
Reflective Memory 

Driver & System Service 
Revision: 1.3 

Date:  23-JUL-2008 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Copyright © 2008  Integrated Process Automation and Control Technologies 
Incorporated 
 
All rights reserved.  No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form without written permission from IPACT Inc. 
 
 
Technical Writer:   

Earl D. Lakia 
Senior Staff Engineer 
IPACT Inc. 

 
 
file:  W:\Projects\Active\IPACT\GEFANUC_RFM\Documentation\RFM_Manual.doc 
date: 7/23/2008 7:41 AM 
 

 
 

Document Revision History 
Date Description 
25-Sep-2006 E. Lakia Orginal writing 
27-Sep-2006 M. Taylor Added header and page numbers & did some editing. 
28 & 29-Sep-2006 M. Taylor Did some editing. 
01-Nov-2006 E. Lakia Update/cleanup 
02-Nov-2006 E. Lakia Added RFM_PEEK and RFM_POKE utilities 
14-Nov-2006 E. Lakia Added DEVDMP utility and some updates regarding the 

logical names for different modes of operation. 
19 - 24-Apr-2007 M. Taylor Did some editing. 
1-May-2007 M. Taylor Inserted index 
2-May-2007 E. Lakia Added PSTCFG documentation 
2-May-2007 M. Taylor Updated drawings 
18-Sep-2007 E. Lakia Adds some post installation information, including the 

license information. 
07-Nov-2007 M. Taylor Inserted a drawing. 
14-dec-2007 E. Lakia Document cleanup 
02-mar-2008 E. Lakia Documentation correction for RFM_OPEN call.  Added the 

RFM_Read and RFM_Write function calls. 
23-jul-2008 E. Lakia Model number change by GEFANUC (e.g., dropping the 

legacy VMIC from the model) 
 
 



Table of Contents 

 

1 Introduction ..................................................................................................... 5 

2 Installation ...................................................................................................... 6 

2.1 VMS INSTAL SESSION CAPTURE .................................................. 7 

2.2 POST INSTALL ........................................................................... 9 

3 IPD System Service ........................................................................................ 10 

3.1 VMIC INTERFACE OPERATING MODES ................................. 12 

3.2 TAG DATABASE (MASTER CONFIGURATION FILE) ................ 16 

3.2.1 TAG DATA TYPES .................................................................. 17 

3.2.2 RFMOpen Function ................................................................ 18 

3.2.3 RFMGetReference Function ................................................... 20 

3.2.4 RFMRead ............................................................................... 22 

3.2.5 RFMReadTags ....................................................................... 24 

3.2.6 RFMWrite ............................................................................... 26 

3.2.7 RFMWriteTags ....................................................................... 27 

3.2.8 RFMExtendedStatus Function ............................................... 29 

3.2.9 RFMClose Function ................................................................ 30 

4 PCI-5565 Device Driver .................................................................................. 31 

4.1 WRITE VIRTUAL BLOCK (IO$_WRITEVBLK) ................................. 32 

4.2 WRITE PHYSICAL BLOCK(IO$_WRITEPBLK) ................................ 33 

4.3 READ VIRTUAL BLOCK(IO$_READVBLK) .................................... 33 

4.4 READ PHYSICAL BLOCK(IO$_READPBLK) ................................... 34 

4.5 READ NETWORK FIFO(IO$_READRCT) ...................................... 34 

4.6 READ INIT NODE FIFO(IO$_READHEAD) ................................... 34 

4.7 READ CONTROL BUFFER(IO$_READTRACKD) ............................ 35 

4.8 SET ENDIAN(IO$_INTIALIZE) .................................................... 35 

4.9 SET MEMORY WRITE RANGE(IO$_INTIALIZE) .............................. 35 

4.10 ENABLE NETWORK INTERRUPTS(IO$_INTIALIZE) .......................... 36 

4.11 REGISTER FOR INIT NODE WAKEUP(IO$_INTIALIZE) ...................... 36 

4.12 REFRESH MEMORY TO RING ........................................................ 37 

4.13 ROGUE MASTER ENABLE(IO$_INTIALIZE) ................................... 37 

4.14 LOOPBACK MODE ENABLE/DISABLE(IO$_INTIALIZE) ................... 38 

4.15 SET DARK ON DARK MODE (IO$_INITIALIZE) ............................... 38 

4.16 ERROR CODES ......................................................................... 38 

4.17 DEVICE LOADING ...................................................................... 38 

4.18 DEVICE ERROR AND EVENT MESSAGES ........................................ 39 

5 Utilities .......................................................................................................... 41 

5.1.1 DEVDMP ................................................................................ 41 

5.1.2 PUTIT ..................................................................................... 44 

5.1.3 GETIT ..................................................................................... 46 

5.1.4 RFM_PEEK UTILITY ............................................................... 47 

5.2 RFM_POKE UTILITY .............................................................. 48 

5.3 RFM ...................................................................................... 49 

5.3.1 RFM Command Syntax .......................................................... 49 

5.4 PSTCFG ................................................................................ 50 

5.4.1 Command Syntax .................................................................. 51 

5.4.2 CSV File Column Definition.................................................... 51 



Table of Contents 

 

5.4.3 Example CSV file ................................................................... 53 

5.4.4 Example Command ............................................................... 58 

5.4.5 Example Bit Definition File .................................................... 59 

5.5 RTREND PLOTTING PROGRAM FOR RFM TAGS ............................. 61 

5.5.1 Usage ..................................................................................... 61 

5.5.2 RTREND Example Plot ........................................................... 62 

6 Development Considerations .......................................................................... 63 

6.1 ENDIAN CONSIDERATIONS ........................................................... 63 



Introduction 

5 

1 Introduction 
This document explains the operation and functionality of the GEFANUC 
PCI-5565 PCI reflective memory interface and associated OpenVMS 
system services.  The user should reference section: 2 for the installation 
procedure.  The following is a brief description of the environment. 
 

• OpenVMS install kit (utilizes sys$udpate:vmsinstal.com) 

• OpenVMS PCI device driver- Used to control the actual GEFANUC 
PCI 5565 device and configure it into OpenVMS operating system 
running on HP Integrity or Alpha servers. 

• System Service- The system service is a privileged image that 
provides a controlled access to the reflective memory contained 
within the PCI 5565 and the reflective memory ring using the 
above mentioned device driver.  Access to the reflective memory 
can be either address based or symbolic tag based access for 
applications running on the OpenVMS host.  The system service 
also provides the ability to run in three modes (e.g., normal, read 
only, and ghost). 

• Configuration Application- This application provides the mapping 
of the tags to memory addresses.  The configuration uses a comma 
delimited file to provide a symbolic mapping of process variables 
within the memory.  Typically this is exported from an Excel or 
spreadsheet database. 

• Debug/Development Utilities- A set of utilities is provided that 
allow for the debug and development of systems based using 
reflective memory. 



Installation 

6 

2 Installation 
The reflective memory installation uses the OpenVMS “VMSINSTAL” 
method for installation.  The system supports up to four PCI cards within 
the PCI or PCIX bus.  The PCI-5565 reflective memory ring adapter 
follows the PCI standard, which allow for easy configuration into the 
system.  Each of the PCI-5565s should be configured for a unique node 
IDS for each reflective memory ring and installed into the PCI back-plane 
of the Integrity or Alpha system prior to software installation.  The PCI or 
PCIX bus is probed by as part of the power up and self-test code of the 
Integrity or Alpha Hewlett Packard Servers.  This configuration data is 
stored in the adapter tables and read as part of the kit installation.  The 
kit can be installed without the card installed in the bus, but custom 
startup editing will be required after the install. 
 
The OpenVMS install kit is provided as a saveset on a CD or downloaded 
via FTP that must be copied to sys$update prior to installation and the 
file attributes set (done by the MOVE_KIT.COM command procedure).  
The following is a typical procedure where DKA400 is the CD drive on the 
OpenVMS system and the user is logged into the system account. 
 
$ SET DEF SYS$UPDATE: 
$ Mount DKA400:/over=id 
$ @DKA400:MOVE_KIT.COM 
 
The user should invoke VMSINSTAL.COM and provide the product kit, 
which was copied, from the CD (also printed by MOVE_KIT.COM).  The 
following is a session capture of the kit installation.  A single PCI-5565 
PCI card was present in the PCIX bus.  After installation, a single 
command procedure is added to target directory that can be used to load 
the device driver and the system service (below if for demonstration 
release 1.1): 
 
SYS$COMMON:[IPD5565D011]RFM_5565_STARTUP.COM 
 
This is normally added to the system’s sys$startup:systartup_vms.com 
command procedure.  The utility RFM is normally ran at this time to set 
the writeable regions for the Alpha or Itanium host for each reflective 
memory adapter. 
 
The name of the kit reflects if the kit is a demonstration and evaluation 
kit or a production kit: 
 
IPD5565PRRV.A = production  
IPD5565DRRV.A= demonstration 



Installation 

7 

 
The “RRV” are the standard OpenVMS release and version number 
conventions and the “.A” is the first saveset of the kit.  The production 
versions require a serial number and license number from IPACT. 
 
The kit is not supplied with an IVP (Installation Validation Procedure) as 
doing so might risk the corruption of the memory on the reflective 
memory by invalid writes.  However, when the driver is loaded, 
informational messages are written to the operator console and the 
operator log file (sys$manager:operator.log, see section: 4.17).  The utility 
DEVDMP can also be used to check if the driver was successfully loaded 
(this utility requires change mode to Kernel privilege). 

2.1 VMS INSTAL Session Capture 

The following is capture of an actual installation for a demonstration kit.  
The user would have been prompted for a serial number and license 
number for a production version. 
 
$ set def sys$update 
$ @vmsinstal 
 
 
        OpenVMS  Software Product Installation Procedure V8.2-1 
 
 
It is 25-SEP-2006 at 08:57. 
 
Enter a question mark (?) at any time for help. 
 
* Are you satisfied with the backup of your system disk [YES]? y 
* Where will the distribution volumes be mounted: sys$update: 
 
Enter the products to be processed from the first distribution volume set. 
* Products: IPD5565D011 
* Enter installation options you wish to use (none): 
 
The following products will be processed: 
 
  IPD5565D V1.1 
 
 
        Beginning installation of IPD5565D V1.1 at 08:58 
 
%VMSINSTAL-I-RESTORE, Restoring product save set A ... 
 
IPACT Process Database for GE FANUC VMIC PCI5565 Adapter 
 
Copyright 
      IPACT Inc. 
      260 S. Campbell St. 
      Valparaiso, IN  46485 
 
      www.ipact.com 
 
      Support: 219-464-7212 
               mpblus@ipact.com 
 
 
This software is licensed to a single computer. 
 
This is a demo kit.  The driver will only function for 



Installation 

8 

two days after the driver is loaded. 
%IPD-I-KitType This is a Demonstration kit 
 
This software will be installed in the following 
directory: 
  sys$common:[IPD5565D011] 
  sys$common:[IPD5565D011.EXAMPLES] 
 
 
All user input complete 
 
%IPD-S-CoffeeBreak All input complete 
%IPD-I-Linking 5565 device driver 
 
%IPD-I-Linking RFMSS system service 
 
%IPD-I-Linking DEVDMP utility 
 
%IPD-I-Linking DUMPMCF utility 
%IPD-I-Linking FINDPCI utility 
 
%IPD-I-Linking GETIT utility 
%IPD-I-Linking PSTCFG utility 
%IPD-I-Linking PUTIT utility 
%IPD-I-Linking RFM 
 
Looking for 5565 PCI adapter cards 
Expect output showing system bus structure 
Running FINDPCI to find your devices 
 
%IPD-I-Find5565 Find PCI adapters 
 
 
Changing mode to Kernel to find PCI RFM devices 
 Reflective Memory PCI device found, 1 
 
      Vendor id:   0x114a 
  PCI Device ID:   0x5565 
   SubVendor ID:   0x10b5 
   SubSystem ID:   0x9656 
     Controller:   0x0 
            CSR:   0x0 
    Node Number:   0x6008 
         Vector:   0x1530 
            IRQ:   0x1530 
            CRB:   0x0 
            ADP:   0x0 
 
               PCI Devices found 
Entry     Adp      Ba     Vendor  DevId   SubVendId  SubSysId 
 01) 0x89450100 0x89485728 1011   0005      0000      0000 
 02) 0x89450100 0x89485838 1095   0649      1095      0649 
 03) 0x89450100 0x89485948 8086   1229      103c      1274 
 04) 0x8946e740 0x89487a58 1033   0035      1033      0035 
 05) 0x8946e740 0x89487b68 1033   0035      1033      0035 
 06) 0x8946e740 0x89487c78 1033   00e0      1033      00e0 
 07) 0x8946b7c0 0x89489b28 1011   0005      0000      0000 
 08) 0x8946b7c0 0x89489c38 14e4   1645      103c      12a4 
 09) 0x89450600 0x8948bc58 1000   0030      1000      1000 
 10) 0x89450600 0x8948bd68 1000   0030      1000      1000 
 11) 0x89464000 0x89493e28 114a   5565      10b5      9656 
 12) 0x89492400 0x89497aa8 1014   01a7      0000      0000 
 
Creating new Driver install command file 
  vmi$kwd:rfm_driver_load.com 
 RFM board: 1 
$ MCR SYSMAN IO CONNECT RBA0: - 
    /DRIVER_NAME=SYS$LOADABLE_IMAGES:SYS$RFMDRIVER - 
    /CSR=0 
    /NODE=%x6008 
    /ADAPTER=9 (TR number) 



Installation 

9 

    /VECTOR=%x1530 
$ set prot=(s:rwpl,o:rwpl,g:rwpl,w:rwpl)/device rmA 
%IPD-I-Moving files 
 
%VMSINSTAL-I-SYSDIR, This product creates system directory [IPD5565D011]. 
%CREATE-I-EXISTS, VMI$COMMON:[IPD5565D011] already exists 
%VMSINSTAL-I-SYSDIR, This product creates system directory [IPD5565D011.EXAMPLES 
]. 
%CREATE-I-EXISTS, VMI$COMMON:[IPD5565D011.EXAMPLES] already exists 
 
IPD-S-Installed Product successfully installed 
%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories... 
 
        Installation of IPD5565D V1.1 completed at 08:58 
 
    Adding history entry in VMI$ROOT:[SYSUPD]VMSINSTAL.HISTORY 
 
    Creating installation data file: VMI$ROOT:[SYSUPD]IPD5565D011.VMI_DATA 
 
Enter the products to be processed from the next distribution volume set. 
* Products: 
 
        VMSINSTAL procedure done at 08:59 
 

2.2 POST Install 

After installing the kit, the command procedure to load the driver and 
install the system service should be ran: 
 
$ @SYS$COMMON:[IPD5565D011]RFM_5565_STARTUP.COM 
 
If the user intends to use the utilities, the foreign commands for the 
utilities are defined in the command file: 
 
$ @IPD__PROD:RFM_SYMBOLS.COM 
 
All files for this product are located in the installation directory including 
the device driver and its symbol table. 
 
If the 5565 driver had not been installed in the PCIX bus when the kit 
was installed, the user may look for the driver again by executing the 
following from within the IPD__RFM: directory. 
 
$ Set Def IPD__RFM: 
$ FINDPCI  IPD__RFM:RFM_DRIVER_LOAD.COM 
 
OpenVMS does not support the reloading of a device driver.  If a new 
release of the driver is installed, the system must be bootstrapped. 
 



IPD System Service 

10 

3 IPD System Service 
The actual writing and reading of the reflective memory ring data 
requires PCI bus memory cycles.  This is a privileged function within the 
OpenVMS executive as errant read and writes can cause system faults.  
OpenVMS provides a controlled method to accomplish this using a device 
driver.  The system service is installed with privileges that allow the 
normal user the ability to write to the reflective memory.  The system 
service checks to ensure that all writes to the reflective memory are 
within the writeable region for this node by each adapter (e.g., PCI-5565).  
The system service supports development when a PCI-5565 is not 
available and when a ring member is absent.  The system service calls 
the PCI_5565 device driver to actually access the reflective memory 
(unless in one of the offline modes).  If partitions have been enabled in 
the driver, the validation of the writeable area is done by the driver. 
 
