\$5.00

Service Manual

ITT Industries Engineered for life

Table of Contents

This manual covers three phase submersible pumps, motors and controls. Page

Submersibles:

Ту	pical Systems
Tro	oubleshooting
	Amprobe Instructions 14
	Ohmmeter Instructions
	Megger
	Insullation Resistance Ratings 17
Α	Wiring Diagrams
В	Pump Control Panels
В	Fuse Test
В	Coil Checkout
В	Contact Point Inspection 34-35
В	Starter and Heater Sizing Checkout 36-39
С	Voltage Checkout 40-41
D	Current Checkout 42-43
Е	Motor Winding Resistance Checkout 44-45
Е	Electric Short Checkout
Е	Cable Checkout
Е	Disassembly 50-51
F	Rotation
G	Unbalance
G	Transformer Sizes
Н	Pressure Switch Checkout
L	Pressure Tank Checkout 60-61
J	Submersible Motor Cooling 62-63
	Cable Selection Charts 64-66

FYPICAL SYSTEMS

Relief

Valve

Pressure

Switch Pressure Gauge

Manifold on multiple tank installation should be 1-1/2 to 2 times size of supply pipe from pump.

Check Valve

NOTE:

Actual components and hook ups vary due to regional conditions, local codes and practices, and dealer preferences and practices.

NOTE:

Typical 3ø Submersible System...

Large capacity tank system illustrated with compressor.

All electrical equipment must be connected to supply ground. Follow NEC and local applicable code requirements.

Troubleshooting

INDEX

The following pages (8 through 13) cover troubleshooting of submersible pumps.

The use of an amprobe and ohmmeter are two essential items to properly check a system. Use of the amprobe is explained on page 14. Use of the ohmmeter is explained on page 15.

Find the basic problem . . . for which numerous symptoms are listed and possible solutions are given for each:

Page
Pump Will Not Start
Pump Will Not Run
Pump Runs, But
Reduced Capacity or
Insufficient Tank Pressure
Pump Starts Too Frequently 13

RULE OF THUMB

Remember, there may be other system problems caused by auxiliary controls not covered in this booklet.

IMPORTANT

This manual is intended ONLY for use by Goulds Pumps, ITT Industries Dealers familiar with NEC (National Electrical Code) electrical codes and hydraulic and safety procedures of pump installations.

Troubleshooting

Pump Will Not Start . . .

If fuses and heaters check ok...

PR	OBLEM:	ANSWER:
1.	No power or incorrect voltage	For detailed checking procedure, see C pages 40, 41.
2.	Defective pressure switch or control device	Inspect switch and/ or control – replace if necessary.
3.	Defective or loose connection in starter, cable or motor	For detailed checking procedure, see E pages 46-48. Condition causes improper resistance reading.
4.	Magnetic starter malfunction	For detailed checking procedure, see B pages 26-39.

Troubleshooting

Pump Will Not Run...

If motor overload trips or fuses blow...

PROBLEM:ANSWER:1.Improper size fuses, circuit breakers or heatersSee checking procedure B pages 32-39.2.Incorrect voltageSee C pages 40, 41.3.Phase loss or unbalanceSee G pages 54, 55.4.Incorrect starter sizeSee B for sizing information pages 36-39.5.Defective or loose connections in starter, cable or motorSee E pages 44-49. Condition causes improper resistance readings.6.Defective pressure switch orInspect switch and/or control - replace if		
1.	Improper size fuses, circuit breakers or heaters	See checking procedure B pages 32-39.
2.	Incorrect voltage	See C pages 40, 41.
3.	Phase loss or unbalance	See G pages 54, 55.
4.	Incorrect starter size	See B for sizing information pages 36-39.
5.	Defective or loose connections in starter, cable or motor	See E pages 44-49. Condition causes improper resistance readings.
6.	Defective pressure switch or control device	Inspect switch and/or control - replace if necessary.
7.	Cable insulation, splice or motor defective	See E pages 48, 49. Condition causes improper resistance readings.
8.	Defective starter	See B pages 36-39.
9.	Pump bound by abrasives/debris	Pull pump and clean. See D pages 42, 43. Condition causes high amperage.
10.	Inadequate motor cooling	See J pages 62, 63.

Troubleshooting

Pump Runs, But...

Little or no water delivered...

PR	OBLEM:	ANSWER:
1.	Incorrect pump rotation	See F pages 52, 53.
2.	Line check valve stuck or installed backwards	Inspect and replace if necessary.
3.	Defective or loose connections in starter	Inspect connections.
4.	Incorrect voltage	See C pages 40, 41.
5.	Pump not sufficiently submerged (air bound)	Check water level in well.
6.	Leak in piping system	Inspect and replace if necessary.
7.	Suction screen or impellers clogged	Pull pump and clean.
8.	Broken pump shaft or coupling	Pull pump and inspect.
9.	Air trapped under check valve (air bound)	Pump must be sub- merged a minimum of 10'.
10.	Gases in well	Start and stop pump several times. If this does not remedy conditions, well may contain too much gas for pump to operate properly.
11.	Worn pump or motor	Inspect and replace if necessary.
12.	Incorrect pump	See catalog performance data.

