Sun.

microsystems

User’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A. 650-960-1300

December 2003

Wireless Toolkit, Version 2.1

Java™ 2 Platform, Micro Edition

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
atht t p: // ww. sun. con pat ent s and one or more additional patents or pending patent applications in the U.S. and in other
countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE Studio, Java 2 Platform, Micro Edition, Wireless Toolkit, J2SE, JDK,
and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIXis a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject
to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end
users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérésa ht t p: / / www. sun. con pat ent s et un ou les brevets plus supplémentaires ou les applications de brevet
en attente dans les Etats - Unis et dans les autres pays.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE Studio, Java 2 Platform, Micro Edition, Wireless Toolkit, J2SE, JDK et
le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.
Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font I’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matiere de contrdle des exportations et peuvent étre soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de maniére
non exclusive, laliste de personnes qui font objet d’un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matiére de controle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITEMARCHANDE, A APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

Please K‘

Adobe PostScript

http://www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xv

1. Introduction to the Wireless Toolkit 1

Overview of Java Technology
for the Wireless Industry 1

Related Documentation 2

Features of the Wireless Toolkit 2
Compiling, Preverifying, and Debugging 2
Packaging 3
Running MIDlet Suites 3
Authenticating and Authorizing MIDlets 3
Performance Tuning 4
Memory and Network Monitoring 4
Working With the Emulator 4

Internationalization Features of the
Wireless Toolkit 5

Providing Access to J2ME Web Services 5
Operating From the Command-Line 5

Application Demos 6

2. Developing and Running Applications 7
Developing Applications 7
Running Applications Remotely 8

Contents i

Packaging 8
Signing MIDlet Suites 9
Running in OTA Provisioning Mode 9

3. Operating with KToolbar 11
Navigating in KToolbar 12
KToolbar Projects 12
Creating a New Project 13
Opening an Existing Project 15
Editing MIDlet Suite Attributes 15
Modifying MIDlet Suite Attributes 15
Modifying User-Defined Attributes 16
Adding User-Defined Attributes 16
Removing User-Defined Attributes 16
Modifying MIDlet-Specific Attributes 16
Adding MIDlet-Specific Attributes 17
Removing MIDlet-Specific Attributes 17
Adding MIDlets 17
Changing the Order of the MIDlets 17
Adding a Push Registry 17
Adding API Permissions 19
Removing API Permissions 20
Compiling and Preverifying a Project 21
Running a Project Locally 21
Debugging 21
Cleaning Up Project Files 22
Packaging 22
Obtaining a ByteCode Obfuscator 23
Signing MIDlet Suites From KToolbar 24

Running in OTA Provisioning Mode 24

iv. Wireless Toolkit Basic Customization Guide ¢« December 2003

Using Class Libraries 24

External Libraries for a Specific Project 25

External Libraries for All Projects 25
Using the Stub Connector to Access J2ME Web Services 25
Setting Emulator Preferences and Using Emulator Utilities 26
Customizing KToolbar 27

Setting the Application Directory 27

Setting the javac Encoding Property 27

Working with Revision Control Systems 27

Performance Tuning and Monitoring Applications 29
Profiling Your Application 29
Viewing Profiling Information 30
Profiling Data Display 30
Saving and Examining Profiling Information 31
Examining Memory Usage 32
Viewing Memory Usage 33
Memory Monitor Data Display 34
Saving and Examining Memory Usage Information 35
Monitoring Network Traffic 36
Viewing Network Traffic 36
Network Monitor Data Displays 37
Filtering Messages 38
Disabling Filtering 39
Sorting Messages 39
Saving and Examining a Networking Session 40
Clearing the Message Tree 40
Managing Device Speed 40
Setting Graphics Performance 41

Setting VM Speed Parameters 42

Contents

Setting Network Speed Parameters 42

5. Working With the Emulator 43
Example Devices 43

Device Characteristics 44
Pausing and Resuming a MIDlet 44
Def aul t Col or Phone and Def aul t GrayPhone 44
Medi aControl Skin 46
QuertyDevice 46

Inputting Text 48
Using the Device to Input Text 48

Preferences and Utilities 48

DefaultEmulator Preferences 49
Setting the Web Proxy 49
Choosing an HTTP Version 50
Setting Performance Parameters 50
Enabling Monitoring and Tracing 50
Setting the Heap Size 51
Setting the Storage Directory 51
Setting WMA Parameters 51
Setting Optional Multimedia Formats and Features 52
Specifying a Security Domain Type 52

DefaultEmulator Utilities 52
Cleaning Device Storage 53
Monitoring Memory Usage 53
Monitoring Network Traffic 54
Profiling Methods 54
Wireless Messaging 54
Signing MIDlet Suites and Managing Certificates 54

Using a Stub Connector to Access Web Services 55

vi Wireless Toolkit Basic Customization Guide « December 2003

6. Using Security Features in the Wireless Toolkit 57
Signing MIDlet Suites 57
Creating a New Key Pair and Signing a MIDlet Suite 58
Importing a Key Pair and Signing the MIDlet Suite 60
Deleting an Alias 61
Managing Default Emulator Certificates 61
Viewing Certificates 61
Importing Certificates 62
Importing From the J2SE Keystore 62
Importing From a Certificate Authority 63
Managing Certificates in Other Keystores 63
Deleting Certificates 63

7. Wireless Messaging with the Wireless Toolkit 65
Getting Started With WMA Emulation 66

Sending a Text SMS Message From the
WMA Console 66

Sending a Binary SMS Message 69
Sending a CBS Message 69
Setting WMA Preferences 69

8. Testing Application Provisioning 71
Deploying Applications on a Web Server 71
Deploying Applications Remotely 72

A. MIDlet Attributes 73

B. MIDlet Demonstration 77
Demonstrating MIDlet Suites Deployed on a Local Disk 77

Demonstrating MIDlet Suites Deployed on a Web Site 78

C. Internationalization 79

Locale Setting for the Wireless Toolkit 79

Contents

Vii

Emulated Locale 80
Character Encodings 80
Java Compiler Encoding Setting 81

Font Support in the Default Emulator 81

D. Command Line Utilities 83
Preliminary Checks 83

Selecting a Default Device 83
Accessing Preferences and Utilities 84
Using the Stub Generator 84
Options 84
Example 86
Compiling Class Files 86
Arguments 86
Options 86
Example 87
Preverifying Classes 87
Arguments 87
Options 87
Example 88
Packaging a MIDlet suite 88
Creating a Manifest File 88
Creating an Application JAR File 88
Arguments 89
Creating an Application JAD File 89
Example 89
Running the Emulator 90
General Options 90
Running Options 90
Tracing and Debugging Options 91

viii Wireless Toolkit Basic Customization Guide ¢ December 2003

Emulator Preferences Setting Option 92
Emulator Domain Setting Option 94
Certificate Manager Utility 95
Usage 95
Commands 95
MIDlet Suite Signing Utility 96
Usage 96

Commands 96

Index 99

Contents

iX

X Wireless Toolkit Basic Customization Guide ¢ December 2003

Figures

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15
FIGURE 16
FIGURE 17
FIGURE 18
FIGURE 19
FIGURE 20
FIGURE 21

Packaging and Signing a MIDlet Suite 8
KToolbar Main Window 11

Console Output After Creating a Project 13
Settings API Selection Tab 14

Project Settings Required Tab Dialog 15
Sample of a Push Registry 18

API Permissions Selection Dialog Box 20
Console Output After Packaging 23

Stub Generator Dialog 26

Profiler Window 31

Memory Monitor Window 33

Memory Monitor Graph 34

Memory Monitor Objects Table 35
Message Key and Value Pair 37

Message Body 38

Performance Settings 41

Default Color Phone Device and Default Gray Phone Device 45
MediaControlSkin Device 46

Qwerty Handheld Device 47
DefaultEmulator Preferences Dialog 49

DefaultEmulator Utilities Window 53

Xi

FIGURE 22 Keystore File Generator 59

FIGURE 23 Alias List Displaying Alias for Newly Created Key Pair 59
FIGURE 24 Alias List Dialog Box 60

FIGURE 25 Certificate Details 62

FIGURE 26 WMA Console Window 67

FIGURE 27 Send a Message - SMS Dialog Box 68

xii Wireless Toolkit User's Guide « December 2003

Tables

TABLE 1
TABLE 2
TABLE 3
TABLE 4
TABLE 5
TABLE 6
TABLE 7
TABLE 8
TABLE 9

Project File Organization 12

Filter Settings for Network Protocols 39

Example Devices 43

Selected Device Characteristics 44

Pound (‘#') and Asterisk (*') Key Functions 48

MIDlet Attributes 73

Options for the wsconpi | e Command 84

Command Supported Features (-f) for wsconpi | e

Emulator Preferences Properties List

92

85

Xiii

xiv Wireless Toolkit User's Guide ¢ December 2003

Preface

The]avaTM 2 Platform, Micro Edition, Wireless Toolkit User’s Guide describes how to
work with the J2ME"" Wireless Toolkit and its components.

Who Should Use This Book

This guide is intended for developers creating MIDP applications with the J2ME
Wireless Toolkit. This document assumes that you are familiar with Java
programming, Mobile Information Device Profile (MIDP), and the Connected
Limited Device Configuration (CLDC).

XV

How This Book Is Organized

This guide contains the following chapters and appendixes:

Chapter 1 introduces the J2ME Wireless Toolkit and the MIDlet development
features it provides.

Chapter 2 describes the development processes for creating and running MIDlets.
This chapter explains the differences between running an application locally and
running it remotely and when, in the development cycle, to use each means of
execution.

Chapter 3 explains how to perform basic programming operations with KToolbar,
such as compiling, preverifying, debugging, tracing, and packaging. This chapter
also explains how to implement security protocols, how to set the Push Registry,
how to generate a stub connector, and how to set MIDlet permissions through the
J2ME Wireless Toolkit.

Chapter 4 describes the performance tuning features: profiling, memory
monitoring, network monitoring, and speed emulation.

Chapter 5 describes the example devices and demo applications provided by the
Wireless Toolkit. This chapter also explains how to input text to the devices, how to
set device preferences, and how to access the device utilities.

Chapter 6 describes how to sign MIDlet suites and manage certificates with
security utilities provided with the J2ME Wireless Toolkit.

Chapter 7 describes support for running and testing wireless messaging
applications in the Wireless Toolkit.

Chapter 8 describes how to test and demonstrate the over the air initiated
provisioning process.

Appendix A lists and describes MIDlet attributes.
Appendix B describes how to demonstrate MIDlets for non-development purposes.
Appendix C describes internationalization features in the Wireless Toolkit.

Appendix D explains how to use the command line utilities to perform basic
development operations and to manage certificates and sign MIDlet suites in the
Wireless Toolkit. This chapter includes an example of stepping through a basic
development cycle working from the command line.

XVi

Using Operating System Commands

This document may not contain information on basic UNIX® or Microsoft
Windows commands and procedures such as opening a terminal window,
changing directories, and setting environment variables. See the software
documentation that you received with your system for this information.

Wireless Toolkit User's Guide ¢« December 2003

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, Edit your . | ogi n file.
and directories; on-screen Use | s -a to list all files.
computer output % You have nmil.

AaBbCc123 What you type, when % su
contrasted with on-screen Passwor d:
computer output

AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.

You must be superuser to do this.

Command-line variable; replace To delete a file, type r mfilename.
with a real name or value

{AaBbCc.dir} Variable file names and These files are located under the

directories.

{j2mewtk.dir]\ apps\ {demo_name}\ bi n
\ directory where {j2mewtk.dir} is the
installation directory of the J2ME
Wireless Toolkit and {demo_name} is
the name of one of the demo

applications.
Shell Prompts
Shell Prompt
Microsoft Windows <directory>

Preface xvii

Related Documentation

Topic

Title

Customizing the J2ME Wireless Toolkit
J2ME Wireless Toolkit Release Notes
MIDP - JSR 37

MIDP - JSR 118
CLDC - JSR 30, JSR 139
WMA - JSR 120

MMAPI - JSR 135
JTWI - JSR 185
J2ME Web Services JSR 172

J2ME™ Wireless Toolkit Basic Customization Guide
J2ME™ Wireless Toolkit Release Notes

Mobile Information Device Profile for the 2ME™
Platform

Mobile Information Device Profile 2.0
J2ME™ Connected Limited Device Configuration

Wireless Messaging API (WMA) for Java™ 2 Micro
Edition

Mobile Media API
Java Technology for the Wireless Industry
J2ME™ Web Services Specification

Accessing Sun Documentation Online

The Java Developer Connections web site enables you to access Java " platform

technical documentation on the Web.

http://devel oper.java. sun. conf devel oper/i nf odocs/

XViii

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

wt k- conmrent s@un. com

Wireless Toolkit User’'s Guide ¢ December 2003

http://developer.java.sun.com/developer/infodocs/

CHAPTER 1

Introduction to the Wireless Toolkit

The Java'" 2 Platform, Micro Edition (J2ME"™), Wireless Toolkit User’s Guide describes
how to work with the Wireless Toolkit and its components.

The J2ME Wireless Toolkit version 2.1 supports development of applications
compliant with the Java Technology for the Wireless Industry, Java Specification
Request (JSR-185). The J2ME Wireless Toolkit version 2.1 also includes support for
J2ME Web Services (JSR-172).

Overview of Java Technology
for the Wireless Industry

Java Technology for the Wireless Industry clarifies how the various technologies
associated with the J2ME Connected Limited Device Configuration (CLDC) and
Mobile Information Device Profile (MIDP) work together to form a complete Java'"
Runtime Environment (JRE). The environment enables the deployment of end-to-
end solutions on mobile phones and other mobile information devices.

The Java Technology for the Wireless Industry Roadmap 1 provides an outline of
common functionality that software developers can use to develop applications for
JSR-185 compliant devices. The specification requires certain component
technologies, namely, CLDC 1.0, MIDP 2.0 and Wireless Messaging API (WMA) 1.1
(JSR-120). Version 1.0 of the Java Technology for the Wireless Industry
conditionally requires other component technologies, such as CLDC 1.1 and Mobile
Media API (MMAPI) 1.1, depending on the functionality of your application. For
more information about Java Technology for the Wireless Industry, see
http://java. sun. com products/jtw .

The implementation of the Java Technology for the Wireless Industry is the
Wireless Toolkit version 2.1, which supports CLDC 1.1, MIDP 2.0, WMA 1.1, and
MMAPI 1.1. You can still use the Wireless Toolkit, version 2.1 to develop
applications that use CLDC 1.0 or MIDP 1.0.

http://java.sun.com/products/jtwi

Related Documentation

This document assumes that you are familiar with Java programming, MIDP 2.0
and the Connected Limited Device Configuration (CLDC). This document also
assumes familiarity with the Mobile Media API (MMAPI) and the Wireless
Messaging API (WMA) for those developing wireless messaging applications or
applications that make use of multimedia. You can find more information about the
topics described in this chapter at the following URLs:

MIDP — htt p://java. sun. coni product s/ m dp

CLDC — http://java. sun. com products/cl dc

MMAPI — http://java. sun. con product s/ mrapi

WMA — http://java. sun. coni product s/ wa

J2ME Web Services — http://j cp. org/en/jsr/detail ?i d=172
Java Technology for the Wireless Industry —
http://java.sun.conl products/jtw /

2

Features of the Wireless Toolkit

The KToolbar, included with the J2ME Wireless Toolkit, is a minimal development
environment with a Graphical User Interface (GUI) for compiling, packaging, and
executing MIDP applications. The only other tools you need are a third-party
editor for your Java source files and a debugger.

An IDE compatible with the J2ME Wireless Toolkit, such as the Sun'" Open Net
Environment (Sun ONE) Studio IDE, provides even more convenience. For
example, when you use the Wireless Toolkit within an IDE, you can edit, compile,
package, and execute or debug MIDP applications, all within the same
environment. For a list of IDEs that are compatible with the Wireless Toolkit, see
the Java' " 2 Platform, Micro Edition, Wireless Toolkit web page at

http://java. sun. conl products/j 2mewt ool ki t/.

When working with the J2ME Wireless Toolkit in standalone mode, you work
mainly through the KToolbar. The features available to help you create, modify,
and test your MIDlet suite are described briefly in the following sections.

Compiling, Preverifying, and Debugging

When you compile MIDlets through the KToolbar (or an IDE compatible with the
toolkit), your source files are compiled using the Java'" 2 Platform, Standard
Edition (J2SE™") SDK compiler. Preverification of the compiled files is done with the
Preverifier that prepares class and JAR files and class directories. Preverification
takes place automatically for you immediately after compilation. You can debug

Wireless Toolkit User's Guide * December 2003

http://java.sun.com/products/midp
http://java.sun.com/products/cldc
http://java.sun.com/products/mmapi
http://java.sun.com/products/wma
http://jcp.org/en/jsr/detail?id=172
http://java.sun.com/products/jtwi/
http://java.sun.com/products/j2mewtoolkit/

applications within the environment using the Emulator, which simulates the
execution of the application on various devices. For more information on how to
compile, preverify, and debug files using KToolbar, see Chapter 3, “Operating with
KToolbar.”

Packaging

You can package your MIDlet suite from the KToolbar or with a compatible IDE.
The KToolbar gives you the choice of creating a standard package or creating an
obfuscated package that produces a smaller JAR file by reducing the size of the
classes in the suite through the obfuscation process.

For more information on packaging and obfuscated packaging, see Chapter 2,
“Developing and Running Applications.” For information on how to package
applications using the KToolbar, see Chapter 3, “Operating with KToolbar.”

Running MID]et Suites

Running a MIDlet suite on the emulator can be done either locally (running
directly from the classpath without packaging) to see the application perform
immediately after a build or remotely through Over-The-Air (OTA) provisioning
(emulation of the application provisioning and installation from the server to the
device).

For a description on different ways to run your application, see Chapter 2,
“Developing and Running Applications.” For information on testing your
applications with OTA provisioning or remotely from a web server, see Chapter 8,
“Testing Application Provisioning.”

Authenticating and Authorizing MIDlets

You can create trusted applications that have permission to use protected APIs. You
can request permission to access network protocol APIs through the Project
Settings dialog box from the KToolbar. You can sign your MIDlet suite and assign a
security domain that defines the suite’s authorization level with the Sign MIDlet
Suite window.

For information on signing a MIDlet suite, see Chapter 6, “Using Security Features
in the Wireless Toolkit.”

Chapter 1 Introduction to the Wireless Toolkit 3

4

Performance Tuning

The Wireless Toolkit’s Profiler enables you to optimize the performance of your
MIDlet suite by determining where bottlenecks might be occurring during runtime.
You can improve the execution time of your MIDlet suite by examining the time
spent in method calls, the number of times a method is called during runtime, and
the amount of time a method runs compared to the overall runtime of the
application.

You can also adjust the performance speed of your application in the Performance
panel of the Project Settings dialog box. Setting the speed features does not
demonstrate how your application would run on an actual device; however, by
adjusting the speed emulation parameters, you can achieve a better
representational performance of your application on a device.

For information on how to use the Profiler and how to manage device speed, see
Chapter 4, “Performance Tuning and Monitoring Applications.”

Memory and Network Monitoring

The Wireless Toolkit provides you with tools to examine and analyze memory
usage by your application and network transmissions between your device and the
network. You can get an overall view of memory usage during runtime of your
application and get a breakdown of memory usage per object to see where in the
application you can optimize memory usage.

With the Network Monitor, you can examine network transmissions for several
types of network protocols.

For information on how to use the Memory and Network Monitors, see Chapter 4,
“Performance Tuning and Monitoring Applications.”

Working With the Emulator

The J2ME Wireless Toolkit comes with a selection of emulated devices for you to
run and test your applications on. Representations of mobile devices are available
from the Device list on the KToolbar. Java Technology for the Wireless Industry
defines the technologies to be included in compliant phones. These technologies
include CLDC, MIDP, MMAPI, and WMA.