The API is designed to support two access methods: 

• Read and write directly to memory locations in the reflective 
memory (e.g., Peek and Poke). 

• Read and write symbolic tags to memory locations in reflective 
memory. 

• Provides method for notification of events on the reflective memory 
ring 

 
The use of the symbolic tag reference requires the configuration of each 
symbolic tag using a simple comma delimited file (CSV) typically created 
using a spreadsheet (example spread sheet is provided on the 
distribution CD).  This method allows for the support of a simple data 
type such as an integer as well as a more complex type such as a 
structure.  Using this method allows support for some of the utilities 
(GETIT and PUTIT) and debug methods described in the utilities section.  
All memory data types should be long-word aligned where possible, 
including those data types, which are shorter (e.g., pad to a four byte 
modulus). 
 
The system service is linked into a user application with the following 
linker option command:  “ipd__prod:rfmss.exe/share”.  The logical names 
ipd__prod and rfmss are defined by the RFM_5565_STARTUP.COM 
command procedure.  A typical linker command might be the following 
(example from rfm_poke, ipd_library.olb contains utility routines used by 
rfm_poke, all objects for the utility are in rfm_poke.olb).  The 
“ipd__prod:ipd_library.olb/include=ipdmsgdefinition” includes message 
codes for the RFMSS system service. 
 



IPD System Service 

11 

$link/exe=rfm_poke,sys$input/opt 
rfm_poke.olb/include=rfm_poke 
rfm_poke.olb/lib 
ipd__prod:ipd__library.olb/lib 
ipd__prod:ipd__library.olb/include=ipdmsgdefinition 
ipd__prod:rfmss.exe/share 

 
The following lists each of the API (Application Programming Interface) 
calls provided in the system service.  These are individually documented 
later in this chapter.  Typically a user does one of the following (also see 
provided example applications provided in the distribution examples 
directory):  
 

1. Calls the RFM_OPEN to connect to the driver, and calls the 
RFM_READ and RFM_WRITE as needed 

 
2. Calls the RFM_OPEN to connect to the driver, calls 

RFM_REFERENCE_TAG to get information about the tags that are 
going to be used, and calls the RFM_READTAG and 
RFM_WRITETAG as needed 
 

3. Makes call directly to the PCI-5565 device driver using the QIO 
interface. 

 

RFM_OPEN- Open a particular PCI-5565 reflective memory adapter 

RFM_READ- Read data from reflective memory at supplied offset 

RFM_WRITE- Write data to reflective memory at supplied offset 

RFM_READTAG- Read data for a tag, location of tag acquired from 
RFM_REFERENCE_TAG. 

RFM_WRITETAG- Write data to a tag, location of tag acquired from 
RFM_REFERENCE_TAG. 

RFM_REFERENCE_TAG- Reads configuration file for a tag to 
acquire its data type, length, and location in reflective memory. 

RFM_EXTENDED_STATUS- Returns additional information when 
RFM_READTAG and RFM_WRITETAG are used. 

RFM_WRITE_BLIND- Write to a TAG without regard to node’s 
writeable region (used for simulation of an absent ring member). 

 

The diagram below shows the basic implementation of the system 
service. 
 



IPD System Service 

12 

Per Process

Created by
RFM_OPEN

Protected Memory

System
Service

RFMSS.EXE

IPACT 5565
Open VMS
Device Driver

GE FANUC
PCI 5565

UP to 4
PCI 5565

User
Process

PCI BUS

 

 

Figure 3-1  IPD System Services 

 

3.1 VMIC INTERFACE OPERATING MODES 

 
There are three modes of operation provided by the IPDRFMSS system 
service layer. The modes are referred to as “NORMAL”, “READONLY”, and 
“OFFLINE” modes.  These modes are implemented in such a way that no 
change is required to the applications using the IPDRFMSS system 
service function.  The mode of operation is controlled by a single GROUP 



IPD System Service 

13 

logical name called IPDRFM_MODE.  Assigning the value of NORMAL, 
READONLY, or OFFLINE to this logical will cause applications to operate 
in the defined mode.  The desired mode of operation must be defined 
prior to starting the VMIC “aware” applications on the OpenVMS system.  
If a mode change is required, each VMIC “aware” application on the 
OpenVMS system must be restarted following the mode change.   
 
The range of VMIC Reflective memory address space that can be written 
by the OpenVMS system service is written by the RFM utility.  The device 
driver stores this information and validates writes prior to doing any 
writes to the Reflective memory. 
 
In the NORMAL mode of operation, all applications which use the 
IPDRFMSS functions, will write to and read from the specified tags on 
the VMIC ring.  This is the standard operating mode. 
 
The READONLY mode is provided to allow applications to read actual live 
VMIC data from the ring, while blocking writes to the ring from the 
OpenVMS node.  The write operations place the output data into a the 
global memory section.  This mode is ideal for testing the response of 
applications to external signals. 
 
The OFFLINE mode is provided to allow total isolation from the VMIC 
ring.  In this mode, read and write operations are from a global memory 
section. 
 

The following three figures show the operation of the interface routines in 
each of the three valid operating modes.  The READONLY and OFFLINE 
modes require the following system logical names: 
 

Mode logical name is the adapter device name plus “MODE”.  The 
value of this logical name should be NORMAL, OFFLINE, or 
READONLY.  If this logical name is not defined, then NORMAL is 
assumed. 
 
Region name logical is the name of the region to be used for 
READONLY and OFFLINE usage.  It is defined as the ADAPTER 
plus GHOST_REG (e.g., RBA0GHOST_REG) 
 
Section filename logical is the RMS backing page file for the 
OFFLINE global section.  It is defined as the ADAPTER plus 
GHOST_SECFILE (e.g., RBA0_GHOST_SECFILE ) 
 
Ghost Region Size logical is the size of the OFFLINE global 
section.  It is defined as the ADAPTER plus GHOST_SIZE (e.g., 
RBA)_GHOST_SIZE). 



IPD System Service 

14 

 

To set up a global GHOST region for a 64 MB reflective memory 
card the following would be required: 
 
$ create ipd__prod:64M_PAGE.FDL ipd__prod:64m.pag 
$ set file/end_of_file ipd__prod:64m.pag 
$ define/system RBA0GHOST_SECFILE “ipd__prod:64m.pag” 
$ define/system RBA0GHOST_REG RBA0_SEC 
$ define/system RBA0MODE “OFFLINE” 

 

Ta
g
 D
a
ta

System Service Layer

VMIC
DATA

Read
Operation

Write
Operation

VMS
Process

VMS
Process

VMIC
Hardware

VMIC
Ring

 

Figure  3-2 NORMAL MODE 

 



IPD System Service 

15 

System Service Layer

Read
Operation

Write
Operation

VMS
Process

VMS
Process

VMIC
Hardware

VMIC
Ring

Global
Section

Ta
g
 D
a
t a Ta

g
 D
a
ta

 

Figure 3-3  READONLY MODE 



IPD System Service 

16 

System Service Layer

Ta
g
 D
a
ta

VMIC
Hardware

VMIC
Ring

Global
Section

VMS
Process

VMS
Process

Read
Operation

Write
Operation

 

Figure 3-4  OFFLINE MODE 

 

3.2 TAG DATABASE (MASTER CONFIGURATION FILE) 

 
If desired, the memory locations within the Reflective Memory can be 
addressed symbolically, referred to as TAGS.  Each tag has a name, data 
type, size, and a description.  Each TAG has a single source (written by 
only one node).  All other nodes may read the information, but only the 
source node may write to the tag.  The PSTCFG process creates and 
maintains updates configuration file (ipd_prod:rfmmcf.dat). 



IPD System Service 

17 

3.2.1 TAG DATA TYPES 

 
The Logan implementation of IPD supports 12 data types.  A brief 
description of each data type is included in this section.  The user must 
keep in mind that the minimum size value for the Logan Hot Mill project 
is 4 bytes.  If a data type is shown as less than 4 bytes, the remaining 
bytes are allocated for the data type but are unused.  Data types that are 
defined as non-longword aligned will always be expanded to be longword 
aligned.  The user should use datatypes that are compatible for all 
systems.  The definition of the datatype is used for debugging purposes.  
Only the starting address and length are actually used when reading or 
writing to reflective memory. 
 

DATATYPE SIZE  
(bytes) 

DESCRIPTION 

TIMESTAMP 8 An OpenVMS formatted time value in binary form. 
FLOAT 4 A 4 byte floating point value.  For the Logan 

implementation, this is IEEE formatted. 
INTEGER 4 A 32 bit signed integer value. 
DISCRETE 4 A 32 bit unsigned value used to represent an ON/OFF 

type of status.  The least significant bit is used for this 
purpose.  Its contents may be derived from a single bit 
in a reflective memory longword. 

SHORT 2 A 16 bit signed integer value. 
CHAR 1 A single byte signed value. 
UINTEGER 4 A 32 bit unsigned integer value. 
USHORT 2 A 16 bit unsigned integer value. 
UCHAR 1 A single byte unsigned value. 
DOUBLE 8 An 8 byte floating point value.  For the Logan 

implementation, this is IEEE formatted. 
TEXT n A text string of “n” bytes.  The size is defined during 

generation of the database.  If the text string is not 
longword aligned, its size is expanded to be longword 
aligned.  Bytes in excess of the specified text size are 
reserved, but are unused. 

STRUCT n A user defined structure tag.  The size is defined during 
generation of the database.  If the structure is not 
longword aligned, its size is expanded to be longword 
aligned.  Bytes in excess of the specified structure size 
are reserved, but are unused.  The database has no 
knowledge of the fields within the structure and treats 
the tag as a region of “n” bytes. 

Table 3-1 IPD Data Types 



IPD System Service 

18 

3.2.2 RFMOpen Function 

 
The RFMOpen function is provided as the mechanism through, which an 
application gains access to the VMIC Reflective memory, and the 
associated tag information.  This function must be the first of the IPD 
functions called in all cases.  Calling the RFMOpen function temporarily 
places the application in EXEC mode.  While in EXEC mode, an 
RFMHandle structure is created.  The handle structure is used as a 
container for information related to the application’s request for access to 
the reflective memory information.  It contains a channel number to the 
VMIC device, if operating in NORMAL or READONLY mode, as well as 
pointer information to the memory resident group global section created 
for the MCF copy in memory.  Since the handle structure is created while 
in EXEC mode, it is not accessible by the application once control is 
returned to the application in USER mode.  Once a successful call to 
RFMOpen has been made, the other five functions may be used.  The “C” 
and “FORTRAN” prototypes for the RFMOpen function are shown below.  
All the RFM functions have been designed for ease of use in the 
FORTRAN environment.  The passing mechanism shown in the “C” 
prototype is consistent with the default FORTRAN passing mechanism. 
 
int RFMOpen( struct dsc$descriptor  *pDevName, 

IPDRFM_HANDLE  **pHandle, 
Int *pEFN, 
Int MaxTags); 

 
Integer*4 RFMOpen(Character*10 DevName, 

Integer*4 Handle, 
Integer*4 EFN, 
Integer*4 MaxTags) 

 
DevName – 
Usage:   Device name 
Type:   character-coded text string 
Access:  read-only 
Mechanism:  by descriptor 

 
The address of a character string descriptor pointing to a name string for the VMIC 
device to be used in reflective memory accesses.  Typically this will be RMA0 in a single 
controller system.  If multiple reflective memory cards are present in a system, the 
device name may be RBA0, RBB0, or RBC0.  The VMIC device driver currently supports 
a maximum of four devices per system, but will typically be limited by the number of 
slots available in the PCI or PCIX bus. 
 
Handle – 
Usage:   The address of a variable to receive the EXEC mode pointer to the 
   Handle structure. 
Type:   Longword 



IPD System Service 

19 

Access:  Write 
Mechanism:  By reference 
 
The address of a variable that will receive the pointer to the EXEC mode handle 
structure.  This variable will be used in all subsequent calls to the interface functions. 
 

EFN – 
 
Usage:   Event flag number 
Type:   Longword 
Access:  Read-only 
Mechanism:  By reference 

 
An event flag number to be used internally by the RFM function calls.  The event flag 
should be obtained by use of the LIB$GET_EF call to insure that the event flag is 
unique in the context of the application. 
 
MAXTAGS – 
 
Usage:   Maximum number of tags caller will reference 
Type:   Longword 
Access:  Read-only 
Mechanism:  By value 

 
Space must be allocated for each tag that the caller intends to read or write to.  This 
parameter should be specified as zero for the default value or to the number of tags the 
user intends to access.  The system service stores the data type, VMIC address, data 
length, and if it is an output or output tag in protected address space allocated in 
executive mode and pointed to by the returned handle variable. 
 

3.2.2.1 Function Return Codes 

 
The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 
 

IPDM_SS_MODE_NOT_SUPPORTED – Indicates that the logical name 
IPDRFM_MODE is either not defined, or its translation string identifies a mode that 
is not currently supported.  Re-define the logical with a translation name of 
NORMAL, READONLY, or OFFLINE. 
 
SS$_ACCVIO –Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 
 
IPDM_SS_DEV_NAME_TOO_LONG – Indicates that the user has passed a device 
name string which is larger than the maximum allowed device name of ten 
characters.  Change the device name string to a length of less than ten characters.  
It should be RMA0, RMB0, or RMC0. 
 
IPDM_SS_DEV_LETTER_BAD – Indicates that the second character of the device 
name is other than A, B, or C.  Correct the device name and try again. 
 



IPD System Service 

20 

IPDM_SS_OFFSET_NOT_MUL4 – The offset value provided is not a multiple of 
four. The offset and total size provided must be evenly divisible by four.  Please 
correct the value and try again. 
 
IPDM_SS_OFFSET_NOT_4BYTES – The specified size must be at least 4 bytes. 
Please correct the size value and try again. 
 
LIB$ and SS$ RETURN CODES – The RFM functions may also return standard 
OpenVMS system service and library routine status values.  Please refer to the 
OpenVMS manuals for these codes and the appropriate corrective action. 

 

3.2.3 RFMGetReference Function 

 
The RFMGetReference function is used to retrieve information for the 
tags, which the application will be using during its processing.  The 
information for each specified tag is retrieved from the configuration file.  
The information for each tag is stored in a structure supplied by the user 
for this call.  The structure has a specific format that must be strictly 
adhered to.  Each tag must have a structure such as this, defined for it.  
These structures may then be included in a container structure for ease 
of access.  The format of the structure, called APITAG, is shown in the 
table below.  Each tag structure may contain additional information after 
the items shown below, but the total bytes per tag should be long word 
aligned.  Multiple calls to RFMGetReference may be used. 
 
FIELD NAME TYPE DESCRIPTION 
TagName Character*32 Name of the TAG 
pReference Integer*4 Address of the TAGDEF record for the specified tag in 

the tag definition area of the memory resident MCF.  
This value is returned by the call to RFMOpen. 

intType Integer*4 The IPD data type for the specified tag.  This value is 
returned by the call to RFMOpen. 

intOffset Integer*4 The offset in reflective memory space for the specified 
tag.  This value is returned by the call to RFMOpen. 

intSize Integer*4 The size of the region following this field in the 
structure, which will be used to store a local copy of 
the tag value.  This value is supplied by the caller of 
RFMOpen. 

User defined User defined This space is reserved by the user specification, to 
contain a copy of the tag’s value.  When used with an 
RFMRead operation, this area will receive the current 
value for the specified tag.  When used in conjunction 
with the RFMWrite function, the area will contain the 
new value to be written to the tag.  The size of this 
area is defined by the value in the intSize field above. 