Troubleshooting

TROUBLESHOOTING

Reduced Capacity or Insufficient Pressure...

OBI FM:	ANSWER:		
Incorrect voltage	See C pages 40, 41.		
Incorrect pump rotation	See F pages 52, 53.		
Improper pressure switch setting	See H pages 58.		
Excessive pump wear	Inspect and replace if necessary.		
Leaks in piping system	Inspect and replace if necessary.		
Incorrect pump	See catalog performance data.		
	OBLEM: Incorrect voltage Incorrect pump rotation Improper pressure switch setting Excessive pump wear Leaks in piping system Incorrect pump		

Franklin Electric Maximum Starts Per 24 Hour Day

	Maximum starts	Per 24 Hr. Day
Motor Ratings	Single Phase	Three Phase
Up to ¾ HP	300	300
1 HP - 5 HP	100	300
7 ½ HP - 30 HP	50	100
40 HP and over		100

Troubleshooting

Pump Starts Too Frequently...

If motor overload trips or fuses blow...

PR	OBLEM:	ANSWER:
1.	Waterlogged tank	
	a. Standard galvanized	Check tank for leaks. Check drain and "Y" fittings, snifter valve for proper operation.
	b. Pneumatic	Check compressor and controller for proper operation.
	c. Pressurized type type	See I pages 60, 61.
2.	Check valve stuck open	Inspect and replace if necessary.
3.	Improper pressure switch setting	See H pages 58.
4.	Leaks in piping system	Inspect and replace if necessary.
5.	Improper tank precharge	Precharge tank at 2 lbs. less than pressure switch cut in.
6.	Pressure tank improperly sized	Must be sized to allow a minimum of run time per cycle. See rule of thumb below.

RULE OF THUMB

For pumps 1.5 hp and smaller allow a minimum of one minute run time per cycle. For pumps 2 hp and larger allow a minimum of two minutes run time per cycle. (See table page 12)

Amprobe Instructions

- 1. When used as an ammeter, the tongs are placed around the wire being measured with the rotary scale on the **100 amp range**. Then rotate the scale back to the smaller ranges until an exact reading is indicated.
- 2. When used as a voltmeter, the two leads are clipped into the bottom of the instrument with the rotary scale on the **600 volt range**. If the reading is less than 150 volts, rotate the scale to the 150 volt range to get a more exact reading.

WARNING!

Checking has to be done with **power on**.

Ohmmeter Instructions

The Ohmmeter is used for measuring the electrical resistance of a wire circuit. The unit of measurement is called an Ohm.

1. The knob at the bottom of the Ohmmeter is adjustable through six ranges:

DY.	_	P	v	1	
RX₁₀	_	R	X	10	If your ohmmeter
RX ₁₀₀	=	R	x	100	is digital readout
RX ₁₀₀₀	=	R	х	1,000	type, refer to the
RX 10К	=	R	х	10,000	came with it
RX _{100K}	=	R	Х	100,000	came with it.

2. The round center knob is for the purpose of adjusting the instrument to zero (0) after clipping the two Ohmmeter leads together. This must be done every time the range selection is changed.

WARNING!

Use Ohmmeter only with power off.

AMPROBE INSTRUCTIONS

Megger...

MEGGER

This instrument is used to measure insulation resistance to ground. It consists of a crank-turned magneto, on the side of the case, and will give very close readings calibrated directly in ohms. It is cranked at a moderate rate of speed, approximately 120 rpm, until the pointer reaches a steady deflection.

1. If the ohm value is normal, the motor windings are not grounded and the cable insulation is not damaged.

2. If the ohm value is below normal, either the windings are grounded or the cable insullation is damaged. Check the cable at the well seal as the insullation is sometimes damaged by being pinched.

Insulation Resistance Ratings

Condition of Motor and Leads	Ohm Value
A new motor (without drop cable)	20,000,000 (or more)
A used motor which can be reinstalled in the well	10,000,000 (or more)
MOTOR IN WELL. Ohm readings are for drop cable plus motor	
A new motor in the well	2,000,000 (or more)
A motor in the well in reasonably good condition	500,000 - 2,000,000
A motor which has been damaged by lightening or with damaged leads. Do not pull the pump for this reason	20,000 - 5000,000
A motor which definately has been damaged or with damaged cable. The pump should be pulled and repairs made to the cable or the motor replaced. The motor will not fail for this reason alone, but it will probably not operate for long	10,000 - 20,000
A motor which has failed or with completely destroyed cable insula- tion. The pump must be pulled and the cable repaired or the motor replaced	less than 10,000

Typical Wiring Diagrams

Magnetic Starter & Pressure Switch

NOTE:

Check to be sure proper selection of pressure switch matched to system voltage has been made... refer to catalog data.

Check that starter has ground.

RULE OF THUMB

Check that starter has ground.

₽

WIRING

DIAGRAMS

Typical Wiring Diagrams

Magnetic Starter, Pressure Switch & B/W Liquid Level Control

Typical Wiring Diagrams

Furnas Pumping Panel, Pressure Switch & B/W Liquid Level Control

22

WIRING DIAGRAMS

Subtrol & Pressure Switch

Check to be sure proper selection of pressure switch matched to system voltage has been made... refer to catalog data.