You can set the functionality for an emulated device through the Preferences
window. You can also start various emulator utilities such as the Profiler, the
Network Monitor, the Memory Monitor, and the Certificate Manager from the
Utilities window. For more information on the Emulator, see Chapter 5, “Working
With the Emulator.”

Wireless Toolkit User's Guide * December 2003

For information on examining applications that you develop that use network
protocols or wireless messaging, see Chapter 4, “Performance Tuning and
Monitoring Applications.”

To test applications that use wireless messaging, the Wireless Toolkit provides the
WMA console, which you can use to send and receive binary and text SMS
messages. You can also use the console to broadcast CBS messages to devices. For
more information about the WMA console, see Chapter 7, “Wireless Messaging
with the Wireless Toolkit.”

Internationalization Features of the
Wireless Toolkit

You can run the Wireless Toolkit and display your application in your desired
language by setting the locale properties of the Wireless Toolkit and the Emulator.
You can also change the character encoding setting for the device MIDP
environment and for the Java compiler. For more information on
internationalization, see Appendix C, “Internationalization.”

Providing Access to J2ME Web Services

You can generate a stub connector to access J2ME Web Services from the KToolbar.
The Emulator is compliant with the J2ME Web Services specification. The Stub
Generator is created using a Web Service Descriptor Language file (WDSL),
provided by the user. You can launch the stub generator from the KToolbar using
the File menu’s Utilities option, from the Project menu, or you can run it from the
command line. See Appendix D, “Command Line Utilities” for more information

Operating From the Command-Line

Many of the basic development operations available from the KToolbar can also be
performed at the command line such as compiling and preverifying, creating
manifest files, JAR and JAD files, running emulators, tracing and debugging,
invoking the Stub Generator, and using the Application Management System. You
can also sign MIDlet suites and manage certificates from the command line. See
Appendix D, “Command Line Utilities” for more information.

Chapter 1 Introduction to the Wireless Toolkit 5

Application Demos

The Wireless Toolkit comes with the several demo applications, which can all be
run in the Emulator. You can select a demo application from the Open Project list
from the KToolbar. For information on the demo applications, see the Application
Demos page in the {j2mewtk.dir}\ docs directory.

6 Wireless Toolkit User’'s Guide ¢ December 2003

CHAPTER 2

Developing and Running
Applications

This chapter describes the MIDP application development life cycle in the context
of working with the Wireless Toolkit and the ways in which you can run an
application (MIDlet suite) during its development cycle:

Running Locally - Immediate execution of the application after compilation and
preverification have taken place. You run your MIDlet directly from the
classpath without going through the packaging process.

Running with OTA Provisioning - Execution of the mature application. The
MIDlets have been packaged into a MIDlet suite containing JAD, JAR, and
manifest files which have undergone a packaging validation process. The
MIDlet suite is deployed from a provisioning server in accordance with MIDP
2.0 specification and downloaded to the emulated device.

Developing Applications

Developing an application usually involves the following steps:

1.

Edit>Build>Run Locally. In this step, initial development of MIDlets takes
place. This step is repeated until the application reaches a mature state. In this
step, packaging of the MIDlets does not occur. You can select an emulated
device from the KToolbar and run the application immediately.

For information on how to build, run, and debug using the KToolbar, see
Chapter 3, “Operating with KToolbar.”

. Packaging>Run Remotely. In this step, additional verification and testing to

simulate the downloading and running of the application on a device occurs.

For information on what is involved with packaging and running an application
remotely, see the following section, “Running Applications Remotely.”

. Run on actual device. Your application development is complete at this step.

8

Running Applications Remotely

Once your application is in a stable state, you are ready to see how your
application performs in a more realistic environment, that is the downloading and
running of your application onto a mobile device from a browser or server.

At this point, you will want to run your application using Over-The-Air (OTA)
provisioning. The J2ME Wireless Toolkit simulates OTA provisioning, that allows
you to test the functionality of your application and demonstrate the full
provisioning process of your MIDlet suite from a web server to a device. With
simulated OTA provisioning in the Wireless Toolkit, the MIDlet suite is packaged
in the JAR and JAD format, deployed to the provisioning server, and downloaded
to an emulated device.

To run using OTA provisioning, you need to package your MIDlets into a MIDlet
suite, and sign the MIDlet suite if authentication is required:

Preverified
.class files ——p»
o Packaging/
Application resources Obfuscated

(text, images, ...) —pm | Packaging

MIDlet attributes to JAR

and manifest files — g
FIGURE1 Packaging and Signing a MIDlet Suite

Sign MIDlet
Suite

(Optional)

Packaging

MIDP applications, or MIDlets, are packaged into a MIDlet suite, a grouping of
MIDlets that can share resources at runtime.

A MIDlet suite includes:

= A Java Application Descriptor (JAD) file. This file contains a predefined set of
attributes that allows the device application management software to identify,
retrieve, and install the MIDlets.

= A Java Archive (JAR) file. The JAR file contains Java classes for each MIDlet in
the suite and Java classes that are shared between MIDlets. The JAR file also
contains resource files used by the MIDlets and a manifest file.

For more information on what attributes can be added to the JAD and manifest
files, see Appendix A, “MIDlet Attributes.”

Wireless Toolkit User's Guide * December 2003

A package validation process, which occurs during OTA provisioning, checks for
consistency in content between the JAD, JAR, and manifest files.

Development environments such as KToolbar and the Sun ONE Studio 4, Mobile
Edition automate the packaging of MIDlet suites and ensure the correct packaging
of the JAR and JAD files. (For information on how to package applications using
KToolbar, see “Packaging” on page 22 in Chapter 3, “Operating with KToolbar.”

Packaging Obfuscated ByteCode

An optional feature provided by the J2ME Wireless Toolkit is the ability to build an
obfuscated package. In addition to protecting your source code, the obfuscation
process reduces the size of the classes resulting in smaller JAR files. For
information on creating packages and obfuscated packages, see “Packaging” on
page 22 in Chapter 3, “Operating with KToolbar.”

Signing MIDlet Suites

An optional step after packaging, is signing the MIDlet suite. The signing process
creates a digital signature for the MIDlet suite’s JAR file, and adds it to the JAD
file. To facilitate the signing process, you can start the process immediately by
running the Sign command from the KToolbar’s Project menu. For more
information on security features in the Wireless Toolkit and signing a MIDlet suite,
see Chapter 6, “Using Security Features in the Wireless Toolkit.”

Running in OTA Provisioning Mode

When you are ready to test the behavior of your MIDlet suite, you can run the

application in provisioning mode directly from the KToolbar. Running an

application through provisioning differs from running an application directly on

the emulated device in several ways. The following MIDP 2.0 features can be tested

only when using OTA provisioning:

= Package validation. Validation is checked whenever an application is
downloaded onto a device.

= Setting permissions to access sensitive APIs.

= Authentication of a MIDlet suite.

» Push functionality.

By choosing the Run via OTA command from the KToolbar’s Project menu, you can
run your application in such a way as to simulate deployment from a web server.
The command starts a default emulator device with a graphical Application
Management System (AMS) already started and ready to install your application.

In addition, if authentication is required, you can run the Sign command from the
Project menu to perform the signing process for your MIDlet suite.

Chapter 2 Developing and Running Applications 9

10

To run your application in OTA provisioning mode:

. Choose Project -> Run via OTA.

The Emulator appears.

. Click the Apps button and then choose Launch from the Menu.

The URL of the application is displayed.

. Select Go from the Menu.

For information on entering text in the Emulator, see “Inputting Text” on page 48.
The AMS attempts to install the application described by the JAD file.

For information on OTA provisioning, see "Over The Air User Initiated
Provisioning Specification," in the MIDP 2.0 specification at
http://java. sun. conl product s/ m dp.

For information on deploying and testing your applications with a real web server,
see Chapter 8, “Testing Application Provisioning.”

Wireless Toolkit User’'s Guide « December 2003

http://java.sun.com/products/midp

CHAPTER 3

Operating with KToolbar

KToolbar is a minimal development environment for developing MIDlet suites.
From the KToolbar, you can:

= Create a new project or open an existing one

= Select the target platform and API set for your project
» Build, run, and debug your MIDlet

= Fine tune your MIDlet application

= Generate a stub connector to access J2ME Web Services
= Package your project files

= Modify the attributes of your MIDlet suite

To run the KToolbar:

e From the Windows Start menu, select Programs -> J2ME Wireless Toolkit 2.1 ->
KToolbar.

The main window appears:

[& by -
=’;§:!JZME Wireless Toolkit =[O x|

File Edit Project Help

J £, New Project . | 82 cpen Project . | 4, Settings . | i Build | 42 Run | B clear consale

J Device: IDefaurtCDIDrPhone LI

Create a new project or open an existing one

FIGURE2 KToolbar Main Window

11

Navigating in KToolbar

You can navigate through KToolbar windows (the main window, Profiling,

Memory Monitor, and Network Monitor windows) using the Tab and arrow keys.
Mnemonics on menus and buttons provide you with alternative means to initiating
commands. A mnemonic is the underlined letter that corresponds to the keyboard
key to press in conjunction with the Alt key to activate a command or to navigate

to a component in the window.

You can press the Tab key to bring the focus to a particular component of a
window and then use the arrow keys to manipulate that component.

KToolbar Projects

A KToolbar project is associated with a MIDlet suite. The project contains the
suite’s source, resource, and binary files, as well as the JAD and manifest files that

contain the suite’s attributes.

Project files are located in project subdirectories under the Wireless Toolkit’s
installation directory, {j2mewtk.dir}. The following table shows how files are
organized within the directory for the project, {project.name}:

TABLE 1 Project File Organization

Directory

Description

{j2mewtk.dir)\ apps\ {project.name}
{j2mewtk.dir}\ apps\ {project.name}\bi n
{ j2mewtk.dir}\ apps\ {project.name}\I i b

{j2mewtk.dir}\ apps\ {project.name}\r es
{j2mewtk.dir]\ apps\ {project.name}\sr c
{j2mewtk.dir)\ apps\l i b

Contains all source, resource, and binary
files of the project

Contains the JAR, JAD, and unpacked
manifest files.

Contains external class libraries, in JAR or
ZIP format for a specific project.

Contains all the resource files.
Contains all the source files.

Contains external class libraries, in JAR or
ZIP format for all KToolbar projects.

Wireless Toolkit User’'s Guide « December 2003

Note — Adding external class libraries to a project increases the size of the MIDlet
suite’s JAR file. Large JAR files take longer to load onto a device, and might be
unusable on devices with low memory.

Creating a New Project

To create a new project:

. Choose File -> New Project from the menu or click New Project on the toolbar.

The New Project dialog appears.

. Type the name of the project in the Project Name field, and the name of the main
MIDlet class in the MIDlet Class Name field.

For example, you might call the project, newpr oj ect, and the MIDlet class might
be nyTest . Hel | o.

. Click Create Project.

The main window’s title changes to include the name of the new project, as shown
in FIGURE 3. The Project Settings API Selection tab is displayed as shown in
FIGURE 4.

E_E!JzME Wireless Toolkit - newproject I [=] (S
File Edit Project Help

J %ﬁ Mooy Project ... | @ Open Project ... @, Settings ... | %' Buildt | @p Fun | g Clear Conzole

J Drervice: IDefauﬂCnlanhnne LI

Create a new project or open an existing one

Creating project "nmewproject”

Place Jawva source f£iles in "C:i\WIEZ1l\Zapps\newprojectisrc™

Place Application resource files in "C:A\WTEZ1l\appsihewprojectires™
Place ipplication library files in "C:\WIKZlYappsinewprojectilib™

FIGURE3 Console Output After Creating a Project

The console indicates where to place your source, resource, and library files. The
locations are consistent with the project file organization outlined in TABLE 1 on
page 12.

Chapter 3 Operating with KToolbar 13

ettings for project “newproject™ ll

Requiredl Optionall Uzer Definedl MIDIetSI Push Registry Permissionsl

Target Platform IJTW1 ¥ l

AT

Profile:
’VMIDP 20

Configurstion:

& Cloc1o
oDt

~Optional
Wireless Messaging AP (JSR 1200
[V Makile Media API (JSR 135)

rAdditional AP

[~ wieh Service Access for J2ME [JSRA72)

OK | Cancel |

FIGURE4 Settings API Selection Tab

4. Select the Target Platform.

The target platform defines the set of APIs that are used for developing your
MIDlet.

The target platform may be one of the following:

= JTWI — conforms to Java Technology for the Wireless Industry (JSR-185).
= MIDP1.0 — includes MIDP 1.0 and CLDC 1.0

= Custom — user defined settings, you can select project profile, configurations,
and various APIs.

The project settings information and tabs change based on the selection you choose
for the target platform. Some project settings are not applicable for a selected target
platform. For example, the MIDP 1.0 target platform does not support Push
Registry or Permissions, therefore the tabs are disabled. All project settings tabs are
updated with information relevant to your selection. For example, if you selected
the JTWI target platform, the MicroEdition-Profile value is updated in the Required
tab.

5. Select the Profiles, Configurations, and Additional/Optional APIs for your
project and click OK.

14 Wireless Toolkit User’'s Guide ¢ December 2003

Opening an Existing Project

To open an existing project:

1. Choose File -> Open Project from the menu or click Open Project on the toolbar.

The Open Project dialog appears with a list of projects.

2. Double-click the project, or choose the project and click Open Project.

The main window'’s title changes to include the name of the project.

Editing MIDlet Suite Attributes

This section explains how to use the project settings dialog to modify a MIDlet

suite’s attributes. Use the project settings dialog box, shown in FIGURE 4, to edit a

MIDlet suite’s project settings.

To open the Settings dialog box for the current project:

e Choose Project -> Settings from the KToolbar menu or click the Settings button.

Modifying MIDlet Suite Attributes

To change a required, optional, or user-defined MIDlet suite attribute:

Click the Required, Optional, or User Defined tab.

The required, optional, or user-defined attributes and their current values are
displayed depending on which tab you clicked.

EEISettings for project "newproject™ ﬂ
AP| Selection | | optiorial | User Detined | MDlets | Push Reistry | Permissions |
I Yalue I
hIDlet-Jar-Size 100
AIDlet-Jar-LRL nevvvproject jar
WDt -Mame nesvvproject
hIDlet-endar Sun Microsystems
hAIDIet-Y'ersion 1.0
icroEdition-Configuration CLDCT A
ndicroEdition-Profile MIDPZ.0
QK Cancel
FIGURE5 Project Settings Required Tab Dialog
Chapter 3 Operating with KToolbar

15

16

. Click on an attribute’s value field, make your changes, and press Enter.

For more information about the attributes themselves, see Appendix A, “MIDlet
Attributes.”

Modifying User-Defined Attributes

You can also add or remove user-defined attributes through the User Defined tab in
the Project Settings dialog box in the J2ME Wireless Toolkit.

Adding User-Defined Attributes

To add a user-defined attribute:

. Click Add.

The Add Property dialog appears.

. Enter the name of the attribute and click OK.

The Add Property dialog disappears, and a new entry is created for the attribute.

Note — Do not use the prefix “MIDlet-" for a user-defined attribute. This format is
reserved for system-defined MIDlet attributes.

. Click the attribute’s value field, enter a value, and press Enter.

Removing User-Defined Attributes
To remove a user-defined attribute:

Select the attribute, and click Remove.

Press Yes when KToolbar asks for confirmation.

Modifying MIDlet-Specific Attributes

You can edit, add, or remove user-defined attributes through the MIDlets tab in the
project settings dialog box in the J2ME Wireless Toolkit.

To edit an individual MIDlet’s name, icon, and class:

. Choose the MIDlet and click Edit.

. Make your changes in the Enter MIDlet Details dialog box and click OK.

Wireless Toolkit User’'s Guide « December 2003

Adding MIDlet-Specific Attributes
To add a MIDlet-specific attribute:
. Click Add.

. Enter the MIDlet’s name and attributes in the Enter MIDlet Details dialog box,
and click OK.

A new entry is created for the MIDlet.

Removing MIDlet-Specific Attributes

To remove a set of MIDlet-n attributes specific to a particular MIDlet:

Select the attribute, and click Remove.

Press Yes when KToolbar asks for confirmation.

Adding MIDlets
To add a MIDlet to your project:
. Select Add.

. Enter the MIDlet Details and click OK.
The new MIDlet is added with a consecutive key.

Changing the Order of the MIDlets

To change the order of the MIDlets in the suite (that is, the order in which they are
listed when you launch the suite):

Select a MIDlet to move, and click Move Up or Move Down.

When you move the MIDlet, its number in the sequence is updated automatically.

Adding a Push Registry

You can add and remove push registry attributes for MIDlets with the Push
Registry tab in the project settings dialog box:

Chapter 3 Operating with KToolbar 17

18

EF__E_JSEI:I:ings for project “newproject™ : 5'
4P| Selection | Required | Optionsl | User Defined | MDiets | Puish Redisiry | permissions |
Hey | Connection LEL | Clas=s | Allonyed Sender |
{MIDIEt-PLsh-1 |tz it 50000 lexample zms SMSRe.. [120.70.40 % |
Ao | Edlit | Remone |
(81,4 cancel

FIGURE6 Sample of a Push Registry

To register a MIDlet in the Push Registry:

. Choose Project -> Settings and click on the Push Registry tab.

. Click Add and provide the following information in the Enter MIDlet Details

dialog box, then click OK:

= Connection URL. A connection string that identifies the connection protocol
and port number.

= Class. The MIDlet’s class name. If the given MIDlet appears multiple times in
the suite, the first matching entry is used. The MIDlet must be registered in
either the JAD file or the manifest file with a record of the MIDlet’s key
attributes (M Dl et - <n>).

= Allowed Sender. A valid sender that can launch the associated MIDlet. If the
value is the wildcard, “*”, connections from any source are accepted. If
datagram or socket connections are used, the value of Allowed Sender can be a
numeric IP address.

The Key is the Push registration attribute name and is automatically generated. A
MIDlet suite can have multiple push registrations. Each key (registration)
designation is unique and of the form M Dl et - Push- <n>, where <n> begins at 1
and is incrementally increased with each registration. MIDlet Push registration
information is stored in the MIDlet suite’s JAD file.

By selecting a key and clicking Edit or Remove, you can change the attributes for
the selected key or remove it from the registry.

Note that the push registry functionality is only available when you are running in
OTA provisioning mode. For more information on running using OTA
provisioning in the Wireless Toolkit environment, see Chapter 2, “Developing and
Running Applications.”

Wireless Toolkit User’'s Guide « December 2003

Adding API Permissions

For your MIDlet suite to operate, it might need to access certain protected APIs. A
request for permission to access these APIs is required. You can set the

M DI et - Per mi ssi ons and M Dl et - Per m ssi ons- Qpt attributes from the
Permissions panel of the Project Settings dialog box.

To specify which APIs the current MIDlet suite can access:
. Choose Project -> Settings and click the Permissions tab.

. Click Add for either required (MIDlet-Permissions) or optional (MIDlet-
Permissions-Opt).

The Permission API selection dialog box opens from which you can select the API
permission to add. Shift+click to add multiple APIs at once.

Chapter 3 Operating with KToolbar 19

Permission API selection El

= javax -
f—]—_l microedition
f—]—_l i
f—]—_\J Connectar
— @ comm
—® zmz
—® chs
— % hitp
— # =zocket
—# hitps
—® =zl
— % datagram
— # szerversocket
— & datagramreceiver
— # PuzhRedistry
EH_] media
;l control
=] wireless
IJ:'I—_l messaging
I:EI—_l SMS j

O I Cancel |

FIGURE7 API Permissions Selection Dialog Box

Permissions have the same naming structure as a Java class. For instance,

j avax. m croedition.io.Connector. http is the permission for the HTTP
protocol. To make use of the Push Registry, you must have permission to access the
Push Registry API, j avax. mi croedi tion.io. PushRegistry.

