also a clean contact for the remote signalling of the general alarm.

## **Control system**

Very simple user interface.

Immediately intelligible utilization of the control unit system with LCD.

Net connectivity of several units.

Possible utilization of the iCom CDL with graphic display.

Fig. 8.c iCom Medium (single circuit units) Fig. 8.d iCom Large (double circuit units)



# Outdoor Components

## Air-cooled Condenser

DX - A/D units (see Product Documentation of HCR condenser) For pipe layout and unit connection, see Chap. 12 and Service Manual in the unit (or surfed on the web).



## **Dry**-Cooler

DX - W/F/H units





## **Standard filters**

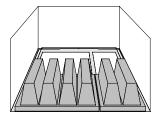
Removable filters installed inside the unit before of fan and heat exchanger.

Filtration from G4 to F5 (CN EN779 – respectively corresponding to EU4 and EU5 accoding to Eurovent EU4/5).

The folded structure of the filters gives high filtration efficiency and low pressure drop.

The filter media used consists of synthetic fibre cells. The frame is made of cardboard.

The additional pressure drop in comparison with G4 sdt filters are indicated in Tab. 9c.




## **High efficiency filters**

Optional high efficiency filters, filtration class F6, F7 and F9 in accordance with the CEN EN 779 standard, are made of fibreglass filter media. The filters are placed in "V" sections with a solid external frame in polypropylene, and can withstand remarkable pressure and flow variations. These filters will be installed within an additional duct on the unit top.

## Filter holding duct

If 290 mm high filters are needed, a metal hood must be supplied to support them, installed on the top of the unit and with the same colour. For dimensions see Fig. 12.d.



## **Clogged filter alarm**

A differential static pressure gauge after anf before the filter gives a signal when the filter is dirty.

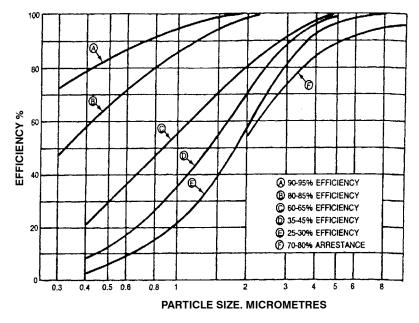
## Fresh air kit

The fresh air kit, optional, has a G3 class filter installed on the intake side of the fan and is connected to the Liebert HPM unit with a 100 mm diameter plastic duct.

As the fresh air intake is positioned close to the fan suction, it will easily mix with the recirculation air.

## Air Filters general information

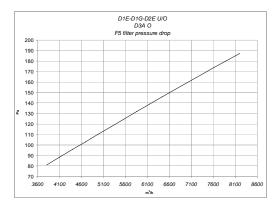
Recently new test methods and configuration systems have been developed for all type of filters. In Europe, CEN is working to establish common standards, in the United States ASHRAE Standards has been in use since 1968, and replaced by ANSI/ASHRAE 52.1–1992. So, in order to have a reference about different standards, see Tab. 9a and Tab 9b. There is no perfect correspondence between different standards, due to the different test methods, but the tables can be used as general guide.

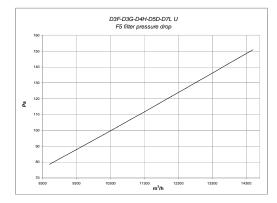

| Eurovent 4/9 | EN 779<br>EN 1882 | Average Arres<br>[ASHRAE Standard] | age Arrestance * Average Dust Spot Efficiency ** Standard 52.1–1992] [ASHRAE Standard 52.1–1992] |                            | Average Arrestance * Average Dust Spot Efficiency **<br>[ASHRAE Standard 52.1–1992] [ASHRAE Standard 52.1–1992] |                      | Minimum Efficiency<br>Reporting Value |
|--------------|-------------------|------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|
|              | EN 1002           | [greater then or equal to]         | [less than]                                                                                      | [greater than or equal to] | [less than]                                                                                                     | - [ASHŘAE 52.2–1999] |                                       |
| EU1          | G1                | 60%                                | 65%                                                                                              |                            | 20%                                                                                                             | 1-4                  |                                       |
| EU2          | G2                | 65%                                | 80%                                                                                              | 20%                        |                                                                                                                 | 4                    |                                       |
| EU3          | G3                | 80%                                | 90%                                                                                              | 20%                        |                                                                                                                 | 5                    |                                       |
| EU4          | G4                | 90%                                | 95%                                                                                              | 20%                        | 30%                                                                                                             | 6-7-8                |                                       |
| EU5          | F5                | 95%                                | 98%                                                                                              | 40%                        | 60%                                                                                                             | 8-9-10               |                                       |
| EU6          | F6                | 99%                                |                                                                                                  | 60%                        | 80%                                                                                                             | 10-11-12-13          |                                       |
| EU7          | F7                | 99%                                |                                                                                                  | 80%                        | 90%                                                                                                             | 13–14                |                                       |
| EU8          | F8                | 99%                                |                                                                                                  | 90%                        | 95%                                                                                                             | 14-15                |                                       |
| EU9          | F9                | 99%                                |                                                                                                  | 95%                        |                                                                                                                 | 15                   |                                       |

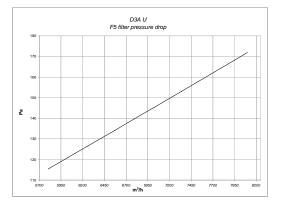
Tab. 9a - Comparison between air filter tests

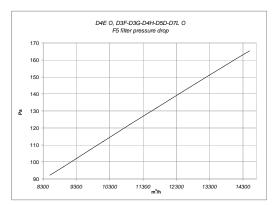
\* Achieved filtering performance in accordance to gravimetric test method on a specific sample of dust.

\*\* Achieved filtering performance in accordance to a light transmission test methods, with natural atmospheric dust.

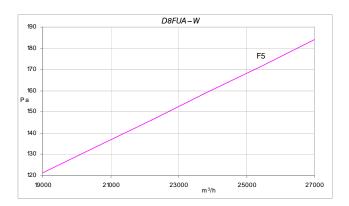

## **Filter section**





Tab. 9b - Approximate efficiency versus particle size for typical air filters


Curves are approximation for general guidance only. Efficiency and arrestance per ASHRAE Std 52.1 test method [From ASHRAE Handbook, HVAC Systems and Equipment].

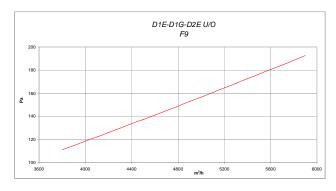
#### Tab. 9c - Additional pressure drop Filters F5



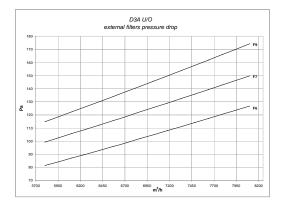




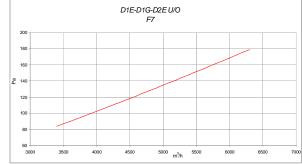




## **Filter section**

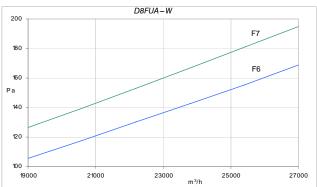


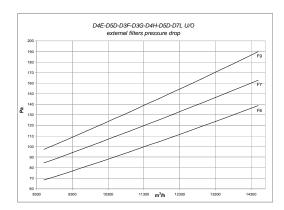

#### Tab. 9d – Additional pressure drop Filters F6




#### Tab. 9f - Additional pressure drop Filters F9




Tab. 9h – Additional pressure drop Filters F6-F7-F9




Tab. 9e - Additional pressure drop Filters F7



Tab. 9g – Additional pressure drop Filters F6-F7





## iCom Control

Liebert HPM models are controlled by iCom:

• iCom Medium, for single circuit units (Fig. 10.a).

• iCom Large, for double circuit units (Fig. 10.b). In both versions the Main Board is housed in the electrical panel and it is connected to the remote

display, to be installed in the container/room .(connection cable is included)
The user interface is the 3-digit back-lit Fig.

- display showing parameter values and relevant symbols/codes in a tree menu. It features navigation push-buttons and status leds.
- Both high and low priority alarms activate a visual indicator and buzzer.
- Input for Remote On–Off and volt–free contacts for simple remote monitoring of low and high priority alarms: high/low room temperature, high/low refrigerant pressure, fan/control failure are available.
- LAN management: functions provided as standard include stand—by (in case of failure or overload of the unit in operation, the second one starts automatically), automatic rotation, and cascade (division of the load among several units, through split of the proportional band).
- All service settings are protected through a 3-Level password system.
- Automatic restart is provided after a power failure.



Fig. 10.b

Fig. 10.a





| Technical Data                         | iCom Medium                                              | iCom Large                                               |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| E2prom                                 | 4Mbit -                                                  | + 512kbit                                                |
| Flash memory                           | 32                                                       | 2Mbit                                                    |
| RAM memory space                       | 12                                                       | 8Mbit                                                    |
| Microcontroller                        | Coldfir                                                  | re 32Mbit                                                |
| Analogue Input                         | 3 x 0-10V,0-5V,420mA (selectable) + 2<br>PTC/NTC + 3 NTC | 4 x 0–10V,0–5V,420mA (selectable) + 2<br>PTC/NTC + 2 NTC |
| Digital Input                          | 9 x opto-coupled                                         | 15 x opto-coupled                                        |
| Analogue Output                        | 2 x 0-10V                                                | 4 x 0–10V                                                |
| Digital Output                         | 7 triacs output and 2 relay output                       | 15 triacs output and 2 relay output                      |
| Time and date function buffered by LI- | -battery                                                 |                                                          |
| Hirobus Lan connectors                 | 2 RJ45 sockets (for un                                   | it in LAN, remote display)                               |
| Ethernet network connectors            | 1 RJ4                                                    | 5 socket                                                 |
| CAN bus connectors                     | 2 RJ12                                                   | 2 sockets                                                |
| Hironet connectors                     | 1 RJ9 socket for RS485 (direct co                        | nnection to proprietary supervision)                     |
| RS232 service port                     | _                                                        | 1 db9 socket                                             |

Tab. 10a - Technical Data iCom

## CDL Graphic Display (option)

Featuring a 24h graphic record of controlled parameters as well as the last 200 events occurred. A back-up battery keeps the data stored in the memory (graphic data record, alarms).

- Large graphic display (320 x 240 pixel)
- System Window: system operation status at a glance
- Self-explanatory lcons: they are used for the Menu-Layout of the CDL iCom
- Online Help: Every single parameter has its own multi-page explanation (Evolution)
- · Status Report of the latest 200 event-messages of the unit/system
- Four different Graphic Data Records (Evolution)
- Timer Mode (electronic timer included in the Software)
- Semi or Full Manual Mode software management including all safety devices
- 4—Level Passwords system to protect all the settings
- Ergonomic design for use also as portable device (start-up and "flying connections" by service personnel)
- Multi-language menu with on-the-fly language selection

#### **Technical Data CDL Graphic Display**

- Microcontroller: ..... Coldfire 32Mbit
- Time and date function buffered by LI-battery
- Ethernet network connectors ...... 2 RJ45 sockets (for unit in LAN, remote display)
- CAN bus connectors ...... 2 RJ12 sockets
- Power supply: ..... via CAN bus or external 12Vdc supply

## Alarm Board (accessory)

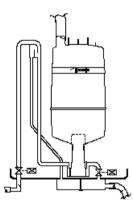
The Alarm Board converts Alarms (high priority) or Warnings (lower priority) from iCom into Volt–free contacts (up to five, either normally closed or normally open). In this way, following Warnings/Alarms are separated: High or Low refrigerant pressure; High room Temperature; Low room Temperature; Fan Failure, Clogged Filter alarm (if installed).

## SMM, Wireless SMS Communication (accessory)

The unit is able to send short text messages (SMS) of the its status/alarms to the display of GSM900–1800MHz mobile phones, allowing real time, cost effective maintenance.



## Humidification


The **humidification system** is provided by a HUMIDAIR electronic humidifier. The **dehumidification function**, which is supplied as standard when the humidifier option is installed, acts by reducing the fan speed with consequent reduction of the air flow and at the same time switching on the compressor.

#### **Electronic humidity control**

The software of the iCom microprocessor control includes an algorithm which manages the HUMIDAIR electronic modulating humidifier and also provides the dehumidification function. There is also a special function which automatically prevents dehumidification if the return air temperature is below the required value. When the temperature reaches the correct value, the dehumidification function is automatically reactivated. Dehumidification control may be either of the proportional or of the on–off type, depending on the installation requirements: on–off is set as standard at the factory.

#### **HUMIDAIR electric steam humidifier**

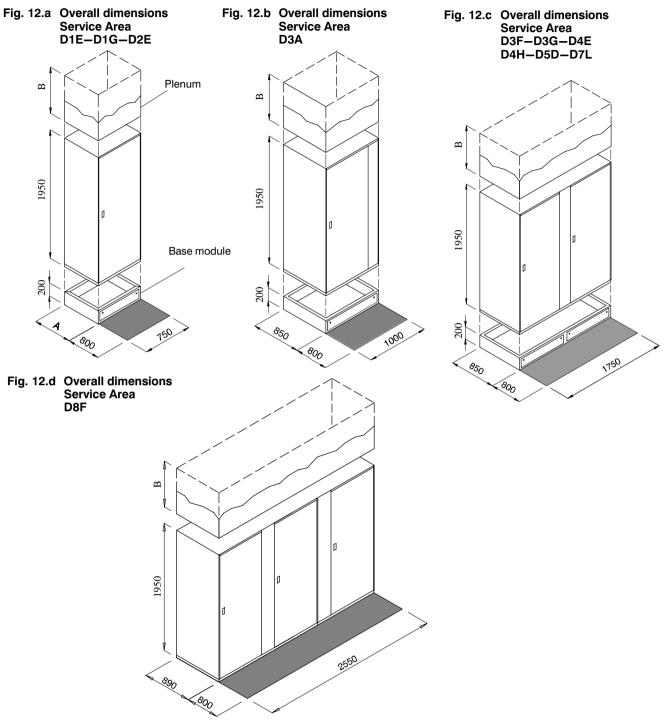
HUMIDAIR is a replaceable plastic water cylinder with immersed electrodes. When an electronic current passes between the electrodes, the water is converted into the required quantity of steam. It is suitable for a large range of water qualities (with varying degrees of hardness) with the exception of demineralized water. It almost instantaneously produces clean, particle—free steam and avoids energy losses which are typical of other systems. HUMIDAIR is provided with the steam cylinder, water inlet and outlet valves and a maximum level sensor. The steam output can be adjusted within a range of values which can be chosen manually and is factory—set at 70% of the maximum capacity (see the relevant data).