WIRING DIAGRAMS

The portion of the total cable, which is between the service entrance and a 3ø motor starter should not exceed 25% of the total maximum length of cable used to assure reliable starter operation.

- 1. Disconnect switch.
- 2. H-O-A switch.
- 3. Start switch.
- 4. Magnetic starter.
- 5. Solid state motor protection device.

.

UMP

28

Subtrol Plus Receiver

PUMP

CONTROL

PANELS

- 1. Subtrol Plus receiver programmed to match motor rating.
- 2. Control fuse block with fuse.
- 3. Class K-5 dual element type fuse clips with built-in fuse puller.
- 4. Subtrol sensor coils.

B. PU

Pump Control Panels

AWA503

Duplex alternator panel may be used to alternate two submersible or centrifugal pumps.

- 1. Use one switch for a simple alternating system
- 2. Use two switches when the system is required to:
 - A. Alternate two pumps
 - B. Start the second pump in the event the first pump cannot meet the system demand.

Auxiliary contacts allow the operation of one or two chemical feed pumps, such as chlorine or ozone injectors.

- 1. NEMA 1 enclosure.
- 2. Two hand-off auto switches.
- 3. Two pump run lamps.
- 4. Time delay.
- 5. Alternator circuit.
- 6. 120 VAC control circuit transformer.
- 7. Relay.
- 8. Terminals blocks for external wiring connections.

- 1. Set R x 1.
- 2. Connect leads as shown.
- 3. Reading: Should register zero.

What It Means -

Zero reading indicates fuse OK. Infinity (∞) reading indicates bad fuse.

WARNING!

Open master breaker and disconnect all leads from starter to avoid damage to meter or electric shock hazard. Connect the ohmmeter leads as shown above.

Coil with Ohmmeter

- 1. Set R x 100.
- 2. Connect leads as shown.
- **3.** Reading: Should register some value, Approx. 200-1000 ohms.

What It Means -

Infinity reading indicates coil is open. Zero reading indicates coil is shorted. In either case, the coil should be replaced.

A reading of 200-1000 ohms indicates coil is ok.

B Contact Point Inspection...

WARNING!

Open (turn off) master breaker or disconnect all leads from starter (CB lid) to avoid damage to meter or electric shock hazard.

- 1. Remove contact point cover as shown.
- 2. Visually inspect all contact points.
- 3. Replace if necessary.

What It Means -

Burned, welded, or misaligned contacts may cause starter malfunction.

What It Means -

Burned, welded, or misaligned contacts may cause starter malfunction.

m

B Starter & Heater Sizing Checkout...

WARNING!

TURN POWER OFF!

- 1. Check for correct starter and heater size referring to starter and heater selection chart.
- 2. Double check to see that all **three** heaters are of the same size and installed properly and are tight.

WARNING!

TURN POWER ON!

- 3. Push the reset button; listen for click.
- 4. If overload was tripped, investigate the cause.

What It Means -

Improper starter and heater sizing provides inadequate overload protection that may lead to motor failure or nuisance tripping.

TABLE 1 4" Three Phase Submersible Motors

		Furnas	Class 16	ESF	P 100	Fuse Size	
HP	Volts	Starter Size	Heaters	Starter Size	Starter No.	Circ.bkr. or std.	Dual Ele.
.5	200 230 460	16AD 16AG 16AH	K29 K28 K21	0 0 0	CSBD CSBA CSBC	10 8 4	5 4 2
.75	200 230 460	16AD 16AG 16AH	K34 K32 K23	0 0 0	CSBD CSBA CSBC	12 11 5	6 5 3
1	200 230 460	16AD 16AG 16AH	K37 K34 K26	000	CSDD CSDA CSBC	14 12 6	6 6 N
1.5	200 230 460 575	16AD 16AG 16AH 16AE	K42 K39 K29 K26	0 0 0	CSDD CSDA CSDC CSBE	20 20 15 15	9 8 4 3
2	200 230 460 575	16AD 16AG 16AH 16AE	K50 K43 K33 K29	0 0 0	CSDD CSDA CSDC CSDE	20 20 15 15	10 10 5 4
3	200 230 460 575	16AD 16AG 16AH 16AE	K55 K52 K37 K34	0 0 0	CSED CSEA CSDC CSDE	35 30 15 15	15 15 7 6
5	200 230 460 575	16AD 16AG 16AH 16AE	K62 K61 K49 K42	1 1 0 0	DSFD DSFA CSDC CSDE	50 45 25 20	25 20 10 8
7.5	200 230 460 575	16CD 16BG 16AH 16AE	K70 K67 K55 K52	1 1 1	DSFD DSFA DSEC DSEE	80 70 35 30	35 30 15 12
10	460 575	16AH 16AE	K61 K57	1 1	DSEC DSEE	45 40	20 20

continued next page ...