Removing API Permissions

To remove API permissions:

e Select the API you want to remove and click Remove.

You are asked to confirm your request.

20 Wireless Toolkit User’'s Guide ¢ December 2003

Compiling and Preverifying a Project
The KToolbar compiles and preverifies source code in one sequence.
To compile and preverify your source code:

Choose Project ->Build or click Build on the toolbar.

The sources are compiled against the MIDP and CLDC APIs, as well as any
libraries in the project’s | i b\ folder and the Wireless Toolkit’s \ apps\ | i b\ folder.

Note — The Java classes are compiled with debugging information. In the
packaging stage the Java classes are compiled without debugging information.

The classpath for compilation and preverification are based on the project's API
selection. The preverifier is selected based on the version of the CLDC selected by
the user. Compilation and preverification, can also be performed from the
command line. For more information, see Appendix D, “Command Line Utilities.”

4

Running a Project Locally

Once you have built your application, you can run it immediately from the
KToolbar.

To run the current MIDlet suite in the Emulator using the KToolbar:

. (Optional) Use the Device menu to select the device to be emulated.

The list displays the devices available for the loaded application.

. Choose Project -> Run or click Run on the toolbar.

The Emulator appears, running your MIDlet suite. The console displays system
and trace output as a MIDlet suite executes.

For information on running a project locally versus remotely, see Chapter 2,
“Developing and Running Applications.”

Debugging

You can debug an application from within the KToolbar by connecting to remote
debugging facilities, such as an IDE debugger.

Chapter 3 Operating with KToolbar 21

To debug an application under KToolbar:

. Choose Project -> Debug.

The dialog asks you to enter a TCP/IP port number which the external debugger
uses to connect to the emulator.

. Enter a TCP/IP port and click Debug.

In most cases you can use the default value, but you should use another value if
another application is using this port, or if you encounter problems connecting to
the emulator from the debugger.

The emulator begins running in debugging mode, and waits for a connection from
a debugger.

. Start the remote debugger and attach it to the TCP/IP port you specified.

Make sure to set the remote debugger to run in remote mode and to use TCP/IP.
For more information, consult the debugger’s documentation.

Cleaning Up Project Files

To remove obsolete or unnecessary files in your project directory:

e Choose Project -> Clean.

The Clean command deletes all temporary and class files in the current project
directory.

22

Packaging

You can create a package of your project files or create an obfuscated package that
reduces the size of the Java bytecode, resulting in a smaller JAR file and possibly
faster download times. Another benefit to creating an obfuscated package is to
protect your code from possible decompilation.

To build a package:

Choose Project -> Package -> Create Package or Create Obfuscated Package.

Choosing Create Package creates a standard . j ar file. When the classes are
packaged, they are compiled without debugging information to reduce the size of
the JAR file.

Choosing Create Obfuscated Package creates a . j ar file of smaller size than a
standard . j ar file. Specifically how the contents of your package are obfuscated is
dependent on the type of obfuscation tool you choose to use. When creating an

Wireless Toolkit User’'s Guide « December 2003

obfuscated package, preverification is done after the code has been obfuscated
rather than immediately after compilation. To use this feature, you must already
have a bytecode obfuscator that is supported by the KToolbar.

A progress bar appears when packaging begins. When the packaging finishes, the
output display indicates where the JAR and JAD files have been placed.

EE]JzME Wireless Toolkit - demos ;lglﬂ

File Edit Project Help

J @; Pelesns Praject .. | % Cpen Project @, Seftings . | %' Biiiled | @p Rn | g Clear Consaole

J Device: IDefauﬂCnlorPhnne LI

Project "demcos" loaded

Project settings saved

Building "demos™

Euild conplete

Project settings sawved

Euilding "demas™

Mrote C:AZWTEZ1\apps'demosibin'denos. jar
Mrote CiAVWTEZl\appshdemosibin'denos.jad
Fuild conplete

FIGURE 8 Console Output After Packaging

Obtaining a ByteCode Obfuscator

The Wireless Toolkit does not provide a bytecode obfuscator. It does, however,
contain a plug-in for the ProGuard bytecode obfuscator.

To get the ProGuard bytecode obfuscator JAR:
. Go to http://proguard. sourceforge. net/.
. Download the latest version of the pr oguar d. zi p file.

. Extract the proguard. j ar file from the . ZI P file into the Wireless Toolkit’s bi n
directory: {j2mewtk.dir/\ bi n.

If you choose to use a bytecode obfuscator other than ProGuard, you must
implement the plug-in yourself. See the Wireless Toolkit Basic Customization Guide for
an example of how to implement a bytecode obfuscator plug-in.

Note — If your code uses the Class.forName() method to load classes, you may
need to provide and use a script file as described in the following optional step.

. Save your script file under the project’s main directory and add the following
key/value pair:

Chapter 3 Operating with KToolbar 23

http://proguard.sourceforge.net/

obfuscate. script.name: Fil eNanme
to the kt ool s. properti es file located under WrK_HOVE/ wt ki i b/ W ndows
directory. Fi | eNane is the name of your script file,

For more information about using script file formats, see the Proguard
documentation.

Signing MIDlet Suites From KToolbar

After packaging the application, you can sign your MIDlet suite if needed by
choosing the Sign command from the KToolbar’s Project menu. For information on
signing MIDlet suites, see Chapter 6, “Using Security Features in the Wireless
Toolkit.”

Running in OTA Provisioning Mode

When your MIDlets are packaged (and signed if needed), you can emulate OTA
provisioning and run your application by choosing the Run via OTA command
from the KToolbar’s Project menu. A graphical AMS is started and you can
simulate the downloading and execution of your application from a web server.
Running in OTA provisioning mode, enables you to test certain MIDP 2.0 features
such as package validation, MIDlet suite authentication, and push functionality.
For information on running using OTA provisioning in the Wireless Toolkit, see
Chapter 2, “Developing and Running Applications.” For alternative ways of
running in OTA provisioning mode, see Chapter 8, “Testing Application
Provisioning.”

24

Using Class Libraries

KToolbar enables you to build projects from source and resource files. You may
want to use a class library for which you do not have source files. This section
shows you how to build a project using an external class library.

Be cautious when including external class libraries. Adding unnecessary class
libraries to a project increases both the time needed to package it and the size of the
resulting MIDlet suite JAR file. A large JAR file increases the time needed to load
the MIDlet suite, and could prevent it from running on devices with low memory.

Wireless Toolkit User’'s Guide « December 2003

Class libraries for use with KToolbar should be compatible with the CLDC and
MIDP APIs and should be packaged in . j ar or . zi p format. KToolbar provides
ways for you to develop applications using class libraries, both on a per project and
on a global basis.

External Libraries for a Specific Project

To add class libraries to a KToolbar project:

. Locate the directory containing your application (refer to TABLE 1 on page 12).

The application’s directory contains a subdirectory, | i b.

. Place the JAR or ZIP file containing the class library into this subdirectory.

For example, if you installed the J2ME Wireless Toolkit in C: \ wt k21 and your
application is called Exanpl eM Dl et, the class library would go in the directory,
C:\wt k21\ apps\ Exanpl eM Dl et\ | i b. When you build, run, debug, and
package your project, the class files in the | i b directory are used.

External Libraries for All Projects

You can also define class libraries to be available for all projects that you develop
with KToolbar. To do this, place the JAR or ZIP files containing the classes in the
subdirectory apps\ | i b of the directory in which you installed the J2ME Wireless
Toolkit. For example, if you installed the Wireless Toolkit in C: \ wt k21, you would
place the class libraries in C: \ wt k21\ apps\ | i b. Class libraries in the apps\1i b
directory are used for all projects.

Note — Class libraries for a particular project can import classes and resources
from any general library as well as specific libraries. Class libraries for projects in
general can only import classes and resources from general class libraries.

Using the Stub Connector to Access
J2ME Web Services

You can generate a stub connector to access Web Services from the KToolbar. The
Emulator is compliant with the J2ME Web Services Specification (JSR-172). The
stubs are created using a Web Service Descriptor Language file.You can also
generate a stub connector from the command line. See Appendix D, “Command
Line Utilities.”

Chapter 3 Operating with KToolbar 25

To generate a stub connector:

. Choose Project -> Stub Generator or select File ->Utilities -> Stub Generator.

. Enter or browse to the URL or location of the WSDL File and click OK.

The Output Path is the location where the Stub Generator will place the generated
files.

The Output Path and the CLDC version default to the project settings if you
generate a stub connector from the Project menu, as shown in FIGURE 9. Both
options are from the KToolbar.

. Enter the Output Package Name.

The Output Package name is the package name that the stub will be generated in.

7

Al stub Generator Dialog X

Browsze... |

WSDL Filename or URL:

Output Path;

CHUNTHZ2 appsiexamplesisrc

Output Package:

CLDEC Yersion

CLDC 11

Cancel

FIGURE 9 Stub Generator Dialog

26

Setting Emulator Preferences and Using
Emulator Utilities

You can access the Emulator’s Preferences and Utilities tools through the KToolbar
menu.

To access the Emulator Preferences tool:

e Choose Edit -> Preferences.

To access the Emulator Utilities tool:

Wireless Toolkit User’'s Guide « December 2003

e Choose File -> Utilities.

For more information on using the Emulator Utilities and Preferences tools, see
“Preferences and Utilities” on page 48 in Chapter 5, “Working With the Emulator.”

7

Customizing KToolbar

KToolbar includes some advanced configuration options. You can use these options
by editing the file {j2mewtk.dir}\ wt kI i b\ W ndows\ kt ool s. properti es. To see
the effects of your changes, restart KToolbar.

Setting the Application Directory

By default, the J2ME Wireless Toolkit stores MIDP applications in directories under
{j2mewtk.dir]\ apps. You can change this by adding a line to kt ool s. properties
of the following form:

kvem apps. dir: <application_directory>

Any backslash ('\") characters in the directory’s path should be preceded by
another backslash. Also, the directory’s path should not contain any spaces.

For example, to set the application directory to D: \ dev\ ni dl et s, you would use:
kvem apps.dir: D:\\devi\nmidlets

Setting the javac Encoding Property

By default, the Java compiler uses the encoding set in the J2SE environment that
you are running. For information on how to override the default source file
encoding, see “Java Compiler Encoding Setting” on page 81 in Appendix C,
“Internationalization.”

Working with Revision Control Systems

Using the filterRevisionControl property, you can configure KToolbar to recognize
and ignore auxiliary files created by the SCCS, RCS and CVS revision control
systems.

To recognize and ignore auxiliary files, include the following line in
kt ool s. properti es:

kvem filterRevisionControl: true

Chapter 3 Operating with KToolbar 27

As a result, you prevent KToolbar from treating revision control files as source and
resource files. For example, KToolbar would treat a file named

src\ SCCS\'s. MyCl ass. j ava as being an SCCS revision control file and not a Java
source file.

28 Wireless Toolkit User’'s Guide ¢ December 2003

CHAPTER 4

Performance Tuning and
Monitoring Applications

You can examine various aspects of the MIDlet applications you created with the
J2ME Wireless Toolkit to identify where you can improve the efficiency and speed
of your MIDlet. The Wireless Toolkit includes the following features that enable
you to optimize the performance of your MIDlet:

= Profiler. Enables you to examine the execution time and the frequency of use of
the methods in your application.

= Memory Monitor. Enables you to examine memory usage in your application.

= Network Monitor. Lets you monitor transmissions between your device and the
network. You can monitor transmissions of various network protocols, such as
data packets, message streams, or message dialogs in addition to HTTP and
HTTPS. You also have access to the wireless messaging protocols, SMS and CBS.

= Speed Emulation. Enables you to adjust drawing speed to refine graphics
rendering. Speed Emulation also enables you to adjust the speed of byte code
execution and data transfer across the network to give you a sense of how
quickly your application runs on a device.

Note — Turning on multiple performance features simultaneously can adversely
affect the data collected by slowing down application execution. For more accurate
results, try enabling one performance feature per data collection.

Profiling Your Application

You can examine the method execution time with the Profiler utility. The Profiler
collects data from an emulator during runtime. By seeing how much time a method
takes to execute, you can see where potential problems, such as bottlenecks, might
exist in the application.

The Profiler window displays two types of method information:

29

30

= Method relationships shown in a hierarchical list called the Call Graph.

» Execution time and the number of times a method and its descendants were
called during runtime.

Viewing Profiling Information

To obtain profiling information, follow these steps:

. Make sure that Enable Profiling is checked in the Monitor tab of the Preferences

dialog box.

(Optional) Check Show System Classes if you want to display the system classes. If
unchecked, most system classes are hidden and ignored. Some system classes
might be left visible to highlight lengthy execution time. Hiding the system class
information helps you to see application class-specific information. You should
hide the system classes information while you are developing your application.

. Run your application and then quit.

When you quit the application, the Profiler window opens displaying information
collected during execution.

Note — The profiling values obtained from an emulation do not reflect actual
values on a real device, even though a real device skin might be used.

Profiling Data Display

In the Call Graph tree, you see folders for top-level methods. Opening a method’s
folder displays the methods called by it. Selecting a method in the tree shows the
profiling information for it and all the methods called by it. Selecting <r oot >
displays profiling information for all methods in the program.

Wireless Toolkit User’'s Guide « December 2003

EZ Methods’ Profiler - Wireless Toolkit 10l =l

File View

J Save | Open |
Call Graph L calls undetr com sun midp lodui DefaultEverntHandler FQusuedEvertHandler run...
;| (100.0%) =root= Marme Count Cycles WCycles IO_p'cIes... v I WCycles Wy

1 (15.68%) example. photoalbum Pho com.sun midp Jedui DefaultE... 1] 17109123 g4 106755120 55 &~
] (21.22%) example photoalbum Pho cotn.zun midp Jodui DefaultE. . 1 45234796 238 45234796 238
] (5.03%) com.sun midp midlet Selec cotn.zun midp Jodui DefaultE. . 1958 2341919 1.2 2791 3666 14.4
A : SRl WAL (l=2cample photoalbum PhotoFr .. 206 5263051 27 2601319 114
(23.85%) com.sunmidpcdul.C liaye: microedition ledui Cany .. 20 14260853 73 14260853 7.3
[](0.23%) com.sun.midp Jodui De cotn.sun midp Jodui EmulEve. .. 20 974422 s 10542010 2.5
[1(0.02%) com.sun.midp lcoui En (igyvex microedition Jodui List.... 4 9258266 47 Q255266 4.7
[](0.3%) com.sun.midp Jedui Erm j@va microediion Jodul Grap... 396 4579750 23 4579750 23
] (5.59%) com.sun.midp Jodui En cotn.sun midp Jodui Autamat ... 24 G7485 1] 2GI6546 1.4

] (14.4%) com.sun.midp Jodui De example photoalkum Phatodl... 15 159325 1] 2523718 1.3
] 01.49%) com.sun.tidp Jodui. A example photoalkum PhataFr... 206 1434640 07 2072415 1
] (0.34%) example.photoalburm F example photoalkum Phatodl... H] G0189 1] 1065403 0.5
B[] (2.96%) com.sun midp main bein e j@va microediion.lodu Displ... 4 1008214 s 1005214 0.5
javax microedition Jodui.Chai... H] 9EE192 0.4 966192 0.4
java lang. Thread start... T 915938 0.4 915933 0.4
{I I _,I java microedition Jedui Grap.... 206 B3777S 0.3 B3777S 0.3

carm.zun.midg odui EmulEve. .. 15 52925 o B3ET23 03

Find... | example photoalbum Photod)... 3 50990 i 45550 nz LI

FIGURE 10 Profiler Window

The table displays rows of methods. For each method, you can see its:
« Name. The fully qualified name of the method.
» Count. The number of times the method was called during execution.

= Cycles. The execution time, in seconds, of a method (does not include the
execution time of methods called by that method).

= %Cycles. The percentage of time spent on a method’s execution in respect to the
time the entire program ran (does not include the execution time of methods
called by that method).

= Count With Children. The number of times the method and its descendants were
called during execution.

= %Count With Children. The percentage time spent running the method and all
of its descendants in respect to the time the entire program ran.

Click on the column titles in the table to sort the display. Clicking on Name sorts
the methods in alphabetical order. Clicking Count, Cycles, %Cycles, Count with
Children, or %Count with Children sorts the information in ascending order.
Clicking on the column title again resorts the information in descending order.

Saving and Examining Profiling Information

You can save profiling information in two ways:

Chapter 4 Performance Tuning and Monitoring Applications 31

= Save it for later examination through the Profiler
= Save it for examination through an external tool, such as a spreadsheet

To save profiling information so you can it examine later using the Profiler:

Click Save or choose File -> Save.

You are prompted to save the information to a file with a . prf extension.
To save the data and examine it with an external tool:

Right-click on the desired lines of data and click Save Selected Lines (or choose
File -> Save Selected Lines).

You are prompted to save the information to a file with a . t Xt extension.

Note — You will not be able to load these (. t xt) files back into the Profiler.

32

Examining Memory Usage

Another area to check for optimization is memory usage. The Memory Monitor
Extension feature enables you to see how much memory is used by your
application during runtime and to see a breakdown of the amount of memory
usage per object.

Wireless Toolkit User’'s Guide « December 2003

!EiMemury Monitor Extension - Wireless Toolkit o [m] 4|

File Utilities Wiew

J Open Session | Save || fﬂ[LI ZE |

Graph Objects |

Marne | Lwe | Total |Totalsi..| Avers.| [iame!javalang String

b Internal 147 TIE| 20880 142| | |1 (35.45%) javalang.
g e lang OutOfermoryErrar 1 1 20 20 A 2 _ tEve
java kang String[] 19 2 756 39 : il lodui Automate:
|lizva Jang. Thread 11 11 ana 25] (2.54%) com.sun midp lcdui Automatec
fcharl] 1055 2503 50478 1] £20.55%) cot.sun.midp Jodui DefaultEy
lizva o PrintStream 1 1 28 25 (=4 £7.73%) com.sunmidp lodui EmulEvent
com sun midp o SystemOutputStream 1 1 12 12 E—_4 (4.04%) com.sun.midp Icdul EmulE:
java in OutpLtStreariiter 1 1 28 28 & (1.27%) java lang Clazs getham

:] (0.929%) java lang Integer toHe
jsva lang. StringButfer 371 395 so04 24 v (0.92%) ia_\fa.lang.s‘tringBuffer._t
cotn sun.cldc i1 8n.uclc DefauttCaseConverter 1 1 12 12 _|(D.EIQ.%JJava..lang.'f:.lass.tos.tr|.r_
java lang ClassNotFoundException 1 2 20 20) | (3.69%) javax.microedition lodui Di
irt[573 552 756 55 || (1.96%) com.sun.midp midlet Selectar runi
ot SUR kverm cloc i18n j2me Genericriter 2 2 80 40 | (1.15%) example.phatoalbum. Phota Alburm ¢
Cotn.sun midp main CommandState 1 1 76 76 | 1(3.81%) EXﬁmmE-phﬂtﬂamum-PhUtDAlhuiiLI
com sun midp security Security Token 3 3 84 28 1 L4
byte]] i1 74| 29304 480 — | Refrash |
bytel 1T 1 2 24 241
Ohjects: 3142 l«§ Used: 170692 bytes Free: 329308 bytes Total: 500000 keytes

FIGURE 11 Memory Monitor Window

Viewing Memory Usage
To obtain memory usage information, follow these steps:
1. Make sure that you have enabled the Memory Monitor in the Monitor tab of the

Preferences dialog box.

(Optional) If you want to set the heap size, click the Storage tab in the Preferences
dialog box and enter a value. Setting the heap size is not required to use memory
monitoring.

(Optional) If you want to determine the required amount of memory during
runtime, turn on Excessive GC mode. When turned on, garbage collection is run
every time an object is about to be allocated.