#### Humidifier features

The steam is mixed with the delivery air of the evaporating coil by means of a suitable distributor. The iCom controller can determine when the cylinder has to be changed. Replacing the cylinder is extremely easy and quick. A self—adaptive flow control system is fitted as standard and controls the current passing through the cylinder water.

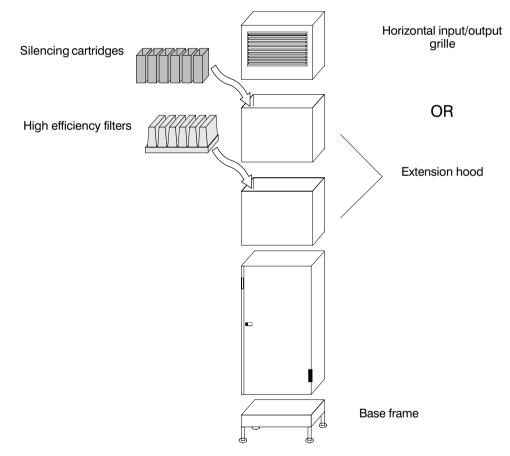
#### MAX. MAX. SUPPLY WATER QUANTITY MAX. DRAIN CYLINDER ABSORBED MAIN POWER SETTING POWER HUMIDAIR WATER QUANTITY CURRENT SUPPLIES HPM MODEL MODEL VOLUME (V ± 10%) [kW] [l/min.] [ka/h] \* [A] [1] [l/min.] D1E...D3A KUECLD 400V / 3ph / 50Hz 2.7...9.0 9.0 5.8 5.5 0.6 4.0 D3F D7I KUECLD 400V / 3ph / 50Hz 3.9...13.0 13.0 9.0 55 0.6 4.0 KUECLD D8F 400V / 3ph / 50Hz 39 130 13.0 9.0 55 06 40


#### Tab. 11a – Humidair specifications

#### Tab. 11b - Humidair specifications for Displacement unit

| HPM<br>MODEL | HUMIDAIR<br>MODEL | MAIN POWER<br>SUPPLIES<br>(V ± 10%) | SETTING  | ABSORBED<br>CURRENT | POWER | MAX. CYLIN-<br>DER WATER<br>VOLUME | MAX. SUPPLY<br>WATER<br>QUANTITY | MAX. DRAIN<br>WATER<br>QUANTITY |
|--------------|-------------------|-------------------------------------|----------|---------------------|-------|------------------------------------|----------------------------------|---------------------------------|
|              |                   | (V ± 10%)                           | [kg/h] * | [A]                 | [kW]  | [1]                                | [l/min.]                         | [l/min.]                        |
| D1ED3A       | KUECLD            | 400V / 3ph / 50Hz                   | 2.74.5   | 4.6                 | 3.0   | 5.5                                | 0.6                              | 4.0                             |

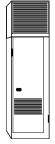
For humidifier current (FLA) and rated power refer to electrical features in air conditioner manual.


(\*) Unit is factory-set to produce about 70% of the maximum value (see iCom manual).



|                         |        |                                        | <b>B: AVAILABLE PLEN</b>           | NUM HEIGHTS (mm)                      |                                         |
|-------------------------|--------|----------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|
| Models                  | A (mm) | Plenum simple                          | Plenum for<br>silencing cartridges | Plenum for high<br>efficiency filters | Plenum with frontal airflow (OVER only) |
| D1E D1G D2E             | 750    |                                        |                                    |                                       |                                         |
| D3A                     | 850    | 500-600-700-800 -<br>900-1000-100-1200 | 600-900-1200                       | 500-600-700-<br>800-900               | 600                                     |
| D3F D3G D4E D4H D5D D7L | 850    | 900-1000-100-1200                      |                                    | 800-900                               |                                         |
| D8F                     | 890    | 600-700-800 -<br>900-1000-100-1200     | 600-900-1200                       | 600-700-800-900                       | _                                       |

|        |          |     |      | WEIGHTS (kg | )    |       |       |  |  |  |
|--------|----------|-----|------|-------------|------|-------|-------|--|--|--|
| MODELS | Versions |     |      |             |      |       |       |  |  |  |
|        | Α        | w   | F    | D           | н    | K / A | K / W |  |  |  |
| D1E    | 240      | 247 |      |             |      | 247   | 254   |  |  |  |
| D1G    | 250      | 260 | 290  | 280         | 290  | 260   | 270   |  |  |  |
| D2E    | 270      | 280 | 320  | 310         | 320  | 280   | 290   |  |  |  |
| D3A    | 415      | 425 | 510  | 500         | 510  | 425   | 435   |  |  |  |
| D3F    | 580      | 590 | 725  | 715         | 725  |       |       |  |  |  |
| D3G    | 570      | 580 | 720  | 710         | 720  |       |       |  |  |  |
| D4E    | 585      | 600 | 730  | 715         | 730  |       |       |  |  |  |
| D4H    | 585      | 600 | 745  | 730         | 745  |       |       |  |  |  |
| D5D    | 625      | 650 | 770  | 745         | 770  |       |       |  |  |  |
| D7L    | 645      | 670 |      |             |      |       |       |  |  |  |
| D8F    | 925      | 950 | 1140 | 1115        | 1140 |       |       |  |  |  |


Fig. 12.e Accessories and options diagram



## Plenum with frontal airflow (Over)

A supply plenum with horizontal air flow can be installed on top of the unit. The 600 mm high plenum has the same design as the unit; it consists of sandwich panels lined with non–flammable insulation material of class 0 (ISO 1182.2), density 30 (see Fig. 12.b). kg/m<sup>3</sup>. It is equipped with a double deflection grille. A single deflection double fin grille can be supplied.

Fig. 12.f



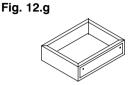
## Base modules (Over)

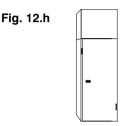
A 200 mm high basemodule can be supplied on request to support Liebert HPM Over units and at the same time allow pipework to enter the base of the unit when a raised floor is not installed. Some 300 or 500 mm base modules with air filter G4 or F5 efficiency, can be supplied on request to support Liebert HPM Over units with bottom or rear air intake. Note that in this case the air conditioning unit must be ordered with a blind front panel.

## Intake and delivery hoods

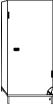
Liebert HPM can be equipped with intake and supply ducts on the top for connection of the unit to a false ceiling. The air duct is manufactured to complement the design of the unit; it consists of sandwich panels lined with non–flammable insulation material of Class 0 (ISO 1182.2), density 30 kg/m<sup>3</sup>; its height ranges between 500 mm and 1200 mm (see Fig. 12.a).

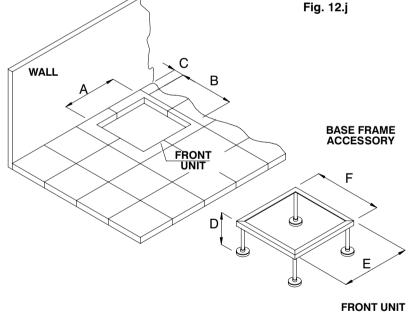
## Base frames (option)


When required, a base frame adjustable in height by  $\pm 25$  mm can be supplied. Three sizes are available: height


- $\leq$  300 mm;
- $\leq$  500 mm;
- $\leq$  800mm.

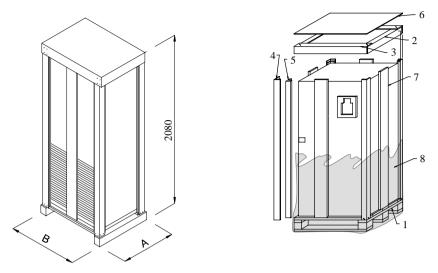
Note: This frame allows the installation of more units side by side


## Tab. 12a – Hole in the floor and base frame dimensions


|   |                            |                       | Dimensions (mm)    |                       |                    |                       |                    |            |      |     |
|---|----------------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|------------|------|-----|
|   | MODELS                     | 4                     | ۱                  | E                     | 3                  | C                     | ;                  |            |      |     |
|   |                            | without<br>base frame | with base<br>frame | without<br>base frame | with base<br>frame | without<br>base frame | with base<br>frame | D          | E    | F   |
| - | D1E D1G D2E                | 690                   | 750                | 670                   | 740                |                       |                    |            | 740  | 730 |
|   | D3A                        | 930                   | 1000               |                       |                    |                       |                    | $\leq$ 300 | 990  |     |
| _ | D3F D3G D4E<br>D4H D5D D7L | 1680                  | 1750               | 770                   | 840                | 50                    | 10                 |            | 1740 | 830 |
|   | D8F                        | 2460                  | 2550               | 805                   | 895                | 1                     |                    |            | 2550 | 885 |









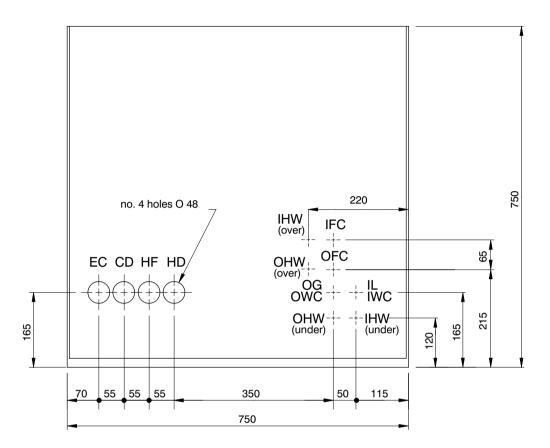



## Packing

Fig. 12.k Packing standard



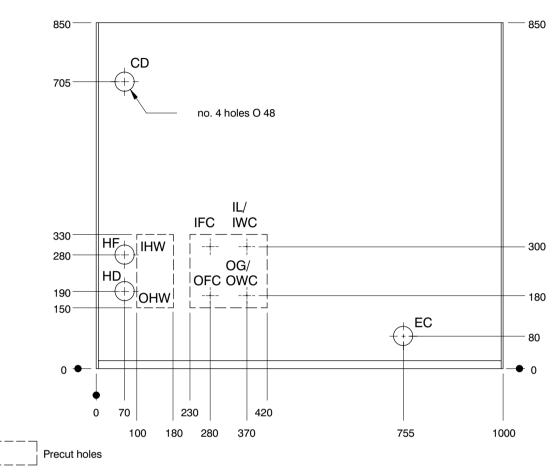
The air conditioners are usually packed on a wooden pallet (1), with shockproof angle pieces in pressed cardboard (2, 3, 4)/polystyrene (5), panels in cardboard (6)/polystyrene (7) and flexible polythene film (8).


### Tab. 12b – Packing depth (A)

| MODELS                  | Dimens | Dimensions (mm) |  |  |  |  |
|-------------------------|--------|-----------------|--|--|--|--|
| MODELS                  | А      | В               |  |  |  |  |
| D1E D1G D2E             | 830    | 830             |  |  |  |  |
| D3A                     | 930    | 1080            |  |  |  |  |
| D3F D3G D4E D4H D5D D7L | 930    | 1830            |  |  |  |  |
| D8F                     | 970    | 2630            |  |  |  |  |

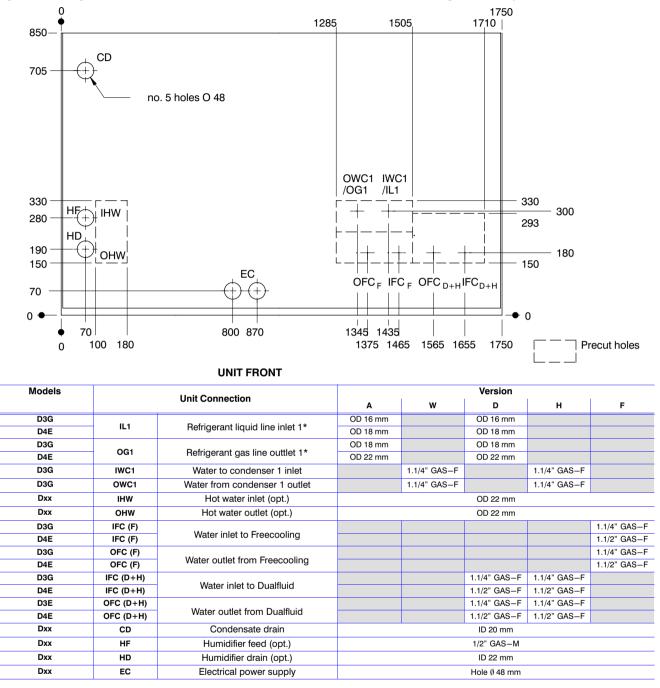
#### Special packing (options)

Special packing for sea transport, consisting of a wooden box or crate, can be supplied on request.