		Furnas	Class 16	6 ESP 100		Fuse Size		
HP Volts		Starter Size	Heaters	Starter Size	Starter No.	Circ.bkr. or std.	Dual Ele.	
5	200	DD	K61	1	DSFD	50	25	
	230	DG	K60	1	DSFG	45	20	
	460	BH	K49	0	CSDH	25	10	
	575	BE	K41	0	CSDE	20	8	
7.5	200 230 460 575	ED EG CH CE	K68 K67 K55 K52	1 1 1	DSFD DSFG DSEH DSEE	70 70 30 25	30 30 15 12	
10	200	QD	K72	1¾	ESGD	100	40	
	230	QG	K70	1¾	ESGG	80	35	
	460	DH	K58	1	DSEH	40	20	
	575	CE	K55	1	DSEE	35	15	
15	200	GD	K76	2½	GSJD	150	60	
	230	FG	K75	2	FSHG	125	60	
	460	EH	K64	1¾	ESFH	60	30	
	575	DE	K61	1¾	ESFE	50	25	
20	200	HD	K78	3	HSKD	200	60	
	230	GG	K77	2½	GSJG	175	70	
	460	QH	K70	2	FSHH	80	35	
	575	EE	K64	2	FSHE	70	30	
25	200	ID	K86	3	HSKD	225	100	
	230	IG	K83	3	HSKG	200	90	
	460	FH	K72	2	FSHH	100	45	
	575	QE	K70	2	FSHE	80	35	
30	200	ID	K88	3½	ISLD	300	125	
	230	IG	K87	3	HSKG	250	110	
	460	FH	K74	2½	GSHH	125	50	
	575	FE	K72	2½	GSHE	100	40	
40	460	GH	K77	3	HSKH	150	70	
	575	FE	K76	3	HSKE	125	70	
50	460	IH	K83	3	HSKH	200	90	
	575	HE	K77	3	HSKE	150	70	
60	460	IH	K87	4	ISLH	250	100	
	575	JE	K78	4	ISLE	200	80	

TABLE 2 6" Three Phase Submersible Motors

TABLE 3 8" Three Phase Submersible Motors

		Furnas	Class 16	ESP	100	Fuse S	ize
HP	Volts	Starter Size	Heaters	Starter Size	Starter No.	Circ.bkr. or std.	Dual Ele.
40 50	460 460	GH IH	K77 K83	3 3	HSKH HSKH	175 200	70 90
60 75 100	460 460 460	IH IH JH	K86 K89 K93	3½ 3½ 4	ISLH ISLH JTMH	225 300 400	100 125 175
150*	460 575	1	K33 K28	N/A	N/A	600 450	250 200
175*	460 575	I	K33 K31	N/A	N/A	700 700	300 300
200*	460 575	I	K26 K32	N/A	N/A	800 600	350 300

* Call Texas Turbine Division 806-743-5700 Ask for Technical Assistance.

Note: FURNAS ESP100 starters with heaterless overloads include ambient compensated o/l and single phase protection.

TOLL FREE ACTION NUMBER

Answers to your installation questions on submersible pump motors are as close as your telephone...

A Franklin submersible motor expert will handle your motor application inquires right away... and it's toll free.

Franklin Electric SERVICE HOTLINE

800-348-2420

(Also for Indiana)

EATER

G CHECKOUT

Checking Voltage at Fused Disconnect and Magnetic Starter

WARNING!

Power is ON during voltage checking.

- 1. To check voltage: Use voltmeter on L1, L2 and L3 in sequence. Check should be made at four locations.
 - Step 1 Checking incoming power supply.
 - Step 2 Checking fuses.
 - Step 3 Checking contact points
 - Step 4 Checking heaters.
- 2. When checking voltage, all other major electrical appliances (that could be in use at the same time) should be running.
- **3.** If incoming power supply readings are not within the limits (see chart), call your power supplier.

Voltage Limits								
Nome Dista W	ed Volts							
	Min.	Max.						
208V 3ø	188	228						
230V 3ø	207	253						
460V 3ø	414	506						
575V 3ø	518	632						

NOTE: Phase to phase – full line voltage. Phase to neutral – ½ full line voltage. (depending on transformer connection)

RULE OF THUMB

Incoming power should be within 5% of power supply voltage. Motors are rated $\pm 10\%$ of nameplate. The other 5% is used for cable voltage drop.

41

Ģ

OLTAGE

CHECKOUT

ω 0

STARTER

TABLE 4

Current Checkout

WARNING!

Power is ON during voltage checking.

Three Phase Motors Max Amps

			nace i		max	. Ampo
HP	Dia.	Lbs.	200V	230V	460V	575V
.5	4"	300	6.8	5.9	3.0	2.4
.75	4"	300	9.3	8.1	4.1	3.2
1	4"	650	12.5	10.9	5.5	4.4
5	4"	1500	20.5	17.8	8.9	7.1
7.5	4"	1500	30.5	26.4	13.2	10.6
10	4"	1500	-	-	18.8	15.0
5	6"	1,500	19.1	16.6	8.3	6.6
7.5	6"	1,500	28.3	24.6	12.3	9.8
10	6"	3,500	37.0	32.2	16.1	12.9
15	6"	3,500	54.5	47.4	23.7	19.0
20	6"	3,500	69.7	60.6	30.3	24.4
25	6"	3,500	86.3	75.0	37.5	30.0
30	6"	3,500	104.0	90.4	45.2	36.2
40	6"	3,500	-	-	62.0	49.6
50	6"	3,500	-	-	77.0	61.6
60	6"	3,500	-	-	91.0	72.8
40	8"	10,000	-	-	53.0	42.0
50	8"	10,000	-	-	65.0	53.0
60	8"	10,000	-	-	79.0	61.0
75	8"	10,000	-	-	97.0	78.0
100	8"	10,000	-	-	125.0	104.0
125	8"	10,000	-	-	165.0	136.0
150	8"	10,000	-	-	193.0	154.0
175	8"	10,000	-	-	218.0	174.0
200	8"	10,000	-	-	245.0	196.0