2. Run your application.

(Optional) Click Run GC in the Memory Monitor Extension window to have
garbage collection performed at anytime while the application is running.

Note — The memory usage values obtained from an emulation do not reflect actual
memory usage on a real device, even though a real device skin might be used. The
Memory Monitor merely provides you with possible indicators of excessive
memory use for the emulation.

Chapter 4 Performance Tuning and Monitoring Applications 33

Memory Monitor Data Display

The Memory Monitor displays usage information in two tabbed panes:

!Ejl\‘lemnry Monitor Extension - Wireless Toolkit 10| =]
File Ltilities

Open Session | Save ‘ |

Graph | Objects |

Current: 170692 bytes
Maximum: 170892 bytes

Objects: 3142 Used: 170692 bytes Free: 329308 bytes Total: 500000 bytes

FIGURE 12 Memory Monitor Graph

» Graph. The Memory Usage graph displays:
» Current. The current amount of memory used by the application.

= Maximum. The maximum amount of memory used since program execution
began. Denoted in the graph by a broken red line.

= Objects. The number of objects in the heap.

= Used. The amount of memory used.

= Free. The amount of unused memory available.

= Total. The total amount of memory available at startup.

= Objects. The Object Monitor breaks down the information into a table format
that shows you:

= Name. The name of each class examined for memory usage.
« Live. The number of instances of an object in the heap.
= Total. The total number of class objects allocated at startup.

= Total Size. The total amount of memory used by the class’ live objects.

34 Wireless Toolkit User’'s Guide ¢ December 2003

= Average Size. The average amount of memory used by a class live object with
respect to the total size.

!EMemury Monitor Extension - Wireless Toolkit 101 =l
File Ltiities Wiew

Open Sessioh | Save || fﬂ[Frry G2 |

Graph Obiects |

Maime I Live I Tatal I Total .. I Lt ... I ame: java.lang. Thread
WM Internal 147|736 zosso| 14z|a| ¥ (9.09%) VM Internal
java lang OutOfemoryErrar 1 1 20 20 | =]
java kane String] | 19 22 756 30 _| (15.15%) java lang.Class runCustomCodel)
java lang. Thread | (TQ.?Q%) ot zun midi edui DefautEvertHandier foued
chat|] 1055 3593 52476 49 _| [9.09%) com sun midp ledui AutomatedEvertHandler
igva in PrintStream 1 1 23 a8 (=4 (45.45%) com sun midp lodui Sutomat edEvertHancls
o sun ridp o SystemCutput Stream 1 1 12 12 IJ;'|— J (45.45%) com.sun midp Jedui DefaultEventHandh
java io Output StresmiMriter 1 1 28 25 IJ:'|— J (45.45%) javax microedition lodui Display S0
java lang String 614 256 14735 a4 IJ;'|— J (45.45%) javax microedition lodui Displa
jawa lang StringBuffer a7 395 904 24 IJ:'|— J (45 459%) javax microedition edui Li
comm.sun.clde il 8h uclc DefautCazeto. . 1 1 12 12) L 45 45%) example photoalbum FF
java lang ClasshotFoundException 1 2 0 0 | C18.15%) corn.sun mid dodui EmulEverntHandler sore
[firtl 1 973 582 31756 55
corm sun kvern cldc i 8n j2me Generic . 2 2 a0 40
corm sun midp main CommandState 1 1 76 76
corm sun midp security SecurityToken 3 3 a4 28 _I‘ —I _'I
bytel] 1 74 29304 480 — | Refresh |
butel 11 1 Azl zax
Objects: 3142 Used: 170692 bytes Free: 329308 bytes Total: 500000 bytes

FIGURE 13 Memory Monitor Objects Table

Click on the column titles in the table to sort the display. Clicking on Name sorts
the classes in alphabetical order. Clicking Live, Total, Total Size, or Average Size
sorts the information in that column from ascending to descending value.

Selecting a class in the Name column displays a hierarchical list of that class’
methods and the percentage of memory used by the objects allocated by that
method and the methods called by it in the pane to the right of the table. Click Find
to locate a specific method. The Objects table is dynamically updated during
program execution; however, the method list is not. Click Refresh to update the
display of percentage of usage information.

Saving and Examining Memory Usage
Information

You can save memory usage information and examine it later by:

1. Choosing File -> Save in the Memory Monitor and providing a filename.

Chapter 4 Performance Tuning and Monitoring Applications 35

2. Click Open Session in the Memory Monitor’s toolbar and select the file you

want.

To examine previously saved information from the KToolbar:

e Click Open Session under Memory Monitor in the Utilities window and select

the file want.

36

Monitoring Network Traffic

One of the many uses of a MIDP application is to get or send information. By
monitoring the network traffic generated by your application, you can obtain
information you might need to improve or fix communication with a server and
optimize network usage. The Network Monitor enables you to monitor the
following network protocols:

=« HTTP and HTTPS

= datagrams

= sockets

= secure socket layers (SSL)
= comm

= SMS

= CBS

Demonstration applications for the following network protocols are available from
the Open Project dialog box:

= HTTP and HTTPS demos are included in the denps application.

= Socket, Comm, and Datagram demos are included in the Net wor kDeno
application.

= SMS and CBS demos are included in the SMSDenp application.

Viewing Network Traffic

To turn on network monitoring automatically when your application runs or to
choose a specific proxy type, follow these steps:

. Make sure that you have enabled the Network Monitor in the Monitor tab of the

Preferences dialog box.

. Run your application.

The Network Monitor window opens when you start your application.

Wireless Toolkit User’'s Guide « December 2003

Network Monitor Data Displays

The Network Monitor displays a list of messages that were sent or received by the
application. Messages are broken down into their header and body, if any.

To see information for a specific message:

e Select a root message in the message display pane.

MMM bwork: Monitor -+ 555000 5 - DefaulRColorPhone - Wireless Toolkik =100
A= Edt

HITR TIPS | 5 ces | Sacket | 558 | Datagram | Comm |

S URL: hizm) Jeweren, vahoowcom

= Gkatus Line: HTTRL.1 200 QKK

E L;”’B.!d}. - Timea: 2002, 12,17 AL 1BI1SI3E PST 4+ 0059 ms

E1-[TATTE HEAD J HTTR/1.1

HE Bady keys I waluas

Bl AR HTTR/L.L 200 2K rarRER TP ket b

Lo Body cannection sz

trenser-cnodng churbed
rip pabeyref="hbbpe (fp0p.wehoo. comwicindp =
date: ‘zd18 Dec 2002 021947 GMT
ache-anol pivabe

I

I” Fkar T Fiter Settngs | | SotBe |Time 'I

Mumber of shown messages: 3ok of 3

FIGURE 14 Message Key and Value Pair

An asterisk (*) in the protocol tab indicates which network protocol has
information to display if it is not the selected tab.

The field summary, shown in the right panel of the monitor. All protocols have a
URL field. Depending on the protocol, the URL field can contain, for example, URL
address, protocol, baud rate, hostname, phone number, and port number.

The properties of a message are displayed in key and value pairs in a table format.
You can view the entire contents of a value by choosing that value and viewing it
in the scrollable text field at the bottom of the pane.

To see the message body:

e Select a message body or fragment in the message display pane.

The hexadecimal values and the text value for the entire message are displayed in
the right panel of the monitor window. Bytes that cannot be represented as text are

7

denoted by a “.” in the text pane.

Chapter 4 Performance Tuning and Monitoring Applications 37

38

TR HITRS | 55 s | sacket | 550 | Datagrom | Comn |

i DIRL: bk s, sncomf
TRTTES HEAD § HTTR/1.1 pirs: 256

Bady o: Bo ZL 49 AL 43 54 55 50 45 z0 46 54 44 [{/DOCTWEE g b | <

= HTTR | HTTP/ 1.1 200 0K L0: [s5 42 4c 49 43 20 22 2d 2 2E 57 33 43 UBLIC "'-//W3C//D
; & Bady Z0: ln4 44 20 48 54 4d 40 20 34 Ze 30 31 20| [0 HINL 4,01 T

E| HTTE | HTTPy 1.1 200 0K EIH = T3 82 74 69 Bf de 61 Gc E2f IF 45 de| mEicionsl/SENTEL

-y m 02 BC BB 74 bd B0 Ze 0= 3C BB BS 61 B4 3| Mhtulr.<hedadr.<C
50z 53 74 6c 65 e Z0 53 75 Ge 20 44 63 63 [itle> 3un Micros
50z M9 ¥3 74 65 b6d ¥3 20 30 3f 74 57 74 bo| [FICEMA </tiCler.
GiH o Bd 85 74 61 20 de 61 Ad £5 3d 22 6b| fn=ta neme="keyw
-0 BL V3 54 73 42 20 62 6L be 74 65 62 4 |0orde” contant-E
ElH M5 Be 20 64 69 63 72 6 73 79 73 74 65 jun microsystens,
al: @l ¥3 75 b2 2o 20 6m 61 Y6 BL 2o 20 ba | aum, JEva, Jave
1T @0 B3 8€ 6d 70 75 74 63 &= £7 2o 20 T3 | compubing, =ole
ooz M2 63 72 2c 20 73 70 61 P2 63 2o 20 V5| |ria, aperc, mix

dn: Zo 0 dm 69 e £0 Ic I0 63 6L &d TO TH |, Jind, conputsc
el B0 737973 P4 65 6d 73 2o 20 73 65 V3| | aystews, aerver
£0: EC 20 S0 6% TF TF 99 6L fe 0 43 T2 69 |, wission celvic

IZ Fiker T Fiter Settings | | SortBe: [Time - o

Number of shown messages: 3 ok of 1

FIGURE 15 Message Body

Note — You can examine messages that are still in the process of being sent.
Incomplete messages are indicated by bold highlighting in the message tree.

You can reorganize or narrow the messages displayed by setting filters or by
sorting message by type. See the sections, “Filtering Messages” on page 38” and
“Sorting Messages” on page 39.

Filtering Messages

To examine a specific set of messages, you can set filters in the Network Monitor.
Only those messages that fall within the filter settings are displayed in the message
tree. Filter Settings are specific to the network protocol used.

1. Choose Edit -> Filter Settings or click the Filter Settings button in the toolbar.

Wireless Toolkit User’'s Guide « December 2003

2. Change one or all of the filter settings in the Message Filter dialog box:

TABLE 2 Filter Settings for Network Protocols

Network Protocol

Filter Settings

HTTP/HTTPS

SMS/CBS

Socket/SSL/
Datagram/Comm

* URL--The URL for the messages you want to see in the URL text field.

¢ Status Line--The status type of message you want to examine, in the Network
Monitor Status Line text field.

¢ Header Text--A specific header in the Header Text text field.

* Body Text--A character string for the specific text in the body of the messages you
want to examine in the Body Text text field.

* Protocol--Either an SMS or CBS transmissions or both.

¢ Type--Text or binary message.

¢ Direction--Input and output indicators with chronological designations.

¢ From--Phone and port number of origin.

¢ To--Phone and port number of destination.

* Content--A character string for the specific text in the body of the messages you
want to examine in the Body Text text field.

® URL--The URL for the messages you want to see in the URL text field.
¢ Content--A character string for the specific text in the body of the messages you
want to examine in the Body Text text field.

Disabling Filtering

To disable message filtering so that all messages are displayed:

Click the Filter checkbox in the Network Monitor’s button bar.

Redisplay the complete set of messages in the Network Monitor’s message tree.

Sorting Messages

To arrange the messages in the message tree in a particular order:

Open the Sort By combo box (click the Down arrow) and select one of the sort
criteria:

Time. Messages are sorted in chronological order of time sent or received.

URL. Messages are sorted by URL address. Multiple messages with the same

address are sorted by time.

Connection. Messages are sorted by communication connection. Messages
using the same connection are sorted by time. This sort type enables you to
see messages grouped by requests and their associated responses.

Sorting parameters are dependent on the message protocol you choose. For
instance, sorting by time is not relevant for message using the Socket protocol.

Chapter 4 Performance Tuning and Monitoring Applications

39

Saving and Examining a Networking Session

You can save information about a networking session and examine it later by:

. Choosing File -> Save in the Network Monitor and providing a filename.

Examining Saved Messages

. Choose File -> Open in the Network Monitor and select the file you want from

the file chooser.
To examine previously saved message information from the KToolbar:

Click Open Session under Network Monitor in the Utilities window and select
the file you want.

Clearing the Message Tree

To remove the list of message in the message tree:

Choose Edit -> Clear or click Clear in the Network Monitor toolbar.

40

Managing Device Speed

If the application you develop has a graphical user interface (GUI), the time
required to draw the GUI on the screen is critical to the overall usability of the
application. Another critical time factor is knowing the speed at which your
application runs on a device. The VM emulation speed approximates the slower
running speed of an application on a device. How quickly an application is able to
transmit information to the network is another performance factor The Wireless
Toolkit lets you modify both graphic speed emulation, VM speed emulation, and
the speed of the network throughput.

The intent of the speed emulation features is to enable you to scale down the
performance of some of the emulator subsystems to better reflect performance on a
real device. Developing the application in a slower performance environment
enables you to monitor and optimize the code of low-end devices. It is not the
purpose of the speed emulation features to accurately emulate a specific device.

Wireless Toolkit User’'s Guide « December 2003

Preferences

x|
Preferences for:
B Metwork Configuration Performance | Mon'rtorl gtoragel V_\IMAI MMegiaI Sgc:ur'rtyl
1
K v 0 v v Graphics primitives latency (0 miliseconds)
1] 20 40
Display refrest: (% Double Buffer Immediste (Periodic
I L Refresh Rate (30 frames/zec)
1 30
[Enable WM speed emulstion
' oo S Speed (10 bytecodesimilisecand)
10 100
[Enable netwark throughput emulation
Jizoo =] tsrsec)
OK | Cancel |
FIGURE 16 Performance Settings

Setting Graphics Performance

To optimize GUI display capabilities, you should adjust both the Graphics
primitive latency speed and the Refresh mode:

Change the graphic rendering and repaint rates and run your application.

Graphics primitive latency. The span of time in milliseconds for a graphic element

to appear once the request is sent.

Display refresh mode. The number of times per second a device’s screen is
updated. There are three refresh modes:

= Double Buffer mode implements double buffering where a graphic is first
rendered to an off screen buffer and then copied to the screen.

= Immediate mode renders the graphic directly to the screen.

= Periodic mode lets you set the frequency in frames per second that the screen

is refreshed.

Vary the settings to find the ones that produce the fastest rendering with the least
amount of flickering in your application.

Chapter 4

Performance Tuning and Monitoring Applications 41

42

Setting VM Speed Parameters

When running an emulation of a MIDlet, you cannot get an accurate demonstration
of real time application execution speed. The emulation runs much faster than an
application on an actual device. You can, however, adjust the VM speed emulation
in the Wireless Toolkit to approximate the slower speed of a device on which the
application might run.

Note — Setting the VM speed parameters does not emulate real device speed, even
though a real device skin might be used.

To set the VM speed emulation, which is the amount of Java byte code that is
executed per second:

Click the Enable VM speed emulation checkbox and move the slider to the
desired rate of speed and run your application.

Setting Network Speed Parameters

Sometimes an application’s performance is hindered by the speed of the network.
To see how your application performs on a slow network, you can vary the
network speed parameter. To set the rate at which the application transmits
information to the network:

Click the Enable network throughput emulation checkbox, select the desired rate
of speed from the combo box and run your application.

Note — Setting the network throughput speed does not emulate actual network
transmission speed.

Wireless Toolkit User’'s Guide « December 2003

CHAPTER 5

Working With the Emulator

The Emulator shows, on your computer, how your MIDP applications operate on a
variety of mobile devices. Consequently, you can test your applications using the
same platform you use to develop them, and defer testing on real devices until
later in the development process.

It must be emphasized that having an Emulator does not represent a specific device
thus it does not completely free you from testing on your target devices.

Example Devices

The J2ME Wireless Toolkit includes emulations of various example devices. They
all support the MIDP, MMAPI,WMA, CLDC, J2ME Web Services, and Java
Technology for the Wireless Industry specifications. The default emulated device is
Def aul t Col or Phone. You can select one of the other devices from the Device
drop-down list on the KToolbar.

TABLE 3 Example Devices

Tag Description

Def aul t Col or Phone Generic telephone with a color display.
Def aul t GrayPhone Generic telephone with a gray-scale display.
Medi aCont r ol Ski n Generic telephone with audio and video playback controls.

Quer t yDevi ce Generic handheld device using Qwerty style keyboard.

This section describes the devices in more detail, and how to input text on these
devices. For information about how to add more device definitions to the Emulator,
see the J[2ME Wireless Toolkit Basic Customization Guide, which comes with the [2ME
Wireless Toolkit.

43

Device Characteristics

The emulated devices, such as Def aul t Col or Phone, are generic examples of
devices that implement MIDP. The following table shows in more detail how the
emulated devices differ.

TABLE 4 Selected Device Characteristics
Display Input Number of Special
Device Tag Resolution Color Support Mechanism(s) Soft Buttons Keys
Def aul t Col or Phone 180x208 256 colors ITU-T keypad 2

Def aul t GrayPhone 180x208 256 shades of gray ITU-T keypad 2

Medi aCont r ol Ski n 180x208 256 colors ITU-T keypad 2

Qner t yDevi ce

640x240 256 colors Qwerty keyboard 2 MENU, Shift,
Ctrl, Char

Pausing and Resuming a MIDlet

When your application is running on an emulated device, you can use the Pause
and Resume commands on each device to simulate a phone event. The commands
enable you to interrupt a running application and resume its execution afterwards.

Choosing MIDlet -> Pause simulates an incoming call alert and stops an
application during runtime. Choosing MIDlet -> Resume continues the application
at the moment it was paused.

Def aul t Col or Phone and Def aul t G ayPhone

The Def aul t Col or Phone device is a generic device representing a MIDP-enabled
cellular phone with a color screen. The Def aul t Gr ayPhone is identical in all
aspects except for its screen, which is grayscale.

44 Wireless Toolkit User's Guide ¢ December 2003

[E] + 5550000 - DefaultColotP
MIDlet Help

3,5
sty

Famtl EEEY

Select one to launch:

;_
Properties

Http
FortTestlet

. ManyBalls

FIGURE 17 Default Color Phone Device and Default Gray Phone Device

The interface for both devices includes:

Buttons for the digits from 0 to 9, as well as pound and asterisk keys.
Two soft buttons.

A directional keypad, including a SELECT button in the center.

A CLEAR button for text operations.

SHIFT and SPACE buttons.

Command menus are displayed by clicking the soft button Menu when it is
displayed. The other soft button can still be used while the menu is displayed. The
keys 7, 9, pound and asterisk are used for the game actions A, B, C and D. SELECT
is used for the game action FIRE.

Chapter 5 Working With the Emulator 45

Medi aCont r ol Ski n

The Medi aCont r ol Ski n is identical in function to the Def aul t Col or Phone and
Def aul t GrayPhone. This particular skin has a keypad that displays audio and
video playback controls that can be used when running the mradeno.

[E] 5550000 - Media

MIDlet Help

FIGURE 18 MediaControlSkin Device

For information on the audio and video controls and the nmadeno, see the
“MMADemo and MediaControlSkin” document in the {j2mewtk.dir}\ docs
directory.

QunertyDevi ce

The Qunert yDevi ce emulates a generic handheld device that uses a Qwerty style
keyboard. The emulation does not represent accurately the look-and-feel of a
specific handheld device. The intent of this emulation is to demonstrate the J2ME
Wireless Toolkit’s support for devices that use Qwerty style keyboards.

46 Wireless Toolkit User's Guide ¢ December 2003

e EmEmm
mmmmmmmmﬁﬁ

ﬁﬂmmmmnn
o —

n.-.-s

FIGURE19 Qwerty Handheld Device

This device has the following keys:

= Keys for the letters from A to Z in a QWERTY keyboard, the digits from 0 to 9,
and various other symbols.