Fig. 12.1 Refrigerant, water and electrical connections Liebert HPM D1E..D2E, plan view



UNIT FRONT


|     | Unit Connection                              | Version      |            |          |            |          |
|-----|----------------------------------------------|--------------|------------|----------|------------|----------|
|     | Unit Connection                              |              | w          | D        | н          | F        |
| IL  | Refrigerant liquid line inlet *              | OD 16 mm     |            | OD 16 mm |            |          |
| OG  | Refrigerant gas line outlet *                | OD 18 mm     |            | OD 18 mm |            |          |
| IWC | Water to condenser inlet                     |              | 3/4" GAS-F |          | 3/4" GAS-F |          |
| OWC | Water from condenser outlet                  |              | 3/4" GAS-F |          | 3/4" GAS-F |          |
| IHW | Hot water inlet (opt.)                       |              |            | OD 18 mm |            |          |
| OHW | Hot water outlet (opt.)                      |              |            | OD 18 mm |            |          |
| IFC | Water inlet to Freecooling/Dualfluid coil    |              |            | 1" GAS-F | 1" GAS-F   | 1" GAS-F |
| OFC | Water outlet from Freecooling/Dualfluid coil |              |            | 1" GAS-F | 1" GAS-F   | 1" GAS-F |
| CD  | Condensate drain                             |              |            | ID 20 mm |            |          |
| HF  | Humidifier feed (opt.)                       | 1/2" GAS-M   |            |          |            |          |
| HD  | Humidifier drain (opt.)                      | ID 22 mm     |            |          |            |          |
| EC  | Electrical power supply                      | Hole Ø 48 mm |            |          |            |          |

#### Fig. 12.m Refrigerant, water and electrical connections Liebert HPM D3A



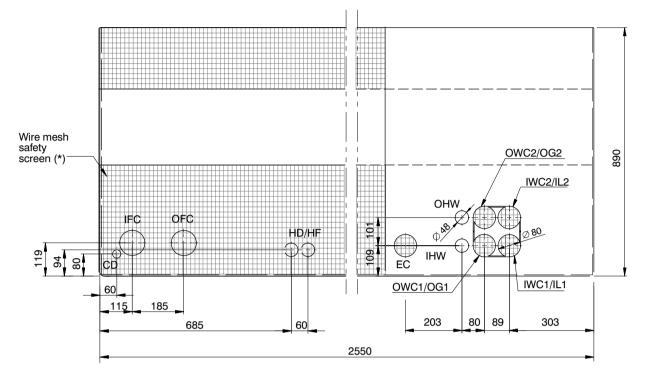
#### UNIT FRONT

|     | Unit Connection                                      |            | Version      |          |          |              |  |
|-----|------------------------------------------------------|------------|--------------|----------|----------|--------------|--|
|     |                                                      |            | w            | D        | н        | F            |  |
| IL  | Refrigerant liquid line inlet *                      | OD 16 mm   |              | OD 16 mm |          |              |  |
| OG  | Refrigerant gas line outlet *                        | OD 18 mm   |              | OD 18 mm |          |              |  |
| IWC | Water to condenser inlet                             |            | 1" GAS-F     |          | 1" GAS-F |              |  |
| OWC | Water from condenser outlet                          |            | 1" GAS-F     |          | 1" GAS-F |              |  |
| IHW | Hot water inlet (opt.)                               | OD 18 mm   |              |          |          |              |  |
| OHW | Hot water outlet (opt.)                              | OD 18 mm   |              |          |          |              |  |
| IFC | Water inlet to Freecooling and<br>Dualfluid coil     |            |              | 1" GAS-F | 1" GAS-F | 1.1/4" GAS-F |  |
| OFC | Water outlet from Freecoolingn<br>and Dualfluid coil |            |              | 1" GAS-F | 1" GAS-F | 1.1/4" GAS-F |  |
| CD  | Condensate drain                                     | ID 20 mm   |              |          |          |              |  |
| HF  | Humidifier feed (opt.)                               | 1/2" GAS-M |              |          |          |              |  |
| HD  | Humidifier drain (opt.)                              | ID 22 mm   |              |          |          |              |  |
| EC  | Electrical power supply                              |            | Hole Ø 48 mm |          |          |              |  |



#### Fig. 12.n Refrigerant, water and electrical connections Liebert HPM D3G-D4E, singlecircuit - plan view

#### 1750 1285 1505 1710 850 CD 705 no. 5 holes O 48 OWC2 IWC2 /OG2 /IL2 330 330 IWC1 ΗĘ 300 IHW /IL1 280 293 HD 190 OWC1 180 OHW 150 /OG1 150 EC OFC F IFC F OFC D+H IFC D+H 70 + 0 🔸 0 • 70 1345 1435 800 870 100 180 0 1375 1465 1565 1655 1750 Precut holes UNIT FRONT Version Models Unit Connection Α w D н F D34-42-50-66 Refrigerant liquid line inlet 1\* OD 16 mm OD 16 mm IL1 D3F-4H-5D-7L IL2 Refrigerant liquid line inlet 2\* OD 16 mm OD 16 mm D3F-4H-5D-7L OG1 Refrigerant gas line outtlet 1\* OD 18 mm OD 18 mm D3F-4H-5D-7L OG2 Refrigerant gas line outlet 2 \* OD 18 mm OD 18 mm D5D-7L IWC1 1.1/4" GAS-F 1.1/4" GAS-F Water to condenser 1 inlet 3/4" GAS-F 3/4" GAS-F D3F-4H IWC1 D3F-4H IWC2 3/4" GAS-F 3/4" GAS-F Water to condenser 2 inlet D5D-7L IWC2 1.1/4" GAS-F 1.1/4" GAS-F D5D OWC1 1.1/4" GAS-F 1.1/4" GAS-F Water from condenser 1 outlet D3F-4H OWC1 3/4" GAS-F 3/4" GAS-F OWC2 3/4" GAS-F 3/4" GAS-F D3F-4H Water from condenser 2 outlet D5D-7L OWC2 1.1/4" GAS-F 1.1/4" GAS-F Dxx Hot water inlet (opt.) IHW OD 22 mm Dxx онw Hot water outlet (opt.) OD 22 mm D3F IFC (F) 1.1/4" GAS-F Water inlet to Freecooling 1.1/2" GAS-F D4H-5D IFC (F) D3F OFC (F) 1.1/4" GAS-F Water outlet from Freecooling D4H-5D OFC (F) 1.1/2" GAS-F 1.1/4" GAS-F 1.1/4" GAS-F D3F IFC (D+H) Water inlet to Dualfluid D4H-5D IFC (D+H) 1.1/2" GAS-F 1.1/2" GAS-F 1.1/4" GAS-F 1.1/4" GAS-F D3F-3G OFC (D+H) D4E-5D D4E Water outlet from Dualfluid OFC (D+H) 1.1/2" GAS-F 1.1/2" GAS-F Dxx CD Condensate drain ID 20 mm Dxx HF Humidifier feed (opt.) 1/2" GAS-M Dxx Humidifier drain (opt.) HD ID 22 mm Dxx EC Electrical power supply Hole Ø 48 mm

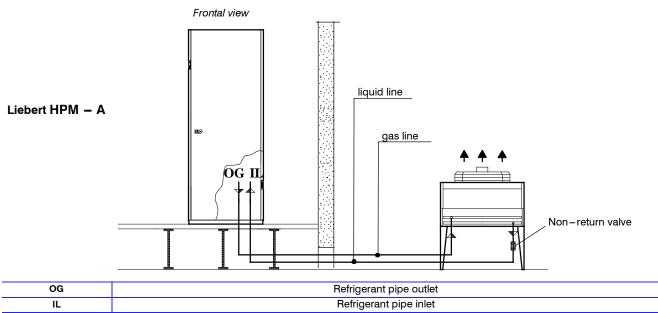

#### Fig. 12.0 Refrigerant, water and electrical connections Liebert HPM D3F D4H...D7L doublecircuit – plan view

\* Connection size only. The dimension of the connecting pipe depends on unit model and refrigerant, see Tab. 12c on page 12 - 10.

\* Inlet, outlet 1 referred to standard scroll compressor circuit.

\* Inlet, outlet 2 referred to digital scroll compressor circuit.

#### Fig. 12.p Refrigerant, water and electrical connections Liebert HPM D8F




#### UNIT FRONT

(\*) This must be cut in order to allow access for the pipes and cables

|           | Unit Connection                   |            | Version     |              |             |             |  |  |
|-----------|-----------------------------------|------------|-------------|--------------|-------------|-------------|--|--|
|           | Unit Connection                   | Α          | w           | D            | н           | F           |  |  |
| IL1       | Refrigerant liquid line inlet 1 * | OD 18 mm   |             | OD 18 mm     |             |             |  |  |
| IL2       | Refrigerant liquid line inlet 2 * | OD 18 mm   |             | OD 18 mm     |             |             |  |  |
| OG1       | Refrigerant gas line outlet 1 *   | OD 22 mm   |             | OD 22 mm     |             |             |  |  |
| OG2       | Refrigerant gas line outlet 2 *   | OD 22 mm   |             | OD 22 mm     |             |             |  |  |
| IWC1      | Water to condenser 1 inlet        |            | 1.1/4"GAS-F |              | 1.1/4"GAS-F |             |  |  |
| IWC2      | Water to condenser 2 inlet        |            | 1.1/4"GAS-F |              | 1.1/4"GAS-F |             |  |  |
| OWC1      | Water from condenser 1 outlet     |            | 1.1/4"GAS-F |              | 1.1/4"GAS-F |             |  |  |
| OWC2      | Water from condenser 2 outlet     |            | 1.1/4"GAS-F |              | 1.1/4"GAS-F |             |  |  |
| IHW       | Hot water inlet (opt.)            | OD 22 mm   |             |              |             |             |  |  |
| OHW       | Hot water outlet (opt.)           |            | OD 22 mm    |              |             |             |  |  |
| IFC (F)   | Water inlet to Freecooling        |            |             |              |             | 2.1/2"GAS-M |  |  |
| OFC (F)   | Water outlet from Freecooling     |            |             |              |             | 2.1/2"GAS-M |  |  |
| IFC (D+H) | Water inlet to Dualfluid          |            |             | 2.1/2"GAS-M  | 2.1/2"GAS-M |             |  |  |
| OFC (D+H) | Water outlet from Dualfluid       |            |             | 2.1/2"GAS-M  | 2.1/2"GAS-M |             |  |  |
| CD        | Condensate drain                  | ID 20 mm   |             |              |             |             |  |  |
| HF        | Humidifier feed (opt.)            | 1/2" GAS-M |             |              |             |             |  |  |
| HD        | Humidifier drain (opt.)           |            | ID 22 mm    |              |             |             |  |  |
| EC        | Electrical power supply           |            |             | Hole Ø 80 mm |             |             |  |  |

#### Fig. 12.q Refrigeration connections



Notes: recommended diameters see Table in Chap. 4.

#### Tab. 12c - Pipe diameters (room unit - remote condenser)

| MOD. | copper tube external diametre X thickness (mm) R410A |          |  |
|------|------------------------------------------------------|----------|--|
|      | Gas                                                  | Liquid   |  |
| D1E  | 14 X 1                                               | 14 X 1   |  |
| D1G  | 16 X 1                                               | 16 X 1   |  |
| D2E  | <b>1</b> 8 X 1                                       | 16 X 1   |  |
| D3A  | 22 X 1.5                                             | 18 X 1   |  |
| D3F  | 16 X 1                                               | 16 X 1   |  |
| D3G  | 22 X 1.5                                             | 18 X 1   |  |
| D4E  | 28 X 1.5                                             | 22 X 1.5 |  |
| D4H  | 18 X 1                                               | 16 X 1   |  |
| D5D  | 22 X 1.5                                             | 18 X 1   |  |
| D7L  | 22 X 1.5                                             | 18 X 1   |  |
| D8F  | 28 X 1,5                                             | 22 X 1.5 |  |

For equivalent lengths up to 50 m:

- Equal diameters
- Max. geodetic height difference between condenser and room unit: from +30 to -8 m (when the condenser is placed underneath the room unit):
- · Variex at the condenser
- Oversizing of the condenser at least of 15% more than standard capacity
- Hot gas reheat not allowed.
- Syphon on the vertical gas lines every 6 metres
- Relevant extra oil charge.
- Non return valve in the refrigerant discharge pipe 2m far from the compressor.

| Nominal<br>diameter<br>(mm) | 90°  | 45°  | 180° | 90°  |      |
|-----------------------------|------|------|------|------|------|
| 12                          | 0.50 | 0.25 | 0.75 | 2.10 | 1.90 |
| 14                          | 0.53 | 0.26 | 0.80 | 2.20 | 2.00 |
| 16                          | 0.55 | 0.27 | 0.85 | 2.40 | 2.10 |
| 18                          | 0.60 | 0.30 | 0.95 | 2.70 | 2.40 |
| 22                          | 0.70 | 0.35 | 1.10 | 3.20 | 2.80 |
| 28                          | 0.80 | 0.45 | 1.30 | 4.00 | 3.30 |

#### Tab. 12d - Equivalent lengths in meters of: curves, shut-off and non-return valves

### Tab. 12e - Condenser positioning

| CONDENSER<br>POSITION |      |      | CONDENSER ABOVE<br>CONDITIONER | CONDENSER AND<br>CONDITIONER<br>AT SAME LEVEL | CONDENSER BELOW<br>CONDITIONER<br>(not recommended) |  |
|-----------------------|------|------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|--|
|                       | aac  | int. | necessary                      | necessary                                     | necessary                                           |  |
| NSULATION             | gas  | ext. | only for aesthetic reasons     | only for aesthetic reasons                    | only for aesthetic reasons                          |  |
| INSULATION            | lia  | int. | absolutely not                 | not necessary                                 | no (expose to cold underfloor ai                    |  |
|                       | liq. | ext. | only for aesthetic reasons     | only if exposed to sun                        | only if exposed to sun                              |  |
| LAY                   | OUT  |      | (**) see Chap. 3               | room unit                                     | room unit<br>gas<br>liquid<br>(**) see Chap. 3      |  |

# **13** All Options / Accessories

## Silencing cartridges for supply hoods

See Chap. 7

Special Cartridges See Chap. 8

Heating—Reheat and humidity control See Chap. 8

## **High efficiency filters**

See Chap. 9

## Filter holding duct See Chap. 9

Clogged filter alarm See Chap. 9

Fresh air kit See Chap. 9

## Humidifier

See Chap. 11

Delivery plenum with frontal airflow for Over models See Chap. 12

## Base modules See Chap. 12

## Intake and delivery hoods

See Chap. 12

## **Base frames**

See Chap. 12

## **Special packing**

See Chap. 12

## Flooding alarm (Liquistat)

The flooding alarm detects the presence of water or of any other conductive liquid and, opening a circuit, activates an alarm.