Table 3-2  APITAG Structure 

 
The minimum size for an APITAG structure is 52 bytes.  This is because the minimum 
size of a tag value in reflective memory is 4 bytes.  The size of the fields above the User 



IPD System Service 

21 

Defined portion of the APITAG structure is 48 bytes.  This plus the minimum tag value 
size of 4 renders the minimum size structure of 52 bytes. 
 
The “C” and “FORTRAN” prototypes for the RFMGetReference function are shown below.  
The functions have been designed for ease of use in the FORTRAN environment.  The 
passing mechanism shown in the “C” prototype is consistent with the default FORTRAN 
passing mechanism. 
 
int RFMGetReference( IPDRFM_HANDLE  *pHandle, 
    APITAG  *Tags, 

int   *TagCnt, 
int   *pStrucSize); 

 
Integer*4 RFMGetReference( Integer*4 Handle, 
    Integer*4 Tags, 
    Integer*4 TagCnt, 
    Integer*4 StrucSize) 
 
Handle – 
Usage:   A pointer to the EXEC mode Handle structure. 
Type:   Longword 
Access:  Read-only 
Mechanism:  By reference 
 

The address of a variable that contains the pointer to the EXEC mode handle structure. 
 
Tags – 
Usage:   Address of APITAG structure for tag to be referenced. 
Type:   Longword 
Access:  Write 
Mechanism:  By reference 
 
The Tags parameter contains the address of a single APITAG structure or a contiguous 
block of APITAG structures 
 
TagCnt – 
Usage:   Number of tags in the Tags structure. 
Type:   Longword 
Access   Read-only 
Mechanism:  By reference 

 
This is the address of a variable that contains the number of tags within the Tags 
structure.  If more than a single tag is provided in the Tags structure, they must be 
contiguous within the containing structure. 
 
Size – 
Usage:   Size of the entire Tag structure provided 
Type:   Longword 
Access:  Read-only 
Mechanism:  By reference 
 

The address of a variable containing the size, in bytes, of the entire Tag structure 
provided.  For a single tag, this value would be the size of the fixed portion of an 
APITAG structure, plus the user supplied size value of the tag data.  This must be 



IPD System Service 

22 

provided in order for the system service code to determine if the user’s entire APITAG 
structure is accessible from EXEC mode. 
 

3.2.3.1 Function Return Codes 

 
The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 
 

IPDM_BADTAGCOUNT – Indicates that the user has requested an invalid number 
of tags.  The number of tags must be greater than 0 but less than 500. 
 
IPDM_APIHDLCORRUPT – Indicates that the handle pointer passed by the user is 
pointing to a structure, which has an invalid structure identifier in it.  The 
IPDRFM_HANDLE structure has a specific identification stored within it following a 
successful RFMOpen call.  Please make sure that the application has called 
RFMOpen prior to passing the handle to the RFMGetReference function. 
 
IPDM_TAGELEMENTMODULUS – Indicates that the size of the tag passed to the 
function is not an even multiple of 4 bytes.  Please correct the size and try again. 
 
IPDM_TAGELEMENTSIZE – Is an indication that the size of the requested tag is 
larger than the allowable maximum of 1024 bytes.  Correct the invalid size and try 
the call again. 
 
IPDM_TAGELEMENT – Indicates that the size of the element given is smaller than 
the minimum possible size.  The fixed portion of an APITAG structure is 4 bytes8.  
This plus the size of the smallest possible tag, 4 bytes, results in a minimum size 
for an APITAG of 52 bytes. 
 
IPDM_NOTFOUND – The specified tag name was not found in the memory 
resident copy of the MCF.  Please correct the tag name and try again.  If the 
APITAG structure contains more than a single tag, you must use the 
RFMExtendedStatus function to determine the failing tag. 
 
IPDM_SS_MAP_OUT_OF_RANGE – Indicates that the current reflective memory 
limit values, set by logical names, exceeds physical limits of the reflective memory 
card present.  Redefine the limit logical names for your environment and try again. 
 
IPDM_SS_WRTLIM_VIOLATION – Indicates that one of the tags defined as an 
output tag in the current operation would result in a write to an area of reflective 
memory, which is not within the local nodes writable area.  Check the write limit 
logical name definitions and the tags to be written in the APITAG structure. 
 
SS$_ACCVIO –Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 

 
Example programs, written in FORTRAN, can be found in the IPD_EXA directory of the 
IPD directory tree. 

3.2.4 RFMRead 

 



IPD System Service 

23 

The RFMRead function reads raw reflective memory data into the user’s buffer.  The 
source of the data read is dependent upon the current operating mode (e.g., NORMAL, 
READONLY, or GHOST).   
 
The prototypes for the RFMRead function in both “C” and FORTRAN are shown below. 
 
 
int RFMRead( IPDRFM_HANDLE  *pHandle, 
    void  *Buffer, 

int Offset, 
int Bytecnt); 

 
Integer*4 RFMRead( Integer*4 Handle, 
    Integer*4 Buffer, 
    Integer*4 Offset, 
    Integer*4 ByteCnt) 
 
Handle – 
Usage:    A pointer to the EXEC mode Handle structure. 

 
Type:   Longword 
Access:  Read-only 
Mechanism:  By reference 
 

The address of a variable that contains the pointer to the EXEC mode handle structure.   
 
Buffer – 
Usage:   Address of target buffer 
Type:   Longword 
Access:  Write 
Mechanism:  By reference 
 
The buffer should be on a long word boundry.   
 
Offset – 
Usage:   Reflective memory offset. 
Type:   Longword 
Access   Read-only 
Mechanism:  By value 
 

This is the offset or address on the reflective memory board of the data to be returned. 
 
Size – 
Usage:   Number of bytes to return starting at the passed offset 
Type:   Longword 
Access:  Read-only 
Mechanism:  By value 

 
The number of bytes to be returned.  This value should be a modulus of four bytes. 

3.2.4.1 Function Return Codes 

 
The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 



IPD System Service 

24 

 
SS$_ACCVIO – Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 
 
IPDM_APIHDLCORRUPT – Indicates that the handle pointer passed by the user is 
pointing to a structure that has an invalid structure identifier in it.  The 
IPDRFM_HANDLE structure has a specific identification stored within it following a 
successful RFMOpen call.  Please make sure that the application has called 
RFMOpen prior to passing the handle to the RFMGetReference function. 
 

 
The function call may also return any of the return codes defined by the device driver. 
 

3.2.5 RFMReadTags 

 
The RFMReadTags function reads the value of a tag or a list of tags, into the calling 
application’s APITAG structure.  The source of the information read is dependant upon 
the current operating mode (e.g., NORMAL, READONLY, or GHOST).  The value or 
values can then be accessed using standard “C” or FORTRAN record access syntax.   
For example, if the application defined an APITAG structure by the name of 
L2_TEST_TAG, the application could access the data for the requested tag in one of two 
ways depending on the data type of the tag.  If the data type is not STRUCT, the tag’s 
value is accessed in the following way. 
 
Local_variable_value = L2_TEST_TAG.V 
 
If the tag happened to be of type STRUCT, then the user would access the fields of the 
user defined structure data using the following syntax. 
 
Local_variable = L2_TEST_TAG.V.field_val_1 
 
This example assumed that the user-defined structure in reflective memory contains a 
field that is named field_val_1. 
 
The prototypes for the RFMReadTags function in both “C” and FORTRAN are shown 
below. 
 
 
int RFMReadTags( IPDRFM_HANDLE  *pHandle, 
    APITAG  *Tags, 

int   *TagCnt, 
int   *pStrucSize); 

 
Integer*4 RFMReadTags( Integer*4 Handle, 
    Integer*4 Tags, 
    Integer*4 TagCnt, 
    Integer*4 StrucSize) 
 
Handle – 
Usage:    A pointer to the EXEC mode Handle structure. 

 
Type:   Longword 



IPD System Service 

25 

Access:   Read-only 
Mechanism:  By reference 
 
The address of a variable that contains the pointer to the EXEC mode handle structure.   
 

Tags – 
Usage:   Address of APITAG structure for tag to be referenced 
Type:   Longword 
Access:   Write 
Mechanism:  By reference 
 

The Tags parameter contains the address of a single APITAG structure or a contiguous 
block of APITAG structures 
 
TagCnt – 
Usage:   Number of tags in the Tags structure. 
Type:   Longword 
Access   Read-only 
Mechanism:  By reference 
 
This is the address of a variable that contains the number of tags within the Tags 
structure.  If more than a single tag is provided in the Tags structure, they must be 
contiguous within the containing structure. 
 
Size – 
Usage:   Size of the entire Tag structure provided 
Type:   Longword 
Access:   Read-only 
Mechanism:  By reference 

 

3.2.5.1 Function Return Codes 

 
The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 
 

SS$_ACCVIO – Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 

 
IPDM_BADTAGCOUNT – Indicates that the user has requested an invalid number 
of tags.  The number of tags must be greater than 0 but less than 500. 
 
IPDM_APIHDLCORRUPT – Indicates that the handle pointer passed by the user is 
pointing to a structure that has an invalid structure identifier in it.  The 
IPDRFM_HANDLE structure has a specific identification stored within it following a 
successful RFMOpen call.  Please make sure that the application has called 
RFMOpen prior to passing the handle to the RFMGetReference function. 
 
IPDM_TAGELEMENTMODULUS – Indicates that the size of the tag passed to the 
function is not an even multiple of 4 bytes.  Please correct the size and try again. 
 



IPD System Service 

26 

IPDM_TAGELEMENTSIZE – Is an indication that the size of the requested tag is 
larger than the allowable maximum of 1024 bytes.  Correct the invalid size and try 
the call again. 
 
IPDM_TAGSTRUCTTOOSMALL – Indicates that the size of the element given is 
smaller than the minimum possible size.  The fixed portion of an APITAG structure 
is 48.  This size plus the size of the smallest possible tag, 4 bytes, results in a 
minimum size for an APITAG of 52 bytes. 
 
IPDM_NOTFOUND – The specified tag name was not found in the memory 
resident copy of the MCF.  Please correct the tag name and try again.  If the 
APITAG structure contains more than a single tag, you must use the 
RFMExtendedStatus function to determine the failing tag. 

 
The function call may also return any of the return codes defined by the VMIC system 
service routines.  Please check the VMIC documentation for these codes. 
 

3.2.6 RFMWrite 

 
The RFMWrite function writes raw  data from the user’s buffer into reflective memory.  
The source of the data written is dependent upon the current operating mode (e.g., 
NORMAL, READONLY, or GHOST).   
 
The prototypes for the RFMWrite function in both “C” and FORTRAN are shown below. 
 
 
int RFMRead( IPDRFM_HANDLE  *pHandle, 
    void  *Buffer, 

int Offset, 
int Bytecnt); 

 
Integer*4 RFMWrite( Integer*4 Handle, 
    Integer*4 Buffer, 
    Integer*4 Offset, 
    Integer*4 ByteCnt) 
 
Handle – 
Usage:    A pointer to the EXEC mode Handle structure. 

 
Type:   Longword 
Access:   Read-only 
Mechanism:  By reference 
 

The address of a variable that contains the pointer to the EXEC mode handle structure.   
 
Buffer – 
Usage:   Address of target buffer 
Type:   Longword 
Access:   Write 
Mechanism:  By reference 
 
The buffer should be on a long word boundry.   
 



IPD System Service 

27 

Offset – 
Usage:   Reflective memory offset. 
Type:   Longword 
Access   Read-only 
Mechanism:  By value 
 

This is the offset or address on the reflective memory board of the data to be returned. 
 
Size – 
Usage:   Number of bytes to write starting at the passed offset 
Type:   Longword 
Access:   Read-only 
Mechanism:  By value 

 
The number of bytes to be returned.  This value should be a modulus of four bytes. 

3.2.6.1 Function Return Codes 

 
The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 
 

SS$_ACCVIO – Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 
 
IPDM_APIHDLCORRUPT – Indicates that the handle pointer passed by the user is 
pointing to a structure that has an invalid structure identifier in it.  The 
IPDRFM_HANDLE structure has a specific identification stored within it following a 
successful RFMOpen call.  Please make sure that the application has called 
RFMOpen prior to passing the handle to the RFMGetReference function. 
 

 
The function call may also return any of the return codes defined by the device driver. 
 
 

3.2.7 RFMWriteTags 

 
The RFMWriteTags function writes the value of a tag or list of tags, to reflective memory, 
or associated memory global section, depending on the current operating mode.  Using 
standard “C” or FORTRAN record access syntax sets the value or values for the tags.   
For example, if the application defined an APITAG structure by the name of 
L2_TEST_TAG, the application could set the data for the requested tag in one of two 
ways depending on the data type of the tag.  If the data type is not STRUCT, the tag’s 
value is accessed in the following way. 
 
L2_TEST_TAG.V = new_value 
 
If the tag happened to be of type STRUCT, then the user would access the fields of the 
user defined structure data using the following syntax. 
 
L2_TEST_TAG.V.field_val_1 = new_value 
 



IPD System Service 

28 

This example assumed that the user-defined structure in reflective memory contains a 
field that is named field_val_1. 
 
The prototypes for the RFMReadTags function in both “C” and FORTRAN are shown 
below. 
 
int RFMWriteTags(  IPDRFM_HANDLE  *pHandle, 
    APITAG  *Tags, 

int   *TagCnt, 
int   *pStrucSize); 

 
Integer*4 RFMWriteTags( Integer*4 Handle, 
    Integer*4 Tags, 
    Integer*4 TagCnt, 
    Integer*4 StrucSize) 
 
Handle – 
Usage:   A pointer to the EXEC mode Handle structure. 
Type:   Longword 
Access:  Read-only 
Mechanism:  By reference 
 

The address of a variable, which contains the pointer to the EXEC mode, handle 
structure.   
 

Tags – 
Usage:   Address of APITAG structure for tag to be referenced 
Type:   Longword 
Access:  Read only 
Mechanism:  By reference 
 

The Tags parameter contains the address of a single APITAG structure or a contiguous 
block of APITAG structures 
 
TagCnt – 
Usage:   Number of tags in the Tags structure. 
Type:   Longword 
Access   Read-only 
Mechanism:  By reference 
 

The address of a variable that contains the number of tags within the Tags structure.  If 
more than a single tag is provided in the Tags structure, they must be contiguous 
within the containing structure. 
 
Size – 
Usage:   Size of the entire Tag structure provided 
Type:   Longword 
Access:  Read-only 
Mechanism:  By reference 

 

3.2.7.1 Function Return Codes 

 



IPD System Service 

29 

The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 
 

SS$_ACCVIO – Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 

 
IPDM_BADTAGCOUNT – Indicates that the user has requested an invalid number 
of tags.  The number of tags must be greater than 0 but less than 500. 
 
IPDM_APIHDLCORRUPT – Indicates that the handle pointer passed by the user is 
pointing to a structure that has an invalid structure identifier in it.  The 
IPDRFM_HANDLE structure has a specific identification stored within it following a 
successful RFMOpen call.  Please make sure that the application has called 
RFMOpen prior to passing the handle to the RFMGetReference function. 
 
IPDM_SS_MODE_NOT_SUPPORTED – Indicates that the mode logical name 
IPDRFM_MODE has been set to a value that is not currently supported.  The value 
must be NORMAL, READONLY, or OFFLINE.  
 
IPDM_TAGELEMENTMODULUS – Indicates that the size of the tag passed to the 
function is not an even multiple of 4 bytes.  Please correct the size and try again. 
 
IPDM_TAGELEMENTSIZE – Is an indication that the size of the requested tag is 
larger than the allowable maximum of 1024.  Correct the invalid size and try the 
call again. 
 
IPDM_TAGSTRUCTTOOSMALL – Indicates that the size of the element given is 
smaller than the minimum possible size.  The fixed portion of an APITAG structure 
is 48.  This plus the size of the smallest possible tag, 4 bytes, results in a 
minimum size for an APITAG of 52 bytes. 
 