= Up, Down, Left, and Right directional keys surrounding a Select key, on the
bottom right of the device.

= A MENU button to show and hide the command menu.

= A BACKSPACE key on the right side of the keyboard, next to the P key.

= An ENTER/NEWLINE key on the right side of the keyboard, next to the L key.
= A SPACE bar.

= Shift and Char keys for changing the effect of key presses when entering text.

Note — The Ctrl key has no effect.

The device also has POWER, SEND, and END buttons. The A, B, C, and D keys are
used for the matching game actions. SPACE is used for the game action FIRE.

Chapter 5 Working With the Emulator 47

Inputting Text

When a MIDP application needs character input from the user, it displays a text
box. For each of the bundled devices, you can enter text into this box using the
buttons in the interface of the device or the keyboard of your computer.

Using the Device to Input Text

You can use the keypad of the Def aul t Col or Phone, Def aul t G ayPhone, and
the Qner t yDevi ce devices to input text. The functions of the pound (#') and
asterisk ("*') keys vary depending on the type of input being requested:

TABLE 5 Pound ('#') and Asterisk (*') Key Functions

Input type Pound key function Asterisk key function
Phone number Pound ('#') Asterisk ("*')
Numeric Minus sign ('-') None

All other types Switches input mode Space

between upper case,
lower case, numeric and
symbol mode.

See the API documentation for j avax. mi croedi tion. | cdui. Text Fi el d for
details on MIDP input constraints.

48

Preferences and Utilities

The Preferences and Utilities tools enable you to set attributes or tools specific to
the default emulator devices, Def aul t Col or Phone, Def aul t G ayPhone,
Medi aCont r ol Ski n, and the Qnert yDevi ce.

You can use the Preferences and Ultilities tools from within a development
environment, such as KToolbar. You can access the Utilities tools from the
KToolbar’s File menu. You can access the Preferences tools from the KToolbar’s
Edit menu.

Alternatively, you can use the tools from the Microsoft Windows Start menu.To
start the Preferences tool from the Microsoft Windows Start menu:

From the Windows Start menu, select Programs -> J2ME Wireless Toolkit 2.1 ->
Preferences.

Wireless Toolkit User’'s Guide « December 2003

To run the Utilities tool:

From the Windows Start menu select Programs -> J2ME Wireless Toolkit 2.1 ->
Utilities.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences and Utilities
tools.

DefaultEmulator Preferences

Use the DefaultEmulator Preferences dialog box to configure the
Def aul t Emul at or devices.

To open the Preferences dialog box:

Choose Edit -> Preferences.

Preferences |

Preferences for:

E{ Metwork Configuration Eerformancel Mon'rtorl gtoragel V_\IMAI MMegiaI Sgc:ur'rtyl

Type Address of proxy server Port

HTTP

Security
Hitp ersion

& HTTPH A

 HTTPH O

OK | Cancel |

FIGURE 20 DefaultEmulator Preferences Dialog

Setting the Web Proxy

If you want to run Java applications that require Web connections, and if such
connections can be made only through a proxy server (when the Web server is on
the other side of a firewall, for example), then you need to configure the Emulator
with proxy server information.

Chapter 5 Working With the Emulator 49

50

To specify proxy information for HTTP connections in the Network Configuration
tab:

Type the name of the HTTP proxy server and its port number in the HTTP text
fields.

To specify proxy information for HTTPS connections:

Type the name of the HTTPS server and its port number in the Security Server
and Port text fields.

If you are unsure about the correct proxy settings, ask your system administrator.

Choosing an HTTP Version

The Wireless Toolkit provides you with two versions of HTTP to work with.
Version 1.0 is provided for development purposes only. The MIDP specification
requires that HTTP version 1.1 is supported. Selecting version 1.0 in the Network
Configuration tab of the Preferences dialog box disables some of the version 1.1
features, such as chunking messages and providing a persistent connection to
enable you to work with servers that do not support version 1.1.

Setting Performance Parameters

You can adjust the drawing and refresh speed for your application, its network
speed parameters, and the VM speed emulation from the Performance tab of the
Preferences dialog box. See “Managing Device Speed” on page 40 in Chapter 4,
“Performance Tuning and Monitoring Applications” for information on setting
these attributes.

Enabling Monitoring and Tracing

You can enable one or more of the performance monitoring features, memory
monitoring, network monitoring, and method profiling from the Monitor tab of the
Preferences dialog box. For details about these features, see Chapter 4,
“Performance Tuning and Monitoring Applications.”

From the Monitor tab, you can also configure the Emulator to trace certain types of
events:

= Garbage collection. The trace output indicates when garbage collection occurs,
as well as the number of bytes collected and the total heap size.

= Class loading. The trace output displays the name of every non-system class as
it is created and initialized.

= Method calls. The trace output has an entry for each method call, recording the
name of the method and the object on which it was invoked.

Wireless Toolkit User’'s Guide « December 2003

Note — The output from method calls is verbose and may cause your application to
run slowly.

= Exceptions. The trace output includes a record of every exception that is thrown,
including those that are thrown and caught by system classes. The system
classes are hidden and ignored unless you check Show System Classes.

To enable (or disable) tracing of any of these events, check (or uncheck) the
corresponding boxes in the Monitor tab in the Preferences dialog box.

Setting the Heap Size

You can specify the amount of heap memory to make available to MIDP
applications in the Storage tab. To set the heap size:

Type a value in the Heap Size field (in kilobytes).

The default value is 500 kilobytes. Acceptable values are between 32Kb and 64
Mbytes.

Setting the Storage Directory

You can specify a storage directory in the Storage tab of the Preferences dialog box
prior to running your MIDlet.

To set the storage directory:

. Type the name of the directory in which you want to store information the next
time you run the emulator.

The directory is created under the appdb directory. A database (. db) file is created
and placed in the specified directory. The default directory location is

{j 2mewt k. di r }\ appdb\ <device_name>. The Wireless Toolkit automatically
allocates different storage directories for different emulated devices.

. Type a value in the Storage size field (in kilobytes) to set the maximum size of
the file.

Setting WMA Parameters

The WMA panel of the Preferences dialog box enables you to set WMA messaging
related features, such as:

= Setting Device and SMSC Phone Numbers
= Specifying Message Delivery Parameters

For information about these parameters and how to set them, see “Setting WMA
Preferences” on page 69 in Chapter 7, “Wireless Messaging with the Wireless
Toolkit.”

Chapter 5 Working With the Emulator 51

52

Setting Optional Multimedia Formats and Features

You can choose which multimedia features and formats you want supported for
your multimedia application from the Media tab of the Preferences window. You
can select one or all of the following formats: WAV audio, MID], or Video. You can
also select one or all of the following optional features: Audio Mixing, Audio
Record, Audio Capture, or MIDI Tones.

Specifying a Security Domain Type

A security domain enables the identification of MIDlets by their origin. Only one
domain type can be assigned to a MIDlet suite. These settings are relevant when
you are running your application locally. These settings not relevant when running
using OTA provisioning where the security status is determined by the signing of
the MIDlet suite.

To specify a security domain type from the Security tab in the Preferences dialog
box:

Select a domain type from the combo box

Once your MIDlet suite has been built and packaged, see “Signing MIDlet Suites”
on page 57 in Chapter 6, “Using Security Features in the Wireless Toolkit” for
information on signing a MIDlet suite.

For information on permissions and security domains, see the MIDP 2.0
Specification at ht t p: / / j ava. sun. coni product s/ mi dp.

DefaultEmulator Utilities

You can use the DefaultEmulator Utilities window to run the Def aul t Enul at or ’s
utilities.

To open the Utilities window:

e Choose File -> Utilities.

Wireless Toolkit User’'s Guide « December 2003

http://java.sun.com/products/midp

=101 x|

Emulators:

B Databaze
Clean Database |

~Memory Monitar

~hetwork Monitar

Open Session |

r~Prafiler

Open Session |

AL

Open Console |

~Security

Sign hIDlet |

Manage Cerificates |

Stub tools

Stub Generator |

Cloze |

FIGURE 21 DefaultEmulator Utilities Window

Cleaning Device Storage

The Def aul t Enul at or simulates a client device’s local storage by maintaining
small database files on your computer. To erase these database files, click Clean
Database.

Monitoring Memory Usage

You can view memory usage from a previously saved session to see where a
bottleneck in your application’s performance might be occurring by reviewing its
memory usage during runtime. The Memory Monitor provides several kinds of
memory usage information, such as the amount of memory that live class objects
use during program execution. For information on how to use the Memory
Monitor, see “Examining Memory Usage” on page 32 in Chapter 4, “Performance
Tuning and Monitoring Applications.”

Chapter 5 Working With the Emulator

53

54

Monitoring Network Traffic

You can use the Def aul t Enul at or to simulate the transmission of messages to
and from a device and the internet. You can open a saved monitoring session to
examine details about previous transmission simulations. For information on how
to use the Memory Monitor, see “Monitoring Network Traffic” on page 36 in
Chapter 4, “Performance Tuning and Monitoring Applications.”

Profiling Methods

The Profiler collects data from the DefaultEmulator during runtime. By seeing how
much time a method takes to execute from a saved profiling session, you can see
what areas of your application could be slowing down execution time. For
information on examining profiling information, see “Profiling Your Application”
on page 29, in Chapter 4, “Performance Tuning and Monitoring Applications.”

Wireless Messaging

You can test your messaging MIDlet with the WMA console. You can send a
message in either text or binary form using either the Short Message Service (SMS)
or Cell Broadcast Service (CBS) from the WMA Console window to an emulated
device. For information on sending SMS and CBS message, see. For information on
monitoring SMS and CBS message connections, see Chapter 7, “Wireless Messaging
with the Wireless Toolkit.”

Signing MIDlet Suites and Managing Certificates

You can use the security features to facilitate the signing process for your MIDlet
suite. You can select a certificate of authentication for a public key from the J2SE
Keystore or import a certificate obtained from a certificate authority (CA) and copy
the certificate to the J2ME keystore. When you sign a MIDlet suite, the signing tool
copies the certificate into the specified JAD for you. The JAR file’s digital signature
is automatically stored in the JAD file for you as well.

You can maintain the list of certificates in the J2ME Keystore through the J2ME
Certificate Manager. The manager enables you to view information about the
selected certificate in the J2ME Keystore. You can check the validation period for a
specific certificate, import a certificate from the J2SE Keystore, and delete expired
certificates from the J2ME Keystore.

For information on how to use the security features, see “Signing MIDlet Suites” on
page 57 in Chapter 6, “Using Security Features in the Wireless Toolkit.”

Wireless Toolkit User’'s Guide « December 2003

Using a Stub Connector to Access Web Services

The implementation of Web Services for J2ME technology clients is based on J2ME
Web Services (JSR-172). You can use the KToolbar Stub Generator to generate a stub
connector for J2ME Web Services. You will need to provide an XML configuration
file that contains a Web Services Descriptor Language (WSDL) file. We recommend
that you place the XML file in the {j 2mewt k. di r }\ apps\ <project_name>
directory.

For information on how to use the Stub Generator to access J2ME Web Services, see
“Using the Stub Connector to Access J2ME Web Services” on page 25” in Chapter 3,
“Operating with KToolbar.”

Chapter 5 Working With the Emulator 55

56 Wireless Toolkit User's Guide ¢ December 2003

CHAPTER 6

Using Security Features in the
Wireless Toolkit

The J2ME Wireless Toolkit incorporates the enhanced security features provided in
MIDP 2.0 and provides you with tools to facilitate using these new security
features. These improved security features provide you with:

= A means of signing applications

= The availability of different levels of secure domains

= Authenticating the sender of applications through the use of certificates
= A means to trust the integrity of the applications received by a device

Signing MIDlet Suites

Once you have built and packaged your MIDlet suite, you can use the security
utilities provided by the J2ME Wireless Toolkit to sign it. The J2ME Wireless Toolkit
enables you to either sign a MIDlet suite with an existing public and private key
pair or with a new key pair that you generate. Each key pair is associated with a
certificate. Assigning a security domain to the certificate, designates the level of
trust the certificate holder has to access protected APIs and the level of access to
those APIs.

MIDlet suites can be assigned one of the following domain types:

= Untrusted - A MIDlet suite for which the origin and the integrity of the JAR file
cannot be trusted by the device (for example, unsigned MIDlet suites).

= Trusted - A MIDlet suite with a JAR file that is both signed with a certificate
chain that the device can verify and has not been tampered with.

= Minimum - A security domain where all permissions to protected APIs are
denied, including access to push functionality and network protocols.

= Maximum - Same as trusted. A security domain where all permissions to access
protected APIs for push functionality and network protocols are allowed.

57

58

The signing process is ordinarily a complex procedure involving the keytool utility,
JADtool, and the MEKeytool. The toolkit’s security utilities consist of graphical
user interfaces that call on these tools for you. It enables you to complete the entire
signing process without having to resort to command-line utilities. With the
security utilities, you can:

= Create a new key pair and specify an alias.

= Copy the certificate for an existing key pair in the J2SE Keystore to the J2ME
Keystore.

= Add a key pair’s certificate to the MIDlet suite’s JAD file.
» Digitally sign the MIDlet suite’s JAR file and add the signature to the JAD file.

» Delete an obsolete certificate.

When a key pair is created in the J2ME Wireless Toolkit, the certificate is stored in
the ME keystore file.

For a thorough description of the MIDP 2.0 security model, see the MIDP 2.0
specification at ht t p: //j ava. sun. cont pr oduct s/ m dp.

Creating a New Key Pair and Signing a MIDlet
Suite

If you need to create a key pair, you can use the New Key Pair dialog box to
generate one. You must specify an alias, distinguished name, and organization. The
utility then creates a public and private key that are referenced by the alias. The
key pair is stored in a keystore. A certificate for the key pair is also generated and
you are asked to specify a security domain to be associated with the certificate. The
certificate associated with the key pair is then automatically imported to the
DefaultEmulator’s keystore. You can then sign the MIDlet suite.

Note — The ability to create a key pair and sign a MIDlet within the Wireless
Toolkit environment is for testing purposes only. The signing feature is a
simulation and not an actual event. When you run your application on an actual
device, you must obtain a valid certificate from a certificate authority recognized
by your device.

To create a new key pair:

. Choose Project -> Sign in the KToolbar.

The Sign MIDlet Suite window opens. Another way to open the Sign MIDlet Suite
window is to choose File -> Utilities and click the Sign MIDlet button.

. Click New Key Pair in the Sign MIDlet Suite window and provide the following

information in the New Key Pair generator dialog box:

= An alias to be referenced for the new key pair.
= The name of the server storing the keystore to contain the key pair.

Wireless Toolkit User’'s Guide « December 2003

http://java.sun.com/products/midp

= The name of the organization.

These are the minimum fields required to create a key pair.

& New key pair x|

Click on 'Create’ ko generate a new key pair using the details

listed below,

Alias:
Dnarme:C=

0=

ykey

Mysener

Sun Microsystems

Create Cancel

FIGURE 22

Keystore File Generator

3. Click Create, then specify a security domain type to associate with the certificate.

The key pair is generated and the alias is added to the list of aliases in alphabetical

order:

£ sign MIDIet Suite ; =[Ol x|

Action

J Sign MIDlet Suite. .. || Mew Key Pair... | Inpork Key Pair. .

Mlias Lisk

125E Key Details

Subject: C=newserver, 0=3un Microsystens
Issuer : C=newserver, 0=5un Microsvstens
Serial mmber: 3db4db7e
Walid from Mon Oct 21 11:46:14 PDT 2002 to Sun Jan 19 10:46:14 PAT 200
Certificate fingerprints:
MDs:
09:60:a7:0d:81:co:75:0e:63:ld:Yer 41 1£: 7d: 00 bd
SHA:
39:1d:45:c6:80:07a6:65:b9:84:cd:£2:ad:68: 0e:d3:8ar 96 aliea

Kl | 2]

FIGURE 23

Alias List Displaying Alias for Newly Created Key Pair

You can view certificate and key information in the J2SE Key Details pane. The
information displayed includes the distinguished name (DN) of the certificate
subject and issuer, the serial number of the certificate, the period of validation for

Chapter 6 Using Security Features in the Wireless Toolkit 59

60

the certificate, the cryptographic algorithm used, and the certificate authorizer’s
digital signature. A copy of the certificate is automatically stored in the Default
Emulator’s keystore.

. Click Sign MIDIlet Suite and then choose the MIDlet suite’s JAD file from the

file chooser.

The certificate is copied to the . j ad file. The JAR file is digitally signed. A
confirmation dialog box appears when the signing is successful. If the signing was
not successful, an error dialog box appears with a brief message briefly stating why
the signing could not take place.

Note — The behavior of the device running the application (MIDlet suite with
signed JAD and JAR files) can be seen only when deploying the application
over-the-air (OTA) using the Application Management System.

Importing a Key Pair and Signing the MIDlet
Suite

You can sign a MIDlet suite with an existing key pair:

. Click Import Key Pair in the Sign MIDlet Suite window and choose the keystore

file from the file chooser.

. Enter the password to access the keystore.

. Select the desired alias from the keystore’s list of aliases:

@ Please select a 123E Keystore alias,
newkey ;I
nenwkiey
mykey

FIGURE 24 Alias List Dialog Box

. Enter an alias to reference the certificate.
. Select a security domain to associate with the certificate.

. Click Sign MIDlet Suite in the Sign MIDlet Suite window and choose the

MIDIlet suite’s JAD file from the file chooser.

A confirmation dialog box appears when the signing is successful. If the signing
was not successful, an error dialog box appears with a brief message briefly stating
why the signing could not take place.

Wireless Toolkit User’'s Guide « December 2003

Deleting an Alias

To remove a key pair:

. Select the alias for the key pair you want to delete from the keystore in the Alias
List of the Sign MIDlet Suite window.

. Choose Action -> Delete Selection.

A confirmation of deletion dialog box appears. Click Yes to continue the deletion
operation. The alias is removed from the list and the key pair the alias referenced is
deleted from the keystore.

Managing Default Emulator Certificates

The Default Emulator comes with a default set of certificates. Certificates are used
to check the validity of network connections and to check the validity of signed
MIDlet suites. If you are using a secure protocol to access a web site, such as
HTTPS or SSL, the web site’s certificate is checked to see if it is valid. The MIDlet
suite’s certificate is also checked to see if it has permission to access the site. If the
site’s certificate is not valid or if the MIDlet suite does not have permission, access
to the site is denied. When you are simulating a network transmission, the
certificates in the Default Emulator’s keystore are checked. For information on how
to add API permissions for network protocols for use within the Wireless Toolkit
environment, see “Adding API Permissions” on page 19 in Chapter 3, “Operating
with KToolbar.”

A Certificate Manager is provided by the J2ME Wireless Toolkit to help you
maintain the certificates in the Default Emulator’s keystore (J2ME keystore). If you
want to add a certificate to the Default Emulator’s set of certificates, you can use an
existing certificate from the J2SE Keystore by importing it to the Default Emulator’s
keystore or you can generate a request for a certificate from a recognized certificate
authority (CA) and import the certificate you receive into the Default Emulator’s
keystore. When a certificate expires or you no longer need a certificate, you can
delete them from the keystore.

You can always see which certificates are in the J2ME Keystore by viewing the
certificates list displayed in the Certificate Manager. You can also use the command
line utility, MEKeyTool, to see the list of certificates. For information on using
MEKeyTool, see Appendix D, “Command Line Utilities.”

Viewing Certificates

To see the list of certificates:

Chapter 6 Using Security Features in the Wireless Toolkit 61

62

dialog box.

1. Choose File -> Utilities and click the Manage Certificates button in the Utilities

The J2ME Certificate Manager window opens showing the certificates contained in

the J2ME Keystore file.

pane.