There are no moving parts and it is not subject to dirt or vibration. Up to 5 sensors can be connected to the same flooding alarm device to control many points in the room. The alarm device is supplied with a sensor. Additional sensors can be ordered separately.

## Smoke alarm (Smokestat)

A smoke alarm can be installed to stop the conditioning system when the presence of smoke in the intake air is perceived.

This is an optical smoke detector (it uses the Tyndall effect), which absorbs very low current (100mA) and is absolutely insensitive to light or wind.



## **Fire alarm** (Firestat)

In some applications the fire regulations require the installation of an alarm device (Firestat) which deactivates the air conditioner when the intake air temperature is too high.

## Automatic condensate pump

The Liebert HPM's condensate drain piping can be connected to a pump complete with a flow cutout that permits the pump to stop and reset automatically.

#### Tab. 13f - Features of the automatic pump for condensate discharge

| water flow     | [l/s] | 0.083 | 0.167 | 0.250 | 0.333 |
|----------------|-------|-------|-------|-------|-------|
| available head | [kPa] | 20    | 19    | 18    | 14    |

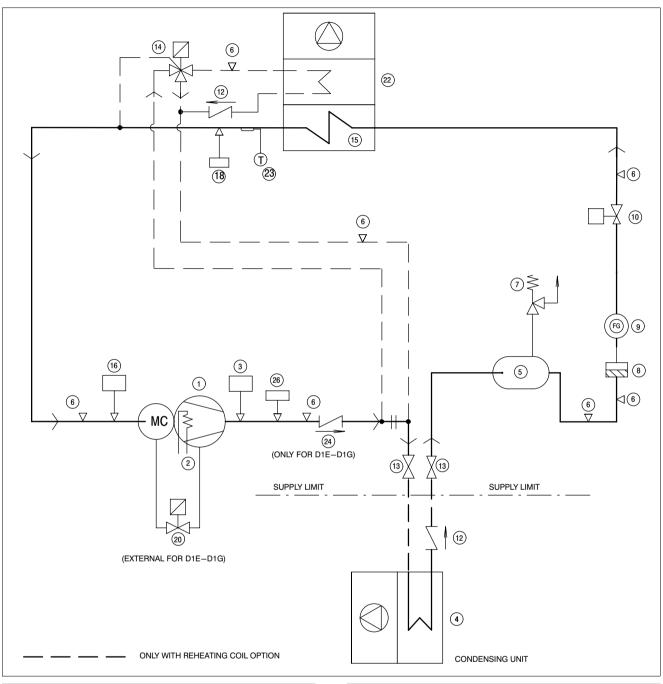
## Non-return valves (Versions A and D)

For air-cooled units, a non-return valve is supplied on request in a separate kit. It should be installed on the liquid line near the condenser, in a vertical position with downward flow.

## Additional temperature and humidity sensor (EEAP)

EEAP (Environmental Alarm Package) is an additional temperature and relative humidity sensor similar to the humitemp sensor. The sensor can be installed in a suitable place up to 20 m from the air conditioner. It generates an alarm if the temperature or the relative humidity exceeds one of the four thresholds that can be selected by the user:

High temperature: (from 10°C to 50°C) low temperature: (from 0°C to 30°C) high relative humidity: (from 30% to 99%) low relative humidity: (from 10% to 70%).


## Bottom air intake (Over models)

Liebert HPM units can be supplied to permit air intake from below. In this case, the front panel with intake grille is replaced by a special blind panel, which further reduces noise levels.

## **Epoxy Coated Coils**

Remote condensers are available with aluminium fins coated by an epoxy film, for aggressive environments.

## Fig. 14.1 – Liebert HPM D1E-D1G-D2E-D3A-D3G-D4E U/O A



| POS. | DESCRIPTION                      |  |  |  |
|------|----------------------------------|--|--|--|
| 1    | Compressor                       |  |  |  |
| 2    | Crankcase heater                 |  |  |  |
| 3    | High pressure switch (HP)        |  |  |  |
| 4    | Air cooled condenser             |  |  |  |
| 5    | Liquid receiver                  |  |  |  |
| 6    | Access valve                     |  |  |  |
| 7    | Safety valve                     |  |  |  |
| 8    | Filter dryer                     |  |  |  |
| 9    | Sight glass                      |  |  |  |
| 10   | Electronic expansion valve (EEV) |  |  |  |
| 12   | Check valve                      |  |  |  |

| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 13   | Shut-off valve                                     |
| 14   | Reheating solenoid valve (optional)                |
| 15   | Evaporator                                         |
| 16   | Low pressure switch (LP)                           |
| 18   | Pressure transducer for electronic expansion valve |
| 20   | Capacity mod. solenoid valve (ext. for D1E–D1G)    |
| 22   | Reheating coil (optional)                          |
| 23   | Temperature sensor for EEV                         |
| 24   | Check valve                                        |
| 26   | Pressure transducer for HP                         |

### ONLY WITH REHEATING COIL OPTION (14) 6 $\overline{\nabla}$ (22) (12) (15) ⊲(6) (18) (23) ( 10 6 (7)≷ $\overline{\nabla}$ (FG) 93 5 38 1 (13) (6) ⊲(6) 6 \_\_\_\_\_ $\nabla$ $\nabla$ MC (24) (ONLY FOR D1E-D1G) (12) (2) (ONLY FOR D13-17-20) 6 (20) (EXTERNAL FOR D1E-D1G) (25) WATER OUTLET 4 WATER INLET

#### Fig. 14.2 – Liebert HPM D1E-D1G-D2E-D3A-D3G-D4E U/O W

| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 10   | Electronic expansion valve (EEV)          |
| 11   | Pressure transducer condensing regulation |

| DESCRIPTION                                        |
|----------------------------------------------------|
| Check valve                                        |
| Shut-off valve                                     |
| Reheating solenoid valve (optional)                |
| Evaporator                                         |
| Low pressure switch (LP)                           |
| Pressure transducer for electronic expansion valve |
| Capacity mod. solenoid valve                       |
| Reheating coil (optional)                          |
| Temperature sensor for EEV                         |
| Check valve                                        |
| Condensing regulation water valve                  |
|                                                    |

#### ONLY WITH REHEATING COIL OPTION (6) $\nabla$ (22) (12) ×<sup>33</sup> (15) $(\bar{1})$ k(6) (18) (23) (30) (10) (6) (7) $\nabla$ FG ))) (34) 3 (5) 3 (1)(11) (13) ⊲(6) $\geq$ MC (24) (ONLY FOR D1G) (12) (2) 20) (EXTERNAL FOR D1G) 25 WATER OUTLET 32 T (4) WATER INLET POS. POS. DESCRIPTION DESCRIPTION 15 1 Compressor Evaporator Low pressure switch (LP) Crankcase heater 2 16 High pressure switch (HP) 3 18 Pressure transducer for electronic expansion valve Water cooled condenser 4 20 Capacity mod. solenoid valve 5 Liquid receiver 22 Reheating coil (optional) 6 Access valve 23 Temperature sensor for EEV 7 Safety valve 24 Check valve 8 Filter dryer 25 Condensing regulation water valve 9 Sight glass 29 Minimum pressure switch 10 Electronic expansion valve (EEV) 30 Chilled water coil 11 Pressure transducer condensing regulation 32 Inlet water thermostat

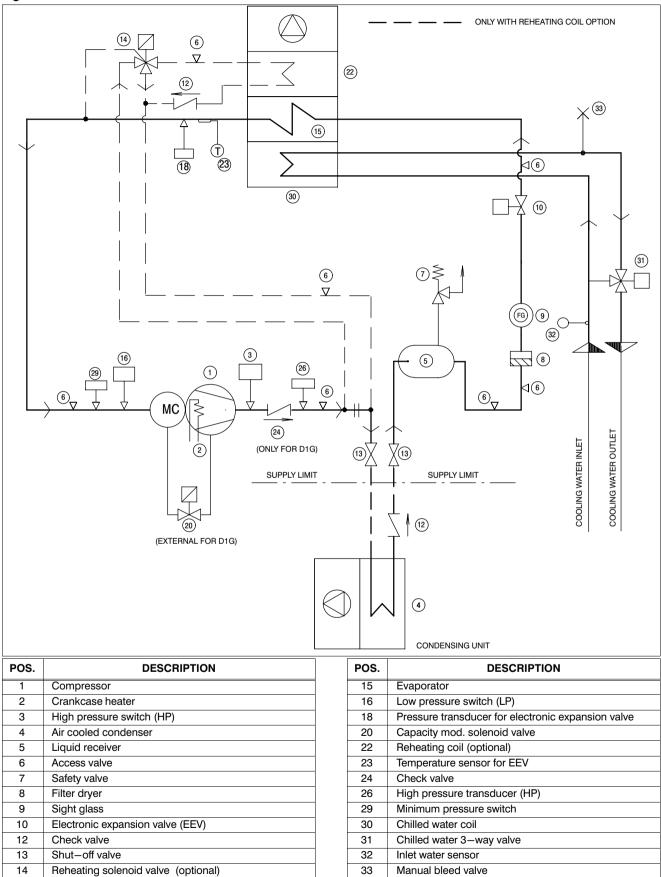
Manual bleed valve

Chilled water 2-way valve

33

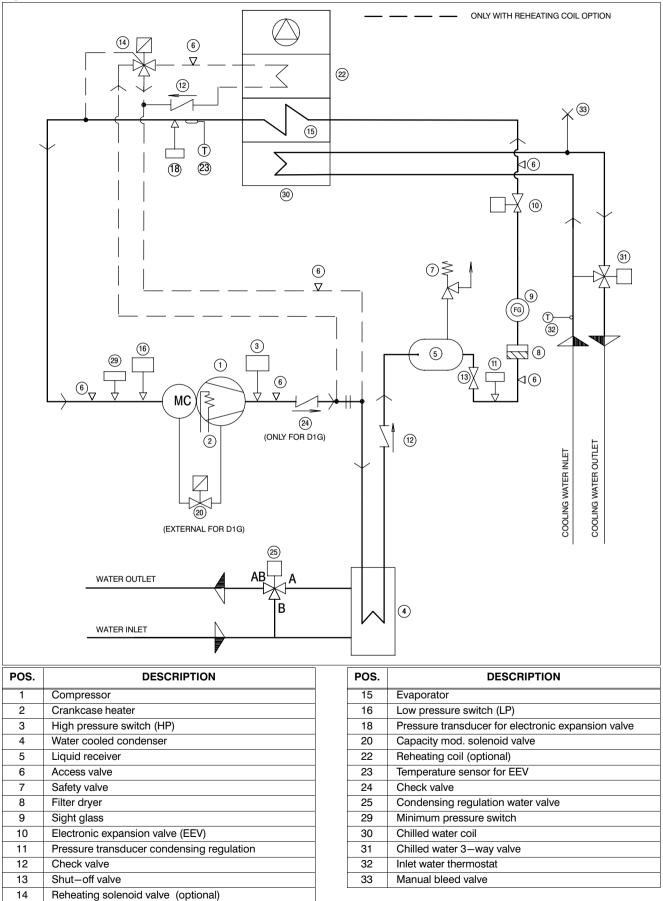
34

#### Fig. 14.3 – Liebert HPM D1G-D2E-D3A-D3G-D4E U/O F

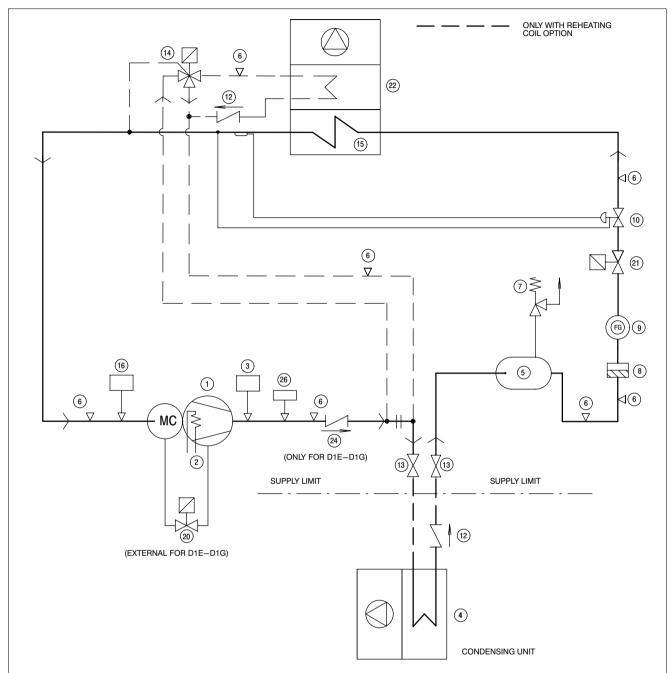

Reheating solenoid valve (optional)

Check valve

Shut-off valve


12

13 14




#### Fig. 14.4 – Liebert HPM D1G–D2E–D3A–D3G–D4E U/O D

#### Fig. 14.5 – Liebert HPM D1G-D2E-D3A-D3G-D4E U/O H



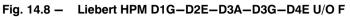
# **Refrigerant (TXV) and Hydraulic Circuits**



### Fig. 14.6 – Liebert HPM D1E-D1G-D2E-D3A-D3G-D4E U/O A

| POS. | DESCRIPTION                        |  |  |
|------|------------------------------------|--|--|
| 1    | Compressor                         |  |  |
| 2    | Crankcase heater                   |  |  |
| 3    | High pressure switch (HP)          |  |  |
| 4    | Air cooled condenser               |  |  |
| 5    | Liquid receiver                    |  |  |
| 6    | Access valve                       |  |  |
| 7    | Safety valve                       |  |  |
| 8    | Filter dryer                       |  |  |
| 9    | Sight glass                        |  |  |
| 10   | Thermostatic expansion valve (TXV) |  |  |

| POS. | DESCRIPTION                         |
|------|-------------------------------------|
| 12   | Check valve                         |
| 13   | Shut-off valve                      |
| 14   | Reheating solenoid valve (optional) |
| 15   | Evaporator                          |
| 16   | Low pressure switch (LP)            |
| 20   | Capacity mod. solenoid valve        |
| 21   | Shut-off solenoid valve             |
| 22   | Reheating coil (optional)           |
| 24   | Check valve                         |
| 26   | Pressure transducer for HP          |