IPDM_NOTFOUND – The specified tag name was not found in the memory 
resident copy of the MCF.  Please correct the tag name and try again.  If the 
APITAG structure contains more than a single tag, you must use the 
RFMExtendedStatus function to determine the failing tag. 

 
The function call may also return any of the return codes defined by the VMIC system 
service routines.  Please check the VMIC documentation for these codes. 
 

3.2.8 RFMExtendedStatus Function 

 
The RFMExtendedStatus function is provided as the mechanism through, which an 
application gains access to extended status from a prior RFM system service call.  A 
typical use for the call is in the case of an RFMGetReference where the APITAG 
structure contains multiple tags.  In order to determine the identity of the offending tag 
from the group of tags, the user would call the RFMExtendedStatus routine.  The index 
to the offending tag would be returned to the caller.  The same case exists with the 
RFMReadTags and RFMWriteTags when multiple tags are present in the APITAG 
structure. 
 
int RFMExtendedStatus(IPDRFM_HANDLE  *pHandle, 

  RFM_IOSB *pIosb); 



IPD System Service 

30 

 
Integer*4 RFMExtendedStaus(Integer*4 Handle, 
      Integer*4 Iosb) 
 
Handle – 
Usage:   The pointer to the EXEC space Handle structure. 
Type:   Longword 
Access:  Read only 
Mechanism:  By reference 
 

The address of a variable that contains the pointer to the EXEC mode handle structure.   
 
Iosb – 
 
Usage:   IO Status Buffer 
Type:   Longword Array(2 elements) 
Access:  Write 
Mechanism:  By reference 
 

An array of two longwords that will receive the extended status code and the index to 
the offending tag. 
 

3.2.8.1 Function Return Codes 

 
The function may return any of the following return codes.  As with all OpenVMS 
functions, an odd value indicates success, and an even code indicates failure. 
 

SS$_ACCVIO –Indicates that the system service code does not have access to at 
least one of the parameters passed to it.  This may mean that a pointer has not 
been initialized before calling the system service function. 

 

3.2.9 RFMClose Function 

 
The RFMClose function is provided as the mechanism through, which an application 
terminates its access to the reflective memory environment and a value of NULL is 
placed in the Handle structure pointer variable.  An application that intends to exit, 
need not call this function as normal OpenVMS process rundown will release all 
resources captured by the process. 
 
int RFMClose(IPDRFM_HANDLE  **pHandle) 
 
Integer*4 RFMClose(Integer*4 Handle) 
 
Handle – 
Usage:   The address of a variable containing the pointer to the EXEC 

 mode Handle structure. 
Type:   Longword 
Access:  Write 
Mechanism:  By reference 
 
The address of a variable that contains the pointer to the EXEC mode handle structure. 



PCI-5565 Device Driver 

31 

4 PCI-5565 Device Driver 

The device driver provides the actual access and control of the GE 
FANUC PCI-5565 device installed in the PCI or PCIX bus.  The driver 
provides synchronized access to the reflective memory on the card from 
multiple OpenVMS Processes and multiple CPU cores.  The actual driver 
QIO (OpenVMS Driver system interface) calls are shown in this section.  
However, the end user should reference the provided RFM system service 
API (Application Programming Interface) instead of the driver QIO 
interface when possible.  The device driver supports Symmetric Multi-
Processing (SMP). 

The driver supports up to four devices.  The OpenVMS device name for 
each PCI-5565 is RBA0:, RBB0:, RBC0:, and RBD0:.  Currently there is 
no real software limit in the driver, but bus space and PCI address space 
may limit the actual number of devices that may be installed in the 
system. 

After the kit is installed (normally installed in vms$common: 
[ipdproduct]), the command file:  RFM_5565_STARTUP.COM is executed 
which calls the RFM_DRIVER_LOAD.COM command procedure to 
actually load the driver.  The RFM_DRIVER_LOAD command procedure 
is created during the kit installation or may be created using the 
FINDPCI utility. 

The different QIO function calls are summarized here and further 
documented in with their parameters and possible error codes in each 
subsequent section.  The function codes shown in parenthesis are from 
OpenVMS $IODEF and are chosen to be similar to existing OpenVMS 
device driver function codes.  The user should reference the OpenVMS 
System Service Manual for a description of the SYS$QIO and SYS$QIOW 
system service calls RFM_DRIVER_LOAD.COM.  The 
RFM_DRIVER_LOAD.COM command procedure is created during the kit 
installation procedure by the FINDPCI utility. 

 

• Write Virtual Block(IO$_WRITEVBLK)- Write a block of memory to 
the reflective memory ring (buffered I/O) 

• Write Physical Block(IO$_WRITEPBLK)- Write a block of memory to 
the reflective memory ring (DMA) 

• Write Interrupt Word (IO$_WRITEHEAD)- Write interrupt data to a 
node on the reflective memory ring. 

• Read Virtual Block(IO$_READVBLK)- Read a block of memory from 
the reflective memory ring (buffered I/O) 



PCI-5565 Device Driver 

32 

• Read Physical Block(IO$_READPBLK- Read a block of memory 
from the reflective memory ring (DMA) 

• Read Network FIFO(IO$_READRCT)- Read one of the four network 
FIFOs 

• Read Init Node FIFO(IO$_READHEAD)- Read FIFO of nodes that 
have joined reflective memory ring. 

• Read Control Buffer(IO$_READTRACKD)- Read the auxiliary 
controller structure (CBF). 

• Refresh Memory to ring(IO$_READPBLK + IO$M_REQ_MINICOPY)- 
Function to read and write local reflective memory for nodes that 
have recently joined the reflective memory ring. 

• Set Endian(IO$_INITIALIZE + IO$M_SWAP)- Set the Endian mode 

• Set Memory Write Range(IO$_INITIALIZE + IO$M_UPDATE_MAP)- 
Set starting address to allow writes to and length of memory for 
this node.  If left as zero, no write validations are performed. 

• Enable Network Interrupts(IO$_INITIALIZE + IO$M_INTERRUPT) 

• Register for Init Node wakeup(IO$_INITIALIZE + 
IO$M_INTERRUPT+IO$M_BOOTING)- Register for event flag to be 
set when FIFO has data (e.g., new node has joined ring) 

• Rogue Master Enable(IO$_INITIALIZE + 
IO$M_SET_MODEM+IO$M_PURGE)- Enables this node to detect 
rogue packets. 

• Loopback Mode Enable/Disable(IO$_INITIALIZE + 
IO$M_SET_MODEM+IO$M_LOOP) 

• Set Dark on Dark mode (IO$_INITIALIZE + 
IO$M_SET_MODEM+IO$M_UNLOOP) 

• IO$_IOCTLV- Unix IOCTL functions 

• IO$_IOSENSEMODE- Standard sense mode functions 

 
All reads and writes to the reflective memory ring are 32 bit longwords.  
The driver supports non-aligned data (user buffer and reflective memory 
addresses) for the buffered transfers.  However, if possible, all buffers 
and byte counts should be 4 byte aligned and have a 4 byte length 
modulus.  This is a requirement for the DMA functions. 

4.1 Write Virtual Block (IO$_WRITEVBLK) 

 
This function will write the user's buffer to the reflective memory address 
passed as the P3 parameter.  Because of the trade off of locking a buffer 



PCI-5565 Device Driver 

33 

down in memory and the typical small size of the transfer, this function 
is implemented using buffered I/O.  Any writes to odd boundaries in 
reflective memory results in a read of the lower four-byte modulus 
address longword (4 byte) with a merge of the data.  Users should 
develop applications that attempt to align data in reflective memory on 
longword boundaries.  Data buffers do not need to be longword aligned, 
but efficiencies will be achieved if they are. 
 

QIO Parameters 
Parameter Description 

1 User buffer to be written to reflective memory 
2 Byte count to transfer 
3 Starting byte address in reflective memory 

4.2 Write Physical Block(IO$_WRITEPBLK) 

 

This function will write the user's buffer to the reflective memory address 
passed as the P3 parameter.  This function is designed for larger 
transfers and will execute without the host processor intervention.  The 
user buffer and target reflective memory addresses must be longword 
aligned and the byte count must be a modulus of four bytes.  The 
Maximum transfer size is 64K bytes limited by both OpenVMS and the 
PCI-5565.  To increase throughput, the user buffer can be locked down 
in memory (see sys$lkwset). 
 

QIO Parameters 
Parameter Description 

1 Longword aligned user buffer to be written to reflective memory 
2 Byte count to transferred (modulus of 4 bytes) 
3 Longword aligned starting byte address in reflective memory  

4.3 Read Virtual Block(IO$_READVBLK) 

 

This function will read into the user's buffer from the reflective memory 
address passed as the P3 parameter.  Because of the trade off of locking 
a buffer down in memory and the typical small size of the transfer, this 
function is implemented using buffered I/O.  Any reads from odd 
boundaries in reflective memory results in a read of the lower four-byte 
modulus address longword (4 byte).  Users should develop applications 
that attempt to align data in reflective memory on longword boundaries.  
Data buffers do not need to be longword aligned, but efficiencies will be 
achieved if they are. 
 

QIO Parameters 



PCI-5565 Device Driver 

34 

Parameter Description 
1 User buffer to be read from reflective memory 
2 Byte count to transfer 
3 Starting byte address in reflective memory 

4.4 Read Physical Block(IO$_READPBLK) 

 

This function will read into the user's buffer from the reflective memory 
address passed as the P3 parameter.  This function is designed for larger 
transfers and will execute without the host processor intervention.  The 
user buffer and target reflective memory addresses must be longword 
aligned and the byte count must be a modulus of four bytes.  The 
Maximum transfer size is 64K bytes limited by both OpenVMS and the 
PCI-5565.  To increase throughput, the user buffer can be locked down 
in memory (see sys$lkwset). 

 

QIO Parameters 
Parameter Description 

1 Longword aligned user buffer to be read from reflective memory 
2 Byte count to transferred (modulus of 4 bytes) 
3 Longword aligned starting byte address in reflective memory  

4.5 Read Network FIFO(IO$_READRCT) 

 

The PCI-5565 device has four 128 entry FIFOs that can be enabled 
individually.  Data is written to these FIFOs based on the interrupt type 
passed in the message.  This can be from one to four.  The sending node 
id and the data is placed into the selected FIFO.  This function allows the 
user to read the particular FIFO.  The (IO$_INTIALIZE + 
IO$M_READATTN) must be enabled for the particular FIFO. 

 

QIO Parameters 
Parameter Description 

1 Longword aligned user buffer to be read from reflective memory.  Two 
longwords are returned for each entry.  The first longword contains the 
sender node and the second contains the sender’s data. 

2 Byte count to transferred (modulus of 8 bytes) 
3 FIFO number (1,2, 3, or 4)  

4.6 Read Init Node FIFO(IO$_READHEAD) 

 

The driver maintains a bit map of nodes (if function is enabled) that have 
recently joined the reflective memory ring (eight long words).  This 
function will return this bit map and reset it.  The recognition of these 



PCI-5565 Device Driver 

35 

events must be enabled by the using the IO$_INTIALIZE + 
IO$M_BOOTING function. 
 

QIO Parameters 
Parameter Description 

1 Eight longword user buffer to be read from reflective memory.  The 
reflective memory ring support up to 256 nodes. 

2 Byte count to transferred (32 bytes) 

4.7 Read Control Buffer(IO$_READTRACKD) 

 

This function is a diagnostic function that returns the auxiliary controller 
structure (CBF) from the driver for the particular device.  The definition 
of this structure is contained in the driver definition header file 
(RFM_5565_DEF.H). 
 

QIO Parameters 
Parameter Description 

1 User buffer to be receive the CBF from the driver.  Use a variable 
of type: CBF as defined in RFM_5565_DEF.h. 

2 Byte count to transferred from CBF (use size of (CBF)) 

4.8 Set Endian(IO$_INTIALIZE) 

 

This will change the current Endian setting for the PCI-5565 device.  The 
single parameter should be either 0= Little Endian (default power up 
state of PCI-5565) and 1= Big Endian.  This effects how bytes are written 
to the reflective memory by the host and therefore which byte is sent out 
first on the ring.  In addition, the data being written to reflective memory 
by incoming packets can also be changed.  This has no effect on the 
interrupt FIFOs. 
 

QIO Parameters 
Parameter Description 

1 Host writes to reflective memory Endian Setting (0= Little, 1= Big) 
2 Slave writes to reflective memory Endian Setting  (0= Little, 1= Big) 

4.9 Set Memory Write Range(IO$_INTIALIZE) 

 

The PCI-5565 allows the host node to write into any location within 
reflective memory.  This function allows the user to specify a range of 
memory partitions (up to three) that will be checked before a write can 
occur.  By default, the full range is available when the driver loads.  This 
enables the validation check of both buffered and DMA write transfers to 



PCI-5565 Device Driver 

36 

reflective memory for the host node.  All writes must be contained in one 
of the three valid writeable partitions unless IO$M_TRUSTED modifier is 
set in the write function.  The IO$M_TRUSTED modifier is used for 
simulation purposes and disables this validation check.  The partitions 
should be specified in ascending beginning reflective memory address.  
Depending on the memory installed, the upper limit is: 
 
4000000 Hex 67,108,864 Decimal for 64 MB option 
8000000 Hex 134,217,728 Decimal for 128 MB option 
 
The actual amount mapped can be less than available on the card if 
there are insufficient SPTEs to map the PCI address space.  The utility 
DEVDMP can be used after the driver is loaded to identify how much of 
the memory is actually available to the system.  The following snippet 
from the output of DEVDMP is shown below (this example shows all of 
the memory available, it was executed on an Itanium): 
 
0x0208x ucb$l_card_size   0x04000000 (64 megs) mapped 
                          0x04000000 64Mb total card memory 

 

QIO Parameters 
Parameter Description 

1 Start of writeable partition one in reflective memory  
2 Length of writeable partition in bytes 
3 Start of writeable partition two in reflective memory  
4 Length of writeable partition in bytes 
5 Start of writeable partition three in reflective memory  
6 Length of writeable partition in bytes 

4.10 Enable Network Interrupts(IO$_INTIALIZE) 

 
This will enable one of the network interrupt data FIFOs or disable all of 
the interrupt data FIFOs.  The function would need to be called once for 
each of the interrupt data types.  The function allows the ability to have 
the calling process have a local event flag set whenever an entry is placed 
into the particular FIFO.  The FIFO can then be read. 
 
 

QIO Parameters 
Parameter Description 

1 FIFO number (1,2,3, or 4).  A zero will disable all interrupts. 
2 Optional event flag, zero indicates no event flag is to be set 

4.11 Register for Init Node wakeup(IO$_INTIALIZE) 

 



PCI-5565 Device Driver 

37 

The PCI-5565 can detect when a new node joins the reflective memory 
ring.  This function enables this recognition and optionally allows for the 
setting of the process’s local event flag when this event occurs on the 
ring.  When a node is detected, the associated bit in the init-node bit 
array is set.  The IO$_READHEAD function can be used to read the eight 
longword bit map. 
 

QIO Parameters 
Parameter Description 

1 1= enable, 0= disable 
2 Optional event flag, zero indicates no event flag is to be set 

4.12 Refresh Memory to ring 

 

This function is used to refresh the local memory owned (writeable) by 
the local node (see the IO$_READPBLK + IO$M_REQ_MINICOPY).  This 
function will simply read each memory partition and write the data back 
forcing a ring update.  This is typically used after a new node joins the 
reflective memory ring.  The user buffer must be large enough for the 
largest partition defined for the host’s writeable regions.  Additionally, 
the writeable regions must be setup before use of this function.  DMA is 
used first to read each partition and then to write it.  This method 
reduces CPU overhead and the DMA engine automatically throttles the 
writes to the transmit FIFO.  The driver also ensures that the refresh is 
completed before any other updates to the reflective memory can occur 
ensuring an atomic refresh. 
 