& J1ZME Certificate Manager [_main.ks]
File Action

2. Select a certificate in the list to see its key information in the J2ME Key Details

=0l x|

J Open Keystare, . || Import Certificate, .

Certificate List

UZME Key Dekails

C=I15;0=R3A Data Security, Inc.;OU=5ecure Ser,
Ch=5un Microsystems Inc TEST CA;O=5un Micrasy
“h=thehost; OU=1CT; C=dummy CA;L=3anta Clar:
O=5un Microsystems; C=myserver
C=Zf;5T="eskern Cape;L=Cape Town;O=Thawte
C=Zf;5T="eskern Cape;L=Cape Town;O=Thawte
“=LI3;0=Verigign, Inc.;oU=Class 3 Public Primary
C=Zf;5T="eskern Cape;L=Cape Town;O=Thawte
C=Zf;5T="eskern Cape;L=Cape Town;O=Thawte
“=LI3;0=Verigign, Inc.;oU=Class 4 Public Primary
“=LI3;0=Verigign, Inc.;oU=Class 1 Public Primary
C=Zf;5T="eskern Cape;L=Cape Town;O=Thawte
“=LI3;0=Verigign, Inc.;oU=Class 2 Public Primary
Ci=werigign Trust Network, OU=YeriSign, Inc. ;o=
O=5un Microsystems; C=newserver
1 Mic et

Owmer: 0=5un Microsystems;C=myserver
Valid from Wed 0Oct 16 15:32:22 PDT 2002 to Tue
Security Domain: untrusted

FIGURE 25 Certificate Details

Importing Certificates

You can import a certificate from a J2SE Keystore into the J2ME Keystore or you
can generate a request for a certificate from a recognized certificate authority (CA)
and import the certificate you receive into the J2ME Keystore.

To open the Certificate Manager:

Choose File -> Utilities and click the Manage Certificates button.

Importing From the J2SE Keystore

To import a certificate from a J2SE Keystore using the Certificate Manager:

Wireless Toolkit User’'s Guide « December 2003

1. Choose Action -> Import J2SE Certificate.

2. Specify a security domain to associate with the certificate to be imported.

3. Choose a keystore file from the file chooser.
The default keystore file is keyst or e. sks.

4. Enter the password in the password dialog box to access the keystore.

The password for the default keystore is passwor d.
5. Select the alias for the certificate in the Alias List in the Select alias dialog box.

The certificate is appended to the list of certificates in the J2ME Keystore. You can
select the certificate to view its key information in the J2ME Key Details pane.

Importing From a Certificate Authority

To obtain a certificate from a CA, you must generate a request for the certificate.
Once you have received the certificate, you can import it to the Default Emulator’s
keystore through the Certificate Manager.

To import a new certificate that you received from a CA:

1. Click Import Certificate and choose a certificate from the file chooser.

The certificate has a . cer extension.

2. Select the security domain from the Enter security domain dialog box.

The certificate is copied to the Default Emulator’s keystore (J2ME keystore) and
appended to the list of certificates in the Certificate Manager. You can select the
certificate to view its key information in the J2ME Key Details pane.

Managing Certificates in Other Keystores

If you have certificates in more than one keystore file in the J2ME keystore, you can
open a specific keystore file from the Certificate Manger to view the certificates in
that keystore. You can also use the Certificate Manager to delete certificates in that
keystore file.

To open another keystore:

e Click Open Keystore and select a keystore file from the file chooser.

Use the Delete Selection command in the Action menu to delete the selected
certificate.

Deleting Certificates

You can use the Delete function in the J2ME Certificate Manager to delete a
certificate in the J2ME Keystore.

To remove a certificate:

Chapter 6 Using Security Features in the Wireless Toolkit 63

1. Select the desired certificate in the J2ME Certificate Manager window.
Hold down the Shift key to select multiple certificates to delete.

2. Choose Action -> Delete Selection.

A confirmation of deletion dialog box appears. Click yes to continue the deletion
operation.

Note — Certificates have a fixed period of validation. If you are replacing an
expired certificate for a valid one with the same serial number, the outdated
certificate must be removed first.

64 Wireless Toolkit User’'s Guide ¢ December 2003

CHAPTER 7

Wireless Messaging with the
Wireless Toolkit

The Wireless Messaging API (WMA) is supported by the J2ME Wireless Toolkit.
With WMA, you can send brief text or binary messages by means of a wireless
connection to one or to multiple mobile devices. The WMA supports Short
Message Service (SMS) and Cell Broadcast Service (CBS) messaging. With SMS, you
can have peer to peer messaging or client to server messaging. CBS enables
messages to be broadcast to multiple devices connected to a cell or a network of
cells simultaneously.

You can develop and test applications that use SMS and CBS messaging. To help
you develop and test SMS and CBS messaging applications, the Wireless Toolkit
provides you with:

= Client to client messaging emulation enabling you to send messages between
multiple emulators simultaneously

= The ability to create applications that use WMA messaging and emulate the
running of those applications

= A WMA console that enables you to send and receive SMS text or binary
messages to an emulated device and broadcast CBS text or binary messages to
multiple emulators running simultaneously

= The ability to create WMA push registry entries

= WMA attributes that you can set in the Preferences dialog box to customize the
phone numbers assigned to emulators, to specify an SMSC phone number, and
to performance test your WMA applications

= A network monitor to examine transmissions of SMS and CBS messages
= A J2SE-based API that provides a mechanism to plug J2SE programs into the
internal emulated wireless messaging environment of the Wireless Toolkit.

See the WMA specification at htt p: / / j ava. sun. coni pr oduct s/ wra for
information about wireless messaging.

65

http://java.sun.com/products/wma

66

Getting Started With WMA Emulation

Use the WMA console to develop and test your messaging applications. You can
send text or binary messages in either SMS or CBS mode to one or more emulated
devices. You can use the console as a server with the emulated device acting as the
client. The next section walks you through using the WMA console to test your
messaging application. One way to familiarize yourself with the WMA console is
to run the SMSDemo application included with the Wireless Toolkit (select it from
the Open Project list), which uses WMA messaging. You can find a walk through of
the SMSDemo application in the {j2mewtk.dir}\ docs directory.

Before using the console, go through the following checklist for preparatory
procedures that apply:

= Make sure the WMA API is available for use during the session. Go to Edit ->
Preferences and click the API Availability tab and make sure the WMA API
option is checked.

= If you want to simulate running using OTA provisioning, run using OTA
directly from the KToolbar by choosing the Run via OTA command in the
Project menu after you have packaged your project.

= If you need to sign you application and will be running in OTA provisioning
mode, check that the permissions settings for your project include the
appropriate set of the following permissions relevant to your application:

« javax.mcroedition.io.Push Registry
« javax. mcroedition.io.Connector.sns
« javax. mcroedition.io.Connector.cbs
« javax.w rel ess. nessagi ng. sms. send

« javax.w rel ess. nessagi ng. sns. recei ve
« javax.w rel ess. nessagi ng. cbs. recei ve

= If you want to simulate real time delays in message transmission, make sure you
have set the Message Fragment Loss and Message Delivery Delay attributes in
the WMA panel of the Preferences dialog box. See “Setting WMA Parameters”
on page 51 in Chapter 5, “Working With the Emulator” for information on
setting WMA performance parameters.

See “Adding API Permissions” on page 19 in Chapter 3, “Operating with
KToolbar” for information on setting MIDlet permissions.

Sending a Text SMS Message From the
WMA Console

You can send a text SMS message to a running emulated device from the WMA
console by following these steps:

Wireless Toolkit User’'s Guide « December 2003

1. Click Open Console under WMA in the Utilities window.

The WMA console window opens. The phone number assigned to the console is
displayed in the output screen. This number increases incrementally each time you
run the console.

£ +5550000 - WMA Console o] 4

Send CBS...

~Zonsole

ML Console running, using phone number +5550000.

Clear | Exit |

FIGURE 26 WMA Console Window

2. Click Send SMS in the console to send an SMS message to the emulated device.

The Send a Message dialog box opens. The assigned phone numbers of the console
and any running emulated devices are shown in the Selected Clients list:

Chapter 7 Wireless Messaging with the Wireless Toolkit 67

E® +5550000 - Send a Message - 5M5 x|

Text SMS | Binary 5Ms |

To Selected Clients

+5550000 #dd Unlisted Client...

Port (Opkional)

[

—Message

Clear |

Send | Zancel |

FIGURE 27 Send a Message - SMS Dialog Box

Each time you run an emulated device, a phone number is assigned to it and added
to the Selected Clients list.

3. Select the client number from the list and type the client’s port number in the
Port text field.

By specifying a port number for an SMS message, you are designating a specific
application or communication channel to receive or send your message through.
Omitting the port number means that the message is sent directly to the client
device. Since MIDlets can only receive SMS messages with a port number specified,
you need to enter a port number.

For information on restrictions on port numbers for SMS messages, see the WMA
specification at ht t p: //j ava. sun. con? pr oduct s/ wna.

4. Type a brief message in the Message field and click Send.

For maximum message length, consult the Wireless Messaging API. Maximum
message (payload) length is dependent on the type of encoding used among other
factors. If your message exceeds the allowable limit, an error message is displayed
in the console’s output screen.

For a description of the SMS Demo application, see the “SMSDemo Application”
document in the {j2mewtk.dir]\ docs directory.

68 Wireless Toolkit User’'s Guide ¢ December 2003

http://java.sun.com/products/wma

Sending a Binary SMS Message

Sending a binary SMS message is similar to sending a text message. To send a
binary message:

. Click Binary SMS in the Send a Message dialog box.

. Type the pathname for the binary file you want to send or select one from the file

chooser by clicking Browse, then click Send.

The Console screen in the WMA console window displays output with the URL
address of the receiving device.

Sending a CBS Message

You can use the WMA console to send a CBS broadcast message to all running
emulators. The procedure is similar to sending an SMS message. After you have
opened the WMA console from the Utilities window:

. Click Send CBS.
The Send a Message dialog box opens.

. Click Text CBS or Binary CBS as desired.

. Enter a message or specify a binary file and click Send.

If you are sending a text message, you must provide a message identifier and a
brief text message in the corresponding fields in the dialog box.

If you are sending a binary message, you must provide a message identifier and a

pathname for the binary file.

The output screen in the WMA console window displays information whether the

information was sent and received or if an error occurred.

Setting WMA Preferences

The WMA panel of the Preferences dialog box contains fields that enable you to set

WMA-related features.
= Setting Device and SMSC Phone Numbers

The Wireless Toolkit assigns unique phone numbers to emulated devices as they
are launched. These phone numbers are the addresses of the devices for sending

and receiving SMS messages. Each field accepts a numeric string of eighteen
digits or less with no spaces.

Chapter 7 Wireless Messaging with the Wireless Toolkit

69

70

= At times, you might want to specify that the next emulator you launch should
have a specific phone number. You might want to do this if you are
developing a MIDlet that assumes it has a specific phone number. You can
specify this phone number in the "Phone Number of Next Emulator" field.

= The WMA specification provides a mechanism for the MIDlet to discover the
phone number of the SMSC that services the telephone. While there is no real
SMSC within the emulated environment, you may specify this phone number
in the "SMSC Phone Number" field.

= The default first assigned phone number is 5550000. In locales outside the
United States, you might want to change this number to conform to local
phone number conventions. You can specify the first phone number that is
assigned to an emulator in the "First Assigned Phone Number" field.

= Specifying Message Delivery Parameters

The Wireless Messaging API specification provides automatic fragmentation and
reassembly of messages that are too long to be sent in a single SMS message. The
maximum size of a singe SMS fragment is determined by the content type and
encoding of the message body. The Wireless Toolkit’s emulators automatically
fragment longer messages into individual pieces. All the individual pieces are
delivered to the destination address. The recipient automatically reassembles the
fragments into the whole message before returning it to the MIDlet.

Many factors contribute to the actual delivery time of a message You can use the
following parameters to simulate the real-world constraints on message
delivery:

= While in practice SMS message delivery is relatively reliable, there is no
guarantee that all messages or message fragments will be delivered. You can
simulate the random loss of message fragments using the "Random Message
Fragment Loss" slider.

= The Message Fragment Delivery Delay represents the time it takes for the
wireless network to deliver SMS messages from source to destination. Delays
might occur in the real world if a recipient is very distant or is shut off. You
can simulate the delay in transmission by specifying the Message Fragment
Delivery Delay time (in milliseconds).

Wireless Toolkit User’'s Guide « December 2003

CHAPTER 8

Testing Application Provisioning

The MIDP 2.0 specification includes the document, "Over The Air User Initiated
Provisioning Specification," which describes how MIDlet suites can be deployed
over-the-air (OTA), and the functions that a device should provide to support such
deployments. See htt p: //j ava. sun. conl product s/ ni dp for the MIDP
specification. For information on OTA provisioning in the Wireless Toolkit, see
Chapter 2, “Developing and Running Applications.”

The MIDP implementation of the J2ME Wireless Toolkit’s default Emulator
emulates the device behavior during the provisioning process. You can use this
functionality to test and demonstrate the full provisioning process of MIDlet suites
from the server to the device. This chapter explains the steps that are required to
perform this process.

Deploying Applications on a Web
Server

To deploy a packaged MIDP application remotely on a Web server:

. Change the JAD file’s MIDlet-Jar-URL property to the URL of the JAR file.

The URL must be an absolute path. For example:
M Dl et-Jar-URL: http://nunbl e.java. sun. conf m dl et s/ exanpl e. j ar

. Ensure that the Web server recognizes JAD and JAR files:

a. For the JAD file type, set the file extension to . j ad and the MIME type to
text/vnd. sun. j 2ne. app- descri ptor.

b. For the JAR file type, set the file extension to . j ar and the MIME type to
application/java-archive.

The details of how to configure a Web server depend on the specific software used.

71

http://java.sun.com/products/midp
http://mumble.java.sun.com/midlets/example.jar

72

Deploying Applications Remotely

J2ME-enabled devices include an Application Management System (AMS) for
downloading, installing, and configuring J2ME applications. The Emulator has an
example AMS that you can use to demonstrate how a user would obtain and
manage your application. The example AMS supports network delivery of
applications, according to the recommended practice for MIDP (see “Over The Air
User Initiated Specification” in the MIDP 2.0 specification for a description of
recommended practices).
You can use the AMS in one of the following ways:
» Perform a single operation from the command line with the AMS option:

= From the Microsoft Windows Start menu:

Select Programs -> J2ME Wireless Toolkit 2.1 -> OTA Provisioning.
= From the command line:

At the command prompt, change to the { j2mewtk.dir} \ bi n directory and type
emul at or - Xj amat the prompt.

For more information on performing single operations through the command
line, see Appendix D, “Command Line Utilities.”

= Emulate the process using the AMS graphical user interface

Note — You can emulate running in OTA provisioning mode within the Wireless
Toolkit environment. For more information, see Chapter 2, “Developing and
Running Applications.”

Wireless Toolkit User’'s Guide « December 2003

APPENDIX A

MIDlet Attributes

This appendix lists and describes the MIDlet attributes, and specifies which
attributes go into a suite’s manifest and JAD files.

Note — When you work under a development environment, the attributes are
automatically placed in the appropriate files. When you use the command line, you
must place them manually.

TABLE 6

MIDlet Attributes

Attribute Name

Attribute Description

Attribute File

Required Attributes

M Dl et - Nane

M Dl et - Ver si on

M Dl et - Vendor

M Dl et - Jar - URL
M Dl et-Jar-Si ze

M croEdition-Profile

The name of the MIDlet suite that identifies the MIDlets to
the user.

The version number of the MIDlet suite. The format is
<mgj or >. <mi nor >. <mi cr 0> as described in the Java
Product Versioning Specification. It can be used by the
application management software for install and upgrade
purposes, as well as for communication with the user.

The organization that provides the MIDlet suite.

The URL from which the JAR file can be loaded.

The number of bytes in the JAR file. A development
environment should automatically generate this field
when the JAR file is built (and prevent it from being
edited by the user).

The J2ME profile required, using the same format and
value as the system property i cr oedi ti on. profiles.
For the MIDP 2.0 release, the content of this field must be
M DP- 2. 0.

JAD and

manifest

JAD and
manifest

JAD and
manifest

JAD
JAD

manifest

73

TABLE 6

MIDlet Attributes

Attribute Name

Attribute Description

Attribute File

M croEdi tion-
Configuration

Optional Attributes

M D et-1lcon

M Dl et - Descri ption

M Dl et - I nf o- URL

M Dl et - Dat a- Si ze

M Dl et - Del et e- Confirm

M Dl et-Del ete-Notify

MD et-Install-Notify

<User-Defined Attributes>

MiDlet-n Attributes

M Dl et - <n>

The J2ME Configuration required using the same format
and value as the system property
m croedition. configuration.

The name of a PNG file within the JAR file used to
represent the MIDlet suite. It is the icon used by the Java
Application Management System to identify the suite.

The description of the MIDlet suite.

A URL for information further describing the MIDlet
suite.

The minimum number of bytes of persistent data required
by the MIDlet. The device may provide additional storage
according to its own policy. The default is zero.

A text message provided to the user when prompted to
confirm deletion of the MIDlet suite.

The URL to which a POST request is sent to report
deletion of the MIDlet suite.

The URL to which a POST request is sent to confirm
successful installation of this MIDlet suite.

User-defined attributes relating to specific MIDlets. See
Table X for a list of user-defined attributes for MMAPI
MIDlets

The name, icon, and class of the nth MIDlet in the JAR file.
The lowest value of <n> must be 1 and consecutive
ordinals must be used.

The MIDlet’s name identifies it to the user.

The MIDlet’s icon is specified by the name of a PNG
image within the JAR.

The MIDlet’s class is specified by the name of a class that
extends M Dl et and has a public no-argument
constructor.

manifest

JAD and/
or manifest

JAD and/
or manifest

JAD and/

or manifest

JAD and/
or manifest

JAD

manifest

74 Wireless Toolkit User’'s Guide ¢ December 2003

TABLE 6

MIDlet Attributes

Attribute Name

Attribute Description

Attribute File

M Dl et - Push- <n>

M Dl et - Perm ssi ons

M Dl et - Per m ssi ons- Opt

The connection URL, class, and allowed sender of the nth
MIDIet in the JAR file. The lowest value of <n> must be 1
and consecutive ordinals must be used.

The MIDlet’s connection URL identifies the connection
protocol and port number.

The MIDlet’s class name. If the given MIDlet appears
multiple times in the suite, the first matching entry is
used.

The allowed sender is a valid sender that can launch the
associated MIDlet.

Permissions for required APIs, which are APIs that the
MIDlet suite must have access to in order to function.
Permissions have the same naming structure as a Java
class, for example,

javax. mcroedition.io.Connector. http

Permissions for non-required APIs, which are APIs that
are not essential for the MIDlet suite to function. The
MIDlet suite is able to run with reduced functionality.
Permissions have the same naming structure as a Java
class, for example,

javax. mcroedition.io.Connector. http

JAD

JAD and
manifest

JAD and
manifest

Appendix A MIDlet Attributes

75

76 Wireless Toolkit User’'s Guide ¢ December 2003

APPENDIX B

MIDlet Demonstration

The primary purpose of the J2ME Wireless Toolkit is to enable you to develop a
MIDlet suite. You can also use it to demonstrate MIDlets for non-development
purposes. You can use the J2ME Wireless Toolkit to demonstrate MIDlet suites that
are deployed either on a web site or on a local disk without having to perform
unnecessary development steps. You should be aware that by running an
application in the Wireless Toolkit environment, you are running a simulation,
meaning you do not have the full behavior of the Application Management System,
such as domain checking and push registration for example.

Note — If you are not doing actual development with the J2ME Wireless Toolkit,
and are only running demonstrations of your MIDlet suite, you are not required to
have the J2SE SDK. You can run with only the JRE instead.