Using Amprobe

- 1. Set scale to highest amp range.
- 2. Connect amprobe around lead as shown.
- 3. Rotate scale to proper range and read value.
- 4. Compare value with Table.

What It Means -

Currents above these values indicate system problems.

Motor Winding Resistance Checkout...

 Set the scale lever to R x 1 for values under 10 ohms. For values over 10 ohms, set the scale lever to R x 10. Zero balance the ohmmeter as described earlier on page 15.

WARNING!

Open master breaker and disconnect all leads from starter to avoid damage to meter or electric shock hazard. Connect the ohmmeter leads as shown below.

2. Connect the ohmmeter leads as shown below.

TABLE 5

CHECKOUT

MOTOR WINDING RESISTANCE

ш

Cable Resistance — Copper

	Paired Wire
Size Cable	Resistance (ohms per foot)
14	.0050
12	.0032
10	.0020
8	.0013
6	.0008
4	.0005
2	.0003
0	.0002
00	.00015
000	.00013
0000	.00010

If aluminum cable is used the readings will be higher. Divide the ohm readings on this chart by 0.61 to determine the actual resistance of aluminum cable.

TABLE 6Motor Resistance 3ø MotorsResistance Motor Only (Ohms) – any 2 leads

HP	Dia.	Lbs.	200V	230V	460V	575V
.5	4"	900	6.64-7.3	9.5-10.4	38.4-41.6	-
.75	4"	900	4.66-5.12	7.24-7.84	27.8-30.2	-
1.5	4"	900	2.5-3.0	3.2-4.0	13.0-16.0	20.3-25.0
2.0	4"	900	1.9-2.4	2.4-3.0	9.7-12.0	15.1-18.7
3.0	4"	900	1.3-1.7	1.8-2.2	7.0-8.7	10.9-13.6
5.0	4"	900	.7094	.93-1.20	3.60-4.40	5.60-6.90
7.5	4"	900	.4657	.6177	2.40-3.40	-
5.0	6"	1,500	.6884	.88-1.09	3.53-4.37	-
7.5	6"	1,500	.3948	.5771	2.17-2.68	3.65-4.41
10	6"	3,500	.33.42	.4455	1.76-2.17	2.87-3.47
15	6"	3,500	.2227	.2733	1.07-1.32	1.70-2.10
20	6"	3,500	.1417	.2025	.7694	1.22-1.52
25	6"	3,500	.1114	.1519	.5973	1.01-1.25
30	6"	3,500	.1012	.1215	.4860	.7895
40	6"	3,500	-	-	.3240	.5359
50	6"	3,500	-	-	.2532	.3948
60	6"	3,500	-	-	.2227	-
40	8"	10,000	-	-	.256283	-
50	8"	10,000	-	-	.188207	-
60	8"	10,000	-	-	.148163	-
75	8"	10,000	-	-	.110121	-
100	8"	10,000	-	-	.076084	-
125	8"	10,000	-	-	.057063	-
150	8"	10,000	-	-	.049054	-
175	8"	10,000	-	-	.045050	.067074
200	8"	10,000	-	-	.038042	.060066

What It Means -

- 1. If all ohm values are normal, the motor windings are neither shorted nor open.
- 2. If any one ohm value is less than normal, the motor is shorted.
- **3.** If any one ohm value is greater than normal, the winding or the cable is open or there is a poor cable joint or connection.

Winding Resistance Measuring

When measured as shown on page 44, motor resistance only should fall within the values in Table 6. When measured through the drop cable, the size and length of the cable must be known and the correct cable resistance from Table 6 subtracted from the ohmmeter reading to get the winding resistance for comparison with Table 6.

Measuring Insulation Resistance

1. Set the scale lever to R x 100K (R x 100,000) and set the ohmmeter on zero.

WARNING!

ELECTRICAL SHORT CHECKOUT

ш

Open (turn off) master breaker or disconnect all leads from starter (CB lid) to avoid damage to meter or electric shock hazard.

2. Connect an ohmmeter lead to any one of the motor leads and the other to the metal drop pipe. If the drop pipe is plastic, connect the ohmmeter lead to the metal well casing or ground wire.

Table 7 Normal Ohm and Megohm Values (Insulation Resistance) Between All Leads and Ground

Insulation resistance does not vary with rating. All motors of all HP, voltage and phase rating have similar values of insulation resistance.