QIO Parameters 
Parameter Description 

1 Longword aligned user buffer to be read/written from reflective memory 
2 Byte count of largest writeable partition 

 
 
 

4.13 Rogue Master Enable(IO$_INTIALIZE) 

 

This function enables this node as one of the two rogue packet detectors 
and destroyers.  See the PCI-5565 manual for further information. 

QIO Parameters 
Parameter Description 

1 1= enable, 0= disable 
2 Rogue 1 or Rogue 2 



PCI-5565 Device Driver 

38 

4.14 Loopback Mode Enable/Disable(IO$_INTIALIZE) 

 
Enable Loop back mode of the PCI-5565. See PCI-5565 for further 
documentation. 
 

QIO Parameters 
Parameter Description 

1 1= enable, 0= disable 

 

4.15 Set Dark on Dark mode (IO$_INITIALIZE) 

Turn off the fiber transmitter when no signal is detected on the fiber 
receiver. 
 

QIO Parameters 
Parameter Description 

1 1= enable, 0= disable 

4.16 Error Codes 

 
The PCI-5565 device driver returns status in conformance to OpenVMS 
standards.  The status can be returned via the status of the SYS$QIO 
function call if the request is not valid or it can be returned in the I/O 
status quad word.  The PCI-5565 device driver uses the OpenVMS 
symbolic codes defined in $ssdef mapped to the definitions for this 
driver. 
 
Symbolic Status 
Code 

Description 

SS$_NORMAL Normal completion 
SS$_ABORT I/O was cancelled 
SS$TIMEOUT Device timeout 
SS$_NOSLOT Reflective memory address is not in range of the PCI-5565 currently 

installed.  Validate parameter is passed by value. 
SS$_ILLBLKNUM Buffered I/O size exceeds reasonability.  The size exceeds the 

constant DMA_THRESHOLD.  Validate parameter is passed by value 
or consider using DMA. 

SS$_BADPARAM QIO parameter is in error, zero or negative byte count,  
SS$_BUFBYTALI  
SS$_IVBUFLEN  
SS$_ACCVIO  
SS$_ILLBLKUNM Writeable partition information is invalid.  Start or start plus size 

exceeds PCI-5565 available memory, or length less than zero. 
SS$_ILLIOFUNC Illegal function or function modifier entered. 

4.17 Device Loading 

 



PCI-5565 Device Driver 

39 

The VMSINSTAL kit scans assume the PCI-5565 devices have been 
installed.  The utility FINDPCI examines the results of the POST (Power 
On and Self Test) stored in the configuration data within the OpenVMS 
data tables.  It then creates the SYSMAN commands to actually load the 
driver.  The FINDPCI utility can be ran at anytime if a second PCI-5565 is 
added. 
 
The driver uses certain resources that can become exhausted and will 
not allow the PCI-5565 to be useable.  The only mechanism that is 
available to the driver to report any problems is through the use of the 
device message service (EXE_STD$SNDEVMSG facility).  The messages 
available limited and this driver uses the message codes for things not 
necessarily associated with OpenVMS’s intended meaning.  The following 
error messages and their meaning with respect to loading the device 
driver are listed below.  The symbolic value comes from MSGDEF. 
 
Symbolic OpenVms Device Message PCI-5565 Driver meaning 
MSG$_DEVONLIN Device RBA0: is online Normal operation, device is 

ready.  Written after device 
was found and configuration 
and mapping of device was 
successful. 

MSG$_MVCOMPLETE Mount verification has 
completed for device RBA0: 

Normal operation, device 
controller is ready 

MSG$_SHACHASTA RBA0: shadow set has changed 
state. 

Normal operation, unit on 
controller is ready 

MSG$_DEVOFFLIN   
MSG$_DEVOFFLINX  Error attempting to enable 

interrupts. Device is offline. 
MSG$_DEVWRTLCK   
MSG$_SHARDUCED   

4.18 Device Error and Event Messages 

 
During normal operation, the device driver polls the PCI-5565 (five 
second interval) to detect any possible problems.  When these events are 
detected, a message is sent using the EXE_STD$SNDEVMSG facility.  
Any significant event is logged using an OpenVMS device message, which 
is mapped to the PCI-5565 driver meaning, shown in the following table.  
Again, the OpenVMS device message is what is printed, and has no 
meaning with regard to the PCI-5565 driver.  In addition to polling the 
PCI-5565, the status light on the PCI-5565 is toggled each five seconds. 
 
Symbolic OpenVms Device Message PCI-5565 Driver meaning 
MSG$_DISMOUNTED Volume dismounted Sync was lost 
MSG$_SHAMEMFAL Member failed out of shadow 

set 
Write FIFO almost full 

MSG$_MVABORTED Mount verification has aborted Receiver no signal present 



PCI-5565 Device Driver 

40 

for device RBA0: 
MSG$_SHAWROMEM RBA0: is an incorrect shadow 

set member volume. 
Receiver FIFO full 

MSG$_SHAREDZER RBA0: contains zero working 
members. 

Bad data received 



Utilities 

41 

5 Utilities 
There are six utility programs supplied as part of this product.  Each of 
these utilities is invoked through the use of a foreign command.  A 
foreign command is a command that is not included as part of the 
OpenVMS distribution.  These commands are created through the use of 
DCL symbols.  The foreign commands for the IPD utilities are shown 
below and are defined in the command procedure:  
RFM_SYMBOLS.COM. 
 
DEVDMP == “$IPD_PROD:DEVDMP” 
GETIT == "$IPD_PROD:GETIT" 
PUTIT==  "$IPD_PROD:PUTIT" 
PEEK == “$IPD_PROD:RFM_PEEK” 
POKE==“$IPD_PROD:RFM_POKE” 
RFM== “IPD_PROD:RDM” 
PSTCFG == “IPD_PROD:PSTCFG” 

 
Each utility is described in the following sections.  In addition, some 
debugging tools are also available:  DEVDMP (Dumps device driver data 
structures) and FINDPCI (browses the adapter tables and displays PCI 
devices installed in the running system and creates a sysman driver load 
file for all found PCI-5565 reflective memory cards found). 

5.1.1 DEVDMP 

 
The DEVDMP utility is a debugging tool that can help IPACT diagnose 
any problems with the driver.  The syntax of the command is:  
 
$DEVDMP [DeviceName] 
 
DeviceName 
The DeviceName is RBA0:, RBB0:, RBC0:, or RBD0:.  If not specified, 
RBA0: is assumed.  This utility must be ran from an account that has 
change mode to kernal privledge.  It examines the current running 
system and extracts a copy of the device data structures and formats 
them for the user.   These data structures are documented in the HP 
OpenVMS device driver manual and in the header file for these 
structures (RFM_5565_DEF.H).  A sample output is shown below.  Some 
of the data listed that might be of user interest are: 
 

• Actual card size and how much was mapped (ucb$l_card_size) 
• PCI configuration information pci$<field name>, see the PCI 

standard for more details 
• Copy of first few registers from reflective memory: cbf_l_rmem 
• Device register contents for DMA start and interrupt completion 



Utilities 

42 

• Current write partitions set up for this node 
 
Sample Output 
 
$ DEVDMP 
command line: DEVDMP device_name 
 
 Assuming RBA0: 
 Acquiring UCB for device: RBA0: 
 
Device information for: RBA0: 
 
Base memory via DVI$_DEVDEPEND2 : 0x816266c0 
 
0x005c ucb$l_devdepend:      0x00000000 
0x0060 ucb$l_devdepnd2:      0x816266c0 
0x0064 ucb$l_devdepnd3:      0x00009501 (38145) 
0x00b8 ucb$l_boff:           0x00000080 
0x00b4 ucb$l_bcnt:           0x00000064 
0x00b0 ucb$l_svapte:         0x8162ecc0 
0x00f4 ucb$l_msg:            0x00000061 
0x00f8 ucb$l_cbf:            0x816113c0 
0x00fc ucb$l_pci_page_size:  0x00000020 
0x0100 ucb$l_adp:            0x81447600 
0x0108 ucb$q_plx_handle:     0x0000000081628ac0 
0x0110 ucb$q_rfm_handle:     0x0000000081628b00 
0x0118 ucb$q_mem_handle:     0x0000000081628b40 
0x0120x ucb$l_card_size      0x03900000 (57 megs) mapped 
                             0x04000000 64Mb total card memory 
0x016c ucb$l_fault:          0x00000000 
0x0170 ucb$l_fault_loc:      0x00000005 (5) 
0x0168 ucb$s_crctx:          0x81630fc0 
 
cbf_l_ident:         0xffeaff01 
cbf_l_self:          0x816113c0 
cbf_q_LoadTime:      13-NOV-2006 17:15:04.0 
cbf_l_idb:           0x81628a40 
cbf_l_ucb:           0x816266c0 
cbf_l_memsize:       0x04000000 
cbf_l_adp:           0x81447600 
cbf_l_crb:           0x816310c0 
cbf_l_TxFIFOFullCtr: 0x00000000 
cbf_l_SyncLostCtr:   0x00000000 
cbf_l_dma_address:   0x00000000 
cbf_l_5565Addr:      0x00000000 
cbf_l_ByteCnt:       0x00000000 
cbf_l_Dma0Dsc:       0x00000000 
cbf_l_itrcsStGo:     0x00000000 
cbf_l_DmaMd0Go:      0x00000000 
cbf_l_DmaCsrGo:      0x00000000 
cbf_l_itrcs_st:      0x0f010100 
cbf_l_dmamode0St:    0x00000000 
cbf_l_DmaExpected:   0x00000000 
cbf_l_DmaTmoCtr:     0x00000000 
cbf_l_intrctr:       0x00000000 
cbf_l_PciIntCtr:     0x00000000 
cbf_l_DmaIntCtr:     0x00000000 
cbf_l_LclIntCtr:     0x00000000 
cbf_l_UnsolDmaCtr:   0x00000000 
cbf_l_itrcs_int:     0x00000000 
cbf_l_rfmlcsr1:      0x00000000 
cbf_l_rfmlisr:       0x00000000 
cbf_l_Dma0Csr_int:   0x00000000 
cbf_l_TmoOccurred:   0x00000000 
cbf_l_IoDoneCtr:     0x00000000 
cbf_l_Lstfunc:       0x00000021 
cbf_l_WdTmCtr:       0x0000000a 
cbf_l_TdRfmCsr1:     0x80000085 
cbf_l_TdRfmLisr:     0x00000000 



Utilities 

43 

cbf_l_StsLed:        0x00000000 
cbf_l_SyncSts:       0x00000000 
cbf_l_RxvFifoFull:   0x00000000 
cbf_l_TxFifoFull:    0x00000000 
cbf_l_BadData:       0x00000000 
cbf_l_RxSigDet:      0x00000000 
Write Partitions not initialized for this node 
cbf_l_NewNodes: 
                     0x00000000 
                     0x00000000 
                     0x00000000 
                     0x00000000 
                     0x00000000 
                     0x00000000 
                     0x00000000 
                     0x00000000 
cbf_l_end:           0xffeaff02 
 
lcr_l_lasorr:    0xffffffc0 
lcr_l_lasoba:    0xc0000001 
lcr_l_marbr:     0x03040000 
lcr_b_bigend:    0x00000000 
lcr_b_lmisc1:    0x00000005 
lcr_b_prot_area: 0x00000030 
lcr_b_lmisc2:    0x00000021 
lcr_l_rgpcilclr: 0x00000000 
lcr_l_rgdescp:   0x00000000 
lcr_l_lbrd1:     0x42430143 
lcr_l_rgdmpci:   0x00000000 
lcr_l_lclbsmpci: 0x00000000 
lcr_l_lclbsdm:   0x00000000 
lcr_l_pcibsrm:   0x00000000 
lcr_l_pcicfgrg:  0x00000000 
 
rtr_l_mbx0:     0x00000000 
rtr_l_mbx1:     0x00000000 
rtr_l_mbx2:     0x00000000 
rtr_l_mbx3:     0x00000000 
rtr_l_mbx4:     0x00000000 
rtr_l_mbx5:     0x00000000 
rtr_l_mbx6:     0x00000000 
rtr_l_mbx7:     0x00000000 
rtr_l_pcilcldb: 0x00000000 
rtr_l_lclpcidb: 0x00000000 
rtr_l_itrcs:    0x0f010100 
rtr_l_eeprmct:  0x100f767e 
rtr_w_vendid:   0x000010b5 
rtr_w_devid:    0xffff9656 
rtr_w_revid:    0x000000ba 
rtr_w_unused:   0x00000000 
rtr_l_mbxreg1:  0x00000000 
rtr_l_mbxreg2:  0x00000000 
 
dcr_l_dmamode0:  0x00000043 
dcr_l_dma0padr:  0x00000000 
dcr_l_dma0ladr:  0x00000000 
dcr_l_dma0xfr:   0x00000000 
dcr_l_dma0dsc:   0x00000000 
dcr_l_dmamode1:  0x00000043 
dcr_l_dma1padr:  0x00000000 
dcr_l_dma1ladr:  0x00000000 
dcr_l_dma1xfr:   0x00000000 
dcr_l_dma1dsc:   0x00000000 
dcr_c_dmacsr0:   0x00000010 
dcr_c_dmacsr1:   0x00000010 
dcr_w_resrved:   0x00000000 
dcr_l_marbr:     0x03040000 
dcr_l_dmathr:    0x00000000 
dcr_l_dmadac0:   0x00000000 
dcr_l_dmadac1:   0x00000000 
 



Utilities 

44 

rfm_b_brv:   0x00000007 
rfm_b_bid:   0x00000065 
rfm_b_nid:   0x00000001 
rfm_l_lcsr1: 0x80000084 
rfm_l_resv3: 0x00000000 
rfm_l_lisr:  0x00000000 
rfm_l_lier:  0x00000000 
rfm_l_ntd:   0x00000000 
rfm_b_ntn:   0x00000000 
rfm_b_nic:   0x0000000f 
rfm_l_isd1:  0x00000000 
rfm_b_sid1:  0x00000000 
rfm_l_isd2:  0x00000000 
rfm_c_sid2:  0x00000000 
rfm_l_isd3:  0x00000000 
rfm_b_sid3:  0x00000000 
rfm_l_initd: 0x00000000 
rfm_b_initn: 0x00000000 
 
pci$w_vendor_id:       0x0000114a 
pci$w_device_id:       0x00005565 
pci$w_command:         0x00000147 
pci$w_status:          0x000002b0 
pci$b_revision_id:     0x00000001 
pci$b_programming_if:  0x00000000 
pci$b_sub_class:       0xffffff80 
pci$b_base_class:      0x00000002 
pci$b_cache_line_size: 0x00000010 
pci$b_latency_timer:   0xffffffff 
pci$b_header_type:     0x00000000 
pci$b_bist:            0x00000000 
pci$l_base_address_0:  0x03fb7e00 
pci$l_base_address_1:  0x01ffff01 
pci$l_base_address_2:  0x03fb7d00 
pci$l_base_address_3:  0x04000000 
pci$l_base_address_4:  0x00000000 
pci$l_base_address_5:  0x00000000 
pci$l_cardbus_cis:     0x00000000 
pci$w_sub_vndr:        0x000010b5 
pci$w_sub_id:          0xffff9656 
pci$l_exp_rom_base:    0x00000000 
pci$l_reserved_3:      0x00000040 
pci$l_reserved_4:      0x00000000 
pci$b_intr_line:       0x00000010 
pci$b_intr_pin:        0x00000001 
pci$b_min_gnt:         0x00000000 
pci$b_max_lat:         0x00000000 
 
cbf_l_rmem[0]: 0x00000000 
cbf_l_rmem[1]: 0x00000401 
cbf_l_rmem[2]: 0x00000802 
cbf_l_rmem[3]: 0x00000c03 
cbf_l_rmem[4]: 0x00001004 
cbf_l_rmem[5]: 0x00001405 
cbf_l_rmem[6]: 0x00001806 
cbf_l_rmem[7]: 0x00001c07 
cbf_l_rmem[8]: 0x00002008 
cbf_l_rmem[9]: 0x00002409 
cbf_l_rmem[10]: 0x0000280a 
cbf_l_rmem[11]: 0x00002c0b 
cbf_l_rmem[12]: 0x0000300c 
cbf_l_rmem[13]: 0x0000340d 
cbf_l_rmem[14]: 0x0000380e 
cbf_l_rmem[15]: 0x00003c0f 

 

5.1.2 PUTIT 

 



Utilities 

45 

The PUTIT utility is responsible for writing a value to any process variable. This 
includes a simple type (real, int, byte), or to an array of simple types, and finally, to any 
element or elements of a structure.  The PUTIT utility can write to any process 
variable regardless if the process variable is owned by the local system.  This 
utility should be used with caution.  Typically, this utility is used for simulation 
purposes when the actual owner of the process variable is not controlling the variable. 
 