Demonstrating MIDlet Suites Deployed
on a Local Disk

To demonstrate your application, double-click its JAD file. Alternately, you can use
these steps:

1. From the Windows Start menu, select Programs -> J2ME Wireless Toolkit 2.1 ->
Run MIDP Application ...

The Select A JAD File to Run dialog box appears.

2. Select the JAD file of the application you want to run, and press Run.

The Emulator appears.

77

78

Demonstrating MIDlet Suites Deployed
on a Web Site

The J2ME Wireless Toolkit enables you to execute a MIDlet suite with the toolkit’s
emulators by visiting the URL of the MIDlet suite’s JAD file in a Web browser. The
MIDlet suite must be deployed on a Web server.

To deploy a MIDP application on a Web server:

. Change the JAD file’s MIDlet-Jar-URL property to the URL of the JAR file.

This URL must be absolute. For example:
M Dl et-Jar-URL: http://munble.java. sun.com nm dl et s/ exanpl e.jar

. Ensure that the Web server recognizes JAD and JAR files:

a. For the JAD file type, set the file extension to . j ad and the MIME type to
text/vnd. sun. j 2nme. app- descri ptor.

b. For the JAR file type, set the file extension to . j ar and the MIME type to
application/java-archive.

Note — The details of how to configure a Web server depend on the specific
software used.

To run the MIDP application from the Web server:

e Go to the URL of the JAD file in a Web browser.

The Emulator appears.

Wireless Toolkit User’'s Guide « December 2003

http://mumble.java.sun.com/midlets/example.jar

APPENDIX C

Internationalization

This appendix describes setting the language displayed in the J2ME Wireless
Toolkit and the localization setting of the emulation environment.

Locale Setting for the Wireless Toolkit

A locale is a geographic or political region or community that shares the same
language, customs, or cultural convention. In software, a locale is a collection of
files, data, and code, which contains the information necessary to adapt software to
a specific geographical location.

Some operations are locale-sensitive and require a specified locale to tailor
information for users, such as:

= Messages displayed to the user
= Fonts used or other writing-specific information

By default, all KToolbar strings, that is, the entire User Interface (Ul), are displayed
in the language of the supported platform’s locale.

For example, Japanese characters can be displayed in the KToolbar running on a
Japanese Windows 2000 machine, provided that the correct localized J2ME Wireless
Toolkit supplement has been downloaded and installed over the Wireless Toolkit.

You can set the wt k. | ocal e property to have the KToolbar displayed in a
specified locale’s language. For example, you can have the toolkit running on a
Japanese Windows NT machine but still have the KToolbar display shown in
English by setting the locale property to en- US, and making sure that the proper
supplement has been downloaded and installed over the J2ME Wireless Toolkit.
The wt k. | ocal e property should be placed in the

{ j2mewtk.dir} \ wt k| i b\ W ndows\ kt ool s. properti es file.

79

Emulated Locale

The i croedi ti on. | ocal e property is the MIDP system property that defines
the current locale of the device, which is nul | by default. For the J2ME Wireless
Toolkit Default Emulator, this value is automatically set to the default locale for the
J25E environment you are running. For example:

= If you are running in an English system in the US, the mi croedi ti on. | ocal e
is set to en- US.

= If you are running in a French system, the mi cr oedi ti on. | ocal e is set to
fr-FR

For information on m croedi ti on. | ocal e, see section 4.2, System Properties, in
the JSR-37 Mobile Information Device Profile specification at

http://jcp. org/ about Javal/ conmuni t yprocess/final/jsr037/

i ndex. htm .

You can override the default value by adding the i croedi ti on. | ocal e
property to the file { j2mewtk.dir}\ wt kI i b\ W ndows\ kt ool s. properti es file
and define the property as desired, as shown in the following examples:

m croedi tion. | ocal e=en-US
m croedi tion. | ocal e=nul |

For details on setting a default locale, see the J2ME Wireless Toolkit Basic
Customization Guide.

80

Character Encodings

The CLDC system property, mi cr oedi ti on. encodi ng, defines the default
character encoding name of the device MIDP environment. In the J2ME Wireless
Toolkit Default Emulator environment, this property is set according to the
underlying window system you are using. The property’s value is set to the default
encoding for the J2SE environment running on the same window system. For
example, in an English window system, the encoding setting is

m croedi tion. encodi ng=1 SO8859_1
You can override the default value by adding the i croedi ti on. | ocal e
property to the {j2mewtk.dir}\ wt kI i b\ W ndows\ kt ool s. properti es file. For

example, if you want to use UTF-8 as the default setting, you can set the property
in the { j2mewtk.dir} \ wt k1 i b\ W ndows\ kt ool s. properti es file as follows:

m croedi tion. encodi ng=UTF- 8

For more information on character encoding, see section 6.9.2, Property support in
the JSR-30 J2ME Connected, Limited Device Configuration specification at

Wireless Toolkit User’'s Guide « December 2003

http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html

http://jcp. org/ about Javal/ conmuni t yprocess/final/jsr030/
i ndex. htm .

Note — All the J2SE encoders are available in the emulated environment. See the
J2ME Wireless Toolkit Basic Customization Guide for information on how to limit the
list of available encoders for a specific device.

Java Compiler Encoding Setting

The j avac. encodi ng property determines the encoding used by the javac
compiler to compile your source files. The property’s value is set to the default
encoding for the J2SE environment running on the same window system.

You can override the default value by adding the j avac. encodi ng property to
the { j2mewtk.dir} \ wt kl i b\ W ndows\ kt ool s. properti es file. For example, if
you are running in an English system but find you need to compile a Japanese
resource bundle, you can specify a Japanese character set, such as:

j avac. encodi ng=EUCJI S

Font Support in the Default Emulator

The default fonts that are used in the emulated environment are set according to
the underlying window system locale. By default, the MIDP environment fonts are
mapped to the default J2SE environment Java fonts. These fonts usually support all
the characters that are required by the current window’s locale.

You can override these fonts to support other characters that are not supported by
the default fonts. See the J2ME Wireless Toolkit Basic Customization Guide for
information on how to configure them.

Appendix C Internationalization

81

http://jcp.org/aboutJava/communityprocess/final/jsr030/index.html

82 Wireless Toolkit User's Guide ¢ December 2003

APPENDIX [)

Command Line Utilities

This appendix describes how to operate the J2ME Wireless Toolkit tools from the
command line and details the steps required to build and run an application. It also
describes the J2ME Wireless Toolkit’s certificate manager utility, called MEKeyTool
(Mobile Equipment KeyTool) and the MIDlet signing utility, called JAD Tool (Java
Application Descriptor Tool).

Preliminary Checks

Before building and running an application from the command line, verify that you
have a version no earlier than 1.4.2 of the J2SE SDK. Run the j ar . exe command
(make sure the command is in your PATH) and then run j ava -ver si on at the
command line to verify that the version of the J2SE SDK that is actually being used
is 1.4.2.

For more examples, see the files bui | d. bat and r un. bat in the bi n\ directories
of the demonstration applications. You can find these files under the
{j2mewtk.dir)\ apps\ {demo_name}\ bi n\ directory where {j2mewtk.dir} is the
installation directory of the J2ME Wireless Toolkit and {demo_name} is the name of
one of the demo applications.

Selecting a Default Device

If you do not specify which device to emulate, the Emulator uses the default
device, Def aul t Col or Phone, when you run a MIDlet.

To change the default emulated device:

From the Windows Start menu, select Programs -> J2ME Wireless Toolkit 2.1 ->
Default Device Selection.

The Default Device Selection dialog appears with a menu of devices.

83

2. Select the device from the menu, and press OK.

The next time you run a MIDlet, it will be emulated on the device you have chosen.

Accessing Preferences and Utilities

To access the Preferences and Utilities tools described in Chapter 5, “Working With
the Emulator” and Chapter 4, “Performance Tuning and Monitoring Applications”
from the command line, type the following commands at the prompt:

{j2mewtk.dir}\bi n\ pref s. exe
{j2mewtk.dirjf\bi n\uti | s. exe

84

Using the Stub Generator

J2ME Clients can use the Stub Generator to access web services. The wscompile
tool generates stubs, ties, serializers, and WSDL files used in JAX-RPC clients and
services. The tool reads a configuration file, which specifies either a WSDL file, a
model file, or a compiled service endpoint interface.

The syntax for the stub generator command is as follows:

wsconpi | e [options] configuration_files

Options

TABLE 7 Options for the wsconpi | e Command

Option Description
- d <output directory> specify where to place generated output files
- f 1 <features> enable the given features

-f eat ures: <features> same as -f: <features>

-g generate debugging info
-gen same as - gen: cl i ent
-gen:client generate client artifacts (stubs, etc.)

Wireless Toolkit User’'s Guide « December 2003

TABLE 7 Options for the wsconpi | e Command

Option

Description

ht t ppr oxy: <host>:<p
ort>

-inport

-nodel <file>
-0

-s <directory>
-verbose
-version

-cldcl.0

-cldcl.1
-cldcl.0info

specify a HTTP proxy server (port defaults to 8080)

generate interfaces and value types only

write the internal model to the given file

optimize generated code

specify where to place generated source files
output messages about what the compiler is doing
print version information

Set the CLDC version to 1.0 (default) (float and double become
String)

Set the CLDC version to 1.1 (float and double are ok)

Show all CLDC 1.0 info/warning messages.

Note — Exactly one - gen option must be specified. The - f option requires a
comma-separated list of features.

TABLE 8 lists the features (delimited by commas) that may follow the - f option.
The wscompile tool reads a WSDL file, compiled service endpoint interface (SEI),

or model file as input. The Type of File column indicates which of these files can be
used with a particular feature.

TABLE 8 Command Supported Features (-f) for wsconpi | e

Option

Description Type of File

explicitcontext
nodat abi ndi ng
noencodedt ypes
nomul tirefs

noval i dati on

sear chschema

serializeinterface
s

turn on explicit service context mapping WSDL
turn off data binding for literal encoding WSDL
turn off encoding type information WSDL, SEI, model
turn off support for multiple references =~ WSDL, SEI, model

turn off full validation of imported WSDL
WSDL documents

search schema aggressively for subtypes WSDL

turn on direct serialization of interface WSDL, SEI, model
types

Appendix D Command Line Utilities

85

TABLE 8 Command Supported Features (-f) for wsconpi | e

Option Description Type of File
WS enable WSI-Basic Profile features
(default)
resol vei dr ef Resolve xsd: | DREF
nounwr ap No unwrap.
Example

wsconpil e -gen -d generated config. xm
wsconpile -gen -f:nounwap -O -cldcl.1 -d generated config.xm

86

Compiling Class Files

J2ME class files are compiled from Java source files using the javac compiler from
the J2SE SDK. Before compiling, you should verify that the following
subdirectories exist and create them if necessary:

1. t mpcl asses. A directory to hold unverified classes.
2. cl asses. A directory to hold verified classes.

To compile an application, use the javac command as follows (all on one line):

javac [options] -bootcl asspath
{j2mewt k. dir}\lib\cldcapi 10.jar; {j 2mewt k. di r}\ | i b\ m dpapi 20. j ar
<files>

If your application uses WMA, J2ME Web Services, MMAPI, or other versions of
CLDC or MIDP, be sure to include the relevant . j ar files in the bootclasspath.

Arguments

<files>

A list of one or more source files to compile, separated by spaces.

Options

- d <output directory>

Specify the directory into which the compiler should output classes. (This directory
must exist before compiling.)

Wireless Toolkit User’'s Guide « December 2003

Example

To compile all the source files of a CLDC 1.0, MIDP 2.0 MIDlet located in the src
directory (but not its subdirectories) and place the resulting class files into the
directory t npcl asses, use the following command:

javac -d tnpcl asses -bootcl asspath
c:\wtk21\li b\ cl dcapi 10.j ar;c:\wt k21\ i b\ mi dpapi 20.j ar
-classpath tnpcl asses; cl asses src*.java

The tmpclasses directory is used to store the compiled classes while they are not yet
verified. After verification has been performed, the preverifier stores the classes in
the classes directory. For more information about the javac command, see the J2SE
SDK documentation.

Preverifying Classes

To preverify application classes, use the preverify command that comes with the
J2ME Wireless Toolkit. The syntax for the preverify command is as follows:

preverify [options] <files | directories>

You can find the preverify application in the {j2mewtk.dir}\ bi n directory.

Arguments

<files | directories>

A list of one or more files or directories to preverify, separated by spaces.

Options

- cl asspat h <classpath>

Specify the directories or JAR files (given as a semicolon-delimited list) from which
classes are loaded.

-d <output directory>

Specify the directory into which the preverifier should output classes. (This
directory must exist before preverifying.) If this option is not used, the preverifier
places the classes in a directory called output.

Appendix D Command Line Utilites 87

Example

Following the example in the previous section, after compiling the source files, use
the following command:

preverify -classpath
c:\wtk21\ li b\ cl dcapi 10.j ar; c:\wt k21\ | i b\ m dpapi 20.jar -d
cl asses tnpcl asses

As a result of this command, pre-verified versions of the class files are placed in the
classes directory. If your application uses WMA, J2ME Web Services, MMAPI, or
other versions of CLDC or MIDP, be sure to include the relevant . j ar files in the
classpath.

88

Packaging a MIDlet suite

To package a MIDlet suite, you must first create a manifest file, then create an
application JAR file, and finally, an application JAD file.

Creating a Manifest File

Create a manifest file containing the appropriate attributes as specified in
Appendix A, “MIDlet Attributes.”

You can use any plain text editor to create the manifest file. A manifest might have
the following contents, for example:

MD et-1: My MDet, WMD et.png, MWMD et
M Dl et - Nane: MyM Dl et

M Dl et - Vendor: My Organi zation

M Dl et-Version: 1.0

M croEdi ti on- Configuration: CLDC 1.0

M croEdition-Profile: MDP-2.0

Creating an Application JAR File

Create a JAR file containing the manifest as well as the suite’s class and resource
files.

To create the JAR file, use the JAR tool that comes with the J2SE SDK. The
syntax is as follows:

jar cf m <file> <manifest> - C <class_directory> . - C <resource_directory> .

Wireless Toolkit User’'s Guide « December 2003

Arguments
<file>
The JAR file to create.

<manifest>
The manifest file for the MIDlets.

<class_directory>

The directory containing the application’s classes.

<resource_directory>

The directory containing the application’s resources.

Example

To create a JAR file named MyApp.jar whose classes are in the classes directory
and resources are in the r es directory, use the following command:

jar cfm MyApp.jar MANI FEST. MF -C classes . -Cres .

Creating an Application JAD File

Create a JAD file containing the appropriate attributes as specified in Appendix A,
“MIDlet Attributes.” You can use any plain text editor to create the JAD file. This
file must have the extension . j ad.

Note — You need to set the MIDlet-Jar-Size entry to the size of the JAR file created
in the previous step.

Example

A JAD file might have the following contents, for example:

M Dl et - Namre: MyM Dl et

M Dl et - Vendor: My Organi zation
M Dl et-Version: 1.0

M Dl et-Jar-URL: MyApp. | ar

M Dl et-Jar-Si ze: 24601

Appendix D Command Line Utilites 89

90

Running the Emulator

You can run the Emulator from the command line using the emulator command.
Your current directory should be the bi n\ subdirectory of the directory where you
installed the Wireless Toolkit, for example, C: \ Wt k21\ bi n. The syntax for the
emulator command is as follows (all on one line):

enul at or [options]

General Options

-hel p
Display a list of valid options.

-version

Display version information about the emulator.

- Xquery

Print device information on the standard output stream and exit immediately. The
information includes, but is not limited to, device name, device screen size, and
other device capabilities.

Running Options

- Xdevi ce: <device_name>

Run an application on the device specified by the given device name. (For a list of
device names, see TABLE 3 on page 43 in Chapter 5, “Working With the Emulator.”
- Xdescri pt or: <jad_file>

Run an application locally using the given JAD file.

- cl asspat h <classpath>

Specify the classpath for libraries required to run the application. Use this option
when running an application locally.

- D <runtime_property>

Set the HTTP and HTTPS proxy servers. Valid properties include:

com sun. m dp. i 0. htt p. pr oxy=<proxy host>: <proxy port>

Wireless Toolkit User’'s Guide « December 2003

- Xj am <command>=<application>

Run an application remotely using the Application Management System (AMS) to
run using OTA provisioning. If no application is specified with the argument, the
graphical AMS is run.

i nstal | =<jad_file_url> | force | list | storageNames|
Install the application with the specified JAD file onto a device.
r un=[<storage_name> | <storage_number>]

Run a previously installed application. The application is specified by its valid
storage name or storage number.

r emove=[<storage_name> | <storage_number> | all]

Remove a previously installed application. The application is specified by its
valid storage name or storage number. Specifying al |, all previously installed
applications are removed.

t ransi ent =<jad_file_url>]

Install, run, and remove the application with the specified JAD file. Specifying
transi ent causes the application to be installed and run and then removed
three times.

Tracing and Debugging Options

- Xver bose: <trace_options>
Display trace output, as specified by a list of comma-separated options:
cl ass
Trace class loading.
gc
Trace garbage collection.
al |

Use all tracing options.

- Xdebug
Enable runtime debugging. The - Xr unj dwp option must also be used.

Appendix D Command Line Utilites 91

- Xrunj dwp: <debug_settings>

Start a JDWP debug session, as specified by a list of comma-separated debug
settings. The - Xdebug option must also be used. Valid debug settings include:

t ranspor t =<transport_mechanism>

The transport mechanism used to communicate with the debugger. The only
transport mechanism supported is dt _socket .

addr ess=<host:port>

The transport address for the debugger connection. You can omit providing a
host. If host is omitted, localhost is assumed to be the host machine.

server=y In

Start the debug agent as a server. The debugger must connect to the port
specified. The possible values are y and n. Currently, only y is supported (the
Emulator must act as a server).