### ONLY WITH REHEATING COIL OPTION (14) 6 V 22 (12) (15) ⊲⊚ ᠳᢩ᠊᠋᠕᠂᠋᠐ ⑥ \_\_\_\_\_ (7)(FG) 93 5 <u>7</u>8 (1) (13) 6 ⊲⊚ 6 $\nabla$ $\nabla$ MC (24) (ONLY FOR D1E-D1G) (12) 2 6 ₽ (20) (EXTERNAL FOR D1E-D1G) 25 WATER OUTLET $\mathbf{X}$ (4) WATER INLET

#### Fig. 14.7 – Liebert HPM D1E-D1G-D2E-D3A-D3G-D4E U/O W

| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve (for D13-17-20 only)         |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 10   | Thermostatic expansion valve (TXV)        |
| 11   | Pressure transducer condensing regulation |

| POS. | DESCRIPTION                         |
|------|-------------------------------------|
| 12   | Check valve                         |
| 13   | Shut-off valve                      |
| 14   | Reheating solenoid valve (optional) |
| 15   | Evaporator                          |
| 16   | Low pressure switch (LP)            |
| 20   | Capacity mod. solenoid valve        |
| 21   | Shut-off solenoid valve             |
| 22   | Reheating coil (optional)           |
| 24   | Check valve                         |
| 25   | Condensing regulation water valve   |

#### ONLY WITH REHEATING COIL OPTION 6 (14) $\overline{\nabla}$ 22 (12) $\times^{33}$ (15) Σ **b**(6) (30) (10) Դ X (1) $\square$ ⑥ ▽ (7)≶ (FG) 934) 3 (16) 5 8 1 (13) ⊲(6) (6) \$ MC (24) (ONLY FOR D1G) (12) 2 (20) (EXTERNAL FOR D1G) 25 WATER OUTLET $\overline{\}$ 32 T 4 WATER INLET



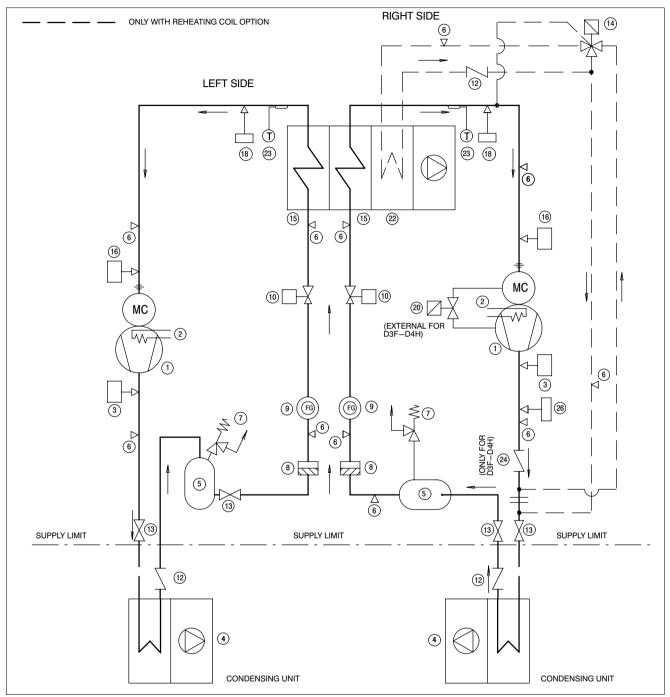
| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 10   | Thermostatic expansion valve (TXV)        |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |
| 13   | Shut-off valve                            |

| POS. | DESCRIPTION                         |
|------|-------------------------------------|
| 14   | Reheating solenoid valve (optional) |
| 15   | Evaporator                          |
| 16   | Low pressure switch (LP)            |
| 20   | Capacity mod. solenoid valve        |
| 21   | Shut-off solenoid valve             |
| 22   | Reheating coil (optional)           |
| 24   | Check valve                         |
| 25   | Condensing regulation water valve   |
| 29   | Minimum pressure switch             |
| 30   | Chilled water coil                  |
| 32   | Inlet water thermostat              |
| 33   | Manual bleed valve                  |
| 34   | Chilled water 2-way valve           |

#### ONLY WITH REHEATING COIL OPTION 6 (14) $\nabla$ 22) (12) $\times^{33}$ (15) Ś $\triangleleft (6)$ (30) ΦХ (10) 31 6 (7)≩ $\nabla$ 32 下 3 (16) 5 (26) 1 ⊲⊚ (6) ⊽ $\overline{}$ MC (24) (ONLY FOR D1G) COOLING WATER OUTLET 2 (13) (13) COOLING WATER INLET SUPPLY LIMIT SUPPLY LIMIT (12) (20) (EXTERNAL FOR D1G) 4 CONDENSING UNIT

#### Fig. 14.9 – Liebert HPM D1G-D2E-D3A-D3G-D4E U/O D

| POS. | DESCRIPTION                        |
|------|------------------------------------|
| 1    | Compressor                         |
| 2    | Crankcase heater                   |
| 3    | High pressure switch (HP)          |
| 4    | Air cooled condenser               |
| 5    | Liquid receiver                    |
| 6    | Access valve                       |
| 7    | Safety valve                       |
| 8    | Filter dryer                       |
| 9    | Sight glass                        |
| 10   | Thermostatic expansion valve (TXV) |
| 11   | -                                  |
| 12   | Check valve                        |
| 13   | Shut–off valve                     |


| DESCRIPTION                         |
|-------------------------------------|
| Reheating solenoid valve (optional) |
| Evaporator                          |
| Low pressure switch (LP)            |
| Capacity mod. solenoid valve        |
| Shut-off solenoid valve             |
| Reheating coil (optional)           |
| Check valve                         |
| High pressure transducer (HP)       |
| Minimum pressure switch             |
| Chilled water coil                  |
| Chilled water 3-way valve           |
| Inlet water sensor                  |
| Manual bleed valve                  |
|                                     |

#### ONLY WITH REHEATING COIL OPTION (14) 6 $\nabla$ 22 (12) / 33 (15) $\geq$ ⊲(6) (30) ᠳᢅ᠋᠊᠓ $\bigtriangledown$ 21) (31) 6 $\overline{0}$ $\nabla$ 9 FG 3 (16) 28 5 (29) 1 (11) (13) ⊲⊚ 6 $\overline{\mathbf{k}}$ MC (24) (ONLY FOR D1G) (12) (2) COOLING WATER OUTLET COOLING WATER INLET 20 (EXTERNAL FOR D1G) (25) WATER OUTLET 4 WATER INLET

#### Fig. 14.10 - Liebert HPM D1G-D2E-D3A-D3G-D4E U/O H

| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 10   | Thermostatic expansion valve (TXV)        |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |
| 13   | Shut-off valve                            |

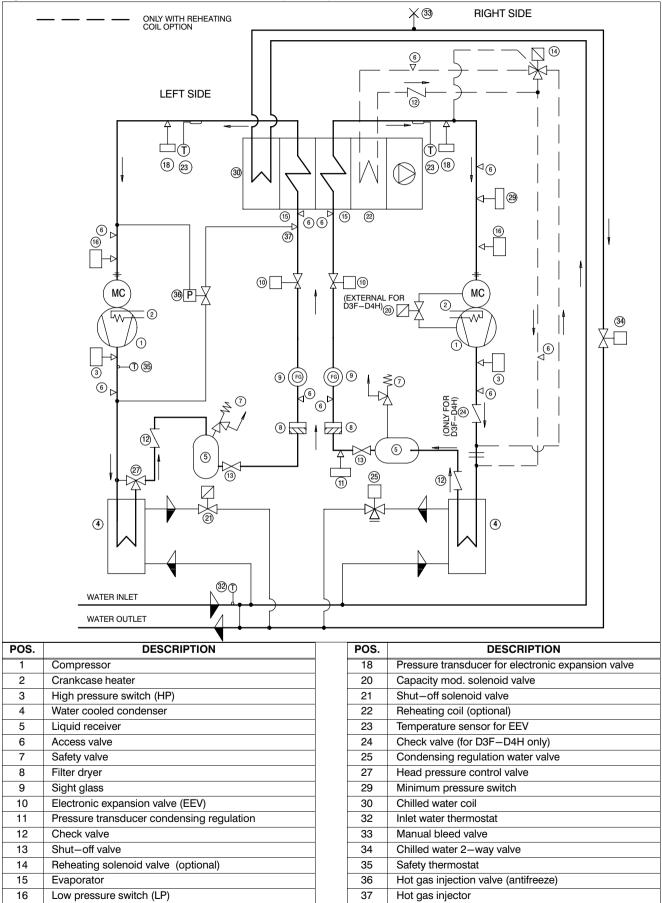
| POS. | DESCRIPTION                         |
|------|-------------------------------------|
| 14   | Reheating solenoid valve (optional) |
| 15   | Evaporator                          |
| 16   | Low pressure switch (LP)            |
| 20   | Capacity mod. solenoid valve        |
| 21   | Shut-off solenoid valve             |
| 22   | Reheating coil (optional)           |
| 24   | Check valve                         |
| 25   | Condensing regulation water valve   |
| 29   | Minimum pressure switch             |
| 30   | Chilled water coil                  |
| 31   | Chilled water 3-way valve           |
| 32   | Inlet water thermostat              |
| 33   | Manual bleed valve                  |

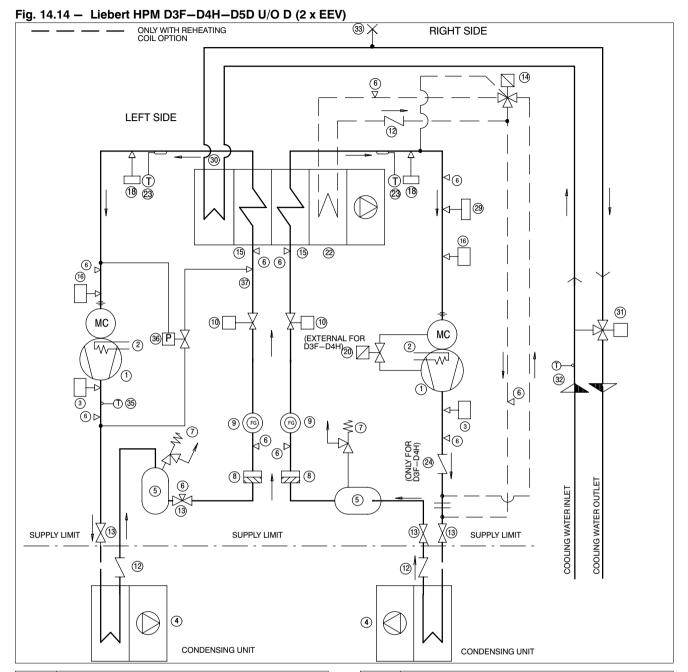


### Fig. 14.11 – Liebert HPM D3F–D4H–D5D–D7L U/O A (2xEEV)

| POS. | DESCRIPTION                      |
|------|----------------------------------|
| 1    | Compressor                       |
| 2    | Crankcase heater                 |
| 3    | High pressure switch (HP)        |
| 4    | Air cooled condenser             |
| 5    | Liquid receiver                  |
| 6    | Access valve                     |
| 7    | Safety valve                     |
| 8    | Filter dryer                     |
| 9    | Sight glass                      |
| 10   | Electronic expansion valve (EEV) |
| 12   | Check valve                      |

| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 13   | Shut–off valve                                     |
| 14   | Hot gas solenoid valve (optional)                  |
| 15   | Evaporator                                         |
| 16   | Low pressure switch (LP)                           |
| 18   | Pressure transducer for electronic expansion valve |
| 20   | Capacity mod. solenoid valve                       |
| 22   | Reheating coil (optional)                          |
| 23   | Thermostat for electronic expansion valve          |
| 24   | Check valve                                        |
| 26   | High pressure transducer (HP)                      |


#### <u>14</u> ONLY WITH REHEATING COIL OPTION **RIGHT SIDE** 6) V LEFT SIDE (12) 4 $(\overline{})$ 23) (18) ⊲ 6 (15) (15) (22) (16) ⊲ 6 ⊳ 6 ⊂ 6) (16) 10 10 MC MC (EXTERNAL FOR D3F-D4H) 20 2 2 Ŵ 5 21) | (6) |∕] (1)3 3 9 (FG) (FG)9 26 (7)¢6 ⊂ 6 6 (6) (ONLY FOR D3F-D4H) 8 8 4 (12 (5) 5 (13) (13) 27 (11) (12) 25 WATER OUTLET (4) 4 WATER INLET


#### Fig. 14.12 – Liebert HPM D3F–D4H–D5D–D7L U/O W (2 x EEV)

| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 10   | Electronic expansion valve (EEV)          |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |

| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 13   | Shut-off valve                                     |
| 14   | Reheating solenoid valve (optional)                |
| 15   | Evaporator                                         |
| 16   | Low pressure switch (LP)                           |
| 18   | Pressure transducer for electronic expansion valve |
| 20   | Capacity mod. solenoid valve                       |
| 22   | Reheating coil (optional)                          |
| 23   | Temperature sensor for EEV                         |
| 24   | Check valve (for D3F–D4H only)                     |
| 25   | Condensing regulation water valve                  |
| 27   | Head pressure control valve                        |