Condition of Motor and Leads	Ohm Value	Megohm Value
A new motor (without drop cable).	20,000,000 (or more)	20.0
A used motor which can be reinstalled in the well.	10,000,000 (or more)	10.0
Motor in Well. Ohm readings are for drop cable plus motor.		
A new motor in the well.	2,000,000 (or more)	2.0
A motor in the well in reasonably good condition.	500,000 - 2,000,000	0.5 - 2.0
A motor which may have been damaged by lightning or with damaged leads. Do not pull the pump for this reason.	20,000 - 500,000	0.02 - 0.5
A motor which definitely has been damaged or with damaged cable. The pump should be pulled and repairs made to the cable or the motor replaced. The motor will not fail for this reason alone, but it will probably not operate for long.	10,000 - 20,000	0.01 - 0.02
A motor which has failed or with completely destroyed cable insulation. The pump must be pulled and the cable repaired or the motor replaced.	less than 10,000	0 - 0.01

What It Means –

- 1. If the ohm value is normal, the motor windings are not grounded and the cable insulation is not damaged.
- If the ohm value is below normal, either the windings are grounded or the cable insulation is damaged. Check the cable at the well seal as the insulation is sometimes damaged by being pinched.

CABLE

ш

Cable Checkout...

Checking Cable and Splice

- 1. Submerge cable and splice in steel barrel of water with both ends out of water.
- 2. Set ohmmeter selector on Rx100K and adjust needle to zero (0) by clipping ohmmeter leads together.
- **3.** After adjusting ohmmeter, clip one ohmmeter lead to barrel and the other to each cable lead individually, as shown.
- 4. If the needle deflects toward zero (0) on any of the cable leads, pull the splice up out of the water. If the needle falls back to (∞) (no reading) the leak is in the splice.
- 5. If leak is not in the splice, pull the cable out of the water slowly until needle falls back (∞) (no reading). When the needle falls back, the leak is at that point.
- 6. If the cable or splice is bad, it should be repaired with waterproof electrical tape, or replaced.

Pump Disassembly...

Some disassembly procedures differ between Series E and Series GS (newer).

1. Remove discharge head and casing.

Remove 4 screws in cable guard, remove cable guard and set aside. On "GS" reinstall the two top screws. Remove the discharge head and casing as one assembly, the threads are left-hand.

On "E" you can remove the discharge head and casing as one piece by reinstalling the two top screws or you can remove them as separate pieces. The "E" threads are right hand.

GS: Left hand Thread. Series E: Right hand Thread.

- 2. Place the unit in a vertical position if you have a pump vise...otherwise lay pump on floor to loosen.
- 3. With two wrenches, one placed on the motor adapter and the other on the discharge head, unscrew the casting at the motor adapter. It should then lift off readily, exposing the stacked bowls.
- 4. Series E: If snap ring is provided on end of shaft, remove with snap ring pliers. If Klip Ring is provided, remove with screwdriver.

Series GS: Remove Klip Ring with screwdriver.

- 5. The complete stages consisting of bowl, impeller and diffuser, may be lifted off the shaft one at a time and the respective parts disassembled for inspection and/or renewal.
- 6. Remove nuts holding the motor adapter to the motor and remove the motor adapter.
- 7. Remove shaft sleeve.
- 8. Remove pump shaft and coupling assembly. Do not try to remove the coupling from the pump shaft.

Note: to identify an "E" series model number look on the OD of bottom motor adapter flange 180° from cutout for motor leads. All pumps were stamped with water end model number, ex. 7EH05 or 18E15. To cross to "GS" simply replace the "E_ with GS, ex 7EH05 = 7<u>GS</u>05, 18E15 = 18<u>GS</u>15.

On gaseous wells using "GS". Rather than trying to remove the check valve we suggest you drill a 3/16" hole in it and install a line check one pipe joint above the pump.

For other disassembly detail, see instruction manual.

Series GS has built-in check valve.

SUBMERSIBLES

Rotation...

Correct rotation is a must on all 3ø installations. Rotation can be checked by one of these three ways:

VISUAL 1

- 1. Connect 3 motor leads to starter, run unit at open discharge.
- 2. Switch any 2 leads and again run unit at open discharge.
- **3.** Largest quantity of water indicates correct rotation.

VISUAL 2

Remove water end from meter. Run motor and observe rotation

PRESSURE

- 1. Connect 3 motor leads to starter. Run unit against closed discharge, take maximum pressure reading.
- 2. Switch any 2 leads and again run unit against closed discharge. Take maximum pressure reading.
- **3.** Highest pressure reading indicates correct rotation.

WARNING!

Prolonged reverse rotation operation can cause pump/motor damage.

UNBALANCE

.

Unbalance...

For the best protection, we recommend no more than a 5% current deviation from average current.

Current readings in amps should be checked on each leg using the three possible hookups.

CAUTION

To prevent changing motor rotation, the motor leads should be reordered in the same direction, see example on page 51.

RULE OF THUMB

If the unbalance moves with the motor leads the unbalance is caused by the motor, wet splice, or damaged cable. If the unbalance remains with the terminals the unbalance is in the power supply. Calculate percentage of current unbalance for all three hookups.