$PUTIT[/DEBUG/QUIET] Tags Data 
 
Tags 
The Tags is the process variable desired to be written.  If the process variable is an 
array, then the element index can be specified using square brackets: "[element 
number]".  The element number always starts with one.  If the process variable is an 
element, then the tag name followed by the desired elements of the structure can be 
specified, including elements of arrays contained within the structure.  Tags can also be 
a file name that contains a list of elements from the process variable.  If more than a 
single element of a process variable is to be returned, the string must be enclosed in 
quotes unless the tag string is passed via a data file. 
 
Data 
The Data are the corresponding data items for the process variable elements specified in 
Tags argument.  If more than a single value is present, the data items must be 
separated by commas and the whole string quoted.  Additionally, the data can be 
sourced from a local DCL symbol by specifying a "%symbolname" or from a data file 
"@datafile".  The data file is a simple text file with values for each element of the tag 
variable.  The data file can contain comment lines that begin with an exclamation point.  
Text variables must have sufficient characters to populate the string and may not 
contain the comma delimiter. 
 
/QUIET 
This is useful for simulation scripts where console output is not desired.  Typically, the 
/out or /symbol would be used to capture the data from the process variable. 
 
/DEBUG 
This will cause the output of tag information and other information as the data is 
acquired from the process variable.  It can be helpful when determining if the VMIC 
address or other information is valid. 
 
Examples: 
 

$putit/quiet "CURRENT_SDR.INGOTID,ALLOY" "1234567890,LL" 
 
$putit "CURRENT_SDR.INGOTID,ALLOY” @sys$input: 
! Ingot ID 
1234567890 
! Alloy 
LL 

 
 
$MyTag= "CURRENT_SDR.INGOTID,ALLOY" 
$putit 'MYTAG' @alloy.dat 
 
$MYDATA = "1234567890,LL" 
$putit/quiet "CURRENT_SDR.INGOTID,ALLOY" %MYDATA 
 



Utilities 

46 

The above examples write INGOTID and ALLOY elements into CURRENT_SDR 
process variable.  The data is either from a file, a DCL symbol, or the command 
line. 

 

5.1.3 GETIT 

 
The GETIT utility is responsible for reading the value to any process variable. This 
includes a simple type (real, int, byte), or to an array of simple types, and finally, to any 
element or elements of a structure. 
 
$GETIT[/DEBUG/SYMBOL=symbolname/OUT=Filename/QUIET] Tags 
 
Tags 
The Tags is the process variable desired to be acquired.  If the process variable is an 
array, then the element index can be specified using square brackets: "[element 
number]".  The element number always starts with one.  If the process variable is an 
element, then the tag name followed by the desired elements of the structure can be 
specified, including elements of arrays contained within the structure.  Tags can also be 
a file name that contains a list of elements from the process variable.  If more than a 
single element of a process variable is to be returned, the string must be enclosed in 
quotes unless the tag string is passed via a data file. 
 
/QUIET 
This is useful for simulation scripts where console output is not desired.  Typically, the 
/out or /symbol would be used to capture the data from the process variable. 
 
/DEBUG 
This will cause the output of tag information and other information as the data is 
acquired from the process variable.  It can be helpful when determining if the VMIC 
address or other information is valid. 
 
/SYMBOL=symbol name 
This will write the data to a DCL local symbol with commas between the variables. 
 
Examples: 
 

$getit/quiet/symbol=GD "CURRENT_SDR.INGOTID,ALLOY" 
 
$getit/symbol=GD @sys$input: 
CURRENT_SDR.INGOTID, 
ALLOY 
 
$MyTag= "CURRENT_SDR.INGOTID,ALLOY" 
$getit/symbol=GD 'MYTAG' 
 
$getit/quiet/out=GD.TXT "CURRENT_SDR.INGOTID,ALLOY" 
 
The above examples get INGOTID and ALLOY elements from CURRENT_SDR 
process variable and write them to the local DCL symbol "GD" or to a file called 
"GD.TXT".  The GD.TXT file can be used by the PUTIT utility described earlier. 
 
$ pass=1 
$getit/symbol=PD - 



Utilities 

47 

    "CURRENT_SDR.PEDGPOS[''Pass'],PHORTORQUE[''Pass']" 
$Epos= f$element(0,",",PD) 
$Torque= f$element(1,",",PD) 
$write sys$output "EdgPos: ''Epos'" 
$write sys$output "Torque: ''Torque'" 
 
The above example shows the usage with arrays.  Note also the substitution of 
the DCL symbol "pass" into the string and the parsing of the symbol to get the 
particular values. 
 
$if (f$search("sdr.tmp") .nes. "") then Delete sdr.tmp;* 
$ GETIT/quiet/out=sdr.tmp  L2_SDR1 
$ PUTIT/quiet CURRENT_SDR @sdr.tmp 
 
The above example moves the L2_SDR1 process variable record structure to the 
CURRENT_SDR record structure. 
 

5.1.4 RFM_PEEK UTILITY 

 
The RFM_PEEK utility allows the caller to read anywhere in reflective memory and 
format the data out to the user.  By default, if no format information is provided, the 
output is simply displayed in hex longwords. 
 
$ RFM_PEEK 
          /Start= reflective memory address 
          [/Adapter=] 
          [/Delimiter=] 
          [/DATAfile=filename] 
          [/DATASYM=DCL SYMBOL] 
          [/FMT="format string"] 
          [/FMTSYM= DCL symbol] 
          [/COUNT= Byte count of read] 
          [/GFLOAT] 
 
/ADDRESS= Reflective memory address in hex 
 
/ADAPTER= 5565 device, RBA0:, RBB0:, etc..  If not specified, RBA0: is used. 
 
/COUNT= Optional count.  If present, will limit the read regardless of how much data is 
read.  If format string specifies more data than the count, the count takes precedence. 
 
/DELIMITER= Character used as a delimiter to separate output data.  Default is a 
comma. 
 
/DATAFILE= Filename of the file to receive data read from memory. Default is 
sys$output. 
 
/DATSYM= DCL Symbol to write formatted data to. 
 
/FMT or /FMTSYM= Contains the format string used to format the data from the 
reflective memory.  The format specifiers are as follows (similar to FORTRAN FORMAT 
Specifiers) and are comma separated.  Repeat specifiers are supported for a single field, 



Utilities 

48 

but no parenthetical repeat is supported.  If  no format information is provided, Z8.8 
(hex) is used. 
 

Zw= Integer*4 (hex) 
Iw= Integer*4 (decimal) 
Ww= Integer*2 (decimal) 
Bw= Byte (decimal) 
Fw.d= Real*4  (decimal IEEE float) 
Xw= Skip over “w” bytes from read buffer 
Cc= Character 
D=  23 character OpenVMS Time Stamp 
 
Where: 

w= Width of field 
d= Precision 

 
/GFLOAT Floating point data should be converted from G_float 
 

Examples: 
$peek == “$ipd_prod:rfm_peek” 
$ peek/adapter=rba0:/count=100/address=%x1000 
$ peek/adapter=rba0:/count=100/address=%x1000/fmt="10z8"/count=80 
$ peek/adapter=rba0:/count=100/address=%x1000/fmt="10I8"/count=80 
$ peek/adapter=rba0:/count=100/address=%x1000/fmt="10I8"/count=80/datafile=test.log 
$ peek/adapter=rba0:/address=%x1000/fmt="10z8" 
$ peek/adapter=rba0:/address=%x1000/fmt="10f10.7/gfloat" 
$ peek/adapter=rba0:/address=%x1000/fmt="10f10.7" 
$ peek/address=%x1000/fmt="f10.7/count=4/datsym=speed 
$ peek/address=%x1000/fmt="3f10.7,4I6”/count=28/datsym=speed 

5.2 RFM_POKE UTILITY 

 
The RFM_POKE utility allows the caller to write data in to reflective memory.  If the 
memory location is not configured as a writeable region by the RFM utility, then the 
/FORCE switch must be specified to override this nodes write partition in reflective 
memory.  This utility should be used with caution. 
 
Syntax: 
 
RFM_POKE 

/Start= reflective memory address 
[/Adapter=] 
[/Delimiter=] 
[/DATA=”<delimited data>”] 
[/DATAfile=filename] 
[/DATASYM=DCL SYMBOL] 
[/FMT="format string"] 
[/FMTSYM= DCL symbol] 
[/COUNT= Byte count of read] 
[/FORCE] 

 
/ADDRESS= Reflective memory address in hex 
 
/ADAPTER= PCI-5565 device, RBA0:, RBB0:, etc..  If not specified, RBA0: is used. 
 



Utilities 

49 

/COUNT= Optional count.  If present, will limit the write regardless of how much data is 
read.  If format string specifies more data than the count, the count takes precedence. 
 
/FORCE If present, will write to anywhere in reflective memory including memory range 
not allocated to this host (see RFM utility and driver partition table). 
 
/DELIMITER=c  Character used as a delimiter to parse data for the reflective memory.  
Default is a comma. 
 
/DATAFILE=filename File containing the data to write to reflective memory.  
 
/DATSYM= DCL Symbol to read formatted data from 
 
/FMT or /FMTSYM= Contains the format string used to write the data for encoding into 
memory.  The format specifiers are as follows (similar to FORTRAN FORMAT Specifiers) 
and are comma seperated.  Repeat specifiers are supported for a single field, but no 
parenthetical repeat is supported.  If no format information is provided, Z8.8 (hex) is 
used. 
 

Zw= Integer*4 (hex) 
Iw= Integer*4 (decimal) 
Ww= Integer*2 (decimal) 
Bw= Byte      (decimal) 
Fw.d= Real*4  (decimal IEEE float) 
Xw= Skip over w bytes from read buffer 
Cc= Character 
D= 23 character OpenVMS Time Stamp 
 
Where: 

 
w= Width of field 
d= Precision 
 

Examples: 
$ poke/adapter=rba0:/count=100/address=%x1000/debug/data=1234 
$ poke/adapter=rba0:/count=100/address=%x1000/fmt="10z8"/count=80 
$ poke/adapter=rba0:/count=100/address=%x1000/fmt="10I8"/count=80 
$ poke/adapter=rba0:/count=100/address=%x1000- 
     /fmt="10I8"/count=80/datafile=test.log 
$ poke/adapter=rba0:/address=%x1000/fmt="10z8" 
$ poke/adapter=rba0:/address=%x1000/fmt="10f10.7/gfloat" 
$ poke/adapter=rba0:/address=%x1000/fmt="10f10.7" 
$ poke/address=%x1000/fmt="f10.7/count=4/datsym=speed/debug 
$ poke/adapter=rba0:/count=100/address=%x1000/data=<from time> 
$ poke/force/address=%x1000/fmt="i10"/count=4/data=1023 

 

5.3 RFM 

 
The RFM utility provides a convenient DCL interface to control some of 
the capabilities of the PCI-5565 device.  The utility makes use of the 
special I/O function codes to the driver. 

5.3.1 RFM Command Syntax 

 



Utilities 

50 

The “< >” denote one of the options and are not part of syntax.  The “[]” 
are optional parameters.  One or more options may be specified on the 
command line.  The adapter must be specified and may be a logical name 
or the actual PCI-5565 adapter device name (e.g., RBA0:, RBB0:, etc.). 
 
$RFM adapter- 
[/ENDIAN=<0,1>]- 
[/MEMPAR="start1,size1,start2,size2,start3,size3"]- 
[/NEWNODE]- 
[/INTERRUPT]- 
[/REFRESH]- 
[/ROGUE=[1 or 2 D:1]- 
[/DARK]- 
[/STATUS] 
 
Switch Description 
/ENDIAN= Set little or big Endian mode. 0= little Endian, 1= big Endian 
/MEMPAR= 
"start1,size1, 
start2,size2, 
start3,size3" 

Set memory range partitions used the local host writeable 
regions within the reflective memory. 

/NEWNODE 
/NONEWMODE 

Enable/disable processing of node interrupt messages for nodes 
that join the reflective memory ring. 

/INTERRUPT 
/NOINTERRUPT 

Enable/disable network interrupts 

/REFRESH Refresh memory owned by this node for other nodes 
/ROGUE 
/NOROGUE 
=[1 or 2 D:1] 

Enable/disable Rogue packet functioning by this node.  Default 
is rogue master one. 

/LOOPBACK 
/NOLOOPBACK 

Enable/disable local card loopback 

/DARK 
/NODARK 

Enable/disable dark on dark fiber operation 

/STATUS Display information about device 

 

5.4 PSTCFG 

 
The PSTCFG process is provided to support the accessing of the reflective 
memory using symbolic tags instead of absolute memory addresses in 
the reflective memory.  The actual binding of the tag name to its address 
in reflective memory is done at runtime by the RFMGetReference 
function.  This is a batch type function and any process that uses the tag 
method must be restarted if its tags are moved in reflective memory. 
 
The PSTCFG process reads a comma delimited Tag CSV file (normally 
maintained by Excel and exported as a CSV file) and populates an RMS 
keyed file which defines a Tag within the reflective memory (name, 



Utilities 

51 

description, data type, length, and offset in the memory).  It will also 
support bit type tags that are packed into a long word.  A header file that 
contains the definition of the bit word which contains the particular bit is 
also created.  A small example of a CSV file is shown at end of this 
section.  The RMS file is accessed by RFMGetReference function. 
 

5.4.1 Command Syntax 

 
The syntax for this command is: 
$pstcfg/wrtlo=xxxx/wrthi=xxxx[/bits]  filename.csv 
 
Filename.csv= Input CSV file exported from Excel or other spread sheet 
or utilitiy. 
/wrtlo= where in vmic reflective memory can write low value 
/wrthi= where in vmic reflective memory can write high value 
/bits= Write the bit header files 
 
The write locations mark the tag as being a tag written or read by this 
local host.  This version of the software uses a partition table in the 
driver to protect errant writes to process variables owned by other 
systems. 
 

5.4.2 CSV File Column Definition 

 
The columns for the CSV file are shown in the table below. 
 
Column Values Description 
Record 
Type 

ELEM 
STRUC 

Describes either a structure 
definition or an element of a 
structure or simple tag.  Note: 
structure datatypes may not be 
possible over all platforms. 

Data Type INT- 2 byte integer 
DINT- 4 byte intger 
SINT- 1 byte integer 
REAL- Float  
CHAR- Text string 
BIT- Bit string 
START- Start 
Structure definition 
END- End Structure 
definition 

The type of data contained in this 
tag.  The floating point data types are 
normally expected to be IEEE float.  
The number of characters in the 
CHAR is defined using the Array size 
column. 
The structure definitions should be 
first in the CSV file. 
All BIT tags should be contained in a 
packed process variable of type INT 
or DINT.  The packed variable is 



Utilities 

52 

acquired and the bit is added to 
acquire its value.  The /bits switch 
will define the layout of the bits. 

RFM Addr 0 to cardsize Reflective memory address on the 
PCI-5565 adapter.  Should always 
attempt to use long word offset (e.g., 
modulus of 4 bytes).  If this is a bit 
definition, the address is in the form 
of: “Address:bit number” in hex 

Array size  Number of characters in a character 
string or the number of elements 
contained in the tag. Note: using 
arrays may not be possible over all 
platforms. 