### Fig. 14.13 – Liebert HPM D3F–D4H–D5D U/O F (2 x EEV)





| POS. | DESCRIPTION                         |
|------|-------------------------------------|
| 1    | Compressor                          |
| 2    | Crankcase heater                    |
| 3    | High pressure switch (HP)           |
| 4    | Air cooled condenser                |
| 5    | Liquid receiver                     |
| 6    | Access valve                        |
| 7    | Safety valve                        |
| 8    | Filter dryer                        |
| 9    | Sight glass                         |
| 10   | Electronic expansion valve (EEV)    |
| 12   | Check valve                         |
| 13   | Shut-off valve                      |
| 14   | Reheating solenoid valve (optional) |
| 15   | Evaporator                          |

| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 16   | Low pressure switch (LP)                           |
| 18   | Pressure transducer for electronic expansion valve |
| 20   | Capacity mod. solenoid valve                       |
| 22   | Reheating coil (optional)                          |
| 23   | Temperature sensor for EEV                         |
| 24   | Check valve (for D3F–D4H only)                     |
| 29   | Minimum pressure switch                            |
| 30   | Chilled water coil                                 |
| 31   | Chilled water 3-way valve                          |
| 32   | Inlet water thermostat                             |
| 33   | Manual bleed valve                                 |
| 35   | Safety thermostat                                  |
| 36   | Hot gas injection valve (antifreeze)               |
| 37   | Hot gas injector                                   |

#### Fig. 14.15 – Liebert HPM D3F–D4H–D5D U/O H (2 x EEV) **RIGHT SIDE** 33X ONLY WITH REHEATING J 🕩 6 ⊽ LEFT SIDE (12) 亡① ٦Ū 18 23 23 (18) 16 30 (29) (15) 15 (22) 66 6 (16) 37 (31) 36P-X 10 ]10 MC MC (EXTERNAL FOR D3F-D4H) (20 2 (2) L. $\mathcal{M}$ 32 T **6** 3 (T) (35) 9 (FG) 9 3 (FG) ۔ (6) (7)6 16 (ONLY FOR D3F-D4H) 6 24) COOLING WATER OUTLET 8 8 COOLING WATER INLET Å. (5) (5) (13) (13) (12) (11) 25 WATER OUTLET 4 4 WATER INLET POS. DESCRIPTION POS. DESCRIPTION Compressor 18 Pressure transducer for electronic expansion valve 1 2 20 Capacity mod. solenoid valve Crankcase heater 3 High pressure switch (HP) 22 Reheating coil (optional) 4 Water cooled condenser 23 Temperature sensor for EEV 5 Liquid receiver 24 Check valve (for D3F-D4H only) 6 Access valve 25 Condensing regulation water valve 7 Safety valve High pressure transducer (HP) 26 8 Filter dryer 27 Head pressure control valve 9 Sight glass 29 Minimum pressure switch 10 Electronic expansion valve (EEV) 30 Chilled water coil 11 Pressure transducer condensing regulation 31 Chilled water 3-way valve Inlet water thermostat 12 Check valve 32 Shut-off valve 33 Manual bleed valve 13 Reheating solenoid valve (optional) Safety thermostat 14 35 15 Evaporator 36 Hot gas injection valve (antifreeze) 16 Low pressure switch (LP) 37 Hot gas injector

#### **RIGHT SIDE** (14) ONLY WITH REHEATING COIL OPTION $\overline{\ }$ 6 $\overline{\nabla}$ 12 LEFT SIDE -⊲ (6) (16) (15) (15) 22 ⊲ 6 ⊳ 6 $\triangleleft$ 6 16 MC (28) (28) 2 МС (20) -WJ (EXTERNAL FOR D3F-D4H) Ŵ 2 21 <u>\</u>2 X ' € |∕] $\triangleleft$ (1)3 3 26 9 (FG) (FG) 9 \_\_\_\_ (6) ⊳ $\overline{7}$ √ (6) 6 @<sup>D</sup> (ONLY FOR D3F-D4H) 24) 8 5 5 ∆ € (13) (13) X(13) SUPPLY LIMIT SUPPLY LIMIT SUPPLY LIMIT (12) (12) 4 4 CONDENSING UNIT CONDENSING UNIT

### Fig. 14.16 - Liebert HPM D3F-D4H-D5D-D7L U/O A (2 x TXV)

| POS. | DESCRIPTION               |
|------|---------------------------|
| 1    | Compressor                |
| 2    | Crankcase heater          |
| 3    | High pressure switch (HP) |
| 4    | Air cooled condenser      |
| 5    | Liquid receiver           |
| 6    | Access valve              |
| 7    | Safety valve              |
| 8    | Filter dryer              |
| 9    | Sight glass               |
| 12   | Check valve               |

| DESCRIPTION                         |
|-------------------------------------|
| Shut–off valve                      |
| Reheating solenoid valve (optional) |
| Evaporator                          |
| Low pressure switch (LP)            |
| Capacity mod. solenoid valve        |
| Shut-off solenoid valve             |
| Reheating coil (optional)           |
| Check valve (for D3F–D4H only)      |
| High pressure transducer (HP)       |
| Thermostatic expansion valve (TXV)  |
|                                     |

#### **RIGHT SIDE** (14) 6 V $\overline{}$ ONLY WITH REHEATING COIL OPTION LEFT SIDE (12) ⊽ (€ (15) (15) 22 ⊲ 6 ⊳ 6 (16) (16) (16) □ 1 (28) (28) MC L C (EXTERNAL FOR D3F-D4H) 20 MC 2 Ŵ 2 -W 21 - 21 1) (1)6 \_\_\_\_\_ 3 € ⊳ ď 3 <1-9 (FG) 9 (FG) ₹7 (7) ⊲ 6 **6** 6 (ONLY FOR D3F-D4H) 8 1 5 (12 5 (13) (13) 27 (11) (12) 25 WATER OUTLET $\triangleright$ $\langle |$ 4 4 WATER INLET

#### Fig. 14.17 - Liebert HPM D3F-D4H-D5D-D7L U/O W (2 x TXV)

| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |

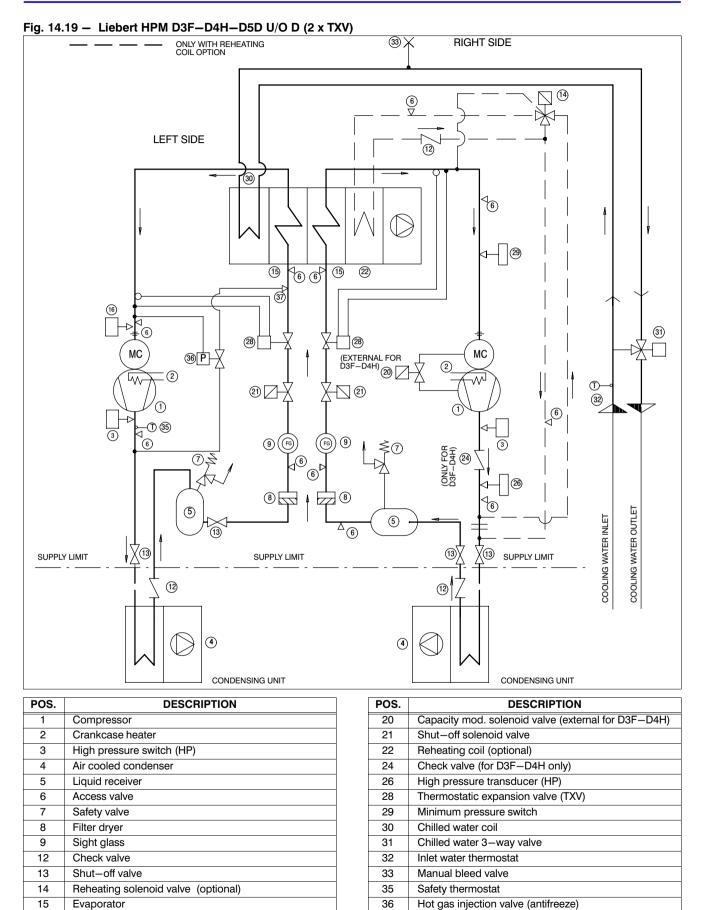
| POS. | DESCRIPTION                         |
|------|-------------------------------------|
| 13   | Shut-off valve                      |
| 14   | Reheating solenoid valve (optional) |
| 15   | Evaporator                          |
| 16   | Low pressure switch (LP)            |
| 20   | Capacity mod. solenoid valve        |
| 21   | Shut-off solenoid valve             |
| 22   | Reheating coil (optional)           |
| 24   | Check valve (for D3F–D4H only)      |
| 25   | Condensing regulation water valve   |
| 27   | Head pressure control valve         |
| 28   | Thermostatic expansion valve (TXV)  |

#### ONLY WITH REHEATING COIL OPTION **RIGHT SIDE** Ж33 (14) 6 V LEFT SIDE (12) ` (6) (30) (29) 22 (15) (15) 66 3 (16) ⊲ \_ (6) (28) 128 МС 36 P МС (EXTERNAL FOR D3F-D4H)(20) 2 2 Ŵ <u>۸</u>۸۸ ľ 34) 21 -\@ ΧΠ T 6 9 (FG) (3) (FG) 9 6 3 (7 -(1) (35) 6 \$<sup>7</sup> (6) ′₀<sup>∟</sup> (ONLY FOR D3F-D4H) (5) 8 3 4 (12)5 (5) (13) 27 (13) (25) (12) (11) 4 4 321 WATER INLET WATER OUTLET POS. DESCRIPTION POS. DESCRIPTION Compressor 20 Capacity mod. solenoid valve 1 2 Crankcase heater Shut-off solenoid valve 21 3 High pressure switch (HP) 22 Reheating coil (optional) Check valve (for D3F-D4H only) 4 Water cooled condenser 24 5 Liquid receiver 25 Condensing regulation water valve Access valve 6 27 Head pressure control valve Safety valve Thermostatic expansion valve (TXV) 7 28 Filter dryer 8 29 Minimum pressure switch 9 Sight glass 30 Chilled water coil 11 Pressure transducer condensing regulation 32 Inlet water thermostat 12 Check valve 33 Manual bleed valve 13 Shut-off valve Chilled water 2-way valve 34 14 Reheating solenoid valve (optional) 35 Safety thermostat

Evaporator

Low pressure switch (LP)

15

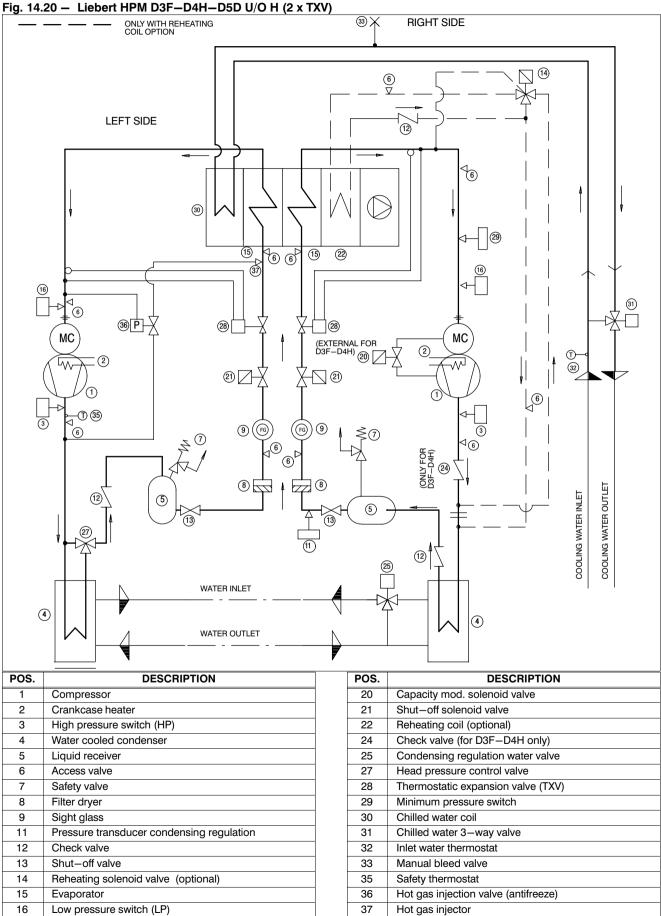

16

Hot gas injection valve (antifreeze)

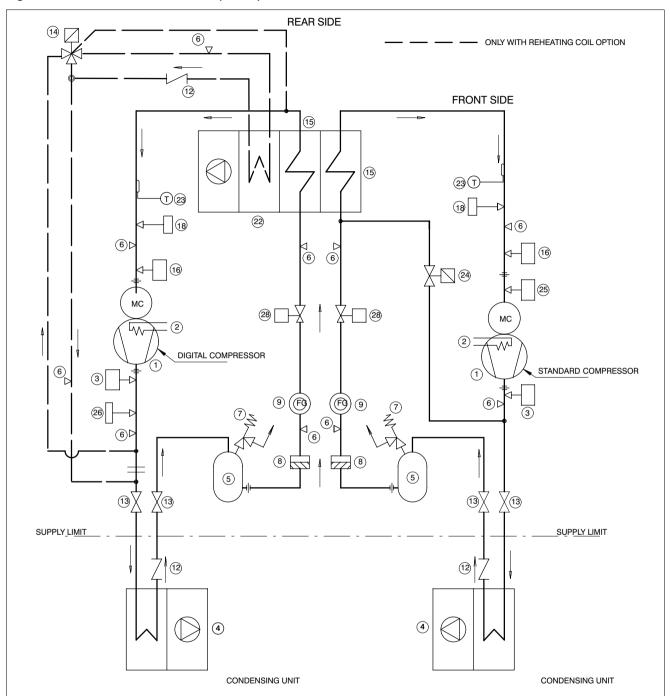
Hot gas injector

36

37



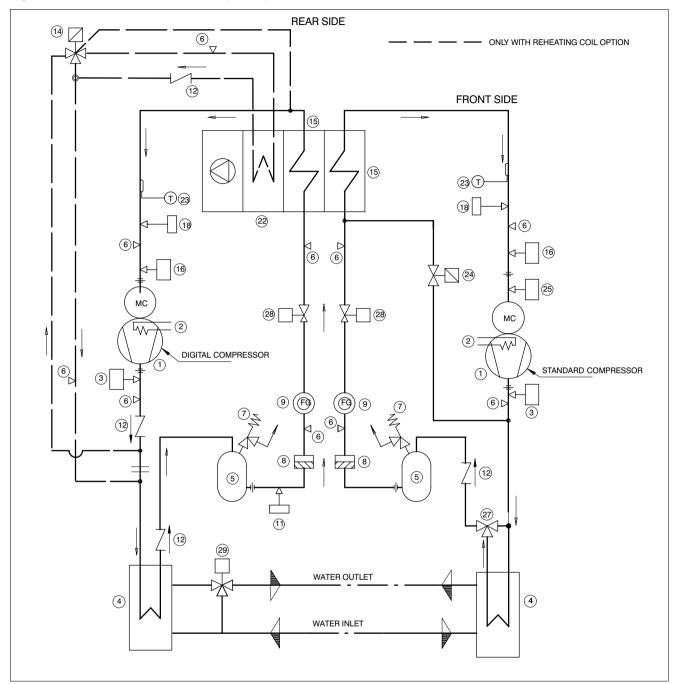

37


Hot gas injector

Low pressure switch (LP)