Example:

Hook Up 1	Hook Up 2	Hook Up 3
T ₁ =51 Amps	T ₃ = 50 Amps	$T_2 = 50 \text{ Amps}$
T ₂ = 46 Amps	$T_1 = 48$ Amps	T ₃ = 49 Amps
T ₃ = 53 Amps	T ₂ = 52 Amps	T ₁ = 51 Amps

Add up all three readings for hook up number 1.

 $T_1 = 51 \text{ Amps}$ $T_2 = 46 \text{ Amps}$ $+T_3 = 53 \text{ Amps}$ Total 150 Amps

Divide the total by three to obtain the average.

50 Amps = Average

3 150 Amps

Calculate the greatest amp difference from the average. Could be greater than average.

50 Amps -46 Amps

4 Amps

Divide this difference by the average to obtain the percentage of unbalance.

.08 or 8%

50 4.00 Amps Hook Up #1 = 8% Hook Up #2 = 4%

Hook Up #3 = 2%

Always use hook up with lowest % current unbalance. Loads on a transformer bank vary. Readings should be taken at peak load period.

What It Means -

- 1. Hook ups below 5% = system balanced.
- 2. Hook ups not below 5% if the unbalance moves with the motor leads the unbalance is caused by the motor, wet splice, or damaged cable. Check the motor on pages 44-45. If the unbalance remains with the terminals the unbalance is in the power supply contact power company.

6

TABLE 8

C Transformer Sizes...

A full three phase supply is recommended for all three phase motors, consisting of three individual transformers or one three phase transformer. "Open" delta or wye connections using only two transformers can be used, but are more likely to cause problems from current unbalance.

Transformer ratings should be no smaller than listed in the table for supply power to the motor alone.

Transformer Capacity Required for Submersible Motors

Submersible	Total	Smallest KVA Rating - Each Transformer				
3ø Motor HP Rating	3ø Motor HP Rating	Open WYE or Delta 2 Transformers	WYE Delta 3 Transformers			
1.5	3	2	1			
2	4	2	1.5			
3	5	3	2			
5	7.5	5	3			
7.5	10	7.5	5			
10	15	10	5			
15	20	15	7.5			
20	25	15	10			
25	30	20	10			
30	40	25	15			
40	50	30	20			
50	60	35	20			
60	75	40	25			
75	90	50	30			
100	120	65	40			
125	150	85	50			
150	175	100	60			
175	200	115	70			
200	230	130	75			

Adjust in proper Sequence:

- 1. CUT-IN: Turn range nut down for higher cut-in pressure, or up for lower cut-in.
- 2. CUT-OUT: Turn differential nut down for higher cut-out pressure, or up for lower cut-out.

Note: Adjustment to range (cut-in) nut will also change cut-out pressure.

CAUTION

To avoid damage, do not exceed maximum allowable system pressure. Check switch operation after re-setting.

T

PRES

RULE OF THUMB

Check to be sure proper selection of pressure switch matched to system voltage has been made... refer to catalog data.

- 1. MAIN SPRING ADJUSTMENT: Turn clockwise to increase both Cut-Out and Cut-In pressure (2 psi / turn).
- 2. DIFFERENTIAL ADJUSTMENT: Turn differential nut clockwise to increase Cut-Out pressure without affecting Cut-In (3 psi / turn).

CAUTION

To avoid damage, do not exceed maximum allowable system pressure. Check switch operation after re-setting.

Pressure Tank Checkout Procedure...

To check: Shut off power supply and fully drain system to "0" pressure. There should be no water left in the tank(s).

Π

Ш

0 0 1

A

RULE OF THUMB

If water at air valve, replace tank.

Air pre-charge in top of pre-pressurized air tanks should be 2 psi less than the cut-in pressure of the pressure switch.

Example: If pressure switch setting is 30-50 psi, tank should be pre-charged with 28 lbs. air when empty of all water and pump turned off.

J Submersible Motor Cooling

A flow inducer sleeve should always be used when the pump is in a large body of water. Make sure that such an installation is grounded.

When the pump is below any screen openings or below the bottom of the casing a top feeding well condition can exist which reduces the rate of cooling water flow past the motor. If the flow rate is less than specified a flow inducer sleeve is needed.

Table 9

Required Cooling Flow

Minimum GPM required for motor cooling in water up to $86^{\circ}F$ ($30^{\circ}C$).

Inches casing or sleeve I.D.	4"high thrust motor .25 ft/sec GPM	6" motor .5 ft/sec GPM	8" motor .5 ft/sec GPM
4	1.2	-	_
5	7	-	—
6	13	9	-
7	20	25	-
8	30	45	10
10	50	90	55
12	80	140	110
14	110	200	170
16	150	280	245

A flow inducer sleeve is a tube over the motor, closed off above the pump intake and extended to the bottom of the motor or lower. The sleeve material is corrosion resistant metal or heavy plastic. IJ