Emulator Preferences Setting Option

- Xpr ef s: <filename>

Set the Emulator preferences to the values in the given property file. The filename
you provide should be the full path name of a property file, which is used to
override the values in the Preferences dialog box. The property file can contain the
following properties:

TABLE 9 Emulator Preferences Properties List
Property Name Property Description and Legal Values
http. version Network Configuration > HTTP Version

Value: HTTP/1.1 | HTTP/1.0

htt p. pr oxyHost Network Configuration > HTTP Address
Value: hostname

http. proxyPort Network Configuration > HTTP Port
Value: integer

htt ps. pr oxyHost Network Configuration > HTTPS Address
Value: hostname

htt ps. proxyPort Network Configuration > HTTPS Port
Value: integer

kvem nenory. noni t or. enabl e Monitor > Enable memory monitor
Value: true | false

kvem net non. conm enabl e Monitor > Enable Comm monitoring
Value: true | false

92 Wireless Toolkit User’'s Guide ¢ December 2003

TABLE 9 Emulator Preferences Properties List

Property Name

Property Description and Legal Values

kvem net non. dat agr am enabl e

kvem net non. http. enabl e

kvem net non. htt ps. enabl e

kvem net non. socket . enabl e

kvem net non. ssl . enabl e

kvem profiler.enabl e

net speed. bi t per second

net speed. enabl eSpeedEnul ati on

screen. graphi csLat ency

screen. refresh. node

screen.refresh.rate

vnspeed. byt ecodesperm | |'i

vispeed. enabl eEmul ati on

st orage. r oot

st orage. si ze

mm control . capture

mm control . mdi

mm control . m xi ng

mm control .record

Monitor > Enable Datagram monitoring
Value: true | false

Monitor > Enable HTTP monitoring
Value: true | false

Monitor > Enable HTTPS monitoring
Value: true | false

Monitor > Enable Socket monitoring
Value: true | false

Monitor > Enable SSL monitoring
Value: true | false

Monitor > Enable profiling
Value: true | false

Performance > bits/sec combo box
Value: integer

Performance > Enable network throughput
emulation
Value: true | false

Performance > Graphics primitives latency
Value: integer

Performance > Display refresh (radio button)
Value: default | immediate | periodic

Performance > Display refresh (slider)
Value: integer

Performance > Enable VM speed
emulation (check box)
Value: integer

Performance > Enable VM speed emulation (slider)
Value: true | false

Storage > Storage root directory
Value: String (relative path to appdb)

Storage > Storage size
Value: integer

MMedia > Audio Capture
Value: true | false

MMedia > MIDI tones
Value: true | false

MMedia > Audio Mixing
Value: true | false

MMedia > Audio Record
Value: true | false

Appendix D Command Line Utilities

93

TABLE 9 Emulator Preferences Properties List

Property Name Property Description and Legal Values
mm control . vol ume Value: true | false
mm format. m di MMedia > MIDI format

Value: true | false

mm f or mat . vi deo MMedia > Video format
Value: true | false

mm f or mat . wav MMedia > WAV Audio format
Value: true | false

wne. cl i ent. phoneNunber WMA > Phone Number of Next Emulator
Value: integer

wna. snsc. phoneNunber WMA > SMS Phone Number
Value: integer

wa. server. firstAssi gnedPhoneNunber WMA > First Assigned Phone Number
Value: integer

wra. server. per cent Fragnent Loss WMA > % Random Message Fragment Loss
Value: integer

wa. server . del i veryDel ayMs WMA > Message Fragment Delivery Delay (ms)
Value: integer

Emulator Domain Setting Option

- Xdomai n <domain_type>
Assigns a security domain to the MIDlet suite. Domain types include:
untrusted

Requires that the MIDlet suite obtain user permission for push functionality and
the network protocols: HTTP, HTTPS, socket, datagram, server socket, comm,
SMS, and CBS.

trusted

Allows access to the push functionality and all the following network protocols:
HTTP, HTTPS, socket, datagram, server socket, comm, SMS, and CBS.

m ni mum

Denies the MIDlet suite access to all security sensitive APIs. This domain
contains no permissions.

maxi mum

Same as trusted.

94 Wireless Toolkit User’'s Guide ¢ December 2003

Certificate Manager Utility

The MEKeyTool manages the public keys of certificate authorities (CAs), making it
functionally similar to the keyt ool utility that comes with the Java 2 SDK,
Standard Edition. The keys can be used to facilitate secure HTTP communication
over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography
Extension (JCE) keystore. You can create one using the J2SE keyt ool utility, see
http://java.sun.com j 2se/ 1. 4/ docs/ t ool docs/ wi n32/ keyt ool . ht m
for more information.

Usage

The MEKeyTool utility is packaged in a JAR file. To run it, open a command
prompt, change the current directory to {j2mewtk.dir}\ bi n, and enter the
following command:

java —j ar MEKeyTool .jar <command>

Commands

-hel p

Print the usage instructions for MEKeyTool.

-del ete [-MEkeystore <MEkeystore>] -owner <owner >

Delete a key from the given ME keystore with the given owner. The default ME
keystore is {j2mewtk.dir}\ appdb\ _mai n. ks.

-inport -alias <alias> [-MEkeystore <MEkeystore>] [-keystore
<JCEkeystore>] [-storepass <storepass>] -domain <domain_name>

Import a public key into the given ME keystore from the given JCE keystore using
the given JCE keystore password. The default ME keystore is

{j2mewtk.dir)\ appdb\ _mai n. ks and the default JCE keystore is

{user.home}\ . keyst or e.

-list [-Mekeystore <MEkeystore>]

List the keys in the given ME keystore, including the owner and validity period for
each. The default ME keystore is {j2mewtk.dir}\ appdb\ _mai n. ks.

Appendix D Command Line Utilites 95

http://java.sun.com/j2se/1.4/docs/tooldocs/win32/keytool.html

Note — The J2ME Wireless Toolkit contains a default ME keystore called

_mai n. ks, which is located in the appdb\ subdirectory. This keystore includes all
the certificates that exist in the default J2SE keystore, which comes with the J2SE
JDK™ jnstallation.

96

MIDlet Suite Signing Utility

The JADTool is a command-line interface for signing MIDlet suites using public
key cryptography according to the MIDP 2.0 specification. Signing a MIDlet suite is
the process of adding the signer certificates and the digital signature of the JAR file
to a JAD file.

The JADTool only uses certificates and keys from J2SE keystores. The J2SE provides
the command-line tool to manage J2SE keystores.

Usage

The JADTool utility is packaged in a JAR file. To run it, open a command prompt,
change the current directory to {j2mewtk.dir}\ bi n, and enter the following
command:

java —jar JADTool .jar <command>

Commands

-hel p

Print the usage instructions for JADTool.

-addcert -keystore <keystore>-al i as <alias> - St orepass <password>
[- cert num<number>] [- chai nnum<number>] -i nputj ad <input_jadfile> -
out put j ad <output_jadfile>

Add the certificate of the key pair from the given keystore to the JAD file. The
default ME keystore is {j2mewtk.dir}\ appdb\ _nai n. ks.

-addj arsig -jarfile <jarfile> - keyst or e <keystore> - al i as <alias> -
st or epass <password> - keypass <password> - i nput j ad <input_jadfile> -
out put j ad <output_jadfile>

Add the digital signature of the given JAR file to the specified JAD file. The default
value for -j arfil e is the M Dl et - Jar - URL property in the JAD file. The default
ME keystore is {j2Zmewtk.dir}\ appdb\ _mai n. ks.

Wireless Toolkit User’'s Guide « December 2003

-showcert [([-certnum<number>] [-chai nnum<number>]) |-all [-

encodi ng <encoding>] -inputj ad <filename>

Display the list of certificates in the given JAD file.

The default value for:

= -encodi ng is UTF- 8

= -jarfileistheM Dl et-Jar-URL property in the JAD
= -Kkeystore is $HOVE/ . keyst ore

= -certnumisl

= -chai nnumis 1

Appendix D

Command Line Utilities

97

98 Wireless Toolkit User’'s Guide ¢ December 2003

Index

A

advanced configuration options, 27
API permissions
removing, 20
selecting, 19
Application Management System (AMS)

running remotely deployed application, 72

applications
running remotely, 71
applications directory, setting, 27

C
Call Graph, 30
CBS messages, sending, 69
Cell Broadcast Service (CBS), 65
Certificate Manager, 61
certificate manager utility, 83
certificates
copying to J2ME Keystore, 60
default set, 61
deleting, 63
generating, 58
importing, 62
importing from a CA, 63
managing in other keystores, 63
viewing, 61
character encodings, 80
class libraries
adding to a project, 25
defining for all projects, 25
external, 24
-cl asspat h option, 87
command line operations, 83
command path, 83
compiling
example from command line, 87
from KToolbar, 21
from the command line, 86

Connected, Limited Device Configuration
specification, 80
creating a new key pair, 58

D

database files, cleaning, 53
debugging

from command line, 91

from KToolbar, 21
debugging options, 91
default device, setting, 83
Default Emulator’s keystore, 61
Def aul t Col or Phone

interface, 44

Def aul t Col or Phone

description, 43
DefaultEmulator, 48

configuring HTTP connections, 50

configuring HTTPS connections, 50
Def aul t GrayPhone

description, 43

interface, 44
demo applications, 6
device categories

Def aul t Enul at or, 48
device characteristics, table of, 44
device storage, cleaning, 53
drawing speed, setting, 41

E

emul at or command, 90
emulators
default font support, 81
demonstrating applications, 77
device characteristics, 44

99

entering text, 48
language support, 79
limitations, 43

running remotely deployed applications, 72

example devices, 43
external class libraries, 24

F
font support, 81

G

generating stub from command line, 84
Graphics primitive latency, 41

H
heap size, setting, 51
- hel p option, 90
HTTP connections
configuring for Default Emulator, 50
HTTP/HTTPS connections
filtering messages, 38
HTTPS connections, configuring for
DefaultEmulator, 50

-inport command, 95
inbound connections, list of, 17

J
J2ME Certificate Manager, 62
J2ME keystore, 58, 61
J2ME Web Services
providing access to, 5
J2SE keystore, 58
JADTool
running from command line, 96
Java Application Descriptor (JAD) file, 8
Java Archive (JAR) file, 8

Java Cryptography Extension (JCE) keystore, 95

j avac command, 86

100 Wireless Toolkit User's Guide ¢ December 2003

javax. mcroedition.io.Connector.http,

20

javax. m croedition.io.PushRegistry, 20

K

key pair
creating, 58

key pair generator, 58

keyst ore. sks, 63

keystores, 58

keyt ool utility, 95

KToolBar
cleaning project files from, 22
generating a stub connector, 25
navigating in, 12
opening window, 11
project directories, 12

KToolbar
advanced configuration options, 27
compiling from, 21
debugging from, 21
packaging from, 22
preverifying from, 21
running from, 21

kt ool s. properties, 27

kt ool s. properties file, 79

M

managing certificates from command line, 95

managing device speed, 40
manifest file, creating, 88
maximum domain, 57
Medi aCont r ol Ski n

description, 43

interface, 46
MEkeystore, 58
MEKeyTool

running from command line, 95
Memory Monitor, 32

data display, 34

viewing information, 33
memory usage, 32

saving, 35
memory usage graph, 34
message delivery parameters, setting, 70

message fragments, 70
messages
clearing from Network Monitor, 40
filtering, 39
sorting, 39
m croedi tion. encodi ng property, 80
m croedition. | ocal e property, 80
M cr oEdi ti on- Confi gur at i onattribute, 74
M cr oEdi ti on- Prof i | eattribute, 73
MIDlet attributes
M Dl et, 74
M Dl et - Per m ssi ons, 75
M Dl et - Per mi ssi ons-Qpt, 75
M Dl et - Push, 75
MIDlet suites
signing, 57
signing process, 58
trusted, 57
untrusted, 57
M Dl et attribute, 74
M Dl et - Dat a- Si zeattribute, 74
M Dl et - Del et e- Conf i r mttribute, 74
M Dl et - Descri pti onattribute, 74
M Dl et - | conattribute, 74
M Dl et - | nf o- URLattribute, 74
M Dl et-1nstall-Notifyattribute, 74
M Dl et - Jar - Si zeattribute, 73
M Dl et - Jar - URLattribute, 73
M Dl et - Naneattribute, 73
M Dl et - Per m ssi onsattribute, 75
M Dl et - Per mi ssi ons- Opt attribute, 75
M Dl et - Pushattribute, 75
MIDlets
adding specific properties, 17
adding user defined properties, 16
attributes, table of, 73
changing order of MIDlets, 17
cleaning project files, 22
compiling, 21
creating obfuscated package, 22
debugging, 21
defined, 8
deploying on a web server, 78
deploying on local disk, 77
editing attributes, 16
editing project settings, 15
modifying specific properties, 16
packaging, 22
preverifying source code, 21

removing specific properties, 17
removing user defined properties, 16
running applications, 21

M Dl et - Vendor attribute, 73

M Dl et - Ver si onattribute, 73

MIDP application development diagram, 7

minimum domain, 57

Mobile Equipment KeyTool(MEKeyTool), 83

Mobile Information Device Profile
specification, 80

N

Network Monitor, 36
clearing messages, 40
data display, 37
disabling filtering, 39
examining saved messages, 40
filtering messages, 38
saving message files, 40
sorting messages, 39
viewing information, 36
network protocols, 36
network sessions
saving, 40
network speed parameter, setting, 42
New key pair dialog box, 58

O

obfuscated package, creating, 22
obfuscated packages, 9
Object Monitor, 34
Optional attributes
M Dl et - Dat a- Si ze, 74
M Dl et - Del ete-Confirm 74
M Dl et - Descri ption, 74
M Dl et-1con, 74
M Dl et -1 nfo-URL, 74
MDi et-Install-Notify, 74
Over the Air (OTA) provisioning, 71

P

packaging
creating obfuscated package, 22
example from command line, 89

Index

101

from KToolbar, 22 refresh speed, setting, 41

MIDP applications, 8 remotely-deployed applications, 71

project files, 22 Required attributes
packaging from command line, 88 M cr oEdi ti on- Confi guration, 74
performance tuning features, 29 M croEdition-Profile, 73
Preferences tool, 48 M Dl et -Jar-Si ze, 73

accessing, 26 M Dl et -Jar - URL, 73

accessing from command line, 84 M Dl et - Narre, 73

Performance tab, 41 M Dl et - Vendor, 73

setting drawing speed, 41 M Dl et -Version, 73

setting heap size, 51 revision control files, 28

setting refresh speed, 41 Revision Control System (RCS), 27

setting the Web proxy, 49 Revi si onCont rol property, 27

tracing events, 50

. run options, 90
preverify command, 87

o running
preverifying from command line, 90
example from command line, 88 from KToolbar, 21
from KToolbar, 21
from the command line, 87
Profiler, 29
Call Graph, 30 S
data display, 30 security domain
saving information, 32 maximum, 52
viewing information, 30 minimum, 52
ProGuard code obfuscator, 23 specifying, 52
project directories, 12 trusted, 52
project files untrusted, 52
removing, 22 security utilities, 57
projects Short Message Service (SMS), 65
creating, 13 signing process, 58
opening, 15 Stub Generator, 5
properties XML configuration file, 25
adding user defined, 16
modifying MIDlets, 15,16
removing user defined, 16
Push Registry T
creating, 18 text, entering in emulator, 48
setting, 17 tracing events
class loading, 50
exceptions, 50
garbage collection, 50
Q method calls, 50
Quner tyDevi ce tracing options, 91
description, 43 trusted MIDlet suite, 57

interface, 46

U
R untrusted MIDlet suite, 57
refresh modes, 41 Utilities tool, 48

102 Wireless Toolkit User's Guide ¢ December 2003

accessing from the command line, 84
cleaning the database, 53

Utilities tool, accessing, 26

\%
-versi on optopn, 90
VM emulation speed, 40

VM speed emulation
setting, 42

W

Web proxy, setting for DefaultEmulator, 49
Web Service Descriptor Language file, 5
Wireless Messaging API (WMA), 65
Wireless Toolkit

certificate manager utility, 83

debugging, 2

demo applications, 6

list of sample devices, 43

packaging, 8

running, 2

running from command line, 83

setting a default device, 83
Wireless Toolkit, setting locale, 79
WMA console, 65
WMA preferences, setting, 51, 69
wscompile tool, 84
wt k. | ocal e property, 79

X

- Xdebug option, 91

XML configuration file
Stub Generator, 25

- Xquery option, 91

- Xrunj dwp option, 92

- Xver bose option, 91

Index

103

104 Wireless Toolkit User's Guide ¢ December 2003

	User’s Guide
	Contents
	Figures
	Tables
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Using Operating System Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction to the Wireless Toolkit
	Overview of Java Technology for the Wireless Industry
	Related Documentation
	Features of the Wireless Toolkit
	Compiling, Preverifying, and Debugging
	Packaging
	Running MIDlet Suites
	Authenticating and Authorizing MIDlets
	Performance Tuning
	Memory and Network Monitoring
	Working With the Emulator
	Internationalization Features of the Wireless Toolkit
	Providing Access to J2ME Web Services
	Operating From the Command-Line

	Application Demos

	Developing and Running Applications
	Developing Applications
	Running Applications Remotely
	Packaging
	Signing MIDlet Suites
	Running in OTA Provisioning Mode

	Operating with KToolbar
	Navigating in KToolbar
	KToolbar Projects
	Creating a New Project
	Opening an Existing Project

	Editing MIDlet Suite Attributes
	Modifying MIDlet Suite Attributes
	Modifying User-Defined Attributes
	Adding User-Defined Attributes
	Removing User-Defined Attributes

	Modifying MIDlet-Specific Attributes
	Adding MIDlet-Specific Attributes
	Removing MIDlet-Specific Attributes
	Adding MIDlets
	Changing the Order of the MIDlets

	Adding a Push Registry
	Adding API Permissions
	Removing API Permissions

	Compiling and Preverifying a Project
	Running a Project Locally
	Debugging
	Cleaning Up Project Files
	Packaging
	Obtaining a ByteCode Obfuscator

	Signing MIDlet Suites From KToolbar
	Running in OTA Provisioning Mode
	Using Class Libraries
	External Libraries for a Specific Project
	External Libraries for All Projects

	Using the Stub Connector to Access J2ME Web Services
	Setting Emulator Preferences and Using Emulator Utilities
	Customizing KToolbar
	Setting the Application Directory
	Setting the javac Encoding Property
	Working with Revision Control Systems

	Performance Tuning and Monitoring Applications
	Profiling Your Application
	Viewing Profiling Information
	Profiling Data Display

	Saving and Examining Profiling Information

	Examining Memory Usage
	Viewing Memory Usage
	Memory Monitor Data Display

	Saving and Examining Memory Usage Information

	Monitoring Network Traffic
	Viewing Network Traffic
	Network Monitor Data Displays

	Filtering Messages
	Disabling Filtering

	Sorting Messages
	Saving and Examining a Networking Session
	Clearing the Message Tree

	Managing Device Speed
	Setting Graphics Performance
	Setting VM Speed Parameters
	Setting Network Speed Parameters

	Working With the Emulator
	Example Devices
	Device Characteristics
	Pausing and Resuming a MIDlet
	DefaultColorPhone and DefaultGrayPhone
	MediaControlSkin
	QwertyDevice

	Inputting Text
	Using the Device to Input Text

	Preferences and Utilities
	DefaultEmulator Preferences
	Setting the Web Proxy
	Choosing an HTTP Version
	Setting Performance Parameters
	Enabling Monitoring and Tracing
	Setting the Heap Size
	Setting the Storage Directory
	Setting WMA Parameters
	Setting Optional Multimedia Formats and Features
	Specifying a Security Domain Type

	DefaultEmulator Utilities
	Cleaning Device Storage
	Monitoring Memory Usage
	Monitoring Network Traffic
	Profiling Methods
	Wireless Messaging
	Signing MIDlet Suites and Managing Certificates
	Using a Stub Connector to Access Web Services

	Using Security Features in the Wireless Toolkit
	Signing MIDlet Suites
	Creating a New Key Pair and Signing a MIDlet Suite
	Importing a Key Pair and Signing the MIDlet Suite
	Deleting an Alias

	Managing Default Emulator Certificates
	Viewing Certificates
	Importing Certificates
	Importing From the J2SE Keystore
	Importing From a Certificate Authority
	Managing Certificates in Other Keystores
	Deleting Certificates

	Wireless Messaging with the Wireless Toolkit
	Getting Started With WMA Emulation
	Sending a Text SMS Message From the WMA Console
	Sending a Binary SMS Message
	Sending a CBS Message

	Setting WMA Preferences

	Testing Application Provisioning
	Deploying Applications on a Web Server
	Deploying Applications Remotely

	MIDlet Attributes
	MIDlet Demonstration
	Demonstrating MIDlet Suites Deployed on a Local Disk
	Demonstrating MIDlet Suites Deployed on a Web Site

	Internationalization
	Locale Setting for the Wireless Toolkit
	Emulated Locale
	Character Encodings
	Java Compiler Encoding Setting

	Font Support in the Default Emulator

	Command Line Utilities
	Preliminary Checks
	Selecting a Default Device
	Accessing Preferences and Utilities
	Using the Stub Generator
	Options

	Compiling Class Files
	Arguments
	Options
	Example

	Preverifying Classes
	Arguments
	Options

	Packaging a MIDlet suite
	Creating a Manifest File
	Creating an Application JAR File
	Creating an Application JAD File

	Running the Emulator
	General Options
	Running Options
	Tracing and Debugging Options
	Emulator Preferences Setting Option
	Emulator Domain Setting Option

	Certificate Manager Utility
	Usage

	MIDlet Suite Signing Utility
	Usage

	Index