16

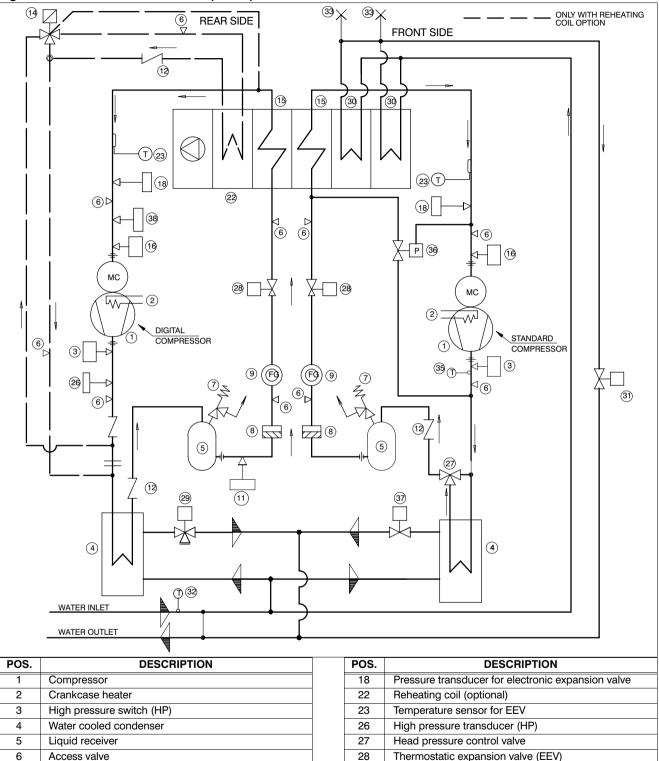



### Fig. 14.21 – Liebert HPM D8F U/O A (2xEEV)



| POS. | DESCRIPTION               |
|------|---------------------------|
| 1    | Compressor                |
| 2    | Crankcase heater          |
| 3    | High pressure switch (HP) |
| 4    | Air cooled condenser      |
| 5    | Liquid receiver           |
| 6    | Access valve              |
| 7    | Safety valve              |
| 8    | Filter dryer              |
| 9    | Sight glass               |
| 12   | Check valve               |
| 13   | Shut-off valve            |

| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 14   | Hot gas solenoid valve (optional)                  |
| 15   | Evaporator                                         |
| 16   | Low pressure switch (LP)                           |
| 18   | Pressure transducer for electronic expansion valve |
| 22   | Reheating coil (optional)                          |
| 23   | Temperature sensor for EEV                         |
| 24   | Hot gas injection valve                            |
| 25   | On/off pressure switch hot gas injection valve     |
| 26   | High pressure transducer (HP)                      |
| 28   | Thermostatic expansion valve (EEV)                 |
|      |                                                    |


#### Fig. 14.22 – Liebert HPM D8F U/O W (2xEEV)



| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |
| 13   | Shut-off valve                            |

| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 14   | Hot gas solenoid valve (optional)                  |
| 15   | Evaporator                                         |
| 16   | Low pressure switch (LP)                           |
| 18   | Pressure transducer for electronic expansion valve |
| 22   | Reheating coil (optional)                          |
| 23   | Temperature sensor for EEV                         |
| 24   | Hot gas injection valve                            |
| 25   | On/off pressure switch hot gas injection valve     |
| 26   | High pressure transducer (HP)                      |
| 28   | Thermostatic expansion valve (EEV)                 |
| 29   | Condensing regulation water valve                  |
|      |                                                    |

### Fig. 14.23 – Liebert HPM D8F U/O F (2xEEV)



29

30

31

32

33

35

36

37

38

Condensing regulation water valve

Chilled water coil

Manual bleed valve

Hot gas injection valve

Shut-off solenoid valve

Minimun pressure switch (LP)

Safety thermostat

Chilled water 2-way valve Inlet water thermostat

Low pressure switch (LP)

Hot gas solenoid valve (optional)

Pressure transducer condensing regulation

7

8

9

11

12

13

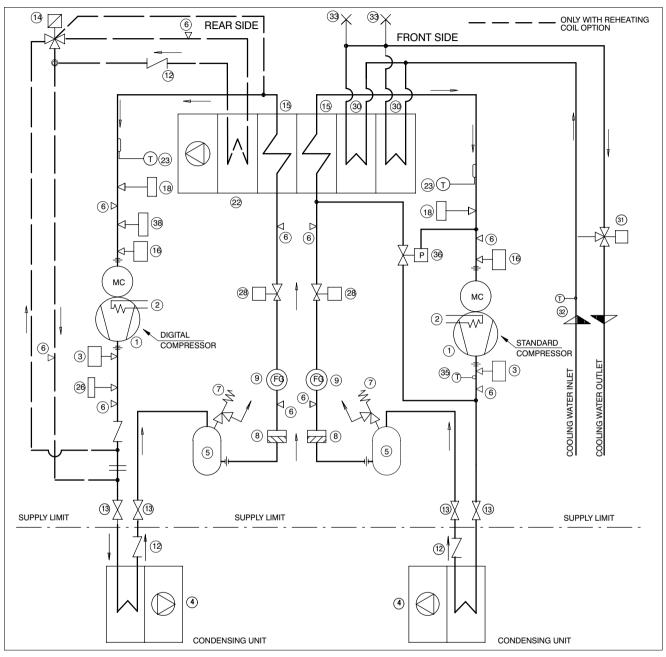
14

15

16

Safety valve

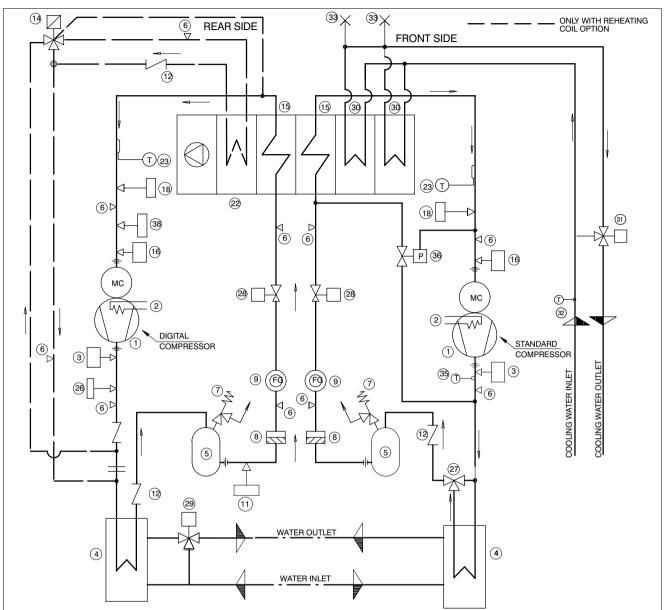
Filter dryer


Sight glass

Check valve

Evaporator

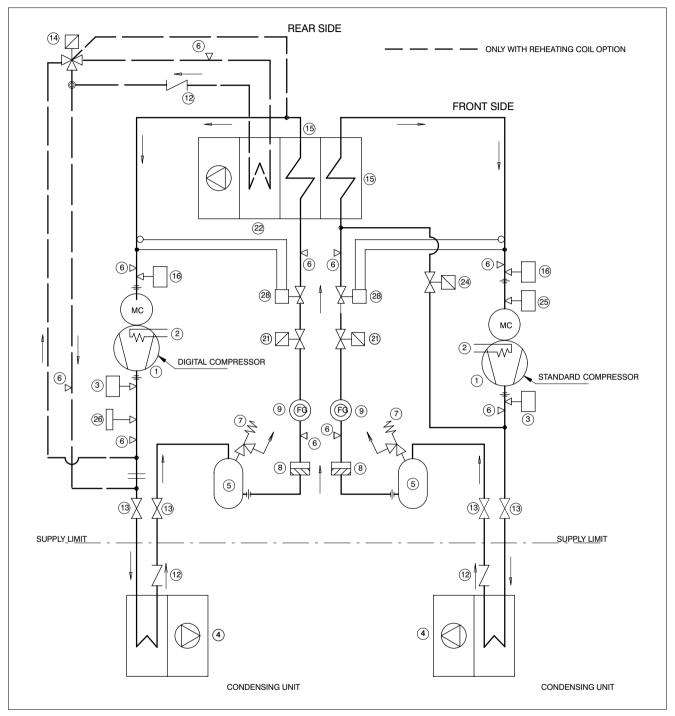
Shut-off valve


#### Fig. 14.24 – Liebert HPM D8F U/O D (2xEEV)



| POS. | DESCRIPTION                       |
|------|-----------------------------------|
| 1    | Compressor                        |
| 2    | Crankcase heater                  |
| 3    | High pressure switch (HP)         |
| 4    | Air cooled condenser              |
| 5    | Liquid receiver                   |
| 6    | Access valve                      |
| 7    | Safety valve                      |
| 8    | Filter dryer                      |
| 9    | Sight glass                       |
| 12   | Check valve                       |
| 13   | Shut-off valve                    |
| 14   | Hot gas solenoid valve (optional) |
| 15   | Evaporator                        |
| 16   | Low pressure switch (LP)          |

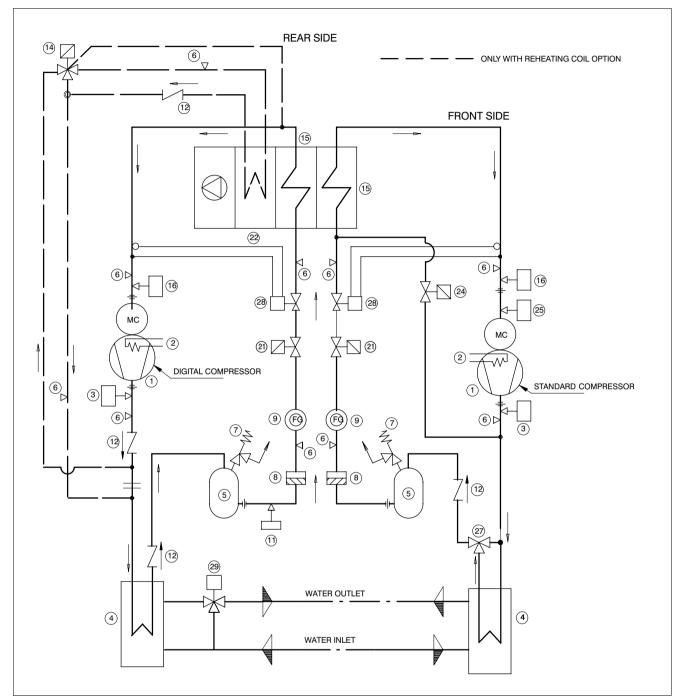
| DESCRIPTION                                        |
|----------------------------------------------------|
| Pressure transducer for electronic expansion valve |
| Reheating coil (optional)                          |
| Temperature sensor for EEV                         |
| High pressure transducer (HP)                      |
| Head pressure control valve                        |
| Thermostatic expansion valve (EEV)                 |
| Chilled water coil                                 |
| Chilled water 3-way valve                          |
| Inlet water thermostat                             |
| Manual bleed valve                                 |
| Safety thermostat                                  |
| Hot gas injection valve                            |
| Minimun pressure switch (LP)                       |
|                                                    |


#### Fig. 14.25 – Liebert HPM D8F U/O H (2xEEV)



| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |
| 13   | Shut-off valve                            |
| 14   | Hot gas solenoid valve (optional)         |
| 15   | Evaporator                                |
| 16   | Low pressure switch (LP)                  |

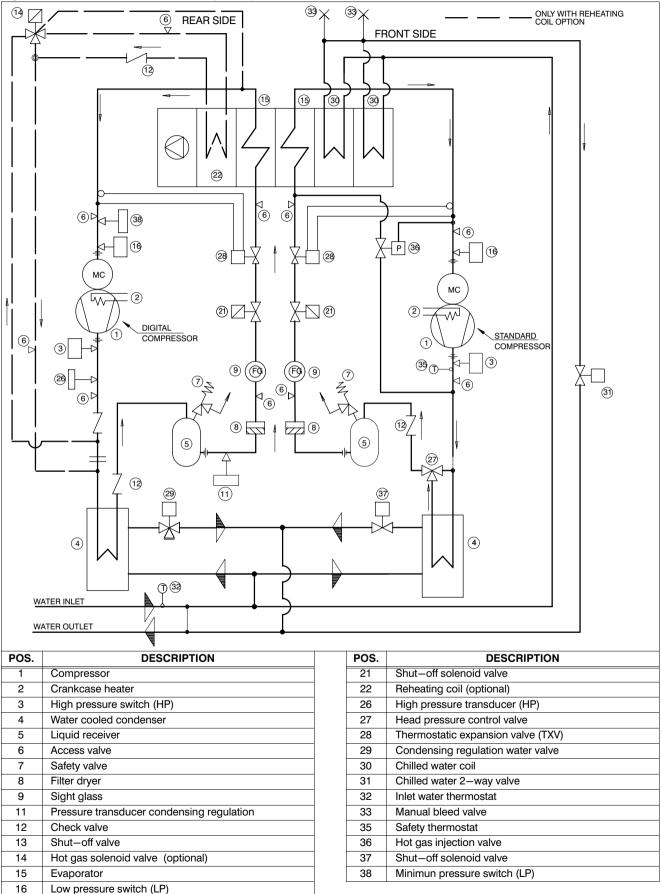
| POS. | DESCRIPTION                                        |
|------|----------------------------------------------------|
| 18   | Pressure transducer for electronic expansion valve |
| 22   | Reheating coil (optional)                          |
| 23   | Temperature sensor for EEV                         |
| 26   | High pressure transducer (HP)                      |
| 27   | Head pressure control valve                        |
| 28   | Thermostatic expansion valve (EEV)                 |
| 29   | Condensing regulation water valve                  |
| 30   | Chilled water coil                                 |
| 31   | Chilled water 3-way valve                          |
| 32   | Inlet water thermostat                             |
| 33   | Manual bleed valve                                 |
| 35   | Safety thermostat                                  |
| 36   | Hot gas injection valve                            |
| 38   | Minimun pressure switch (LP)                       |