Descriptio
n 

80 characters Description of tag.  Should not 
contain any commas or apostrophes. 

Units 20 characters Documentation about the units of 
the tag.  Should not contain any 
commas or apostrophes. 

Source  12 character Documentation about the node that 
owns this tag (e.g., writes to it).  
Should not contain any commas or 
apostrophes. 

 
 



Utilities 

53 

5.4.3 Example CSV file 

 
! Tag Name,! Data,Variable,Array,RFM ADD,Description,Units,Source 
!,! Type,Type,Size,(hex),,, 
! Define structures first,,,,,,, 
!,,,,,,, 
PDO,Struct,START,,,Start structure definition,, 
Produced_Length,Struct,REAL,,,Produced length,M, 
Produced_Gauge,Struct,REAL,,,Produced gauge,mm, 
Coil_ID,Struct,Char,12,,Coil identification,, 
Alloy,Elem,Char,10,,Coils alloy,, 
PDO,Struct,END,,,End structure definition,, 
!# PLC to CPU1,,,,,,, 
PLC_CPU1_GWStart,Elem,INT,0,0x000100,Guard Word Start,0,PLC 
S1_ModelGauge_RFM,Elem,INT,0,0x000102,Model Gauge Stand 1,100 = 1mm,PLC 
S2_ModelGauge_RFM,Elem,INT,0,0x000104,Model Gauge Stand 2,100 = 1mm,PLC 
S3_ModelGauge_RFM,Elem,INT,0,0x000106,Model Gauge Stand 3,100 = 1mm,PLC 
S1_AntiForce_RFM,Elem,INT,0,0x000108,Model Anticipated Force Stand 1,10 = 1MT,PLC 
S2_AntiForce_RFM,Elem,INT,0,0x00010A,Model Anticipated Force Stand 2,10 = 1MT,PLC 
S3_AntiForce_RFM,Elem,INT,0,0x00010C,Model Anticipated Force Stand 3,10 = 1MT,PLC 
S12_ModelTenRef_RFM,Elem,INT,0,0x00010E,Model 1-2 Tension Reference,10 =1kg/cm2,PLC 
S23_ModelTenRef_RFM,Elem,INT,0,0x000110,Model 2-3 Tension Reference,10 =1kg/cm2,PLC 
TR_ModelTenRef_RFM,Elem,INT,0,0x000112,Model Reel Tension Reference,10 =1kg/cm2,PLC 
S1_Model_RBRef_RFM,Elem,INT,0,0x000114,Model Roll Bending Reference Stand 1,10=1kg/cm2,PLC 
F1_Top_Coolant_pat_1,Elem,INT,0,0x000198,Stand #1 Top Coolant Bit Fdbk (45),0,PLC 
F1_TOP_DS_1,Elem,BIT,0,0x000198:00,F1 TOP drive side 1,Logical,PLC 
F1_TOP_OS_1,Elem,BIT,0,0x000198:01,F1 TOP operator side 1,Logical,PLC 
F1_TOP_DS_2,Elem,BIT,0,0x000198:02,F1 TOP drive side 2,Logical,PLC 
F1_TOP_OS_2,Elem,BIT,0,0x000198:03,F1 TOP operator side 2,Logical,PLC 



Utilities 

54 

F1_TOP_DS_3,Elem,BIT,0,0x000198:04,F1 TOP drive side 3,Logical,PLC 
F1_TOP_OS_3,Elem,BIT,0,0x000198:05,F1 TOP operator side 3,Logical,PLC 
F1_TOP_DS_4,Elem,BIT,0,0x000198:06,F1 TOP drive side 4,Logical,PLC 
F1_TOP_OS_4,Elem,BIT,0,0x000198:07,F1 TOP operator side 4,Logical,PLC 
F1_TOP_DS_5,Elem,BIT,0,0x000198:08,F1 TOP drive side 5,Logical,PLC 
F1_TOP_OS_5,Elem,BIT,0,0x000198:09,F1 TOP operator side 5,Logical,PLC 
F1_TOP_DS_6,Elem,BIT,0,0x000198:0A,F1 TOP drive side 6,Logical,PLC 
F1_TOP_OS_6,Elem,BIT,0,0x000198:01,F1 TOP operator side 6,Logical,PLC 
F1_TOP_DS_7,Elem,BIT,0,0x000198:0C,F1 TOP drive side 7,Logical,PLC 
F1_TOP_OS_7,Elem,BIT,0,0x000198:0D,F1 TOP operator side 7,Logical,PLC 
F1_TOP_DS_8,Elem,BIT,0,0x000198:0E,F1 TOP drive side 8,Logical,PLC 
F1_TOP_OS_8,Elem,BIT,0,0x000198:0F,F1 TOP operator side 8,Logical,PLC 
F1_Top_Coolant_pat_2,Elem,INT,0,0x00019A,Stand #1 Top Coolant Bit Fdbk (44),Bitword,PLC 
F1_TOP_DS_9,Elem,BIT,0,0x00019A:00,F1 TOP drive side 9,Logical,PLC 
F1_TOP_OS_9,Elem,BIT,0,0x00019A:01,F1 TOP operator side 9,Logical,PLC 
F1_TOP_DS_10,Elem,BIT,0,0x00019A:02,F1 TOP drive side 10,Logical,PLC 
F1_TOP_OS_10,Elem,BIT,0,0x00019A:03,F1 TOP operator side 10,Logical,PLC 
F1_TOP_DS_11,Elem,BIT,0,0x00019A:04,F1 TOP drive side 11,Logical,PLC 
F1_TOP_OS_11,Elem,BIT,0,0x00019A:05,F1 TOP operator side 11,Logical,PLC 
F1_TOP_DS_12,Elem,BIT,0,0x00019A:06,F1 TOP drive side 12,Logical,PLC 
F1_TOP_OS_12,Elem,BIT,0,0x00019A:07,F1 TOP operator side 12,Logical,PLC 
F1_TOP_DS_13,Elem,BIT,0,0x00019A:08,F1 TOP drive side 13,Logical,PLC 
F1_TOP_OS_13,Elem,BIT,0,0x00019A:09,F1 TOP operator side 13,Logical,PLC 
F1_TOP_DS_14,Elem,BIT,0,0x00019A:0A,F1 TOP drive side 14,Logical,PLC 
F1_TOP_OS_14,Elem,BIT,0,0x00019A:01,F1 TOP operator side 14,Logical,PLC 
F1_TOP_DS_15,Elem,BIT,0,0x00019A:0C,F1 TOP drive side 15,Logical,PLC 
F1_TOP_OS_15,Elem,BIT,0,0x00019A:0D,F1 TOP operator side 15,Logical,PLC 
!# CPU1 to CPU2,,,,,,, 
CPU1_CPU2_GWStart,Elem,UDINT,0,0x004100,Guard Word Start,0,CPU1 
S1_Roll_Gap_RFM12,Elem,REAL,0,0x004104,Current Roll Gap Stand 1,mm,CPU1 



Utilities 

55 

S2_Roll_Gap_RFM12,Elem,REAL,0,0x004108,Current Roll Gap Stand 2,mm,CPU1 
S3_Roll_Gap_RFM12,Elem,REAL,0,0x00410C,Current Roll Gap Stand 3,mm,CPU1 
Alloy_Grade_Num_RFM12,Elem,UDINT,0,0x004110,Alloy Grade,0,CPU1 
S1_Motor_RPM_Ref_RFM,Elem,REAL,0,0x004114,Motor RPM Reference Stand 1,RPM,CPU1 
S2_Motor_RPM_Ref_RFM,Elem,REAL,0,0x004118,Motor RPM Reference Stand 2,RPM,CPU1 
S3_Motor_RPM_Ref_RFM,Elem,REAL,0,0x00411C,Motor RPM Reference Stand 3,RPM,CPU1 
S1_Strip_Speed_RFM12,Elem,REAL,0,0x004120,Strip Speed Stand 1,MPM,CPU1 
S2_Strip_Speed_RFM12,Elem,REAL,0,0x004124,Strip Speed Stand 2,MPM,CPU1 
S3_Strip_Speed_RFM12,Elem,REAL,0,0x004128,Strip Speed Stand 3,MPM,CPU1 
S1_Vern_Speed_RFM12,Elem,REAL,0,0x00412C,Stand 1 Operator Speed Vernier Change,Percent,CPU1 
S2_Vern_Speed_RFM12,Elem,REAL,0,0x004130,Stand 2 Operator Speed Vernier Change,Percent,CPU1 
S3_Vern_Speed_RFM12,Elem,REAL,0,0x004134,Stand 3 Operator Speed Vernier Change,Percent,CPU1 
!CPU2,,,,,,, 
CPU2_PLC_GWStart,Elem,UINT,0,0x004478,Start Guard,0,CPU2 
S1_Cal_Scw_Pos_RFM,Elem,DINT,0,0x00447C,S1 Position (Actual & Calibrated),100 = 1 mm,CPU2 
S1_UnCal_Scw_Pos_RFM,Elem,DINT,0,0x004480,S1 Position (Actual & Uncalibrated),100 = 1 mm,CPU2 
S1_Scw_SetPoint_RFM,Elem,DINT,0,0x004484,S1 Position (Setpoint),100 = 1 mm,CPU2 
S1_Scw_RCMinPos_RFM,Elem,DINT,0,0x004488,S1 Roll Change Minimum Position,100 = 1 mm,CPU2 
CPU2_Alive_RFM,Elem,INT,0,0x00448C,CPU2 Heartbeat for the screw control in PLC,N/A,CPU2 
S1_Scw_Jog_Ref_RFM,Elem,INT,0,0x00448E,S1 Current Jog Reference (Setpoint --- 100ct / m),cnts/m,CPU2 
!CPU2,,,,,,, 
S1_Screw_Packed_Bits1,Elem,UINT,0,0x004494,CPU2_to_PLC_Word_1,BitWord,CPU2 
S1_Screw_Not_Ready,Elem,BIT,0,0x004494:01,S1 Screw Not Ready Or Faulted,Logical,CPU2 
S1_Screw_Ready,Elem,BIT,0,0x004494:02,S1 Screw Ready and Enabled,Logical,CPU2 
S1_Screw_In_Zone,Elem,BIT,0,0x004494:03,S1 Screw In Zone (Within Dead Band),Logical,CPU2 
S1_Screw_In_RollChg_Pos,Elem,BIT,0,0x004494:05,S1 Screws In Position For Roll Change,Logical,CPU2 
S1_Screw_At_Zero_Speed,Elem,BIT,0,0x004494:06,S1 Screw Zero Speed (Screw not Moving),Logical,CPU2 
S1_Screw_Position_Move_CMD,Elem,BIT,0,0x004494:07,S1 Screw Position Move Command,Logical,CPU2 
S1_Screw_Up_Limit_Stop,Elem,BIT,0,0x004494:08,S1 Screw Up Limit Stop,Logical,CPU2 
S1_Screw_Down_Limit_Stop,Elem,BIT,0,0x004494:09,S1 Screw Down Limit Stop,Logical,CPU2 



Utilities 

56 

CPU2_PLC_GWEnd,Elem,INT,0,0x0044D2,Guard Word End,0,CPU2 
TRACE_SAMPLES,Elem,DINT,0,0x0082D4,Gauge Trace Buffer sample counter,samples,CPU2 
TRACE_BUF_COUNTER,Elem,UDINT,0,0x0082D8,New Buffer Counter Increments when coil complete,0,CPU2 
TRACE_DISP,Elem,DINT,1500,0x0082DC,Sample displacement from head  end,Meters*10,CPU2 
TRACE_MIN,Elem,DINT,1500,0x009A4C,Maximum deviation in sample,mm*1000,CPU2 
TRACE_MAX,Elem,DINT,1500,0x00B1BC,Minimum deviation in sample,mm*1000,CPU2 
TRACE_SIGMA,Elem,DINT,1500,0x00C92C,Standard deviation of sample,mm*1000,CPU2 
TRACE_AVG,Elem,DINT,1500,0x00E09C,Average deviation in sample,mm*1000,CPU2 
TRACE_LENGTH,Elem,DINT,0,0x00F80C,Incremental Length Measurement,M*10,CPU2 
!# L2 to CPU1,,,,,,, 
L2_SETUP_GDW1,Elem,DINT,0,0x014000,Setup guard word,0,L2 
L2_S1_ModelGauge_RFM,Elem,DINT,0,0x014004,Model Gauge Stand 1,100 = 1mm,L2 
L2_S2_ModelGauge_RFM,Elem,DINT,0,0x014008,Model Gauge Stand 2,100 = 1mm,L2 
L2_S3_ModelGauge_RFM,Elem,DINT,0,0x01400C,Model Gauge Stand 3,100 = 1mm,L2 
L2_S12_ModelTenRef_RFM,Elem,DINT,0,0x01401C,Model 1-2 Tension Reference,10 =1kg/cm2,L2 
L2_S23_ModelTenRef_RFM,Elem,DINT,0,0x014020,Model 2-3 Tension Reference,10 =1kg/cm2,L2 
L2_TR_ModelTenRef_RFM,Elem,DINT,0,0x014024,Model Reel Tension Reference,10 =1kg/cm2,L2 
L2_S1_Model_RBRef_RFM,Elem,DINT,0,0x014028,Model Roll Bending Reference Stand 1,10=1kg/cm2,L2 
L2_S2_Model_RBRef_RFM,Elem,DINT,0,0x01402C,Model Roll Bending Reference Stand 2,10=1kg/cm2,L2 
L2_S3_Model_RBRef_RFM,Elem,DINT,0,0x014030,Model Roll Bending Reference Stand 3,10=1kg/cm2,L2 
L2_T_Bar_Gauge_RFM,Elem,DINT,0,0x014040,Hot Entry Gauge,100=1mm,L2 
L2_Strip_Width_RFM,Elem,DINT,0,0x014044,Hot Strip Width,mm,L2 
L2_Entry_Temp_RFM,Elem,DINT,0,0x014048,Entry Temperature,DegC,L2 
L2_Ingot_ID_RFM,Elem,DINT,2,0x01404C,Ingot ID,0,L2 
L2_Alloy_Grade_RFM,Elem,DINT,0,0x014054,Alloy Grade,0,L2 
L2_SETUP_ENTRY_LENGTH,Elem,DINT,0,0x014064,Entry length,mm,L2 
L2_SETUP_ENTRY_TEMP,Elem,DINT,0,0x014068,Entry temperature,C,L2 
L2_SETUP_ENTRY_CROWN,Elem,DINT,0,0x01406C,Entry Crown,mm*100,L2 
L2_SETUP_PROD_GA,Elem,DINT,0,0x014070,Cold Product Gauge,mm*100,L2 
L2_SETUP_PROD_WID,Elem,DINT,0,0x014074,Cold Product Width,mm,L2 



Utilities 

57 

L2_SETUP_TRIMMER_WID,Elem,DINT,0,0x014078,Side Trimmer Width Reference (Hot prod width),mm,L2 
L2_SETUP_SHAPE_BIAS,Elem,DINT,0,0x01407C,Shape Bias,%,L2 
L2_SETUP_GDW2,Elem,DINT,0,0x0140F8,Setup guard word end,0,L2 
L2_HEARTBEAT,Elem,DINT,0,0x0140FC,Alpha Heartbeat,0,L2 
TPAS_guard_word1,Elem,DINT,0,0x014290,Guard word #1 incremented for new setup,0,L2 
TPAS_coil_id,Elem,Char,12,0x014294,Coil ID for this setup message,0,L2 
TPAS_coil_setup_time,Elem,Char,16,0x014298,Coil setup time stamp from ATA level 2,0,L2 
TPAS_alloy_index,Elem,REAL,0,0x0142A4,alloy index used in setting up gage,0,L2 
TPAS_alloy,Elem,Char,8,0x0142B4,alloy for this schedule,0,L2 
TPAS_transfer_gauge,Elem,REAL,0,0x0142B8,final gauge from roughing mill final pass,mm,L2 
TPAS_exit_gauge,Elem,REAL,0,0x0142C0,scheduled exit gauge for finishing mill,mm,L2 
TPAS_exit_gauge_ll,Elem,REAL,0,0x0142C4,exit gauge lower limit,mm,L2 
TPAS_exit_gauge_ul,Elem,REAL,0,0x0142C8,exit gauge upper limit,mm,L2 
TPAS_exit_gauge_blip_lim,Elem,REAL,0,0x0142CC,exit gauge blip count limit,0,L2 
TPAS_transfer_width,Elem,REAL,0,0x0142D0,width from roughing mill final pass,mm,L2 
L2_CUR_PDO,Record,PDO,0,,Current PDO record,,L2 
L2_HIST_PDO,Record,PDO,6,,Last 6 produced PDO records,,L2 
 



Utilities 

58 

5.4.4 Example Command 

 
The following is an example command file to regenerate the reflective 
memory map using a CSV file. 
 