J

29

200V 60Hz Three Phase Three Wire

				AW	G Cop	per W	lire Si	ze			
HP	14	12	10	8	6	4	3	2	1	00	0
	710	1140	1800	2840	4420						
	510	810	1280	2030	3160						
	430	690	1080	1710	2670	4140	5140				
	310	500	790	1260	1960	3050	3780				
	240	390	610	970	1520	2360	2940	3610	4430	5420	
	180	290	470	740	1160	1810	2250	2760	3390	4130	
	110*	170	280	440	690	1080	1350	1660	2040	2490	3050
7 ½	0	0	200	310	490	770	960	1180	1450	1770	2170
10	0	0	0	230*	370	570	720	880	1090	1330	1640
15	0	0	0	160*	250*	390	490	600	740	910	1110
20	0	0	0	0	190*	300	380	460	570	700	860
25	0	0	0	0	0	240	300*	370*	460	570	700
30	0	0	0	0	0	0	250*	310*	380*	470	580

230V 60Hz Three Phase Three Wire

	930	1490	2350	3700	5760	8910					
	670	1080	1700	2580	4190	6490	8060	9860			
	560	910	1430	2260	3520	5460	6780	8290			
	420	670	1060	1670	2610	4050	5030	6160	7530	9170	
	320	510	810	1280	2010	3130	3890	4770	5860	7170	8780
	240	390	620	990	1540	2400	2980	3660	4480	5470	6690
	140*	230	370	590	920	1430	1790	2190	2690	3290	4030
	0	160*	260	420	650	1020	1270	1560	1920	2340	2870
10	0	0	190*	310	490	760	950	1170	1440	1760	2160
15	0	0	0	210*	330	520	650	800	980	1200	1470
20	0	0	0	0	250*	400	500	610	760	930	1140
25	0	0	0	0	0	320*	400	500	610	750	920
30	0	0	0	0	0	260*	330*	410*	510	620	760

460V 60Hz Three Phase Three Wire

				AWG	Copp	er Wi	re Siz	e			
HP	14	12	10	8	6	4	3	2	1	0	00
	3770	6020	9460								
	2730	4350	6850								
	2300	3670	5770	9070							
	1700	2710	4270	6730							
	1300	2070	3270	5150	8050						
	1000	1600	2520	3970	6200						
	590	950	1500	2360	3700	5750					
	420	680	1070	1690	2640	4100	5100	6260	7680		
10	310	500	790	1250	1960	3050	3800	4680	5750	7050	
15	0	340*	540	850	1340	2090	2600	3200	3930	4810	5900
20	0	0	410*	650	1030	1610	2000	2470	3040	3730	4580
25	0	0	0	530*	830	1300	1620	1990	2450	3010	3700
30	0	0	0	430*	680	1070	1330	1640	2030	2490	3060
40	0	0	0	0	500*	790	980	1210	1490	1830	2250
50	0	0	0	0	0	640*	800	980	1210	1480	1810
60	0	0	0	0	0	540*	670*	830*	1020	1250	1540
75	0	0	0	0	0	0	0	680*	840*	1030	1260
100	0	0	0	0	0	0	0	0	620*	760*	940*
125	0	0	0	0	0	0	0	0	0	0	740*
150	0	0	0	0	0	0	0	0	0	0	0
175	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0

Lengths marked * meet the NEC ampacity only for individual conductor 60° C cable in free air or water, not in conduit.

Flat molded cable is considered to be jacketed cable.

This table is based on copper wire.

65

CABLE

SELECTION

CHARTS

575V 60Hz Three Phase Three Wire

AWG Copper Wire Size											
HP	14	12	10	8	6	4	3	2	1	0	00
	5900	9410									
	4270	6810									
	3630	5800	9120								
	2620	4180	6580								
	2030	3250	5110	8060							
	1580	2530	3980	6270							
	920	1480	2330	3680	5750						
	660	1060	1680	2650	4150						
10	490	780	1240	1950	3060	4770	5940				
15	330*	530	850	1340	2090	3260	4060				
20	0	410*	650	1030	1610	2520	3140	3860	4760	5830	
25	0	0	520*	830	1300	2030	2530	3110	3840	4710	
30	0	0	430*	680	1070	1670	2080	2560	3160	3880	4770
40	0	0	0	500*	790	1240	1540	1900	2330	2860	3510
50	0	0	0	0	640*	1000	1250	1540	1890	2310	2840
60	0	0	0	0	0	850*	1060	1300	1600	1960	2440
75	0	0	0	0	0	690*	860*	1060*	1310	1600	1970
100	0	0	0	0	0	0	0	790*	970*	1190	1460
125	0	0	0	0	0	0	0	0	770*	950*	1160
150_	0	0	0	0	0	0	0	0	0	800*	990*
175_	0	0	0	0	0	0	0	0	0	0	870*
200	0	0	0	0	0	0	0	0	0	0	0

Lengths marked * meet the NEC ampacity only for individual conductor 60° C cable in free air or water, not in conduit.

Flat molded cable is considered to be jacketed cable.

This table is based on copper wire.

NOTES

NOTES

NOTES

_

addresses & phone

Company			
Contact			
Address			
City	State	Zin	
Phone	Oldic	Z ip	
	T ux		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zin	
Phone	Oldic Fax	Z ip	
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax	r	
Company			
Contact			
Address			
Address City	State	Zip	

addresses & phone

Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		
Company			
Contact			
Address			
City	State	Zip	
Phone	Fax		

ADDRESSES & PHONE

Goulds Pumps