### Fig. 14.26 – Liebert HPM D8F U/O A (2xTXV)

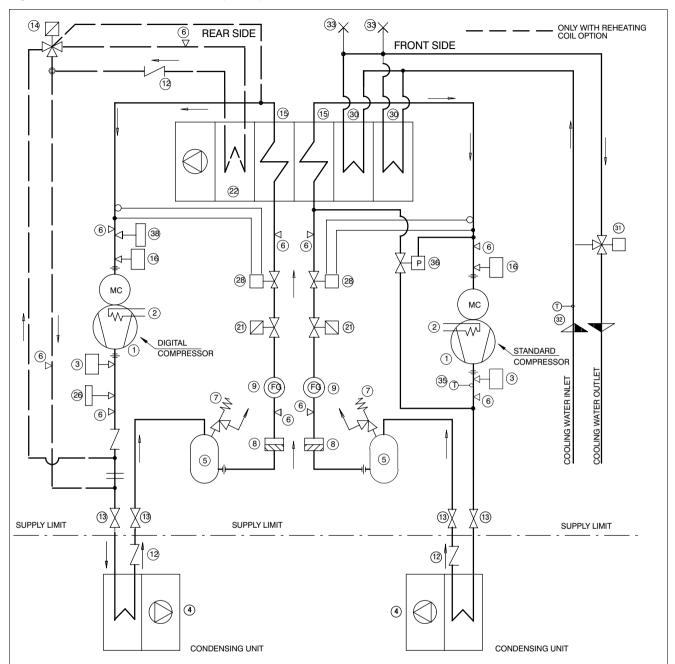


| POS. | DESCRIPTION               |
|------|---------------------------|
| 1    | Compressor                |
| 2    | Crankcase heater          |
| 3    | High pressure switch (HP) |
| 4    | Air cooled condenser      |
| 5    | Liquid receiver           |
| 6    | Access valve              |
| 7    | Safety valve              |
| 8    | Filter dryer              |
| 9    | Sight glass               |
| 12   | Check valve               |

| POS. | DESCRIPTION                                    |
|------|------------------------------------------------|
| 13   | Shut-off valve                                 |
| 14   | Hot gas solenoid valve (optional)              |
| 15   | Evaporator                                     |
| 16   | Low pressure switch (LP)                       |
| 21   | Shut-off solenoid valve                        |
| 22   | Reheating coil (optional)                      |
| 24   | Hot gas injection valve                        |
| 25   | On/off pressure switch hot gas injection valve |
| 26   | High pressure transducer (HP)                  |
| 28   | Thermostatic expansion valve (TXV)             |


### Fig. 14.27 – Liebert HPM D8F U/O W (2xTXV)

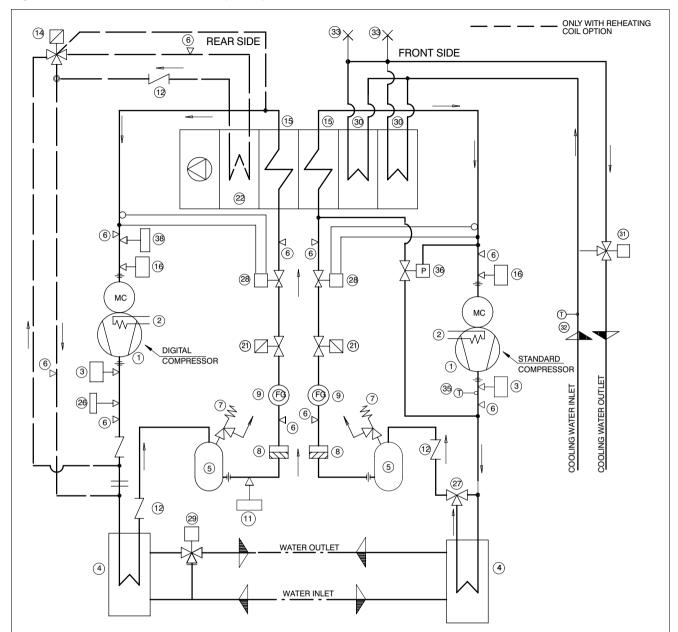



| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |

|    | DESCRIPTION                                    |
|----|------------------------------------------------|
| 14 | Hot gas solenoid valve (optional)              |
| 15 | Evaporator                                     |
| 16 | Low pressure switch (LP)                       |
| 21 | Shut-off solenoid valve                        |
| 22 | Reheating coil (optional)                      |
| 24 | Hot gas injection valve                        |
| 25 | On/off pressure switch hot gas injection valve |
| 27 | Head pressure control valve                    |
| 28 | Thermostatic expansion valve (TXV)             |
| 29 | Condensing regulation water valve              |

### Fig. 14.28 – Liebert HPM D8F U/O F (2xTXV)

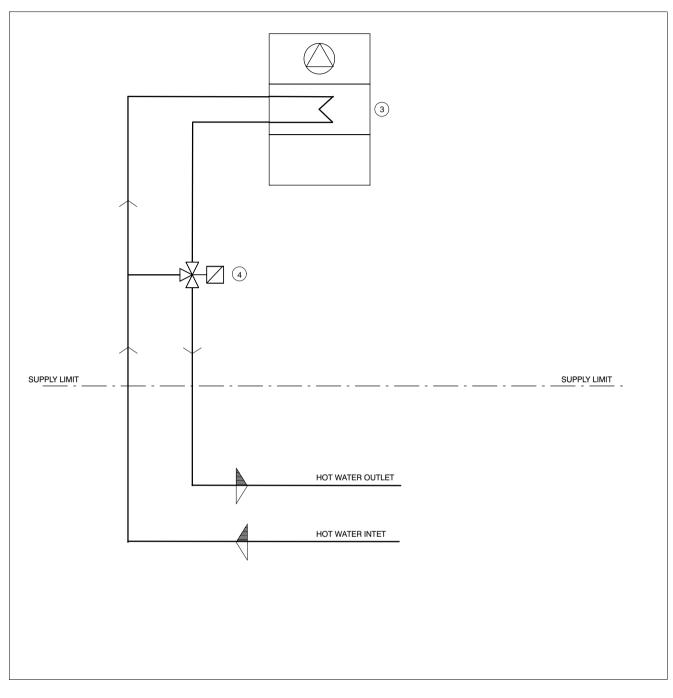



#### Fig. 14.29 - Liebert HPM D8F U/O D (2xTXV)



| POS. | DESCRIPTION                       |
|------|-----------------------------------|
| 1    | Compressor                        |
| 2    | Crankcase heater                  |
| 3    | High pressure switch (HP)         |
| 4    | Air cooled condenser              |
| 5    | Liquid receiver                   |
| 6    | Access valve                      |
| 7    | Safety valve                      |
| 8    | Filter dryer                      |
| 9    | Sight glass                       |
| 12   | Check valve                       |
| 13   | Shut-off valve                    |
| 14   | Hot gas solenoid valve (optional) |
| 15   | Evaporator                        |

| POS. | DESCRIPTION                        |
|------|------------------------------------|
| 16   | Low pressure switch (LP)           |
| 21   | Shut-off solenoid valve            |
| 22   | Reheating coil (optional)          |
| 26   | High pressure transducer (HP)      |
| 28   | Thermostatic expansion valve (TXV) |
| 30   | Chilled water coil                 |
| 31   | Chilled water 3-way valve          |
| 32   | Inlet water thermostat             |
| 33   | Manual bleed valve                 |
| 35   | Safety thermostat                  |
| 36   | Hot gas injection valve            |
| 38   | Minimun pressure switch (LP)       |


### Fig. 14.30 - Liebert HPM D8F U/O H (2xTXV)



| POS. | DESCRIPTION                               |
|------|-------------------------------------------|
| 1    | Compressor                                |
| 2    | Crankcase heater                          |
| 3    | High pressure switch (HP)                 |
| 4    | Water cooled condenser                    |
| 5    | Liquid receiver                           |
| 6    | Access valve                              |
| 7    | Safety valve                              |
| 8    | Filter dryer                              |
| 9    | Sight glass                               |
| 11   | Pressure transducer condensing regulation |
| 12   | Check valve                               |
| 13   | Shut–off valve                            |
| 14   | Hot gas solenoid valve (optional)         |
| 15   | Evaporator                                |

| POS. | DESCRIPTION                        |
|------|------------------------------------|
| 16   | Low pressure switch (LP)           |
| 21   | Shut-off solenoid valve            |
| 22   | Reheating coil (optional)          |
| 26   | High pressure transducer (HP)      |
| 27   | Head pressure control valve        |
| 28   | Thermostatic expansion valve (TXV) |
| 29   | Condensing regulation water valve  |
| 30   | Chilled water coil                 |
| 31   | Chilled water 3-way valve          |
| 32   | Inlet water thermostat             |
| 33   | Manual bleed valve                 |
| 35   | Safety thermostat                  |
| 36   | Hot gas injection valve            |
| 38   | Minimun pressure switch (LP)       |

### Fig. 14.31 - Hot water reheating coil - optional



| POS. | Optional components   |
|------|-----------------------|
| 3    | Hot water coil        |
| 4    | Hot water 3-way valve |



Fabbricante – Manufacturer – Hersteller – Fabricante – FabricanteFabricante – Tillverkare – Fabrikant – Valmistaja – ProdusentFabrikant – Κατασκεναστηζ – ProducentEmerson Network Power S.r.l. – Zona Industriale TognanaVia Leonardo da Vinci, 16/18 – 35028 Piove di Sacco – Padova (Italy)

Il Fabbricante dichiara che questo prodotto è conforme alle direttive Europee: The Manufacturer hereby declares that this product conforms to the European Union directives:

Der Hersteller erklärt hiermit, dass dieses Produkt den Anforderungen der Europäischen Richtlinien gerecht wird:

Le Fabricant déclare que ce produit est conforme aux directives Européennes:

El Fabricante declara que este producto es conforme a las directivas Europeas:

O Fabricante declara que este produto está em conformidade com as directivas Europeias:

Tillverkare försäkrar härmed att denna produkt överensstämmer med Europeiska Uniones direktiv:

De Fabrikant verklaart dat dit produkt conform de Europese richtlijnen is:

Vaimistaja vakuuttaa täten, että tämä tuote täyättää seuraavien EU-direktiivien vaatimukset:

Produsent erklærer herved at dette produktet er i samsvar med EU-direktiver:

Fabrikant erklærer herved, at dette produkt opfylder kravene i EU direktiverne:

Ο Κατασκευαστής δηλώνει ότι το παρόν προΪόν είναι κατασκευασμένο αύμφωνα με τις οδηγίες της Ε.Ε.:

### 2006/42/EC; 2004/108/EC; 2006/95/EC; 97/23/EC

### Ensuring the High Availability Of Mission-Critical Data and Applications

Emerson Network Power, a business of Emerson (NYSE:EMR), is the global leader in enabling Business-Critical Continuity™ from grid to chip for telecommunication networks, data centers, health care and industrial facilities. Emerson Network Power provides innovative solutions and expertise in areas including AC and DC power and precision cooling systems, embedded computing and power, integrated racks and enclosures, power switching and controls, monitoring, and connectivity. All solutions are supported globally by local Emerson Network Power service technicians. Liebert power, precision cooling and monitoring products and services from Emerson Network Power improve the utilization and management of data center and network technologies by increasing IT system availability, flexibility and efficiency. For more information, visit www .liebert .com, www.emersonnetworkpower.com or www.eu.emersonnetworkpower.com

#### Locations

#### **Emerson Network Power - Headquarters EMEA**

Via Leonardo Da Vinci 16/18 Zona Industriale Tognana 35028 Piove di Sacco (PD) Italy Tel: +39 049 9719 111 Fax: +39 049 5841 257 marketing.emea@emersonnetworkpower.com

#### **Emerson Network Power - Service EMEA**

Via Leonardo Da Vinci 16/18 Zona Industriale Tognana 35028 Piove di Sacco (PD) Italy Tel: +39 049 9719 111 Fax: +39 049 9719 045 service.emea@emersonnetworkpower.com

#### **United States**

1050 Dearborn Drive P.O. Box 29186 Columbus, OH 43229 Tel: +1 6148880246

#### Asia

29/F The Orient Square Building F. Ortigas Jr. Road, Ortigas Centre Pasig City 1605 Philippines Tel: +63 2 620 3600 Fax: +63 2 730 9572



Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2008 Emerson Electric Co.

While every precaution has been taken to ensure the accuracy and completeness of this literature, Liebert Corporation assumes no responsibility and accepts no liability for damages resulting from use of this information or for any errors or omissions. ©2008 Liebert Corporation.

All rights reserved throughout the world. Specifications subject to change without notice.

Liebert and the Liebert logo are registered trademarks of Liebert Corporation. All names referred to are trademarks or registered trademarks of their respective owners.

#### **Emerson Network Power**