$! File: ReDo_All.com 
$! 
$! Abstract: 
$! This command file creates a clean slate 
$! from the CSV files. 
$! 
$! First it deletes the MCF and structures files 
$! (RFMMCF.DAT and RFM_STRUCTURES.DAT) 
$! 
$! Second creates new ones 
$! 
$! Third run pstcfg for each file 
$! 
$! Files: 
$! 
$! LEVEL2.CSV 
$! 
$ set noon 
$ ff[0,8]=12 
$! 
$ if(f$search("ipd_prod:RFM_STRUCTURES.DAT") .nes. "") 
$ then 
$  delete ipd_prod:rfm_structures.dat;* 
$ endif 
$! 
$ if p1 .nes. "" 
$ then 
$   write sys$output "Deleteing old Database files" 
$   Purge  ipd_prod:RFM_STRUCTURES.DAT 
$   Purge  ipd_prod:RFMMCF.DAT 
$   rename ipd_prod:RFM_STRUCTURES.DAT;0 
ipd_prod:RFM_STRUCTURES.save 
$   rename ipd_prod:RFMMCF.DAT;0 ipd_prod:RFMMCF.save 
$ endif 
$! 
$! Delete old versions if present 
$! 
$ if(f$search("ipd_prod:RFM_STRUCTURES.DAT") .eqs. "")then - 
       delete ipd_prod:RFM_STRUCTURES.DAT;* 
$ if(f$search("ipd_prod:RFMMCF.DAT") .eqs. "")then - 
       delete ipd_prod:RFMMCF.DAT;* 
$! 
$ write sys$output "Creating new Database files" 
$ create/fdl=ipd_data:RFMMCF.FDL 
$ create/fdl=ipd_data:RFM_STRUCTURES.FDL 
$! 
$ where = f$environment("Default") 



Utilities 

59 

$ temp= where - "]" 
$ temp= temp + ".temp]" 
$ show sym temp 
$ if (f$trnlnm("rfm_temp") .eqs. "") 
$ then 
$   define/job rfm_temp 'temp' 
$ endif 
$ write sys$output "Deleting old include files in temp directory" 
$ if(f$search("rfm_temp:*.inc") .nes."") then delete rfm_temp:*.inc;* 
$! 
$ pstcfg == "$''where'pstcfg" 
$! 
$! 
$! RFM board 
$! 
$ write sys$output " " 
$ write sys$output "RFM.csv" 
$ write sys$output " " 
$ pstcfg/wrtlo=%x00014000/wrthi=%x017fff/bits rfm.csv 

 

5.4.5 Example Bit Definition File 

 
Currently only FORTRAN type include files are supported.  Contact 
IPACT if C header files are desired.  Normally, the user would get the 
packed bit word and select the bit from the packed register using one of 
the library routines or Boolean arithmetic. 
 

! 
! Packed Bit word definition file 
! (RFM_TEMP:F1_TOP_COOLANT_PAT_1_Bits.inc) 
! Generated by PSTCFG 
! Packed register:             F1_TOP_COOLANT_PAT_1 
!    from:      198 to      199 
! 
 
! Discrete tag:                      F1_TOP_OS_8 (0x199 bit: 0d7) 
! F1 TOP operator side 8 
        Integer*4 F1_TOP_OS_8_Pos 
        Parameter(F1_TOP_OS_8_Pos = 15) 
        Integer*2 F1_TOP_OS_8_Msk 
        Parameter(F1_TOP_OS_8_Msk = '8000'X) 
 
! Discrete tag:                      F1_TOP_DS_8 (0x199 bit: 0d6) 
! F1 TOP drive side 8 
        Integer*4 F1_TOP_DS_8_Pos 
        Parameter(F1_TOP_DS_8_Pos = 14) 
        Integer*2 F1_TOP_DS_8_Msk 
        Parameter(F1_TOP_DS_8_Msk = '4000'X) 
 
! Discrete tag:                      F1_TOP_OS_7 (0x199 bit: 0d5) 
! F1 TOP operator side 7 
        Integer*4 F1_TOP_OS_7_Pos 
        Parameter(F1_TOP_OS_7_Pos = 13) 
        Integer*2 F1_TOP_OS_7_Msk 
        Parameter(F1_TOP_OS_7_Msk = '2000'X) 
 
! Discrete tag:                      F1_TOP_DS_7 (0x199 bit: 0d4) 
! F1 TOP drive side 7 



Utilities 

60 

        Integer*4 F1_TOP_DS_7_Pos 
        Parameter(F1_TOP_DS_7_Pos = 12) 
        Integer*2 F1_TOP_DS_7_Msk 
        Parameter(F1_TOP_DS_7_Msk = '1000'X) 
 
! Discrete tag:                      F1_TOP_DS_6 (0x199 bit: 0d2) 
! F1 TOP drive side 6 
        Integer*4 F1_TOP_DS_6_Pos 
        Parameter(F1_TOP_DS_6_Pos = 10) 
        Integer*2 F1_TOP_DS_6_Msk 
        Parameter(F1_TOP_DS_6_Msk = '0400'X) 
 
! Discrete tag:                      F1_TOP_OS_5 (0x199 bit: 0d1) 
! F1 TOP operator side 5 
        Integer*4 F1_TOP_OS_5_Pos 
        Parameter(F1_TOP_OS_5_Pos = 9) 
        Integer*2 F1_TOP_OS_5_Msk 
        Parameter(F1_TOP_OS_5_Msk = '0200'X) 
 
! Discrete tag:                      F1_TOP_DS_5 (0x199 bit: 0d0) 
! F1 TOP drive side 5 
        Integer*4 F1_TOP_DS_5_Pos 
        Parameter(F1_TOP_DS_5_Pos = 8) 
        Integer*2 F1_TOP_DS_5_Msk 
        Parameter(F1_TOP_DS_5_Msk = '0100'X) 
 
! Discrete tag:                      F1_TOP_OS_4 (0x198 bit: 0d7) 
! F1 TOP operator side 4 
        Integer*4 F1_TOP_OS_4_Pos 
        Parameter(F1_TOP_OS_4_Pos = 7) 
        Integer*2 F1_TOP_OS_4_Msk 
        Parameter(F1_TOP_OS_4_Msk = '0080'X) 
 
! Discrete tag:                      F1_TOP_DS_4 (0x198 bit: 0d6) 
! F1 TOP drive side 4 
        Integer*4 F1_TOP_DS_4_Pos 
        Parameter(F1_TOP_DS_4_Pos = 6) 
        Integer*2 F1_TOP_DS_4_Msk 
        Parameter(F1_TOP_DS_4_Msk = '0040'X) 
 
! Discrete tag:                      F1_TOP_OS_3 (0x198 bit: 0d5) 
! F1 TOP operator side 3 
        Integer*4 F1_TOP_OS_3_Pos 
        Parameter(F1_TOP_OS_3_Pos = 5) 
        Integer*2 F1_TOP_OS_3_Msk 
        Parameter(F1_TOP_OS_3_Msk = '0020'X) 
 
! Discrete tag:                      F1_TOP_DS_3 (0x198 bit: 0d4) 
! F1 TOP drive side 3 
        Integer*4 F1_TOP_DS_3_Pos 
        Parameter(F1_TOP_DS_3_Pos = 4) 
        Integer*2 F1_TOP_DS_3_Msk 
        Parameter(F1_TOP_DS_3_Msk = '0010'X) 
 
! Discrete tag:                      F1_TOP_OS_2 (0x198 bit: 0d3) 
! F1 TOP operator side 2 
        Integer*4 F1_TOP_OS_2_Pos 
        Parameter(F1_TOP_OS_2_Pos = 3) 
        Integer*2 F1_TOP_OS_2_Msk 
        Parameter(F1_TOP_OS_2_Msk = '0008'X) 
 
! Discrete tag:                      F1_TOP_DS_2 (0x198 bit: 0d2) 
! F1 TOP drive side 2 
        Integer*4 F1_TOP_DS_2_Pos 
        Parameter(F1_TOP_DS_2_Pos = 2) 
        Integer*2 F1_TOP_DS_2_Msk 
        Parameter(F1_TOP_DS_2_Msk = '0004'X) 
 
! Discrete tag:                      F1_TOP_OS_1 (0x198 bit: 0d1) 



Utilities 

61 

! F1 TOP operator side 1 
        Integer*4 F1_TOP_OS_1_Pos 
        Parameter(F1_TOP_OS_1_Pos = 1) 
        Integer*2 F1_TOP_OS_1_Msk 
        Parameter(F1_TOP_OS_1_Msk = '0002'X) 
 
! Discrete tag:                      F1_TOP_DS_1 (0x198 bit: 0d0) 
! F1 TOP drive side 1 
        Integer*4 F1_TOP_DS_1_Pos 
        Parameter(F1_TOP_DS_1_Pos = 0) 
        Integer*2 F1_TOP_DS_1_Msk 
        Parameter(F1_TOP_DS_1_Msk = '0001'X) 

 

5.5 RTREND Plotting Program for RFM Tags 
 
RTREND is a real-time graphics program that plots up to 9 different RFM tags on the 
CRT screen using Regis graphics.  It was developed as an aid to the software and 
modeling engineer. 
 
All tags updated every second, which means that 11 minutes worth of data are plotted 
on the screen.  At the end of the 11th minute, the graph shifts to the left by 5 minutes 
(the oldest 6 minutes of data disappear), and plotting continues for another 5 minutes. 
 
Both integer and real tags are recognized and are converted correctly. 

 

5.5.1 Usage 

 
Limitations: 

1. Recognizes only command line input.  (Trend files not directly supported.) 
2. Real-time plotting only.  Plotting from historical data files is not available. 

 
Usage: 
 
 RTREND /PHI=(plot high list) /PLO=(plot low list) /SCALE=(scaling factor list) “tag list” 
 
Example: 

 
 
$ rtrend /phi=(1000,1000,1000) /plo=(0,0,0) /scale=(10,10,10) -    
"learning_s1_force_rfm,learning_s2_force_rfm,learning_s3_force_rfm" 

 
where, 
 

/PHI are the plot high limit values (parentheses not required if one tag).  There 
must be the same number of plot high limit values as there are tags. 

/PLO are the plot low limit values (parentheses not required if one tag) 
 If omitted, these values default to 0.  If not omitted, there must be the 

same number of plot low limit values as there are tags. 
/SCALE are the RFM scaling factors, tag values are divided by these factors 

(parentheses not required if one tag). 
If omitted, these values default to 1.  If not omitted, there must be the 
same number of scale values as there are tags. 
Usage: Plotted Value = Tag Value / Scale Factor. 



Utilities 

62 

“…” is the list of 3 (maximum of 9) RFM tag names (quotes not required if one 
tag) 

5.5.2 RTREND Example Plot 

 

 

Figure 5.5-1 Sample RTREND Screen 

 



Development Considerations 

63 

6 Development Considerations 
 
All reads and writes to reflective memory are done using longword moves 
(4 bytes).  If a data item crosses over a longword boundary, the adjoining 
words must also be read and written resulting in two longwords being 
transmitted on the reflective memory ring.  This may result in data being 
transmitted unexpectedly.  The driver will perform the read, merge, and 
write for the data item that crosses the longword boundary. 
 
Data that is written to reflective memory is written into a FIFO for 
transmission to the network.  The actual transmission the fiber ring is 
asynchronous to the writing of the data by the host.  Whenever a data 
item larger than 4 bytes or any data item that crosses a longword 
boundary it can possibly be transmitted in different data packets 
resulting in inconsistent data on the ring until subsequent packets are 
received to complete the update. 
 
Users typically insert guard words into data items that span multiple 
longwords.  The receiving nodes should only process the data when the 
guard words match. 
 
Memory should be partitioned by node for each write area.  No two nodes 
should have write access to the same memory space.  Additionally, the 
memory should be contiguous by node.  The driver attempts to ensure 
that no rogue process tries to write in a location not intended for write 
access by the host node.  However, only three partitions are supported by 
the driver. 
 
Some type of node synchronization should be designed when nodes join 
the reflective memory.  The data from other nodes to the new joined node 
will not be valid until all other nodes write their memory locations and 
refresh the newly joined member’s memory.  A special driver function is 
available that will perform this (reads the current contents of memory 
and writes it back without modification). 
 

6.1 Endian considerations 

 
At the time of this writing, there are three versions of the PCI-5565 
reflective memory adapters, PCI, VME, and Allen Bradley for Control 
Logix.  The Allen Bradley Control Logix version, CLB-5565,  may or may 
not be readily available. The VME version, VME-5565,  may be used in 
applications where the host processor may address memory differently 
(GE FANUC PAC90, GE 90/70, I/O Works INTEL based processor, or 



Development Considerations 

64 

other embedded processor).  Some experimentation may be needed to 
determine the best way to configure the byte ordering of the PCI reflective 
memory adapter.  It may be necessary because of the different 
participants on the ring that the host applications may need to do byte 
swapping. 
 



Index 

65 

APITAG structure, 20, 21, 22, 24, 25, 
26, 27, 28, 29 

byte ordering, 62 

Control Logix, 62 

DEVDMP, 7, 8, 35, 40, 41 

GETIT, 8, 10, 40, 45, 46 
Ghost Region Size, 13 

ipd__prod:rfmss.exe/share, 10 

ipd_library.olb, 10 

IPDRFM_MODE, 12, 19, 29 

Mode, 13 

OFFLINE, 12, 13, 14, 16, 19, 29 

PCI-5565, 31, 34 

PSTCFG, 8, 16, 40, 49 

PUTIT, 8, 10, 40, 43, 44, 45, 46 
READONLY, 12, 13, 15, 18, 19, 22, 24, 

26, 29 

Region name, 13 

RFM, 6, 8, 13, 18, 19, 20, 29, 31, 40, 47, 

48, 49 

RFM_5565_STARTUP.COM, 6, 9, 10, 

31 

RFM_DRIVER_LOAD.COM, 31 

RFM_EXTENDED_STATUS, 11 

RFM_OPEN, 11 

RFM_PEEK, 40 
RFM_PEEK utility, 46 
RFM_POKE, 40 
RFM_POKE utility, 47 
RFM_READ, 11 

RFM_READTAG, 11 

RFM_REFERENCE_TAG, 11 

RFM_SYMBOLS.COM, 9 

RFM_WRITE, 11 

RFM_WRITE_BLIND, 11 

RFM_WRITETAG, 11 

RFMClose, 30 
RFMExtendedStatus, 29 
RFMGetReference, 20, 21, 22, 24, 25, 

27, 29 

RFMOpen, 18, 20, 22, 24, 25, 27, 29 

RFMRead, 20, 22, 23 
RFMReadTags, 24, 27, 29 

RFMWrite, 20, 26 
RFMWriteTags, 27, 28, 29 

RTREND, 60 

Section filename, 13 

Tag CSV file, 49 

 


